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Tibetan frogs, Nanorana parkeri, are differentiated genetically but
not morphologically along geographical and elevational gradients
in a challenging environment, presenting a unique opportunity to
investigate processes leading to speciation. Analyses of whole ge-
nomes of 63 frogs reveal population structuring and historical de-
mography, characterized by highly restricted gene flow in a
narrow geographic zone lying between matrilines West (W) and
East (E). A population found only along a single tributary of the
Yalu Zangbu River has the mitogenome only of E, whereas nuclear
genes of W comprise 89–95% of the nuclear genome. Selection
accounts for 579 broadly scattered, highly divergent regions
(HDRs) of the genome, which involve 365 genes. These genes fall
into 51 gene ontology (GO) functional classes, 14 of which are
likely to be important in driving reproductive isolation. GO enrich-
ment analyses of E reveal many overrepresented functional cate-
gories associated with adaptation to high elevations, including
blood circulation, response to hypoxia, and UV radiation. Four
genes, including DNAJC8 in the brain, TNNC1 and ADORA1 in the
heart, and LAMB3 in the lung, differ in levels of expression be-
tween low- and high-elevation populations. High-altitude adapta-
tion plays an important role in maintaining and driving continuing
divergence and reproductive isolation. Use of total genomes en-
abled recognition of selection and adaptation in and between
populations, as well as documentation of evolution along a step-
ped cline toward speciation.

gene flow | hybridization | natural selection | population genomics |
speciation

Speciation, the fundamental phenomenon underlying bio-
diversity, continues to be a central focus of research in evo-

lutionary biology. Disentangling pattern and process and gaining
an understanding of the underlying genetic mechanisms as spe-
ciation proceeds are central issues in species biology (1, 2). Most
vertebrate species arise by vicariant isolation. This form of spe-
ciation takes time and the right combination of stochastic genetic
change and natural selection (3, 4). It can occur swiftly under
certain circumstances, for example, when populations experience
rapid demographic changes (e.g., bottlenecks, expansions) (5, 6)
or when they are exposed to ecological shifts (7–9). Speciation
becomes difficult to understand when it involves many non-
exclusive mechanisms (10). Fortunately, approaches using whole
genomes or transcriptomes are opening new research pathways
(11–13).
Speciation accompanied by gene flow (i.e., without complete

geographical isolation) is thought to be common in animal
evolution (14, 15). The role of gene flow in speciation remains
controversial because it is often assumed to be an impediment to

speciation (16). However, gene flow can also facilitate evolution
and speciation by transferring adaptive genes or generating novel
genes (17). A genomic approach has the potential to identify
genes that are important for adaptation and speciation, which
often evolve more rapidly than other genes (18). Growing numbers
of studies have used genome-scale comparisons in phylogeography
and speciation [e.g., birds (19–22), fishes (23, 24), mammals (25, 26),
reptiles (27, 28)].

Significance

Central topics in evolutionary biology include uncovering the
processes and genetic bases of speciation and documenting
environmental adaptations and processes responsible for
them. The challenging environment of the Qinghai-Tibetan
Plateau (QTP) facilitates such investigations, and the Ti-
betan frog, Nanorana parkeri, offers a unique opportunity to
investigate these processes. A cohort of whole-genome se-
quences of 63 individuals from across its entire range opens
avenues for incorporating population genomics into studies
of speciation. Natural selection plays an important role in
maintaining and driving the continuing divergence and re-
productive isolation of populations of the species. The QTP is
a natural laboratory for studying how selection drives ad-
aptation, how environments influence evolutionary history,
and how these factors can interact to provide insight into
speciation.
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How organisms adapt and diversify in high-altitude environ-
ments has attracted much attention in recent years (29–31).
Because of its heterogeneous topography, inhospitable environ-
ment, and complex paleoclimate history, the Qinghai-Tibetan
Plateau (QTP) is a natural laboratory for studying adaptation
and speciation (32–35). Differences in elevation between valleys
and mountaintops often exceed 2,000 m, presenting strong eco-
logical gradients in abiotic variables, such as oxygen partial
pressure (36), UV radiation (37), precipitation (38), and ambient
temperatures (39). The periodicity of climatic oscillations affects
diverse phenomena, such as dispersal, fluctuations in population
size, and speciation (32, 40).
An endemic Tibetan frog, Nanorana parkeri, occurs in lentic

environments of the southeastern QTP along the Yalu Zangbu
River (YZR) drainage. It faces challenges that few other
amphibians experience. Not unusual for frogs, it occurs at an
elevation of 2,800 m, yet it is the only amphibian to also exist
at 5,000 m (41), where oxygen is scarce and UV radiation is
dangerously high. Western (W) and eastern (E) mitochondrial
DNA matrilines of N. parkeri diverged in the middle Pleisto-
cene and formed distinct entities with overlapping elevational
ranges (42). Three nuclear DNA loci correspond to this pat-
tern with limited admixture of E and W alleles in two localities
near their geographic boundaries (43). However, neither the
extent of gene flow nor the degree of isolation in the zone of

admixture is known. No morphological differences between W
and E have been noted (44). Clines in elevation, genetic-
morphological discordance, and mtDNA introgression in the
zone of admixture offer an unprecedented opportunity to in-
vestigate the role selection plays in driving rapid genetic
change, environmental adaptation, and the evolution of species
differences.
The annotated genome of N. parkeri (45) facilitates investi-

gations into the evolutionary drivers of population divergence,
and possibly speciation, by enabling the identification of se-
lected genes and their functions. Herein, we report on whole-
genome sequences of 63 N. parkeri individuals from across the
range of the species and decipher the genetic mechanisms that
may be responsible for driving population divergence. We re-
construct the evolutionary history of N. parkeri from a genomic
perspective, investigate the impacts of isolation and gene flow
on the process of speciation, and explore genomic conse-
quences. We also evaluate ecological factors leading to speci-
ation and identify candidate genes underlying the observed
differentiation.

Results
Sampling and Sequencing. Collection localities ranged from
2,900 to 4,900 m in elevation and covered the entire documented
distribution of N. parkeri (Fig. 1A and SI Appendix, Table S1).

Fig. 1. Sampling sites and population structure of the Tibetan frog (N. parkeri). (A) Sampling locations (ArcGIS 10.2; esri). Site numbers refer to SI Appendix,
Table S1. Colors denote the five main groups recovered from population structure and phylogenetic analyses. Gray indicates hybrid populations (25–27).
(B) PCA of all high-coverage samples. (C) Principle component plot of E samples only. (D) ML tree based on concatenated sequences. W, green; E1, purple; E2,
yellow; E3, light blue; E4, red.
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The 45 E and W individuals were sequenced for 33.77 Gb (16.89-
fold coverage) on average, and 18 individuals with mixed E and
W heritage were sequenced for 11.92 Gb (5.96-fold coverage).
Most reads were aligned (90.88% average mappable rate) to the
reference genome of N. parkeri belonging to E (45). After gen-
otyping and stringent quality-filtering, we retained 8.59 million
single-nucleotide polymorphisms (SNPs) of E and W individuals
and 6.44 million SNPs of mixed heritage.

Population Structure, Phylogeny, and Introgression. Principal com-
ponent analysis (PCA) and population structure analyses
unambiguously identify five genetic clusters. The PCA plot
separates populations W and E along the first eigenvector, which
explains 57.76% of total genetic variance (Fig. 1B). The second
eigenvector identifies subpopulations E1–E4 and explains 8.80%
of the variance. E1 and E3 comprise samples from low elevations
(∼2,900–3,300 m; localities 1–5; Fig. 1 A–C) near the Yalu
Zangbu Grand Canyon, and no obvious geographic barrier sep-
arates them. Subpopulation E2 includes samples from high ele-
vations (∼3,900–4,900 m; localities 6–8; Fig. 1 A–C). The
remaining localities, at elevations from ∼3,700–4,500 m, form
subpopulation E4. Phylogenetic analyses based on 1,000 neutral
loci (Fig. 1D) and gene tree-based coalescent (SI Appendix, Figs.
S1 and S2) methods display nearly identical topologies. Pop-
ulations W and E split into distinct branches, with subpopulation
E1 in the most basal position, subpopulation E2 following
subpopulation E1, and then allopatric units E3 and E4. Pop-
ulation structure analysis corroborates the phylogenetic analy-
ses and PCA, and identifies signs of nuclear gene flow from E
to W at their boundary (Fig. 2). Two topology-based methods
verify nuclear admixture among some of the matrilines. The
TreeMix analysis (SI Appendix, Fig. S3) and the D-statistic test
(Table 1) show gene flow within sympatric E1 and E3. A sig-
nificant signature of admixture is found between E2 and E4 (jZj >
3; Table 1).

Demography History. We used the generalized phylogenetic co-
alescent sampler (G-PhoCS) (46) to infer ancestral population
sizes, divergence times, and migration rates. We estimate the
divergence time of W and E from ∼688.3–846.0 kya (Ka) (Fig.
3A). The ancestral effective population size of E at this period
was reduced by ∼56% (SI Appendix, Table S2). Pairwise se-
quentially Markovian coalescence (PSMC) results suggest that
W was reduced by ∼50% (SI Appendix, Fig. S4). Population
expansion occurred two- to threefold until the penultimate gla-
ciation [Marine Isotope Stage 6, ∼100–200 Ka (47)]. E1 diverged
from E2–E4 at ∼181.7 Ka [95% confidence interval (CI) = 158.0–
205.4 Ka]. The time of divergence for E2 relative to E3 and E4,
and between the latter two, is estimated at 45.9 Ka (95% CI:

36.9–55.6 Ka) and 39.3 Ka (95% CI: 32.1–46.6 Ka), respectively.
We may underestimate the divergence time because the muta-
tion rate [0.776e-09 per site per year (45)] is a conservative value.
Demographic analysis shows evidence of genetic exchanges
among all subpopulations of E as well as directional migration
from E4 to W (Fig. 3A). Gene flow from the hypothesized an-
cestral population of E2–E4 into W occurred between 45.9 and
181.7 Ka (G-PhoCS analyses). Coalescent simulations of gene flow
between W and E under different migration scenarios suggest that
the inferred demographic parameters were most concordant with
the observed patterns of differentiation (Fig. 3B).

Genomic Isolation Between West and East Matrilines. We used sev-
eral statistical approaches to assess the extent of genomic differ-
entiation between W and E. High levels of differentiation between
W and E and within E are found using pairwise mean relative di-
vergence (FST) and absolute sequence divergence (dxy). The mean
FST = 0.4787 ± 0.0097 and dxy = 0.0030 ± 0.0002 values are more
than threefold higher than those among subpopulations of E (FST:
0.1405 ± 0.0322, dxy: 0.0009 ± 0.0001; Fig. 4 and SI Appendix,
Tables S3 and S4). Levels of divergence using the density of
fixed differences per site between populations (df) are about
100-fold higher than those within subpopulations of E (SI
Appendix, Table S5). The genomic landscape of divergence using
the df statistic finds large numbers of loci across the genome fixed
between W and subpopulations of E (Fig. 4A and SI Appendix,
Fig. S5).
We used a modified population branch statistic (PBS) ap-

proach to measure the extent of genomic differentiation between
W and all four subpopulations of E (Materials and Methods). The
mean PBS value of W (PBSw) is 0.5583. Neutral coalescent
simulations based on the inferred demographic model find the
top 2.5% of the observed PBSW values (ca. PBSW ≥ 0.8906; Fig.
5A) to be significantly higher than simulated neutral values (P <
2.2e-16, two-tailed Mann–Whitney test; Fig. 6). Because all five
populations of the species expanded recently (based on PSMC
analysis), we performed the simulation taking this expansion into
account; results were similar to those under the G-PhoCS model
(SI Appendix, section 1.1). Accordingly, we can identify highly
divergent regions (HDRs) of the genome with the observed
PBSw ≥ 0.8906; there are 579 regions with a total length of 39.60
Mb. The longest fragment is 350 kb, but most (76.34%) are only
a one-window-length (50 kb) fragment (SI Appendix, Fig. S6).
FST and dxy values are significantly higher in HDRs than those in
the background genome (P < 2.2e-16, two-tailed Mann–Whitney
test; Fig. 5B and SI Appendix, Table S6). The correlation be-
tween FST and dxy is significantly positive (Pearson’s R > 0.3, P <
2.2e-16; SI Appendix, Fig. S7), reflecting reduced gene flow in
these regions. A contrasting pattern between W and E occurs
with respect to nucleotide diversity (π) (SI Appendix, Table S6).
The value in HDRs of W is no less than for the rest of the ge-
nome (0.00078 vs. 0.00067) but is reduced significantly (P < 2.2e-16)
in the corresponding regions of subpopulations of E (Fig. 5B and
SI Appendix, Table S6). The reduced level of intrapopulation
diversity in HDRs suggests that selection has affected E. Relative

Fig. 2. Population structure plots with the number of ancestral clusters
(K) = 2–5.

Table 1. Admixture signatures from D-statistic tests

Test D statistic Z score

W, E1; E3, E4 −0.247 −50.868
W, E1; E3, E2 −0.264 −61.376
W, E1; E4, E2 −0.009 −2.354
W, E2; E3, E4 0.117 21.667
E1, E2; E3, E4 0.260 78.181

Populations with gene flow are denoted in boldface.
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to the genomic background, these regions also contain a signif-
icantly high derived allele frequency (DAF) (P < 2.2e-16).

Divergence of W and E Matrilines in Relation to Reproductive Isolation.
We used the annotated genome of N. parkeri to infer the func-
tions of candidate target genes within the HDRs that might re-
late to speciation. We annotated 365 protein-coding genes in the
HDRs of PBSW. Gene ontology (GO) evaluations identified
51 functional classes that were significantly overrepresented (P <
0.05; SI Appendix, Table S7). In total, 21 genes distributed among
14 GO terms have functions related to reproduction, including,
as examples, reproductive developmental process (GO:0003006),
sexual reproduction (GO:0019953), and spermatogenesis (GO:0007283)
(Table 2 and SI Appendix, Table S7).

Little Representation of E Matrilines in the Nuclear Genome Within
the Zone of Admixture. Individuals in the zone of admixture are
more closely related to W than E with respect to the nuclear

genome (SI Appendix, Figs. S8 and S9). However, all mixed in-
dividuals have the mitogenome of E (SI Appendix, Fig. S10). We
used PCAdmix to identify genomic regions from E in the ge-
nomes of the mixed individuals. The low level of E ancestry
detected (∼5.9–11.2%; SI Appendix, Fig. S11) is not caused by
systematic errors (<2%; SI Appendix, Table S8). Regions of E
ancestry occur in no less than 67% (24 of 36 haploids) of mixed
individuals. Such regions, about 1.6 Mb in size, are dispersed
randomly across the genome, with a mean length of 62 Kb. These
regions contain 31 protein-coding genes, one relevant to mito-
chondria [VDAC3 (48)], but none exhibit reduced levels of
polymorphism (0.00059 > 0.00046) or significant variation in in-
tergroup and intragroup nonsynonymous/synonymous ratios [P >
0.05, McDonald–Kreitman test (49)]. We detect no signal of se-
lection on the mitogenome in the zone of admixture (Tajima
D = −1.49, P > 0.10).

Incomplete Isolation and Gene Flow Within the Geographic Range of
E Matrilines. Levels of whole-genomic differentiation among E1–
E4 are comparatively small. Interpopulation FST values range
from 0.0974 to 0.1825, and dxy values range from 0.0007 to
0.0010 (SI Appendix, Tables S3 and S4). Mean df values within
the subpopulations range from 1.27 × 10−07 to 6.02 × 10−07 (SI
Appendix, Figs. S12 and S13 and Table S5), which corresponds to
∼1.27–6.02 fixed differences for every 10 Mb of sequence data in
compared populations. We applied the PBS statistic to identify
HDRs and then examined the features of these regions. Similar
patterns occur for each subpopulation as follows: (i) most outlier
windows (>72%) are discontinuous and one window in length
(50 kb) (SI Appendix, Fig. S6); (ii) FST and dxy values are sig-
nificantly higher than the background genome (P < 2.2 × 10−16,
two-tailed Mann–Whitney test; Fig. 5D and SI Appendix, Fig.
S14 and Table S6); (iii) π is significantly lower in HDRs rela-
tive to the rest of the genome, although the level varies among
the subpopulations (Fig. 5D and SI Appendix, Fig. S14 and
Table S6); and (iv) E1–E3 are skewed toward high frequencies
of derived variants (Fig. 5D and SI Appendix, Fig. S14 and
Table S6).

Environmental, Histological, and Physiological Divergence Affecting E
Matrilines. In a PCA of all bioclimatic variables associated with
frog sampling sites (SI Appendix, Fig. S15), PC1 explains 49.13%
of the variation. This value differs significantly between low-
elevation clades E1 and E3 and high-elevation clades E2 and
E4 (P = 3.3e-4). Histological sections of middorsal skin show
that the frogs from high elevations have a significantly greater
number of granular glands than frogs from low elevations (P <
0.05, two-tailed t test; Fig. 7A); such glands may function in re-
sponse to environmental stimuli (50). Hemoglobin (Hb) levels in
peripheral blood are correlated with elevation (P < 0.01; Fig.
7B). In contrast to Hb levels, muscular oxygen content in rela-
tively low-elevation populations is significantly higher than
muscular oxygen content in populations from higher elevations
(P < 0.01; Fig. 7C); this corresponds to the decreased oxygen
content in air.

Genes, Ecological Factors, and the Evolution of E Matrilines. Genes
from the HDRs of each subpopulation were evaluated for
functional categories that related to environmental factors. GO
enrichment analyses revealed many overrepresented functional
categories that appear to associate with adaptation to the envi-
ronment of the QTP (SI Appendix, Tables S9–S12). For instance,
Kyoto Encyclopedia of Genes and Genomes pathways and GO
categories related to metabolism (fatty acid metabolism, hsa00071),
blood circulation (circulatory system process, GO:0003013), motility
(muscle cell differentiation, GO:0042692), and immune response
(inflammatory response, GO:0006954) characterize low-elevation
E1 (SI Appendix, Table S9). GO categories associated with apoptosis

Fig. 3. Demographic inference. (A) Demographic history inferred by G-
PhoCS. Widths of branches are proportional to Ne. Horizontal dashed lines
denote posterior estimates for divergence times, associated mean values are
shown in bold, and 95% credible intervals are shown in parentheses. Arrows
indicate the direction of gene flow, and associated figures indicate the es-
timates of total migration rates. (B) Distribution of FST(W, E1) values in the
observed data and in the simulated data under different migration scenarios
between W and E. The full model shows simulation with the full set of de-
mographic parameters inferred from G-PhoCS. The no_E234 refers to the simu-
lation without the postdivergence migration from E234 to W. The no_E refers to
the simulation without current and postdivergence migration from E to W.
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(induction of apoptosis, GO:0006917) were significantly enriched in
high-elevation E2 (SI Appendix, Table S10), and response to
radiation (GO:0009314) and light stimulus (GO:0009416) were
significantly enriched in high-elevation E4 (SI Appendix, Table S11).
GO categories associated with blood circulation (GO:0008015) and
metabolism process (response to lipid, GO:0033993) are present
in low-elevation E3 (SI Appendix, Table S12).
To verify the function of the genes in HDRs, we performed

real-time quantitative PCR on seven candidate genes from three
different tissues (heart, lung, and brain). These seven candidate
genes were identified based upon what they potentially contrib-
ute to high-altitude adaptation (SI Appendix, Table S13). Four of
these differ in their levels of expression between low-elevation
and high-elevation lineages (Fig. 7D), including two related to
cardiac function in the heart [Troponin C1 Slow (TNNC1) (51)
and Adenosine A1 Receptor (ADORA1) (52)] and two hypoxia-
related genes [DnaJ Homolog Subfamily C Member 8 (DNAJC8)
in the brain (53) and Laminin Subunit Beta 3 (LAMB3) in the
lung (54)].

Discussion
Genomic Isolation and Speciation Between E and W Matrilines.
Population genomic analyses find substantial genomic isolation
between W and E, with limited directional gene flow. Gene flow
has been found only in one geographically restricted area, where
no obvious geographic barrier (e.g., mountains) exists that could
restrict dispersal. Further, the genetic patterns indicate that frogs
from both E and W cross the YZR within their ranges and reject
the null hypothesis of panmixia within a single species. Neutral
processes, including divergence, changes of current, and ances-
tral effective population size (Ne), and levels of gene flow have
the potential to explain the broad pattern of differentiation be-
tween W and E. However, the HDRs between W and E exhibit
significantly more genetic differentiation than our simulation
using the inferred history. HDRs could result from positive se-
lection and not demographic history (23). Furthermore, the
HDRs in subpopulations of E exhibit significantly lower π and
higher DAF compared with the rest of the genome (Fig. 5B),
suggesting the action of positive selection on E. Because the
HDRs of W and E harbor many genes that relate to GO cate-
gories involved in fertilization, particularly to spermatogenesis,
they likely lead to reproductive isolation by suppressing gene
flow. Studies of other species have detected the rapid evolution

of male reproductive genes, for instance, in primates (55), birds
(19), fruit flies (56), and amphibians (57). Taken together with
the fact that W, E2, and E4 occupy similar climatic environments
(SI Appendix, Fig. S15) and display no differences in morphol-
ogy, we suggest that endogenous selection is a dominant factor
building reproductive isolation, resulting in speciation between
W and E matrilines.
Populations from the geographic region of admixture between

E and W matrilines occur along a narrow valley containing a
tributary of the YZR. They have the mitogenome of E, whereas
nuclear genes of W strongly dominate. Such mitonuclear dis-
cordance is common in vertebrates (58); however, here, a cohort
of N. parkeri genomes offers an unusual opportunity to decipher
the genomic pattern and the genetic mechanism of the phe-
nomenon. Population genomic analyses reveal the E intro-
gressed regions in hybrids are small and randomly dispersed in
the genome. Those short introgressed segments suggest to us
that they formed by hybridization, and were subsequently broken
into even smaller sizes by recombination operating over many
generations (59, 60). We detect no signal of selection in either
the regions of introgression or the mitochondrial genome, and
no significant enrichment of the pathways relevant to mito-
chondria or of the GOs of genes in introgressed regions. Thus,
the mitonuclear discordance is not caused by natural selection
driven by environmental factors (29, 61, 62). A likely scenario
is establishment of reproductive isolating barriers (RIBs)
resulting from secondary contact with historical and limited
introgression after mid-Pleistocene divergence (63, 64). We hy-
pothesize that hybrids formed historically only between females
of E and males of W upon secondary contact, with hybrid females
continuing to backcross to the males of W, leading to postzygotic,
prezygotic, or both categories of RIBs.

Ecological Adaptation Within E Matrilines. E Tibetan frogs primarily
segregate into high-elevation (>3,700 m, E2 and E4) and low-
elevation (<3,700 m, E1 and E3) populations (Fig. 1A). This pattern
likely reflects an ecological stratification in the southeastern
QTP, including oxygen partial pressure (36), UV radiation (37),
precipitation (38), and ambient temperature (39). If ecological selection
is one of the forces that drives differentiation of the populations of
E, one expects to find an imprint on genomic regions involved in
ecological adaptation (27, 65).

Fig. 4. Genomic divergence associated with species formation. (A) FST distribution between W and E1 and their landscape of genomic divergence measured
by the df. Both statistics are measured from 50-kb nonoverlapping windows. Scaffolds are concatenated to reveal the whole-genomic divergence pattern.
(B) FST distribution between E1 and E2 and their landscape of genomic divergence. (C) FST distribution between E3 and E4 and their landscape of genomic
divergence.
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The HDRs of each subpopulation of E exhibit signals of se-
lection compared with the background, including low π, in-
creased dxy between populations, and DAF. GO enrichment
analyses point to environmental drivers of divergence. No clear
geographic barriers separate the low-elevation sympatric pair
E1 and E3. Although they were formed at different times (Fig.
3A), they share several GO functional categories, such as blood
circulation and metabolic processes. Given the phylogeny and
population history, these functions likely evolved independently
in each lineage. The histological, physiological, and expressional
evidence (Fig. 7) corresponds to the scenario that ecological
stratification in the southeastern QTP has greatly promoted
adaptive population diversification in situ.
In summary, N. parkeri is a useful model to investigate the

processes and genetic bases of speciation along geographic and
environmental gradients. We argue that natural selection plays
important roles in driving continuing divergence within the species,
and even in maintaining it. The extreme environments of the
Tibetan Plateau can drive the rapid evolution of species [e.g., yak
(33)]. Given the rapidity of changes and the challenging environ-
ment, the area is a natural laboratory for studying how selection
drives adaptation; how environments influence evolutionary history;
and, in some cases, how speciation can occur.

Materials and Methods
Sample Collection and Sequencing. Tibetan frogs (45 in total) were selected for
our genomic study based on matrilineal (mtDNA) genealogies (42). An ad-
ditional 18 individuals come from the area of mixed clades in a tributary of
the YZR (localities 25, 26, and 27; Fig. 1). One individual of Nanorana pleskei
was used as the outgroup taxon (66). All collections were made according to

Fig. 6. Distribution of observed genome-wide top 2.5% PBSW values
compared with the simulated PBSW values under the full model.

Fig. 5. Identification of HDRs. (A) Distribution of FST-based statistic of PBSW. HDRs in top 2.5% PBS distribution, light blue; outside HDRs, gray. (B) Com-
parisons of HDRs of PBSW in terms of FST, π, dxy, and DAF versus the genomic background. (C) Distribution of PBSE1. (D) Comparisons of HDRs of PBSE1 with the
genomic background. Asterisks designate levels of significance between HDRs and outside HDRs by a two-tailed Mann–Whitney test (*P < 0.01; **P < 1e-8;
***P < 2.2e-16).
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animal use protocols approved by the Kunming Institute of Zoology Animal
Care and Ethics Committee.

Total genomic DNA was extracted from liver, muscle, toe clips, or tadpole
samples using the phenol/chloroform method (67). For each individual, 1–3 μg
of DNA was sheared into fragments of 300–800 bp using the Covaris system.
DNA fragments were processed and sequenced using Illumina paired-end se-
quencing technology (Illumina, Inc.). The 45 nonhybrid individuals and the
outgroup taxa were sequenced to a target depth of 15×, and the 18 hybrid
individuals were sequenced to target depth of 5×. The raw sequence data from
this study have been submitted to the Genome Sequence Archive (gsa.big.ac.cn/)
under accession nos. CRA000919 (N. parkeri) and CRA000918 (N. pleskei).

SNP Calling and Filtering. Raw sequence reads of each individual were
mapped to the Tibetan frog reference genome (45) using BWA-ALN (v.0.7.4) (68)
with default parameters. SAMtools (v.0.1.18) was used for sorting and removing
PCR duplicates (69). To minimize false-positive SNP calls around indels, local
realignment around indels was performed using the Genome Analysis Tool Kit
(v.2.6-5) (70). Raw SNPs were extracted using SAMtools on the locally realigned
BAM files with the command “samtools mpileup -q 20 -Q 20 -C 50 -uDEf.”

To obtain high-quality genotype calls for downstream analyses, we kept
SNPs that met the following criteria: (i) sites were at least 5 bp away from a
predicted insertion/deletion, (ii) the consensus quality was ≥40, (iii) sites did
not have triallelic alleles and indels, (iv) the depth ranged from 2.5 to 97.5%
in depth quartile, (v) SNPs had minor allele frequencies ≥ 0.01, and (vi) SNPs
occurred in more than 95% of high-coverage individuals (nonhybrids) and
75% of medium-coverage individuals (hybrids). The filtered data were
phased using Beagle v.3.3.2 (71).

Population Structure, Phylogenetic Inference, and Admixture Analyses. We
used PCA and population structure analysis to evaluate the genetic struc-
turing of frogs. SNPs in scaffolds longer than 500 kb were extracted; they
occupied about 76% of the entire genome. PCA was performed using the
package GCTA (v.1.24.2) (72). The genomic ancestry of each individual was
inferred using Frappe (v.1.1) (73). To avoid the effect of linkage disequilib-
rium, we selected one SNP for each interval of 50 kb. The postulated number
of ancestral clusters (K) was set from two to five, and the maximum number
of expectation-maximization iterations was set to 10,000.

Phylogenetic relationships were inferred via both coalescent and con-
catenation methods. To minimize the effects of potential alignment errors
and regions with strong natural selection, we performed these analyses on
putatively neutral genomic regions by filtering out the positions with re-
peat sequences, exons, and the 10 kb flanking them on each side. We
randomly selected 1,000 neutral loci with a window size of 100 kb from the
intergenic region. First, we reconstructed individual gene trees for each
window based on the maximum likelihood (ML) approach using RAxML
(v.8.1.15) (74). Support values for each node were inferred using 100 rapid
bootstrap replicates based on the GTRGAMMA model. Second, for gene
tree-based coalescent analysis, species trees were generated using MP-EST
(75) and STAR (76, 77) and using population as the units of the tree tips. Third,
for the concatenation analysis, ML trees were constructed based on the
GTRGAMMA model using the concatenated sequences from the same set.

To infer admixture events, we applied the D-statistic using the qpDstat
module in the ADMIXtools package (78). We also adopted a tree-based
approach, which was implemented in TreeMix (79), to verify the existence
of gene flow through modeling the migration values set from 0 to 4 with a
block of 5,000 SNPs.

Demographic Analysis Using G-PhoCS and PSMC. G-PhoCS (46) was employed
to infer the complete demographic history for N. parkeri, including population
divergence times, ancestral population size, and migration rates based on
1,000 neutral loci (80). The parameters were inferred in a Bayesian manner using
Markov Chain Monte Carlo to jointly sample model parameters and genealogies
of the input loci (46). Migration scenarios were added by combining results of D-
statistic tests, Frappe, and TreeMix because G-PhoCS often have limited ability to
characterize complex migration scenarios (81). Additionally, two postdivergence
migration bands were added to test if gene flow occurred betweenW and E since
they separated. Each Markov chain was run for 2,000,000 generations while
sampling parameter values every 20th iteration. Burn-in and convergence of each
run were determined with TRACER 1.5 (82). More information about the control
file of G-PhoCS is provided in SI Appendix, section 1.2. Divergence times in units of
years, effective population sizes, and migration rates were calibrated by the es-
timates of generation time and neutral mutation rate from previous studies (45,
83). We repeated the G-PhoCS analysis with four separate runs to obtain reliable
and stable estimates for the demographic parameters. To validate the G-PhoCS
inferences and test if the differential gene flow to W was correctly identified, we
usedms (84) to perform simulations under different migration scenarios between
W and E (SI Appendix, section 1.3). We used the inferred demographic parameters
to produce 50 Mbp of sequences and compared the observed patterns of dif-
ferentiation for W–E1 with those under different migration scenarios.

The trajectory of demographic histories for the five populations of Tibetan
frogswas inferred by the PSMCmodel (85). Because PSMChas high false-negative
rates at low sequence coverage, we restricted this analysis to the individual in
each group with highest coverage (≥15×). In addition, a correction factor (-N)
was invoked to correct for the false-negative rate caused by the shallow se-
quence depth (80). The PSMC analysis was set as the following parameters: -N25
-t15 -r5 -b -p “4+25 * 2+4+6”. A bootstrapping approach with 100 replicates was
performed to assess the variation in the inferred Ne trajectories. A generation
time of 5 y and a neutral mutation rate of 0.776e-09 per site per year were used
to convert the population sizes and scaled time into real sizes and time (45, 83).

The program fastsimcoal2 (86) was used to estimate the extent of pop-
ulation expansion within 30,000 y based on the model of G-PhoCS. Fifty time
simulations were performed, and the result with the highest likelihood was
kept. For each run, demographic estimates were obtained from 100,000
simulations (-n 100,000) and 40 expectation/conditional maximization cycles
(-L 40) per parameter file.

Inference of Mitochondrial Phylogeny and Hybrid Ancestry Assignment. We used
BWA-ALN (v.0.7.4) to map all raw sequence reads from each individual to the
previously assembled complete mitochondrial genomes of N. pleskei (87), the
closest relative of our Tibetan frog. SNPs were identified and filtered based on
the same nuclear genome. The matrilineal (mitochondrial) genealogy was
inferred using theMLmethod based on the GTRGAMMAmodel implemented in

Table 2. GO analysis of genes located in regions that strongly differentiated W from all four
subpopulations of E

Category Term No. of genes P value

Cluster 1 GO:0048538∼thymus development 5 0.00
GO:0048534∼hemopoietic or lymphoid organ development 12 0.01
GO:0002520∼immune system development 12 0.01

Cluster 2 GO:0003006∼reproductive developmental process 15 0.00
GO:0048610∼reproductive cellular process 11 0.00
GO:0048609∼reproductive process in a multicellular organism 18 0.01
GO:0032504∼multicellular organism reproduction 18 0.01
GO:0019953∼sexual reproduction 17 0.01
GO:0007281∼germ cell development 7 0.01
GO:0007276∼gamete generation 15 0.01
GO:0048232∼male gamete generation 12 0.02
GO:0007283∼spermatogenesis 12 0.02

Cluster 3 GO:0035270∼endocrine system development 6 0.01
GO:0030325∼adrenal gland development 3 0.01

Annotation clusters with an enrichment score of ≥2 are shown.
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RAxML (v.8.1.15) (74). PCAdmix (88) was used to identify the ancestries in each of
the 18 hybrid individuals. We used W and E4 as the ancestral populations be-
cause they were the geographically closest populations and showed the
highest signal of admixture in the f3 test. To prevent high-linkage blocks
from having excessive influence on the inferred ancestry of a region, SNPs
were thinned with r2 > 0.80 in all ancestral and admixed groups. PCA was
performed using a window of 40 SNPs. A default calling threshold of 0.9 was
used as the criterion to assign ancestry. However, systematic errors, such as
incomplete lineage sorting and estimation errors, may have contributed to
similar introgression signals in the PCAdmix analysis. To estimate these, we
reanalyzed the PCAdmix analysis using non-E4 individuals as hybrids.

Inference HDRs. Genomic differentiation was calculated based on the PBS
under the topological transformation described previously (89). The PBS
value estimates the amount of sequence change along a population branch
since its divergence from other branches of a population tree. First, pairwise
FST statistics were calculated using Weir and Cockerham’s method (90),
implemented in VCFtools v0.1.11 (91), with nonoverlapping 50-kb genomic
windows. Negative values of FST were treated as 0. Windows less 20 kb in
length were excluded for further analysis. A log-transformation FST was used
for the PBS calculation (92). The length of the branch leading to W since the
divergence from all subpopulations of E was estimated as follows:

The length of the branch leading to E1 since the divergence from the
remaining subpopulations of E clades was then estimated as follows:

PBSE1 =
2TðE1,E2Þ + TðE1,E3Þ + TðE1,E4Þ − TðE2,E3Þ −TðE2,E4Þ

4
.

Calculations for branch lengths leading to subpopulations E2, E3, and
E4 were similar to the equation for E1. HDRs were defined as the upper
2.5% of each PBS distribution. To avoid the potential assembly or map-
ping errors at the ends of scaffolds, we further removed high divergence
peaks less than two consecutive windows in both ends of scaffolds in
both sides.

Characterization of HDRs in Terms of dxy, df, π, and DAF. In addition to FST and
PBS, we applied several population genomic parameters to quantify and
compare the outlier windows with the background genome, including the
following: dxy between populations (93), df between populations (19),
within-population π level (19, 23, 91), DAF, and population-scaled re-
combination rates (ρ). We treated N. pleskei as the outgroup when comparing
differences in DAF between W and E, and treated three nonadmixture W in-
dividuals (Fig. 2) as the outgroup when comparing DAF differences among
subpopulations of E.

Fig. 7. Morphological and physiological changes associated with elevation. (A) Bar plots of the differences in numbers of granular glands in the middorsal skin
between low-elevation (2,968 m, E1) and high-elevation (4,859 m, E4) populations (two-tailed test: P < 0.05). (B) Hb levels (grams per deciliter) at different el-
evations. Red lines show the best-fit regression line based on a third-order polynomial equation. The 95% confidence interval is shown in gray. (C) TOC (μmol/L) in
low (E1) and high (E4) elevations. (D) Expression level of DNAJC8 in the brain, TNNC1 and ADORA1 in the heart, and LAMB3 in the lung from low-elevation (E1)
and high-elevation (E4) populations of E, respectively. Eight replicates were performed for each group. Statistically significant differences in differential expression
are indicated by asterisk(s) (two-tailed t test: *P < 0.05; **P < 0.01).

PBSWest =
3TðWest, E1Þ + TðWest, E2Þ + TðWest, E3Þ + TðWest, E4Þ −TðE1,E2Þ −TðE1,E3Þ −TðE1,E4Þ

6
.
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GO Enrichment Analysis. GO enrichment analysis was performed using
DAVID (Database for Annotation Visualization and Integrated Discovery)
(94). GO terms with less than two genes were excluded from further
analysis. GO terms with a P value <0.05 were considered to be significantly
enriched.

Phenotype Data from Physiological and Morphological Detection. Hb levels and
tissue oxygen content (TOC) were collected in the field during June and July
2015. Measurements were taken in five communities in E along an ele-
vation gradient: Nyingchi (29.61°N, 94.36°E, 2,968 m above sea level),
Lhasa (29.67°N, 90.88°E, 3,671 m above sea level), Zhaxigang (29.75°N,
91.95°E, 4,011 m above sea level), Riduo (29.70°N, 92.23°E, 4,368 m above
sea level), and Milashankou (29.80°N, 92.34°E, 4,859 m above sea level). At
least 10 individuals were measured for each community. Hb level in peripheral
blood was measured from 53 adult frogs, and muscular oxygen content was
measured from 69 adult frogs. Hb was determined using Mission Plus Hb,
immediately after drawing blood from the heart ventricle. TOC was de-
termined via a fiber optic cable (PreSens Precision Sensing GmbH). We also
made histological sections of the middorsal skin of seven frogs from the
communities of Nyingchi and Milashankou, which represented populations
from E at low and high elevations, respectively. The tissues were fixed in
Heidenhain’s Susa fixative to make paraffin sections (5 μm thick).

RNA Isolation and Reverse Transcriptase PCR Assay. Total RNAs from pop-
ulations at low (Nyingchi, 2,968 m) and high (Milashankou, 4,859 m) elevations
of E were extracted using the TRIzol total RNA extract kit (Tiangen). Reverse
transcription was carried out using the Fermentas RevertAid First-Strand cDNA
synthesis kit (Fermantas) to prepare templates for real-time quantitative PCR.
The primers of candidate genes used for real-time PCR are displayed in SI
Appendix, Table S14. Actin, Beta (ACTB) was used as a loading control.
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