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a b s t r a c t

PM2.5 is one of the most studied atmospheric pollutants due to its adverse impacts on human health and
welfare and the environment. An improved model (the chemical mass balance gas constraint-Iteration:
CMBGC-Iteration) is proposed and applied to identify source categories and estimate source contribu-
tions of PM2.5. The CMBGC-Iteration model uses the ratio of gases to PM as constraints and considers the
uncertainties of source profiles and receptor datasets, which is crucial information for source appor-
tionment. To apply this model, samples of PM2.5 were collected at Tianjin, a megacity in northern China.
The ambient PM2.5 dataset, source information, and gas-to-particle ratios (such as SO2/PM2.5, CO/PM2.5,
and NOx/PM2.5 ratios) were introduced into the CMBGC-Iteration to identify the potential sources and
their contributions. Six source categories were identified by this model and the order based on their
contributions to PM2.5 was as follows: secondary sources (30%), crustal dust (25%), vehicle exhaust (16%),
coal combustion (13%), SOC (7.6%), and cement dust (0.40%). In addition, the same dataset was also
calculated by other receptor models (CMB, CMB-Iteration, CMB-GC, PMF, WALSPMF, and NCAPCA), and
the results obtained were compared. Ensemble-average source impacts were calculated based on the
seven source apportionment results: contributions of secondary sources (28%), crustal dust (20%), coal
combustion (18%), vehicle exhaust (17%), SOC (11%), and cement dust (1.3%). The similar results of
CMBGC-Iteration and ensemble method indicated that CMBGC-Iteration can produce relatively appro-
priate results.

© 2017 Elsevier Ltd. All rights reserved.
1. Introduction

In the past decade, airborne particulate matter (PM) has become
one of the most important pollutants in the world due to its serious
effects on visibility (Kanakidou et al., 2005), global climate change
(Seinfeld and Pandis, 1998), and human health (Monn, 2001; Nel,
2005; Lim et al., 2012). For example, some reports have demon-
strated that PM could lead to asthma and cardiovascular diseases by
entering into the human respiratory tract and lungs (Arruti et al.,
2011; Nelin et al., 2012; Van Ryswyk et al., 2014; Wang et al.,
e by Eddy Y. Zeng.
2017). It can also cause visibility degradation through the scat-
tering and absorption of solar radiation (Hinwood et al., 2014;
Revuelta et al., 2014; de Paula et al., 2015; Liberda et al., 2015).
PM, especially PM2.5, (particles with an aerodynamic diameter of
<2.5 mm) pollution is becoming more severe with rapid economic
and industrial development (Chen et al., 2015; Singh et al., 2017).
PM2.5 emitted directly from natural and anthropogenic activities
usually varies in toxicity because PM2.5 is a complex mixture of
pollutants with different physical, chemical, and biological com-
positions (Zhou et al., 2011; Krall et al., 2013). It is necessary to
understand the potential emission sources that contribute to the
increasing daily PM2.5 levels (Zheng et al., 2005). The results of
source apportionment can provide policy makers with scientific
information, help establish regional emission control strategies,

mailto:fengyc@nankai.edu.cn
http://crossmark.crossref.org/dialog/?doi=10.1016/j.envpol.2017.10.007&domain=pdf
www.sciencedirect.com/science/journal/02697491
http://www.elsevier.com/locate/envpol
https://doi.org/10.1016/j.envpol.2017.10.007
https://doi.org/10.1016/j.envpol.2017.10.007
https://doi.org/10.1016/j.envpol.2017.10.007


G. Shi et al. / Environmental Pollution 233 (2018) 1058e1067 1059
and design efficient management measures.
Receptor models are the most commonly used source appor-

tionment (SA) techniques (Kong et al., 2010a; Pant and Harrison,
2012; Belis et al., 2013; Heo et al., 2017), which identify and
apportion atmospheric pollutant emissions by solving a mass
conservation equation (Schauer et al., 1996; Kong et al., 2010b; Pant
and Harrison, 2012). Historically, receptor models mainly include
the chemical mass balance (CMB) model (Watson, 1984, Watson
et al., 2002) and factor analytic (FA) approaches such as positive
matrix factorization (PMF) and UNMIX (Hopke, 2003; Kong et al.,
2012; Hasheminassab et al., 2014; Bari and Kindzierski, 2016; Shi
et al., 2016a). The CMB model uses an effective variance least
squares approach and is only applicable when the number and
nature of the sources are known (Watson et al., 2002). CMB has
been widely used in SA applications in several regions of the world
(Chen et al., 2007; Zheng et al., 2007; Harrison et al., 2011;
Gugamsetty et al., 2012; Shi et al., 2012). Studies have compared
receptor model results. Shi et al. (2014) developed multiple com-
bined models, including the PCA/MLR-CMB, Unmix-CMB and PMF-
CMB models, which indicated the combination of various methods
could provide more information for source apportionment than
individual methods (Shi et al., 2014). Cesari et al. (2016a) compared
PMF and PCAmodels. The results showed that PMF results typically
have good stability, while PCA results are more sensitive to chem-
ical components. In addition, Cesari et al. (2016b) showed that SA,
based on several receptor models, could get more stable results
than a single model. These receptor models consider the physical
and chemical characteristics of PM to identify source categories and
apportion their contribution; however, gaseous pollutants are not
involved.

An improved CMB approach, called CMB-GC, uses CMB and in-
troduces ambient gas-phase pollutants (SO2, CO, NOx) to constrain
results (Marmur et al., 2005). CMB-GC takes into account gaseous
pollutants, increasing the discrimination of the sources. Source
indicative ratios including SO2/PM2.5, CO/PM2.5, and NOx/PM2.5 are
used as constraints, which assist in identifying emission sources
that may have similar PM2.5 emissions but may have significantly
different gaseous emissions. More accurate results are obtained by
incorporating gaseous pollutant constraints. However, CMB-GC
does not incorporate the uncertainty of the source profiles and
the receptor data. Uncertainty estimates are key parameters in SA,
and practice has shown that uncertainty substantially impacts SA
results (Belis et al., 2015a, 2015b; Shi et al., 2016b). In the field of
environmental science, uncertainty can represent the physical re-
ality, and various types of information can be communicated to the
model (Paatero and Tapper, 1994; Cheng and Sandu, 2009). The
uncertainty of receptor data is influenced bymany factors including
ambient sampling, instrumentation, sample analysis, and data
processing. In addition, source profile uncertainty is also caused by
source category errors. Uncertainty is a very important parameter
for ambient samples, and model results are more stable after
incorporating uncertainties. (Lee and Russell, 2007).

In this study, an improved model CMBGC-Iteration was derived
from the CMB-GC model. The uncertainties of the ambient dataset
and source profiles were incorporated into the iterative solution.
The convergence results were obtained and made the results of the
source apportionment more stable. The improved model was then
applied to a specific receptor data set. We evaluated the emission
source contributions to PM2.5 using the CMBGC-Iteration model
and compared source apportionment results with multiple recep-
tor models including CMBGC, CMB-Iteration, CMB models, PMF,
NCAPCA, and WALSPMF.

To summarize, the main research contents of this paper are: (1)
proposing an improved CMBGC-Iteration model; (2) using the
improved model to identify and characterize emission source
categories and evaluate contributions of each source to PM2.5; (3)
comparing the source apportionment results from CMBGC-
Iteration with multiple models results for the same set of
ambient data. Overall, results from various models and approaches
along with model uncertainties can be used together to calculate
ensemble-average source impacts.

2. Material and methods

2.1. The data for source apportionment

The sampling site (39�110N, 117�170E) is in a large industrial city
Tianjin which is in the eastern part of the North China Plain,
covering an area of about 11,300 square kilometers. By the end of
2015, the city's residential population was 15.47 million (data from
the Tianjin Statistical Information Net). The monitoring site is one
of the busiest traffic roads in Tianjin city. The study area is
composed of a dense, mixed residential and commercial area, many
premier educational institutes, and hospitals. Overall, this area has
extensive human activities and heavy traffic.

Ambient PM2.5 samples were collected on the roof of a labora-
tory building about 15 m high, and the sampling activities took
place during the period from April 2014 to January 2015. A four-
channel low volume air sampler (with flow of 16.7L/min) was
used while the PM2.5 samples were simultaneously collected by
two of the four channels: one with quartz filters (diameter 47 mm)
and the other with polypropylene membrane filters (diameter
47 mm). The sampler maintained a continuously running 24 h cy-
cle, and filters were changed every 12 h at 8:00 (local time) in the
morning and evening every day. A total of 228 valid PM2.5 samples
(the sum of quartz fiber filter samples and polypropylene mem-
brane filter samples) were obtained during the sampling campaign.
The quartz fiber filters were used for analyzing OC, EC, and water-
soluble ions, and the polypropylenemembrane filters were used for
measuring elemental composition. Sample storage and chemical
analysis methods are described in detail in our previous studies
(Tian et al., 2013, 2016a) and supplementary material. One-
hundred and fourteen receptor data points were obtained.

2.2. Principle of CMBGC-Iteration

The traditional CMB model is based on the chemical mass bal-
ance method. The source contributions are analyzed by deter-
mining the relationship between chemical species in PM2.5,
sources, and observations. The chemical mass balance (CMB) re-
ceptor model developed by the USA-EPA (EPA, 1987) has been
widely used to identify potential source categories and source
contributions of PM10 and PM2.5 (Watson,1984; Samara et al., 2003;
Chen et al., 2007). The CMB model requires both ambient mea-
surements and knowledge of the emission sources (source pro-
files). Under the assumption that reactions do not occur among the
chemical species, the CMB model establishes a balance between
emission sources and the ambient receptor data and then estimates
the source contributions to PM (The USEPA, 2006; Louie et al.,
2005; Watson et al., 2008). The CMB model can be expressed as
follows:

Ci ¼
XJ
j¼1

Fij,Sj (1)

where J is the total number of emission sources; Ci is the ith species
concentration measured at the ambient receptor; Fij is the relative
concentration of ith species in the jth source; and Sj is the contri-
bution of jth source. The details of the CMB model are provided



G. Shi et al. / Environmental Pollution 233 (2018) 1058e10671060
elsewhere (The USEPA, 2006; Yatkin and Bayram, 2008).
CMB-GC (also called CMB-LGO, CMB-Lipschitz Global Opti-

mizer) is an extension of the CMB model. According to Marmur's
work (Marmur et al., 2005), gas-to-particle ratios can be used for
source identification, such as the SO2/PM2.5, CO/PM2.5, and NOx/
PM2.5 ratios. Therefore, the principle of the CMB-GC model is
dependent on the chemical mass balance method (Chow et al.,
2007; Watson et al., 2001, 2008). This updated model can better
quantify source contributions by incorporating gas constraints
(Marmur et al., 2005).

The CMBGC-Iteration model is an improved version of the CMB-
GC model. Compared with CMB-GC, the uncertainties of sources
and observations are included in the solution of CMB-LGO, and the
iteration produces more stable results. The detailed process of the
CMBGC-Iterationmethod is described as follows, where superscript
k is used to show the value of a variable at the kth iteration (in each
iterative step, six stages are involved):

Stage (1). At the beginning of the calculation, set the initial es-
timate of source contributions to zero.

s0j ¼ 0 (2)

Stage (2). Calculate the “effective variance” vki based on the
uncertainties from sources and observations.

vki ¼ s2ci þ
XJ
j¼1

�
skj
�2

,s2fij i ¼ 1;…n; j ¼ 1;…m (3)

The variables used are defined as: sci is the standard deviation of
the ci measurement; s2fij is the standard deviation of the fij mea-
surement; ci is the concentration (mg/m3) of the ith chemical spe-
cies in the daily measurement; fij is the chemical profile of jth
source category, indicating the fraction (g/g) of ith chemical com-
pound in the jth source category; and J is the number of the source
categories. Variables ci, fij, sci , and sfij are the input data of themodel
while sj is the estimation.

Here, s2ci represents the uncertainty in the observation whileP ðskj Þ
2
,s2fij describes the uncertainty of all the sources. Therefore,

vki can provide uncertainties of both the sources and observations. It
should be noted that in Eq. (3), the source contribution skj is
involved in the calculation, and its values are indicators of the
convergence of the iteration.

Stage (3). Calculate the weighted source profile using the
“effective variance matrix” and observed concentrations.

In SA studies, the chemical species concentrations (mg m�3) in
the raw data should be weighted (usually by the standard devia-
tion) to ensure the stability of the dataset. For example, consider
two species such as Al and Si, both with a concentration of 10 mg/
m3; however the standard deviation for Al is 5 while Si is 2 mg/m3.
These two species should be weighted by their standard deviation.
This way Al can be somehow down-weighted (due to its high un-
certainties) compared with Si.

Here, raw source profiles and observations are weighted by vki :

�
c*i
�k ¼ ci

� ffiffiffiffiffi
vki

q
;

�
f *ij
�k ¼ fij

� ffiffiffiffiffi
vki

q
(4)

where ðc*i Þ
k is the weighted concentration of the observations, and

ðf *ij Þ
k is the weighted source fingerprint. After stage (3), all of the

chemical species in PM2.5 would be up- or down-weighted by the
uncertainties. It should be noted that the weighted source profiles
(and weighted observations) would change greatly during some
iterative steps at the beginning, while being constant (only slightly
varying) at the last two steps of iteration, which can also show the
convergence.
Stage (4). Calculate source contributions based on the chemical
mass balance and the gas-to-particle ratio constraint.

First, a balance between the sources and observations (receptor)
is established:

�
c*i
�k ¼ XJ

j¼1

�
sj
�kþ1

,
�
f *ij
�k

(5)

where ðsjÞkþ1 is the estimated contribution of the jth source at the
kth step.

In Eq. (5), gas-to-particle ratio constraints help identify source
contributions. For each source category, the emitted gas concen-
trations can be calculated as (using SO2 as an example):

½SO2�j ¼
�
sj
�kþ1

,RSO2
j ; RSO2

j ¼
�

SO2

PM2:5

	
j

(6)

where [SO2] is the estimated concentration of SO2 from the jth
source category, and RSO2

j is the gas-to-particle ratiodthe ratio of
SO2 to PM2.5 from jth emission source. Here, RSO2

j is an input for the
model.

Continuing with the example for SO2, the relationship between
ambient observations and sources of SO2 can be explained as
follows:

n,½SO2�ambient ¼
XJ
j¼1

½SO2�j (7)

where ½SO2�ambient is the observed SO2 concentration, and n is the
bound factor. To account for possible transformations (photo-
chemical reactions) of gases during transport (from sources to
ambient), we use Eq. (7) as a bound for an acceptable solution
(Marmur et al., 2005). According to Marmur's work, the bound
factor n is recommended as three.

Thus, the task of CMBGC-Iteration is to resolve Eqs. (5) and (7).
Here, the global optimization program is used. The objective of
global optimization is to find the best solution of nonlinear decision
models with the possibility of multiple locally optimal solutions
(Marmur et al., 2005). The MATLAB tool was used to solve the
governing source apportionment equations.

Stage (5). Evaluate the convergence of the model.

If j(sjkþ1 - sjk)/sjkþ1j > 0.01, go to stage (2).
If j(sjkþ1 - sjk)/sjkþ1j < 0.01, convergence, go to stage (6).

Stage (6). Calculate the performance index which is similar to
those of EPACMB 8.2 (The USEPA, 2006).

The equations for determining the performance index are
described in Eqs. (8)e(10):

s2sj ¼
�
F 0
�
Vk

��1
Fjj

	�1
(8)

where ssi is the uncertainty of jth source contribution; F is the
matrix of source profiles (F0 is the transport matrix of F)’; and Vk is
the matrix of v. Eq. (9) is described as:

c2 ¼ 1
I � J

XI
i¼1

2
4
0
@Ci �

XJ
j¼1

�
fij sj

�2.
vi

3
5 (9)

where I is the number of the chemical species used for fitting. A c2

value of less than 4 indicates a good result. Eq. (10) is described as:



Table 1
Concentrations of chemical species during the sampling campaign.

species mean SDa max min

(mg m�3) (mg m�3)

Na 0.7 0.7 5.1 0.1
Mg 0.6 0.7 4.8 0.0
Al 1.7 1.6 10.8 0.3
Si 4.8 5.4 32.2 0.2
K 1.6 1.3 8.4 0.2
Ca 2.3 2.2 11.1 0.1
Ti 0.1 0.1 0.5 0.0
Cr 0.1 0.1 0.6 0.0
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R2 ¼ 1�
h
ðI � JÞc2

i,"Xn
i¼1

c2i
.
vi

#
(10)

where R2 is in the range of 0e1. A R2 greater than 0.8 indicates a
satisfactory performance.

The CMBGC-Iteration software package was complied using
MATLAB which can be freely obtained from the author (nksgl@
nankai.edu.cn) or downloaded from authors’ research websites
(http://env.nankai.edu.cn/air/list/?110_1.html or http://russell
group.ce.gatech.edu/node/16?destination¼node/16).
Mn 0.1 0.2 1.7 0.0
Fe 1.4 1.5 0.1 0.1
Ni 0.1 0.1 0.9 0.0
Cu 0.1 0.2 0.9 0.0
Zn 0.5 0.5 2.5 0.0
Pb 0.1 0.1 0.5 0.0
SO4

2- 14.1 13.6 63.4 0.4
NO3

� 7.6 8.2 34.8 0.1
NH4

þ 7.7 7.3 33.3 0.2
OC 11.8 9.5 60.9 0.7
EC 5.0 5.8 52.6 0.3

a SD: standard deviation.
3. Results and discussion

3.1. Characteristics of air pollutants

3.1.1. Ambient PM2.5 and chemical species concentrations
A total of 114 ambient data of PM2.5 were obtained by offline

sampling from April 2014 to January 2015. The time series of PM2.5
concentrations measured in Tianjin is plotted in Fig. 1. The daily
PM2.5 concentrations ranged from 13 to 275 mg m�3. The annual
average concentration of PM2.5 was 87 mg m�3, which was different
from those in previous studies in Tianjin (Tian et al., 2016b; Wu
et al., 2015; Chen et al., 2015). Compared with other regions, the
PM2.5 concentration levels in this study were lower than those in
Beijing (Zíkov�a et al., 2016). In Sun's studies, the average concen-
tration of PM2.5 from 1999 to 2011 was 37 mg m�3 in Hong Kong
(Sun et al., 2015). In New York (USA), the mean PM2.5 concentration
was only 8 mg m�3 (Hopke et al., 2015), which is far lower than that
in Tianjin. Knowing this, there are still many actions to be taken to
reduce PM2.5 emissions. Fall and winter had relatively higher PM2.5
concentrations at 118 and 82 mg m�3, respectively, while spring and
summer had relatively lower PM2.5 concentrations at 66 and
65 mg m�3, respectively. This may be due to the variability in the
influence of emission sources and meteorological condition over
different seasons.

In this study, 19 major abundant chemical components of PM2.5
were analyzed. These chemical components included inorganic
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the lowest percentage was 17% in autumn. The mean OC concen-
trationwas 12 mgm�3 accounting for 15% of the total PM2.5 and 70%
of the TC (Total Carbon). EC varied from 0.33 to 19 mg m�3 with a
mean value of 5.0 mg m�3 and contributed to 5.8% of the total PM2.5
and 30% of the TC. A similar value was found in previous studies in
Tianjin (Gu et al., 2010). Concentrations below the detection limit
were replaced by 1/2 of the detection limit values, and their un-
certainties were set at 5/6 of the detection limit values (Kim et al.,
2003). Missing values were replaced by the geometric mean of the
measured values, and their accompanying uncertainties were set at
4 times the mean value (Kim et al., 2003). In this study, 5% of the
values were below the detection limit while the missing values
accounted for 3%.

In this study, Si, Al, Ca, Fe, SO4
2�, NO3

�, NH4
þ, OC and EC were the

main chemical species in the PM2.5, and these components pre-
dominantly come from crustal dust, coal combustion, vehicle
exhaust, and secondary formation. Si and Ca were more abundant
in the spring, due in part to the larger wind speeds increasing
crustal dust. SO4

2� fractions were higher in summer due to
enhanced photochemical reactions. Additionally, some mass ratios
of species, such as NO3

�/SO4
2� and OC/EC, can be used to interpret

the emission and transformation characteristics of atmospheric
aerosols. The mass ratio of NO3

�/SO4
2� is usually utilized to indicate

whether mobile sources or stationary sources dominate the con-
tributions to PM pollution (Yao et al., 2002; Qiao et al., 2016). In this
study, the average ratio of NO3

�/SO4
2� was 0.53. In previous studies,

the average NO3
�/SO4

2� in Beijing, Shanghai, Chongqing, and
Guangzhou was 0.64, 0.44, 0.21, and 2.1, respectively (Yang et al.,
2011). Many studies have pointed out that the OC/EC ratio could
indicate the presence of secondary organic carbon (SOC). An OC/EC
ratio of 2.2 or 2.0 is usually marks the presence of SOC (Li and Bai,
2009). The average OC/EC ratio of this study was 3.0, which sug-
gested the presence of SOC (Tian et al., 2014). The maximum OC/EC
ratio was observed in summer at 3.7, and the minimum was
observed in autumn at 2.2, which demonstrated that SOC may play
an important role in carbonaceous pollution in Tianjin. The
remaining chemical species concentrations were below the detec-
tion limit for most samples and were omitted from further analysis.

3.1.2. Characteristics of gaseous pollutants
Some source categories have relatively similar source profiles

(e.g., gasoline and diesel vehicles), which may limit the ability of
CMB to identify those source impacts accurately. Considering the
characteristics of gaseous pollutants, a more reasonable analytical
result can be obtained. According to data from National Bureau of
Statistics of China in 2014, the total emissions of SO2, NOx, and
particulates in exhaust in Tianjin were 209, 200, 282, 300, and
139,500 tons, respectively. Among them, SO2 and NOx emissions
decreased by 4.0% and 9.0% since 2013. On the contrary, the par-
ticulate emissions increased by 59%. The gaseous pollutant con-
centration data in this study was from online observations. During
sampling, themean concentrations of SO2, NO2, and COwere 28, 40,
and 651 mg m�3, respectively. The temporal variations of SO2, NO2,
and CO are shown in Fig. 1. The highest SO2 concentration occurred
in daytime (111 mg m�3). Power plants and industrial combustion
may be the dominant contributor to the emissions of SO2 because
the compound can be considered a primary pollutant emitted from
coal combustion (Wang and Hao, 2012). Concentrations of NO2 are
usually higher at night than those in the daytime. Therefore, it is
reasonable that the NO emitted by anthropogenic sources in day-
time was transformed into NO2 and that NO2 was accumulated
under unfavorable diffusion conditions during night-time (Yang
et al., 2015). Chai et al. (2014) studied spatial and temporal varia-
tion of gaseous pollutants in 26 cities in China. They found that the
six-month average SO2 concentration was 72 mg m�3 in northern
cities, which was nearly twice that in the south. CO concentrations
in northern and southern China were 240 mg m�3 and 100 mg m�3,
respectively (Chai et al., 2014).

It was clear that the temporal variations of gaseous pollutant
concentrations were consistent with the PM2.5 time series to a
certain extent, and the time series of these three gaseous pollutants
were also consistent (Fig. 1). This situation demonstrated that
gaseous pollutant concentrations can reflect the emission sources
of PM2.5.

3.2. Chemical source profiles

Source profiles of PM are the average relative chemical species
of PM from emission sources and are usually expressed as the mass
ratio between each species to the total PM (Pernigotti et al., 2016).
The chemical composition from different sources is unique, and
source profiles reflect the chemical characteristics of the emission
sources. According to previous studies and emission inventories,
themajor source categories used in source apportionment included
crustal dust, cement dust, coal combustion, and vehicle exhaust.
The profiles of crustal dust, cement dust, coal combustion, and
vehicle exhaust were constructed by recent measurement data and
measurement methods referred to in our other studies (Bi et al.,
2007). The uncertainties of source profiles were derived from the
standard deviation of several samples with the same source cate-
gories collected in the Tianjin. NO3

� and SO4
2� were formed from

gas- and condensed-phase chemical reactions involving SO2 and
NOX. The main products were ammonium sulfate and ammonium
nitrate. In this study, “pure” ammonium sulfate and ammonium
nitrate were used as secondary sulfate and nitrate profiles (Watson
et al., 1994, Watson and Chow, 2002; Feng et al., 2007). The SOC
profile was 100% OC with a 10% standard deviation, as recom-
mended by the USEPA (The USEPA, 2006). To estimate the forma-
tion of secondary pollutants, theoretical profiles were established
based on the molecular weight fraction for secondary sulfate, sec-
ondary nitrate, and SOC. The details can be seen in our previous
studies (Bi et al., 2007). The component bar graphs of each source
categories are given in Fig. 2. In crustal dust, Si, Ca, and Al were
marker species with percentages of 16%, 8%, and 5%. Ca accounted
for 39% in cement dust and was the most important component.
Some crustal elements, Ca, Si, and Al (with percentages of 3%, 12%,
and 7%) along with SO4

2� (14%), OC (12%), EC (8%), were the domi-
nant species in coal combustion profiles. The marker of secondary
sulfate was SO4

2� and accounted for 73%, and NO3
� had a percentage

of 78% and was the main component in secondary nitrate. Sec-
ondary sulfate and secondary nitrate make up a greater proportion
in PM2.5, which were secondary products of SO2 and NOX after a
series of chemical reactions. The vehicle exhaust profiles were
characterized by high percentages of carbonaceous species while
OC and EC were the representative species (32% and 30%). OC was a
characteristic component in SOC. In the source profiles of this
study, the average NO3

�/SO4
2� ratio was 0.72, and the average OC/EC

ratio was 3.7, which were both close to the ratios in ambient PM2.5
(0.53 and 3.0).

Some sources would discharge PM as well as gaseous pollutants,
and gaseous pollutants can also reflect emission characteristics of
pollution sources. Gaseous pollutant emissions information was
added in CMBGC and CMBGC-Iteration in the form of gas-to-PM2.5

ratios, which helps further identify the source. Gas-to-PM2.5 ratios
for coal combustion and vehicle exhaust sources were based on the
2014 emission inventory in Tianjin (Table 2). As shown in Table 2,
coal combustion was characterized by a significantly higher SO2/
PM2.5 ratio than vehicle exhaust. This might be because of sulfur-
containing substances in the coal. While the CO/PM2.5 ratio in
vehicle exhaust was much higher than in coal combustion, this may



Fig. 2. Source profiles of different kinds of emission sources. The x-axis represents the chemical components, the y-axis represents the percentage, and the purple column is the
fraction of the components in the emission sources. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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be caused by incomplete combustion of fuels.
Table 2
Gas-to-PM2.5 ratios used as constraints in the optimization process (mass/mass).

Source SO2/PM2.5 CO/PM2.5 NOx/PM2.5

Coal combustion 12.5 3.1 8.3
Vehicle exhaust 2.5 18.3 8.5
3.3. Source apportionment

In this section, results from the study of an ambient PM2.5
dataset are presented, including the improved CMBGC-Iteration
model and other receptor model estimates of contributions of po-
tential sources at the ambient site. The receptor models include 1)
CMBGC-Iteration, CMBGC, CMB-Iteration and CMB models and 2)
multivariate factor analysis models (including PMF, NCAPCA and
WALSPMF). The results of different models were compared. The
source profiles described in Section 3.2 were used as inputs for four
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chemical mass balance models. Six source categories were identi-
fied by the above receptor models: crustal dust, coal combustion,
vehicle exhaust, secondary sources (namely secondary sulfate and
secondary nitrate), SOC, cement dust, and others.

3.3.1. CMBGC-iteration
3.3.1.1. Source apportionment by CMBGC-Iteration.
CMBGC-Iteration is an extension of the traditional CMBmodel using
gas phase species concentration (SO2, CO and NOX) as constraints.
Compared to CMB-GC, the uncertainties of the ambient dataset and
source profiles were involved in the iterative solution of CMBGC-
Iteration. The input file for CMBGC-Iteration consisted of concen-
trations from the ambient dataset, uncertainties of the ambient
dataset, source profiles, uncertainties of the source profiles, gas-to-
PM2.5 ratios, and parameters for solution. The output file contained
daily contributions, mean source contributions, a performance in-
dex, a Modified Pseudo-Inverse Normalized (MPIN) matrix,
modeled species information, and modeled gases information.

Precisely 114 groups of ambient concentration data (including
the concentrations of gaseous pollutants) and source profiles were
put into the CMBGC-Iteration model, and the mean source contri-
butions of each source category were obtained. The CMBGC-
Iteration results of mean source contributions to PM2.5 are dis-
played in Fig. 3. For all potential sources, secondary sources had the
largest contribution, accounting for 30% of particle mass concen-
tration. Secondary sources including secondary sulfate and sec-
ondary nitrate were formed by chemical reactions of the gaseous
precursors (SO2 and NOX) and had a major impact on PM2.5 levels.
In the summer, relatively high temperatures could promote sec-
ondary reactions. Crustal dust had the second highest contribution
of 25%. More so in spring or fall, crustal dust was the most impor-
tant source for PM, which may be caused by strong winds that
could re-suspend crustal dust (Khan et al., 2010; Tian et al., 2013).
The contribution of vehicle exhaust was 16%. The vehicle inventory
in Tianjin rose from 840,000 in 2001 to 2.36 million in 2012, an
increase of 181%. With the increasing number of vehicles, vehicle
exhaust pollution has become an important component of urban
air pollution. Coal combustion was also an important source cate-
gory for PM2.5 with an estimated contribution of 13%. Coal con-
sumption grew from 25million tons in 2001 to 51.62million tons in
2012, an increase of 107%. SOC contributed 7.6% to PM2.5. Cement
dust had the lowest contribution, accounting for 0.40%. The low
contribution of cement dust might be due to the collinearity with
the dust source category.

The performance indices of CMBGC-Iteration model were the
same as those of the traditional CMB model, such as reduced chi
square (chi2), R square (R2), and percent mass (PM) (The USEPA,
CMB-GC

25%
13%

30%

16%

7.6%

0.40%

8.1%

CMBGC-Iteration

 Crustal Dust        Coal Combustion  Secondary Sources
 Vehicle Exhaust  SOC                       Cement Dust             Other

23%

14%

30%

15%

8.0%

0.40%

9.8%

Fig. 3. Source contributions by CMBGC-Iteration and CMB-GC. Different colors
represent different source categories. (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)
2006). In the results of our study, the performance indices (chi2,
R2, PM) were 0.00, 1.00 and 91.65%, which met the requirement of
the CMB model and indicated that the results of iteration were
acceptable by CMB model standards.

3.3.1.2. Source apportionment by CMB-GC. The CMB-GC model uses
gas phase concentrations to set additional constraints. The source
apportionment results by CMBGC are shown in Fig. 3. In the six
identified sources, secondary sources gave the highest contribution
at 30% with the minimum contribution from cement dust (0.40%).
Other source contributions were the following in decreasing order:
crustal dust (23%) > vehicle exhaust (15%) > coal combustion
(14%) > SOC (8.0%). The same source categories were identified in
both CMBGC-Iteration and CMB-GC.

3.3.1.3. Comparing of the results from two models. Fig. 4 shows the
source categories identified by CMBGC-Iteration and CMB-GC and
the contribution (concentration) of each source. Among the cate-
gories, the contributions of secondary sources, SOC, and cement
dust were quite similar. For crustal dust and vehicle exhaust, the
contributions calculated by CMBGC-Iteration were higher than
those by CMB-GC, while the coal combustion contribution obtained
by CMBGC-Iteration was lower than that by CMB-GC. The differ-
ences in the source apportionment results of the two models were
mainly due to the uncertainties of source profiles and observations.
According to Eq. (3), the “effective variance” is composed of two
parts: the uncertainty of the observations and the uncertainty of
the source profiles. It can be seen in Eq. (4) that the weighted
concentration of observations and the weighted source profiles are
negatively correlated with the effective variance. Therefore, ac-
cording to Eq. (5), depending on a certain daily concentration of a
component, when the uncertainty of this component's concentra-
tion in the source profiles increases, the weighted source profile
will be reduced. This reduction will cause an increase in the esti-
mated contribution (Sj) of the source that the component contrib-
utes highest and a contribution reduction of other sources.

3.3.2. Source apportionment by multiple models
In this section, the ambient receptor data and source profiles

were analyzed to study the results of the traditional CMB and CMB-
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Fig. 4. The comparison of source contributions calculated by CMBGC-Iteration and
CMB-GC. The x-axis is the source categories, the y-axis is the source contribution, and
the unit is mg m�3.
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Fig. 5. Ensemble source impacts of multiple receptor models. The seven receptor
models were combined to calculate the average ensemble source contributions.
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Iteration models. The source categories, percentage contribution,
and performance indices are listed in Table 3. In the traditional CMB
model, a pure SOC profile (OC fraction was 100% and other
composition fractions were 0%) was used. The source profiles and
receptor data would significantly affect the CMB results and cause
great uncertainties (Lee and Russell, 2007). The number of source
categories identified and the estimated source contributions to
PM2.5 mass concentrations at the ambient site were almost the
same for both CMB and CMB-Iteration. Crustal dust accounted for
the largest contribution percentage in both models (27% both in
CMB and CMB-Iteration). Cement dust had the smallest contribu-
tion percentage at 2.8%. These results are relatively consistent with
previous studies (Tian et al., 2016b).

Other models used for source apportionment in this study were
PMF, WALSPMF and NCAPCA. Source categories and percentage
contributions were resolved by each model with the results listed
in Table 3.

A summary of the chemical species introduced into the PMF 5.0
and WALSPMF is displayed in Table 1. Both 114 � 19 receptor
concentration matrices and concentration uncertainty matrices
were imported into the two models. The factor loadings obtained
by PMF are exhibited in Table S1. Four factors were resolved by the
PMFmodel. As shown in Table S1, factor 1 reflected high loading for
OC and EC, which are usually markers for vehicle exhaust (Yuan
et al., 2006); therefore, this factor might be the vehicle exhaust.
In factor 2, SO4

2�, NO3
�, and NH4

þ exhibited high weighting, consis-
tent with sources related to secondary sources (Tian et al., 2013).
Factor 3 can be associated with Si, Al, Ca, and carbonaceous species,
and these species are generally used as the markers for coal com-
bustion (Zhang et al., 2011). Factor 4 had high weighting values for
Si, Al, and Ca, which can be treated as markers of crustal dust (Pant
and Harrison, 2012); therefore, this factor can be identified as the
crustal dust source. As discussed above, the potential sources
identified by PMF were vehicle exhaust, secondary sources, coal
combustion and crustal dust, and the percentage contributions of
each source were 21%, 40%, 25% and 14%, respectively (Table 3).
These results were relatively different from those of other models.

Similar to PMF, the WALSPMF model required the concentra-
tions of PM2.5 as inputs. Four potential sources were also obtained
by WALSPMF (Table 3). The WALSPMF results suggested that sec-
ondary source categories were the dominant source, accounting for
29%. The second major source was vehicle exhaust consisting of
27%. The percentage contribution of coal combustion and crustal
dust were 26% and 19%, respectively.

The NCAPCA model is a factor analysis model that can estimate
the contribution of sources to PM based on the PCA (Principal
Component Analysis) method. This model can sometimes produce
non-negative contributions. The concentrations of chemical species
and PM2.5 were introduced into NCAPCA. The NCAPCA model
resolved five secondary source categories such as secondary sour-
ces, SOC, coal combustion, vehicle exhaust, and crustal dust. The
contributions of each source categories are described in Table 3. The
secondary source was the highest contributor of PM2.5 at 30%. Coal
Table 3
Source categories and percentage contributions resolved by different models.

Cont

Source categories CMB CMB-Iteration CMB-GC CMB

Crustal Dust 27 27 23 25
Coal Combustion 16 16 14 13
Secondary Sources 24 24 30 30
Vehicle Exhaust 15 15 15 16
SOC 6.4 6.4 8.0 7.6
Cement Dust 2.8 2.8 0.40 0.40
Other 9.2 9.2 9.8 8.1
combustion was the second largest contributor at 23%. The other
source contributions in descending order are vehicle exhaust
(18%) > crustal dust (14%) > SOC (15%).

3.4. Results of ensemble source apportionment

CMB, CMB-Iteration, CMB-GC, CMBGC-Iteration, PMF,WALSPMF
and NCAPCA results demonstrate that these models can calculate
different source contributions for the same ambient data (Fig. 3 and
Table 3). The model ensemble used information from seven models
whose source impacts could be obtained when an individual model
did not provide them. The above seven models were combined to
calculate the average ensemble source contributions (Fig. 5). The
secondary source (included nitrate and sulfate) was the largest
source, accounting for 28%. The second dominant source was
crustal dust at 20%. The other source categories contributions in
descending order were coal combustion (18%) > vehicle exhaust
(17%) > SOC (11%) > cement dust (1.3%). Moreover, the ensemble
method also avoided negative and zero value impact estimates for
major emissions sources such as vehicles and SOC.

4. Conclusions

Uncertainties of source profiles and receptor datasets are key
parameters in source apportionment (SA). To address the un-
certainties problem of CMBGC, the CMBGC-Iteration model was
developed to include the uncertainties of the ambient dataset and
source profiles in the iterative solution. Consequently, the conver-
gence results were obtained, and the source apportionment results
were more stable. To apply this model, PM2.5 was sampled in
Tianjin from April 2014 and January 2015, and chemical species
(carbon components, water-soluble ions and elements) in PM2.5
were measured by corresponding instruments. Six source
ributions (%)

GC-Iteration PMF WALSPMF NCAPCA Ensemble

14 19 14 20
25 26 23 18
40 29 30 28
21 27 18 17
e e 15 11
e e e 1.3
e e e 4.1
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categories were identified by this model, and their contributions to
PM2.5 in descending order were secondary sources, crustal dust,
vehicle exhaust, coal combustion, SOC, and cement dust.

In addition, six other models, including CMBGC, CMB-Iteration,
CMB, PMF, NCAPCA and WALSPMF, were employed to identify the
source categories and to estimate the source contributions to PM2.5
in Tianjin. Several sources, including crustal dust, cement dust, coal
combustion, vehicle exhaust, secondary sulfate, and secondary ni-
trate were identified. Similar source apportionment results were
obtained from the other models, but the number of sources
resolved were different for each model. Finally, to obtain more
objective SA results, ensemble-average source impacts were
calculated based on the seven sets of source apportionment results.
Source contributions were similar for the ensemble SA results and
CMBGC-Iteration results.
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