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Abstract of the Dissertation

Essays on Trading and Contract Theory

by

Linlin Ye

Doctor of Philosophy in Economics

University of California, Los Angeles, 2016

Professor Pierre-Olivier Weill, Chair

This dissertation provides a study of optimal trading and contracting decisions, and their

impacts on modern market structures. The dissertation is composed of three chapters.

Chapter 1 investigates the impact of dark pools on the informational efficiency of prices

(price discovery). Traders trade an asset in either an exchange or a dark pool, with informed

traders having heterogeneous private signals whose distribution is determined by an informa-

tion precision level. We find that dark pools have an amplification effect on price discovery.

That is, when information precision is high, adding a dark pool enhances price discovery,

whereas when information precision is low, adding a dark pool impairs price discovery. The

main force behind this result is a sorting effect: in equilibrium, traders with strong signals

trade in exchanges, traders with modest signals trade in dark pools, and traders with weak

signals do not trade. These results produce novel empirical predictions regarding dark pools

that reconcile the empirical evidence. The results also provide regulatory suggestions on

enhancing the informational efficiency of pricing in equity markets and in emerging markets.

Chapter 2 provides a framework to study information diffusion and interaction between a

centralized and a bilateral market. In the model, traders trade to hedge their positions with

some agents possessing private information. All agents can trade in the bilateral market

before trading with a monopolistic market maker in a centralized market. We show that

an active bilateral market functions as a channel to disseminate information. Moreover,
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information diffusion depends on the centralized market liquidity: both overly liquid and

overly illiquid centralized markets discourage bilateral trading, and only reasonable central-

ized market liquidity activates bilateral trading and hence information diffusion. We also

find that information diffusion is conducted in an asymmetric way. Which type of news

spreads faster depends on the conjecture of the uninformed traders. Lastly, when prices in

the centralized market contain information, it may “squeeze out” trades and information

diffusion in the bilateral market.

Chapter 3, which is co-authored with Jen-wen Chang, analyzes the optimal screening

decision for a monopolistic firm when consumers have time-inconsistent preferences and

unobservable multiple degrees of naiveté (unawareness of their time-consistency). The firm

can contract to screen their degrees of sophistication, subject to profit maximization. We

characterize the optimal contracts and show that the firm offers a non-screening contract

when consumers have deterministic costs and offers a screening contract when consumers

have random costs. We argue that the uncertainty of the consumption costs lowers the

firm’s screening costs, and a discount per-usage price serves as a commitment device for the

more sophisticated types. The results explain the phenomenon of the variation of contracts

in sports club memberships, saving plans, and retirement programs.
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CHAPTER 1

Understanding the Impacts of Dark Pools on Price

Discovery

1.1 Introduction

Over the years, the world financial system has experienced a widening of equity trading

venues, among which dark pools have rapidly grown in popularity. The market share of

dark pools in the US has grown from 7.51% in 2008 to 16.57% in 2015.1 In contrast with

a traditional exchange, dark pools do not publicize information about their orders and best

price quotations before trade. Unlike a stock exchange in which prices are formed to clear the

buy and sell orders, a typical dark pool executes orders using a price derived from the stock

exchanges. Those dark pools do not contribute to the process of information aggregation, and

hence they do not offer price discovery (i.e., the process and efficiency of prices aggregating

information about asset value). Price discovery is essential to achieving the confidence of

a broad community of market participants and ensuring the efficiency of capital markets.

Therefore, the question of whether dark pool trading will harm price discovery has become

a rising concern and matter of debate for regulators, and industry practitioners.2 Academic

1Rosenblatt Securities: Let There Be Light, January 2016 Issue.

2For example, as remarked by the SEC Commissioner Kara M. Stein before the Securities Traders Associ-
ation’s 82nd Annual Market Structure Conference in Sep. 2015, “As more and more trading is routed to dark
venues that have restricted access and limited reporting, I am concerned that overall market price discovery
may be distorted rather than enhanced.” According to “An objective look at high-frequency trading and
dark pools,” a report released by PricewaterhouseCoopers (2015), “Dark pools may harm the overall price
discovery process, particularly in a security in which a significant portion of that security’s trade volume is
in the pools.”
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research, for its part, has yielded conflicting results. Ye (2011) predicts that, in theoretical

studies, the addition of a dark pool strictly harms price discovery. By contrast, Zhu (2014)

predicts that dark pools strictly improve price discovery. Empirically, there are findings that

support each of the different predictions.

This paper investigates the question whether dark pool trading will harm price discovery.

We find a novel amplification effect of dark pools on price discovery: price discovery will

be enhanced when price discovery is high and will be impaired when price discovery is low.

We model the decisions of traders who enter the markets to trade an asset: a) trade in an

exchange, b) trade in a dark pool, or c) do not trade. Informed traders have heterogeneous

private signals, and the distribution of these signals’ strengths is determined by the informa-

tion precision level. Uninformed liquidity traders have heterogeneous demands for liquidity.

In equilibrium, there is a sorting effect : for informed traders, those with strong signals trade

in exchanges, those with modest signals trade in dark pools, and those with weak signals do

not trade. For uninformed liquidity traders, those with high liquidity demand trade in the

exchange, those with modest liquidity demand trade in the dark pool, and those with low

liquidity demand delay trade. We show that price discovery is an increasing function of the

information precision level, and information precision determines a dark pool’s impact on

price discovery. When information precision is high (meaning price discovery is high), adding

a dark pool enhances price discovery, whereas when information precision is low (meaning

price discovery is low), adding a dark pool impairs price discovery.

The results highlight the importance of the information structure (information precision)

in pricing efficiency when markets are fragmented by dark pools. We show that the results

have immediate policy implications for enhancing price discovery in equity markets and dark

pool usage in emerging economies. The results also help to reconcile the seemingly contra-

dictory empirical findings and generate novel empirical predictions regarding the information

content of dark pool trades, dark pool market share, and their relationships with exchange

spread.

The sorting effect exists in a noisy information structure (imprecise information) which
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is absent in the current literature. We assume that informed traders receive noisy signals,

and the distribution of the signals is determined by the information precision level. More

specifically, in the model, there are informed speculators and uninformed liquidity traders.

Informed speculators receive heterogeneous signals, whereas uninformed liquidity traders

have various degrees of liquidity demand. Both types of traders choose among three options:

a) to trade an asset in an exchange, b) to trade an asset in a dark pool, or c) to not

trade (delay trade for liquidity traders). The exchange is modeled as market makers posting

bid-ask prices and guaranteeing execution, whereas the dark pool is modeled as a crossing-

mechanism that uses the average of bid and ask (mid-price) in the exchange to execute orders

(if there are more buy orders than sell orders, buy orders are executed probabilistically, with

some buy orders not executed, and vice versa). Trading in dark pools has a trade-off:

compared with the exchange, dark pools provide better prices, but this is offset by a non-

execution probability. Therefore, amongst informed traders, those with strong signals prefer

an exchange because they are very confident about making profits and desire a guaranteed

execution more than a better price; those with modest signals prefer a dark pool because

they are less confident about making profits and desire a better price more than execution;

and finally, those with weak signals prefer not to trade because they are unconfident about

making profits. A similar argument holds for liquidity traders.

The amplification effect is a result of the sorting effect. In equilibrium, the choice of an

informed trader is determined by the strength of his or her signal, whereas the choice of an

uninformed liquidity trader depends on the degree of his or her liquidity demand. Different

information precision levels result in different distributions in the strengths of signals and

hence different choices for the majority of the informed traders, which result in different dark

pool impacts on price discovery. When information precision is high, the majority of informed

traders have strong signals and prefer an exchange. Adding a dark pool attracts only a small

fraction of informed traders, compared with the liquidity traders, leaving a higher ratio of

informed to uninformed traders in the exchange and improving price discovery. In contrast,

when information precision is low, the majority of informed traders have modest signals and

3



prefer the dark pool, and adding a dark pool attracts a higher fraction of informed traders

compared with liquidity traders, lowering the ratio of informed to uninformed traders in the

exchange and decreasing price discovery.

This paper points out an important function of dark pools not yet discussed in the

existing literature: dark pools help informed traders mitigate their information risk, that is,

the loss that is attributable to wrong information. When traders’ information is relatively

weak (meaning there is a higher probability that it is wrong), they face a high risk of losing

money in trading. Dark pools provide those traders a perfect “buffer zone” – a place that

strictly lowers their information risk. This function of dark pools is only present, however,

when traders have a noisy information structure.

To the best of our knowledge, this paper is the first to introduce a noisy information

structure in a fragmented market to study dark pools and price discovery. Examining the

noisiness in information is of essential importance, not only because it is much more realistic

than assuming perfect information, but also because it reveals the process of price discovery

by identifying the motivations of traders’ choices. As a result, our predictions are more

robust in the sense that the sorting and amplification effects hold in every equilibrium. In

contrast, the current theoretical literature assumes that all informed traders have perfectly

precise information. This obscures trading motivations and induces instability in the results.

For example, Zhu (2014) studies some equilibria in which dark pools improve price discovery,

but there may exist other equilibria in his model in which dark pools harm discovery. Yet,

Zhu (2014) does not discuss these equilibria.

Our findings have immediate policy implications for the ongoing debate over dark pool

usage. Our findings imply that, in contrast with current literature, there is no uniform im-

pact that dark pools have on price discovery and other measures of market quality. Dark pool

activity and its impacts display significant cross-sectional variation and should be evaluated

differently across various economic environments. Concrete suggestions for regulators to en-

hance pricing efficiency include: (i) identifying firm characteristics and monitoring dark pool

trades in firms that are likely to have a negative dark pool impact, such as high R&D firms,
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young firms, small firms, and less analyzed firms, (ii) facilitating information transmission

and processing, enhancing accounting and reporting disclosure systems, and improving the

efficiency of the judicial systems and law enforcement against insider trading, and (iii) being

cautious in emerging markets with regards to dark pool trading, given that most emerging

markets are regulated by poor legal systems that lack implemental power against insider

trading and have a low precision in information disclosure. A more detailed discussion is

provided in Section 1.6.2.

Our study also produces testable predictions and helps to reconcile the seemingly contra-

dictory results in the current empirical literature. One of the predictions that could motivate

empirical and regulatory concerns is how much dark pool trades can forecast price move-

ments. We predict that the information content of dark pool trades has an inverted U-shape

relationship with the liquidity level (exchange spread), implying that assets with modest

liquidity have the highest information content in their dark pool trades, whereas the most

liquid and illiquid assets have the lowest information content in their dark pool trades. There

are also some predictions which coincide with current theoretical literature. For example,

dark pool usage also has an inverted U-shape association with exchange spread. Dark pools

create additional liquidity for the market. A more detailed discussion is in Section 1.6.1.

Related Work: There is a large collection of studies that examines information asym-

metry and price discovery in financial markets, in both the theoretical and empirical fields.

In theoretical studies, a large set of papers analyze non-fragmented markets, including the

two pioneering works in price discovery, Glosten and Milgrom (1985), and Kyle (1985).

Other studies examine fragmented lit markets, for example Viswanathan and Wang (2002),

Chowdhry and Nanda (1991), and Hasbrouck (1995). There are a handful of papers that

study information asymmetry in a market fragmented by lit and dark venues (see, e.g., Hen-

dershott and Mendelson 2000, Degryse et al. 2009, Buti et al. 2011a). Yet, these models

assume either non-freedom of choice for traders or exogenous prices. Our study, on the other

hand, considers free venue selection for traders and endogenous prices. This paper is closely

related to Zhu (2014) whose trading protocols are the same as ours. But unlike Zhu (2014)
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who considers an exact information structure, we examine a noisy information structure.

Under this noisy information structure, we predict different results in price discovery and

other measures from Zhu (2014). When the informational noise is absent in our model (i.e.,

information noise converges to zero), our prediction of price discovery coincides with Zhu

(2014)’s. Our paper is also related but divergent from Ye (2011). Whereas our model con-

siders free selection of traders, Ye (2011) assumes that uninformed traders are not subject to

free-choice between different venues, and hence the corresponding piece of the pricing mech-

anism is missing. In our model, if we fix the choices of uninformed traders and only allow

informed traders to choose between venues, our prediction also coincides with Ye (2011).

Empirical works report conflicting results regarding dark pool impact on price discovery.

These results are within the predictions of our study. For example, Buti et al. (2011b),

Jiang et al. (2012), and Fleming and Nguyen (2013) support an improvement for price

discovery with dark trading, while Hatheway et al. (2013), and Weaver (2014) discover a

diminishment in price informativeness. Also, Hendershott and Jones (2005) find a negative

impact for dark trading on price discovery, while Comerton-Forde and Putniņs̆ (2015) find

that, cross-sectionally, dark pool trading improves price discovery when the proportion of

non-block dark trades are low (below 10%, suggesting a low fraction of informational content)

and harms price discovery when the proportion of non-block dark trades is high.

There are also other empirical studies that focus on dark pool operation and other mea-

sures of market quality. Some papers analyze the information content of dark pool trades.

For example Peretti and Tapiero (2014) find that dark trades can predict price movement.

Some study the trade-offs of dark trading. For example, Gresse (2006), Conrad et al. (2003),

Næs and Ødegaard (2006) , and Ye (2010) study the execution probability in dark pools.

Another category studies the association between dark trading and the exchange spread.

My study predicts the same inverted U-shape as Ray (2010) and Preece (2012). My study

also suggests a cross-sectional variance and provides insights in explaining the contradictory

results reported in other papers. For example ASIC (2013), Comerton-Forde and Putniņs̆

(2015), Degryse et al. (2015), Hatheway et al. (2013), and Weaver (2014) find a positive
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association while O’Hara and Ye (2011) and Ready (2014) find a negative association be-

tween dark pool market share and exchange spread. Others find cross-sectional differences

(see, e.g., Nimalendran and Ray 2014, Buti et al. 2011b). A more detailed discussion of

the relationship between our predictions and the current empirical literature is provided in

Section 1.6.1.

1.2 Dark Pools: An Overview

Over the last decade, numerous trading platforms have emerged to compete with the in-

cumbent exchanges. Today, in the U.S. investors can trade equities in approximately 300

different venues. According to TABB (Oct. 2015),3 as of June 2015, there are 11 exchanges,

40 active dark pools, a handful of ECNs, and numerous broker-dealer platforms that are

operating as equity trading venues in the U.S. 4.

Among those venues, dark pools are a type of equity trading venue that does not publicly

disseminate the information about their orders, best price quotations, and identities of trad-

ing parties before and during the execution.567 The term “dark” is so named for this lack

of transparency. Dark pools emerged as early as the 1970s as private phone-based networks

between buy-side traders (See Degryse et al. (2013)). In the early days, the success of these

3 “US Equity Market Structure: Q2-2015 TABB Equity Digest,” TABB Group, Oct. 2015.

4In Europe, according to Gomber and Pierron (2010) there are around 32 dark pools operating in equity
markets. In Australia, from ASIC (2013), there are 20 dark trading venues operating.

5Although the information about orders are hidden before trade, the after executed trades are not:
executed trades are recorded to the consolidate tape right after the trade. SEC requires reporting of OTC
trades in equity securities within 30 seconds of execution. Also, dark pools are required to report weekly
aggregate volume information on a security-by-security basis to FINRA.

6SEC Reg NMS Rule 301 (b) (3) requires all alternative trading systems (ATSs) that execute more than
5% of the volume in a stock to publish its best-priced orders to the consolidated quote system. However, it
only applies if the ATS distributes its orders to more than one participant. If it does not provide information
about its orders to any participants, it is exempt from the quote rule.

7Electronic Communication Networks (ECNs) are registered as a type of ATS. But unlike dark pools,
ECNs display orders in the consolidated quote stream.
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trading venues was limited, but this has changed substantially in the last decade. Dark pool-

s have experienced a rapid growth of trading activity in the U.S., Europe and Asia-Pacific

area. Figure 1.1 shows the annual data on the market share of dark pool trading as of the

consolidated volume in the U.S., Europe, and Canada, updated to 2015.8 According to the

data, the U.S. market share of dark pools increased from about 7.51% in 2008 to 16.57%

in 2015. The dark pool market shares in Europe and Canada are less, but they exhibit

the same growth trend. In Australia, according to the Australian Securities & Investments

Commission (ASIC 2013), as of June 2015 dark liquidity consists of 26.2% of total value that

traded in Australian equity market.9

One reason behind the rapid growth of dark pool trading is the technology development in

electronic trading algorithms. Advances in technology have made it easier to automatically

optimize routing and execution according to different sets of considerations and trading

protocols. Another reason for the proliferation is the regulation changes that have been made

to encourage competition between trading venues. For example, in the U.S., Regulation NMS

(National Market System) was revised and reformed in 2005 to encourage the operation

of various platforms, and as a consequence, a wide variety of trading centers have been

established since then. Another example is the introduction of the Market in Financial

Instruments Directive (MiFID) in the European Union in 2007, which spurred the creation

of new trading venues, including dark pools.10

8We estimated Canadian dark pool market share from “Report of Market Share by Marketplace–Historical
(2007-2014),” IIROC, Aug 2015, “Report of Market Share by Marketplace (historical 2015–Present),” IIROC,
May, 2016. Precisely, we estimate the market share of the following 4 dark pools operating in Canada:
Liquidnet, Matchnow, Instinet, and SigmaX Canada.

9Australian Securities & Investments Commission, “Equidity Market Data,” June 2015. The number
contains 12% block size dark liquidity and 14.1% non-block size dark liquidity. It describes all the hidden
orders in the markets including those in exchanges and dark pools.

10In recent years, however, as the debate about dark pool usage has escalated, many countries have started
to consider restrictions on dark trading. For example, Canada and Australia have required dark liquidity to
provide a “meaningful price improvement” of at least one trading increment (i.e., one cent in most major
markets), and US regulators have also been contemplating imposing such restrictions. In recent years, US
regulators start to strengthen law enforcement against dark pools and urged their upgrading in operation.
These cases include UBS Securities (Jan 2015), Goldman Sachs Execution & Clearing, L.P (SIGMA X, July
2015), and Barclays (Jan 2015).
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Figure 1.1: Dark Pool Market Share. The plot shows the annual data of dark pool volume as a

percentage of the total consolidated volume in the US, Europe, and Canada.

Data source: US data (2008 - 2015) is from “Rosenblatt Securities: Let There Be Light, January 2016

Issue” and Europe data (2010 - 2015) is from “Rosenblatt Securities: Let There Be Light – European Edition,

January 2016 Issue”. Figures in Canada (2007 - 2015) are derived from reports of IIROC.

There are two key commonalities in dark pools’ operating protocols: the pricing mecha-

nism and execution mechanism. First, dark pools generally do not provide price discovery.

Instead, they typically use a price derived from an existing primary market as their trans-

action price. The most commonly used pricing mechanism is the mid-point mechanism: a

pricing method to cross orders at the concurrent mid-point of the National Best Bid and

Offer (NBBO).11 Second, unlike exchanges where orders are cleared at the exchange price,

in most of the dark pools, orders don’t clear. Instead, dark pools adopt a “rationing” mech-

anism to execute orders. That is, traders anonymously place unpriced orders to the pool,

and the orders are matched and executed probabilistically – orders in the shorter side are

executed for sure, whereas orders in the longer side are rationed probabilistically.

11Nimalendran and Ray (2014) document the usage of such a pricing mechanism in their dark trading
sample and find that not all trades are at the midpoint of NBBO, but about 57% transactions are within
.01% of the price around the midpoint. In this paper, we follow the majority and adopt the mid-point pricing
mechanism.
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The pricing and execution mechanisms of dark pools’ operation reflect the trade-off of

trading in a dark pool for an individual trader. On the one hand, dark pools have lower

transaction costs than exchanges (typically because orders are executed within the NBBO,

with the “trade-at rule” further enhancing such price improvement), and lessen the price

impact for big orders. On the other hand, investors suffer a lower execution rate compared

with the exchange. Gresse (2006) found that the execution probability in the two dark

pools in his dataset was only 2-4 percent, while Ye (2010) documents a dark pool execution

probability of 4.11% (NYSE listed) and 2.17% (NASDAQ listed) in his dataset, in comparison

with a probability of 31.47% and 26.48% for their exchange counterparts.12.

The dark pools’ participating constituent base has evolved over time. In the early years,

dark pools were designed as venues where large, uninformed traders transact blocks of shares

to reduce price impact. This is possible because dark pools are not subject to NMS fair access

requirements and can thus prohibit or limit access to their services (see Reg ATS Rule

301(b)(5)). In recent years, however, this has changed greatly. According to an industry

insider in Rosenblatt Securities Inc., “it can be assumed that most pools are open to most

investors connecting to the pool, provided the investors do not violate any codes of conduct.”

A measure of such a change is reflected in the trading sizes of dark pools. Figure 1.2 shows

the average trading size in the U.S. According to the data, the US average trading size in

dark pools and exchanges (NYSE and NASDAQ) have been started to converge since 2011,

highlighting the fact that the participating constituents in these venues have become more

and more similar. It implies that the exclusivity of a dark pool to informed traders has been

weakened . As a result, more prominence has been attached to the issue of the potential

impact of dark pools on price discovery, because as more informed traders obtain access to

dark pools, their migration to dark pools may hurt the information aggregation process in

the exchange,13.

12Nowadays, a rising concern of dark pools is their vulnerability to predatory trading by High Frequency
Traders (HFTs) (See Mittal (2008), Nimalendran and Ray (2014), ASIC (2013) for instance.)

13This paper, as well as Zhu (2014) considers full access for informed traders.
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Figure 1.2: Average Trade Size. The plot shows the annual average trade size of US dark pools, NYSE

and NASDAQ, from 2009 to 2015.

Data source: Rosenblatt Securities.

Dark pools are heterogeneous. The types of dark pools can be classified according to

different characteristics based on their ownership structure, pricing access, operation mech-

anism, constituency and other factors. All of these categories are in constant flux for the

dark pools. Most of the pools also overlap in one or more categories as well, only the owner

types remain constant overtime. We provide a discussion on some characteristics and their

examples.

(i) Pricing. Dark pools use three primary pricing mechanisms. The execution will

take place once two sides of a suitable trade are matched. The three pricing mechanisms are

automatic pricing (usually at the midpoint of the best bid and offer), derived pricing (for

example, average price during the last five minutes), and negotiated pricing (for example,

Liquidnet Negotiatoin offers availability of one-to-one negotiation of price and size).

(ii) Order Type. There are primarily three types of order that prevails in dark pools:

limit orders (to buy or to sell a security at a desired price or better), peg orders (peg to
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the NBBO, for example midpoint or alternate midpoint,14) and immediate or cancel order

(IOC). A dark pool may accept a subset of these order types. Pools that accept limit

orders may offer some price discovery (usually within the NBBO). These pools include,

for example, Credit Suisse’s CrossFinder, Goldman Sachs’ Sigma X, Citi’s Citi Cross, and

Morgan Stanley’s MS Pool. Pools that execute peg orders do not provide price discovery.

These include, for example, Instinet, Liquidnet, and ITG Posit. Pools accepting only IOC

orders are single dealer platforms (SDP), where the operator works as market makers and

customers interact solely with the operator’s own desk (for example, Citadel Connect and

Knight Link by KCG15).

(iii) Execution Frequency and Order Information. There are three modes of exe-

cution: scheduled crossing, continuous blind crossing, and indicated market.16 The scheduled

crossing networks include BIDS, ITG POSIT Match, and Instinet US Crossing. In sched-

uled crossing networks, the two sides of a trade cross during a set period. These networks

typically do not display quotes but may have an order imbalance indicator. Continuous

blind crossing networks continuously cross orders for which no quotes are given. Indicated

markets cross orders using participants’ indications of interest (IOIs) and provide some level

of transparency in order to attract liquidity. Liquidnet and Merrill Lynch offer variations on

this theme.17

(iv) Customer Base and Exclusivity. There are dark pools which design their rules

and monitor trading in an attempt to limit access to buy-side (natural contra-side) insti-

tutional investors. According to Boni et al. (2013), Liquidnet “Classic” is one of those. A

14Traders are able to specify premiums or discounts vis-à-vis the mid when placing a trade. For example,
a motivated buyer may specify an order that promises to pay the mid plus a penny. This would give this
trade priority over all other buy orders.

15Getco LLC once operated an SDP called GetMatched. Following the 2013 merger of Knight Capital
Group and Getco LLC, GetMatched was decommissioned.

16See DeCovny (2008).

17Pipeline, a well-known dark pool using IOIs, settled allegations that it misled customers and was shut
in May 2012.
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measure of the exclusivity is the average trading size of a dark pool. In May 2015, among

the 40 active dark pools operating in the US, there are 5 dark pools in which over 50% of

their Average Daily Volumes are block volume (larger than 10k per trade). Those pools can

be regarded as “Institutional dark pools,” and they include Liquidinet Negotiated, Barclays

Directx, Citi Liquifi, Liquidnet H20, Instinet VWAP Cross, and BIDS Trading. Other dark

pools have percentages of block volumes less than 15%, with most of them lower than 2%.18

(v) Ownership Structure. According to Rosenblatt (2015), dark pools can be classified

into four categories according to their ownership structure. This is the only classification

that does not fluctuate over time. The four categories include the Bulge Bracket/Investment

bank, Independent agency, Market maker, and Consortium-sponsored. In May 2015, The

market shares of the four categories are, respectively, 55.28%, 24.11%, 13.79%, and 6.82%.

Examples of the Bulge Bracket/Investment bank-owned dark pools are CS Crossfinder, UBS

ATS, DB SuperX, and MS Pool. Independent agency owned pools include, for example,

ITG POSIT, Instinet CBX, ConvergEx Millennium. Market maker owned pools include

Citadel Connect and Knight Link by KCG, and Consortium-sponsored pools include Level

and BIDS. 19

Finally, “dark pools liquidity” is not equivalent to “dark liquidity.” Dark liquidity, or

dark volume, is a broader concept since it measures the total non-displayed market volume.

Exchanges, for example, can contain “dark” volumes, which are applied through iceberg

orders and workup processes. According to the TABB group’ classification, dark volume can

break down into retail-wholesaler, dark pool volume, and hidden exchange volume. As of

Q2-2015, the percentages of each are 40.1%, 39.7%, and 20.2% respectively. In total, the

dark volume was 43.9% of the consolidated volume.20

18“Let There Be Light , Jun 2015,” Rosenblatt Securities, Inc.

19“Let There Be Light , Jun 2015,” Rosenblatt Securities, Inc.

20“US Equity Market Structure: Q2-2015 TABB Equity Digest,” TABB Group, Oct. 2015.
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1.3 The Model

The model considers an economy that lasts for three periods. We index the periods by 0,

1, and 2. There is one risky asset that is traded during the two periods with an uncertain

fundamental value

ṽ =

 −σv, with probability 1
2
,

σv, with probability 1
2
.

That is to say, the risky asset has an unconditional mean zero and standard deviation σv.

In period 0, ṽ is realized, but this information is not revealed to the public.

There are two types of traders who are potentially interested in the risky asset: informed

speculators and uninformed liquidity traders. We assume that they are all risk-neutral.

There is a continuum of informed speculators with measure µ, a continuum of uninformed

liquidity buyers with measure Z+, and a continuum of liquidity sellers with measure Z−. We

assume that Z+, Z− are identical and continuously distributed random variables on [0,+∞),

with mean 1
2
µz. Z

+, Z− are also realized at period 0 so that liquidity buyers and liquidity

sellers arrive at the market at the same time. The realizations of Z+, Z− are not observed

by any market participants.

In period 0, each informed speculator receives his or her own private signal regarding the

value of the asset, si = ṽ + ei, where i is the index of informed traders and ei represents the

noise of the signal.21 We assume that ei are identically independently distributed normal

random variables, with mean 0 and standard deviation σe. Therefore, in the first period,

they trade on both their private information and public information (if there is any). They

can trade (either buy or sell) up to 1 unit of the asset. If there are more than one venue

to trade, they can split their orders. Without loss of generality, we assume that informed

21According to Gyntelberg et al. (2010), there are various types of private information that stock market
investors may have about the fundamental determinants of a firm’s value, including knowledge of the firm’s
products and innovation prospect, management quality, and the strength and likely strategies of the firm’s
competitors. Private information may also include passively collected information about macro-variables and
other fundamentals which may be dispersed among customers. Equity market order flow to a large degree
reflects transactions by investors who are very active in collecting private information. A more detailed
discussion is in section 1.6.2.
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speculators only trade in period 1.22 The model is distinctive to Zhu (2014) in the information

structure. Zhu (2014) assumes that all informed traders receive exact signals about the

asset, whereas we consider a noisy information structure.23 The introduction of a richer

information structure is crucial to our analysis, not only because it is more realistic, but

also because it reveals a sorting effect of market fragmentation on information. That is, in

equilibrium, traders with strong signals trade in the exchange, traders with modest signals

trade in the dark pool, and traders with weak signals do not trade. This sorting effect is

the major economic force in the trader’s venue-selection and the process of price discovery.

The absence of such an effect will likely cause instability of predictions in multiple equilibra,

such as discussed in Zhu (2014). A more detailed discussion is in Section 1.4.2.

A liquidity buyer (seller) comes to the market to buy (sell) 1 unit of the risky asset.

Similarly, one can split their orders if there exist multiple transaction venues. The unin-

formed liquidity traders, however, do not have any private information. They enter the

market to meet their liquidity demands. The level of their liquidity demand is measured

by a delay cost, a cost that reflect how urgent one needs his or her order to be fulfilled in

period 1. More precisely, if a liquidity trader, buyer or seller, cannot have his or her order

executed in period 1, a delay cost is incurred. The delay cost (per unit) is represented by

σvdj, where j is the index for the liquidity traders. djs are i.i.d random variables with a

Cumulative Distribution Function G(x) : [0, d̄] → [0, 1], where G(x) ∈ C2, 1 ≤ d̄ < ∞ and

G′(x) + xG′′(x) ≥ 0,∀x ∈ [0, 1]. 24 Again, djs are realized at period 0.

There are two venues for traders to trade: an exchange (the Lit market) and a dark pool.

We will then consider a benchmark model where there is only one trading venue for the

agents – the exchange only. By comparing our model with the benchmark model, we are

22In period 2 when the informed traders’ private information becomes public, they lost their information
advantage. Since the informed agents are risk neutral and they only enter the market for profit, they will
not actively place orders in the second period.

23We do not consider information acquisition cost because it is modeled as a sunk cost in this paper.

24This additional assumption is for the uniqueness of the equilibrium. It is satisfied by many commonly
used distributions. For example, a uniform distribution.
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able to study the impact of a dark pool to the public exchange, and the interaction between

the two venues. We now specify the transaction rules in the two venues and the problems of

each type of traders.

Finally, the distributions of ṽ, Z+, Z−, {ei}, {dj} are all publicly known information.

1.3.1 Transaction rules in the exchange (Lit market)

A lit market is an exchange for the asset. The exchange is modeled in the spirit of Glosten

and Milgrom (1985). Precisely, in the lit market, there is a risk neutral market maker who

facilitate transactions. The objective of the market maker is to balance his or her budget.

The market maker has no private information. Therefore, at period 0, the market maker

announces a bid and an ask price for the risky asset, based only on public information. The

announced bid and ask price will be the prices for any order submitted to the exchange in

period 1, and will be committed by the market maker. Because of symmetry of ṽ and the

fact that the unconditional mean of ṽ is zero, the midpoint of the market maker’s bid and

ask is zero. Therefore, the ask price in the lit market is some A > 0, and bid price in the

lit market is −A. That is, the half-spread is represented by A. We normalize A by the

standard deviation of ṽ, A
σv

, and get the normalized half-spread. For simplicity, we refer to

A as the “spread,” and A
σv

as the “normalized spread.” The spread represents a transaction

cost in the lit market, because all traders, buyers or sellers, lose A dollars (per unit) to the

market maker whenever they trade on the exchange. Thus, alternatively, we also refer to A

as the (per unit) “exchange transaction cost” and A
σv

as the (per unit) “normalized exchange

transaction cost.”

In period 1, since informed speculators hold some information advantage about the asset,

the market maker may lose money to the informed traders ex post. For example, if the

realized value of the asset is σv, then the market maker loses money if he is trading against

a “Buy” order. Precisely, let γe, γe be the respective fraction of informed speculators who

place “Buy” and who place “Sell” orders on exchange, and let αe be fraction of uninformed
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liquidity traders who trade in the exchange. For now we assume that they do not split orders

among venues, then WLOG if the realized value of ṽ is σv, the ex post payoff of the market

maker is

MM payoff = σv[(γeµ− γeµ) + (αeZ
− − αeZ+)] + A[γeµ+ γeµ+ αeZ

+ + αeZ
−],

where the first term is the market maker’s profit on the asset. It is composed of the net

gain from the informed traders, γeµ − γeµ, and the net gain from the uninformed traders,

αeZ
− − αeZ+. The second term is the gains obtained from the transaction fee (spread) per

every exchange order. If the realized value of the asset is −σv, by symmetry, the market

maker’s payoff shall be the same as above. In this way, we also refer to γe as the fraction of

informed who “make money” (trade in the “right direction”), and γe the fraction of informed

who “lose money” (trade in the “wrong direction”).

A market maker’s objective is to break even on average.25 That is,

0 = E
{
σv[(γeµ− γeµ) + (αeZ

− − αeZ+)] + A[γeµ+ γeµ+ αeZ
+ + αeZ

−]
}
.

Since EZ+ = EZ− = 1
2
µz, the market maker’s objective becomes

0 = σv(−γe + γe)µ+ A[(γe + γe)µ+ αeµz].

It implies that,

A =
γe − γe

γe + γe + αe
µz
µ

σv. (1.1)

If γe ≥ γe(≥ 0)andαe ≥ 0, then the normalized spread 0 ≤ A
σv
≤ 1. In the next sections,

we will show that in equilibrium, γe > γe. In other words, informed traders are more

likely to “make money” (trade in the “right direction”). Intuitively this is true because of

their information advantage. Therefore, on average, the market maker loses money to the

informed.

25One can think of this as as result of the competition among market makers. For simplicity, we assume
that there is one market maker operating.
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At the end of period 1, the market maker observe the exchange volumes Vb, Vs for “Buy”

volume and “Sell” volume respectively. Based on such information, the market maker then

announces a closing price P1 = E[ṽ|Vb, Vs], which we consider as a proxy for the fundamental

value of the asset ṽ. This is because E[ṽ|P1, Vb, Vs] = E[E[ṽ|P1, Vb, Vs]|P1] = P1. We are in-

terested in how much the price P1 can aggregate information in the market (price discovery),

that is, how close P1 is to the true value of the asset.

In period 2, since the realization of ṽ has already been revealed, all trades will be made

at the price that is equal to that realization. Thus, the payoff of the market maker in period

2 is automatically zero.

The reason we model the exchange as a market maker instead of other trading protocols

such as limit order books is for the same reason as Zhu (2014). It is a simple but tractable

way to capture the basic trade-off of dark pools. These trade-offs include lower transaction

costs (lower spread) and higher execution risks, which is common to most trading protocols.

1.3.2 Transaction rules in the dark pool

We consider the operational costs of the dark pool as a sunk cost, and hence not considered

in the model. Also, we normalize the entry fee of a dark pool as zero. The trading protocols

in the dark pool we consider, include the pricing mechanism, which refers to on what price

the dark pool execute orders, and the execution mechanism, which refers to how to match

the buying and selling orders.26

We restrict our attention to dark pools of a particular pricing mechanism: the midpoint

pricing. That is, the orders in the dark pool are crossed at the midpoint of the bid-ask in the

exchange. Since the midpoint of the exchange price is 0, the transaction price in the dark

pool is 0. The midpoint pricing mechanism is a reflection of an advantage trading in the

dark pool: price improvement. As we point out previously, a trader has to pay a transaction

26As in section 1.2, we point out that not all dark pools are equal. There might be other features that
investors concern. But for simplicity we focus on the two major aspects of a dark pool.
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cost (the spread) A on the exchange, no matter at which direction he or she is trading. But

in the dark pool, such cost is reduced to 0.

The execution mechanism we consider in this paper is a rationing mechanism. That is,

orders in the shorter side are executed with probability one, whereas orders in the longer side

are executed probabilistically to balance the market. For example, suppose the realization

of ṽ is σv (the case when ṽ = −σv is symmetric). Let γd, γd be the fractions of informed

speculators who trade in the “right direction” and “wrong direction” respectively, αd be

the fraction of uninformed liquidity traders who trade in the dark pool in period 1, then the

respective expected execution rates (taken with respect to Z−, Z+) for trading in the “wrong

direction” and in the “right direction” are: ,

R̄ = E
[
min

{
1,
γdµ+ αdZ

+

γdµ+ αdZ−

}]
, (1.2)

R = E
[
min

{
1,
γdµ+ αdZ

−

γdµ+ αdZ+

}]
. (1.3)

Therefore, R, R̄ ∈ [0, 1]. The execution mechanism in the dark pool reflects a disadvantage

of trading in the dark pool: execution risk. On average, one cannot expect that his or her

orders be executed with probability 1 in a dark pool. In contrast, the market maker in the

exchange is able to provide such certainty.

Moreover, as we will show in the next section, γd > γd. This means that the information

asymmetry exists in the dark pool and informed traders are more likely to trade in the “right

direction.” Therefore, R ≤ R̄. That is to say, orders that are in the “right direction” are less

likely to be executed than orders that are in the “wrong direction.” In this way, we obtain

a measure of dark pool adverse selection cost in the dark pool by

(R̄−R)σv

We therefore refer to R̄−R as the “Normalized dark pool adverse selection cost.”

Without loss of generality, we assume that the dark pool operates only in period 1. In

period 2, since the realization of ṽ is revealed, orders in the exchange are executed at that

realized value. The dark pool loses its advantage and becomes redundant as nobody is willing
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to trade there. Therefore, unless cancelled, orders that failed to execute in period 1 will be

routed to the exchange and executed there in period 2.

1.3.3 The informed speculators’ problem

As we point out, the informed traders only participate in period 1, when they can use

their private information to their advantage. Upon the reception of a signal, the informed

speculators update their beliefs about the asset fundamental value using Bayes’ rule. Let

B(s) be the probability that the realization is high (σv), conditional on signal s, then by

Bayes’ rule,

B(s) = Pr(ṽ = σv|s) =
φ( s−σv

σe
)

φ( s−σv
σe

) + φ( s+σv
σe

)
, (1.4)

where φ(x) is the pdf of a standard normal distribution function. B(s) ∈ (0, 1) and B(s) is

strictly increasing in s.

Consider an informed trader with signal s, given the exchange spread, A, and the dark

pool execution probabilities, R̄, R, the expected (per unit) “Buy” and “Sell” profit in each

venue, or do not trade, are respectively,

Exchange(Lit): “Buy”: B(s)σv − (1−B(s))σv − A,

“Sell”: − [B(s)σv − (1−B(s))σv]− A.

Dark pool: “Buy”: B(s)Rσv − (1−B(s))R̄σv,

“Sell”: − [B(s)Rσv − (1−B(s))R̄σv].

Not trade: 0.

An informed speculator’s problem is then, given his or her signal s, to choose a trading

direction in {“Buy”, “Sell”}, the quantity in each venue {Exchange(Lit), Dark pool, Do not

trade} to maximize his or her total expected payoff, such that total quantity does not exceed

1 unit.27

27The case that the informed speculator simultaneously place “Buy” and “Sell” orders in each venue is
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We argue that, in equilibrium, whenever he or she decides to trade, an informed trader

will place a “Buy” order if his or her signal is positive, and a “Sell” order if his or her signal

is negative. Moreover, almost surely it is optimal for him to send the entire order to one of

the two venues, or not trade at all. The argument is summarized in Lemma 1.

Lemma 1. (Trading direction and non-split orders, informed)28 If an informed trader

decide to trade, it is strictly optimal to “Buy” if his or her signal s > 0 and to “Sell” if s < 0.

Moreover, with probability one, an informed trader strictly prefers to send the entire order

to one of the two venues, or do not trade at all.

The trading direction is rather straightforward since a positive signal indicates that the

asset’s fundamental value is more likely to be high (i.e., σv), and hence more profitable in

a “Buy” direction, whereas a negative signals indicates a low value (i.e., −σv) and hence

more profitable in a “Sell” direction. And, since each trader’s signal is drawn from the

same continuous distribution, and there is a continuum of informed traders, by law of large

numbers, the realization of signals among them are continuously distributed. Therefore, the

beliefs are distributed continuously. Since no individual has impact on the market, and the

expected profit in each venue is linear in the agents’ beliefs, it is with probability 1 that, for

any informed trader with signal s, one venue (or not trade) is strictly better than others.

By Lemma 1, the potential trading direction is determined once an agent receives his

or her signal. Moreover, the magnitude of B(|s|) reflects the probability that this trading

direction is “right.” Thus |s| can be regarded as the strength of one’s signal, and B(|s|),

can be regarded as the agent’s confidence level in their information. A strong signal (i.e., a

high |s|) represents a strong belief that the trading direction is “right,” whereas weak signals

(i.e., low |s|) represents a weak belief in the trading direction. We will show in the next

not considered, because the agents have no individual impact to the market. By the linearity of the per unit
profit in each venue, it is never optimal to do so.

28A non-slit order is strictly preferred in this model. This is a stronger result than Zhu (2014), in which it
is only weakly optimal to not split orders for the informed because they are all indifferent between the two
venues.
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section, how much credit an informed trader gives to his or her private information is crucial

in determining his or her strategies of venue selection.

Based on an informed traders’ signal strength, B(|s|), the payoffs of trading in each venue

and no trade are, respectively,

Exchange(Lit) : B(|s|)σv − (1−B(|s|))σv − A, (1.5)

Dark pool : B(|s|)Rσv − (1−B(|s|))R̄σv, (1.6)

Not trade : 0. (1.7)

An informed agent’s problem is then reduced to choosing one of the two venues and

sending the entire 1 unit to it, with a trading direction specified in Lemma 1, or not trade

at all, to yield the maximum payoff, based on his or her confidence level B(|s|).

Finally, we define the strategy of an informed speculator who receives a signal s by a

mapping

hI(s) : (∞,∞)→ {“Buy”, “Sell”} × {Exchange(Lit), Dark pool, Not trade}.

1.3.4 The uninformed liquidity traders’ problem

Liquidity buyer or seller types are specified by the level of their liquidity demand – the (per

unit) delay cost d. If the agent fails to have his or her order executed in period 1, he or she

will bear a (per unit) cost of σvd. Therefore a higher delay cost implies a higher demand for

liquidity, and a higher devaluation on execution risk for the traders.

More precisely, a type d uninformed liquidity buyer’s (seller’s) per unit payoffs of trading

in the exchange, in the dark pool, or delaying trade are, respectively,

Exchange(Lit) : −A, (1.8)

Dark pool : −(R̄−R)

2
σv − (1− R̄ +R)

2
)σvd, (1.9)

Delay trade : −σvd. (1.10)
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Similarly, we argue that in period 1, it is strictly optimal for any liquidity trader to send

the entire order to one of the two venues, or delay the trade, almost surly. The argument is

summarized in Lemma 2.

Lemma 2. (No split orders, uninformed)A liquidity trader (buyer or seller) strictly

prefers to send the entire order to one of the venues, or delay trade.

The intuition of Lemma 2 is similar. Since all individuals are infinitesimal, no single

trader has an impact on the market. For any liquidity trader, he or she either strictly prefers

one venue over the other or is indifferent between two venues (or do not trade). Since the

distribution of the delay cost d is continuous, it is with probability one that one venue (or

delay) is strictly better than the other.

By Lemma 2, a type d liquidity buyer’s (or seller’s) problem is to maximize his or her

payoff (i.e., minimize the costs), by choosing one of the venues in which trade the entire

order in period 1, or to delay trade to period 2.

Moreover, we define the strategy of a type d uninformed liquidity trader by a mapping:

hU,ι(d) : [0, d̄]→ {Exchange(Lit), Dark pool, Delay trade},

where ι ∈ {Buyer, Seller}

Finally, the trading timeline of the model is summarized in Figure 1.3. At period 0, the

asset fundamental value ṽ, the measure of liquidity buyers Z+ and liquidity sellers Z−, the

signal for each informed trader si, the per unit delay cost for each uninformed trader dj

are realized. But none of this information is public. Also, at period 0, the market maker

announces the bid-ask prices with the spread A. After that, traders select venues in which

place orders, which are executed according to the transaction rules in each venue. At the

end of period 1, before the revelation or the value of the asset, the market maker announces

a closing price of period 1, based on the volumes he observes in the exchange during that

period. Then after the revelation of ṽ, orders that failed to execute in period 1 are routed to

the exchange (unless cancelled) and execute at the revealed value of ṽ. The market is then

closed.
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Figure 1.3: Trading Timeline

1.4 The Equilibrium

The model we describe in Section 1.3 assumes that both the exchange (Lit), and the dark

pool are available to traders. We refer to it as the “Multi-venue” Model. We now introduce

a benchmark in which there is only one venue that is operating: the exchange (Lit market).

We refer to it as the “Single-venue” Model. The comparison between the two model in

Section 1.5 gives us insights into the impacts of dark pools to market behaviors.

1.4.1 Benchmark model: without a dark pool

In the benchmark model, all else are the same except that the exchange (the lit market) is

the only trading venue available for traders. Lemma 1 and Lemma 2 also hold in this model,

i.e., traders do not split their orders. We use the superscription “S” to denote the “single

venue” model. The equilibrium is defined as follows:

Definition 1. (Benchmark: without a dark pool) An equilibrium of the “Single-venue”

model is a strategy for the informed speculators, hSI(s), a strategy for the uninformed liquidity

traders, hSU,ι(d), ι ∈ {Buyer, Seller}, an exchange spread AS, a set of participation fractions

γe
S, γe

S, αSe , such that

(i) given AS, hSI(s) and hSU,ι(d) are optimal, respectively, for an informed speculator with
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signal s and for an uninformed liquidity trader with per unit delay cost d;

(ii) given γe
S, γe

S, and αSe , the exchange spread AS makes a market maker in the exchange

break-even on average;

(iii) γe
S, γe

S measure the respective fractions of informed traders who trade in the “right”

and “wrong” direction in the exchange, and αSe measures the period 1 exchange fraction of

uninformed traders.

Given γe
S, γe

S, and αSe , an exchange spread AS that makes the market maker break even

on average satisfies (1.1). That is,

AS =
γe
S − γeS

γe
S + γeS + αSe

µz
µ

σv. (1.11)

Equation (1.11) implies that if γe
S ≥ γe

S ≥ 0, and αSe > 0, then σv ≥ AS ≥ 0. Considering

an informed trader with signal “s,” by Lemma 1, the optimal trading direction is to “Buy” if

s ≥ 0 and to “Sell” if s < 0. Then given AS, The expected payoffs of trading in the exchange

and do not trade are, respectively:

Exchange(Lit) : B(|s|)σv − (1−B(|s|))σv − AS,

Not trade : 0.

Suppose σv ≥ AS ≥ 0, then if the signal is extremely weak, i.e., B(|s|) = 1
2
, or, s = 0,

the expected payoff of trading in the exchange is strictly negative, and it is strictly optimal

not to trade. In contrast, if the signal is extremely strong, i.e., B(s) = 1, or, s = ±∞, the

expected payoff of trading in the exchange is strictly positive, and it is strictly optimal to

trade in the exchange. This is illustrated in Figure 1.4a. Therefore there must exist some

cut-off point ŝ > 0 such that the ŝ type informed traders are indifferent between trading in

the exchange and do not trade. That is,

B(ŝ)σv − (1−B(ŝ))σv − AS = 0, (1.12)
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Figure 1.4: Payoffs For Traders, Single-venue

and the optimal choice for an informed trader with signal s is then

hSI(s) =


(“Buy”, Exchange(Lit)) if s ≥ ŝ,

(“Sell”, Exchange(Lit)) if s < −ŝ,

Do not trade others.

(1.13)

Without loss of generality, we assume that the realization of ṽ is σv. If all informed specu-

lators follow the same optimal strategy, then the fraction of informed traders who will trade

in the “right” and “wrong” directions across the population are, respectively,

γe
S = Pr(s ≥ ŝ|ṽ = σv) = Pr(s ≤ −ŝ|ṽ = −σv) = 1− Φ(

ŝ− σv
σe

), (1.14)

γe
S = Pr(s < −ŝ|ṽ = σv) = Pr(s > ŝ|ṽ = −σv) = 1− Φ(

ŝ+ σv
σe

). (1.15)

(1.14),(1.15) imply that γe
S ≥ γe

S > 0.

Now, we consider an uninformed liquidity trader with a (per unit) delay cost “d.” Simi-

larly, his or he payoffs of trading in the exchange and delaying trade are, respectively:

Exchange(Lit) : −AS,

Delay trade : −σvd.

Since d ∈ [0, d̄] with d̄ ≥ 1, and σv ≥ AS ≥ 0, if the liquidity trader is extremely patient, i.e.,

d = 0, it is strictly optimal to delay trade to period 2. In contrast, if the liquidity trader is
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extremely impatient, i.e., d = d̄ > 1, it is strictly optimal to trade in the exchange. This is

shown in Figure 1.4b. Therefore, there also exists a cut-off d̂ such that the type “d̂ ” liquidity

trader is indifferent between trading in the exchange and delaying trade to the next period.

That is,

−AS = −σvd̂. (1.16)

To combine (1.12) with (1.16), we derive that

d̂ = 2B(ŝ)− 1.

The optimal strategy for uninformed liquidity traders is then,

hSU,ι(d) =

 (“Buy” if ι=Buyer, or “Sell” if ι=Seller, Exchange(Lit)) if d ≥ 2B(ŝ)− 1,

Delay trade others.

(1.17)

The period 1 exchange participation rate for the uninformed traders is then

αSe = Pr(d ≥ d̂) = 1−G(2B(ŝ)− 1), (1.18)

and 0 ≤ αSe ≤ 1.

We then find a cut-off equilibrium. Theorem 1 summarizes the existence and uniqueness.

Theorem 1. (Existence and Uniquness, benchmark) For any σe, σv ≥ 0, there exists

an equilibrium in which traders follow cut-off strategies. That is, the respective optimal

strategies for informed speculators and uninformed liquidity traders, hSI(s) and hSU,ι(d), are

defined as (1.13) and (1.17), with the cut-off ŝ determined by (1.12). The exchange spread

AS satisfies (1.11), and the participation fractions γe
S, γe

S, αSe are determined respectively by

(1.14), (1.15), (1.18), (1.11).

Moreover, every equilibrium is a cut-off equilibrium, and the equilibrium is unique if

σe, σv > 0, G′(x) + xG′′(x) ≥ 0,∀x ∈ [0, 1].
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The benchmark clearly gives us some insight regarding the sorting effect on types of

traders. In equilibrium, it is strictly optimal for informed traders with relatively strong

signals to trade in the exchange and for those with weak signals not to trade (avoid trading).

Similarly, it is strictly optimal for uninformed liquidity traders who are relatively patient

to trade in the exchange and for those who are relatively impatient to delay trade. The

exchange provides functions to separate certain types of traders from others. As we will

point out later, such a sorting effect is even strengthened in the presence of a dark pool.

1.4.2 Multi-venue model: with a dark pool

Two trading venues are available in the multi-venue model: an exchange (Lit) and a dark

pool. To differentiate from the single-venue model, we do not use the superscription S in the

multi-venue model. The equilibrium of the multi-venue is defined as follows:

Definition 2. (Multi-venue, with a dark pool) An equilibrium is a strategy for the

informed speculators, hI(s), a strategy for and for the uninformed liquidity traders, hU,ι(d),

an exchange spread, A, two expected execution rate in the dark pool R̄, R , and a set of

participation fractions γe, γe, γd, γd, αe, αd, s.t.

(i) hI(s) is optimal for informed speculators with signal s, whereas hU,ι(d) is optimal for

uninformed liquidity traders with (per unit) delay cost d, given A, R̄, and R.

(ii) the exchange spread A makes a market maker in the exchange break-even on average,

given γe, γe, γd, γd, αe, and αd;

(iii) the dark pool operates using a mid-pricing and a rationing execution mechanism. R

and R̄ are the respective expected execution probability for orders that are in the “right”

and in the “wrong” directions;

(iv) γe and γe measure the respective fractions of informed traders in the exchange who

trade in the “right” and “wrong” directions. γd and γd measure the respective fractions of

informed traders in the dark pool who trade in the “right” and “wrong” directions. αe and
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αd measure the respective fraction of uninformed traders who trade in the exchange and in

the dark pool in period 1.

Consider an informed speculator with signal “s.” Based on the strength of his or her

signal B(|s|), the payoffs of trading in the exchange, the dark pool and do not trade are

summarized in (1.5), (1.6), (1.7). These payoffs are shown in Figure 1.5a.
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Figure 1.5: Payoffs For Traders, Multi-venue

Suppose 1 ≥ R̄ ≥ R > 0 and σv ≥ A ≥ 0. As is shown in Figure 1.5a, if a trader receives

extremely weak signals (s = 0 for example), it is never profitable to trade, since trading is

costly. However, whenever an informed trader decides to trade, he faces a trade-off between

execution certainty in the exchange and price improvement in the dark pool. When |s| is low,

the need for price improvement overwhelms the need for execution, in which case, trading in

a dark pool is better. But as the signals becomes stronger, the need for execution grows faster

than the need for price improvement. This can be observed from the fact that the exchange

payoff has a higher slope with respect to B(|s|) than the dark pool payoff. Therefore, when

s is extremely high, it is possible that the two intersect. Suppose an informed trader with

signal s0 > 0 is indifferent between trading in a dark pool and not trade, an informed with

signal s1 > 0 is indifferent between trading in a dark pool and in the exchange, then by
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(1.5), (1.6), and (1.7), s0, s1 satisfies:

B(s0)(R̄ +R) = R̄ (1.19)

B(s1)
[
(1− R̄) + (1−R)

]
σv = A+ (1− R̄)σv. (1.20)

At this point, the existence and relationship of s0 and s1 is not established yet. For now,

we suppose that (s0, s1) exists and s0 < s1 < +∞ (we will prove that this is true in every

equilibrium), the optimal strategy for an informed trader with signal s is then

hSI(s) =



(“Buy”, Exchange(Lit)) if s ≥ s1,

(“Buy”, Dark pool) if s0 ≤ s < s1,

(“Sell”, Dark pool) if − s1 ≤ s < −s0,

(“Sell”, Exchange(Lit)) if s < −s1,

Do not trade others.

(1.21)

This is illustrated in Figure 1.6. That is, it is strictly optimal that informed traders with

strong signals to trade in the exchange, informed traders with modest signals to trade in the

dark pool, and informed traders with weak signals to not trade.
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Figure 1.6: Strategy of Informed Traders

If all informed traders follow such strategy, the exchange fraction of informed who trade

in the “right” and “wrong” directions are, respectively,

γe = Pr(s ≥ s1|ṽ = σv) = Pr(s ≤ −s1|ṽ = −σv) = 1− Φ(
s1 − σv
σe

), (1.22)

γe = Pr(s < −s1|ṽ = σv) = Pr(s > s1|ṽ = −σv) = 1− Φ(
s1 + σv
σe

). (1.23)
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And the dark pool fraction of informed who trade in the “right” and “wrong” directions

are, respectively,

γd = Pr(s0 ≤ s < s1|ṽ = σv) = Pr(−s1 ≤ s < −s0|ṽ = −σv) = Φ(
s1 − σv
σe

)− Φ(
s0 − σv
σe

),

(1.24)

γd = Pr(−s1 ≤ s < −s0|ṽ = σv) = Pr(s0 ≤ s < s1|ṽ = −σv) = Φ(
s1 + σv
σe

)− Φ(
s0 + σv
σe

).

(1.25)

Similarly, for the uninformed, the payoffs of trading in the exchange, in the dark pool,

and delaying trade are respectively given in (1.8), (1.9), and (1.10), as illustrated in Figure

1.5b. Again, a liquidity trader with extremely low liquidity demands would find it optimal

to delay trade. However, if he decides to trade in period 1, only those with extremely high

liquidity demands (i.e., extremely impatient) are willing to trade, for the similar reason as

the informed traders. Let d0 and d1 respectively represent the type of liquidity traders who

are indifferent between delaying trade and trading in a dark pool, and the type who are

indifferent between delaying trading in a dark pool and in the exchange, then by (1.8), (1.9),

and (1.10) we have

−(R̄−R)

2
σv − (1− R̄ +R)

2
)σvd0 = −σvd0,

−(R̄−R)

2
σv − (1− R̄ +R)

2
)σvd1 = −A.

Combine this with (1.19) and (1.20), we derive that

d0 = 2B(s0)− 1,

d1 = 2B(s1)− 1.

By a similar argument, the optimal strategy for an uninformed trader is also a cut-off
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strategy:

hSU,ι(d) =



(“Buy” if ι=Buyer, or “Sell” if ι=Seller, Exchange(Lit)) if d ≥ 2B(s1)− 1,

(“Buy” if ι=Buyer, or “Sell” if ι=Seller, Dark pool) if 2B(s0)− 1

≤ d < 2B(s1)− 1,

Delay trade otherwise.

(1.26)

This is described in Figure 1.7. The exchange fraction, αe, and dark pool fraction, αd, of

uninformed liquidity traders, are, respectively,

αe = 1−G(2B(s1)− 1), (1.27)

αd = G(2B(s1)− 1)−G(2B(s0)− 1). (1.28)

The fact that the traders the cut-off of uninformed traders’ are functions of the cut-off
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Figure 1.7: Strategy of Uninformed Traders

of informed traders’ reveals that, in equilibrium, uninformed and informed traders always

move together. It cannot happen that uninformed traders move collectively from one venue

to another, forming a new equilibrium without influencing the behavior of the informed

traders. This is in contrast with Zhu (2014).

Given γe, γe, αe, the exchange spread A captured in (1.1) makes the market maker break

even. Also, given γd, γd, αd, and given the distribution of Z+ and Z−, the expected execution

rates in the dark pool, R̄ and R, are respectively determined by (1.2) and (1.3).

If such s0, s1 exists, we find a cut-off equilibrium. But the existence is not obvious.

The difficulty arises from two aspects. First, we cannot simply apply a fixed point theorem
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because it cannot distinguish the trivial equilibrium from others: a trivial equilibrium is one

in which all trades happen in one venue, for example, the exchange. Second, the equilibrium

involves a very complicated equation system and these equations are non-linear and are

not likely to exhibit monotonicity. Nevertheless, we are able to show in Theorem 2 that

the equilibrium exists. Moreover, all equilibria are cut-off equilibra, and all equilibra are

non-trivial.

Theorem 2. (Equilibrium with DP) For any σv, σe > 0, an equilibrium exists in which

traders follow cut-off strategies. That is, the respective optimal strategies for informed and

uninformed traders, hI(s) and hUι (d), are defined as in (1.21) and (1.26), with cut-offs (s0, s1)

solving (1.19) and (1.20), 0 < s0 < s1. Moreover, every equilibrium is a cut-off equilibrium,

and every equilibrium is non trivial (meaning positive participation for both informed and

uninformed traders in both venues).

The exchange spread, A, the expected execution rates, R̄, R, are determined, respective-

ly, by (1.1), (1.2), and (1.3). The set of participation fractions, {γe, γe, γd, γd, αe, αd} are

determined by (1.22), (1.23), (1.24), (1.25), (1.27), and (1.28).

Corollary 1. (Liquidity begets liquidity) αd > 0 if and only if γd − γd > 0.

The equilibrium characterized in Theorem 2 is distinctive to Zhu (2014) in the following

aspects. First, in contrast with Zhu (2014), in equilibrium in our model, there is a sorting

effect of market fragmentation, and uninformed and informed traders always move together.

It is respectively optimal for informed traders with strong signals, modest signals, and weak

signals to trade in the exchange, in the dark pool, and do not trade, whereas it is respectively

optimal for uninformed traders with high, modest, and low degrees of impatience to trade

in the exchange, in the dark pool, and delay trade. In Zhu (2014), however, such a sorting

effect is absent for informed traders. In his model, informed traders are homogeneous and

indifferently between venues. This may cause the instability of its prediction. For example,

uninformed traders can collectively move from the dark pool to the exchange. This movement

may increase the adverse selection cost in the dark pool so much so that they will stay in
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the exchange, and price discovery is strictly decreased. These equilibra are not discussed in

Zhu (2014). Our prediction is more robust in the sense that traders always move together

and this sorting effect exists in every equilibrium. The same predictions on price discovery

hold in every equilibrium.

Second, unlike Zhu (2014), in which there exists some cases where informed traders do not

participate in the dark pool, we predict that all equilibrium is non-trivial. That is, informed

and uninformed participate in both venues in all equilibra, as captured in Corollary 1. This

casts light on the dynamics of liquidity creation in a dark pool: informed and uninformed

traders tend to arrive the dark pool in a clustered fashion, which in turn attract more

liquidity to the dark pool, as documented in the literature.29 One explanation why Zhu

(2014) predicts a different result is that he assumes exact signals for traders. As we have

pointed out, traders with strong signals tend to prefer an exchange. It is possible that, in

some cases, they all crowd in the exchange and are absent in the dark pool. But again,

this might be subject to an unstable status. In our model, this will not happen because

with a noisy information structure, the dark pool will always be attractive to some informed

traders. This is related to the following aspect.

The equilibrium described in Theorem 2 also disclose one important function of dark

pools: a function that cannot be captured without a noisy information structure. That

is, dark pools help to mitigate traders’ information risk, i.e., the loss atributable to bad

information. Dark pools take a role as a “buffer zone” for informed traders – a gambling

place for those who are less well-informed to trade. This adds value to the trade-off of dark

pools, and shall clearly not be neglected. When information becomes noisier, more informed

traders will find dark pools more valuable places to trade. Also, if traders become risk-averse,

the importance of this function for dark pools will increase to a great extent.

Corollary 2. Given any σe, σv > 0, s1 > ŝ, and in correspondent, d1 > d̂.

Corollary 3. (Adverse selection) ∀σe, σv > 0, 0 < γe < γe, 0 < γd < γd, and R̄−R > 0.

29Sarkar et al. (2009) provide a more detailed description of such process.
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Proof. If σ ∈ (0,+∞), by Theorem 2, 0 < s0 < s1. Therefore by definition of (1.4), and

(1.1), (1.2), (1.3), (1.22), (1.23), (1.24), (1.25), (1.28), it must be that A
σv
, αd, αe ∈ (0, 1) and

0 < γe < γe < 1, 0 < γd < γd < 1. Therefore 0 < R < R̄ < 1.

Corollary 2 states that dark pools strictly decrease traders’ participation in the exchange.

Corollary 3 states that there exists adverse selection in both the exchange and the dark pool.

Market makers lose money to informed traders on average.

1.5 Dark Pool Trading and Information Structure

In this section, we restrict our attention to the following questions. These questions will be

discussed in Section 1.5.1, 1.5.2, and 1.5.3, respectively.

(i) How do each venue’s market participation and information asymmetry level vary with

the information structure, i.e., “σe”?

(ii) How does adding a dark pool impact market participation and information asymmetry?

(iii) How does adding a dark pool impact price discovery, and what are the determinants?

1.5.1 Information Precision and Market Characteristics

To recall, dark pools are of important value for informed traders who are less well-informed

because they mitigate their informational risks. When information becomes more precise,

such need decreases, and a migration of traders from one venue to another shall be observed.

In this section, we study how the traders’ participation and information asymmetry level

in each venue vary with the informational structure. The results are shown in Proposition

1 and Proposition 2. The numerical example is in Figure 1.9. We use σe to capture the

information precision for informed traders. A lower σe corresponds with lower noises, hence

a higher precision in their signals.

Proposition 1. (Exchange spread, Dark pool adverse selection costs) If σe is large,
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then both the exchange spreads and the dark pool adverse selection costs increase in infor-

mation precision. That is, as σe decreases,

(Without DP): AS

σv
strictly increases;

(With DP): Similarly, A
σv

increases, ̂̄R− R̂ increases,

Proposition 2. (Participation rates) Suppose σe is large. Then for informed traders,

as information precision increases, both the exchange and the dark pool participation in-

crease. In contrast, for uninformed traders, as information precision increases, the exchange

participation decreases while the dark pool participation increase. And total uninformed

participation decreases. That is, as σe decreases,

(Without DP): γe
S − γeS strictly increases, and αSe strictly decreases;

(With DP): Similarly, γe − γe, γd − γd increases, αe decreases, αd increases, and αe + αd

decreases.30

Remark 1. when σe is large, as in Proposition 1 and Proposition 2 , dark pool participation

for informed traders and dark pool adverse selection cost INCREASES with information

precision. When σe is small, however, they may DECREASE with information precision.

We have not been able to obtain comparative statics when σe is small, but we show this

inverted U-shape in the numerical example in Figure 1.9.31 While we provide an explanation

in the context, the explicit proof is of future work.

In the exchange, when signals become more precise, both the informed exchange par-

ticipation, γe − γe, and exchange spread, A, increase, whereas the uninformed exchange

30γe − γe and γd − γd capture the “meaningful” participation of informed trades, in the sense that they
are the fractions of informed trades that trade in the “right” direction net the fractions that trade in the
“wrong” direction.

31In all our plots, we use a set of parameters in which µz = 60, µ = 30, Z+, Z− has Gamma distributions
with mean 30 and variance 30 and G(d) = d

3 for d̄ ∈ [0, 3].
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Figure 1.8: Transaction Costs. The left-hand figure shows the normalized spreads on the exchange and

how they vary with log(σe); the right-hand figure shows the adverse selection cost in the dark pool and how

it vary with log(σe). In both figures, log(σv) = 0.

participation, αe, decreases. The intuition is as follows. In equilibrium the informed traders

are sorted by the strengths of their signals. when there is an increment in their informa-

tion precision, the overall strengths of their signals are increased. Therefore, some informed

traders migrate from “do not trade” to “trade in the dark pool” and from “trade in the dark

pool” to “trade in the exchange.” This will cause a strict increase of information asymmetry

level in the exchange, and hence an increase of the exchange spread. Consequently, some

liquidity traders migrate from “trade in the exchange” to “trade in the dark pool,” which

decreases the uninformed participation in the exchange.

In the dark pool, the dark pool informed participation, γd−γd, and the dark pool adverse

selection, ̂̄R − R̂, exhibit an inverted U-shape with information precision. The intuition

for the inverted U-shape is as follows. A change in the information precision changes the

distribution of the signals’ strengths. When the information precision level is low (i.e., σe
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Figure 1.9: Participation Rates. The left figure plots the expected participation rates of the uninformed

and how they vary with log(σe). The right one shows the participation rates for the informed traders how

they vary with log(σe). In both plots, log(σv) = 0, µz = 60, µ = 30.

is high), as the precision grows, signals become more concentrated in the relative “modest”

group, and more informed traders migrate from “do not trade” to the dark pool. Overall,

this induces a greater proportion of informed participation in the dark pool, and the dark

pool adverse selection increases. In contrast, when the information precision level is high

(i.e., σe is low), as precision grows, signals become more concentrated in the relative “strong”

group. Thus, more informed traders migrate from the dark pool to the exchange, leaving a

lower proportion of informed trades in the dark pool, and the dark pool adverse selection

decreases.

An interesting comparison with Zhu (2014) is that, although Zhu (2014) does not consider

the information structure, he discusses the comparative statics of market behaviors as a

function of σv. σv and σe are comparable in the sense that, all else equal, informed traders’

information advantage increases in both information precision (i.e., as σe decreases), and the
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asset value uncertainty (i.e., as σv increases, see a more detailed discussion in Section 1.5.3).

We highlight two major differences between our predictions and those of Zhu (2014).

First, our model predicts that traders’ participation exhibits a smooth variation cross-

sectionally (i.e., when σv grows), whereas there is a discontinuity in that of Zhu (2014).

In Zhu (2014), in equilibrium informed traders don’t trade in dark pools for some assets

unless the asset’s value uncertainty is high (i.e., σv is high). In contrast, we predict that

both informed and liquidity traders trade in dark pools in a clustering fashion, regardless of

σv. This is a more realistic prediction. If there are some assets for which dark pools only

attract liquidity traders, one would expect a persistent gap between the average size of dark

pools and the average size of lit markets. Yet, this is not true as we observe in Figure 1.2.

This, again, emphasizes that dark pools function as informational risk mitigators and that

they are always lucrative for traders, informed or uninformed.

Second, Zhu (2014) predicts that informed traders’ participation in dark pool always

squeezes out liquidity traders (i.e., αd decreases as informed trades grow in the dark pool),

whereas we predict that the two can grow simultaneously, especially when informed traders’

information is relatively imprecise. The explanation is that the informed trading intensity

in the dark pool is always high in Zhu (2014) because traders have exact information. But

in our model, the intensity is neutralized to some extent because some speculators trade in

the “wrong” direction.

1.5.2 Dark Pool Impacts on Market Characteristics

In this section, we study how the market responds when a dark pool is added alongside an

exchange. Precisely, we compare the equilibrium traders’ participation and exchange spread

between the two models: the “Single-venue” model and the “Multi-venue” model. In the

comparison, we fixed the information structure (i.e., σe). The result is shown in Proposition

3. This result coincides with Zhu (2014), except that the effect on the exchange spread A is

uncertain when information is imprecise (i.e., σe high).
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Proposition 3. Given any σv, σe > 0, then adding a dark pool alongside an exchange a)

(Participation): decreases the participation in the exchange for both informed and unin-

formed traders, but increases the total market participation, and b) (Exchange spread):

widens the spread on the exchange, if information precision is high (σe is small).

That is, suppose µz
µ
≥ R

1−R
1

1−G(k̂)
where R = E

[
min

{
1, R

+

R−

}]
, and k̂ is uniquely deter-

mined by k̂ = 1

1+[1−G(k̂]µz
µ

then

(i) (γe
S − γeS) ≥ (γe − γe), αSe ≥ αe, and if σe is sufficiently small or large, αSe ≤ αe + αd.

And,

(ii) AS

σv
≤ A

σv
if σe is small.

Remark 2. When information precision is high (σe is low), as in Proposition 3, we proved

that AS

σv
≤ A

σv
(i.e., adding a dark pool WIDENS the exchange spread). When information

precision is low (σe is high), however, it is possible that AS

σv
> A

σv
(i.e., adding a dark pool

NARROWS the exchange spread ).32 While we discuss this briefly in Appendix 1.8.6, the

explicit analysis is of future work.

Proposition 3 states that adding a dark pool will decrease informed and uninformed

traders’ exchange participation but increase the total participation. Thus, dark pools create

additional liquidity. This, again, is explained by the migration of traders. Because adding a

dark pool enlarges the opportunity sets for both informed and uninformed traders, there will

be migrations of both types of traders from both “Not trade” and “trade in the exchange” to

“trade in the dark pool.” Therefore, the dark pool attracts not only additional liquidity but

also part of the liquidity from the exchange. As a consequence, the exchange participation

decreases, but the total participation of traders increases. This is captured in figure 1.9 in

which αe ≤ αSe ≤ αe + αd.

32When σe is large, it is either AS

σv
< A

σv
when σe is large, or undetermined (in which, as σe → +∞, AS

σv

equals A
σv

, and their first order derivatives with respective to σe are equal.)
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The impact of a dark pool to the exchange spread, however, is not straightforward.

The spread depends on the level of information asymmetry in the exchange, which in turn

depends on the intensity of informed and uninformed trades. As we have pointed out, the

addition of a dark pool induces an outflow of both informed and uninformed traders. The

resulting proportion of the two in the exchange depends on which overwhelms the other.

When the informed traders have high information precision (i.e., low σe), a large fraction of

them strictly prefers to stay in the exchange, and only a small fraction will migrate to the

dark pool, compared with the migration of uninformed traders. As a result, the exchange

information asymmetry strictly increases and exchange spread, “ A
σv

,” is enlarged. When the

informed traders have low precision in their information (i.e., σe is high), however, there is

a large fraction of the informed who prefer to migrate to the “buffer zone,” the dark pool,

and the relative proportion of informed traders in the exchange decreases. As a result, the

exchange spread may or may not decrease, depending on how intense the migration is.33

1.5.3 Dark Pool Impacts on Price Discovery

Price discovery is measured by the informativeness of P1. At the end of period 1, the mar-

ket maker observes the period 1 exchange order flows Vb, Vs, which respectively represents

the “buy” volume and the “sell” volume and announces a closing price P1 = E[ṽ|Vb, Vs].

P1 is perceived as a proxy for the fundamental value of the asset. This is so because

E[ṽ|P1, Vb, Vs] = E[E[ṽ|P1, Vb, Vs]|P1] = P1. We are interested in how informative P1 is,

that is, how close P1 is to the true value of the asset.

We consider similar measures as suggested by Zhu (2014). Without loss of generality, we

assume that the true value ṽ = +σv. Let the likelihood ratio

r = log
Pr(ṽ = +σv|Vb, Vs)
Pr(ṽ = −σv|Vb, Vs)

= log
φz(Z

+ = 1
αe

[Vb − γeµ]) · φz(Z− = 1
αe

[Vs − γeµ])

φz(Z− = 1
αe

[Vb − γeµ]) · φz(Z+ = 1
αe

[Vs − γeµ])
.

33Note that A
σv

depends on both
γe−γe
γe+γe

and
γe−γe
αe

, when σe is large,
γe−γe
αe

decreases when adding a dark

pool but not necessarily
γe−γe
γe+γe

. The overall effect on A
σv

is uncertain.
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And

P1 = σv Pr(ṽ = +σv|Vb, Vs) + (−σv) Pr(ṽ = −σv|Vb, Vs)

=
Pr(ṽ = +σv|Vb, Vs)− Pr(ṽ = −σv|Vb, Vs)
Pr(ṽ = +σv|Vb, Vs) + Pr(ṽ = −σv|Vb, Vs)

σv

Therefore

P1 =
er − 1

er + 1
σv.

Clearly, if r is higher, P1 is closer to the true value σv. If r = +∞, then P1 = σv, in

which case P1 is completely informative. Therefore, r can be considered as a measure of the

informativeness.

Another measure of informativeness that we consider is the scaled root-mean-squared

error (RMSE), in which

RMSE =
[E[(ṽ − P1)2|ṽ = σv]]

.5

σv
= E

[
4

(er + 1)2
|ṽ = σv

]
.

It is scaled by σv. Since r ∈ (0, 1), the scaled pricing error (RMSE) is between 0 and 1. If

RMSE is higher, there are more pricing errors, and there is less price discovery.

Since Vb, Vs are random variables, r is also a random variable. When µz, σ
2
z are large

enough, we can approximate the density of φz(·) by a normal distribution N (.5µz, .5σ
2
z).

34

Substituting the density functions, we get an approximate r by

rApprox =
2(γe − γe)µ

α2
eσ

2
z

(Vb − Vs).

Given that ṽ = σv, Since Vb − Vs has a distribution of N
(
(γe − γe)µ, α2

eσ
2
z

)
, so rApprox

has a distribution of

N
(
2I(γe, γe, αe)

2, 4I(γe, γe, αe)
2
)
,

where

I(γe, γe, αe) =
(γe − γe)µ
αeσz

.

34We use the same approximation as in Zhu (2014), in which it shows that when µz and σ2
z are large

enough, Z+ is approximately normal.
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Thus, the magnitude of I(γe, γe, αe) can be taken as a measure of the price discovery

in the exchange. To be consistent with definitions of Zhu (2014), we also refer to it as

“signal-to-noise” ratio. We consider two measures of price discovery: the signal-to-noise

ratio I(γe, γe, αe) and the scaled RMSE under the normal approximation.

By the same argument as Zhu (2014), under the normal approximation, a higher signal-

to-noise ratio I(γe, γe, αe) always corresponds to a lower scaled RMSE. That is, they are in

nature the same measure. Therefore, we only plot the “signal-to-noise” in our numerical

example in Figure 1.10.

We introduce a measure for the informed traders: that is, the measure of their “informa-

tion advantage”:

σ =
σv
σe
.

An informed speculator’s “information advantage” is defined as the asset’s fundamental

uncertainty σv times the precision of the signals 1
σe

. Clearly, a higher σv reflects a high

level of undisclosed information, therefore, a higher profitability of the informed speculators.

Also, a lower σe means a higher precision of the private information, and hence a higher

informational profit. Proposition 4 summarizes the price discovery as a function of σ and

the impact of a dark pool to price discovery.

Proposition 4. Price discovery (i.e. the informativeness of P1) in the exchange is an in-

creasing function of informed traders’ “information advantage” (σ). And, there exists a

threshold, σ̄ > 0, such that, a) when σ < σ̄, adding a dark pool impairs price discovery,

and b) when σ is large, adding a dark pool enhances price discovery.

That is, suppose k̂ ≤ µz
µ
< +∞, where k̂ is uniquely determined by k̂ = 1

1+[1−G(k̂]µz
µ

, then

I(γe, γe, αe), I(γe
S, γe

S, αSe) increase in σ and RMSE, RMSES decrease in σ, when σe > 0 is

large enough, and ∃σ̄ > 0 such that

(i) if σ ∈ (0, σ̄), adding a dark pool will strictly decrease the informativeness of the price in

exchange, that is, I(γe, γe, αe) < I(γe
S, γe

S, αSe) , and RMSE > RMSES
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(ii) if σ is sufficiently large, adding a dark pool will increase the informativeness of the price

in exchange, that is, I(γe, γe, αe) ≥ I(γe
S, γe

S, αSe), and RMSE ≤ RMSES

When a dark pool is added alongside an exchange, the impact on price discovery is

depending on the resulting ratio of informed traders and uninformed traders in the exchange.

As we have discussed in Section 1.5.2, when a dark pool is introduced to the market, it

induces migrations of both informed traders and liquidity traders from the exchange to the

dark pool. When σ is high, on average, informed traders have high profitability, a high

proportion of the informed would rather stay in the exchange, and only a small proportion

migrate from the exchange to the dark pool, compared with the liquidity traders. Therefore

adding a dark pool increases the “signal-to-noise” ratio and improves the informativeness of

P1 in the exchange. When σ is low, however, on average the informed have low profitability

so that a higher proportion would rather migrate from the exchange to trade in the “buffer

zone,” the dark pool, compared with the liquidity traders. This leaves a lower proportion of

informed traders in the exchange. The “signal-to-noise” ratio decreases and price discovery

declines.

In Figure 1.10, the right plots “signal-to-noise” ratio as a function of σ = σv
σe

. It increases

with σ, indicating that informed traders’ trading intensity grows with higher “informational

advantage,” and hence price discovery increases. Introducing a dark pool alongside an ex-

change decreases price discovery when σ is low (i.e., σv is low or σe is high), and increases

when σ is high (i.e., σv is high or σe is low). The left further illustrates the dark pool impact

on price discovery in a 2-dimensional context (i.e., σv and σe). .

The results highlight an important effect dark pools have on price discovery – an amplifi-

cation Effect That is, dark pools enhances price discovery when it is high, whereas dark pools

impairs price discovery when it is low. An economy needs to be prudent in introducing dark

pools to its equity market, especially when the economy has a poor information environment

(low quality in information disclosure, poor legal systems and enforcement, etc.) We provide

a more detailed discussion in Section 1.6.2.
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Figure 1.10: Price Discovery. The left plots the dark pool impact on price discovery with 2-dimension:

σv and σe. The right plots the “Signal-to-noise” ratio I(γe, γe, αe) as a function of σ = σv

σe
.

This result is in contrast with Zhu (2014), in which adding a dark pool strictly increases

the price discovery. According to our analysis, the important reason Zhu (2014) predicts a

strict increase is due to the fact that it assumes an extreme case where signals for informed

traders are perfect (i.e., σe → 0 in our model). As we have pointed out, when information is

in high precision (i.e., σe is low), the majority of the informed traders prefer the exchange,

where dark pools will attract relatively less fraction informed traders from the exchange,

compared with the liquidity traders, and leave a higher ratio of informed-to-uninformed

traders in the exchange, hence improve price discovery. Thus, Zhu (2014) is consistent

with our prediction. In reality, however, Zhu (2014)’s prediction may not hold because the

information structure is much richer and exhibits significant cross-sectional difference (we

will discuss this in Section 1.6.2). Policies and measures should be tailored to this issue in a

different information environment.

Zhu (2014) also depicts a scenario when uninformed liquidity trader types are discrete. It
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shows that in this case, to a large degree, price discovery will be harmed by the introduction

of dark pools because uninformed traders of discrete types are more likely to get “stuck”

in their original venues while some informed traders flow from the exchange to dark pools

and decrease price discovery. Our prediction corresponds to this scenario. In our prediction,

the discrete type and “stickiness”of uninformed traders will further increase the chance that

price discovery be harmed.

Determinants of the impact. From the perspective of a regulator, when introducing

dark pools, an important issue is what fraction of the assets will be harmed in their price

discovery. In order to answer that question, one should examine the determinants and the

overall impact dark pools have on price discovery.

We consider a proxy which we refer to as the “likelihood that dark pools harm price

discovery.”

σ̄v = sup
x>0

{
x|∀σv ∈ (0, x), I(γe

S, γe
S, αSe) > I(γe, γe, αe)

}
.

By Proposition 4, such σ̄v must exist. A higher σ̄v reflects a higher fraction of assets whose

price discovery will be harmed by adding a dark pool.

We consider two determinants. The first is the precision of traders’ private information,

the inverse of σe. Proposition 4 indicates that the likelihood dark pools harm price decreases

with precision level. Another determinant we consider is the relative measure of informed

traders, µ
µz

. The effects of the two on σ̄v is summarized in Proposition 5.

Proposition 5. the likelihood that price discovery will be harmed by dark pool trading

(σ̄v) decreases in information precision, σe, and increases in the relative measure of informed

traders, µ
µz

.

That is, Suppose k̂ ≤ µz
µ
< +∞, where k̂ is uniquely determined by k̂ = 1

1+[1−G(k̂]µz
µ

, then

(i) σ̄v increases in σe. As σe → 0+, σ̄v → 0, and as σe → +∞, σ̄v → +∞. And,

(ii) for any sequence of {( µ
µz

)}, there exists a subsequence {( µ
µz

)n} such that as ( µ
µz

)n increases,
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σ̄v increases, also, as ( µ
µz

)n → 0+, σ̄v → 0.35

The numerical example is given in Figure 1.11. Proposition 5 states that dark pools

are beneficial for price discovery in an economy with a good information environment (i.e.,

high information precision and low size of informed traders), whereas they are bad for price

discovery in an economy with a poor information environment (i.e., low information precision

and high size of informed traders). Proposition 5 gives regulators insights into how to improve

the economy and informativeness of prices. Policies and measures can be taken to enhance

the market performance. Also, it points out important considerations for countries that are

going to allow dark pools and provides them a benchmark to measure market quality. More

details are in Section 1.6.2.

1.6 Discussion: Empirical and Regulatory

In this section, we provide a discussion about empirical implications and policy suggestions.

The discussion is intended to provide insight into seemingly contradictory results in the

empirical literature, as well as give exploration of channels for future research and regulatory

concern. In these analyses, the economic force we consider is the variation of the information

structure, more precisely, the informed traders’ “information advantage,” σ = σv
σe

, or the

information imprecision, σe, if σv is fixed. We refer to “good information environment” by

more precise information and less informed traders. Although we attempt to attribute the

difference of the findings to the different information structures, we preserve a conservative

interpretation in these predictions. In general, our model suggests that dark pool activity

and its impacts display significant cross-sectional variation and thus should be evaluated

differently in various economic environments.

35We cannot directly show that σ̄v increases in µ
µz

, but we are able to show a upper bound of σ̄v that is

increasing in µ
µz

.

47



7=7z

0 0.1 0.2 0.3 0.4

7<
v

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6 Likelihood DP harmful

!log(<e)
-4 -2 0 2 4

7<
v

0

5

10

15

20

25
Likelihood DP harmful

Figure 1.11: The Likelihood DPs Harm Price Discovery σ̄v. The left-hand figure plots the threshold

σ̄v as a function of the relative size of informed traders, µ
µz

. The right-hand shows the threshold σ̄v as a

function of the information precision, − log(σe). On the left, log(σe) = 0. On the right, µ
µz

= .2.

1.6.1 A Summary of Testable Empirical Predictions

1. Dark pool execution probability. We predict that dark pool non-execution proba-

bility increases with information precision (i.e. 1 − R̄+R
2

increases as σe decreases). Also,

an asset’s exchange spread increases with its dark pool non-execution probability (i.e. A
σv

increases in 1− R̄+R
2

).

This prediction suggest that the trade-off of dark pools is higher in an economy with

a good information environment. The trade-off is documented in many empirical papers.

For example, Gresse (2006), Conrad et al. (2003), Næs and Ødegaard (2006) , and Ye

(2010) study crossing networks in the US and conclude that dark pools, in comparison

with exchanges, have lower trading costs (within spread price) but higher non-execution

probability. He and Lepone (2014) studied Australia’s Centre Point dark pool and found

that the dark pool execution probability increases with dark pool activity. In contrast, Kwan
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et al. (2015) find that the dark pool execution probability increases in the trading friction

in exchanges: the minimal price improvement.

The change of execution probability can be explained as follows: the execution depends

on two factors: traders’ total participation and dark pool information asymmetry level. The

former irons the difference between the two sides in the pool and increases the execution

rate, whereas the latter does the opposite. In the numerical example in Figure 1.12, we

show that, without pricing frictions in the exchange, the expected dark pool execution rate

decreases as the information becomes more precise (σe decreases).
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Figure 1.12: Execution Probability and Trade-off of A Dark Pool. The left figure plots the non-

execution probability as a function of log(σe). The right-hand figure plots the non-execution probability as

a function of the exchange spread A/σv. In both plots, log(σv) = 0.

2. Dark pool usage and market characteristics. All else equal, in an econo-

my/industry/asset that has a high information precision, dark pool market share decreases

with information precision and with exchange spread, whereas in an economy/industry/asset

that has low information precision, dark pool market share increases with information pre-

cision and with exchange spread. More precisely,

(1) dark pool market share has an inverted U-shape relationship with the information pre-

cision,
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(2) dark pool market share has an inverted U-shape relationship with the exchange spread.

The prediction follows from Proposition 1, Proposition 2, and Remark 1. To measure

dark pool usage, we analyze the volumes in each venue. Since informed traders have no profit

to trade in period 2 due to the disclosure of information, they cancel their unexecuted orders

and leave the market in period 2. The remaining orders continue to execute in the exchange.

The expected trading volume in the dark pool, in the exchange, and total consolidated

volume are, respectively:

Vd = (R̄γd +Rγd)µ+
R̄ +R

2
αdµz, (1.29)

Ve = (γe + γe)µ+ αeµz + (1− αe − αd)µz +

(
1− R̄ +R

2

)
αdµz, (1.30)

V = Vd + Ve. (1.31)

We distinguish the components of dark volumes by “Dark uninformed volumes” and “Dark

informed volumes” respectively as:

V U
d =

(
1− R̄ +R

2

)
αdµz, (1.32)

V I
d = Vd − V U

d . (1.33)

Figure 1.13 illustrates equilibrium behavior of dark pool market share and dark pool “in-

formed volume” share. Though this prediction coincides with Zhu (2014), our model

emphasizes the role of the trader’s information structure.

This prediction is consistent with Ray (2010) and Preece (2012), which report a similar

inverted U-shape between dark pool usage and exchange spread. Other empirical studies

have reported contradictory results using different datasets. For studies using different US

datasets, Hatheway et al. (2013) and Weaver (2014) find a positive association while O’Hara

and Ye (2011) and Ready (2014) find a negative association between dark trading and ex-

change spread. ASIC (2013) and Comerton-Forde and Putniņs̆ (2015) study Australian dark

trading and find a positive relationship. Degryse et al. (2015) find a positive relationship

for European dark fragmentation. Our model suggests that such a relationship varies cross-

sectionally, depending on the specific information structure. The cross-sectional difference
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Figure 1.13: Dark Volumes and Market Share. The left figure plots the dark pool volume, total

volume and dark pool market share as a function of log(σe). The right-hand figure shows the dark pool

market share as a function of the exchange spread A/σv. In both plots log(σv) = 0.

is reflected in Nimalendran and Ray (2014), Buti et al. (2011b), and O’Hara and Ye (2011).

More cross-sectional studies that specify the characteristics of firms and countries are needed.

3. Information content of dark pool trades. In an economy with high information

precision, the information content of dark pool trades decreases with information precision

and with exchange spread. By contrast, in an economy low information precision, the infor-

mation content of dark pool trades increases with information precision and with exchange

spread. More precisely,

(1) the information content of dark pool trades has an inverted U-shape relationship with

the information precision,

(2) the information content of dark pools trades has an inverted U-shape relationship with

the exchange spread.

The prediction follows from Proposition 1 and Proposition 2. We use two measures for the

dark pool information content. The first measure is the DP Predictive Fraction – the fraction

of dark pool volumes that are traded in the “right direction” (i.e., fraction of volumes that
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predict the movement of prices). The higher the fraction is, the higher is the information

content of a dark pool. In this model, the Predictive Fraction is defined as

DP Predictive Fraction =
R(γdµ+ .5αdµz)

Vd
.

Another measure we consider is the normalized adverse selection costs, R̄−R. The inverted

U-shape of the two measures with the exchange spread is depicted in Figure 1.14. There
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Figure 1.14: Predicability of Dark Pool Trades. The left figure plots the dark pool “Predictive

Fraction” as a function of spread A/σv. The right-hand plots the dark pool adverse selection costs as a

function of spread A/σv.

are relatively few studies that look at this issue. Peretti and Tapiero (2014) conclude that

dark pool trades can significantly forecast price movements. Nimalendran and Ray (2014)

study trades in a large crossing network and find that the information content in a dark pool

is positively associated with the exchange spread.

But as we point out, under different information environments, the dark pool informa-

tional content may differ cross-sectionally. Further study in this area is needed.

4. Impacts of adding a dark pool alongside an exchange. We predict that

(i) Liquidity externality. Adding a dark pool alongside an exchange decreases the ex-

change volume but increases the overall volume.

52



(ii) Price discovery and exchange spread. Dark pools have an amplification effect on

price discovery. That is, the introduction of dark pools enhances price discovery when price

discovery is high, and impairs price discovery when price discovery is low. Moreover, the

improvement of price discovery is associated with a wider exchange spread, whereas the

deterioration of price discovery can be associated with a wider or narrower spread.

Prediction 4 follows directly from Proposition 3, Proposition 4 and Remark 2.36 Few studies

focus on the direct impact of introducing dark pool trading. For example, Hendershott and

Mendelson (2000) and Hendershott and Jones (2005) found that there was a reduction in

price efficiency after Island ECN stopped displaying its limit order book. Chlistalla and

Lutat (2011) finds that the entrance of Chi-X, a dark pool in the US, decreased spread.

Other research studies the relationship between price discovery and dark pool trading

intensity within the fragmented framework. O’Hara and Ye (2011) and Jiang et al (2012)

find a positive association between price discovery and dark pool trading, whereas Hatheway

et al. (2013) and Weaver (2014) find the opposite. Comerton-Forde and Putniņs̆ (2015)

conduct a more comprehensive cross-sectional study and show that, when the fraction of

non-block trades in dark pools is high (above 10%, suggesting that dark pools contain a high

fraction of informational orders), then dark trading harms price discovery, whereas if dark

pools contain less informational orders, dark trading improves price discovery. Comerton-

Forde and Putniņs̆ (2015)’s prediction is consistent with ours in the sense that we predict

an inverted U-shape for the relation of dark pool information content and the information

precision. More research is still needed on the important question of the effect of dark pool

activity on price efficiency for different types of stocks in the cross-section.

36Remark 2 points out, when private information is imprecise, it is possible that price discovery is decreased
while spread increases. If this is the case a dark pool can be strictly detrimental to the exchange.
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1.6.2 Regulatory Considerations

Price discovery is the essential economic function of an exchange. As Alan and Schwartz

(2013) point out, price discovery, as a public good, gives investors confidence and promotes

the interests of listed entities and the broader community through an efficient secondary

market for capital. More precisely, an exchange-produced price benefits a broad spectrum

of market participants who use it for marking to market, derivatives valuation, mutual-fund

cash flow estimation, estates, and dark pool pricing. Thus, the efficiency of how prices are

discovered becomes a serious matter in measuring market quality. In the periods of time

when markets are deeply fragmented by dark pool trading, it is of extreme importance for

regulators to be wary of the impacts dark pools have on price discovery.

This paper shows that there is no certain claim in the issue whether dark pools harm price

discovery. The information structure is essential to determining the impact of dark pools

on price discovery. Dark pools enhance price discovery when the information environment

is good and they impair price discovery when the information environment is poor. The

information structure determines the level of price discovery and dark pools’ impact on it.

The use of dark pools should be case sensitive. In this section, we provide a brief discussion

about information structure and regulatory suggestions.

1. Information environment and its determinants. There are two factors to con-

sider for an information environment: the precision of (private) information and the number

of informed traders. The notion of a better information environment includes a higher

precision in traders’ (private) information and fewer informed traders.37 The information

environment in equity markets largely depends on the following aspects: (1) The nature of

the security. Researchers have found that firms with greater growth volatility (such as high

R&D firms, young firms), smaller size, or fewer analyst followers have lower informational

precision in traders’ predictions (Li et al. 2012, Maffett 2012, Lang and Lundholm 1993, Ba-

37Private information is not necessarily insider information. A big fraction of it is information that is
publicly available but hard to collect, transmit, and process by the majority of the public.
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ginski and Hassell 1997). (2) Traders’ ability to obtain and process information. Information

precision is positively associated with the overall level of traders’ experience. Generally, a

more matured financial market, with more competition, more innovation in trading technolo-

gies, and years of trade has a higher level of trader ability for information acquisition (Louis

et al. 2014, Clement 1999, Chen et al. 2005). (3) The opacity of the economy’s information

environment in the macro-setting. This includes the strength of legal institutions and law

enforcement against insider trading, the functionality of the public disclosure system, and

the availability and efficiency of media transmission. Generally, public disclosure and me-

dia channels can enhance the precision of informed traders’ forecasts38 and stronger legal

systems can significantly reduce the number of insiders.

2. What should regulators do? Regulators should be cautious in controlling dark

pool trading in order to not harm price discovery. To do that, regulators should examine the

following aspects. First, dark pool trading should be regulated to a level that distinguishes

firm characteristics. As we have pointed out, traders generally possess low precision for high

R&D firms, young firms, small firms, and less-analyzed firms. Introducing dark pools to these

firms might cause a decrease in price discovery. Second, a monitoring system measuring the

public’s ability to process information should be built, and dark pool trading should be

under dynamic revision. Third, countries should continue to improve their judicial system

to prevent insider trading, and, at the same time, take measures to improve the efficiency

of public disclosure, including accounting information enhancement and financial reporting

regulations. Countries should also ensure there are more effective financial media channels.

In general, regulators should improve countries’ information environment.

3, Dark pools in emerging markets? Based on current evaluations of the informa-

tion environment in several emerging markets, a great proportion of emerging markets are

governed by poor legal systems and have limited implemental power against insider trading

38Although there is a debate regarding the association between public and private information, researchers
generally find that public disclosures may be processed into private information by informed investors, and
there is a positive correlation between the precisions of public and private information. See Botosan et al.
(2004) and Kim and Verrecchia (1994).
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and poor quality of information disclosure. These countries should be extremely cautious in

dark pool trading. For example, Bhattacharya and Daouk (2002) found that the enforcement

of insider trading laws in 81 emerging markets is significantly low compared with developed

countries. Wang and Wu (2011) and Yu and Lu (2009) document poor quality of financial

information in mainland China, and they show that up to a quarter of listed firms in main-

land China explicitly admitted to the poor quality of their financial information by restating

their previous financial reports. Tang et al. (2013) finds that a poor corporate governance

system interacts with abnormal insider trading to aggravate the information environment

in Taiwan. Budsaratragoon et al. (2012) tests insider trading regulations in Thailand and

find that severe informational asymmetry, lax enforcement and poor pricing efficiency are

endemic. As we point out, dark pools have an amplification effect on price discovery, so

introducing dark pool trading in those countries may aggravate the situation.

1.7 Conclusion

This paper studies the impact of dark pools on price discovery in a noisy information frame-

work. We find that the addition of a dark pool to the traditional exchange has an amplifica-

tion effect on price discovery, i.e., it enhances price discovery when the information has high

precision and impairs price discovery when the information has low precision. The results

reconcile the conflicting empirical findings in current literature and suggest new channels of

research to disentangle the relationship between dark pool trading and market quality.

We highlight the dark pool’s function as an informational risk mitigator. In equilibrium,

information is sorted by market fragmentation. That is, traders with strong signals trade

in the exchange, traders with modest signals trade in the dark pool, and traders with weak

signals do not trade. When information precision is low, a large proportion of informed

traders with modest signals crowd in the dark pool to reduce their information risk. Adding

a dark pool, thus, shifts a higher fraction of informed traders from the exchange, compared

with liquidity traders, leaving a lower informed-to-uninformed ratio in the exchange and thus
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decreasing price discovery. In contrast, when information precision is high, a large proportion

of informed traders with strong signals crowd in the exchange. Adding a dark pool shifts

only a small fraction of informed traders from the exchange, compared with liquidity traders,

increasing the informed-to-uninformed ratio in the exchange and increasing price discovery.

There are several observations that complement the overall effects on market quality.

First, when information precision is low, the market can experience a deterioration of price

discovery along with a widened exchange spread. In this case, dark pools are strictly detri-

mental to the exchange. Second, dark pools always attract informed traders and liquidity

traders in a clustered fashion. We should observe both informed and uninformed traders

in all trading venues. Third, the ability of dark trades to predict price movement has an

inverted U-shape with exchange spread. Therefore, assets with modest exchange liquidity

have a high information content in their dark pool trades.

There are aspects regulators should be aware of. First, dark pools and their impacts have

significant variance cross-sectionally. The information structure of different assets, industries,

and countries differs in nature. The use of dark pools is thus case sensitive. Second, in

a deeply fragmented market, policies that help improve the information environment are

needed to enhance price discovery. These measures include, among others, enhancing public

disclosure by improving accounting and reporting regulations, strengthening legal systems,

and implementing laws against insider trading.

1.8 Appendix

1.8.1 Proof of Lemma 1

Since each trader is infinitesimal and orders are limited by the amount, his or her action has

no impact on the market parameters (i.e., the exchange spread A and the dark pool execution

probabilities (R̄, R)). Therefore, splitting the order cannot affect the (per unit) profit in

each venue. Without loss of generality, we focus on the case of a positive signal (the case for
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a negative signal is similar). Suppose that the informed traders have signal s > 0. Then he

has a belief B(s) > 1
2
. Because the profit of a “Buy” order in each venue is strictly higher

than the profit of a “Sell” order, thus it is optimal to choose the “Buy” direction. From his

or her perspective, given the exchange spread A and the dark pool execution probabilities

(R̄, R), the expected (per unit) profit for trading in the lit market, dark pool, and not trade

depends on his or her confidence level B(|s|) and is determined by (1.5), (1.6), and (1.7),

respectively.

Because these payoffs are linear in B(|s|), given any belief B(|s|), there is always one

venue that is no worse than any of other venues. This relationship is shown in Figure 1.5a.

When s 6= ±s0 or ± s1, the payoff of trading in one venue is strictly better than others, and

it is optimal to send the entire order to that venue. When s = ±s0 or ± s1, there are two

venues that yield the same payoff, and the trader can choose to split the order or not between

these two venues. However, since the realization of the signal among the informed traders

are continuously distributed, the measure of informed traders who receive a particular signal

is zero. That is, such traders who are indifferent to these two venues has a mass of zero in

the market. Therefore, in probability one, all informed traders send entire order to either

the exchange or the dark pool, or not trader at all.

1.8.2 Proof of Lemma 2

From a type d liquidity trader’s perspective, the expected per unit payoff from trading in the

lit market, dark pool, and completely deference are determined by (1.8), (1.9), and (1.10),

respectively. Since each individual has no impact to the market, given A, R̄, R, the per

unit payoff in each venue is fixed. There is always one venue that is no worse than others.

In addition, the payoff is linear in the number of units transacted. Hence there is no need

to split among different venues or among different periods.
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1.8.3 Proof of Theorem 1

Hereafter we normalize some variables via dividing by σe, i.e., let s = s
σe

, s0 = s0
σe

, s1 = s1
σe

,

ŝ = ŝ
σe

, σ = σv
σe

. Then it is equivalent to prove that, given σ ≥ 0, there is a unique cut-off ŝ

such that hSI(s), hSU,ι(d), AS, γe
S, γe

S, αSe consist a equilibrium, in which

hSI(s) =


(“Buy”, Exchange(Lit)) if s ≥ ŝ,

(“Sell”, Exchange(Lit)) if s < −ŝ,

Not trade otherwise,

(1.34)

hSU,ι(d) =

 (“Buy” if ι=Buyer, or “Sell” if ι=Seller, Exchange(Lit)) if d ≥ 2B(ŝ)− 1,

Delay trade otherwise,

(1.35)

γe
S = 1− Φ(ŝ− σ), (1.36)

γe
S = 1− Φ(ŝ + σ), (1.37)

αSe = 1−G(2B(ŝ)− 1), (1.38)

AS

σv
=

γe
S − γeS

γe
S + γeS + αSe

µz
µ

, (1.39)

where ŝ is determined by

2B(ŝ)− 1 =
AS

σv
. (1.40)

We prove the theorem in two steps. First, we show that if ŝ is given, the other variables

hSI(s), hSU,ι(d), AS, γe
S, γe

S, αSe solved from (1.34)-(1.39) form an equilibrium. Then we

show that such ŝ exists and is unique.

Suppose that ŝ exists. By (1.40), an informed trader with signal ŝ is indifferent between

trading in the exchange and not trade. Since B(s) is increasing in s, hSI(s) is an optimal

strategy for informed traders. Similarly, since a type d̂ = 2B(ŝ) − 1 uninformed liquidity

trader is indifferent between trading on the exchange and deferring trade, hSU,ι(d) is an

optimal strategy for uninformed traders. By the law of large numbers, given hSI(s) and

hSU,ι(d), the fraction of uninformed traders who trade in the exchange would be αSe = Pr(d ≥
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d̂) = 1 − G(2B(ŝ) − 1). Thus, the fraction of informed traders who trade in the “right

direction” would be γe
S = Pr(s ≥ ŝ) = 1 − Φ(ŝ − σ), and the fraction of informed traders

who trade in the “wrong direction” would be γe
S = Pr(s < ŝ) = 1− Φ(ŝ+ σ). In addition,

for given γe
S, γe

S, αSe , we can find AS from (1.39) and it would make the market maker on

the exchange breaks even on average. Thus, hSI(ŝ), hSU,ι(d), AS, γe
S, γe

S, αSe indeed form an

equilibrium.

Then we will prove that such ŝ exists and is unique. After substituting the expressions

of AS, γe
S, γe

S, αSe into (1.40), we obtain the following equation for ŝ:

Φ(ŝ + σ)− Φ(ŝ− σ)

2− Φ(ŝ + σ)− Φ(ŝ− σ) + (1−G(2B(ŝ)− 1))µz
µ

= 2B(ŝ)− 1. (1.41)

Define

f(s) =(2B(s)− 1)

[
2− Φ(s+ σ)− Φ(s− σ) + (1−G(2B(s)− 1))

µz
µ

]
− [Φ(s+ σ)− Φ(s− σ)] ,

and the derivative of f(s) is

f ′(s) =2B′(s)

[
2− Φ(s+ σ)− Φ(s− σ) + (1−G(2B(s)− 1))

µz
µ

]
− 2(2B(s)− 1)G′(2B(s)− 1)B′(s).

We can easily find that f(1
2
) < 0, f(+∞) > 0, f ′(0) > 0, f ′(+∞) = 0. Because G′(x) +

xG′′(x) ≥ 0, ∀x ∈ [0, 1], we have f ′′(s) < 0. Thus there exists a unique ŝ such that

f(ŝ) = 0.

1.8.4 Proof of Theorem 2

Hereafter we normalize some variables via dividing by σe, i.e., s = s
σe

, s0 = s0
σe

,s1 = s1
σe

,

ŝ = ŝ
σe

, σ = σv
σe

. Then finding the equilibrium is equivalent to solving the following system
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of equations:

B(s0)(R̄ +R) = R̄, (1.42)

B(s1)
[
(1− R̄) + (1−R)

]
=
A

σv
+ (1− R̄), (1.43)

R̄ = E
[
min

{
1,
γdµ+ αdZ

+

γdµ+ αdZ−

}]
, (1.44)

R = E
[
min

{
1,
γdµ+ αdZ

−

γdµ+ αdZ+

}]
, (1.45)

A

σv
=

γe − γe
(γe + γe) + αe

µz
µ

, (1.46)

γe = 1− Φ(s1 − σ), (1.47)

γe = 1− Φ(s1 + σ), (1.48)

γd = Φ(s1 − σ)− Φ(s0 − σ), (1.49)

γd = Φ(s1 + σ)− Φ(s0 + σ), (1.50)

αe = 1−G(2B(s1)− 1), (1.51)

αd = G(2B(s1)− 1)−G(2B(s0)− 1), (1.52)

where

B(s) =
φ(s− σ)

φ(s− σ) + φ(s + σ)
. (1.53)

Before proving the existence of solutions to the system of equations, we introduce the

following lemma.

Lemma 3. Let s0 ≥ 0 and s1 = s0 + ε, we have

lim
ε→0+

R = E

[
min

{
1,
φ(s0 + σ)µ+ 2G′(2B(s0)− 1)B′(s0)Z−

φ(s0 − σ)µ+ 2G′(2B(s0)− 1)B′(s0)Z+

}]
,

lim
ε→0+

R̄ = E

[
min

{
1,
φ(s0 − σ)µ+ 2G′(2B(s0)− 1)B′(s0)Z+

φ(s0 + σ)µ+ 2G′(2B(s0)− 1)B′(s0)Z−

}]
,

lim
ε→0+

A

σv
=

Φ(s0 + σ)− Φ(s0 − σ)

2− Φ(s0 + σ)− Φ(s0 − σ) + [1−G(2B(s0)− 1)] µz
µ

.

Moreover, if s0 = 0 or σ = 0, then lim
ε→0+

R = lim
ε→0+

R̄ = 1. Therefore, we define R, R̄, and A
σv

use these limits when s0 = s1.
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Proof. We can prove this by the Taylor expansion. Suppose that ε is sufficiently small.

Because s0 ≥ 0 and s1 = s0+ε, we have, by the Taylor expansion, that γd = φ(s0+σ)ε+o(ε),

γd = φ(s0 − σ)ε+ o(ε), and αd = 2G′(2B(s0)− 1)B′(s0)ε+ o(ε). Therefore we have

R = E

[
min

{
1,
φ(s0 + σ)µε+ 2G′(2B(s0)− 1)B′(s0)Z−ε

φ(s0 − σ)µε+ 2G′(2B(s0)− 1)B′(s0)Z+ε
+ o(ε)

}]
,

R̄ = E

[
min

{
1,
φ(s0 − σ)µε+ 2G′(2B(s0)− 1)B′(s0)Z+ε

φ(s0 + σ)µε+ 2G′(2B(s0)− 1)B′(s0)Z−ε
+ o(ε)

}]
.

Similarly, by the Taylor expansion, we have γe = 1 − Φ(s0 − σ) − φ(s0 − σ)ε + o(ε), γe =

1 − Φ(s0 + σ) − φ(s0 + σ)ε + o(ε), and αe = [1−G(2B(s0)− 1)] − 2G′(·)B′(s0)ε + o(ε).

Therefore

A

σv
=

Φ(s0 + σ)− Φ(s0 − σ)− [φ(s0 + σ)− φ(s0 − σ)] ε

2− Φ(s0 + σ)− Φ(s0 − σ) + [1−G(2B(s0)− 1)] µz
µ
− [φ(s0 + σ) + φ(s0 − σ) + 2G′(·)B′(s0)] ε

+ o(ε).

Let ε→ 0+, and we prove the lemma.

We prove the theorem in a similar way as in the proof of Theorem 1. First, we show that

if s0 and s1 are given, the other variables hI(·), hU,ι(·), A, R̄, R, γe, γe, γd, γd, αd, αe

solved from (1.44)-(1.52) form an equilibrium. Then we show that (s0, s1) exists and is

unique.

Given A, R̄, R, γe, γe, γd, γd, αd, αe and that s0, s1 determined by (1.42), (1.43),

0 < s0 < s1, we show that it is optimal for informed speculators and uninformed liquidity

buyers (and sellers) to following the strategy described respectively by hI(·) and hU,ι(·), ι ∈

{Buyer, Seller}.

Consider an informed speculator who receives a signal s ≥ 0 (the case when s ≤ 0 is

symmetric with respect to the vertical axis, and hence the analysis is similar and skipped

here). Suppose that 0 < s0 < s1. From his or her perspective, the expected payoffs in

the lit market, the dark pool, and no-trade are, respectively, [B(s)σv − (1−B(s))σv] − A,
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B(s)Rσv − (1 − B(s))R̄σv, and 0. Figure 1.5a captures the payoff as a function of B(s).

As one can see in the graph, since the payoffs are linear with respect to B(s), and B(s) is

strictly increasing with respect to s, the optimal strategy for an informed speculator with

signal s should use the exchange (the lit market) to trade when his or her signal s ≥ s1, and

the dark pool when s0 ≤ s < s1, and stay outside when s < s0. This is marked as the red

line in Figure 1.5a.

The fractions of each type of traders in each venue γe, γe, γd, γd, αe, αd are determined

by (1.47), (1.48), (1.49), (1.50), (1.51), (1.52), respectively, and A, R̄, R are given by (1.46),

(1.44), (1.45). Thus properties (ii), (iii) and (iv) in Definition 2 are satisfied.

Then we need to show that such pair of cut-off (s0, s1) exists and satisfies 0 < s0 < s1.

In order to show this, we consider equations (1.42) and (1.43) and show that there is a

intersection for the two lines represented by these two equations.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

45° 

𝐬𝟎 

𝐬𝟏 

𝑠  s0 

s1 

Figure 1.15: Equilibrium Existence

For equation (1.42), we show that (s0, s1) = (0, 0) satisfies equation (1.42) and behaves

as the black line in Figure 1.15.

(i) Suppose s0 = 0, s1 = 0, then B(s0) = 1
2
, and by Lemma 3, R̄ = R = 1. Therefore
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equation (1.42) is satisfied.

(ii) Now suppose that s0 > 0, then 1
2
< B(s0) < 1. To satisfy (1.42), we need thatR < R̄ ≤ 1,

thus |γd| < |γd|. To obtain this, it must be true that s1 > s0 if such s1 exists. By continuity

such s1 must exist for a small enough s0. (Note that if s0 is too large, such s1 may not

exist.)

(iii) We also show that there exist some s such that s1 → +∞ when s0 → s. We

rewrite equation (1.42) as B(s0) = R̄
R̄+R

. As s1 → +∞, γd → 1 − Φ(s0 − σ), γd →

1 − Φ(s0 + σ), αd → 1 − B(s0). Hence R̄ → E
[
min

{
1, 1−Φ(s0−σ)+[1−B(s0)]Z+

1−Φ(s0+σ)+[1−B(s0)]Z−

}]
, and

R → E
[
min

{
1, 1−Φ(s0+σ)+[1−B(s0)]Z−

1−Φ(s0−σ)+[1−B(s0)]Z+

}]
. Therefore, for any s0 ∈ [0,∞), there must exist

γd > γd, thus R̄ > R. Then let s1 → +∞, the left hand side of the equation, B(s0), is

equal to 1
2

if s0 = 0, and is equal to 1 if s0 → +∞. However, the right hand side of the

equation, R̄
R̄+R

, is greater than 1
2

if s0 = 0, and equal to 1
2

if s0 → +∞. This is because

lim
s→+∞

1−Φ(s0−σ)
1−B(s0)

= lim
s→+∞

1−Φ(s0+σ)
1−B(s0)

= 0, so lim
s→+∞

R̄ = lim
s→+∞

R = E
[
min

{
1, Z

+

Z−

}]
. By continu-

ity, there must exist an s ∈ (0,+∞) such that, as s0 → s, s1 → +∞, LHS = RHS. That is,

equation (1.42) is satisfied.

For equation (1.43). We rewrite it as

B(s1) =
A
σv

(1− R̄) + (1−R)
+

(1− R̄)

(1− R̄) + (1−R)
. (1.54)

(i) Suppose that s0 = 0, we prove that there must exist a s1 > 0 satisfy (1.43). Note

that for any given σ ∈ (0,+∞), A > 0 is satisfied. If s1 = 0, we have B(s1) = 1
2

and

R̄ = R = 1. Plugging into (1.43) gives us A = 0, which contradicts the fact that A > 0. If

s1 < 0, then B(s1) < 1
2
, γd < γd, and 0 < R̄ < R < 1 (we don’t consider any R̄, R < 0).

Hence (1−R̄)

(1−R̄)+(1−R)
> 1

2
> B(s1). In order for (1.43) to be satisfied, we have A < 0, which

contradicts with that fact that A > 0. Then we show the existence of s1 using the continuity

of equation (1.54). Its left hand side B(s1) is increasing in s1 and B(0) = 1
2
, lim

s1→∞
B(s1) = 1.

If s1 = 0, the right hand side equals
A
σv

(1−R̄)+(1−R)
+ 1

2
> 1

2
. However, when s1 → ∞, we

have A → 0 and 1 > R̄ > R, hence the right hand side equals 0 + 1−R̄
(1−R̄)+(1−R)

< 1
2
. By
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the continuity of equation (1.54), there must exist a s1 ∈ (0,+∞) such that the equation is

satisfied.

(ii) Next we prove that there exist an s > 0 and small enough ε > 0 such that for s0 =

s, s1 = s + ε, equation (1.43) is satisfied as ε → 0+. Consider any s0 = s, s1 = s + ε, when

ε > 0 is sufficiently small. By Lemma 3, equation (1.43) is equivalent to

B(s) =
A
σv

(1− R̄) + (1−R)
+

(1− R̄)

(1− R̄) + (1−R)
, (1.55)

where A
σv

= Φ(s+σ)−Φ(s−σ)
2−Φ(s+σ)−Φ(s−σ)+[1−G(2B(s)−1)]µz

µ
, R = E

[
min

{
1, φ(s−σ)µ+2G′(2B(s)−1)B′(s)Z+

φ(s+σ)µ+2G′(2B(s)−1)B′(s)Z−

}]
, and

R̄ = E
[
min

{
1, φ(s+σ)µ+2G′(2B(s)−1)B′(s)Z−

φ(s−σ)µ+2G′(2B(s)−1)B′(s)Z+

}]
. Consider s on [0,∞). The left hand side of

equation (1.55) increases with respect to s. We have B(0) = 1
2
, and lim

s→∞
B(s) = 1. Now

consider the right hand side of equation (1.55). By Lemma 3, we know that if s → 0+, the

limit of the right hand side is
A
σv

(1−R̄)+(1−R)
+ 1

2
> 1

2
. If s→∞, we have A→ 0 and 1 > R̄ > R,

hence the limit of the right hand side is 0 + 1−R̄
(1−R̄)+(1−R)

< 1
2
. By continuity there must exist

a s ∈ (0,∞) such that equation (1.55) is satisfied at (s, s) (i.e., s0 = s1 = s).

The above argument can be summarized by Figure 1.15. Given σ > 0 fixed, the black

curve represents the (s0, s1) pairs that satisfy equation (1.42). It goes through the point

(0, 0), is always above the line s1 = s0, and s1 → +∞ when s0 → s. The red curve

represents the (s0, s1) pairs that satisfy equation (1.43). When s0 = 0, s1 ∈ (0,∞). And

there exists some s ∈ (0,+∞) such that s0 = s1 = s, satisfies equation (1.43). Then because

all functions are continuous, there must exist a pair (s0, s1), 0 < s0 < s1 < +∞, such that

both equations (1.42) and (1.43) are satisfied. It is the intersection of the black curve and

the red curve in Figure 1.15. The existence is then established.

1.8.5 Proof of Proposition 1 and Proposition 2

To prove Propositions 1 and 2, we need the following two lemmas.

Lemma 4. Suppose s(σ) is continuously differentiable over (0,+∞), and lim
σ→0+

s(σ)σ = 0,
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then

lim
σ→0+

(φ(s(σ) + σ)− φ(s(σ)− σ)) s′(σ) = 0

lim
σ→0+

(Φ(s(σ) + σ)− Φ(s(σ)− σ)) s′(σ) = 0

In addition,

(i) If lim
σ→0+

s(σ) = ±∞, |σs′(σ)| ≤ s(σ) for sufficiently small σ.

(ii) If −∞ < lim
σ→0+

s(σ) < +∞, lim
σ→0+

σs′(σ) = 0.

Proof. (i) Suppose that lim
σ→0+

s(σ) = +∞. There exists ε > 0 such that ∀σ ∈ (0, ε), s(σ)σ >

0 and d(s(σ)σ)
dσ

> 0. Thus d(s(σ)σ)
dσ

= σs′(σ) + s(σ) ≥ 0, and

|σs′(σ)| ≤ |s(σ)|,

for σ ∈ (0, ε). Similarly, if lim
σ→0+

s(σ) = −∞, we have that

|σs′(σ)| ≤ |s(σ)|,

for sufficiently small σ.

Therefore, by mean value theorem, we have

lim
σ→0+

(φ(s(σ) + σ)− φ(s(σ)− σ)) s′(σ) = lim
σ→0+

∫ s(σ)+σ

s(σ)−σ
−xe−

x2

2 dxs′(σ)

= lim
σ→0+

− 2σs(σ)e−
s(σ)2

2 s′(σ).

Because |σs′(σ)| ≤ |s(σ)| and lim
σ→0+

∣∣∣−2s(σ)2e−
s(σ)2

2

∣∣∣ = 0, we obtain

lim
σ→0+

(φ(s(σ) + σ)− φ(s(σ)− σ)) s′(σ) = 0.

Similarly, we have

lim
σ→0+

(Φ(s(σ) + σ)− Φ(s(σ)− σ)) s′(σ) = lim
σ→0+

∫ s(σ)+σ

s(σ)−σ
e−

x2

2 dxs′(σ)

= lim
σ→0+

2σe−
s(σ)2

2 s′(σ).

66



Additionally, lim
σ→0+

∣∣∣−2s(σ)e−
s(σ)2

2

∣∣∣ = 0 gives us that

lim
σ→0+

(Φ(s(σ) + σ)− Φ(s(σ)− σ)) s′(σ) = 0.

(ii) Suppose that lim
σ→0+

s < +∞. On one hand, we have that lim
σ→0+

d(s(σ)σ)
dσ

= lim
σ→0+

σs′(σ)+

lim
σ→0+

s(σ) = lim
σ→0+

σs′(σ) + s(0). On the other hand, we have

d(s(σ)σ)

dσ

∣∣
σ=0

= lim
σ→0+

s(σ)σ − 0

σ − 0
= s(0). (1.56)

Thus we have

lim
σ→0+

σs′(σ) = 0,

and

lim
σ→0+

(φ(s(σ) + σ)− φ(s(σ)− σ)) s′(σ) = lim
σ→0+

∫ s(σ)+σ

s(σ)−σ
−xe−

x2

2 dxs′(σ)

= lim
σ→0+

(−2σs′(σ)) · lim
σ→0+

s(σ)e−
s(σ)2

2

= 0,

lim
σ→0+

(Φ(s(σ) + σ)− Φ(s(σ)− σ)) s′(σ) = lim
σ→0+

∫ s(σ)+σ

s(σ)−σ
−xe−

x2

2 dxs′(σ)

= lim
σ→0+

(σs′(σ)) · lim
σ→0+

e−
s(σ)2

2

= 0.

Lemma 5. lim
σ→0+

ŝ = s∗, where s∗ ∈ (0,+∞) is determined by the following equation

s =
2φ(s)

2− 2Φ(s) + µz
µ

.

Proof. Because G(·), Φ(·) ∈ C2. The implicit function theorem and the uniqueness of ŝ

show that ŝ(σ) is a continuously differentiable function over (0,+∞).
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When σ = 0, we have γe
S − γeS = 0 and AS

σv
= 0. Equation (1.40) gives us that B(ŝ) = 1

2

and ŝ(σ)σ = 0.

Recall that

AS

σv
=

Φ(ŝ + σ)− Φ(ŝ− σ)

2− Φ(ŝ + σ)− Φ(ŝ− σ) + (1−G(2B(ŝ)− 1))µz
µ

, (1.57)

G(·), Φ(·) ∈ C2, and AS

σv
is differentiable of σ over (0,+∞).

Taking the derivative, we get

d
(
AS

σv

)
dσ

=
(φ(ŝ + σ)− φ(ŝ− σ)) dŝ

dσ
+ (φ(ŝ + σ) + φ(ŝ− σ))

γe + γe + αe
µz
µ

+
[Φ(ŝ + σ)− Φ(ŝ− σ)]

[
(φ(ŝ + σ) + φ(ŝ− σ)) dŝ

dσ
+ (φ(ŝ + σ)− φ(ŝ− σ))

][
γe + γe + αe

µz
µ

]2

+
2G′(2B(ŝ)− 1)µz

µ
[Φ(ŝ + σ)− Φ(ŝ− σ)]

(
∂B(ŝ)
∂ŝ

dŝ
dσ

+ ∂B(ŝ)
∂σ

)
[
γe + γe + αe

µz
µ

]2 .

Lemma 4 gives us

lim
σ→0+

d
(
AS

σv

)
dσ

= lim
σ→0+

2φ(ŝ)

2− 2Φ(ŝ) + µz
µ

. (1.58)

On the other hand, from equation (1.40), we have

AS

σv
= 2B(ŝ)− 1.

Taking derivative with respect to σ, we get

d
(
AS

σv

)
dσ

= 2B(ŝ) [1−B(ŝ)]

(
2σ

dŝ

dσ
+ 2ŝ

)
.

Using Lemma 4 and lim
σ→0+

ŝ(σ)σ = 0, we obtain

lim
σ→0+

d
(
AS

σv

)
dσ

= lim
σ→0+

(
σ
dŝ

dσ
+ ŝ

)
. (1.59)
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Combing equations (1.59) and (1.58), we have that

lim
σ→0+

(
σ
dŝ

dσ
+ ŝ

)
= lim

σ→0+

2φ(ŝ)

2− 2Φ(ŝ) + µz
µ

.

Suppose that lim
σ→0+

ŝ = +∞, then we have, as we do in the proof of Lemma 4, lim
σ→0+

σ dŝ
dσ

+

ŝ > 0, which contradicts with lim
σ→0+

2φ(ŝ)
2−2Φ(ŝ)+µz

µ
= 0.

Then we have to show that the limit can not be zero. Because the limit can not be

infinity, we have lim
σ→0+

σs′(σ) = 0 from Lemma 4. Let f(s) = 2φ(s)
2−2Φ(s)+µz

µ
− s. We can check

that there is a unique s∗ ∈ (0,+∞) such that f(s∗) = 0. Therefore,

lim
σ→0+

ŝ = s∗ ∈ (0,+∞).

We then proceed to prove the propositions.

Case I: Without a dark pool

By Lemma 4 and Lemma 5, AS

σv
, α̂e, γe

S, γe
S are differentiable functions of σ, and

lim
σ→0+

d
(
AS

σv

)
dσ

= s∗ ∈ (0,+∞).

Also, taking derivative of B(ŝ) with respect to σ, we get

dB(ŝ)

dσ
=
∂B(ŝ)

∂ŝ

dŝ

dσ
+
∂B(ŝ)

∂σ
= B(ŝ) (1−B(ŝ))

(
2σ

dŝ

dσ
+ 2ŝ

)
. (1.60)

and the derivative of α̂e is

dα̂e
dσ

= −G′(2B(ŝ)− 1)B(ŝ) (1−B(ŝ))

(
2σ

dŝ

dσ
+ 2ŝ

)
.

When σ is sufficiently small, we get

lim
σ→0+

dα̂e
dσ

= −G
′(0)s∗

2
∈ (−∞, 0).

Similarly, we take derivative of γe
S − γeS with respect to σ and get

d
(
γe
S − γeS

)
dσ

= [φ(ŝ + σ)− φ(ŝ− σ)]
dŝ

dσ
+ [φ(ŝ + σ) + φ(ŝ− σ)] ,
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and leting σ → 0+, we have

lim
σ→0+

d
(
γe
S − γeS

)
dσ

= 2φ(ŝ) ∈ (0,+∞).

Note that σ = σv
σe

, we conclude the following:

Given σ sufficiently small, as σv increases (or σe decreases),

(i) AS

σv
strictly increases.

(ii) γe
S − γeS strictly increases, and αSe strictly decreases.

Case II, With a dark pool

Note that when σ = 0, we have γe = γe and γd = γd. Therefore A
σv

= 0 and R̄ = R.

Equations (1.42) and (1.43) show that B(s0) = 1
2

and B(s1) = 1
2
. If 0 < σ < +∞, we have,

by Theorem 2, that 0 < s0 < s1 <∞. Therefore, we have γe > γe, γd > γd,
A
σv
> 0, R̄ > R,

and 1
2
< B(s0) < B(s1) < 1. Then we are ready to conclude the following:

Given σ sufficiently small, as σv increases (or as σe decreases),

(i) A
σv

increases, and R̄−R increases.

(ii) γe − γe, γd − γd increases, αe decreases, and αd increases.

Let (s0, s1) be any equilibrium. Since G(·), and Φ(·) are twice differentiable, by the

implicit function theorem, there exist continuously differentiable functions s0(σ), s1(σ)

defined on (0,+∞).

When σ ∈ (0,+∞). By equation (1.42), we have B(s0) = R̄
R+R̄

∈ (0, 1). Thus rewrite it

as
R̄

R
=

1
1

B(s0
)− 1

,
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and the derivative can be found as following:

d
(
R̄
R

)
dσ

=
1

R2

[
dR̄

dσ
R− dR

dσ
R̄

]
=

1

[1−B(s0)]2

(
∂B(s0)

∂s0

ds0
dσ

+
∂B(s0)

∂σ

)
=

B(s0)

1−B(s0)

(
2σ

ds0
dσ

+ 2s0

)
.

Also, we know lim
σ→0+

B(s0) = 1
2

and lim
σ→0+

R̄ = lim
σ→0+

R = 1, thus

lim
σn→0+

dR̄

dσ
− lim

σn→0+

dR

dσ
= lim

σn→0+

(
2σ

ds0
dσ

+ 2s0

)
.

Equation (1.43) shows that

2B(s1)− 1−
[
B(s1)R− (1−B(s1))R̄

]
=
A

σv
.

Taking derivative on both sides, we get

d
(
A
σv

)
dσ

= (2−R− R̄)B(s0) [1−B(s0)]

(
σ
ds1
dσ

+ s1

)
+ [1−B(s0)]

dR̄

dσ
−B(s0)

dR

dσ
,

and because A
σv

= Φ(s1+σ)−Φ(s1−σ)
2−Φ(s1+σ)−Φ(s1−σ)+(1−G(2B(s1)−1))µz

µ
, we have

d
(
A
σv

)
dσ

=
(φ(s1 + σ)− φ(s1 − σ)) ds1

dσ
+ (φ(s1 + σ) + φ(s1 − σ))

γe + γe + αe
µz
µ

+
[Φ(s1 + σ)− Φ(s1 − σ)]

[
(φ(s1 + σ) + φ(s1 − σ)) ds1

dσ
+ (φ(s1 + σ)− φ(s1 − σ))

][
γe + γe + αe

µz
µ

]2

+
2G′(2B(s1)− 1)µz

µ
[Φ(s1 + σ)− Φ(s1 − σ)]

(
∂B(s1)
∂s1

ds1
dσ

+ ∂B(s1)
∂σ

)
[
γe + γe + αe

µz
µ

]2 .

Similarly to what we shown in the proof of Lemma 5, we obtain

lim
σ→0+

d
(
A
σv

)
dσ

=
1

2

(
lim

σ→0+

dR̄

dσ
− lim

σ→0+

dR

dσ

)
= lim

σn→0+

(
σ
ds0
dσ

+ s0

)
, (1.61)
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and

lim
σ→0+

d
(
A
σv

)
dσ

= lim
σ→0+

2φ(s1)

2− 2Φ(s1) + µz
µ

. (1.62)

Combing equations (1.61) and (1.62) gives us

lim
σ→0+

(
σ
ds0
dσ

+ s0

)
= lim

σ→0+

2φ(s1)

2− 2Φ(s1) + µz
µ

Suppose lim
σ→0+

s0 = +∞. Using the similar argument as in the proof of Lemma 5, we obtain

lim
σ→0+

(
σ ds0
dσ

+ s0
)
> 0. However, as s0 → +∞, we have s1 → +∞ and 2φ(s1)

2−2Φ(s1)+µz
µ
→ 0. This

is a contradiction. Therefore, it must be that lim
σ→0+

s0 < +∞.

By Lemma 4, lim
σ→0+

σ ds0
dσ

= 0. So we have

lim
σ→0+

s0 = lim
σ→0+

2φ(s1)

2− 2Φ(s1) + µz
µ

.

Define lim
σ→0+

s0
4
= s0(0+), lim

σ→0+
s1
4
= s1(0+), and we have

lim
σ→0+

d
(
A
σv

)
dσ

= lim
σ→0+

s0 = s0(0+) ≥ 0,

lim
σ→0+

d
(
γe − γe

)
dσ

= 2φ(s1(0+)) ≥ 0,

lim
σ→0+

dαe
dσ

= −G
′(0)s1(0+)

2
≤ 0,

lim
σ→0+

dαd
dσ

=
G′(0)(s1(0+)− s0(0+))

2
≥ 0,

lim
σ→0+

d (αe + αd)

dσ
= −G

′(0)s0(0+)

2
≤ 0,

which conclude the proof.

1.8.6 Proof of Proposition 3

To prove Proposition 3, we need the following lemmas.

Lemma 6. For any given σ ∈ (0,+∞), ŝ(σ) < s1(σ).
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Proof. Substitute the expressions of A
σv

into equation (1.40) and (1.43), then ŝ, s1 are

respectively determined by the following two equations

Φ(ŝ + σ)− Φ(ŝ− σ)

2− Φ(ŝ + σ)− Φ(ŝ− σ) + (1−G(2B(ŝ)− 1))µz
µ

= 2B(ŝ)− 1,

Φ(s1 + σ)− Φ(s1 − σ)

2− Φ(s1 + σ)− Φ(s1 − σ) + (1−G(2B(s1)− 1))µz
µ

= 2B(s1)− 1

−
[
B(s1)R− (1−B(s1))R̄

]
.

Let f(s) = Φ(s+σ)−Φ(s−σ)
2−Φ(s+σ)−Φ(s−σ)+(1−G(2B(s)−1))µz

µ
, and its derivative is

f ′(s) =
D1(s) +D2(s)[

2− Φ(s+ σ)− Φ(s− σ) + (1−G(2B(s)− 1))µz
µ

]2 ,

where

D1(s) = (φ(s+ σ)− φ(s− σ))

(
2− Φ(s+ σ)− Φ(s− σ) + (1−G(2B(s)− 1))

µz
µ

)
< 0,

D2(s) = − (Φ(s+ σ)− Φ(s− σ))

(
−φ(s+ σ)− φ(s− σ)− 2G′(2B(s)− 1)B′(s)

µz
µ

)
> 0.

Since G′(s) + sG′′(s) ≥ 0, one can represent f(s) as the blue curve in Figure 1.16.

Let ĥ(s) = 2B(s)−1 and h(s) = 2B(s)−1−
[
B(s)R− (1−B(s))R̄

]
. By equation (1.42),

for any s > s0, we have B(s) > B(s0) = R̄
R+R̄

. That is,
[
B(s)R− (1−B(s))R̄

]
> 0.

Therefore ĥ(s) > h(s). In Figure 1.16, ĥ(s) is represented by the red curve, while h(s) is

represented by the green curve which is below ĥ(s). Obviously, the intersection point s1 is

larger than ŝ. The Lemma is proved.

Lemma 7. If σ → +∞, there exists a unique k̂ ∈ (1
2
, 1) such that lim

σ→+∞
γe
S = 1, lim

σ→+∞
γe
S =

0, lim
σ→+∞

αSe = 1−G(k̂), and lim
σ→+∞

AS

σv
= k̂, where k̂ is determined by

k̂ =
1

1 +
[
1−G(k̂)

]
µz
µ

. (1.63)

In addition, such k̂ is smaller if µz
µ

is larger.
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Figure 1.16: h(s) and ĥ(s)

Proof. Suppose lim
σ→+∞

ŝσ = +∞. Then, when σ → +∞, we have 2B(ŝ) − 1 → 1. Thus

equation (1.40) gives us that AS

σv
= 1. However α̂e = 1 − G(1) > 0, which implies AS

σv
< 1.

Therefore, we have

lim
σ→+∞

ŝσ < +∞.

Let lim
σ→+∞

ŝσ = Ĉ ∈ [0,+∞), where Ĉ will be determined later. Then we have lim
σ→+∞

ŝ =

0, thus lim
σ→+∞

(ŝ−σ) = −∞. Therefore, lim
σ→+∞

γe
S = 1, lim

σ→+∞
γe
S = 0. Let k̂ = lim

σ→+∞
2B(ŝ)−

1 = 1−e−2Ĉ

1+e−2Ĉ
, and we have lim

σ→+∞
αSe = 1 − G(k̂) and lim

σ→+∞
AS

σv
= 1

1+[1−G(k̂)]µzµ
. However, k̂ has

to satisfy equation (1.63) such that equation (1.40) is satisfied.

Let f(k) = k − 1
1+[1−G(k)]µz

µ
, and we can easily verify that f(0) < 0, and f(1) > 0.

Therefore, there exists a k̂ ∈ (0, 1) such that f(k̂) = 0, and Ĉ = 1
2

ln 1+k̂

1−k̂
.

Lemma 8. Let R = E
[
min

{
1, Z

+

Z−

}]
. Consider any equilibrium s0(σ), s1(σ) for σ → +∞.

We have lim
σ→+∞

s0σ < +∞. In addition, the limits of variables can be determined in the

following two statements.

(i) If lim
σ→+∞

s1σ < +∞, we have lim
σ→+∞

γe = 1, lim
σ→+∞

γe = 0, lim
σ→+∞

γd = 0, lim
σ→+∞

γd =

0, lim
σ→+∞

αe = 1 − G(k1), lim
σ→+∞

αd = G(k1), lim
σ→+∞

A
σv

= 1
1+[1−G(k1)]µz

µ
, lim

σ→+∞
R̄ = R, and
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lim
σ→+∞

R = R, where k1 ∈ (1
2
, 1) is determined by

(1−R)k1 =
1

1 + [1−G(k1)] µz
µ

. (1.64)

(ii) If lim
σ→+∞

s0σ = +∞, we have lim
σ→+∞

γe = 1− k3, lim
σ→+∞

γe = 0, lim
σ→+∞

γd = k3, lim
σ→+∞

γd = 0,

lim
σ→+∞

αe = 1 − G(1), lim
σ→+∞

αd = G(1) − G(2k2 − 1), lim
σ→+∞

A
σv

= 1−k3

1−k3+[1−G(1)]µz
µ

, lim
σ→+∞

R̄ =

k2

1−k2

[1−G(1)]µz
µ

1−k3+[1−G(1)]µz
µ

, and lim
σ→+∞

R =
[1−G(1)]µz

µ

1−k3+[1−G(1)]µz
µ

, where k2 ∈ [1
2
, 1) and k3 ∈ [0, 1) are

determined by

[1−G(1)] µz
µ

1− k3 + [1−G(1)] µz
µ

= E

[
min

{
1,

Z−

k3

G(1)−G(2k2−1)
+ Z+

}]
, (1.65)

k2 =

E
[
min

{
1,

k3
G(1)−G(2k2−1)

+Z+

Z−

}]
E
[
min

{
1,

k3
G(1)−G(2k2−1)

+Z+

Z−

}]
+ E

[
min

{
1, Z−

k3
G(1)−G(2k2−1)

+Z+

}] . (1.66)

Proof. Consider any continuously differentiable functions s0(σ), s1(σ).

First we show lim
σ→+∞

s0σ < +∞ by contradiction. Suppose that lim
σ→+∞

s0σ = +∞, we

have B(s0) = 1
1+e−2s0σ → 1. Since s1 > s0, we have lim

σ→+∞
s1σ = +∞, B(s1) = 1

1+e−2s1σ → 1.

In addition, Equation (1.42) gives us that R̄
R

= 1, i.e., R̄ = R.

If lim
σ→+∞

(s0 − σ) < +∞, then γd > 0 = γd, which is a contradiction to R̄ = R. If

lim
σ→+∞

(s0 − σ) = +∞, then lim
σ→+∞

s1−σ = +∞. Therefore we have lim
σ→+∞

γe = lim
σ→+∞

γe = 0,

lim
σ→+∞

A
σv

= 0, and by equation (1.43), we have lim
σ→+∞

B(s1) = lim
σ→+∞

1−R̄
1−R̄+1−R = 1

2
, whche is a

contradiction to lim
σ→+∞

B(s1) = 1. Therefore, we have

lim
σ→+∞

s0σ = C ∈ [0,+∞).

Then we show the two statements.

(i) Suppose that lim
σ→+∞

s0σ = C0 ∈ [0,+∞) and lim
σ→+∞

s1σ = C1 ∈ [0,+∞), then we have

lim
σ→+∞

(s0 − σ) → −∞ and lim
σ→+∞

(s1 − σ) → −∞. Therefore, lim
σ→+∞

γe = 1, lim
σ→+∞

γe =

lim
σ→+∞

γd = lim
σ→+∞

γd = 0.
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We show that lim
σ→+∞

R̄ = lim
σ→+∞

R = R. If C0 = C1, Lemma 3 and lim
σ→+∞

φ(s0−σ)
B′(s0)

=

lim
σ→+∞

φ(s0+σ)
B′(s0)

= 0 give us that lim
σ→+∞

R̄ = lim
σ→+∞

R = E
[
min

{
1, Z

+

Z−

}]
= R. If C0 <

C1, because lim
σ→+∞

γd = lim
σ→+∞

γd = 0 and lim
σ→+∞

αd > 0, we have lim
σ→+∞

R̄ = lim
σ→+∞

R =

E
[
min

{
1, Z

+

Z−

}]
= R.

Then equation (1.42) gives us that lim
σ→+∞

B(s0) = 1/2 and lim
σ→+∞

s0σ = 0. Let k1 =

lim
σ→+∞

2B(s1) − 1, and we have lim
σ→+∞

αe = 1 − G(k1), lim
σ→+∞

αd = G(k1) and lim
σ→+∞

A
σv

=

1
1+[1−G(k1)]µz

µ
. Rewrite equation (1.43) in the following form

(2B(s1)− 1) (1−R) =
1

1 + [1−G(2B(s1)− 1)] µz
µ

,

and k1 has to satisfy equation (1.64).

Let f(k) = (1 − R)k − 1
1+[1−G(k)]µz

µ
. We can verify that f(0) < 0 and f(1) > 0 if

1 + [1−G(1)] µz
µ
> 1

1−R . There is a k1 ∈ (0, 1) such that f(k1) = 0, and C1 = 1
2

ln 1+k1

1−k1
.

(ii) Suppose that lim
σ→+∞

s0σ = C2 ∈ [0,+∞) and lim
σ→+∞

s1σ = +∞. We have lim
σ→+∞

γe = 0,

lim
σ→+∞

γd = 0, and lim
σ→+∞

αe = 1−G(1).

Suppose taht lim
σ→+∞

(s1 − σ) = C3 ∈ [−∞,+∞]. Let k2 = lim
σ→+∞

B(s0) = 1
1+e−2C2

∈

[1
2
, 1) and k3 = lim

σ→+∞
γd = Φ(C3) ∈ [0, 1]. Then we have lim

σ→+∞
γe = 1 − k3, lim

σ→+∞
γd = k3,

lim
σ→+∞

αd = G(1) − G(2k2 − 1), lim
σ→+∞

A
σv

= 1−k3

1−k3+[1−G(1)]µz
µ

. Combining equations (1.42)

and (1.43), we have lim
σ→+∞

R̄ = k2

1−k2

[1−G(1)]µz
µ

1−k3+[1−G(1)]µz
µ

, lim
σ→+∞

R =
[1−G(1)]µz

µ

1−k3+[1−G(1)]µz
µ

. In addition, by

equations (1.44) and (1.45), k2 and k3 have to satisfy equations (1.65) and (1.66).

Suppose that 1+[1−G(1)] µz
µ
≤ 1

1−R . For equation (1.65), the left hand side is increasing

with respect to k3, while the right hand side is decreasing with respect to k3. In addition,

when k3 = 0, LHS − RHS =
[1−G(1)]µz

µ

1+[1−G(1)]µz
µ
− E

[
min

{
1, Z

−

Z+

}]
= 1 − R − 1

1+[1−G(1)]µz
µ
≤ 0,

and when k3 = 1, LHS − RHS = 1 − E
[
min

{
1, Z−

1
G(1)−G(2k2−1)

+Z+

}]
> 0. Thus, given any

k2 ∈ [1
2
, 1), there exists a unique k3(k2) ∈ (0, 1) that solves equation (1.65). Furthermore, as

k2 increases, the right hand side of equation (1.65) decreases, thus k3(k2) is decreasing with

respect to k2. When k2 → 1, we have k3(k2)→ 0. Thus R→ [1−G(1)]µz
µ

1+[1−G(1)]µz
µ
≥ 0.
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For equation (1.66), we substitute k3 with the expression solved from (1.65), and it

becomes a function of k2 only. When k2 = 1/2, we have k3 ∈ [0, 1). Then LHS −RHS ≤ 0.

While when k2 → 1, we have LHS − RHS ≥ 0. Therefore, there exist k2 ∈ [1/2, 1)

and k3 ∈ [0, 1) such that equations (1.65) and (1.66) are satisfied. Additionally, we have

C2 = 1
2

ln k2

1−k2
, C3 = Φ−1(k3).

We now proceed to prove the proposition. From Lemma 6, we have ŝ < s1 for all

σ ∈ (0,+∞). Thus, γe
S − γeS = Φ(ŝ + σ)−Φ(ŝ− σ) > Φ(s1 + σ)−Φ(s1 − σ) = γe − γe and

αSe = 1−G(2B(ŝ)− 1) > 1−G(2B(s1)− 1) = αe.

Let k̂, k1, k2, k3 as in (1.63), (1.64), (1.65), (1.66). Suppose 1− R > 1

1+[1−G(k̂)]µz
µ

, then

as σ → +∞, by Lemma 7, we have

lim
σ→+∞

AS

σv
=

1

1 +
[
1−G(k̂)

]
µz
µ

,

lim
σ→+∞

αSe = 1−G(k̂).

By Lemma 8(i), lim
σ→+∞

A
σv

= 1
1+[1−G(k1)]µz

µ
and lim

σ→+∞
αe = 1 − G(k1). We can verify

that k̂ < k1 from equations (1.63) and (1.64). Therefore 1

1+[1−G(k̂)]µzµ
< 1

1+[1−G(k1)]µz
µ

and

1 − G(k̂) > 1 − G(k1). That is, lim
σ→+∞

AS

σv
< lim

σ→+∞
A
σv

. We can easily verify that lim
σ→+∞

αSe <

lim
σ→+∞

αe + αd.

By Lemma 8(ii), lim
σ→+∞

A
σv

= 1−k3

1−k3+[1−G(1)]µz
µ

and lim
σ→+∞

αe = 1 − G(1). Then by equa-

tion (1.65), 1−k3

1−k3+[1−G(1)]µz
µ

= 1 − E
[
min

{
1, Z−

k3
G(1)−G(2k2−1)

+Z+

}]
> 1 − E

[
min

{
1, Z

−

Z+

}]
=

1−R. Since we suppose that 1−R > 1

1+[1−G(k̂)]µz
µ

, we have that 1

1+[1−G(k̂)]µz
µ

< 1−k3

1−k3+[1−G(1)]µz
µ

,

that is, lim
σ→+∞

AS

σv
< lim

σ→+∞
A
σv

.

Since k̂ < 1, k3 > 0, we proved that lim
σ→+∞

γe
S − γeS ≤ lim

σ→+∞
γe − γe, lim

σ→+∞
αSe ≥ lim

σ→+∞
αe.

Next we consider the case when σ → 0+. Recall that when σ = 0, we have AS

σv
= A

σv
= 0.

So we have to compare their derivatives at 0. From the proof of Lemma 5, we have that

lim
σ→0+

ŝ = lim
σ→0+

2φ(ŝ)
2−2Φ(ŝ)+µz

µ
, and lim

σ→0+
s0 = lim

σ→0+

2φ(s1)
2−2Φ(s1)+µz

µ
. Since 2φ(s)

2−2Φ(s)+µz
µ

decreases in s, we
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show that either lim
σ→0+

s0 < lim
σ→0+

ŝ < lim
σ→0+

s1, or lim
σ→0+

s0 = lim
σ→0+

ŝ = lim
σ→0+

s1. Therefore we

have two cases to consider. (i) lim
σ→0+

s0 < lim
σ→0+

ŝ < lim
σ→0+

s1. Since
d A
σv

dσ
increases in s when

σ → 0+, we have that AS

σv
< A

σv
, as σ → 0+. (ii) lim

σ→0+
s0 = lim

σ→0+
ŝ = lim

σ→0+
s1. In this case

dA
S

σv

dσ
=

d A
σv

dσ
, it is undetermined whether AS

σv
< A

σv
or AS

σv
> A

σv
, as σ → 0+. However, we cannot

distinguish between case (i) and case (ii).

1.8.7 Proof of Proposition 4

As σ → +∞, we have lim
σ→+∞

γe
S−γeS = 1, and lim

σ→+∞
αSe = 1−G(k̂). We consider the two case

in Lemma 8: (i) We have lim
σ→+∞

γe − γe = 1 and lim
σ→+∞

αe = 1−G(k1). Thus lim
σ→+∞

γeS−γeS

αS
e
≤

lim
σ→+∞

γe−γe
αe

because k̂ < k1. (ii) We have lim
σ→+∞

γe−γe = 1−k3 and lim
σ→+∞

αe = 1−G(1). From

1

1+[1−G(k̂)]µz
µ

< 1−k3

1−k3+[1−G(1)]µz
µ

, we have 1

1−G(k̂)
< 1−k3

1−G(1)
, i.e., Thus lim

σ→+∞

γeS−γeS

αS
e
≤ lim

σ→+∞

γe−γe
αe

.

As σ → 0+, by Lemma 6, we have ŝ < s1, ∀σ > 0. Since
γeS−γeS

αS
e

= Φ(ŝ+σ)−Φ(ŝ−σ)
1−G(2B(ŝ)−1)

and

γe−γe
αe

= Φ(s1+σ)−Φ(s1−σ)
1−G(2B(s1)−1)

, to show that
γeS−γeS

αS
e

>
γe−γe
αe

for small σ, it is sufficient to show that

there exists σ̄ > 0, s.t. ∀σ ∈ (0, σ̄), Φ(s+σ)−Φ(s−σ)
1−G(2B(s)−1)

decreases in s. If µz
µ
< +∞, Lemma 5

gives us lim
σ→0+

s1 ≥ lim
σ→0+

ŝ > 0. Also, recall that lim
σ→0+

s1σ = lim
σ→0+

ŝσ = 0.

We now consider the derivative of Φ(s+σ)−Φ(s−σ)
1−G(2B(s)−1)

with respect to s.

d
(

Φ(s+σ)−Φ(s−σ)
1−G(2B(s)−1)

)
ds

=
(Φ(s+ σ)− Φ(s− σ))G′(2B(s)− 1) e−2sσ

(1+e−2sσ)2 4σ

(1−G(2B(s)− 1))2

+
(φ(s+ σ)− φ(s− σ)) (1−G(2B(s)− 1))

(1−G(2B(s)− 1))2 . (1.67)

Let M = max
s∈[0,+∞]

[
4G′(2B(s)−1)
1−G(2B(s)−1)

+ 1
]
< +∞. If lim

σ→0+
s > 0 and lim

σ→0+
sσ = 0, there exists
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σ̄ > 0, such that ∀σ ∈ (0, σ̄), s > Me2σ and sσ < 1. Therefore by the mean value theorem,

d
(

Φ(s+σ)−Φ(s−σ)
1−G(2B(s)−1)

)
ds

<
2σ [φ(s− σ)4G′(2B(s)− 1)σ + φ(s+ σ) (1−G(2B(s)− 1)) (−(s− σ))]

(1−G(2B(s)− 1))2

<
2σ
{
φ(s− σ)

[
4G′(2B(s)−1)
1−G(2B(s)−1)

+ 1
]
σ + φ(s+ σ)(−s)

}
1−G(2B(s)− 1)

=
2σ {φ(s+ σ)Me2sσσ − φ(s+ σ)s}

1−G(2B(s)− 1)

<0.

Thus ∃σ̄ > 0, such that ∀σ ∈ (0, σ̄), s ∈ [̂s, s1], we have
d(Φ(s+σ)−Φ(s−σ)

1−G(2B(s)−1) )
ds

< 0. Since ŝ < s1,

we have Φ(ŝ+σ)−Φ(ŝ−σ)
1−G(2B(ŝ)−1)

> Φ(s1+σ)−Φ(s1−σ)
1−G(2B(s1)−1)

. We proved the proposition.

1.8.8 Proof of Proposition 5

We need the follow Lemma to proceed the proof.

Lemma 9. ∀σ > 0, ∃C(σ) > 0, such that ∀0 ≤ s ≤ C(σ),
d(Φ(s+σ)−Φ(s−σ)

1−G(2B(s)−1) )
ds

> 0.

Proof. Consider (1.67), ∀σ > 0,
d(Φ(s+σ)−Φ(s−σ)

1−G(2B(s)−1) )
ds

∣∣∣∣
s=0

> 0. Therefore, ∃C(σ) > 0 such that

∀0 ≤ s ≤ C(σ), we have

d
(

Φ(s+σ)−Φ(s−σ)
1−G(2B(s)−1)

)
ds

> 0.

First we show that σ̄v = sup
x>0

{
x|∀σv ∈ (0, x),

γeS−γeS

αS
e

>
γe−γe
αe

}
is increasing in σe. Because

µz
µ
< +∞ and µz

µ
sufficiently large, according to Proposition 4, there must exist a σ̂ such

that σ̄ = sup
x>0

{
x|∀σ ∈ (0, x),

γeS−γeS

αS
e

>
γe−γe
αe

}
. By definition σ̄ = σ̄v

σe
, i.e., σ̄v = σ̄σe, where

σ̄ is a constant. σ̄v is increasing in σe. As σe → 0+, σ̄v → 0 and as σe → +∞, σ̄v → +∞.

Next we prove that if µz
µ

is large enough, there exists a subsequence {(µz
µ

)i} such that σ̄v

decreases as (µz
µ

)i increases.

Let C(σ) defined as sup
x

{
x
∣∣∀s ∈ (0, x),

d(Φ(s+σ)−Φ(s−σ)
1−G(2B(s)−1) )

ds
> 0

}
. By Lemma 9, such C(σ)

exists for all σ > 0. Note that if µz
µ
→ +∞, we have ŝ, s1 → 0. Therefore, as µz

µ
becomes
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sufficiently large, there exists σ(µz
µ

), such that

ŝ, s1 < C(σ(
µz
µ

)).

Thus,
d(Φ(s+σ)−Φ(s−σ)

1−G(2B(s)−1) )
ds

∣∣∣∣
s=ŝ

> 0,
d(Φ(s+σ)−Φ(s−σ)

1−G(2B(s)−1) )
ds

∣∣∣∣
s=s1

> 0. And since ŝ < s1,
γeS−γeS

αS
e

<
γe−γe
αe

This is to say, when µz
µ

is sufficiently large, we find a upper bound of σ̄, i.e., σ̄ < σ(µz
µ

).

Therefore, there exists a subsequence {(µz
µ

)i} such that, as (µz
µ

)i increases, σ(µz
µ

) decreas-

es, and σ̄ decreases, and as (µz
µ

)i → +∞, σ(µz
µ

)→ 0, σ̄ → 0.
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CHAPTER 2

Information Diffusion With Centralized and Bilateral

Trading

2.1 Introduction

In recent years, there has been an ongoing shift in focus from public firms to private firms.

More and more investors are seeking to invest in the pre-IPO market, a secondary market

where buyers and sellers privately negotiate transactions of private stocks, pursuant to certain

guidelines and conditions of the Securities Act of 1933. For some firms such as Facebook,

Twitter, Uber, Snapchat, and Airbnb, the pre-IPO trading volume surges prior to the IPO

offering.1 In the meantime, online platforms, brokerage firms and derivatives has sprung up

to facilitate the pre-IPO transactions.2 For example, in the US, robust pre-IPO markets

have been created such as SecondMarket, founded in 2004, and Nasdaq Private Market, a

joint venture formed in 2013 by Nasdaq OMX and SharesPost. In Germany, broker-dealers

offer OTC trading for investors who want to buy or sell IPO shares during the offer process.

Similarly, in emerging markets such as Mainland China and Taiwan, significant transaction

volume and attention have been observed in their pre-IPO markets in recent years.3

1“Tech Workers Cash In Early”, by Susan Pulliam and Telis Demos, The Wall Street Journal, Mar 28,
2015.

2“How Wall Street Middlemen Help Silicon Valley Employees Cash In Early”, Susan Pulliam and Telis
Demos, The Wall Street Journal, Mar 27, 2015.

3In Mainland China, the pre-IPO market for private companies is the New Over the Counter Market,
launched in SZSE. In Taiwan, pre-IPO transaction is mandatory since 2005, which is conducted in its
Emerging Stock Market (ESM).
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Information asymmetry and information diffusion is a substantial concern of pre-IPO

markets. Investors who trade in pre-IPO markets are heterogeneous in the information held,

and some have superior information than others. Pre-IPO markets can serve as a channel

to disperse such information and facilitate price discovery. For example, Chang et al. (2016)

study Taiwans pre-IPO market (ESM) and find that pre-market prices are very informative

about post-market prices. Lffler et al. (2005) who also study the German pre-IPO markets

find a similar conclusion.

The current studies about pre-IPO markets, however, do not reveal the mechanism be-

tween the pre-IPO markets and IPO markets and the mechanism of information diffusion

in a pre-IPO market. This paper attempts to answer these questions. Specifically, we ex-

amine 1)How information diffuse in pre-IPO markets, and 2) how pre-IPO markets interact

with the IPO offering. In this paper, the pre-IPO is regarded as a bilateral market where

traders meet and trade bilaterally, keeping private their transaction prices. The IPO market

is modeled as a centralized market where traders trade with a monopolistic market mak-

er using a publically observable price. There are both informed and uninformed traders.

The bilateral trading is conducted before the centralized trading. Under functional bilateral

trading, traders can infer the private information held by their trading partners and, thus,

information diffuses.

There are three major testable implications of the results. First, bilateral trading does not

always function as a channel for information diffusion. There is an interdependence between

information diffusion, bilateral trading, and centralized trading. That is, if the liquidity in

the centralized market is overly restrictive or overly non-restrictive, bilateral trading is not

active and hence there is no corresponding information diffusion. Only if the centralized

liquidity level is restricted within a certain range, there exists an active bilateral market and

hence information diffuses. Second, information diffuses in a “biased” way. Traders design

their bilateral contract to infer a certain type of information (good or bad, for example)

and quickly learn if their conjecture is true. However, if the actual information is against

their conjecture, they only learn the information partially. Third, if the centralized prices
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are informative enough, they squeeze out information diffusion in the bilateral market.

The results of the model shed light on the information content and interaction between

the pre-IPO and IPO market. It also explains some phenomena in other similar markets

or trading procedures that involve both bilateral and centralized meetings and information

asymmetry. Examples include procedures for the promotion of agricultural innovation and

market dynamics for interbank foreign exchange transactions. Empirical studies can also be

launched in these areas.

This paper contributes to the theoretical market microstructure literature that studies

information diffusion and information asymmetry. The paper analyzes these issues in the

particular framework of interaction between the centralized market and the decentralized

market. A significant amount of prior studies have focused on either centralized markets (for

example, stock exchanges) or decentralized markets (for example, bilateral OTC markets).

In regards to the centralized market analysis, Kyle (1985) considers the strategy of informed

traders. Glosten and Milgrom (1985) consider the behavior of competitive risk neutral

market makers. Other papers include Manela (2014), Duffie and Manso (2007), Admati and

Pfleiderer (1988), and Colla and Mele (2010). In regards to the decentralized market analysis,

Golosov et al. (2014) and Wolinsky (1990) consider the learning and information revelation

process in a decentralized bilateral market. Other papers include Babus and Kondor (2013),

Duffie et al. (2009), and Ozsoylev et al. (2014). There is little literature, however, analyzing

information diffusion in the framework of both centralized and decentralized markets. Some

studies focus on the trade-off between the two markets. For example, Miao (2006) to explains

the coexistence of both types of markets as a trade-off of searching costs (in decentralized

markets) and transaction costs (in centralized markets). In addition, Rust and Hall (2002)

explains traders’ entering decisions by heterogeneity of transaction cost. This paper differs

with the previous literature by considering the dynamics of information diffusion among the

two trading systems.

This paper also speaks to important empirical issues that involve information and pricing

in both bilateral and centralized markets, for example, the pre-IPO and IPO trading markets.
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Our paper is related with Cornelli et al. (2006) who document European pre-IPO market (the

grey market) and find a close relationship between information and the underwriter’s pricing

decisions. The thesis of this paper is also closed related with that of Chen and Zhang (2016)

who conclude that a more functional pre-IPO market helps increase the pricing efficiency in

the IPO market. There are also other papers that study investors’ behavior before and after

IPO. For example, Kang et al. (2015) analyze Korean markets and prove that insiders use pre-

IPO markets to take advantage of their superior information. Chang et al. (2016) document

the Taiwan Emerging Stock Market (ESM, Taiwan’s pre-IPO market) and find a positive

correlation between the informativeness of pre-market prices and the pricing efficiency in the

IPO market. Similarly, Lffler et al. (2005) use German pre-market data and finds similar

results. Other papers with similar arguments include Dambra et al. (2015) and Chua (2015).

The paper is conducted in 5 sections. Section 2.2 analyzes a benchmark model where

agents choose to participate in both a bilateral and a centralized market. In the benchmark

model, the centralized market is absolutely liquid and the market maker has no superior

information. Section 2.3 considers an illiquid centralized market in which the market maker

has no superior information. It reveals the relationship between information diffusion, bilat-

eral trading, and liquidity level in the centralized market. Section 2.4 considers the model in

which the centralized market is illiquid and the market maker has some superior information

that the uninformed traders do not have. We show that public information can squeeze out

trade in the bilateral market. Section 2.5 concludes the paper.

2.2 Benchmark: A Liquid Centralized Market with An Unin-

formed Market Maker

2.2.1 Setup

Assets. Suppose there are two states in the world, S ∈ {H,L} and two assets j ∈ {1, 2}.

Asset 1 is a risky asset whose payoff is dependent on the state of the world. It pays 2 units
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of consumption if H is realized and 0 units if L is realized. Asset 2 is a risk-free asset that

pays 1 unit of consumption in either state.

Market Participants. There is a measure 1 of agents with von Neumann-Morgenstern

expected utility E[u(c)], where E is the expectation operator and u(c) is a CRRA utility

function, u(c) = c1−γ−1
1−γ , 0 < γ ≤ 1. The agents may trade to hedge and maximize their

utility. There are two types of agents: the informed agents and the uninformed agents.

The informed types observe a private noisy signal about the state of the world while the

uninformed types have no such information. There is a monopolistic market maker (MM)

who operates the centralized market. The market maker is risk-neutral and sets prices to

maximize her profit.

Trading Timeline. There are 4 periods in the model: morning, noon, afternoon, and

evening. In the morning, Nature draws a realization on the state of the world, S ∈ {H,L},

which is unknown to everybody. Then Nature draws a binary signal SI ∈ {H,L}. We define

the accuracy of the signal δI as the conditional probability δI = Pr(S = s|SI = s), s ∈

{H,L}. We assume that 1/2 ≤ δI ≤ 1. The signal is private: only a fraction α ∈ (0, 1) of

agents observe SI . The agents who observe SI are the informed agents. Those who do not

observe the signal are the uninformed agents. Each agent is assigned the same endowment

with equal amounts of the two assets, denoted as e = (1, 1). Since the measure of these

agents is 1, the aggregate endowment of both assets is 1. After the realization of the signal

SI , but before noon, the market maker announces a price p to the public, indicating that

the market maker is willing and committed to trade 1 unit of the risky asset with p units of

the risk-free asset. We assume 0 < p < 2.4

At noon, the bilateral market is open to all agents, where agents are randomly matched

in pairs to negotiate a trade. The negotiation takes the following process. With probability

.5, one of the two agents is selected as the proposer. The proposer then proposes a menu of

offers to the other agent. A bilateral offer is composed of a quantity and a price and denoted

4If p > 2, agents would never trade with the market maker because the maximum consumption agents
can obtain from the risky asset is 2.
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as (z̄, q), with z̄ representing the quantity and q the price. For example, a trading option

(z̄, q) means that the proposer is willing to deliver z̄ of asset 1 in exchange for qz̄ of asset

2. We assume that the proposer can only offer to trade a maximum of z̄ units. However,

the proposer can make any number of bilateral offers. The other partner who receives those

offers is the responder. He can either accept one of the offers or reject all. If an offer (z̄, q)

is accepted, the proposer’s portfolio becomes (1 − z̄, 1 + qz̄), and the responder’s portfolio

becomes (1 + z̄, 1 − qz̄). If all the selections are rejected, both agents keep their portfolio

(1, 1) and move to the afternoon. An agent does not know whether his opponent is informed

or not. Moreover, the bilateral trading is conducted in a private manner: an agent only

observes the trading he is involved in but not the trading activities of other agents. After

this trading period, everyone moves to the afternoon.

In the afternoon, the centralized market is open to all agents to trade with the market

maker. In this period, an agent can offer to trade any amount y with the market maker

at her committed price p. For purpose of this research, we do not consider the case when

the market maker breaks her commitment. In our model, the proxy for the liquidity level

in the centralized market is the restrictions on the trading quantity y. That is, if there are

no restrictions on the trading quantity in the centralized market y, the market is completely

liquid, whereas if there is any restriction on y, the market is illiquid. The more restricted y

is, the more illiquid the centralized market is. Suppose an agent with portfolio (x1, x2) at

the beginning of this period decides to trade an amount y (note that y ≥ 0 represents selling

and y < 0 purchasing), then after this trade the agent’s portfolio becomes (x1 − y, x2 + py).

If the agent does not trade with the market maker, he has to keep the portfolio (x1, x2) and

move to the evening.

In the evening, the true state is revealed and everyone consumes according to the portfolio

held. Figure 2.1 describes the trading timeline of the model.
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Figure 2.1: Timeline (Benchmark Model)

Examples. There are some practical trading examples which have similar procedures

as our model. For example, modern technologies in biology and engineering have created

many innovations in traditional agricultural regions. From time to time farmers receive new

products which are alleged to contain certain technological advantages. The payoffs of using

the new products is uncertain. Sometimes the uncertainty comes from the reputation of the

company who made the products, and sometimes it comes from the cognitive barriers that

the technology has created. For instance, these barriers could prevent the general public

from identifying sources of information, from searching for useful information, and from

dealing with information overload. Nevertheless, some farmers may have better information

than others: they may have been trained as scientists, or simply have participated in earlier

experiments on the products. Furthermore, in order to make better decisions, farmers may

trade bilaterally with each other as a channel to access the insider opinions about the product

before trading with the distributor. The bilateral trade between the farmers can be regarded

as a process of information acquisition, and the distributor of the product can be viewed as

the market maker in the model.

The model can also be associated with the pre-IPO and IPO market, where the pre-

IPO market can be regarded as the bilateral searching market and the IPO market the

centralized trading market. The pre-IPO market is the secondary market for shares of private

companies held by employees and other investors. Recently, activities in the pre-IPO market

have been booming in the US because of the runaway popularity of up-and-comers such as

Uber Technologies, Snapchat Inc., Airbnb Inc. According to a Wall Street Journal Report,

participants in pre-IPO trading estimate that 10 billion to 30 billion in stock changed hands
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in 2014.5 Ad hoc marketplaces for trading pre-IPO were created to facilitate the search

for and transaction of pre-IPO stocks. For example, in the US, brokerage firms and funds

and online trading platforms such as SecondMarket and SharesPost, and even exchange-

sponsored pre-IPO markets such as Nasdaq Private Market, sprang up to help search for

pre-IPO trading. Pre-IPO markets also exist in other emerging markets such as in Mainland

China and Taiwan. In Mainland China, the National Equities Exchange and Quotations (or

New Over-The-Counter Market) in the Shenzhen Stock Exchange serves the role of a bilateral

trading system for pre-IPO transactions. In Taiwan, since 2005, private firms are required

to trade on Taiwans Emerging Stock Market (ESM) for at least six months before they

can apply for an IPO. Since there are both insiders and outsiders in the pre-IPO markets,

information diffusion and interaction between the pre-IPO market and the post-IPO market

is crucial.

Market Maker Information. In the benchmark model, the market maker receives no

signals about the state of the world. This can be related to some markets where there is a

strict control over the market maker’s information acquisition. For example, for the NYSE

Designated Market Maker, a significant amount of rules and principals have been set to pre-

vent the DMM from obtaining or using inside information. Therefore, they face some of the

same risks as other uninformed traders. Nevertheless, since acquiring information is costly,

so the market maker cannot access the same information without paying a corresponding

cost.

In Section 2.4, however, we consider the model where the market maker has certain

information about the asset value. The can be related to the markets where the market

maker, or product distributor, obtains private information because of their advantages in

resources, search skills, and processing technologies. For example, in the IPO case, the

underwriting firm certainly has better information than the general public. In this section,

therefore, we want to study whether or not such information held by the market maker would

5See http://blogs.wsj.com/briefly/2015/03/27/5-things-to-know-about-pre-ipo-stocks/.
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be sent out to the public when the market maker decides to announce his initial price. More

details are provided in Section 2.4.

2.2.2 Equilibrium Definition

We now define a perfect Bayesian equilibrium of the trading game. Let Θ = {H,L, U}

denote the type of agents, representing an agent receiving an H signal, an L signal, or no

signal respectively. Then we define an indicator variable ι ∈ {0, 1}, which is equal to 1 if the

agent is selected as a proposer and 0 otherwise. Let Q3 be the space of the private offers with

Q = (−2, 2) × {no proposal} representing the price space and 3 representing the number

of proposals. As there are at most 3 types, the number of proposals is at most 3. We can

then define an indicator variable ri ∈ {0, 1}, which equals to 1 if proposal i is accepted and

0 otherwise.

(i): Agents’ Actions

An agent’s action in the first bilateral trading round is given below:

If he is selected as a proposer, his action is given by the map:

q : Θ×R+ → Q3.

If he is selected as a responder, his action is given by the map:

r : Θ×R+ ×Q3 → {0, 1}N .

Let Ω = {0, 1} × Q3 × {0, 1}3 denote the bilateral trading history. For example, ω =

(0, (−1, 1.5), (0, 1)) represents that the agent is selected as a responder and observes two

proposals, with one proposal offering to buy z̄ units of the risky asset at price 1, and the

other offering to sell z̄ units of risky asset at price 1.5, and he chooses to reject the first offer

and accept the second one.

An agent’s action in the market maker trading round is given by:

y : Θ×R+ × Ω→ R.
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The Market Maker’s action is to choose price p ∈ R+.

(ii): Agents’ Beliefs

At the beginning of the bilateral trading round, agents’ beliefs post-receiving the private

signal H are given below:

If he is selected as a proposer, his belief is represented by:

bp : Θ×R+ → [0, 1].

If he is selected as a responder, by observing the offers (q1, ...qn), his belief becomes:

br : Θ×R+ ×Q3 → [0, 1].

After the bilateral trading round, agent beliefs are updated as:

ba : Θ×R+ × Ω→ [0, 1].

Note that in this game, the market maker’s belief is bMb = 1
2

before the centralized

trading round, and is updated to bMa : (0, 1) × Y → [0, 1] after observing agents’ trading

volumes. Informed agent beliefs do not change over time, that is: bp(H) = br(H) = ba(H),

bp(L) = br(L) = ba(L).

Definition 3. A Perfect Bayesian Equilibrium is given by a) agents’ strategy profiles σ =

{q, r, y}, and agents’ beliefs b = {bp, br, ba}, and b) market maker’s strategy p, beliefs bM =

{bMb , bMa } such that:

(i) σ is optimal for an individual agent given his belief b;

(ii) p is optimal for the market maker given his belief bM ;

(iii) beliefs are correct and consistent with Bayes Rule whenever possible.
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2.2.3 Equilibrium Characterization

The equilibrium can be derived via backward induction. First, we shall characterize traders’

strategies in the afternoon, the centralized trading round. Lemma 10 gives us the agent’s

optimal trading volume and the corresponding utility achieved.

Lemma 10. In the centralized trading round, the optimal trading volume for an agent with

portfolio (x1, x2) and δ = Pr(S = H|b) is given by:

y∗(p, x1, x2; δ) =
2x1 + x2(1− ϕ(δ, p))

ϕ(δ, p)p+ 2− p
.

and ex-post utility is given by:

u∗(p, x1, x2; δ) =
δx1−γ

H + (1− δ)x1−γ
L − 1

1− γ
,

where b is the belief of the agent and

ϕ(δ, p) =

(
1− δ
δ

p

2− p

)− 1
γ

,

xL =
2px1 + 2x2

ϕp+ 2− p
, xH =

2pϕx1 + 2ϕx2

ϕp+ 2− p
.

Proof. An agent with portfolio (x1, x2) and δ = Pr(S = H|b) solves the problem:

max
y
E[u(y)|b] =

δxH(y)1−γ + (1− δ)xL(y)1−γ − 1

1− γ
,

where

xH(y) = 2(x1 − y) + x2 + py, and xL(y) = x2 + py.

By the concavity of the objective function and the assumption that agents are allowed to

take short positions, the F.O.C of this problem obtains the result.
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One should note that if y∗ ≥ 0, then the agent’s best response is to sell the risky asset,

and if y∗ < 0, the agent’s best response is to buy.

Lemma 11 studies the properties of the traders’ optimal positions in the centralized

market, y(p, x1, x2; δ).

Lemma 11. y∗(p, x1, x2; δ) is a strictly increasing function of p and a strictly decreasing

function of δ. Thus we have yH < yM < yL, where

yH = y∗(p, x1, x2; δI),

yM = y∗(p, x1, x2; 0.5),

yL = y∗(p, x1, x2; 1− δI).

Proof.

∂y∗

∂p
=
−2∂ϕ

∂p
(1 + p) + (ϕ− 1)(ϕ− 3)

(ϕp+ 2− p)2

=
1

(ϕp+ 2− p)2

(
4(1 + p)ϕ

(2− p)pγ
+ (ϕ− 1)(ϕ− 3)

)
> 0.

The second equality is due to ∂ϕ
∂p

= − 2ϕ
γ(2−p)p , and the last inequality comes from the fact

that 0 < p < 2, 0 < γ ≤ 1.

Similarly, we can calculate that: ∂y∗

∂δ
= ∂y∗

∂ϕ
∂ϕ
∂δ
< 0.

Note that ∂y∗

∂ϕ
< 0, ∂ϕ

∂δ
> 0.

There are two implications of Lemma 11. First, agents’ optimal trading volumes largely

depend on the price in the centralized market. For example, if the optimal choice for an

agent is to sell the risky asset (y∗ ≥ 0) to the market maker, then the selling volume y∗

increases if the price p increases. In contrast, if the optimal choice for the agent is to buy
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the risky asset (y∗ < 0) from the market maker, then the buying volume y∗ decreases as p

increases. This is consistent with the fact that agents always want to buy assets at a lower

price and sell assets at a higher price. Second, if an agent believes that the true state is

more likely to be H (i.e. δ is high), which implies that the risky asset has a high probability

to achieve a high payoff, then his intentions to buy the risky asset becomes stronger (i.e. y∗

decreases as δ increases).

Given the agents’ trading strategy in the centralized market, we then focus on their

trading strategies in the bilateral trading round. Theorem 3 characterizes their bilateral

trading behavior in the benchmark model.

Theorem 3. If there is no trading limitation in the centralized market (no restrictions on

y) and the market maker receives no signals, then, in equilibrium, there is no trade in the

bilateral market.

Proof. The centralized market is fully open if all traders have an equal opportunity to

participate. It is complete when the price is fully observable and all traders trade at one

single price, and there are no trading limitations or price spreads. In this case, for trade to

happen in the bilateral trading round a mutually beneficial proposal must be found. Suppose

a proposal (z̄, q), z̄ > 0 is accepted, that is to say, both proposer and responder agree to

exchange z̄ units of asset 1 with z̄q units of asset 2. After such a trade, the responder’s

portfolio becomes (1 + z̄, 1− z̄q), and his belief about the true state could possibly change,

becoming δ. Hence his utility later after trading with the market maker is:

ũ(p, 1 + z̄, 1− z̄q; δ) =
1

1− γ
{
[

2(p+ 1 + z(p− q))
ϕp+ 2− p

]1−γ (
δϕ1−γ + 1− δ

)
− 1},

and the proposer’s portfolio becomes (1− z̄, 1 + z̄q), with belief δ̃, and utility later of:

ũ(p, 1− z̄, 1 + z̄q; δ̃) =
1

1− γ
{
[

2(p+ 1− z(p− q))
ϕ̃p+ 2− p

]1−γ (
δ̃ϕ̃1−γ + 1− δ̃

)
− 1}.

There are several cases to study.

Case(i): The proposer is an informed agent. An informed agent’s belief does not change

over time. Hence δ = δI ∈ [1/2, 1] if he is an H type and δ = 1− δI if he is an L type. And

93



because (δϕ1−γ + 1− δ) > 0, ϕ(p, δ) > 0, for him to benefit from the trade, both H and L

type informed agents will offer q ≥ p. That is, the proposer sells z̄ units of asset 1 at a price

q bigger than the public price q. But this would be impossible because if the responder is

also an informed agent (same type), such a proposal would certainly be against his favor and

he would reject it. If the responder is an uninformed agent, he cannot learn any information

by observing such a proposal. Hence, his best response would be also to reject the proposal.

Case (ii): The proposer is an uninformed agent. The uninformed agent is willing to

lose some money in the bilateral trading period only when he can learn the information and

hence adjust the right trading volume later in the centralized trading round. Since both H

and L type responders’ best responses are the same, the uninformed proposer cannot learn

by observing the acceptance of his proposal. Hence he would not propose any offer that is

against his benefit. And other offers, of course, would be rejected.

Hence there is no trade in the bilateral trading period.

Theorem 3 reveals one aspect of the relationship between the centralized market and the

bilateral trading market: when the centralized market is absolutely liquid, it squeezes out the

bilateral trading. The intuition is straightforward: in order for a trade to take place in the

bilateral market, the trade must provide incentives for both parties. Yet, when the centralized

market is absolutely liquid, it fails the incentive of informed traders to participate in the

bilateral market. Specifically, for an uninformed trader, seeking information is the incentive

to encourage their activities in the bilateral market. However, for an informed trader, trading

in the bilateral market does not increase their informativeness since all informed traders

receive the same signal. If the centralized market is absolutely liquid, they can trade any

amount with the market maker. Therefore, there is no incentive for them to participate in

the bilateral market.
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2.2.4 The Market Maker’s Profit

We now analyze the market maker’s profit. The following Lemma and Proposition describes

what constitutes the market maker’s profit and the conditions for a positive profit.

Lemma 12. If there is no trading limit in the centralized market (no restrictions on y)

and the market maker receives no signals, then, in equilibrium, the market maker’s price is

bounded by 2(1− δI) < p ≤ 1.

Proof. The market maker’s profit function is:

Π(p) = E[E[(F̃ − p)Y |bMa ]]

=
1

2
[(2δH − p)YH + (2δL − p)YL] ,

where δH = Pr(S = H|bMa = 1) = δI , δL = Pr(S = H|bMa = 0) = 1− δI ,

Consider on the equilibrium path, bMa = 1 if Y = YH , and bMa = 0 if Y = YL, where YH

and YL are the aggregate trading volumes when the signal is H and L respectively.

Note that YH and YL are increasing functions of p, thus Π(p) is a strictly concave function

of p and there exists a unique optimal p.

By taking a derivative of the objective function we get

Π′(p) =
1

2

[
(2δH − p)

∂YH
∂p

+ (2δL − p)
∂YL
∂p
− YH − YL

]
.

Then we can immediately conclude that p ≤ 2δH . Suppose p > 2δH , then we have δ(b) =

Pr(S = H|b) ≤ 1,∀b ∈ [0, 1], and hence YH ≥ 0 and YL ≥ 0. Since ∂Yi
∂p

> 0,∀i = H,L,

Π′(p) < 0. Moreover, we could conclude that p ≤ 1 because then Π′(1) ≤ 0. Also by the

same argument we can see that p ≥ 2(1− δI).

Lemma 12 provides an upper and lower bound for the equilibrium market maker price

p. Then Proposition 6 finds the necessary and sufficient condition for the market maker to

make positive profit.
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Proposition 6. In equilibrium, the market maker loses money to the informed traders

and makes money from the uninformed traders. And, for each δI ∈ [0.5, 1], there exists a

α∗(δI) ≥ 0 such that

Π ≥ 0 if α ≥ α∗(δI),

Π < 0 if α < α∗(δI).

where Π is the profit for the market maker.

Proof. The market maker’s profit function is:

Π = E[E[(F̃ − p)Y |bMa ]]

=
1

2
[(2δH − p)YH + (2δL − p)YL] ,

where δH = Pr(S = H|bMa = 1) = δI , δL = Pr(S = H|bMa = 0) = 1 − δI , and YH =

αyH + (1 − α)yM and YL = αyL + (1 − α)yM where yH , yM and yL are trading volumes for

type H,U, L respectively.

Hence

Π(α) =
α

2
[(2δH − p)yH + (2δL − p)yL] + (1− α)(1− p)yM

= αΠI + (1− α)ΠU .

The first term ΠI is the profit made from informed traders, and the second term ΠU is the

profit made from uninformed traders. As price p is bounded by (2(1−δI), 1), and by Lemma

10, we have that yH < 0, yL > 0 and yM > 0, hence ΠI = [(2δH − p)yH + (2δL − p)yL] < 0

and ΠU = (1−p)yM > 0. That is, the market maker loses money to the informed traders and

earns positive profit from the uninformed traders. Π decreases as α increases. and Π(0) > 0.

Thus, there must exist some α∗(δI) such that Π(α∗) = 0.

Also, one could notice that as δI increases, δH increases and δL decreases. Thus, yH

decreases and yL increases, and so ΠI = [(2δH − p)yH + (2δL − p)yL] < 0 decreases. That is

to say, as the informed agents procure more accurate information, the market maker loses

more money to them. Hence, α∗(δI) decreases with δI .
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Proposition 6 states that, if the fraction of the informed traders is sufficiently small, the

monopolistic market maker can make profit. Figure 2.2 captures a numerical example of the

market maker’s profit in the benchmark model. As exhibited in the figure, as the accuracy

of the private information increases, the profit of the market maker decreases. Also, as the

population of the information agents increases, the profit of the market maker decreases.

And the break-even points show that the likelihood for the market maker to make positive

profits is higher when the private information is less accurate.

Figure 2.2: The Market Maker’s profit As α Varies (no trading limitation, no information for

the market maker). M0 represents the point where the market maker breaks even. The parameters are

γ = 0.8, z̄ = 0.3.

In this section, we conclude that if the centralized market is “good enough” (too liquid)

for the traders, no trades would take place in the bilateral market. Since the bilateral
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market is the channel for agents to acquire information, there is no information acquisition

and hence no information diffusion in this case. Also, the market maker in the centralized

market simply plays the role as a liquidity provider: they take any order from the agents

and hence may lose money if the population of informed traders is too large.

Driven by the fact that, in reality, the bilateral market and centralized trading may

coexist and market makers make money, we identify a factor that can link the two markets

and also influence the profit of the market maker. This is characterized in Section 2.3.

2.3 Illiquid Centralized Market and An Uninformed Market Mak-

er

In the benchmark model, we assume that the market maker does not impose any trading

limitation on the transactions in the centralized market. That is, we assume that traders

can trade any amount of the risky asset with the market maker. In this section, we assume

that the market maker imposes a trading limitation and restricts traders from trading too

aggressively. We argue that this trading limitation is key to link the bilateral and centralized

markets. It also determines the profit of the market maker. Once a trading limit is imposed,

the centralized market is not absolutely liquid anymore. We call it an illiquid centralized

market. The liquidity level depends on how restrictive the trading limits are.

The assumption of a trading limitation allows us to associate the model with practical

issues. In financial practices, all financial institutions incorporate risk management as one of

their objectives. A restriction on the trading quantity is one of the commonly used measures

to prevent a significant loss. To incorporate that in the model, we assume that, beside the

trading price p, in the morning the market maker also announces a trading limit, y and ȳ,

indicating that traders can only be allowed to trade a volume y ≤ y ≤ ȳ. Everything else is

the same as in the benchmark model.
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2.3.1 Equilibrium Characterization

In this section, we characterize the equilibrium of the model when there are trading limits

imposed and the market maker has no information about the risky asset value. At this point,

we assume that the trading limits, y and ȳ, are exogenous restrictions. In future studies, we

can relax this assumption and endogenize the parameter.

Lemma 13 provides us the upper bound and lower bound of the market maker price p.

Lemma 13. Suppose the market maker imposes the trading limits, y, ȳ, and −1 ≤ y < ȳ ≤

1, then, in equilibrium, the market maker’s price is bounded by 2(1− δI) < p ≤ 1.

Proof. Similar with Lemma 12.

Now we study the relationship between the trading limitation and traders’ strategies,

bilateral trading, and information diffusion. This is characterized in Theorem 4.

Theorem 4. (Existence of bilateral trading and information diffusion)

Suppose the accuracy of the signal δI = Pr(S = s|SI = s) is sufficiently large, and y0 < y <

y′0 < y′1 < ȳ < y1, where y0, y1 solve:

y0 = max{y∗(1, 1, 1; 1− δI), y∗(2(1− δI), 1, 1; 0.5)}, (2.1)

y1 = min{y∗(1, 1, 1; 0.5), y∗(2(1− δI), 1, 1; δI)}, (2.2)

and y′0, y′1 satisfy:

max
y∈[y′0,y

′
1]
u(p, y, 1− z̄, 1 + z̄qU ; δI) = u(p, y∗(p, 1, 1; 0.5), 1, 1; δI), (2.3)

where qU solves

max
y∈[y,ȳ]

u(p, y, 1 + z̄, 1− z̄qU ; δI) = max
y∈[y,ȳ]

u(p, y, 1, 1; δI).

then a Perfect Bayesian Equilibrium exists in which bilateral trading is active and therefore

the fraction of the informed population increases.
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Proof. Recall that if both proposers and responders agree to exchange z̄ units of asset 1

with z̄q units of asset 2, the responder’s portfolio becomes (1 + z̄, 1− z̄q). Suppose his belief

is δ, then his utility later after trading with the market maker is:

U r(p, q; δ) = max
y≤y≤ȳ

u(p, y, 1 + z̄, 1− z̄q; δ)

≤ ũ(p, 1 + z̄, 1− z̄q; δ))

=
1

1− γ
{
[

2(p+ 1 + z(p− q))
ϕp+ 2− p

]1−γ (
δϕ1−γ + 1− δ

)
− 1},

and the proposer’s portfolio becomes (1− z̄, 1+ z̄q), with belief δ̃, and the utility later being:

Up(p, q; δ̃) = max
y≤y≤ȳ

u(p, y, 1− z̄, 1 + z̄q; δ̃)

≤ ũ(p, 1− z̄, 1 + z̄q; δ))

=
1

1− γ
{
[

2(p+ 1− z(p− q))
ϕp+ 2− p

]1−γ (
δϕ1−γ + 1− δ

)
− 1}.

One should notice that U r(p, q; δ) is a decreasing function of q. Also, by Lemma 11, y∗(.; δI) <

y∗(.; 0.5) < y∗(.; 1 − δI) . If y and ȳ satisfy conditions (2.1) and (2.2), then we must have

that, for all p ∈ [2(1− δI), 1] (by lemma 13),

y∗(p, 1, 1; δI) ≤ y0 < y ≤ y∗(p, 1, 1; 0.5) ≤ ȳ < y1 ≤ y∗(p, 1, 1; 1− δI). (2.4)

That is to say the unbounded optimal trading volume for an H type informed trader is below

the lower boundary y and above the upper boundary ȳ for the L type. Hence we have that

∀p ∈ [2(1− δI), 1],

u∗(p, 1, 1; δI) ≥ max
y≤y≤ȳ

u(p, y, 1, 1; δI) = u∗c(p, 1, 1; δI),

u∗(p, 1, 1; 0.5) = max
y≤y≤ȳ

u(p, y, 1, 1; 0.5) = u∗c(p, 1, 1; 0.5),

u∗(p, 1, 1; 1− δI) ≥ max
y≤y≤ȳ

u(p, y, 1, 1; 1− δI) = u∗c(p, 1, 1, ; 1− δI).

Because of the limited order constraint, the informed agents have a motivation to trade in

the bilateral market. And the bilateral trading in equilibrium is characterized as below:
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Case(i) If the proposer is an uninformed agent.

In this case the uninformed agent can propose one option (z̄, qU(p)(p)), targeting the H

type informed agent. qU(p) satisfies:

(IC1) : U r(p, qU(p); δI) = u∗c(p, 1, 1, δI).

According to the argument above, we can conclude that qU(p) ≥ p by condition (2.4) and

the fact that U r(p, q, δ) is a decreasing function of q. The H type informed will accept the

option, and the uninformed and L informed will accept neither. Also if δI is sufficiently

large, and 2.3 is satisfied, we have Up(p, qU(p), δI) ≥ u(p, y∗(p, 1, 1; 0.5), 1, 1; δI))). That is,

even though the proposer loses money to the informed responder in the bilateral round, he

will acquire the right information and gain back in the centralized trading period. Given the

actions of the responder, the uninformed agents achieve the best payoff by setting q = qU(p).

If he observes a rejection, he cannot tell whether it is because of that the private signals are

L, or he simply came across an ignorant agent just like himself.

Case(ii): If the proposer is an informed agent, suppose the proposer is an H type

informed trader. If one of his proposals (z̄, qH(p)) is accepted by the responder, his portfolio

becomes (1− z̄, 1 + qH(p)z̄), and his utility becomes:

Up(p, qH(p); δI) = max
y≤y≤ȳ

u(p, y, 1− z̄, 1 + z̄q; δI)

<
1

1− γ
{
[

2(p+ 1− z(p− q))
ϕp+ 2− p

]1−γ (
δϕ1−γ + 1− δ

)
− 1},

by the fact that y∗ < y0. As Up(p, q; δI) is an increasing function of q, he would be happy as

long as q ≥ qH(p), where qH(p) satisfies:

(IC2) : Up(p, qH(p); δI) = u∗c(p, 1, 1; δI).

Comparing (IC1) and (IC2), we have qH(p) ≥ qU(p) ≥ p.

Similarly, suppose the proposer is an L type informed trader, his proposal (z̄, qL(p)z̄)
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must satisfy q ≤ qL(p) where qL(p) satisfies:

(IC3) : Up(p, qL(p); 1− δI) = u∗c(p, 1, 1; 1− δI).

And by a similar argument, qH(p) > qU(p) > p > qL(p).

As the game itself is common knowledge, proposals of informed agents would be rejected

because all informed agents have the same signals and uninformed agents can immediately

make an inference about the information and hence understand that such proposals are

against them. Thus if the proposer is an informed agent, no responder will accept his

proposal. And given that no one accepts, he has no incentive to deviate.

Hence in equilibrium the actions of the agents are:

q(θ, p) = qθ(p), θ = H,U, L. (2.5)

r(H, p, q) =

 0 if q > qU( p),

1 if q ≤ qU(p).
(2.6)

r(U, p, q) = 0,∀q. (2.7)

r(L, p, q) = 0,∀q. (2.8)

Agents’ beliefs are: for the proposer, before the bilateral trading,

bp(θ, p) =


1 if θ = H,

0.5 if θ = U,

0 if θ = L.

(2.9)

br(θ, p, q) =


1 if θ = H, or θ = U, q ≥ qH(p),

0 if θ = L, or θ = U, q ≤ qL(p),

0.5 if θ = U, q ∈ (qH(p), qL(p)).

(2.10)

ba(θ, p, q, ω) =



1 if θ = H, or θ = U, q ≤ qU(p), ω = (1, q, 1)

or θ = U, q ≥ qH(p), ω = (0, q, 0),

0+1
2

if θ = U, q ≤ qU(p), ω = (1, q, 0),

0.5 if θ = U, qH(p) > q > qU(p), ω = (0, q, 0),

0 if θ = L, or θ = U, q ≤ qL(p), ω = (0, q, 0).

(2.11)

102



Theorem 4 provides us a sufficient condition such that bilateral and centralized trading

coexist. Trading limitations create the trading incentives for both informed and uninformed

agents in the bilateral market. As we have discussed, the uninformed traders are willing to

trade in the bilateral period to acquire information. But the absence of trading limitations

fails in providing the other party, the informed traders, incentives to participate in the

bilateral market because they don’t need to do so. An absolutely liquid centralized market

has given them enough opportunity to hedge their positions. However, a reasonable trading

limitation limits their actions in the centralized market and encourages them to participate

in the bilateral period. Therefore, with a reasonable trading limitation, both parties are

willing to trade in the bilateral market. By observing the behavior of one’s trading partner,

an uninformed trader infers and learns the private information. The information thus diffuses

through bilateral trading.

2.3.2 Information diffusion and Market Interaction

Market Interaction. In this section, we study the interaction between the bilateral and

centralized markets. Table 2.1 provides a numerical example analyzing the relationship

between the trading limits in the centralized market and bilateral trading activities. First,

as is shown in the table, if the centralized market is shut down (i.e. y = ȳ = 0), we observe no

trading in the bilateral market, and hence no information diffusion. This result is consistent

with the “No Trade Theorem” in Milgrom and Stokey (1982). The intuition is as follows.

Since the information structure is common knowledge and all traders have no opportunity to

trade later, revealing private information would be against the benefit of an informed trader.

This is because no one would accept his offers once the information is induced. Therefore,

access to different information cannot be the sole basis for trade. No-trade in the bilateral

market still holds if we open the door slightly (for example, y = −0.05, ȳ = 0.05). Note that

in this case even though both the informed traders and uninformed traders have incentives
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to participate in the bilateral trade, we would still observe no trade because the loss of an

uninformed trader to his informed trading partner exceeds the make-up benefit he obtains

from trading with the market maker. That is, learning is too costly for an uninformed

trader when the centralized market is too illiquid (the door is too narrow). Third, if we

continue to increase the liquidity level in the centralized market (i.e. the gap between ȳ

and y becomes larger), we would observe active trading behavior in the bilateral markets.

In this case both informed and uninformed traders have proper incentive to trade in both

markets: informed traders trade to compensate the limit of their hedging positions in the

centralized market while uninformed traders trade to learn private information. Finally,

bilateral trading continues to be active as we widen the door until it hit another threshold

and triggers no trade in the bilateral market again. We have discussed the intuition in the

benchmark model.

To conclude my analysis of Table 2.1, whether or not bilateral trading is active depends

on how liquid the centralized market is (that is, how restricted the centralized trades are).

There is no bilateral trading if the centralized trading is too liquid or too illiquid. Bilateral

trading is active only if the liquidity level in the centralized market is within a certain range.

Information Diffusion. We also analyze information diffusion through bilateral trade.

In equilibrium, an uninformed proposer learns by observing the action of his responder. We

have shown that, in order to satisfy traders’ incentive constraints, an uninformed proposer

can only aim for learning one particular type of signal. For example, an uninformed proposer

can aim for learning signal H. If the true signal is H, an informed responder will accept his

offer while an uninformed responder will reject his offer. Therefore by observing the respon-

der’s behavior he will immediately know the signal type if the offer is accepted. Learning

is “fast” in this case. However, if the true signal is L, an informed responder will reject his

offer because his signal is “L” and the offer is designed particularly for luring traders with

H signals. An uninformed responder will also reject the offer because he immediately infers

that his proposer is also uninformed. In this case the uninformed proposer cannot distin-
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[0,0] [-.05,.05] [-.1,.1] [-.15,.15] [-.2,.2] [-.4,.4] [-.7,.7] [-1,1] [-1.5,1.5] [-2,2]

Π 0 0.0157 0.0229 0.0321 0.0396 0.0593 0.0466 0.0397 0.0397 0.0397

p � 0.6047 0.6230 0.6420 0.6615 0.7438 0.8064 0.8000 0.7826 0.7826

qU � � 0.8584 0.8352 0.8110 0.7488 0.8064 0.8000 0.7826 0.7826

qH � � 1.0181 0.9958 0.9726 0.8670 0.8064 0.8000 0.7826 0.7826

qL � � 0.3567 0.3702 0.3842 0.4452 0.5462 0.6607 0.7826 0.7826

Bi.T No No Yes Yes Yes Yes Yes Yes No No

Info No No Yes Yes Yes Yes Yes Yes No No

Table 2.1: Markets Interaction. This table studies the relationship between the trading limits, y, ȳ,

and bilateral trading activities. Parameters are γ = 0.8, α = 0.1, z̄ = 0.3, δI = 0.7. Each column represents

a trading limit, [y, ȳ]. Π is the profit of the Market maker, while p is the equilibrium market maker price

in the centralized market. qU , qH , qL are, respectively, the equilibrium bilateral prices that will be proposed

by an uninformed trader, high-signaled informed trader and low-signaled informed trader. “Bi.T” indicates

whether or not there exists trades in bilateral market, and “Info” represents the information diffusion in the

bilateral market.

guish whether the rejection is because the signal is L or because his responder is uninformed.

Learning is “partial” or “slower” in this case.

Therefore, in equilibrium, information diffuses in an asymmetric way. Good news spreads

faster than bad news when agents are “biased” towards learning good news (signal H),

while bad news spreads faster than good news if agents are “biased” towards learning bad

news (signal L). Table 2.2 shows the information diffusion in the case when agents are

“biased” towards learning H signals. As is shown in Table 2.2, when the true signal is H, an

uninformed agent learns immediately when he is matched with an informed agent. But when

the true signal is L, an uninformed agent learns the exact signal only when he is matched as

a responder with an informed agent. If he is matched as a proposer, he can only partially

learn the signal (i.e. the uninformed proposer’s belief drops from .5 to .5(1− α), instead of

0, after observing the rejection from his responder.)
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2.3.3 Market Maker’s Profit and Optimal Trading Limits

In this section, we provide a numerical simulation of the market maker’s profit as a function

of the trading limits. Figure 2.3 shows that the market maker’s profit exhibits an inverted

U-shape as the trading limits are relaxed (i.e. [−ȳ, ȳ] becomes wider). This is consistent

with our analysis. On the one hand, if the door is too narrow in the centralized market it

prevents loss to the informed trader but also squeezes out uninformed traders, hence the

centralized price and the market maker’s profit is low. On the other hand, if the door is too

wide the market maker would expose too much risk to informed traders which lowers the

market maker’s profit. It is possible that an optimal volume limitation exists. This is for

our future studies.

Figure 2.3: The Market Maker’s Profit As [−ȳ, ȳ] Varies. The graph plots how the market maker’s

profit varies as [−ȳ, ȳ] becomes wider.
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2.4 Illiquid Centralized Market and An Informed Market Maker

In the previous sections we analyzed information diffusion and market interaction between

the centralized market and bilateral market, when the market maker obtains no information

about the state of the world. In this section, we study the case when the market maker

acquires some information about the asset’s payoff. Particularly, we examine the following

questions.

(i) Is it in the interest of the market maker to reveal her information to the public?

(ii) If the market maker decides to provide an informative public price, would this affect

bilateral trading and information diffusion?

In this model, we consider a second source of information. We assume that the market

maker receives a signal in the morning before she announces the centralized price p. We

denote the signal as SM ∈ {H,L} and its accuracy as δM = Pr(S = s|SM = s). We

also assume that the market maker’s signal is less accurate than the informed agents (i.e.

1/2 < δM < δI < 1). Everything else stays the same with the model in the last section.

Having an informative market maker does not necessarily correlate to a decrease in the

agents’ welfare because the market maker may potentially make this privately owned infor-

mation publicly available (i.e. to announce an informative public price p). It is interesting

to understand the relationship between public information, private information and social

welfare in this case. And those analyses will be provided in our future studies.

Proposition 7 provides the condition when the market maker decides to reveal her own

signal to the public by announcing an informative centralized price. That is, we examine the

condition when there exist only separating equilibra.

Proposition 7. (An Informed Market Maker.)

Suppose α is sufficiently small, then there exists no pooling equilibrium. Hence the public
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price p is informative, and in equilibrium pH > pL.

Proof. Suppose the market maker pools the price at p. Let ΠH(p) be the profit of the

market maker who receives a signal SM = H, and ΠL(p) be the profit of the market maker

who receives a signal SM = L. Suppose α is sufficiently small. We now show that any p < 1

fails the intuition criterion. Suppose instead p = p̂ + ε, with ε > 0 and sufficiently small.

Then

ΠH(p+ ε) ' (1− α)(1− p)y∗c (p, 1, 1; δHM),

ΠL(p+ ε) ' (1− α)(1− p)y∗c (p, 1, 1; δLM),

ΠPool(p+ ε) ' (1− α)(1− p)y∗c (p, 1, 1; 0.5),

where

δHM = Pr[S = H|b(SM = H) = 1, b(SI = H) = 0.5],

δLM = Pr[S = H|b(SM = L) = 1, b(SI = H) = 0.5].

Then

ΠH(p+ ε) < ΠPool(p+ ε) < ΠL(p+ ε),

by the fact that y∗c (p, 1, 1; δHM) < y∗c (p, 1, 1; 0.5) < y∗c (p, 1, 1; δLM). Hence p fails the intuition

criterion. For a separating equilibrium to exist, suppose pH and pL is the price the market

maker poses when receiving an H signal and an L signal respectively. Then pH , pL must

satisfy:

ΠH(pH) ≥ ΠH(PL), (2.12)

ΠL(pL) ≥ ΠL(PH). (2.13)

And

Π′H(pH) ' (1− α)((1− pH)
∂y∗cHM
∂p

− y∗cHM) = 0, (2.14)

Π′L(pL) ' (1− α)((1− pL)
∂y∗cLM
∂p

− y∗cLM) = 0. (2.15)
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by condition (2.14), (2.15) and since y∗cHM < y∗cLM ,
∂y∗cHM
∂p

>
∂y∗cLM
∂p

. We have

pH > pL.

The market maker faces a trade-off. Revealing his information to the public may po-

tentially decrease his profit because it adds to the accuracy of the informed traders’ signals

and increases the loss to them. But revealing his information also flattens the gap between

the informed and uninformed traders and increases the profit. Propositions 7 states that, if

there are not many informed traders, the benefit of revealing the information exceeds the

loss.

We are then ready to answer the next question: if the market maker were to reveal his

information, do we still observe bilateral trading and information acquisition? Proposition

8 provides us an insight into this question.

Proposition 8. If the market maker’s signal is sufficiently accurate, then public signaling

“squeezes” trade in the bilateral market. That is, there is no bilateral trading.

Proof. The unconditional probability that the market maker receives an H signal is 0.5.

There are four cases. They all happen with probability 1/4. Let δSM ,SI = Pr(S = H|b(SM) =

1, b(SI = H) = 1), δSI = Pr(S = H|b(SI) = 1). Then we have

δHH > δLH > δHL > δLL.

Hence

y∗HH < y∗H < y∗LH < y∗LH < y∗L < y∗LL.

Consider the lower boundary y0 (the upper bound y1 is similar). If the market maker’s

signal is sufficiently accurate, it is more likely that

y∗H ≤ y0 < y∗LH .

If this is the case, no trade will happen in the bilateral period if SM = L, SI = H. Hence

the public signal will discourage trade in the decentralized market.
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The result in Proposition 8 is consistent with the general conclusion from the literature

regarding the relationship between public signals and private signals. As the public signals

become more informative, the uninformed traders have less motivation to acquire private

information. Information acquisition is costly: traders pay to learn the information. In

this particular model there are costs involved when an uninformed proposer attempts to

information from his informed responder’s behavior. Therefore, if the public information

is good enough, it discourages the uninformed traders’ incentive to trade in the bilateral

market.

2.5 Conclusion

In this paper we study information diffusion through bilateral trading and the interaction

between the bilateral market and the centralized market. We find that the liquidity level

in the centralized market matters. If the centralized market provides overly sufficient or

overly insufficient liquidity (no trading volume limitations), no trade would be observed, and

hence no information diffuses in the bilateral market. If the centralized market liquidity is

controlled within a reasonable level there would be bilateral trades and information diffusion.

While there exists active bilateral trading, private information diffuses in an asymmetric way.

That is, good news could disperse faster then bad news, depending on the conjecture of the

agents. Finally, when the price in the centralized market contains certain information, such

public information could also dry out the bilateral trades.

The results provide empirical implications that we will examine in future studies. Also,

the model could be extended in several other directions. Specifically, there are three direc-

tions we will explore in the future. First, we will relate our study to the empirical analysis in

the pre-IPO and IPO markets, focusing on the traders’ intention and behavior, information

diffusion and the correlation between liquidity and informational efficiency. Second, we will

further study the framework with a more actively managed centralized market, in which

the market maker may not commit to his price and instead adapts the price to the market
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information. Third, we may incorporate large traders to the model and study their strategy,

price impact, and the consequent impact on information diffusion and market interaction.
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CHAPTER 3

Screening Decisions with Time-Inconsistent Agents

3.1 Introduction

A significant amount of evidence in laboratory and the field suggests that, in some markets,

consumers deviate from standard preferences and behave time-inconsistently. When eval-

uating an intertemporal contract, they usually give a higher discount between the present

and the next period than between any of the subsequent periods. This discrepancy of the

perception between the present and the future implies time inconsistency. Moreover, con-

sumers are not fully aware of this time-inconsistency and exhibit different degrees of naiveté.

Some consumers are more sophisticated and can predict more accurately their behavior than

others.

Firms can profit from the time-inconsistency among consumers. The seminal paper by

DellaVigna and Malmendier (2004) studies the optimal contract by a monopoly firm who

interacts with a single type of time-inconsistent consumer. They show that firms set prices

above marginal cost for goods with immediate rewards and deferred costs (leisure goods) and

below marginal cost for goods with immediate costs and deferred rewards (investment goods).

This result follows from the argument that a commitment device is valued by consumers and

firms can profit from providing them.

DellaVigna and Malmendier (2004) does not, however, study the optimal contracting

and screening problem between the monopoly firm and multiple types of consumers (un-

observable degree of naiveté). In their analysis, consumers are either fully aware of the

time-inconsistency (fully sophisticated) or partially aware (partially naive). The firm knows
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the consumer’s type at the contracting period. Nevertheless, in reality, the consumer type

is private information. It raises a question of whether or not and why the firm would screen

types of consumers when the information of consumer types is private and unobservable.

This paper studies the question of when and why a monopoly firm chooses to screen the

type of a time-inconsistent consumer at the contracting period. The product is an investment

good which involves an immediate cost (on the consumer) and a delayed benefit. There are 3

periods in the basic model: the contracting period, the action period, and the benefit period.

There are multiple degree of consumer naiveté, i.e. the ability of a consumer to predict her

future time-inconsistency. The firm can provide either a menu of two-part tariffs contracts

(to screen her degree of naiveté) or a single two-part tariff contract (non-screening), subject

to profit maximization.

We show that the firm’s decision to screen depends on the uncertainty of the consumer’s

cost type. When the consumer’s cost type is deterministic, the firm provides a non-screening

contract, whereas when the consumer’s cost type is random, the firm offers a screening

contract. Moreover, in the screening contract, the firm provides the naive type a discount

price (a price that is less than the firm’s marginal cost) and the more sophisticated type

a further discounted price. Finally, we extend the basic model to a multi-period model in

which a consumer chooses between a cheaper entry fee and longer consumption periods. We

show that the more sophisticated type chooses the contract that has a cheaper entry fee but

shorter consumption periods.

The results from the basic 3-period model have three implications. First, screening is

costly. If consumers have a large choice set, separation of different types becomes expensive

and it is optimal for the firm not to screen. Second, the uncertainty for consumers limits

their choice set and makes screening cheaper. Therefore, it is optimal for the firm to screen.

When a consumer does not know exactly her cost type, the uncertainty deters her from

behaving too aggressively. Consequently, it becomes easier for the firm to screen and profit

from each type separately. Third, when there are multiple degrees of naiveté, the per-usage

price serves as a commitment device. The more sophisticated type often desires a stronger
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commitment device (a more discounted price) than the more naive type.

The results cast light on several practical contracting issues. As an example of the

deterministic cost, a consumer’s physical health condition is relatively stable, observable and

therefore more predictable. Therefore, we observe fewer contracts in sports club (typically

the club provides everyone a single price for a certain period of membership). In contrast with

that, for a random cost case, a consumer’s consumption and savings habit largely depends

on the environment and is relatively difficult to predict. We observe abundant types of

contracts for saving plans, retirement programs and etc.

The paper contributes to the literature on the study of time-inconsistency and self-control.

Our paper is closely related with DellaVigna and Malmendier (2004) which studies the con-

tracting theory of a single-type consumer, whereas our paper studies screening and con-

tracting with an unobservable multi-type consumer. Our paper is also closely related with

Eliaz and Spiegler (2006) which analyzes the contracting of a principal with diversely naive

agents. Our contexts of consumer preferences and time-inconsistency are different from it.

Other papers study various issues of time-inconsistency (e.g., DellaVigna and Malmendier

2004, O’Donoghue and Rabin 1999, Shui 2004, Gottlieb 2008, Sayman and Öncüler 2008,

Wong 2008, Incekara-Hafalir 2014, Galperti 2015) and self-control (e.g., O’Donoghue and

Rabin 1999, Esteban et al. 2007, Sanjay 2009, Heidhues and Kszegi 2010, Alexandrov 2016).

Different from the previous ones, our paper focuses on the screening and optimal contract

problem in the presence of time-inconsistency.

The paper also contributes to the study of contract theory and information asymmetry.

For example, Incekara-Hafalir (2014), Li et al. (2014), Ylmaz (2015), Heidhues and Koszegi

(2014), Sandroni and Squintani (2013) and Zhang (2012) study the contracting problem

issue when there are various types of information asymmetry. Our paper focuses on the role

information asymmetry plays in a firm’s screening decision.

The organization of the paper is as follows. Section 2 describes the model. Section 3

studies the 3-period screening and contracting problem when the cost incurred is determin-

istic. Section 4 studies the 3-period screening and contracting problem when the cost is
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random. Section 5 extends the model to multiple periods. Section 6 concludes.

3.2 The Model

In this section we consider a three period model of a monopoly firm who arranges pricing

schemes to sell an investment good, a product with immediate cost and delayed benefit.

Consumers are time-inconsistent and (partially) naive. We consider two different cases: a

case where the cost of the product is deterministic and a case where the cost of the product

is random. We then analyze the firm’s optimal pricing and screening strategy in each case.

3.2.1 Model Set-up

We follow the standard models of the literature in time-inconsistency (eg. DellaVigna and

Malmendier (2004)). There is a monopolist firm. The selling of the product involves 3

periods. In t = 0 the firm proposes a (menu of) two-part tariff contracts (L, p) to the

consumer, where L represents the entry price and p the per usage fee. Upon the proposal,

the consumer decides to sign or to reject the contract(s). If a menu of contracts had been

offered, the consumer may choose one of the contracts in the menu or reject all of them. If

he chooses to reject all, the consumer attains the reservation utility 0 at t = 1. In t = 1,

upon accepting a contract, the consumer pays the entry fee L as formalized in the contract.

Then the consumer chooses to consume or not to consume. If he chooses to consume, he

pays the per usage fee p to the firm and incurs a personal cost c in t = 1; he then receive

benefit b in t = 2. If he chooses not to consume, he attains payoff 0 in t = 1 and t = 2. The

timeline of the decisions is described in Figure 1.

Figure 3.1: Timeline
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Product. The product we consider in the model is an investment good. An investment

good is a product which incurs an immediate cost and a delayed benefit. In reality, the

cost and benefit of a product do not usually take place at the same time. When a good is

costly at present and provides benefits in the future, the good is called an investment good.

Examples of an investment good include health clubs, sports, education, retirement plans,

etc. In contrast with that, a good can provide immediate benefit (pleasure) but incurs cost in

the future. Such good is called a leisure good. Such goods include, for example, consumption

of unhealthy food, expensive cellphone plans, gambling, procrastination, etc1. In this paper,

we restrict our attention to the screening problem that is associated with an investment

good. In the model, upon consumption, the product has a cost c at t = 1 and a delayed

benefit b at t = 2.

Time-inconsistent preferences Consumers have time-inconsistent preferences. The

intertemporal preferences of consumers are assumed to be quasi-hyperbolic (see, e.g., DellaV-

igna and Malmendier 2004, O’Donoghue and Rabin 1999). That is, the discount factor of

utility flow for time s, when evaluated at time t, equals 1 if s = t and equals βδs−t if s > t,

with β ≤ 1, δ ≤ 1. Therefore, the present value of the future utility flow (us)s≥t as of time t

is

ut + β
∞∑

s=t+1

δus. (3.1)

In correspondence with the standard model of time-inconsistent preferences, β can be in-

terpreted as the short-run discount factor and δ the long-run discount factor. The term

time-inconsistency corresponds to the case when β is less than 1. It reflect the consumers’

behavior to perceive differently in the present and in the future–while the discount factor be-

tween any adjacent periods in the future is simply δ, the discount factor between the present

and the next period is βδ. In comparison with that, the standard time-consistency model

corresponds to the case when β equals 1, when there is no difference between the short-run

and the long-run discount factor.

1The definition of an investment good and a leisure good is consistent with DellaVigna and Malmendier
(2004)
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Consumer types and naiveté. A partially naive consumer is not fully aware of his

time-inconsistency and overestimates his time consistency. The (partial) naiveté is reflected

by the set of parameters (β, β̂), where β is the actual short-run discount factor and β̂ is

the perceived short-run discount factor. That is, he or she expects to have the discount

factors 1, β̂δ, β̂δ2, ... with β ≤ β̂1 < β̂2 ≤ 1 in all future periods. The difference between

the perceived and actual short-run discount factor, β̂ − β is the degree of naiveté, which

measures the degree of how much the consumer could not anticipate his time-inconsistency.

There are three special cases. When β̂ = β = 1, the consumer is an exponential consumer

who is time consistent (β = 1) and is aware of it (β̂ = 1). When β̂ = β < 1, the consumer is

called a sophisticated consumer, who is time-inconsistent (β < 1) and is aware of it (β̂ = β).

When β < β̂ < 1, the consumer is called a fully naive consumer, who is time-inconsistent

(β < 1) and is unaware of it at all(β̂ > β).

We assume that there are two types of time-inconsistent consumers (agents) in the mar-

ket. Type 1 with parameters (β, β̂1) accounts for α of the population and type 2 with

parameters (β, β̂2) accounts for 1− α of the population. We assume that β ≤ β̂1 < β̂2 ≤ 1.

That is, type 1 is more sophisticated than type 2 consumers. Therefore, in this paper, we

refer to type 1 consumers as the ”more sophisticated” consumers and type 2 as the ”more

naive” consumers.

Monopoly firm, contracts, and screening. The firm has all the bargaining power

and offers the consumer nonnegotiable contract(s) in period 0. A contract (L, p) is composed

of an entry fee, L, and a per-usage price p. Since the firm cannot distinguish the types of

consumers, the firm can choose either to screen or not to screen the types of consumers at

t = 0, subject to profit maximization. In order to screen, the firm offers a menu of contracts

to a consumer at t = 0. In a successful screening case, the result of the consumer’s selection

among these contracts reveals his type. When the firm decides not to screen the consumers,

she offers a single contract to the consumer.

We assume that the firm has no start-up cost providing the product but has a per-usage

cost, a, when a consumer decide to use the product.
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Information about the cost of consumption (c). If a consumer decides to consume

the good at t = 1, he incurs a personal cost c and pays the per-usage price p. For example, if

an individual who signs up a gym-club decides to use the equipment in the gym, he not only

pays the fees for the equipment per usage (p), but also pays personal costs for such usage

(time, effort, for example).

Consumers may or may not know his or her personal consumption cost c prior to signing

the contract. We consider two cases. In the first case, the consumption cost is stable

over time and the information can be estimated easily through personal experience and

knowledge. For example, costs that attribute to physical health (body type, weight, health

condition and etc.) seem to be easily evaluated. Therefore the information about the cost

of consumption is can be regarded as known before signing the contract. In the second

case, however, consumers may find it difficult to estimate accurately his consumption cost

type c at the time of signing the contract. For example, when making retirement plans,

consumers’ consumption habits may vary over time and largely depends on the realization

of the economy.

To summarize the above argument, we analyze the firm’s screening problem, respectively,

under the following two different assumption.

(i) Case I (Deterministic cost): A consumer knows his consumption cost c prior to

signing the contract.

(ii) Case II (Random cost): A consumer’s cost type c is drawn from a distribution F .

We assume that F has a strictly positive density function f over R. At t = 0, consumers

do not know their individual costs c. A consumer’s cost type c is revealed upon accepting a

contract offered by the firm.

Finally, the monopoly firm is fully aware of consumers’ time-inconsistency behavior, the

distribution of the naiveté within the population, and the distribution of consumers’ cost.

Section 3.3 summarizes the analysis of case I and Section 3.4 analyzes the screening problem

of case II.
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3.3 Deterministic Cost

In this section we characterize optimal contracts and the firm’s screening problem in the

3-period model when the consumer’s personal consumption cost is known at the time he

signs the contract.

A time-consistent consumer (with parameters β = 1, β̂ = 1) evaluates the consumption

at t = 0 as follows. Because a time-consistent consumer does not have a discrepancy between

the short-run and long-run adjacent discount factor (β = 1), He discounts by δ the total cost

of consumption c + p at t = 1 and by δ2 the delayed benefit b received at t = 2. Therefore,

the present value of the utility of “consume” is δ(δb − p − c). The present value of “not

consume” is 0. At t = 1, the consumer chooses to consume if c ≤ δb− p and not to consume

if c > δb−p. Therefore, at t = 0, the value of a contract (L, p) for a time-consistent consumer

with parameter (β, β̂) is

Ui ((L, T ), (1, 1)) =

 δ(−L) if c > δb− p,

δ(−L+ δb− p− c) if c ≤ δb− p.

A naive time-inconsistent consumer, however, evaluates the consumption differently.

First, a time-inconsistent consumer consumes less than he had expected. At the moment

of deciding between consuming and not consuming, the net payoff of “consume”” equals

βδb − p − c. Therefore, at t = 1, he chooses to consume if c ≤ βδb − p. That is to say, a

time-inconsistent consumer chooses to consume less often then a time-consistent consumer.

The short-run discount factor, β, determines the inconsistency between the actual and ex-

pected likelihood of consumption. Such difference equals 0 if β = 1 for a time-consistent

consumer. The smaller β is, the larger the issue of time-inconsistency is. Second, a naive

time-inconsistent consumer is not fully aware of his time-inconsistency. He discounts by β

his next period utility, but he overestimates his future short-run discount factor. That is, at

t = 0, he expects that he will consume at t = 1 if β̂δb−p−c ≥ 0. However, when it comes to

t = 1, he will consume if βδb−p−c ≥ 0. Therefore, at t = 0, a naive consumer overestimates

his probability of consumption. The value of a contract (L, p) for a naive time-inconsistent
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consumer i, i = 1, 2, with parameters (βi, β̂i) is

Ui

(
(L, p), (βi, β̂i)

)
=

 βiδ(−L) if c > β̂iδb− p,

βiδ(−L+ δb− p− c) if c ≤ β̂iδb− p.

The monopoly firm, on the other hand, has complete knowledge about consumers’ behav-

ior. The firm correctly expects that the consumer would value the consumption inconsistently

in period 0 and period 1. In the spirit of profit-maximization, the firm can decide to screen

by offering a menu of contracts or not to screen by offering a single contract. We now proceed

to formalize the screening problem and the non-screening problem in the analysis.

3.3.1 Deterministic Cost: screening Contract

The monopoly firm can screen the type of a consumer by offer her a menu of contracts.

Since there are two types of consumers in the market, with type 1 more sophisticated than

type 2, in order to screen the firm can offer two separating contracts, (L1, p1), and (L2, p2).

The screening holds when type 1 consumers choose the first contract and type 2 consumers

choose the second contract.

To satisfy type 1’s IC constraint and both agents’ IR constraint, we must have

p1 ≤ β̂1δb− c < p2 ≤ β̂2bδ − c.

The first and third inequality must hold because contract 1 and 2 must be designed to

make the consumption attractive to type 1 and type 2 consumers respectively. The second

strict inequality must hold in order to make the second contract attractive to only type 2

agents.

The firm’s profit is then

Π = α(L1 + (p1 − a)1{p1<βδb−c}) + (1− α)L2. (3.2)

Since p2 > β̂1δb − c > βδb − c, in the firm’s expectation, type 2 agent will not consume

at t = 1. Whether type 1 agent consumes or not at t = 1 depends on p1. The firm’s profit
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maximization problem is then given by

max
(L1,p1),(L2,p2)

α(L1 + (p1 − a)1{p1<βδb−c}) + (1− α)L2

s.t.

U1(L1, p1, (β, β̂1)) ≥ U1(L2, p2, (β, β̂1)), (IC1)

U2(L2, p2, (β, β̂2)) ≥ U2(L1, p1, (β, β̂2)), (IC2)

U1(L1, p1, (β, β̂1)) ≥ 0, (IR1)

U2(L2, p2, (β, β̂2)) ≥ 0. (IR2)

We now proceed to prove that screening is implementable and a separating equilibrium

exists. We assume first that IR1 and IC2 binds. Note that once the agent accepts the

contract, the utility Ui(L, p) will be independent of i. Hence IC2 binding will imply IR2

binding. IC1 is clearly satisfied. Hence in optimum we will have, for all i = 1, 2,

−Li + δb− pi − c = 0. (3.3)

Plugging (3.3) into the profit function (3.2), the firm’s problem becomes

max
p1,p2

α(δb− p1 − c+ 1{p1<βδb−c}(p1 − a)) + (1− α)(δb− p2 − c)

s.t.

p1 ≤ β̂1δb− c < p2 ≤ β̂2bδ − c.

The result of the optimal separating contracts is summarized as follows.

Proposition 9. (Deterministic cost, screening contract). When the consumer’s per-

sonal consumption cost is deterministic, there exists optimal screening contracts (L1, p1), (L2, p2),

in which

p2 = β̂1δb− c+ ε, (3.4)

p1 =

 βδb− c if a ≥ βδb− c,

any number < βδb− c if a < βδb− c,
(3.5)

Li = δb− pi − c, i = 1, 2. (3.6)
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And the least upper bound of firm profit is:

Π =

 α(δb− βδb) + (1− α)(δb− β̂1δb) if a+ c ≥ βδb,

α(δb− (a+ c)) + (1− α)(δb− β̂1δb) if a+ c < βδb.
(3.7)

Remark 3. We evaluate the firm’s maximum profit by the least upper bound because, in

order to fully screen types of consumers, the IC constraint for type 2, β̂1δb− c < p2, must be

a strict inequality. Since the firm performs better by lowering p2, if we allow weak inequality,

in equilibrium IC1 and IC2 will both be binding, but then we will not be able to guarantee

the separation.

In an equilibrium when type 1 (more sophisticated) consumers decide to consume in

period 1, we have that p2 > p1 and a ≥ βδb− c = p1. That is, in such equilibrium the more

sophisticated consumer prefers a contract with a lower per-usage fee, and, furthermore, the

per-usage fee for an sophisticated consumer must be lower than the marginal operation cost

of the firm a.

The reason why p1 ≤ a is similar to that of DellaVigna and Malmendier (2004): in

equilibrium, the more sophisticated consumer is more aware of his time-inconsistency and

has less overestimation of his future usage of the product. Therefore, the firms lowers the

price p1 below a to the extent that the user is conscious about his future time inconsistency.

The difference between the per-usage price and the marginal cost, p1−a, can be regarded as

a commitment device for the more sophisticated consumer. It provides an additional utility

to guarantee a consumption for the more sophisticated consumer.

For the more naive consumer, however, the per usage price p2 may or may not exceed

the firm’s marginal cost c. Also, in the separating equilibrium, p2 > p1. To understand this,

we can perceive the firm’s profit maximization as decisions of choosing between screening

consumers and luring more naive consumers. As we have discussed, a more naive consumer

may overestimate his probability of future consumption, thus offering him a discount p for

sure (and an increase in L relative to the contract) will increase the sign-up profit from the

more naive consumers but compromise the efficacy of screening types of consumers. In order
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to distinguish consumer types, the firm needs to offer the more naive type a relatively low

entry fee and higher per-usage price. Therefore, screening the types of consumers costs the

firm profits from signing up the contracts.

Now we analyze the optimal contract and the firm’s maximum profit in the pooling

equilibrium when the firm offers a single contract.

3.3.2 Deterministic Cost: non-screening contract

If the firm decides not to screen types of consumers, she offers a single contract to any

consumer. There are two possibilities to consider. First, the firm aims for only type 2

consumers and disregards the other. That is, at t = 0, the firm provides a contract (L, p)

that yield positive net payoff for type 2 consumers but negative payoff for type 1 consumers.

We then have β̂1δb− c < p. This is not optimal: the monopoly firm can profit by lowering p

and raising L by the same amount, to the extent that type 1 consumers find it also acceptable.

Therefore, the optimal pooling contract (L, p) must satisfy

p < β̂1δb− c.

If both types sign the same contract, the firm’s profit function is then

Π = L+ 1{p<βδb−c}(p− a).

Note that 1{p<βδb−c} refers to the fact that, at t = 1, consumption takes place only when

p ≤ βδb− c, for both type 1 and type 2 consumers. The only constraint is the IR constraint,

−L+ δb− p− c = 0. It is binding under the profit-maximization assumption. Therefore,

−L+ δb− p− c = 0.

Substituting this into the firm’s profit function, the maximization problem is then given by

max
p
δb− p− c+ 1{p<βδb−c}(p− a).

We can then solve for the optimal contract. The result is summarized as follows.
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Proposition 10. (Deterministic cost, non-screening contract). When consumers’

personal consumption cost is deterministic, there exists an optimal non-screening contract

(L, p) in which

p =

 Any number < βδb− c if a+ c < βδb,

βδb− c if a+ c ≥ βδb.
(3.8)

L = δb− p− c. (3.9)

And the firm profit is

Π =

 δb− (a+ c) if a+ c < βδb,

δb− βδb if a+ c ≥ βδb.
(3.10)

In an optimal non-screening contract, when a+ c ≤ βδb, the firm offers a discounted p in

which the per-usage price, p, is lower than the marginal cost, a. This is consistent with our

previous analysis and the argument of DellaVigna and Malmendier (2004). The discounted

p is employed by the firm for two reasons: a) it is a commitment device designed for more

sophisticated consumers. The more sophisticated consumers have sufficient awareness of their

overconfidence and hence need a lower p to realize their commitment for the consumption.

b) it is a device to lure more naive consumers. The more naive consumers overestimate

their probability of consumption and hence desire a lower p. The firm can then profit from

lowering p and increasing L relative to the contract.

3.3.3 Deterministic Cost: to screen or not to screen?

In this section, we compare the firm’s profit from an optimal screening and an optimal

non-screening contract. It is summarized as follows.

Corollary 4. (Deterministic cost). When the consumers’ personal consumption cost is

deterministic, offering a non-screening two-part tariff contract yields a higher profit for the

firm. Furthermore, in the optimal non-screening two-part tariff contracts, p ≤ a.

Corollary 4 characterizes the phenomenon that, when consumers know their cost type

before signing the contract, a monopoly firm offers only a single non-screening contract. This
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can be observed in our daily life. For example, in a typical health club contract, users pay

the same flat fees but no price per visit. Although there might be multiple levels of naiveté

among consumers, the club typically offers a single annual fee contract. Moreover, health

club users pay flat fees but no price per visit, despite the club bearing marginal costs per

attendance (see, e.g., DellaVigna and Malmendier 2006).

We can associate this intuition with Esteban et al. (2007) who consider the interaction

between a monopoly firm and consumers. Consumers have temptation and it is psycho-

logically costly to exercise self-control. They show that the optimal contract motivates the

firm to offer a relatively flat and compact price schedule, serving more customers with low

demand. The main variable they study is the variation of the direction of temptation. When

a complicated menu of contract is offered (consumers are tempted), some consumers may

be tempted upward (desire the goods more) while others are tempted downward (desire

the goods less). A narrower selection (simple menu) is more profitable when consumers are

tempted in the same direction. Similarly, in our model, when a second contract with lower

p is presented, both types of consumers are tempted in the same way since their cost of

consumption is known at the decision point. Such unanimity can be exploited by the firm

by providing less selections (single contract) to the consumers.

3.4 Random Cost

In this section, we explore the case when the consumer’s personal cost of consumption

is unknown before signing the contract. We assume that, for all consumers, such cost is

drawn from a distribution F . At t = 0, a partially naive individual with parameters (β, β̂i)

overestimates the probability that his future self will consume the product at t = 1. He

expects that he will consume if βiδb−p−c ≥ 0, i.e., with probability F (β̂δb−p). The actual

probability of consumption, however, is F (βiδb− p). The difference between the forecasted

and actual consumption probability, F (β̂iδb − p) measures the degree of overconfidence. A

fully sophisticated consumer β̂i = βi has no overconfidence.
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Thus, a naive consumer with parameters (β, β̂i) evaluates a contract (L, p) using

UR
i

(
(L, p), (β, β̂i)

)
= βδ

(
−L+

∫ β̂iδb−p

−∞
δb− p− cdF (c)

)
. (3.11)

If the monopoly firm is to screen types of consumers, she offers two different contracts

(L1, p1) and (L2, p2). The firm’s profit-maximization problem is given in section 3.3.1 except

that the utility functions are under the random cost evaluation as defined in (3.11).

To solve the random cost profit-maximization problem, we first establish the single cross-

ing property. For simplicity, we twist the notation and use ui(Lj, pj) to represent the evalu-

ation of a type i consumer on a contract (Lj, pj).

Definition 4. (SCP) Let (L1, p1), (L2, p2) be two contracts such that p1 < p2. The prefer-

ences satisfy the single crossing property if

u1(L1, p1) ≤ u1(L2, p2)

implies that

u2(L1, p1) < u2(L2, p2).

The definition implies that type 2 has a stronger preference over the per-usage price p.

In order to guarantee existence of a profit-maximizing screening contract, we introduce

a technical assumption that we maintain through the rest of the paper.

Assumption 1. We assume that the density function f(c) is decreasing in c.

Assumption 1 rules out irregularity on the tails of f(c). There are many distribution func-

tions that satisfy this property. A typical decreasing density distribution is the exponential

distribution function:

f(c) =

 λe−λc c ≥ 0,

0 c < 0.

Lemma 14 and Lemma 15 establish the SCP.
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Lemma 14. Let f(c) be the density of F (c). Assume f(c) is decreasing. Then

φ(p) :=

∫ β̂2δb−p

β̂1δb−p
−p− c+ δbdF (c)

is increasing in p.

Proof. Note that

φ′(p) = −(δb− β̂2δb)f(β̂2b− p) + (δb− β̂1δb)f(β̂1δb− p)−
(
F (β̂2δb− p)− F (β̂1δb− p)

)
.

By the mean value theorem, there exists x̃ ∈ (β̂1δb− p, β̂2δb− p) such that

F (β̂2δb− p)− F (β̂1δb− p) = f(x̃)(β̂2δb− β̂1δb).

Since f is decreasing, we then have

F (β̂2δb− p)− F (β̂1δb− p) < f(β̂1δb− p)(β̂2δb− β̂1δb)

< −(δb− β̂2δb)f(β̂2b− p) + (δb− β̂1δb)f(β̂1δb− p),

which shows that φ(p) > 0.

Remark 4. The slope of φ(p) can be interpreted as the ability of the firm to distinguish

the types of consumers. As φ′(p) becomes larger, a small change of the price p can yield

a larger difference of the two types of consumers’ utility, and hence a higher ability of the

firm to differentiate the consumer types. Thus we expect that a higher φ′(p) implies a larger

profitability for the firm.

Therefore,

Lemma 15. If f(c) is decreasing, then the preferences satisfy SCP of consumer preferences.
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Proof.

u2(L2, p2) = βδ

(
−L2 +

∫ β̂2δb−p2

−∞
−p2 − c+ δbdF (c)

)

= βδ

(
−L2 +

∫ β̂1δb−p2

−∞
−p2 − c+ δbdF (c) +

∫ β̂2δb−p2

β̂1δb−p2

−p2 − c+ δbdF (c)

)

≥ βδ

(
−L1 +

∫ β̂1δb−p1

−∞
−p1 − c+ δbdF (c) +

∫ β̂2δb−p2

β̂1δb−p2

−p2 − c+ δbdF (c)

)

> βδ

(
−L1 +

∫ β̂1δb−p1

−∞
−p1 − c+ δbdF (c) +

∫ β̂2δb−p1

β̂1δb−p1

−p1 − c+ δbdF (c)

)
= u2(L1, p1).

The third inequality follows from u1(L1, p1) ≥ u1(L2, p2), and the fourth follows from Lemma

14 and that p1 < p2.

Given the SCP of consumer preference, the local downward IC constraint implies the

satisfaction of the local upward IC constraint. Moreover, in the optimal contract, downward

IC and low type IR are binding. Therefore, the firm’s maximization problem can be written

as

max
(L1,p1),(L2,p2)

α (L1 + F (βδb− p1)(p1 − a)) + (1− α) (L2 + F (βδb− p2)(p2 − a))

subject to

− L1 +

∫ β̂1δb−p1

−∞
−p1 − c+ δbdF (c) = 0, (IR1)

− L2 +

∫ β̂2δb−p2

−∞
−p2 − c+ δbdF (c) = −L1 +

∫ β̂2δb−p1

−∞
−p1 − c+ δbdF (c). (IC2)

Given the SCP, we are ready to capture the key feature of the firm’s optimal contracts

in Proposition 11

Proposition 11. (Random Cost) When the consumer’s personal consumption cost is

randomly drawn from a distribution F and Assumption 1 is satisfied, the firm’s optimal

two-part tariffs contracts (L1, p1) and (L2, p2) must satisfy
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(i) L1 ≥ L2, and p1 ≤ p2.

(ii) p2 < a.

Proof. (i): By the SCP.

(ii). The first order condition yields

(p2 − a) = −(1− β̂2)δb
f(β̂2δb− p2)

f(βδb− p2)
− F (β̂2δb− p2)− F (βδb− p2)

f(βδb− p2)
, (3.12)

and

(p1 − a) + (1− β̂1)δb
f(β̂1δb− p1)

f(βδb− p1)
+
F (β̂1δb− p1)− F (βδb− p1)

f(βδb− p1)
=

(1− α)

[
(p1 − a) + (1− β̂2)δb

f(β̂2δb− p1)

f(βδb− p1)
+
F (β̂2δb− p1)− F (βδb− p1)

f(βδb− p1)

]
.

(3.13)

Since 0 < β < β̂2 ≤ 1, the RHS of (3.12) is negative, p2 < a.

In the optimal screening contracts, the firm provides both types of consumers a discount-

ed per-usage price (p1, p2 < a), with the more sophisticated consumer a higher entry fee

(L1 > L2) and a lower per-usage price (p1 < p2), compared with the more naive consumer.

The intuition is consistent with the deterministic case. Since consumers are time-inconsistent

and tend to overestimate their future consumption probability, the firm provides a discount-

ed per-usage price (p1, p2 < a) to lure the consumers to sign the contracts. Since the more

sophisticated consumer recognizes more about her own time-inconsistency, the firm must pro-

vide a further discount (p1 < p2) to serve as a commitment device for the more sophisticated

type.
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3.4.1 Random Cost: to screen or not to screen

The firm solves the profit-maximizing problem described above and decides whether to pro-

vide a screening contract or non-screening contract. That is, if the solution of the problem

satisfies p1 < p2, then a screening contract is more profitable for the firm. If the solution

satisfies p1 = p2, then a non-screening contract is more profitable. While we did not obtain

a full analytic condition of whether screening is more profitable, Proposition 12 provides a

sufficient condition of when a screening contract dominates a non-screening contract.

Proposition 12. (Random cost, to screen or not to screen) When the consumer’s

personal consumption cost is randomly drawn from a distribution F and Assumption 1 is

satisfied, if

G(p) :=
[
F (β̂2δb− p)− F (β̂1δb− p)

]
− δb

[
(1− β̂1)f(β̂1δb− p)− (1− β̂2)f(β̂2δb− p)

]
has no root, then a profit-maximizing screening contract yields more profit than a non-

screening contract.

Proof. If the profit-maximizing contract is a non-screening contract, we have

p1 = p2 = p.

Also, by optimality, (3.12),(3.13) must be satisfied. Combining with p1 = p2 = p, we have

that

0 =
[
F (β̂2δb− p)− F (β̂1δb− p)

]
− δb

[
(1− β̂1)f(β̂1δb− p)− (1− β̂2)f(β̂2δb− p)

]
.

Proposition 12 characterizes the phenomenon that, under certain conditions, when con-

sumers do not know their cost types before signing the contract, it is optimal for the firm

to screen the types of consumers. This is in contrast with the deterministic case in which a

non-screening contract is more profitable for the firm. The reason is an uncertainty ratio-

nale. While a consumer always desires more discount in the per-usage price p, the discount
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is offset by an increase in the entry fee L. Because a consumer does not know exactly her

cost type, and she will lose too much from his sign-up fee if the draw of the cost type is

too high, the uncertainty deters a consumer from behaving too aggressively. Such behavior

narrows the consumer’s choice set. Therefore it is more convenient for the monopoly firm to

screen and profit from each type of consumer separately, because the cost to prevent choice

deviation of consumers is cheaper, compared with the case when the cost type is known.

3.4.2 Random Cost: a numerical example

In this section, we provide a numerical example of the screening problem when the cost of

consumption is unknown at t = 0.

We consider a specific density function from which the cost is drawn. Suppose the density

function satisfies a typical exponential distribution:

f(c) =

 λe−λc c ≥ 0,

0 c < 0.

The parameter λ controls the tail of the density function f(c). Figure 3.2 describes the shape

of the exponential distribution when λ has different values. If λ is bigger, consumers have a

better chance to be assigned a low cost. This implies that, as λ gets larger, the likelihood

that consumers will choose to consume in the next period is higher.
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Figure 3.2: An Example of Decreasing Density Functions

In step 1, we check if the function φ(p) =
∫ β̂2δb−p
β̂1δb−p

−p − c + δbdF (c) is increasing in p.

Figure 3.3 demonstrates a numerical example of the function φ(p). As shown in Figure 3.3,

φ(p) increases in p. Moreover, the the slope of φ(p) increases as λ increases. That is, as λ

becomes larger, the likelihood that a consumer obtains a low cost is higher, and the ability

of the monopoly firm to distinguish the types of consumers becomes larger (which can be

interpreted as a larger slope of φ(p)).
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Figure 3.3: φ(p). The plot shows the function φ(p) =
∫ β̂2δb−p
β̂1δb−p

−p − c + δbdF (c). The distribution is an

exponential distribution with parameter λ. The other parameters assigned are: β̂1 = 0.4, β̂2 = 1.

In step 2, we study whether the Single Crossing Property (SCP) holds in this model.

Suppose λ = 0.1, Figure 3.4 shows the indifference curve for both types of consumers in which

the firm provides contracts (L1, p1) and (L2, p2), with p1 < p2. The blue curve represents the

indifference curve for type 1 (more sophisticated) agent, whereas the green one represents

type 2 (more naive) agents. The Single Crossing Property (SCP) holds in this example.

Since the more sophisticated type strictly prefers a low per-usage price p, the second contract

(L2, P2) (with p2 > p1) represents a strictly lower utility for the more sophisticated consumer.
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Figure 3.4: Indifference Curves. The plot shows the indifferent curves for both type 1 and type 2

consumers. The parameters are λ = 0.1, α = .4, β = 0.3, δ = 0.9, β̂1 = 0.4, β̂2 = 1.

In step 3, we examine the numerical solution of the firm’s profit-maximization problem.

The results are provided in Table 3.1. In Table 3.1, ui(L, P ) represents the subjective utility

for type i agents, and ũi(L, p) represent the real utility for the type i agents. That is,

ũi(L, P ) = βδ(−L+

∫ βδb

−∞
(−p− c+ δb)dF (c)).

As shown in Table 3.1, we verify that, for optimality, the firm provides a screening con-

tract in which L1 > L2, and p1 < p2. Moreover, in this particular example, Li > 0 and

pi < 0. That is, the firm offers consumers a negative per-usage price p: it reimburses the

consumers when they use the product. Such “seemingly attractive” contracts are observable

in reality. For example, a sports club would charge a high entry fee and reimburse the con-

sumers when they start to use the equipments. This trick lures consumers and make it nearly

“impossible” for them to understand that, in fact, consumers lose money by accepting such

an offer (a consumer’s subjective utility ui is always larger than zero, while the real utility
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ũi is less than zero). Such a pricing scheme (screening + negative per-usage price) helps the

firm to achieve more profit. The naiver consumers (type 2), with higher subjective short-run

discount factor β̂s, are exploited more heavily in the sense that ũ2 ≤ ũ1. Nevertheless, they

subjectively interpret it in the opposite way (u2 > u1).

We also observe in this example that the firm’s profit is increasing in λ. As we argued,

screening is costly for the firm. As λ increases, consumer’s utility function becomes more

sensitive to the variation of p, hence it is cheaper for the firm to distinguish the types of

agents. Therefore, a larger λ yields a higher profit and a heavier exploiting of the more naive

type (i.e. ũ2 decreases with λ).

λ (L1, p1) (L2, p2) u1 ũ1 u2 ũ2 Profit

λ = 0.1 (7.1616, -6.4775) (5.0878, -3.7325) 0 -0.0543 0.1207 -0.1100 2.7718

λ = 0.2 (10.8572, -6.8976) (6.8438, -2.6024) 0 -0.0382 0.0692 -0.1849 4.3369

λ = 0.3 (12.7805, -7.1827) (7.5151, -1.8175) 0 -0.0193 0.0289 -0.2127 5.2585

Table 3.1: Optimal contracts and profits as λ varies. Parameters are α = .4, β = 0.3, δ = 0.9, β̂1 =

0.4, β̂2 = 1.

In step 4, we examine the effect on the firm’s optimal contract and profit as the population

varies. Table 3.2 characterizes such variations. As α increases, the population of more

sophisticated types increases. The firm ends up obtaining less profit and, in the meantime,

exploiting more heavily the more sophisticated type (ũ1 increases) and less heavily the more

naive type (ũ2 increases). The reason why the firm’s profit declines with α lies in the fact

that the firm mainly extracts profit from the more naive type. As the population of more

naive types decreases, it becomes harder for the firm to realize the profit.
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α (L1, p1) (L2, p2) u1 ũ1(L1, p1) u2 ũ2(L2, p2) Profit

α = 0.4 (7.1616, -6.4775) (5.0878, -3.7325) 0 -0.0543 0.1207 -0.1100 2.7718

α = 0.5 (6.6737, -5.8878) (5.0246, -3.7325) 0 -0.0576 0.1281 -0.1038 2.7576

α = 0.6 (6.4277, -5.5876) (4.9599, -3.6125) 0 -0.0593 0.1320 -0.1016 2.7478

Table 3.2: Optimal Contracts and Profits As α Varies. Parameters are λ = 0.1, β = 0.3, δ = 0.9, β̂1 =

0.4, β̂2 = 1.

3.5 An Extension: The Multi-period Model

In many realistic cases, including sports club, education program, etc., firms offer series of

contracts that cover multiple periods. For example, a typical gym club offers membership

privileges for different periods, with different levels of membership fees. Usually, a longer

membership costs a higher entry fee. Consumers have to decide which contract to enter:

they face a trade-off between entry fee and the time to consume. To examine this case, we

extend the 3-period model to a multi-period model.

In this model, a contract (L, T ) is represented by an entry fee, L, and the time to consume,

T, T ≥ 1. Unlike the 3-period model, we do not consider the per-usage fee in this model.

Suppose a consumer purchases a T−period contract and consumes in any period t ≤ T ,

he then pays the a random cost ct ∼ F (c), i.i.d, t = 1, 2, ...T , and enjoys the benefit in the

period t+ 1.

The consumer types, preferences, behaviors, and firm behavior are the same as the 3-

period model.

Hence at t = T − 1, a type (β, β̂i) consumer evaluates a contract (L, T ) as follows,

Ui,T−1

(
(L, T ), (β, β̂i)

)
= βδ

∫ β̂iδb

−∞
(−c+ δb)dF (c).
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At t = T − 2, she evaluates the contract as

Ui,T−2

(
(L, T ), (β, β̂i)

)
= βδ

(∫ β̂iδb

−∞
(−c+ δb)dF (c) + uT−1)

)

= βδ(1 + βδ)

∫ β̂iδb

−∞
(−c+ δb)dF (c).

By backward induction, at t = 0, the consumer evaluates the contract as

Ui,0

(
(L, T ), (β, β̂i)

)
= βδ

(
−L+ (1 + βδ + ...+ (βδ)T−1)

) ∫ β̂iδb

−∞
(−c+ δb)dF (c)

= βδ

(
−L+

1− (βδ)T

1− βδ

)∫ β̂iδb

−∞
(−c+ δb) dF (c).

Similarly, we twist the notation and use ui,t(Lj, Tj) to represent the type i consumer’s

evaluation of contract (Lj, Tj) at period t. To study the screening problem and consumer’s

choices, Lemma 16 establishes the SCP of consumer’s preferences and Proposition 13 exam-

ines the screening selections.

Lemma 16. The preferences satisfies the SCP. That is, if T1 < T2 and

u2,0(L2, T2) ≤ u2,0(L1, T1),

then

u1,0(L2, T2) < u1,0(L1, T1).

Proof. Function ϕ(T ) = 1−(βδ)T

1−βδ

∫ β̂2δb

β̂1δb
(−c+ δb)dF (c) is increasing in T, because β ≤ 1 and

δ ≤ 1.
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Suppose T1 < T2 and u2,0(L2, T2) ≤ u2,0(L1, T1),then

u1,0(L1, T1) = βδ(−L1 +
1− (βδ)T1

1− βδ
)

∫ β̂1δb

−∞
(−c+ δb)dF (c)

= βδ(−L1 +
1− (βδ)T1

1− βδ
)

∫ β̂2δb

−∞
(−c+ δb)dF (c))− ϕ(T1)

> βδ(−L2 +
1− (βδ)T2

1− βδ
)

∫ β̂2δb

−∞
(−c+ δb)dF (c))− ϕ(T2)

= βδ(−L2 +
1− (βδ)T2

1− βδ
)

∫ β̂1δb

−∞
(−c+ δb)dF (c)

= u1,0(L2, T2).

Hence the SCP holds.

The SCP implies that the low type (more sophisticated type) strictly prefers a lower

T. Given the SCP is satisfied and the fact that u2,0(L, T ) > u1,0(L, T ), consumers’ local

downward IC constraint implies a local upward IC constraint. In the optimal contract,

the downward IC and the low type IR constraint binds. The firm’s optimization problem

becomes:

max
(L1,T1),(L2,T2)

α

(
L1 −

1− δT1

1− δ
F (βδb)a

)
+ (1− α)

(
L2 −

1− δT2

1− δ
F (βδb)a

)
subject to

− L1 +
1− (βδ)T1

1− βδ

∫ β̂1δb

−∞
(−c+ δb)dF (c) = 0, (IR1’)

− L2 +
1− (βδ)T2

1− βδ

∫ β̂2δb

−∞
(−c+ δb)dF (c) = −L1 +

1− (βδ)T1

1− βδ

∫ β̂2δb

−∞
(−c+ δb)dF (c). (IC2’)

Proposition 13 characterizes the optimal contract of the monopoly firm.

Proposition 13. (Multi-period, random cost) In the multi-period model with random

cost, the firm’s optimal contract must satisfy L1 ≤ L2, and T1 ≤ T2.

Proof. Suppose that T1 > T2, and the high type’s (IC2’) constraint holds, then by the

SCP the low type’s (IC) constraint must be violated because the low type has a stronger
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preference over a low T . Therefore it must be true that T1 ≤ T2. And by profit maximization

(IR1’) and (IC2’) must bind, L1 ≤ L2.

Proposition 13 implies that the more sophisticated type selects a contract with less pe-

riods (T1 ≤ T2) and hence pays less (L1 ≤ L2). The intuition lies in the fact that since the

more sophisticated type has a more accurate estimation of her overconfidence, she chooses

the more realistic contract. The more naive type, however, overestimates his utility from

consumption and behaves more aggressively. Nevertheless, the screening success relies on

the assumption that consumers are completely unaware of the firm’s pricing scheme.

The multi-period model: A numerical example.

We study a numerical example of the multi-period model. Parameters are the same as

in section 3.4. Figure 3.5 plots consumers’ indifference curves. We can verify in the figure

that the SCP holds. In Figure 3.5, the blue line represents the indifference curve for the low

type (more sophisticated), and the green line the high type (more naive). As we argued, the

more sophisticated type strictly prefers a contract with shorter periods (L1, T1).
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Figure 3.5: Indifference Curves (Multi-period Model). Parameters are λ = 0.1, β = 0.3, δ = 0.9, β̂1 =

0.4, β̂2 = 1.

Table 3.3 (α = 0.4) provides a numerical solution for optimal contracts. Consistent with

the prediction in Proposition 13, the more sophisticated type chooses the contract with less

periods and less entry fee (T1 ≤ T2, and L1 ≤ L2). Both types of agents’ perceived utilities

(uis) are positive. However, their actual utilities (ũis) are negative. The monopoly firm

exploits the consumer’s time-inconsistency (especially on the more naive type) and attains a

positive profit. As λ increases, so consumers are more likely to have a low cost c and hence

more likely to consume in the next period, the firm’s ability to distinguish the two groups

increases. This is reflected by the fact the contracts becomes less distinctive as λ increases.

Consequently, the firm obtains more profit as λ grows.
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λ (L1, T1) (L2, T2) u1 ũ1 u2 ũ2 Profit

λ = 0.1 (2.8099, 2) (3.0335, 3) 0 -0.1319 0.2933 -0.1563 2.3784

λ = 0.2 (4.8401, 2) (5.1923, 3) 0 -0.1928 0.3497 -0.2240 4.0540

λ = 0.3 (6.3157, 2) (6.3157, 2) 0 -0.2116 0.3170 -0.2116 5.2588

Table 3.3: Optimal Contracts and Profits As λ Varies (Multi-period Model). ui represents the

perceived utility of a type i consumer and ũi the actual utility. Parameters are β = 0.3, δ = 0.9, β̂1 =

0.4, β̂2 = 1.

Table 3.4 analyzes the variation of the optimal contract and the firm’s profit as the

population changes. As shown in Table 3.4, the optimal menu of contracts may not change,

due to the constraint that T must be an integer, but the firm is strictly better off as α

decreases. This is in line with the rationale. Since the firm heavily extracts profit from the

more naive type, an increase of the population of such type strictly increases the opportunity

of exploiting.

α (L1, T1) (L2, T2) u1 ũ1 u2 ũ2 Profit

α = 0.4 (2.8099, 2) (3.0335, 3) 0 -0.1319 0.2933 -0.1563 2.3784

α = 0.5 (2.8099, 2) (3.0335, 3) 0 -0.1319 0.2933 -0.1563 2.3753

α = 0.6 (2.8099, 2) (3.0335, 3) 0 -0.1319 0.2933 -0.1563 2.3721

Table 3.4: Optimal Contracts and Profits As α Varies (Multi-period Model). ui represents the

perceived utility of a type i consumer and ũi the actual utility. Parameters are λ = 0.1, δ = 0.9, β̂1 =

0.4, β̂2 = 1.

3.6 Conclusion

This paper studied the contract design and screening problem of a monopoly firm which

interacts with consumers that are time-inconsistent and exhibits different degrees of so-
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phistication. The contracts offered are two-part tariff contracts. The consumer’s degree of

naiveté is unobservable by the firm. We identify that the consumer’s uncertainty on con-

sumption costs is a variable that determines whether the firm would like to screen or not

types of consumers. When consumers have deterministic consumption costs, a non-screening

contract is optimal for the firm, whereas when consumers have random consumption costs,

a screening contract is optimal for the firm. We characterize the optimal screening contract

and show that the more sophisticated types accept the contract that has a further discount

in the per-usage price. We then extend the model to a multi-period one and show that the

more sophisticated types prefer a contract that has shorter periods and lower entry fee.

There are three major implications that can be applied to empirical studies. First, uncer-

tainty on the consumers’ side can limit their choice set, force them to perform less aggressively

and hence decrease the screening costs for the monopoly firm. Therefore, an increase in the

uncertainty increases the likelihood that a screening contract would be offered. Second, a

discount per-usage price serves as both a commitment device and a tool to lure a naive

consumer (of any degree). A more sophisticated consumer desires more the commitment

device and therefore ask for a further discounted price. Third, the firm profits mainly by

extracting surplus from the more naive type of consumers. The firm’s profit decreases as the

population of the naive types decreases.
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