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AMBIENT VIBRATION STUDIES OF BERKELEY PUBLIC LIBRARY

ABSTRACT

This report summarizes the results of ambient vibration tests performed on the Berkeley Public
Library of the City of Berkeley, California. The tests were performed on May 19, 1997 by
personnel of the Department of Civil & Environmental Engineering of the University of California
at Berkeley. The motions of each floor of the main building and the library stacks due to ambient
excitation (traffic, wind) were recorded using extremely sensitive velocity transducers. The
acquired data was then processed to obtain the fundamental natural vibration modes and
frequencies of the main building and the book stacks. In addition, in-plane response shapes of the
roof of the building were estimated.
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1 INTRODUCTION

The objective of this study was to estimate the natural vibration modes and frequencies of the
Berkeley Public Library. This information is extremely important because it characterizes the
dynamic response of the building, and, therefore, can be used to predict its behavior during a future
earthquake or to calibrate analytical models of the building.

A comprehensive program of ambient vibration tests was performed to determine the natural
vibration frequencies and modes of the library. Ambient vibration testing has been used
successfully to determine the dynamic characteristics of many buildings [1-3]. Testing consists of
placing extremely sensitive instruments (seismometers) on each floor to measure the motions of the
building due to external excitations such as wind and traffic. The natural vibration properties of the
building are then estimated by comparing the relative motion of the floors at the dominant
frequencies.

The Berkeley Public Library is a complicated building, with an independent structural system for
the book stacks and a very irregular distribution of floor plans. Additional objectives of this test
project were to characterize the dynamic behavior of the stacks, to measure the in-plane vibration
of the roof, and to investigate the response of a building addition.

2 BRIEF DESCRIPTION OF THE BUILDING

The Berkeley Public Library is located at 2090 Kittredge St., in Berkeley, California. Figures 2.1
and 2.2 show views of the building from Kittredge St. and from Shattuck Ave., respectively. The
library is a four-story building, with a basement and a small appendix on the roof. The main
building was built in 1931. A three-story addition was built later on the West side of the building
(Fig. 2.3).

The building has an almost rectangular shape measuring 170 feet in East-West direction (along
Kittredge Street), and 96 feet in North-South direction (along Shattuck Ave.). The main entrance to
the building is located in the first floor, on Kittredge St. The total height of the building is
approximately 52 feet. Figure 2.4 shows the floor plan of the first floor. A plan of each floor is
included in Appendix A. :

Figures 2.5 and 2.6 show hand sketches of sections traced from the building drawings. These
figures show that the floor plan distribution up the height of the building is very irregular. The book
stacks are built in a four-level steel structure located inside the building. Only the basement and
first floor of the building and the stacks are at the same level; the higher stack levels do not
coincide with the library floors. The stacks are connected to the main building at each stack level
by relatively flexible connectors and to some building floors by small stairs. The irregularity in
floor plan distribution, the presence of a relatively independent structure for the stacks, the building
addition, and the flexible roof are the main factors contributing to have an extremely complicated
structural system. The identification of vibration characteristics of such a complex building via
ambient vibration testing is a particularly challenging task.



Fig. 2.1 View of Berkeley Public Library from Kittredge St.

Fig. 2.2 View of Berkeley Public Library from Shattuck Ave.
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Fig. 2.3  View of Building Addition from the Parking Lot on Kittredge St.
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3 INSTRUMENTATION & TESTING

The response of the building was measured with eight Kinemetrics SS1 Ranger seismometers
(named S1 through S8). The signals from these sensitive velocity transducers were low-pass
filtered at 100 Hz and attenuated to 30 dB with Kinemetrics SC-1 Signal Conditioners. The
measurements were recorded in mm/sec with a Megadac portable data acquisition system and
transferred to a laptop computer after each test. The scanning rate was set at 200 Hz. Memory
constraints of the data acquisition system limited each test to approximately two and half minutes
of recording. Additionally, a HP 3582A spectrum analyzer was used to monitor frequency response
of the structure.

The main objective of the project was to determine the global dynamic characteristics of the
building in three directions: horizontal translation of each floor level in the N-S and E-W
directions, and floor rotation around a vertical axis. To characterize floor motion in these three
directions, a set of four instruments was placed on each floor; two oriented in the N-S direction and
two in the E-W direction. These sensors were placed as far apart as possible. That way, the sum of
the readings of each pair (N-S or E-W) was dominated by the floor translation and their difference
was dominated by the floor rotation.

Throughout the testing program a set of four seismometers was kept on the roof to serve as
reference instruments. Sensors S1 and S3 measured motion in the N-S direction; S2 and S4 in the
E-W direction. A second group of four seismometers was moved from floor to floor, starting at the
highest level of the building and ending at the basement. Sensors S5 and S7 were located in the N-
S direction; S6 and S8 in the E-W direction.

Table 3.1 lists all the tests performed. Measurements were taken in all the main building floors and
all the stacks levels. In order to ensure repeatability of measurements, at least three tests were
conducted for each sensor configuration. The testing program is represented schematically in Fig.
3.1, which shows a three dimensional sketch of all floors tested and the instrumentation
configuration for a typical test (3™ Floor). This drawing also captures some of the complexity of
the structure due to the uneven size and distribution of the floors. The location of the seismometers
at each level tested is presented in figures A.1 through A.10 of Appendix A.

The command center was set up on the 3" floor, in the Young People’s Reading Room. During
each test, the response of all sensors was monitored in real time on the laptop screen to ensure that
the data was adequate. The frequency response of selected seismometers was also monitored on the
frequency analyzer screen and plotted using an X-Y recorder. A clear signal was obtained from
each seismometer at each floor, indicating that the main response modes of the building were
excited during the tests. Figures 3.2 to 3.5 show photographs taken during testing.

The first test performed was a calibration check of the seismometers. All eight instruments were
placed side by side and oriented in the same direction (N-S) on the third floor in the Young
People’s Room. All sensors measured very similar motions, indicating that they were correctly
calibrated. This is corroborated in Fig. 3.6, which shows the Fourier amplitudes of all seismometers
and phase angles of transfer functions (reference is S1) for this test. The frequency response of the
seismometers is very close in the frequency range of interest, 2 to 10 Hz.



Table 3.1 Testing Program

— w——

|

Test Number Description File Name
1 a-c Instrument Check (3-;‘-j Floor Alibrary.001-003
2a-c Roof Flexibility Alibrary.004-006
3a-c 4" Floor Alibrary.007-009
4 a-e Stacks Level F Alibrary.010-014
5a-c Stacks Level E Alibrary.015-017
6 a-c 3" Floor Alibrary.018-020
7 a-c Addition (3" Floor) Alibrary.021-023
8 a-c Mitchell Room (3™ Floor) Alibrary.024-026
9 a-c Stacks level D Alibrary.027-029
10 a-c 2™ Floor Alibrary.030-032
1T a-d Stacks Level C Alibrary.033-036
12 a-c Stacks Level B Alibrary.037-039
13 a-c 1¥ Floor Alibrary.040-042
14 a-c Basement Alibrary.043-045
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Fig. 3.2 Testing Command Center on 3™ Floor (Young People’s Reading Room)

Fig. 3.3  Photo of Two Seismometers During Roof Flexibility Test
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Fig. 3.6 Instrument Calibration Check - 3™ Floor Frequency Response
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4 DATA PROCESSING

The computer program MATLAB [4] and its signal processing Toolbox [5] were used to process
the experimental data. Each data channel consisted of approximately 25,000 points sampled at a
time interval of 0.005 seconds.

Floor translation time histories were estimated as the average of records from two opposite
seismometers. The corresponding floor rotation records were obtained by subtracting these two
records and dividing the result by the distance between the sensors. Figure 4.1 shows typical
translation time histories calculated for all floors of the main building.

Frequency domain data were obtained by dividing the floor response time histories in overlapping
segments (or windows) of 4096 data points. Window duration was 20.48 seconds; thus, the
frequency resolution was approximately 0.05 Hz. Segment overlap was 1000 points. A Hanning
window was applied to all segments to prevent frequency leakage due to finite window duration.
The MATLAB ‘spectrum’ function was used to compute the Power Spectral Density (PSD) of each
floor response time history and to compute the Complex Transfer Function (CTF) from a roof
record (reference) to each floor record.

Fourier amplitude spectra of each level response record (including the roof) were estimated as the
square root of the corresponding PSDs. Natural vibration frequencies were detected by identifying
significant peaks appearing at each level. For example, Figure 4.2 a) shows the Fourier amplitude
spectra of the main building floors in the N-S direction. Peaks at 2.6 Hz appear in all floors,
increasing in amplitude up the height of the building. This suggests that the first translational mode
might occur at this frequency. To ascertain this suggestion, it was necessary to examine the relative
phase angle of each floor at this frequency. A small phase angle indicates that the floor considered
is moving in the same sense as the roof (i.e. floor and roof are in phase). A phase angle close to 180
degrees indicates that the floor is moving in an opposite sense to the roof (i.e. floor and roof are out
of phase).

Phase angles were calculated from the phase of the CTF of each level relative to the roof. For
instance, Figure 4.2 b) shows phase angles of the N-S response of all floors with respect to the roof.
All floors have very small phase angles at 2.6 Hz, indicating that they are all moving in phase with
the roof at this frequency. This means that the first translational mode in the N-S direction of the
main building floors occurs indeed at 2.6 Hz. The corresponding mode shape was obtained by
normalizing the Fourier amplitudes measured at 2.6 Hz to a unit value on the roof.

This method was used to estimate the fundamental mode shapes and frequencies of the building, a
few higher modal frequencies and modes, and response shapes of the in-plane motions of the roof.

14
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Fourier amplitude [mm/sec]
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5 ROOF & ADDITION TESTS
5.1 Roof Flexibility Test

This test was performed to evaluate the in-plane response of the roof. Six seismometers were
placed in the N-S direction (83, S5, S6, 87, S8, and S1); two seismometers were placed in the E-W
direction (S2 and S4). The frequency response in the N-S direction can be visualized in Figs. 5.1 a)
and b) which show the Fourier amplitude and relative phase (S1 is reference) of all records. Figure
5.2 shows the corresponding information for the instruments placed in the E-W direction. These
figures show meaningful peaks at 2.6 Hz, 3.4 Hz, 4.1 Hz and 6.2 Hz.

As expected, the roof showed a flexible in-plane response, mainly along its longest axis (E-W). At
2.6 Hz, the roof moved in the N-S direction, with significant flexural in-plane deformation (Fig. 5.3
a - top). At 3.4 Hz, the roof moved rigidly in the E-W direction, with a pronounced shear distortion
along the E-W axis (Fig. 5.3 a - bottom). This response shape does not include a rotational
component because the two opposite E-W sensors are in phase with each other. A clear torsional
response was observed at 4.1 Hz, with some in-plane deformation (F ig 5.3 b —top). Finally, at 6.2
Hz, the roof moved rigidly in the E-W direction, with a complicated in-plane distortion shape.

The results from this test indicated that the fundamental vibration frequencies of the building were
most probably at 2.6 Hz for N-S floor translation, 3.4 Hz for E-W floor translation, and 4.1 Hz for
floor rotation.

5.2 Test of Building Addition

This test was scheduled to verify whether or not the library addition responded together with the
main building. The test was performed on the third floor. Two seismometers were placed on the
addition floor, in two orthogonal directions, and a similar set of two seismometers was located
nearby, but on the floor of the main building.

Fig. 5.4 shows the calculated Fourier amplitudes and phase angles for the translations in the N-S
and E-W directions. The addition and the main building clearly moved together during the ambient
vibration tests.

18
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TEST OF ROOF FLEXIBILITY: ROOF MODE AT 2.6 HZ
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Fig. 5.3 a) Roof In-Plane Response Shapes at 2.6 Hz and 3.4 Hz
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TEST OF ROOF FLEXIBILITY: ROOF MODE AT 4.1 HZ
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Fig. 5.3 b) Roof In-Plane Response Shapes at 4.1 Hz and 6.2 Hz
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6 NATURAL MODES AND FREQUENCIES

The main objective of this testing program was to estimate at least the fundamental natural modes
and frequencies of the main building. It was also hoped that the recorded data would help to
determine whether the stacks and the building respond together or they vibrate independently of
each other.

The fundamental frequencies of the main building and the stacks were found to be 2.6 Hz for the
translational response in the N-S direction, 3.4 Hz for the translational response in the E-W
direction, and 4.1 Hz for the torsional response. These results are in accordance with those obtained
during the roof flexibility test, and indicate that the main building and the stacks respond together,
at least for small excitation levels. The corresponding fundamental mode shapes were calculated
reliably because all levels were found to be clearly in phase at each fundamental frequency.

Figure 6.1 shows the mode shapes of the main building floors and the stack levels for the
fundamental translational modes of vibration in the N-S direction at 2.6 Hz. Modal shapes are
smooth, with the characteristic 1¥ mode response outline. The modal amplitudes of the stacks at the
higher levels are larger than those of the main building.

Figure 6.2 shows the corresponding information for the fundamental translational mode in the E-W
direction at 3.4 Hz. The modal amplitude for the 3" floor is smaller than what would be expected in
a more regular building. Modal amplitudes of main building and stacks are similar up the height of
the building.

The fundamental rotational mode shapés obtained at 4.1 Hz are presented in Fig. 6.3. The modal
amplitudes of the 2™ through 4™ floors of the main building are significantly larger than that of the
roof, and the modal amplitudes of the stacks are somewhat smaller than those of the main building.

Modal parameters for higher modes of vibration were significantly more difficult to estimate than
those for the fundamental modes of vibration. The results presented below must not be considered
to be completely reliable.

Fig. 6.4 shows the estimated mode shapes and frequencies for building and stacks corresponding to
the 2™ translational mode in the N-S direction. Building and stacks vibrate at different frequencnes
4.1 Hz for the building and 5.3 Hz for the stacks. Notice that 4.1 Hz is also the calculated 1¥ mode
rotational frequency for both building and stacks, and that roof response was mainly rotational at
4.1 Hz. This seems to indicate that the response of the building at 4.1 Hz is not a “pure”
translational or rotational mode, but a mixed mode of vibration including both translational and
rotational components.

Finally, Fig. 6.5 shows the response shapes at 6.2 Hz. They seem to correspond to the 2™ mode of
vibration in the E-W direction for building and stacks. As in the case of the 1 E-W mode, the
amplitude for the 3™ floor is smaller than expected.

Table 6.1 summarizes the computed modal parameters. Appendix B presents graphs of the Fourier
amplitudes and phase angles for all levels of the main building and stacks.
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Table 6.1 Modal Properties and Frequencies

Mode No. Frequency Description
] e [
2 S4Bz | anslation, 15t Mode
? 41He | Roion 1ot Mode
47 41Hz ;4-3;0_1_13;1;;(]22%“, 2n§ mode
37 >3 Hz Isslt?Sd’(l'sranslation, 2nd mode
6 6.2 Hz Main Building and Stacks

E-W Translation, 2nd mode
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APPENDIX B

FREQUENCY DOMAIN RESPONSE
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Fig. B.1 Fourier Amplitudes for N-S Translation of Floors
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Fig. B.2 Phase Angles for N-S Translation of Floors
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Fig. B.3 Fourier Amplitudes for E-W Translation of Floors
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Fig. B.7 Fourier Amplitudes for N-S Translation of Stacks
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Fig. B.8 Phase Angles for N-S Translation of Stacks
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