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Abstract NuRadioMC is a Monte Carlo framework de-

signed to simulate ultra-high energy neutrino detectors

that rely on the radio detection method. This method

exploits the radio emission generated in the electro-

magnetic component of a particle shower following a

neutrino interaction. NuRadioMC simulates everything

from the neutrino interaction in a medium, the subse-

quent Askaryan radio emission, the propagation of the

radio signal to the detector and finally the detector re-

sponse. NuRadioMC is designed as a modern, modular

Python-based framework, combining flexibility in de-

tector design with user-friendliness. It includes a state-

of-the-art event generator, an improved modelling of

the radio emission, a revisited approach to signal prop-

agation and increased flexibility and precision in the

detector simulation. This paper focuses on the imple-

mented physics processes and their implications for de-

tector design. A variety of models and parameteriza-

tions for the radio emission of neutrino-induced showers

are compared and reviewed. Comprehensive examples

ae-mail: christian.glaser@uci.edu
be-mail: daniel.garcia@desy.de
ce-mail: anna.nelles@desy.de

are used to discuss the capabilities of the code and dif-

ferent aspects of instrumental design decisions.

Keywords Neutrino astronomy · radio detection ·
simulation · signal processing · ice propagation ·
Askaryan ·
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1 Introduction

High-energy neutrino astronomy is a most promising

approach to address the still unanswered question of the

origin of high-energy cosmic rays [1]. Neutrinos are the

perfect messenger. Because they have negligible mass,

are electrically neutral and have an extremely low inter-

action probability, they traverse the universe essentially

unimpeded and point directly back to their sources.

However, measuring neutrinos requires the instrumen-

tation of large volumes to observe sufficient target ma-

terial in which a rare interaction of these particles may

occur. Currently the largest detector having observed

neutrinos is IceCube, which uses the Antarctic ice as a

target medium and instruments it with optical sensors

[2].

Neutrino astronomy recently took a significant leap

forward when the IceCube detector at the South Pole

was used to measure a yet unexplained excess of events

that provides the first strong evidence for astrophysi-

cal neutrino sources [3]. The sources have not yet been

identified, though compelling evidence for a first source

was delivered with the observation of a spatial and tem-

poral coincidence between a flaring blazar, observed

with gamma-ray telescopes, and a high-energy neutrino

[4]. However, detection of astrophysical neutrinos above

a few tens of PeV has not been achieved yet, possibly

due to the neutrino flux expected to steeply fall with en-

ergy, which calls for instrumented volumes larger than

those currently existing. A two orders of magnitude in-

crease in the volume instrumented by IceCube is consid-

ered cost-prohibitive due to the attenuation and scat-

tering of optical light in ice [5]. Such a detector may

measure the continuation of the neutrino flux, as well

as the expected fluxes in the ultra-high energy regime

[1].

1.1 Experimental and physical context of radio

detection

High-energy neutrinos (Eν > 1016 eV) can be most effi-

ciently observed with the radio technique. Radio signals

are produced via the Askaryan effect [6] from particle

cascades generated in the ice following interactions of

the neutrinos. The Askaryan effect arises from the de-

velopment of a charge excess in the shower front as it

accumulates electrons from the surrounding medium.

The resulting changing current leads to measurable ra-

dio emission in the MHz – GHz frequency range. The

Antarctic ice is transparent to these radio signals which

allows for a cost-effective instrumentation of large vol-

umes with sparse arrays. The attenuation length is about

1 km, depending on the frequency and ice temperature

[7]. This results in an effective volume in the order of

1 km3 per single detector station, similar to the size of

the entire IceCube detector.

The radio technique has already been successfully

piloted with detectors at the South Pole and at Moore’s

Bay on the Ross ice-shelf. The ARIANNA project [8,

9] uses an array of autonomous detector stations with

antennas located close to the ice surface, whereas the

ARA project [10] uses antennas at a depth of up to

200 m below the firn layer. The experimental techniques

matured substantially over the last years [11,12] and

the community is well prepared for the construction of

a large scale Askaryan detector with enough exposure

to measure the continuation of the astrophysical neu-

trino flux to higher energies [1], to potentially discover

cosmogenic neutrinos [13,14,15], and measure particle

physics properties at yet unachieved energies [16].

With the developments on the experimental side,

improved Monte Carlo simulations became imperative,

leading to the development of NuRadioMC, which is pre-

sented in this article. A versatile and validated simu-

lation of the radio signal in an Askaryan detector is

crucial in many areas: for the determination of the sen-

sitivity of a specific detector, for the optimization of

the detector layout, to establish the requirements of the

hardware to record the relevant parts of the signal, for

the computation of a realistic signal expectation that

is used to search for neutrino induced signals out of

a large background of thermal and anthropogenic trig-

gers, and finally, for the development of reconstruction

techniques to determine the neutrino properties from

the short radio flashes. In particular, the usage of mod-

ern deep-learning techniques requires a large and pre-

cise training data set.

The diversity of possible station layouts (e.g. com-

pare the ARA and ARIANNA approach) requires a

flexible software which is one of the main limitations of

existing codes that were each targeted at a very specific

experimental layout [17,18,19]. NuRadioMC is not tai-

lored to a specific experimental design, and a detector

station can have any number of antennas at arbitrary

positions. In addition, the Askaryan radio technique is

not limited to in-ice detectors. For example the lunar

regolith has similar radio properties as ice and provides

a immense neutrino target that can be observed from

Earth with radio telescopes [20,21], providing the op-

portunity for synergies in simulations. Hence, from the

beginning NuRadioMC was designed for maximum flexi-

bility while maintaining user-friendliness.
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1.2 Structure of NuRadioMC

The Monte-Carlo simulation of Askaryan signals from

neutrino induced in-ice1 particle showers is logically

split up into four independent steps, the four pillars

of NuRadioMC:

1. Event generation: The simulation of a neutrino

flux. This includes the simulation of different neu-

trino properties (energy, direction, flavor, etc.), lep-

ton propagation, the position of the interaction ver-

tices, and the properties of the induced particle sho-

wer, i.e., how much neutrino energy is transferred

into the shower, whether it is an electromagnetic or

hadronic shower, etc.

2. Signal generation: The calculation of the Aska-

ryan radio pulse generated from the particle shower.

3. Signal propagation: The propagation of the ra-

dio signal through the medium, from its origin to

each antenna. Naturally occurring media typically

have a density gradient resulting in bent rather than

straight trajectories of the radio signal. Also, mul-

tiple distinct paths from the interaction vertex to

the antenna may exist for typical geometries and ice

typically shows a frequency-dependent attenuation

length.

4. Detector simulation: The simulation of all com-

ponents of the detector hardware. This step includes

the conversion from the electric-field pulses at the

antenna positions to the measured voltages of each

antenna channel, as well as the simulation of the

trigger. It accounts for frequency dependent gain

and group-delay, sampling-speed, record-length, etc.

The separation of the four steps follows the temporal
structure of the physical processes. In a MC simulation

this sequence will be different and not linear, e.g., we

determine the signal path before generating it, so that

we only need to calculate the Askaryan signal at the

particular emission angle leading to that path. More-

over, after having calculated the signal, we need to use

the propagation module again to determine the signal

attenuation along the path.

We note that the separation of signal generation and

propagation is a valid approximation when the differ-

ence in travel time from different points of the emission

region to an observer in a homogeneous medium and

one in a medium with a density gradient (bent trajecto-

ries) is small with respect to the observation frequency.

We find that this assumption holds for all but rare and

1We will continue to refer to the standard case of a neutrino
interaction in ice, when describing NuRadioMC. However, the
code is designed in such a way that it can also support media
other than ice, and exotic particles such as for instance dark
photons [22].

extreme geometries of an in-ice detector at frequencies

up to 1 GHz.

The four pillars are complemented by a set of utility

classes that are accessible at all times throughout the

simulation such as a model of the medium, or a model

of the signal attenuation. To ensure maximum flexibil-

ity and ease of use of different codes and programming

languages the four pillars are separated as much as pos-

sible. The modules can be written in any language but

Python wrappers of the relevant functions are required

(this can be achieved e.g. with Cython [23]), so that the

simulation can be steered from Python. This design was

chosen to maximize user-friendliness and allow for the

interfacing with other existing frameworks.

1.3 Improvements on the simulated physics in

NuRadioMC

NuRadioMC does not only improve in flexibility and ease

of use over existing codes, but also includes more physics

processes in the simulation than previous codes and im-

proves on precision. In the event generation, the sub-

sequent decay of taus following a tau-neutrino inter-

action is modelled and the interface to simulate any

multi-bang model is provided. Hence, models predict-

ing several spatially-separated interactions can be im-

plemented and simulated.

In the signal generation pillar, various Askaryan sig-

nal generation models are implemented. Previous MC

codes relied on parameterizations of the frequency spec-

trum of radio emission [24] or on time-domain calcula-

tions mostly restricted to electromagnetic shower pro-

files [25]. NuRadioMC improves this approach by provid-

ing a time-domain calculation from an extensive library

of electromagnetic, hadronic and tau-initiated showers.

In particular, this allows for a realistic treatment of the

Landau-Pomeranchuk-Migdal effect (LPM effect) [26,

27].

In the signal propagation pillar, new ray-tracing tech-

niques based on an analytic solution of possible signal

paths are implemented. This implementation results in

unprecedented combination of speed and accuracy. Fur-

thermore, we provide the interface to a more detailed

numerical calculation that can simulate the signal paths

in arbitrary 3D density profiles.

In the detector simulation pillar, we use the NuRa-

dioReco code [28] that allows for the simulation of any

detector geometry. In particular, it includes a detailed

antenna response for a variety of antenna types and

arbitrary orientations, treating the full set of complex

gains as well as complex triggers such as phased-arrays.

In this article, we first describe each of the four pil-

lars in detail and discuss different approaches. Then, we



4

present three examples of how to use NuRadioMC and

discuss the implications for the design of a high-energy

neutrino radio detector.

2 Event generation

The event generation is logically separated from the

simulation and provides general event parameters as

input to the simulation. The results of the event gener-

ation are stored in an HDF5 file [29], which ensures that

the event generator is easy to change in order to cover a

variety of physics cases, as well as practical cases such as

the simulation of calibration pulser data. This section

describes the standard case implemented in NuRadioMC

and provides an outlook for future implementation and

special cases.

Having the event generation separated from the other

simulation steps is beneficial because it allows the user

to test the influence of different parameters on the same

events. For example, the influence of different signal

generation models, ice properties that influence the sig-

nal propagation or attenuation, and trigger schemes

and thresholds, while using the same set of events.

2.1 Considerations concerning the coordinate system

All coordinates are specified in a local Cartesian coor-

dinate system with its origin centered at the surface

of the ice (see Fig. 1). The implementation of a global

coordinate system that takes into account the curva-

ture of the Earth is not required at this stage of pre-

cision: Due to attenuation of radio signals in the ice,

the maximum propagation distance of radio signals is

O(1− 5) km where the impact of Earth attenuation is

less than 2 m. Thus, effects of Earth curvature can be

ignored from the signal propagation step onwards. The

maximum propagation distance also defines the neces-

sary volume where neutrino interactions are simulated

in. Thus, also for the standard event generation, a flat

Cartesian coordinate system is sufficient.

Earth curvature starts to matter in the tracking of

tau leptons and simulation of their subsequent decay

as the tau decay length can reach values above 10 km.

At 10 km distance, the difference between a flat and

curved surface is 8 m which still small compared to the

thickness of the ice sheet at the South Pole of 2.7 km.

Hence, the difference in target volume is also small. An-

other effect is that the probability of a neutrino reach-

ing the simulation volume (referred to as neutrino event

weight, see Sec. 6.2) is calculated based on the angle

between the incident neutrino direction and the (flat)

surface. Consequently, the neutrinos originating close to

the horizon will have a systematic uncertainty in their

assigned weights. However, at 10 km distance, this ef-

fect is again small with a displacement of only 0.1◦. In

the future, effects of Earth curvature can be considered

by correcting this angle in the neutrino event weight

calculation. The additional complexity of implement-

ing a global coordinate system does not seem required

at this point.

2.2 Default event generator and file format details

The default event generator creates a list of neutrino

interaction vertices, specifies all relevant neutrino prop-

erties, and stores everything in an HDF5 file (see struc-

ture in Appendix A).

The event generator specifies the following parame-

ters:

– the position of the neutrino interaction, randomly

placed in a cylindrical volume surrounding the de-

tector. The user can control the minimum and max-

imum radius and the vertical extent.

– the neutrino energy, drawn from a user definable en-

ergy spectrum between a minimal and maximal en-

ergy. We also allow to specify the deposited energy

instead, i.e., the amount of neutrino energy that

ends up in a particle shower producing an Askaryan

signal.

– the neutrino flavor. By default all flavors and par-

ticle/anti-particle nature have equal probability. In-

ternally, this is specified using the Particle Data

Group ID (PDGID) [30], which allows for cross-

referencing with other Monte-Carlo codes.

– the neutrino direction. By default the full sky is uni-

formly covered but the user can restrict neutrino

directions to specific ranges in zenith and azimuth

angles.

– whether the neutrino undergoes a neutral current

(NC) or charged current (CC) interaction (see Fig. 2

for an illustration of the two interaction types). We

use a constant ratio CC:NC 0.7064:0.2936 according

to the CTEQ4-DIS cross sections for the neutrino

energy between 1016 eV and 1021 eV [31].

– the inelasticity, i.e., the fraction of the neutrino en-

ergy going into the hadronic part of the interaction.

The inelasticity distributions from [32], [33] and [34]

have been implemented.

We note that we place neutrino vertices with equal

probability per volume. The probability of a neutrino

reaching the detection volume is taken into account

later by assigning a weight to each event (see Sec. 6.2 for

how the neutrino absorption is calculated). Similarly, it
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Fig. 1 Sketch of the coordinate system used by NuRadioMC and typical dimensions in the radio detection of neutrino inter-
actions. The coordinate origin is at the ice surface. A quantity of particular interest is the viewing angle θ, i.e., the angle at
which the in-ice shower is observed. Due to the longitudinal extent of the shower, the viewing angle is not uniquely defined.
By default, we measure the angle with respect to the neutrino interaction vertex, but sometimes it is appropriate to measure
the angle with respect to the maximum of the charge-excess profile, which we denote with θXmax. It should be noted that this
is just one typical set-up, other choices of geometry are supported.

lepton = e: electromagnetic shower
lepton = mu: muon typically undetected
lepton = tau: tau lepton will decay, 
producing 2nd spatially displaced shower

nucleus
hadronic 
shower

quark
quark
quark quark

quark
quark

lepton

W

Charged Current Interaction (CC)
!

nucleus
hadronic 
shower

quark
quark
quark quark

quark
quark

! undetected

Z

Neutral Current Interaction (NC)
!

Fig. 2 Feynman diagrams of a charged current and neutral
current neutrino interaction.

is currently ignored, if the density of the simulation vol-

ume is not uniform which changes the neutrino inter-

action cross section and thereby the interaction proba-

bility. As the density of the typical use-case of ice, only

changes in the upper ∼ 100 m this effect is ignored at

this stage of precision. It can be taken into account in

the future by an additional weighting factor or by an

event-by-event calculation of the neutrino cross section.

All these parameters are saved in a HDF5 table.

This has several advantages. The data is saved effi-

ciently, the format is platform and programming-language

independent, stand-alone viewers exist to quickly in-

spect the files, and apart from storing the actual data

tables, it allows saving meta attributes such as the pa-

rameters the event set was generated for.

Typical data sets consist of millions of events which

would take too long to simulate in a single process.

Therefore, the event generator allows to automatically

split up the data set into smaller chunks, i.e., into sepa-

rate HDF5 files with typically 10,000 to 100,000 events

per file. Then, the NuRadioMC simulation can be per-

formed for each file separately, and we provide the tools

to merge the individual output files back together.

2.3 Multiple showers

Previous radio simulations only considered particle show-

ers created by the initial neutrino interaction. However,

in case of charged current interactions of muon and tau

neutrinos, the produced muons and taus might interact

or decay producing a second spatially displaced particle

shower that generates Askaryan radiation.

The typical decay length of a tau lepton range from

50 m at tau energies of 1 PeV to 50 km at tau energies

of 1 EeV. This increases the sensitivity of an Askaryan



6

detector because tau neutrinos can interact far away

from the detector but still produce a visible signal if

the tau happens to decay close enough to the detector.

Muons in turn are unlikely to decay but they can

undergo a catastrophic dE/dX energy loss, depositing

a substantial fraction of their energy into the ice and

initializing a hadronic shower [35,36]. In general, more

exotic models can also be considered that predict mul-

tiple spatially displaced showers per neutrino. Hence,

NuRadioMC offers the flexibility to specify an arbitrary

number of interaction vertices per event. This is in-

corporated into the file format by inserting additional

events into the event list with the same event ID.

We consider several levels of detail. While a sim-

ple treatment of tau decays exists in NuRadioMC itself,

we also foresee the inclusion of more complete particle

decay codes, such as PROPOSAL [35,36] that tracks

secondary losses of all types of lepton.

2.4 Tau neutrinos

In NuRadioMC, for the first time in an in-ice simulation,

we provide the inclusion of secondary sub-showers from

tau-decays that add additional detection channels, fla-

vor sensitivity and contribute to the effective volume.

Due to the large decay length of tau leptons, a large

volume needs to be simulated to catch the few cases

in which there is a secondary interaction close enough

to the detector. This increases the computation time

enormously as it scales proportionally to the simulated

volume, and makes this brute-force approach unfeasi-

ble. Therefore, we developed the following technique:

we generate neutrino interactions in an arbitrarily large

volume including all secondary interaction vertices (e.g.

from tau decays) but save only those primary and sec-

ondary interactions that take place in a much smaller

fiducial volume surrounding the detector while keeping

track of the total number of simulated events (see Fig. 3

for an illustration). The user needs to make sure that

the fiducial volume is chosen large enough such that the

probability to trigger the detector is negligible for inter-

action vertices outside of this volume. This allows for a

computationally efficient simulation of complex physics

models.

Once a tau is created after the interaction of a tau

neutrino in the volume, we calculate its decay time

tdecay and energy at decay. We first randomly sample a

decay time τdecay in the tau particle rest frame from an

exponential distribution using a mean tau decay life-

time 2.903× 10−13 s [37]. If the tau energy is less than

Eτ =1 PeV, we do not account for tau energy losses

along the path, and the decay time is simply given by

the product of the Lorentz factor γ and the sampled

decay time τdecay in the tau rest frame

tdecay = γ(Eτ )τdecay. (1)

The decay length lτ is calculated multiplying tdecay by

the particle speed, while the energy of the τ at decay is

equal to the initial tau energy.

In the case the tau has an energy greater than 1 PeV,

we include photonuclear tau energy losses in our calcu-

lation. These are not very well constrained and we use

a simple model inspired by the results in [38]. We take

the mean energy loss per amount of traversed matter

in ice to be,〈
dEτ
dX

〉
≈ f(Eτ ) = b1Eτ + b2Eτ log10(Eτ/E0), (2)

with b1 = 1× 10−7 cm2/g, b2 = 1.8× 10−7 cm2/g, and

E0 = 1 PeV. Above Eτ = E0, it is a good approxima-

tion to assume that the tau speed is equal to the speed

of light in vacuum c. This allows us to write the time

t that it takes a tau with initial energy Eτ,i to reach a

lower energy Eτ as,

t(Eτ ) =
1

cρice

∫ Eτ

Eτ,i

dE′

f(E′)
. (3)

Once t(Eτ ) is known, we numerically obtain the inverse

function Eτ (t) for equally-spaced times by interpola-

tion. The decay time is obtained by solving the follow-

ing integral equation for tdecay:∫ tdecay

0

mτ

Eτ (t)
dt = τdecay, (4)

from which the tau decay length above 1 PeV is ob-

tained as:

lτ ≈ ctdecay. (5)

In Fig. 4, left, we show the decay length lτ as a func-

tion of tau energy. The straight dashed line represents

the mean decay length without tau energy losses, which

increases linearly with energy. The solid line indicates

the decay length assuming that the decay time in the

rest frame is equal to the mean decay time τdecay and

accounting for deterministic tau-energy losses during

propagation given in Eq. (2). The shaded band repre-

sents an 80% confidence interval for the decay length,

where the decay time has been drawn from an exponen-

tial distribution. Stochastic energy losses have not been

accounted for. In Fig. 4, right, we show the tau energy

at decay obtained with the same assumptions used for

obtaining the tau decay length shown in the left panel.

Tau energy losses become important around 100 PeV.
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Fig. 3 Sketch of the geometry and the concept of a fiducial volume of the event generator. Neutrinos tracks are generated
in a full simulation volume, but only the radio emission of primary or secondary interactions are considered, when they take
place in a fiducial volume encompassing the detector.

2.5 Options for additional physics processes or

calibration purposes

The event generation described above is the default

event generator in NuRadioMC. However, emission from

a standard-model neutrino-induced shower is only one

possible scenario that can be covered. The users have

the freedom to implement their own event generators

according to other physics assumptions, e.g., new physics

or for simulating calibration signal generators. We pro-

vide an example to simulate a calibration measurement

online [40]. As long as the events are saved according to

the well-defined file structure, NuRadioMC can process

any input files. A skeleton event generator is provided

as an example [41].

3 Signal generation

NuRadioMC provides several modules for the generation

of the radio signal from showers. The user may choose

from a selection ranging from well-known frequency-

domain parameterizations of the Askaryan signal to a

state-of-the art semi-analytic calculation.

A uniform interface in the form of a simple func-

tion is provided for all models (see [42] and List. 3 in

Appendix D.3). In this way the NuRadioMC code also

serves as a reference implementation for all models. Fur-

thermore, the well-defined interface allows for an easy

extension of NuRadioMC with additional models. Even

calibration emitters can be (and are) implemented to

simulate a calibration measurement with NuRadioMC.

In the following, we first present the different signal

generation models available in NuRadioMC before dis-
cussing their differences and giving recommendations

for use in different cases. We discuss a variety of mod-

els, some for more pedagogical reasons, others because

they are fast, and others because they are accurate. We

hope that this section also serves as reference discussion

of several widely used emission models, however, it is

not an attempt at completeness.

3.1 Frequency-domain parametrizations

NuRadioMC currently provides two frequency-domain pa-

rameterizations of the Askaryan signal. One, referred

to as Alvarez2000, is also used in the simulation code

for the ANITA detector (IceMC) [19] and for the AR-

IANNA array (ShelfMC) [43,17], and is an implemen-

tation of the parameterization of [24], which was val-

idated against a full simulation of Askaryan radiation

performed with the ZHS Monte Carlo [44]. This is a mi-

croscopic simulation of the shower and its radio emis-
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Fig. 4 Top: Tau decay length as a function of the tau energy.
Bottom: Tau decay energy as a function of the initial tau
energy. Due to the one-tailed nature of the exponential decay
function, we show the decay length for the mean proper decay
time with photonuclear losses (solid line) and without any
losses (dashed line). The shaded band represents the area
spanning from the 10% proper decay time quantile to the
90% quantile (80% of total probability). This implementation
matches what has been shown previously in [39].

sion, that does not contain signal propagation and de-

tector simulation.

The other parameterization (Alvarez2009 ) is an up-

dated version of the first one. It is based on the so-called

“box model” of shower development [45] and separate

parameterizations for electromagnetic [46] and hadronic

[47] showers are provided. Both parameterizations are

the product of three functions. The first is a scaling

function A that grows linearly with the primary energy

E0, frequency f , and the sine of the observing angle

θ. The second and third functions are two continuous

cutoff frequency factors dL and dR that account for de-

viations from linearity due to incoherence effects asso-

ciated to the longitudinal and lateral extensions of the

shower. For electromagnetic showers, the LPM effect is

modelled including random fluctuations of the size of

the effect.

Although we encourage the use of the Alvarez2009

parameterization, we have also included the older pa-

rameterization Alvarez2000 for comparison with pre-

vious work and other codes. The latter can be under-

stood as a simplified version of the former, with con-

stant factors, a simple continuous cutoff factor instead

of two, and a Gaussian function for the dependence

of emission on viewing angle. Because of its simplic-

ity, it provides qualitative and easily understandable,

however, not necessarily precise insights into the main

dependencies of the Askaryan signal. For pedagogical

reasons, we explicitly provide the parameterization of

this model here and give an example of the resulting

Askaryan signals.

If the shower is observed on the Cherenkov angle,

the electric field (scaled to a distance of 1 m) according

to Alvarez2000 is given by

ε1mc
V/m/MHz

(Esh, f) = 2.53×10−7·Esh
TeV
· f
f0
· 1

1 + ( ff0 )1.44
,

(6)

with the shower energy Esh, frequency f and f0 =

1.15 GHz. Signal amplitudes off the Cherenkov cone,

ε1m, are modeled as a Gaussian profile according to

ε1m(Esh, f, θv) = ε1mc (Esh, f)·
sin θv
sin θc

· exp

[
− ln 2 ·

(θv − θc
σθ

)2]
(7)

with ε1mc given in Eq. (6), and where θv is the viewing

angle relative to the shower axis. The angular width of

the cone around the Cherenkov angle σθ is a function

of both frequency and energy. For hadronic showers σθ
is given in Eq. (6) of [48], for which a factor to account

for the so-called missing energy, energy going mainly

into muons and neutrinos that does not contribute to

the Askaryan signal, is included in Eq. (6).

For electromagnetic showers above 2 PeV, the shower

profile becomes elongated due to the Landau-Pomeran-

chuck-Migdal (LPM) effect. In the simple model of Al-

varez2000 such an elongation corresponds to a reduced

σθ which is modeled according to the prescription in

[49]. This in turn manifests itself as a rapid decrease in

the high frequency content of the Askaryan signal off

the Cherenkov cone for EM showers, as seen in Fig. 5.

For NuRadioMC, the time-domain signal based on Al-

varez2000 and Alvarexz2009 is generated by taking the

simple approximation of a phase that is constant with

frequency and equal to 90◦, yielding a bipolar pulse in

the time domain.
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Fig. 5 Electric field amplitude ε1m, 1 m from the neutrino interaction vertex (Eq. (7)) for hadronic (left) and electromagnetic
(right) showers with Esh = 1018 eV using the parameterization Alvarez2000. Note that as the viewing angle shifts away from
the Cherenkov cone angle, high frequency components fall off. For the EM showers, the cone width σθ is reduced due to the
LPM effect.

3.2 Fully analytic treatment including the LPM effect

and Cascade Form Factor

NuRadioMC provides an implementation of the analytic

model of Askaryan radiation (HCRB2017 ) [50] that

builds on previous work by [51]. This fully analytic

model accounts simultaneously for the three-dimensional

form factor of the cascade, and the cascade elongation.

The form factor is the spatial Fourier transform of the

instantaneous charge distribution of the cascade. The

form factor affects the Askaryan signal properties in the

same way a multi-pole filter affects any time-domain

signal. Although some authors have provided partial

solutions for the three-dimensional form-factor in the

past [52], in [50] a complete solution is presented that

includes dependence on the viewing angle θ. This allows

for the analytic exploration of the relevant parameter

space affecting σθ and σν , the width of the Cherenkov

cone and the Fourier spectrum, respectively.

This module builds upon the work of [51] where the

authors provide analytic functions for Askaryan radi-

ation correct in both the near and far-field regimes.

When a cascade is elongated due to the LPM effect,

both regimes become important given the three-dimen-

sional nature of the form-factor. HCRB2017 treats the

LPM effect as a smooth stretching of the shower profile

using the results of [53].

The fully analytic nature of this model has the ad-

vantage that it gives direct insights into the physical de-

pendencies of the Askaryan signal. However, as shown

in the radio emission of air showers [54] a purely ana-

lytic model comes at the cost of a poorer accuracy.

3.3 Semi-analytic model in the time domain

A third option for the signal generation is to calcu-

late the Askaryan radiation individually from detailed

charge-excess profiles in the time domain, following the

approach in [55]. The implementation in NuRadioMC re-

ferred to as ARZ, is based on a realistic shower library.

This allows to precisely model the effects of LPM elon-

gation [26,27] and the resulting large shower-to-shower

fluctuations on the Askaryan signal on a single event ba-

sis, rather than describing an average behaviour. The

model also captures subtle features of the cascades like

sub-showers and accounts for stochastic fluctuations in

the shower development which can alter the Askaryan

signal amplitudes significantly (see e.g. discussion in

[47] or Fig. 6). This model is the most accurate treat-

ment of Askaryan radiation implemented in NuRadioMC,

but it comes at the expense of larger computation times

as it involves computationally expensive convolutions of

the Askaryan vector-potential with Monte-Carlo gener-

ated cascade profiles.
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The main idea behind the ARZ method is that the

electromagnetic vector potential A in Coulomb gauge

can be expressed as an integral in shower depth con-

taining the shower profile, a factor that accounts for

polarization, another factor that accounts for distance

to the emitting point of the shower, and a form factor

Fp:

A(r, z, t) =
µ

4π

∫ ∞
−∞

dz′
Q(z′)√

r2 + (z − z′)2
p(z′)

Fp

(
t− z′

v
−
n
√
r2 + (z − z′)2

c

)
, (8)

where r is the radial distance of the observer to the

shower, z is the vertical coordinate of the observer, z′

is the shower depth, Q(z′) the excess charge profile, p

is the polarization vector and Fp is the form factor (see

[55] for more details). This form factor Fp has approxi-

mately the same shape for every particle shower in ice,

which allows us to treat it as a constant function. It

only depends on the type of the shower, i.e., hadronic

or electromagnetic, and a parameterization of the form

factor for both shower types is provided.

The charge profile Q(z′) depends on the nature of

the shower (hadronic or electromagnetic), the shower

energy, and is also subject to random fluctuations. The

LPM effect, for instance, modifies the charge profile,

which in turns modifies A through Eq. (8). All the phys-

ical processes that are relevant for the electric-field cal-

culation contribute to Q(z′), so as long as a correct de-

scription of the charge profile is available in the shower

library, an accurate electromagnetic potential A can be

calculated with Eq. (8).

Once A is known, the radiation electric field can be

calculated with a derivative, since in Coulomb gauge

Erad = −∂A∂t . The agreement between the electric field

predicted by the ZHS Monte Carlo and the one obtained

with the ARZ model is quite satisfactory, yielding a

few percent of error up to 2 GHz (see Fig. 3 in [25]).

The ARZ model considers that the shower has a vol-

ume and therefore is adequate for computing the fields

of observers near the shower as long as the considered

wavelengths are small with respect to the distance to

the shower.

NuRadioMC provides a modern Python-based imple-

mentation of the code used in [55] and optimized rou-

tines for numerical integration. The code includes a

shower library of charge-excess profiles for different sho-

wer types:

1. electromagnetic: purely electromagnetic showers from

νe charge current interactions.

2. hadronic (neutrino): showers started by the frag-

mentation of the nucleon struck by the neutrino,

i.e., the result of neutrino neutral current interac-

tions and the hadronic part of an electron neutrino

charged current interaction.

3. hadronic (tau): showers initiated by a hadronic de-

cay of a tau lepton. A tau decay into muons will

not produce any significant shower, and tau decays

into electrons correspond to purely electromagnetic

showers.

The last category is not simulated explicitly. Instead,

the branching ratios of a tau decay and the fraction

of energy ending up in the particle cascades is param-

eterized using the results of [35,36]. Then, the shower

library of electromagnetic (category 1) or hadronic (cat-

egory 2) showers is used with the appropriate shower

energy. We note that the initial hadronic particles that

start the hadronic shower are different between a frag-

menting nucleon and a hadronic tau decay. This might

lead to small differences in the hadronic shower devel-

opments. However, for now we ignore this subtle differ-

ence and use category 2 also for hadronic tau decays.

In the future, we will provide a separate shower library

for category 3. Currently, NuRadioMC comes with ver-

sion 1.2 of the shower library that will be described in

the following.

The showers were simulated using HERWIG [56] for

the simulation of the first neutrino nucleon interaction,

and ZHAireS [57] for the subsequent simulation of the

particle shower in ice. The charge-excess profiles are

binned in bins of 37 g/cm2 for electromagnetic show-

ers and 18 g/cm2 for hadronic showers. To optimize the

computation speed, we integrate Eq. (8) numerically

using the trapezoid rule given the binning of the charge-

excess profile. The form factor is a strongly peaked func-

tion which requires a more precise integration around

the peak. This is achieved by dynamically interpolating

the charge-excess profile at the positions corresponding

to the peak of the form factor.

The shower library (version 1.2) contains 10 show-

ers for every shower energy ranging from 1015 eV to

1020.5 eV in steps of ∆ log10(E) = 0.1 for both elec-

tromagnetic and hadronic showers. To obtain charge-

excess profiles for shower energies that were not ex-

plicitly simulated we do the following: At first order,

the charge-excess amplitude scales with shower energy.

Hence, in a simulation, we pick one shower realization

randomly from the nearest energy bin and re-scale the

charge-excess amplitude by Eevent/Elibrary.

To discuss and illustrate the improvement in ac-

curacy when using the ARZ approach as opposed to

a parameterization, we consider the influence of the

LPM effect on the radio signal. The main consequence

of the LPM effect is that the interaction probability

of high-energy electrons, positrons and photons is sup-
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Fig. 6 Charge-excess profiles and resulting Askaryan signal (unfiltered). (left) Charge-excess, i.e., number of electrons minus
number of positrons, as a function of shower depth and length of six electromagnetic shower with an initial energy of 1019 eV.
The variation in the charge-excess profile is due to the stochastic nature of the shower development effected by the LPM
elongation. (right) The resulting Askaryan signal for the charge-excess profiles according to the ARZ model for two different
viewing angles at 1 km distance. The pulse start time is shifted for a better visibility of all pulses.

Fig. 7 Charge-excess profiles and resulting Askaryan signal (unfiltered). Same as Fig. 6 but for electromagnetic showers with
an initial energy of 1016 eV. At this energy the LPM effect only has a small influence on the shower development and stochastic
shower-to-shower fluctuations are small.
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Fig. 8 Charge-excess profiles and resulting Askaryan signal (unfiltered). Same as Fig. 6 but for hadronic showers with an
initial energy of 1017 eV. Most hadronic showers are not influenced by the LPM effect and show only very little shower-to-
shower fluctuations. Different energies mostly scale the charge-excess and electric-field amplitudes approximately linear with
energy but have a small effect on the shower length. However, sometimes a high-energy π0 that is created in one of the first
interactions decays instead of interacting leading to an electromagnetic sub-shower that experiences significant LPM elongation
(green dotted curve in this figure).

pressed leading to an elongation of the shower profile.

The strength of the effect is proportional to the en-

ergy of the particle. Therefore, it mostly affects highly-

energetic electromagnetic showers above a few PeV in

ice, in which a large amount of energy is carried by in-

dividual particles. Previously in the literature (e.g. [57,

50]), the effect was often modelled via stretching of a

smooth shower profile. However, this does not take into

account the stochastic nature of the process and the fact

that the first few particles of an electromagnetic shower

are impacted differently by the LPM effect as the en-

ergy is not equally distributed. As a consequence, one

gets multiple spatially displaced EM showers as shown

in Fig. 6. In this figure, also the resulting Askaryan sig-

nals are shown for two different viewing angles θ which

are significantly different for different realizations of the

shower (see Fig. 1 for a sketch of the coordinate system).

Low energy EM showers are less influenced by the LPM

effect and the resulting Askaryan signals are similar for

all shower realizations (cf. Fig. 7). Hadronic showers ex-

hibit little shower-to-shower fluctuations except for the

rare cases where a high-energy electromagnetic shower

is initiated in one of the first interactions that then gets

LPM elongated (see Fig. 8).

3.4 Comparison of models

Each signal generation module in NuRadioMC has its

own strengths and shortcomings. We first compare the

signal models with respect to their resulting signal prop-

erties and then discuss practical considerations. We pro-

vide a quick overview of the discussion in Tab. 3.4. In

Fig. 9, a comparison of the predicted peak-to-peak am-

plitudes in a typical detector bandwidth of 100 MHz -

500 MHz is presented that will be discussed below.

The frequency-domain parameterizations are based

on a detailed full Monte Carlo simulation of the parti-

cle shower and a calculation of the resulting radio signal

using the ZHAireS code [46]. Thus, their predictions of

the signal amplitudes are accurate, the narrowing of

the Cherenkov cone due to the LPM effect is modelled

and even statistical fluctuations in the shower develop-

ment are parameterized (only Alvarez2009 ). The mod-

els are fast to evaluate and the computing time is neg-

ligible compared to the other parts of the simulation.

We also provide an older version, Alvarez2000, that was

most commonly used in previous simulation frameworks

and is therefore important for comparison. However, we

strongly recommend the usage of the newer model Al-

varez2009 as the older model typically overestimates

the Askaryan amplitudes by roughly 20-30%. The Al-
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model advantages shortcomings

parameterization (Al-
varez2009 )

fast, accurate representation of the
signal amplitudes, includes statisti-
cal fluctuations from LPM

no phase information, only valid in
far-field

fully analytic
(HCRB2017 )

fast, phase information provided,
valid in near and far-field, LPM is
treated as elongated shower

no statistical fluctuations from
LPM, generalization, absolute
amplitudes less accurate

semi analytic (ARZ ) phase information provided, near
and far-field, realistic LPM treat-
ment based on simulated shower li-
brary

computationally expensive

full MC precise modelling of all details of
shower development

slow, no implementation in NuRadio-

MC yet

Table 1 Overview of alternative methods implemented in NuRadioMC to calculate the signal following a neutrino interaction

4 2 0 2 4
viewing angle [deg]

0

1

2

3

4

5

pe
ak

-to
-p

ea
k 

am
pl

itu
de

 @
 1

0k
m

 [V
/m

]

×10 6

HAD showers EM showers

Esh = 1e+15eV
Alvarez2000
Alvarez2009
ARZ2019
HCRB2017

4 2 0 2 4
viewing angle [deg]

0

1

2

3

4

5
pe

ak
-to

-p
ea

k 
am

pl
itu

de
 @

 1
0k

m
 [V

/m
]

×10 3

HAD showers EM showers

Esh = 1e+18eV
Alvarez2000
Alvarez2009
ARZ2019

Fig. 9 Comparison of Askaryan models. Shown the peak-to-peak amplitude (the difference between the maximum and the
minimum of the Askaryan pulse) as a function of viewing angle. The pulses are filtered in a typical experimental bandwidth
of 100 MHz to 500 MHz. The left part of the plot (negative angles) shows the prediction for hadronic showers and the right
part of the plot (positive angles) the prediction for electromagnetic showers of the same shower energy. (left) 1015 eV shower
energy. (right) 1018 eV shower energy.

varez2009 model is in good agreement with the more

precise ARZ time-domain calculation (cf. Fig. 9).

The main shortcomings of such parametrizations are

that no phase information is provided which leads to

inaccuracies in the time domain. Typically, the phases

are approximated as constant 90◦ as function of fre-

quency, which results in a perfectly symmetric bipolar

pulse. While this may be a reasonable approximation

for many cases, it does not capture the details of the

shape of the pulses and does not account for physical

time delays. Thus, these models are suitable for general

sensitivity calculations given the correct prediction of

amplitudes. However, more detailed models are recom-

mended to study trigger efficiencies and event recon-

struction that are based on pulse shape and timing.

Another option is the fully analytic model HCRB2017

that also calculates the phases and is thus suitable for

the time-domain. It provides helpful insights into the

dependencies of the Askaryan signals on shower elonga-

tion and shower width. As being analytically it does not

model the statistical fluctuations occurring in showers

that can be substantial as shown in Fig. 6. The signal

strength prediction depends strongly on the longitudi-

nal cascade width a, which has to be approximated with

a Gaussian function for different cases (electromagnetic,

hadronic and LPM showers). The approximations lead
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to a mis-match between the predictions of this model

and the ones of the other models that are based on a mi-

croscopic Monte Carlo simulation where the calculation

of the radio signal is based on first principles resulting

in a few percent accuracy as shown in the radio emission

of air showers [58]. In particular, the HCRB2017 model

overpredicts the amplitudes at higher shower energies

and the reduction of the cone width due to the LPM

effect. Therefore, we only show the HCRB2017 model

for low-energy hadronic showers in Fig. 9. Furthermore,

the treatment of pulse arrival times is complex in an

analytic model, complicating the integration with the

different signal propagation modules (see Sec. 4). Nat-

urally, the model is computationally very fast given its

analytic approach.

The semi-analytic model ARZ builds on a shower

library of charge-excess profiles and thus models all de-

tails like sub-showers including statistical fluctuations

in the shower development. The calculation is performed

in the time domain. It therefore includes all phase in-

formation and gives an accurate prediction of the pulse

shape and timing. The model provides valid results even

when the distance from observer to shower is compara-

ble to or smaller than the shower dimensions, as long

as the distance is large compared the considered wave-

lengths. Above 100 MHz, and at distances greater than

10 m, the use of the ZHS formula, on which the ARZ

model is based, is justified [59]. It is the most pre-

cise model available and recommended for the develop-

ment of neutrino identification and reconstruction al-

gorithms. Its disadvantage is that it is computationally

more expensive. In a full end-to-end simulation it takes

up roughly 90% of the computing time. When using

this model, the computing time increases roughly by a

factor of 10.

The next level of precision can be achieved with full

Monte Carlo simulations where each shower particle is

tracked and the radio emission is calculated from the

acceleration and creation of each charged particle. This

is done for air showers in codes like CoREAS [60] and

ZHAireS [57], which are required to achieve the neces-

sary accuracy for modern air shower experiments that

are pushing the reconstruction uncertainties (e.g. [61,

62,58,63]). Currently, there is no urgency to require this

level of accuracy for neutrino predictions, given the ex-

perimental uncertainties and the computational costs of

a full Monte Carlo. However, future developments like

a next generation of CORSIKA [64] are followed closely

to allow for synergies and compatibility with NuRadio-

MC.

One could also consider another future improvement

in the combination of signal generation and propaga-

tion. As discussed earlier, the decoupling of signal gen-

eration and propagation leads to noticeable inaccura-

cies in an inhomogeneous medium (where the signal

trajectories are bent, cf. next section) if the extent of

the emission region becomes large with respect to the

distance to the receiver and if the trajectory is sub-

stantially refracted in the firn. Then, the time delay of

the propagation time from different emission points to

the receiver vary between a homogeneous and inhomo-

geneous medium, so that signal generation and prop-

agation cannot be separated without loss of accuracy.

This effect can be taken into account naturally in a

microscopic Monte Carlo simulation by calculating the

(curved) path from each emission point to the observer.

In an intermediate step, one could use the ARZ2019

model, where the Askaryan signal is calculated from

the charge-excess profile to address the issue: Instead

of calculating the emission from the full charge-excess

profile at once, a shower can be subdivided into small

chunks. The Askaryan radiation can then be calculated

per chunk and propagated individually to the receiver.

4 Signal propagation

The signal propagation pillar of NuRadioMC handles the

propagation of the Askaryan signal through the medium

to the observer positions. Like the other pillars, this

part of the code is clearly separated so that different

signal propagation modules can be implemented and

exchanged by the user. This is achieved by defining an

interface in form of a Python class (see general example

in [65]).

The signal propagation problem is typically approx-

imated via ray tracing but more general techniques such

as a finite difference time-domain (FDTD) method that

evolves Maxwell’s equation can be foreseen in the future

[66,67]. In the ray-tracing approximation, the different

ray paths connecting an emitter and receiver can be

classified as direct, if the depth is monotonously de-

creasing or increasing along the path between emitter

and receiver, as refracted, if the path shows a turning

point, and as reflected, if the ray is reflected off the

ice-air interface at the surface which acts as a perfect

mirror for most geometries. A few typical ray-tracing

solutions are presented in Fig. 10.

4.1 Analytic ray tracing

The default signal propagation module in NuRadioMC

is an analytic ray-tracing technique that provides an

unprecedented combination of speed and precision rel-

ative to traditional ray-tracing techniques. Traditional

ray-tracing techniques locate the path connecting an
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Fig. 10 Example of typical ray-tracing solutions for receiver locations differing in depth and horizontal distance to a given
emitter. The emitter is indicated by the black circle at the bottom left. Lines of the same color belong to the same receiver
location. Shown are the combinations of direct and reflected ray (blue), refracted and reflected ray (green), and two refracted
rays (orange). The numbers in the legend show the C0 parameter of Eq. (10) that defines the shape of the curve.

emitter and receiver by time intensive trial-and-error

methods, where numerous rays are “thrown” until a

ray which connects the emitter and receiver is found.

This is necessary because the index-of-refraction (n) of

glacial ice is known to vary with depth, and so a light

ray is bent and follows a curved path as it travels from

an emitter to a receiver. Because the index-of-refraction

does not need to be a well-behaved function it is im-

possible to predict the path traversed by the ray with

full generality.

However, ice density measurements and the result-

ing index-of-refraction profiles from the South Pole and

Moore’s Bay site exhibit a simple, depth-dependent index-

of-refraction n(z). The data can be described to within

a few percent [68] by an exponential function of the

following form:

n(z) = nice −∆ne
z/z0 , (9)

where z is the depth and nice, ∆n, z0 are the parameters

of the model. For this specific exponential n(z) profile,

an analytic solution of the ray path as a function of

depth (y(z)) exists and is given by

y(z) = ±z0
√
n2iceC

2
0 − 1

· ln
(
γ/
[
2
√
c(γ2 − bγ + c)− bγ + 2c

])
+ C1 , (10)

with γ = ∆ne
z/z0 , b = 2nice, and c = n2ice − C−20 .

We provide a derivation of this equation in Appendix

C.1. The parameters C0 and C1 uniquely describe the

ray path and need to be determined from two initial

conditions which are given by the two points the ray

goes through, e.g., the neutrino interaction vertex (the

point of emission) and the observer position.

The parameter C1 corresponds to a vertical trans-

lation in the coordinate system and can be calculated

analytically from the initial conditions. The parame-

ter C0 must be determined numerically, and is found

through a least-squares minimization. For each receiver-

emitter coordinate pair, we can either have no, one or

two solutions, corresponding to no connecting ray, one

connecting ray, or two connecting rays. To quickly and

stably find all possible solutions, we leverage numerical

algorithms as documented in Appendix C.2.

4.1.1 Derived quantities

Once a ray path is found, several derived quantities

are needed in the simulation. The launch vector of the

ray is needed to calculate the viewing angle (the angle

between shower axis and launch vector) which is re-

quired to calculate the Askaryan emission. The receive

vector is needed to evaluate the antenna response for

the arrival direction of the incident radiation. As dis-

cussed in Appendix C.2, the ray-tracing problem can

be reduced to the y-z plane with a simple coordinate

rotation. Hence, only the launch and receive angles are

required, which can be calculated analytically from the

derivative dy(z)/dz which we specify in appendix Ap-

pendix C.4.
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The path length can be calculated numerically via

the following line integral

d =

z′2∫
z1

∣∣∣∣dxdz
∣∣∣∣ dz =

z′2∫
z1

√
1 +

(
dy(z)

dz

)2

dz , (11)

where x = (y(z), z)T , and z1/2 refer to the z position

of the emitter/receiver. In case of a direct ray we have

z′2 = z2. In case of a refracted or reflected ray, we first

need to integrate from z1 to the turning point and then

the same path backwards to z2.

Similarly, the travel time t and the signal attenua-

tion exp(−A) can be calculated as

t =

z′2∫
z1

n(z)/c

∣∣∣∣dxdz
∣∣∣∣ dz =

z′2∫
z1

n(z)/c

√
1 +

(
dy(z)

dz

)2

dz ,

(12)

and

A =

z′2∫
z1

∣∣∣∣dxdz
∣∣∣∣ /L(z, f)dz (13)

=

z′2∫
z1

√
1 +

(
dy(z)

dz

)2

/L(z, f) dz (14)

where L(z, f) is the attenuation length as a function of

depth and frequency which is discussed in Sec. 6.5.

If the index of refraction profile is described with

an exponential function as in Eq. 9, an analytic expres-

sion for the path length and travel time can be derived.

This analytic function is used by default due to its im-
proved computing time. The derivation can be found in

Appendix C.5. For the attenuation factor no analytic

solution has been found and a numerical integration is

required.

4.1.2 Computational speed

We provide a Python implementation of the analytic

ray-tracing technique described above which leverages

the NumPy [69] and SciPy [70] computational packages.

In addition, we implemented the time critical opera-

tions of finding the ray-tracing solution and determin-

ing the signal attenuation in a standalone C++ module.

This C++ module leads to a substantial speed improve-

ment of a factor of 20, so that the calculation of the ray-

tracing solutions and the calculation of travel time and

distance as well as the signal attenuation takes less than

4 ms in ice. The C++ module utilizes the highly opti-

mized and broadly supported GNU Scientific Library

(GSL) [71] for numerical integration and root-finding.

We provide a Cython wrapper to the C++ imple-

mentation so that it can be called as a sub-routine. Se-

lection of routine (C++ or Python) is done in a trans-

parent fashion. If the user compiled the C++ extension,

NuRadioMC will automatically pick the faster C++ im-

plementation, and otherwise utilize the Python imple-

mentation. In this way, the NuRadioMC code works out-

of-the-box without additional dependencies. The Python

implementation is still sufficiently fast to be used for

many problems.

4.2 Focusing effect due to ray bending

Applying the ray approximation to signals from neu-

trinos in case of ray bending, requires an additional

correction factor on the signal amplitude. In general,

when considering many rays which are bent there can

either be a convergence or divergence of rays. If there

is a convergence the ray density and thereby the am-

plitude of the signal will increase, and conversely so for

a divergence. For the ice geometry, refraction contains

the signal within the ice, and an amplification is ex-

pected if the receiver is above the point of emission and

the ray is not reflected from the surface.

We calculate a correction factor from an energy con-

servation argument: The intensity along the ray is given

by

I =

√
ε

µ

ε2

c
=
n ε2

c
, (15)

for µ = µ0 where ε is the electric-field amplitude, c the

speed of light and n the index of refraction. The total

power contained in a ray bundle is P = I A with A be-

ing an area perpendicular to the propagation direction,

so the electric field strength propagates as

ε′ = ε

√
n

n′
A

A′
. (16)

The power radiated into a given solid angle is fixed by

the source. For a spherical geometry we have

dA = R2dΩ = R dθ ×R sin θ dφ . (17)

For refracted rays the relation dA
dΩ changes during prop-

agation. Assuming a planar index of refraction model,

i.e., it only depends on the depth z, only the R dθ part

changes and is given by

dA′ =
dz

dθ
sin θ′ dθ ×R sin θ′ dφ . (18)

See Appendix C.6 for a derivation of this relation. Then,

the ratio of electric field amplitudes is given by

ε′2

ε2
=

n

n′
dA

dA′
=

n

n′
R

sin θ′ dzdθ
(19)
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in the limit of θ ≈ θ′, which is applied as a correction

factor to the calculated electric field amplitude from the

signal generation module. The factor dz
dθ is calculated

numerically using the ray tracing code by calculating

a new ray to the receiver position which is vertically

displaced by a small amount ∆z ≈ 1 cm.

Emitter positions very close to the shadow zone

boundary require special attention as the correction di-

verges because dz
dθ approaches zero. This is not physical

but an artifact from treating both emitter and receiver

as a point. However, in reality the emission region is

extended over several meters due to the extent of the

particle shower (cf. Fig. 7) and also the antenna is an

extended object. Thus, we studied the stability of the

correction factor under small changes of the emitter po-

sition by ±5 m corresponding to typical dimensions of

the emission region. We find that correction factors be-

low about a factor of 2x in amplitude vary by less than

10% when the emitter position is varied. Larger amplifi-

cation factors in-turn are not stable. Hence, limiting the

amplification to a maximum of 2x removes unphysical

correction factors. Furthermore, we studied the effect

of the limit value. Limiting the focusing correction to a

factor of 1.5x, 2x and 3x results in essentially the same

effective volume (i.e. sensitivity of the detector) over a

broad range of neutrino energies. Thus, the exact choice

limit value is not that important as long as very large

amplification factors are removed. As default we limit

the focusing correction to a factor of 2x but allow the

user to configure this value via the config file.

The effect of focusing is strongest when the rays pass

near the surface and experience significant refraction.

For a receiver close to the surface we find an increase

in the effective volume of the order of 10% due to this

correction.

4.3 Numerical ray tracing for arbitrary density fields

In the future, it may become necessary to describe the

ice in more detail than an exponential profile that only

depends on the depth. This will require a more detailed

ray tracing that takes into account an arbitrary 3D

index of refraction profile n(x, y, z). We have already

foreseen this case and ensured that necessary hooks are

available in the code.

Interestingly, the computational problem of the prop-

agation of ultra-high energy cosmic rays through the

universe is similar to propagating a ray through the

ice. Instead of magnetic fields bending the trajectories

of charged cosmic-ray particles, the ray is bend accord-

ing to the spatial distribution of the index of refraction.

Where the cosmic ray can spallate into secondaries,

a ray can be partly transmitted and reflected. Conse-

quently, we considered the cosmic-ray propagation code

CRPropa [72] as one option and have started to modify

it for our needs.

The resulting code RadioPropa [73] solves the Eikonal

equation in a local paraxial approximation thus en-

abling casting of rays through materials with arbitrary

varying refractive index as may be required here. In

addition, RadioPropa handles effects from boundary

traversals such as reflection or partial reflection and al-

lows for the implementation of propagating components

of the electric field differently, such as needed for bire-

fringence. It automatically tracks several parts of the

original ray, making it also suitable for other less well

understood phenomena in the ice. In the same way as

NuRadioMC, RadioPropa is modular and flexible, leav-

ing room for future developments. It is currently under

heavy development and therefore not yet fully included

in NuRadioMC.

4.4 Signal propagation beyond ray tracing

Ray tracing describes the path taken by light in the

limit where the wavelength is much smaller than any

relevant feature sizes. While this is appropriate in most

practical cases, i.e., when the ice is uniform or has a

slowly-varying index of refraction, ray tracing does not

offer a full description of light propagation near dielec-

tric interfaces, where additional solutions to Maxwell’s

equations exist, (see e.g. [74] for a pedagogical tutorial

on some of the solutions, or [75] for a complete solution

for the field of a particle track). In addition to the ice-

air interface at the surface, variations in ice density are

present below the surface, producing a set of dielectric

interfaces. These may result in signals being observed

at locations, where simple models assuming a smooth

gradient predict no radio signals [68]. While adapta-

tions to the analytic ray-tracing requiring a smooth

gradient of the index of refraction, deliver solutions for

special cases, the finite-difference time-domain (FDTD)

method may be used to model propagation in ice even

in the presence of inhomogenities in all its aspects [67,

66].

Interesting phenomena that arise include the exis-

tence of potentially detectable (though generally small)

signals coming from regions where there is no ray-tracing

solution, diffraction and interference of the radio waves,

and the presence of caustics, where the small electric

field may be significantly amplified in some geometries

[67].

While these effects will slightly modify the effec-

tive volume of a detector and provide additional oppor-

tunities for event reconstruction, direct integration of
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an FDTD solver into NuRadioMC is challenging for the

purpose of providing a simulation framework. FDTD

methods are very computationally and memory inten-

sive, requiring discretization on the scale of a tenth of

the smallest relevant wavelength in all spatial dimen-

sions as well as time. Directly simulating the entire vol-

ume seen by a typical in-ice station is extremely com-

putationally challenging in three dimensions with our

present capabilities – we estimate a single simulation of

a cubic kilometer volume valid up to 500 MHz would

take O(107) CPU-hours. One can envision the usage

for a single event (in case of re-simulation of a detected

shower for example), the integration for all events is,

however, impractical.

By considering only azimuthally-symmetric anten-

nas and density variations dependent only on depth,

it is possible to simulate a transmitting in-ice antenna

in just two dimensions, greatly reducing the compu-

tational burden. We are investigating techniques ex-

ploiting reciprocity in order to tabulate the propaga-

tion properties of the equivalent time-reversed geom-

etry, corresponding to a receiving antenna. Such tab-

ulated properties could then be incorporated into Nu-

RadioMC in an efficient manner.

5 Detector simulation

The fourth pillar of NuRadioMC is the detector simu-

lation, i.e., the calculation of the detector response to

an electric field at the antenna and subsequent trigger

simulation. We use the software NuRadioReco for this

task [28]. NuRadioReco is a software for the detector

simulation and event reconstruction of radio neutrino

and cosmic-ray detectors. It is written in Python and

also follows a modern modular design so that it nicely

integrates into NuRadioMC.

5.1 Antenna simulation

The most important part in the simulation of the detec-

tor response is the impact of the antenna. NuRadioReco

provides antenna response pattern of typically used an-

tennas such as LPDAs, dipoles or bicone antennas that

were simulated with dedicated codes such as WIPL-D

[76] and XFDTD [77]. NuRadioReco also provides an

interface to the output of these codes such that new

antenna models can be added if necessary.

In earlier software, the response of the antennas was

typically treated in a simplified way, only assuming real

gain factors and a simple polarization response, i.e. ig-

noring contributions polarized orthogonal to the main

antenna sensitivity. According to methods already stan-

dard in the treatment of radio signal from cosmic rays

(e.g. [78,63]), the antenna response is modelled fully

frequency-dependent in NuRadioReco, also taking into

account the group delay induced by the antenna and its

sensitivity to two orthogonal polarization components.

5.2 Trigger simulation

Especially when looking for small signals, as expected

from neutrinos, the simulation of the trigger mechanism

is essential. The trigger simulation is set up as such that

any instrumental trigger can be rebuilt in software. Nu-

RadioReco offers modules to simulate different trigger

conditions, e.g., a simple threshold trigger, a high and

low trigger as implemented on the SST electronic [79]

used by ARIANNA [8] that also allows to specify tem-

poral coincidences between different channels, or more

complex triggers such as the phased array concept used

by ARA [12] have been included to model the instru-

ment response as implemented in the fields.

5.3 Usage in complex detectors

NuRadioReco was built to reconstruct data from an

existing detector. In order to facilitate complex detec-

tors without creating too much overhead, the detec-

tor description is stored in a database allowing for a

description of every single detector component. While

this functionality will be helpful to simulate specific

events for an existing detector, it is much too complex

for design studies. Therefore, NuRadioReco also allows

the user to define the detector description in a human

readable JSON format, with reduced complexity. This

means both that the detector description only needs to

be as complex as minimally required and it significantly

speeds up simulations. The information ranges from ba-

sic parameters such as the positions of the antennas,

their type and orientation to more detailed properties

such as the sampling rate of the digitizing electronics,

the cable lengths or details about the amplifier and

ADC. The detector simulation modules have access to

these properties and will simulate the detector response

accordingly. An example of a typical detector simula-

tion is provided in Appendix E.

6 Utilities

The four pillars of NuRadioMC are complemented by a

set of utility classes that are available to all modules,

such as units and medium properties.
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6.1 Cross-sections and inelasticities

The cross-section of neutrinos at energies relevant for

radio detection are still subject to study, given that

these energies have never been probed. Different cur-

rent extrapolations [31,33,34] have been implemented

in NuRadioMC in the central utilities, so that the cross-

sections can easily be exchanged throughout the code,

if so desired.

6.2 Earth models for neutrino absorption

To simulate the sensitivity of a neutrino detector, we

need to calculate the probability of a neutrino reaching

the detection volume. The Earth atmosphere has negli-

gible absorption for high energy neutrinos but the Earth

becomes opaque at high neutrino energies. Hence, Nu-

RadioMC comes with multiple models to calculate the

Earth absorption so that we can assign each simulated

neutrino a weight, i.e., a probability of reaching the de-

tection volume.

Right now, NuRadioMC provides two Earth models: a

simple Earth model with a constant density and a core-

mantle-crust Earth model with three layers of different

densities. Due to the modularity, it is straight forward

to add more detailed models if deemed necessary.

Currently, we do not model tau regeneration: A tau

lepton that is created following a tau neutrino interac-

tion can propagate significantly through the Earth and

potentially decay with a relatively large energy and pro-

ducing another tau neutrino that can interact close to

the detector. We plan to include this effect in a future

version of NuRadioMC using e.g. the code of [80,81].

6.2.1 Simple Earth model

This model uses a constant density of 2900 kg/m3 and

by default uses the cross section (σ) based on [31]. It

then calculates the distance the neutrino goes through

the Earth as

d = 2Recos(π − ϑ), (20)

where Re is the radius of the Earth and ϑ is the zenith

angle of the neutrino direction. The weight of an event

is then

weight = e−dσρ/AMU , (21)

where ρ is the constant density of the Earth and AMU

is the atomic mass unit in kg.

6.2.2 Core-mantle-crust Earth model

NuRadioMC provides a more realistic Earth model with

three layers of different densities which is the default

model. In this model, the cross section is per default

calculated based on [33] and the propagation distance

is calculated through three different layers. The weight

is calculated as

weight = e−(d1ρ1+d2ρ2+d3ρ3)σ/AMU , (22)

where d1, d2, d3 are the distances through three layers

and ρ1, ρ2, ρ3 are the three densities.

6.3 Handling of Fourier Transforms

NuRadioMC provides a consistent internal handling of

Fourier transforms. A common source of errors when

using time- and frequency-domain calculations simulta-

neously is the normalization of the Fourier transforms.

There are several reasons for different normalizations

depending on the purpose and context. All NuRadioMC

Fourier transforms adhere to Parseval’s theorem and

previously existing Askaryan signal parameterizations

have been adjusted to match the FFT definition used

in NuRadioMC. Details are discussed in Appendix D.

6.4 Handling of units

In simulations, typical errors occur during the handling

of units. To prevent that, NuRadioMC (just like NuRa-

dioReco) employs a default system of units, a concept

borrowed from the Pierre Auger Observatory offline

analysis framework [82]: every time a physical variable

is defined, it is multiplied by its unit, and every time

a variable is plotted or printed out in a certain unit, it

is divided by the unit of choice. All other calculations

within the code can then be done without considering

units.

from NuRadioMC.utilities import units

time = 132. * units.ms # define 132 milliseconds

distance = 5. * units.mm # define 5 mm

speed = distance/time

print("the speed is {:.2f} km/h"

.format(speed/units.km*units.hour))

# the speed is 0.14 km/h

The units utilities are available to modules written in

both Python and C. In order to facilitate this, no stan-

dard Python package was used.
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6.5 Attenuation length and other medium

characteristics

As discussed in Sec. 4 the signal propagation is a sig-

nificant part of the neutrino simulation and an area

where lots of development is still to be expected. Con-

sequently characteristics of the interaction medium are

stored centrally in the utilities to avoid contradicting

definitions in modules. We describe the index-of-refrac-

tion profile and signal attenuation properties separately

to allow for simulation with different combinations of

the two. Which model is being used in a NuRadio-

MCsimulation is controlled via the central config file (see

Sec. 7.2).

Currently, a signal attenuation model for South Pole

ice is provided that is based on a custom model used

by the ARA experiment [83]. For the index-of-refraction

profile we provide exponential parameterizations to data

from for the South Pole and Moore’s Bay [68], as well

as from Greenland [84,85].

6.6 Flux calculations and sensitivity limits

In order to compare the performance of different exper-

imental designs, typically quantities like the effective

area, volume or expected limits are compared. Since

also here, many definitions are common (e.g. 90% confi-

dence upper limits vs. 5σ discovery fluxes), utility func-

tions are provided centrally.

7 Example 1: Calculation of the sensitivity of

an Askaryan neutrino detector

In this section we present a full example of the ca-

pabilities of NuRadioMC to simulate the sensitivity of

an Askaryan detector. We choose a station layout that

combines log-periodic dipole antennas (LPDA) near the

surface with slim dipoles deployed in a borehole deeper

in the ice. The specific layout is depicted in Fig. 11. This

station layout does not necessarily reflect the authors’

opinion on the optimal detector layout but was chosen

because it highlights NuRadioMC’s capabilities: Anten-

nas of different type, orientation and depth are simu-

lated, the location close to the surface makes a detailed

propagation of the signal through the firn necessary,

and multiple trigger conditions need to be calculated

for different sets of antennas. In the following, only the

relevant code snippets are shown. A comprehensive tu-

torial can be found online [86].

Fig. 11 Sketch of the station layout simulated in Example
1.

7.1 Event generation

The first step in the simulation is the event genera-

tion. The event generation is done stand-alone and pro-

duces a list of neutrino interactions in the ice with all

necessary properties saved in a simple HDF5 format

(see Sec. 2 for details and advantages of separating this

step). We choose to generate several input lists, each

for a fixed neutrino energy to study the energy depen-

dence. We only consider the initial neutrino interaction.

A discussion of the impact of additional Askaryan sig-
nals from decaying taus or interacting muons goes be-

yond the scope of this publication.

A list of one million neutrino interactions with an

energy of Eν = 1018 eV in a cylindrical volume saved in

chunks of 10,000 events can be generated with

generate_eventlist_cylinder('1e18_n1e6.hdf5',

n_events=1e6, n_events_per_file=1e4,

Emin=1e18 * units.eV, Emax=1e18 * units.eV,

fiducial_rmin=0, fiducial_rmax=5 * units.km,

fiducial_zmin=-2.7 * units.km, fiducial_zmax=0)

The radius needs to be set large enough to include all

events that can trigger the detector and is set to 4 km

here. For larger neutrino energies, the radius needs to be

extended and for lower energies the simulation volume

can be decreased to save computing time. The vertical

extent of the volume ranges from the surface to the

bottom of the ice layer at a depth of 2.7 km at the

South Pole.



21

7.2 Configuration of simulation parameters

The settings of the simulation are controlled with a con-

fig file in the human-readable yaml format. The user

only needs to specify a parameter if it should be dif-

ferent from its default value. An example configuration

with typical settings is shown in listing 1. Typical pa-

rameters are the choice of signal generation model (Al-

varez2009 in this example), the ice model, or if noise

should be generated and added to the signal in the sim-

ulation.

noise: False # specify if simulation should be

run with or without noise

sampling_rate: 5. # sampling rate in GHz used

#internally in the simulation.

speedup:

minimum_weight_cut: 1.e-5

delta_C_cut: 0.698 # 40 degree

propagation:

ice_model: southpole_2015

signal:

model: Alvarez2009

trigger:

noise_temperature: 300 # in Kelvin

weights:

weight_mode: core_mantle_crust # core_mantle_crust:

#use the three layer earth model,

#which considers the different densities of the

#core, mantle and crust.

#Simple: use the simple earth model,

#which applies a constant earth density

Listing 1: Example of NuRadioMC’s config file. All pa-

rameters are specified in a default system of units. See

text for details.

7.3 Detector description

The detector description consists of two parts. First,

we need to define the layout of the detector (position,

type, and orientation of the antennas), and the sam-

pling rate. Additional parameters such as cable delays

and amplifiers can be specified if needed (cf. Sec. 5.3

and NuRadioReco [28]). However, in this example we

will perform a simplified detector simulation sufficient

to estimate the sensitivity of an Askaryan detector. The

detector description is specified in a JSON file presented

in List. 2.

Second, we need to specify basic details of the signal

chain, i.e., what filter is being used and which triggers

are calculated. These tasks are done by dedicated Nu-

RadioReco modules [28] (see Sec. 5.3) that interface

directly with NuRadioMC. Instead of simulating just a

{

"channels": {

"1": {

"station_id": 101,

"channel_id": 0,

"ant_type": "createLPDA_100MHz",

"ant_position_x": 3,

"ant_position_y": 0,

"ant_position_z": -2.0,

"ant_rotation_phi": 180,

"ant_rotation_theta": 90,

"ant_orientation_phi": 0,

"ant_orientation_theta": 180,

},

...

},

"stations": {

"1": {

"pos_altitude": 0,

"pos_easting": 0,

"pos_northing": 0,

"pos_site": "southpole",

"station_id": 101

}

}

}

Listing 2: Example of detector description. Only the

first channel is shown which defines a downward facing

LPDA at a depth of 2 m with its tines oriented along

the Northing direction.

single trigger condition as shown in the example, a sep-

arate trigger can be simulated for each parallel pair

of LPDA antennas and for the dipole antennas. This

is achieved by calling the same trigger module several

times with different arguments. The full example can

be found in the online tutorial [86].

7.4 Running the simulation, results, and visualization

tools

The NuRadioMC simulation is run by executing the steer-

ing script from the command line. The flexibility to

split up the input data set into smaller chunks is part

of the event generator, so multi-processing computing

resources can be used right away. A detailed example

on how to run NuRadioMC on a cluster is available in

the online tutorial [87].

The sensitivity of the detector is quantified in terms

of effective volume to an isotropic neutrino flux. It is

given by the weighted sum of all triggered events di-

vided by the total number of events multiplied by the

simulation volume and the simulated solid angle (typ-

ically 4π). The weighting factor is the probability of a

neutrino reaching the simulation volume (and not be-

ing absorbed by the Earth). The effective volume of our
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example detector station is presented in Fig. 12 (left).

This effective volume can be converted into an expected

limit on the diffuse neutrino flux which is shown in

the right panel of Fig. 12. The required tools to make

these standard post-processing plots are also part of

NuRadioMC.

Furthermore, a standard set of debug plots can be

automatically generated from the output files. The dis-

tribution of the neutrino interaction vertices of events

that triggered the detector is shown in Fig. 13 (left).

The upper right (triangular) part of the volume cor-

respond to positions in the shadow zone where signals

cannot reach the detector according to the ray trac-

ing. The lower left region has little events because the

Askaryan signal is only emitted towards the antennas

if the neutrino is up-going, i.e., it travelled through the

Earth and its probability of reaching the detector is

small. The right panel shows the ratio of neutrino fla-

vors and interaction types that triggered the detector.

In this case, most triggered events were electron neu-

trino charged-current (CC) interactions where the full

neutrino energy is deposited in particle showers produc-

ing an Askaryan signal.

8 Example 2: Calculation of the efficiency to

detect a signal from both the direct and

reflected path

In this example, we calculate the efficiency of an in-

ice antenna to observe both the direct Askaryan signal

and the signal reflected at the ice surface. For most

shower geometries there is total internal reflection of

the Askaryan signal at the ice surface, i.e., the ice-air

interface acts as a mirror. Consequently, an antenna in-

stalled within the ice has the chance to see two pulses:

one pulse that propagated straight to the antenna and a

second pulse that was reflected off the surface. Detect-

ing this D’n’R (direct and reflected) signature is advan-

tageous and an Askaryan neutrino detector will benefit

strongly from detecting both pulses: First, it provides a

unique method to identify a neutrino interaction in the

ice as origin of the detected radio signal, and second,

the time difference between the two pulses allows for

an improvement in the reconstruction of the distance

to the neutrino interaction vertex which is a crucial in-

gredient for the reconstruction of the neutrino energy.

See [96] and [9] for first experimental results concerning

this effect using pulsers deployed in the Antarctic ice at

South Pole.

There are several effects that influence the efficiency

of detecting both pulses that are all taken into account

in the NuRadioMC simulation:

– The reflection coefficient depends on the incident

angle of the radio pulse at the ice surface and can

range from 1 (total internal reflection) to 0 (no re-

flection) at the Brewster angle.

– The reflection results in a phase shift of the Askaryan

pulse which can alter the amplitude of the pulse.

This is modelled using the complex Fresnel coeffi-

cients.

– Due to the changing index of refraction in the up-

per ice layers the signal propagates on curved paths.

We find all possible paths to each antenna via ray-

tracing. We note that not only a ’direct’ and ’re-

flected’ path will provide a useful signature but any

two distinct paths through the ice to the antenna. In

case only one solution exists, the efficiency to detect

two pulses is of course zero.

– The different ray paths correspond to different launch

angles of the signal. This results in a potentially

large difference of the amplitude of the Askaryan

signal as the launch angles correspond to different

viewing angles.

– Antennas have a different sensitivity to different in-

coming signal directions.

– The two ray paths have different propagation dis-

tances and potentially propagate through ice with

different attenuation lengths.

In the following we describe an example of how to

simulate the D’n’R detection efficiency with NuRadio-

MC and explain the relevant parts of the code. The full

code of this example can be found online at [97].

The D’n’R efficiency depends on the depth of an

antenna, hence, we want to define a detector with sev-

eral antennas of the same kind at different depths. As

antenna type we choose a bicone antenna as used by

the ARA experiment as such an antenna is sensitive

to the dominant vertical polarization, fits into narrow

boreholes, and has very little signal dispersion which

helps to measure the time difference between the two

pules. Hence, we set up a detector with vertically ori-

ented bicone antennas every 10 m down to a depth of

100 m.

It does make sense to study the D’n’R efficiency as a

function of neutrino energy. Therefore, we can use the

same script to generate the input event list as in the

previous example.

8.1 Set-up of detector simulation

In the previous example we have discussed how to simu-

late the detector response and the trigger. In the detec-

tor simulation so far, all signals that reach the antenna

from the different ray path solutions, are combined into



23

1017 1018 1019 1020

neutrino energy [eV]

100

101

ef
fe

ct
iv

e 
vo

lu
m

e 
[k

m
3  s

r]

105 106 107 108 109 1010 1011

neutrino energy [GeV]
10 11

10 10

10 9

10 8

10 7

10 6

E2
 [G

eV
 c

m
2  s

1  s
r

1 ]

GRAND 10k
IceCube

ANITA I - III

Auger

ARA

Best fit UHECR, Heinze et al.
Best fit UHECR + 3 , Heinze et al.
10% protons in UHECRs, van Vliet et al.
allowed from UHECRs, van Vliet et al.

NuRadioMC example: 3 years

Fig. 12 (left) effective volume of one example detector station (right) corresponding expected limit for a diffuse neutrino flux
for a detector comprising 100 stations and an uptime of 3 years. Shown are for comparison neutrino flux measurements from
IceCube [88,89,90], the Pierre Auger Observatory [91], ANITA [92], and ARA [10], as well as neutrino flux prediction models
from [93,94] calculated using the restrictions from ultra-high energy cosmic rays. We also compare to other proposed arrays
[95].

a single voltage trace on which the trigger condition is

determined. However, for the D’n’R study, we not only

need to determine if the detector could observer/trig-

ger a certain event, but also if both pulses are visible.

Hence, a dedicated NuRadioReco module called calcu-

lateAmplitudePerRaySolution was written, which simu-

lates the antenna response to each pulse separately and

calculates and saves the resulting maximum amplitude.

Following this we can calculate if a triggered events has
two visible pulses.

As trigger condition we choose a simple threshold

trigger of 2 Vrms that runs on all channels (i.e. anten-

nas) independently. The NuRadioMC simulation is then

executed as described in Example 1.

8.2 Results

We now assume a more stringent cut in which all events

that produce at least a 3σ (3 Vrms) signal can be recorded.

For the seconds pulse the requirement for identification

is assumed smaller at 2σ. Furthermore, we require that

the time difference between the two pulses is smaller

than 430 ns which is assumed as typical record length.

We then calculate if an event has triggered via

Bi = Ai1 ≥ 3 Vrms or Ai2 ≥ 3 Vrms (23)

and if both pulses are visible via

Ci =((Ai1 >= 3 Vrms) or (Ai2 >= 3 Vrms)) (24)

and ((Ai1 >= 2 Vrms) and (Ai2 >= 2 Vrms)) (25)

and (∆T < 430 ns) , (26)

where Ai1 and Ai2 are the amplitudes of the two pulses

of event i.

Then the D’n’R efficiency is then given by

ε =
∑
i

Ci/
∑
i

Bi (27)

where the summation runs over all simulated events i.

This calculation is performed for each simulated an-

tenna depths, and for each set of simulated neutrino

energy separately.

We simulated 10 million events per neutrino energy

and obtain the result presented in Fig. 14. The D’n’R

efficiency depends strongly on depth and energy and is

best at shallow depth and high energies.

It should be noted that D’n’R efficiency is not the

only parameter that one should optimize an array for.

For example, a shallower station generally has a smaller

effective volume than a deep station, and the fraction

of sky coverage also depends of depth. Together with

a diverse choice of antennas influencing reconstruction

capabilities, data volume restrictions, and instrument

costing, optimizing a detector layout is a complex prob-

lem, for which NuRadioMC provides guidance.
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Fig. 13 Visualization for the energy bin of 1018 eV neutrino
energy. (top) Distribution of neutrino interaction vertices of
all triggered events. (bottom) Flavor and interaction type
(charged or neutral current) distribution of triggered events.

9 Example 3: Optimization of station spacing

for an Askaryan neutrino detector

In this example we calculate the probability to detect

a signal from the same neutrino in multiple stations

of an array. For a discovery detector, one objective is

a large sensitivity which means that it is beneficial to

separate stations far enough to minimize station coinci-

dences. However, one may want to optimize differently

in the future to have a large fraction of coincidences

to improve reconstruction quality. Here, we show how

the coincidence fraction can be studied as a function

of station separation distance, neutrino energy, and an-

tenna depth. The full code of this example can be found

online at [98].
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Fig. 14 Efficiency to detect both the direct and reflected
Askaryan pulse as a function of depth of the receiver. (top)
For a neutrino energy of 1017 eV. (bottom) For a neutrino
energy of 1018 eV. Different markers and colors correspond
to different trigger thresholds. All events with a signal of at
least a 3σ in any of the pulses were considered which explains
the smaller efficiency at the surface for the ’both pulses > 4σ’
criterion.

9.1 Simulation strategy

We consider a simplified detector with two components.

The first one is a surface oriented component consisting

of LPDAs and dipoles. To save computing time, we only

simulate two orthogonally-oriented horizontal LPDAs

at 2 m depth and one dipole at 5 m depth to be sensitive

to all signal polarizations. The second component is a

deep one, approximated with a single dipole antenna

at 50 m depth. We combine the four antennas into a

single station so that only one simulation needs to be

run, but we can still evaluate the coincidence fraction

independently.
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In principle, one would need to simulate a full 2D

grid for every station separation distance that one wanted

to test, because there might be cases where not the

nearest station triggered but the next-to nearest neigh-

boring station or stations even further out. However,

as this will drastically increase computing time (which

scales linearly with the number of stations) this small

second order effect is ignored in this example. Our anal-

ysis will show that the coincidence rate is dominated by

the nearest neighbors, i.e., the coincidence rate quickly

drops if the separation between stations is doubled, jus-

tifying this approximation.

For every station separation distance we consider

the eight nearest stations around the central station as

illustrated in Fig. 15 on the left. We consider distances

ranging from 100 m to 3 km.

We run the NuRadioMC simulation for event lists of

different neutrino energies. The Askaryan signal is fil-

tered from 80 MHz - 500 MHz and all events are saved

that exceed a signal threshold of 1VRMS for a noise tem-

perature of 300 K.

9.2 Accessing the results and coincidence fraction

Part of the HDF5 output file is the maximum amplitude

of each channel of each event stored in a two dimen-

sional array. This allows for a quick calculation of the

coincidence requirements. We first check if the central

station fulfilled the trigger condition which we assume

to be a signal above 3VRMS in any channel. Then, for

each simulated distance, we select the channels corre-

sponding to this distance and check if any channel ful-

fills the trigger condition. The coincidence rate is then

given by the ratio of events where both the central sta-

tion and any of its nearest neighbors triggered, divided

by the number of triggers of the central station alone.

The result is presented in Fig. 15 (right). It shows that

the coincidence fraction increases with energy. At a sta-

tion distance of 1 km more than 20% of the events at

1018 eV for a surface station (and more than 40% for a

50 m deep station) are detected in at least two stations.

This suggests that for a design optimizing on effective

volume, stations should be separated further than 1 km

from each other, or even further when optimizing for

the highest energies. An array of surface stations shows

in general a smaller coincidence fraction.

10 Summary and Outlook

We have presented NuRadioMC as a versatile framework

to simulate different aspects of radio neutrino detec-

tors. NuRadioMC provides a state-of-the-art implemen-
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Fig. 15 (top) Station layout of example 3 to determine the
station coincidence rate. Each color and symbol combination
corresponds to the nearest neighbors of one station separa-
tion distance. (bottom) The probability to detect the same
neutrino in multiple stations as a function of separation be-
tween the stations. The different colors/symbols correspond
to different neutrino energies. The solid line is the result for a
surface detector, the dashed line is the result for a 50 m deep
detector.

tation of the four pillars of a radio neutrino simulation:

event generation, signal generation, signal propagation,

and detector simulation. All properties of the simulation

chain can be adapted and compared to each other. Fol-

lowing the design goals of flexibility and usability, Nu-

RadioMC combines the knowledge and experience from

all previous radio detectors for neutrino and cosmic-

rays. We have presented a detailed discussion of many

radio emission models and documented an improved
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time-domain approach using a shower library which

provides a realistic treatment of the LPM effect and

its random fluctuations. In three comprehensive exam-

ples, we have shown how to calculate effective volumes

and sensitivities, the efficiency to detect multiple pulses

from the same shower (multi-path events), and the co-

incidence fraction between stations in a large array, de-

pending on the distance between stations. This provides

valuable tools for design decisions, depending on the

goals one wants to optimize for. Proposed radio neu-

trino experiments such as RNO, ARIANNA, GRAND,

ANITA/PUEO or BEACON [99,9,95,100] may soon or

already have profited from the capabilities of NuRadio-

MC.

NuRadioMC provides a solid foundation for reliable

simulations, but also leaves room for future develop-

ments from the radio neutrino community. NuRadio-

MC is publicly available on github [101] and is open to

low-threshold further code development from interested

parties. As experiments progress and as soon as neutri-

nos are detected through their radio emission, the areas

of prioritized need for development will be indicated by

the data.
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47. J. Alvarez-Muñiz, C. James, R. Protheroe and E. Zas,
Thinned simulations of extremely energetic showers in
dense media for radio applications, Astroparticle
Physics 32 (2009) 100 .
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Appendix A: HDF5 event files structure

The HDF5 files created by the event generator consist

of a collection of arrays containing the properties of the

neutrinos and other secondary particles (taus, for in-

stance). The array keys and contents are the following:

– azimuths, the arrival azimuth angles in radians.

– zeniths, the arrival zenith angles in radians.

– xx, yy, and zz, the x, y and z coordinates in meters

for the point where the particles interact or decay.

– event ids, the event identification numbers

– n interaction, the interaction number. 1 indicates a

neutrino interaction, 2 and greater indicates decay

or interaction of a lepton created after the neutrino

interaction.

– flavors, neutrino flavors. 12 for electron neutrino,

14 for muon neutrino, and 16 for tau neutrino. An-

tineutrinos are represented by −12, −14, and −16.

A value of 15 indicates a tau lepton. The numbers

are following the standard of [30].

– energies, the particle energies in electronvolts

– interaction type, the interaction type. ’cc’ for charged

current, and ’nc’ for neutral current. ’tau had’, ’tau -

em’, ’tau mu’ indicate the tau decays into the ha-

dronic, electromagnetic and muonic channels respec-

tively.

– inelasticities, the inelasticities for the neutrino in-

teractions and the tau decays, that is, the energy

fractions taken by the product cascades.

In these HDF5 files we also save as attributes the num-

ber of events and the characteristics of the fiducial and

total simulated volumes, along with maximum and min-

imum energies and angles for the neutrinos.

Appendix B: NuRadioMC HDF5 output files

structure

NuRadioMC creates as output an HDF5 file with infor-

mation on the events and on the simulation outcome.

The user can choose between saving all the information

for all events or only for those that have triggered. The

NuRadioMC HDF5 output files contain all the values

that can be found in the event files (Appendix A), along

with the following additional arrays:

– triggered, with ones indicating a triggering event and

zeroes a non-triggering event.

– weights, the weights given to each event as a conse-

quence of propagation through the Earth.

– multiple triggers, indicates if the triggering condi-

tion has been met individually for each simulated

trigger. The first axis of this array gives the event

number, and the second the type of trigger.

The rest of the output arrays are stored in several HDF5

groups, each group corresponding to a simulated sta-

tion. The following arrays (except for the SNRs ar-

ray) contained within the station group are multidi-

mensional. Their first axis is the event number, and the

second one the antenna. Each group for a given station

contains:

– SNRs, the signal to noise ratios for each event de-

fined as the maximum signal amplitude divided by

the RMS noise.

– triggered, with ones indicating a triggering station

and zeroes a non-triggering station.

– multiple triggers, indicates if the triggering condi-

tion has been met individually for each simulated

trigger. The first axis of this array gives the event

number, and the second the type of trigger.

– maximum amplitudes, the maximum amplitudes for

the voltages of each antenna.

– maximum amplitudes envelope, the maximum am-

plitudes of the voltage envelope of each antenna.
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– travel distances, the distances traveled by the rays.

There can be up to two, one for each ray-tracing

solution. The third axis of the array indicates the

ray-tracing solution. The same principle applies to

all arrays containing ray-tracing information.

– travel times, the times taken by the rays from emit-

ter to observer.

– ray tracing C0, C0 parameters for the ray tracing

solutions.

– ray tracing C1, C1 parameters for the ray tracing

solutions.

– ray tracing solution type, strings containing the type

of ray tracing solutions: direct, reflected, or refracted.

The following arrays of the HDF5 group contain three-

dimensional vectors, and therefore they have a fourth

axis that allows us to find the x, y, and z components

of said vectors.

– launch vectors, the launch vectors for the ray tracing

solutions.

– receive vectors, the receive vectors for the ray trac-

ing solutions.

– polarization, the polarization of the electric field.

In the attributes of the output files the names of the

simulated triggers (using the string trigger names) can

be found.

Appendix C: Analytic ray tracing

The analytic ray tracing in NuRadioMC provides a novel

and fast solution of the ray-tracing problem. For com-

pleteness we provide the full derivation of the analytic

solution, the path, the path length and the travel time.

Appendix C.1: Derivation of analytic solution

In this section, we will derive the analytic solution to

the ray tracing problem. Fermat’s principle states that

the optical path of a ray of light travelling between

two points is stationary. Suppose the index of refrac-

tion depends on one coordinate in a three-dimensional

Cartesian coordinate system:

n(x, y, z) = n(z) (C.1)

Further, let dx/dz = ẋ and dy/dz = ẏ, so that the

metric may be expressed as:

ds =
√
dx2 + dy2 + dz2 = dz

√
ẋ2 + ẏ2 + 1 (C.2)

The symmetry of n(z) implies that the coordinate

system may be rotated such that ẋ = 0. Thus the metric

becomes

ds = dz
√
ẏ2 + 1 (C.3)

Inserting this metric into Fermat’s Principle gives

S =

∫ B

A

nds (C.4)

δS = 0 (C.5)

δ

∫ B

A

n(z)
√

1 + ẏ2dz = 0 (C.6)

Defining u = ẏ and applying the Euler-Lagrange

equations yields

u̇ = − ṅ
n

(u3 + u) (C.7)

Letting v = − lnn, Eq. C.7 simplifies to

u̇ = v̇(u3 + u) (C.8)

Noting that v̇ = dv/dz, and applying the chain rule

gives

du

dz

dz

dv
=
du

dv
= u3 + u (C.9)

Rearranging and then integrating gives

∫
du

u3 + u
=

∫
dv (C.10)

lnu− 1

2
ln(u2 + 1) = v + C0 (C.11)

Equation C.11 may be solved for dz/dy after re-

scaling C0:

dz

dy
= ±

√
C2

0n
2 − 1 (C.12)

In the case of South Pole and Moore’s Bay glacial

ice, it is found that n(z) is described to within a few

percent by an exponential function [68] which allows us

to proceed further in solving for the ray-path.

n(z) = nice −∆n exp(z/z0) (C.13)

Let γ = ∆n exp(z/z0), which implies
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n(z) = nice − γ (C.14)

dz = γ−1z0dγ (C.15)

Inserting Eq. C.13 into Eq. C.12 and integrating,

with b = 2nice and c = n2ice − C
−2
0 :

∫
dγ

γ(γ2 − bγ + c)1/2
= ±C0

(
y

z0
+ C1

)
(C.16)

The second integration constant is C1. Intriguingly,

for depths much greater than the scale height (|zi| �
z0, zi < 0), the integral in Eq. C.16 has a singularity

in the denominator when the ray is initially horizontal.

This is discussed further below. The solution to Eq.

C.16 is available in standard tables. The solution with

y as a function of z via γ is:

y(z) = ±C−10 c−1/2z0

ln

(
γ

2c1/2(γ2 − bγ + c)1/2 − bγ + 2c

)
∓ z0C1 (C.17)

Let the function within the logarithm in Eq. C.17

be F (γ):

F (γ) =
γ

2c1/2(γ2 − bγ + c)1/2 − bγ + 2c
(C.18)

Inserting Eq. C.18 into Eq. C.17, we recover a func-

tion which returns the ray path as a function of depth:

y(z) = ±C−10 c−1/2z0 ln (F (γ))∓ z0C1 (C.19)

Because the ice model is horizontally symmetric, the

constant C1 is set by the choice of origin. All that re-

mains is to understand the physical meaning of C0. Let

the initial angle with respect to the horizontal be θi,

which should obey

dy

dz
= cot(θi) (C.20)

dy

dγ
= z0γ

−1 cot(θi) (C.21)

Given Eq. C.19, Eq. C.21 may be solved in terms of

F (γ). The result is

tan θi = ±C0c
1/2 F (γ)

γF ′(γ)
(C.22)

Inserting the definition of c and solving for C0:

C0(γ, θi) = ±n−1ice
(
γ2F ′2(γ)

F 2(γ)
tan2 θi + 1

)1/2

(C.23)

The right-hand side of Eq. C.23 resembles a se-

cant function. Restricting to initial depths much greater

than the scale depth (|zi| � z0, zi < 0) causes

γ2F ′2(γ)

F 2(γ)
→ 1 (C.24)

If this limit is taken, then Eq. C.23 simplifies:

C0(γ, θi) = ±n−1ice
(
tan2 θi + 1

)1/2
= ±n−1ice sec θi

(C.25)

C0 is a constant that depends on the boundary con-

ditions, so Eq. C.25 may be inverted:

nice cos θi = ±C−10 (C.26)

Equation C.26 is Snell’s Law, because C0 is constant

and θi is defined with respect to the horizontal. Thus, in

the limit (|zi| � z0, zi < 0) the singularity in Eq. C.16

is for cos θi = ±1, i.e. horizontal propagation. Further,

in the limit (|zi| � z0, zi < 0) the factor in front of

Eq. C.19, C−10 c−1/2, simplifies:

c = n2ice − C−20 (C.27)

c−1/2 =
(
n2ice − C−20

)−1/2
(C.28)

C−10 c−1/2 =
(
C2

0n
2
ice − 1

)−1/2
(C.29)

C−10 c−1/2 = cot(θi) (C.30)

In the last step, Eq. C.12 has been used. Thus, the

closed form of y(z) is

y(z) = ±z0 cot θi ln (F (γ)) (C.31)

If the depth z does not satisfy the limit (|zi| � z0,

zi < 0), C0 must first be obtained from Eq. C.23, and

then inserted into Eq. C.19 to obtain the ray-tracing

path.
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Appendix C.2: Putting the analytic solution into

practical usability

In this section, we demonstrate how to efficiently solve

the analytic equations for the ray path derived in Ap-

pendix C.1. Without loss of generality, we can use only

the positive solution which corresponds to rays prop-

agating into the positive y direction. Equally, we can

only consider rays in the y − z plane. This is because

such a start configuration can always be achieved with

a simple coordinate transformation.

In addition, it is sufficient to only compute solution

from a deeper to a shallower position without loss of

generality by flipping the initial condition. Hence we

can always reduce the problem to finding all possible

path’s between two points

x1 = (y1, z1)T and x2 = (y2, z2)T

with y1 < y2 and z1 < z2 . (C.32)

The analytic solution only describes the “first part”

of the solution until the turning point. This is the posi-

tion where the ray either hits the surface and is reflected

down, or it reaches the point where the propagation di-

rection of the ray becomes horizontal (i.e. into the y di-

rection) due to continuous refraction. This is of course

a consequence of the solution being y(z) and not z(y)

which is needed to describe the ray path in a single

analytic function (because z(y) is not bijective).

The turning point is the position where the second

root of Eq. (10) becomes undefined, i.e., for

γ2 − bγ + c = 0⇒ γturn =
1

2
b−

√
b2

4
− c . (C.33)

The zturn position can be calculated from γturn. If zturn
is positive, the turning points is above the surface. Hence,

the ray is reflected off the surface and zturn is set to

zero. Then, yturn can be calculated by inserting zturn
into Eq. (10).

Hence, from an implementation perspective, we have

two distinct cases: either we have a direct ray (y2 <

yturn) or we have a reflected or refracted ray (y2 > yturn)

Appendix C.3: Determination of free parameters

Now, we present how to determine the two free parame-

ters C0 and C1 in a fast and robust way from the initial

condition that the ray path goes through the points x1

and x2. The parameter C1 is given by

C1 = y1 − y(z1, C0 = C ′0, C1 = 0) (C.34)

with y() being Eq. (10) evaluated for C0 = C ′0 and

C1 = 0.

The parameter C0 needs to be determined numer-

ically by minimizing the following objective function:

χ2 = (y2 − y′(z2, C0, C1))
2
. (C.35)

As Eq. (10) describes only half of the solution, we

first check if x2 is before or after the turning point. It is

after the turning point if yturn < y2. Then the following

coordinate transformation is performed.

y′(z2, C0, C1) = 2 yturn − y(z2, C0, C1) . (C.36)

To increase the numerical stability of the minimizer it

is useful to perform the following coordinate transfor-

mation

D = ln(C0 − 1/nice) . (C.37)

Then Eq. (10) is defined for all values of D.

For typical geometries not just one but two solutions

are present. Once one solution is found, the second so-

lution can be determined fast and efficiently using the

Brent root finding algorithm [102], and using the dis-

placement in y at position x2 as objective function (cf.

Fig. 16 right). Utilization of Brent’s algorithm is possi-

ble because for a second solution to exists, ∆y needs to

change sign in one of the open intervals (−∞, C1
0 ) and

(C1
0 ,∞), where C1

0 is the first solution.

Appendix C.4: Derivative of analytic ray tracing path

The derivative of the analytic ray tracing solution is

given by

dy(z)

dz
=(

−
√
ce

z
z0 b∆n + 2

√
−b∆n e

z
z0 + ∆n

2e2
z
z0 + c c+ 2 c3/2

)
×
(

2
√
c

√
−b∆n e

z
z0 + ∆n

2e2
z
z0 + c− b∆n e

z
z0 + 2 c

)−1
× 1√

−b∆n e
z
z0 + ∆n

2e2
z
z0 + c

1√
C0

2nice
2 − 1

.

(C.38)

Appendix C.5: Analytic solution of path length and

travel time

In this section, the analytic solution of the path length

and travel time for an exponential index-of-refraction

profile is derived.



33

0.6 0.7 0.8 0.9
C0

0.0

0.2

0.4

0.6

0.8

1.0

(
 y

)2

×105

4 3 2 1
log10(C0 1/n)

0.0

0.2

0.4

0.6

0.8

1.0

(
 y

)2

×105

4 3 2 1
log10(C0 1/n)

500

400

300

200

100

0

100

200

 y

Fig. 16 Example of a typical objective function as a function of C0 (left) and log10(C0 − 1/n) (center). Displacement in y as
used for the determination of the second solution via the root finding algorithm (right).

To find the path(s) between two given points in the

ice, (r0, z0) and (r1, z1), we need to find the launch an-

gle(s) θ0 of the ray(s). The radial coordinate r is equiv-

alent to the y coordinate used in the previous sections,

since we are restricted to the vertical plane where the

wave propagates. Given the launch angle θ0 then we

can find θ as a function of z using Snell’s Law:

n(z) sin(θ(z)) = n(z0) sin(θ0) (C.39)

θ(z) = arcsin

(
n(z0) sin(θ0)

n(z)

)
(C.40)

Since we know the radial distance between our start-

ing and ending points, we can calculate the launch an-

gle by first working out the radial distance integral as

a function of launch angle, and then inverting it.

dr

dz
=
dr

ds

ds

dz
= tan(θ)

∫ r1

r0

dr =

∫ z1

z0

tan(θ) dz

And then using equation C.40, this becomes

r1− r0 =

∫ z1

z0

tan

(
arcsin

(
n(z0) sin(θ0)

n(z)

))
dz (C.41)

To calculate the launch angle(s) for ray(s) between

our two points, solve this equation for θ0. While we will

continue solving this problem in generality for any n(z)

now, in a following section we will simplify the answer

for a specific ice model.

Once we know the launch angle of our path we have

all we need to calculate its properties. The total path

length can be calculated by integrating dz
ds :

s =

∫ z1

z0

1

cos(θ)
dz (C.42)

=

∫ z1

z0

sec

(
arcsin

(
n(z0) sin(θ0)

n(z)

))
dz (C.43)

The time of flight t along the path can be calculated

by combining dz
ds with the following differential equation

for the time of flight (where c is the speed of light):

dt

ds
=
n(z)

c
(C.44)

Which then gives

dt

dz
=
dt

ds

ds

dz
=
n(z)

c

1

cos(θ)

t =

∫ z1

z0

n(z)

c

1

cos(θ)
dz (C.45)

=
1

c

∫ z1

z0

n(z) sec

(
arcsin

(
n(z0) sin(θ0)

n(z)

))
dz

(C.46)
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For an exponential index-of-refraction profile of the

form

n(z) = nice −∆ne
z/z0 (C.47)

we can finish the calculations. We will use a few sub-

stitutions to make our equations clearer. The substitu-

tions are as follows, where n(z) is as above, z0 is the

starting depth, and θ0 is the launch angle:

β = n(z0) sin(θ0)

α = n2ice − β2

γ = n(z)2 − β2

`1 = nicen(z)− β2 −√αγ
`2 = n(z) +

√
γ

(C.48)

Plugging in our ice model, the radial distance inte-

gral in equation C.41 becomes

r1 − r0 =
β√
α

(−z + z0 log (`1))

∣∣∣∣z1
z0

(C.49)

after equation C.48’s substitutions. Solving this equa-

tion for the launch angle is an alternative approach

to find the ray tracing path. Unfortunately, since the

launch angle appears in so many places (α, β, and `1),

this equation is not invertible and so cannot be directly

solved for θ0. As a result, root-finding algorithms will

need to be used to calculate the launch angle(s) for the

ray(s) between (r0, z0) and (r1, z1). In the NuRadioMC

code, we calculate the ray paths using the approach of

Sec. Appendix C.2 and just calculate the launch angle

from the parameter C0 of the analytic ray-tracing path.

Plugging in our ice model and substituting accord-

ing to equation C.48, the path length (equation C.42)

becomes

s =
nice√
α

(−z + z0 log(`1)) + z0 log(`2)

∣∣∣∣z1
z0

(C.50)

By the same process, the time of flight (equation

C.45) becomes

t =
1

c

(
z0

(
√
γ + nice log(`2) + log(`1)

n2ice√
α

)
− z n

2
ice√
α

)∣∣∣∣z1
z0

(C.51)

Note that these integrals are specifically for a direct

path. For an indirect path, the bounds must be changed

to reflect the fact that the path goes up to zturn before

coming back down to z1.

Fig. 17 Sketch of geometry for focusing correction.

Appendix C.6: Derivation of focusing correction

Here, we derive how ray density per unit area changes.

The geometry in case of straight line propagation is

depicted in Fig. 17. We read off that a = R sin∆θ. In

the limit of ∆θ << 1 we get a = R∆θ. The relation

between the length a and vertical displacement ∆z is

given by a = sin θ∆z. Thus, we get

R =
∆z

∆θ
sin θ (C.52)

and in the limit ∆z ⇒ 0

R =
dz

dθ
sin θ . (C.53)

The area dA perpendicular to a ray is given by

dA = Rdθ ×R sin θdφ , (C.54)

and will change due to ray bending to

dA =
dz

dθ
sin θdθ ×R sin θdφ . (C.55)

Appendix D: FFT normalization in NuRadioMC

In NuRadioMC we use a real fast Fourier transform (rFFT)

as it only deals with real valued signals in the time-

domain. Furthermore, we assume that the number of

samples in the time domain is even. Then, nt bins (with

real values) in the time domain correspond to nf =

nt/2 + 1 bins (with complex values) in the frequency

domain where the first bin is the zero frequency compo-

nent. This is because we exploit the symmetry between

negative and positive frequencies for real valued input

and only compute the positive frequency components.

The rFFT is normalized such that Parseval’s theo-

rem holds without any additional normalization factor,

i.e.,

nt−1∑
m=0

x2m =

nt/2∑
k=0

X̃2
k . (D.56)

where xm are the time domain samples of the signal,

and X̃k are the frequency domain samples. In the case
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of electric fields, the dimensions of both xm and X̃k are

voltage/length.

This means that the energy fluence, i.e., the time

integral over the pulse amplitudes, calculated in the

frequency domain and in the time domain give the same

results which is a useful physical property. Then, the

rFFT and inverse rFFT is defined as

X̃k =

√
2√
N
×
nt−1∑
m=0

xm exp

(
−2πi

mk

nt

)
, k = 0, ..., nt/2

(D.57)

and

xm =
1√

2
√
N
×2

nt/2∑
k=0

X̃k exp

(
2πi

mk

nt

)
,m = 0, ..., nt−1

(D.58)

We added an additional factor of
√

2 with respect to

the standard orthogonal normalization to compensate

for the negative frequencies that we did not compute so

that the Eq. (D.56) holds.

Appendix D.1: Relation to a continuous Fourier

transform

In literature, one also finds the continuous Fourier trans-

form with different conventions for the normalization.

One typical choice is to define the Fourier transform as

Ẽ(ν) =

∞∫
−∞

dt exp (i2πνt)E(t) (D.59)

and

E(t) =

∞∫
−∞

dν exp (−i2πνt) Ẽ(ν) . (D.60)

If the signal in the time domain has units V/m the

units in the frequency domain become V/m/Hz. A com-

mon task is to transform a frequency-domain parame-

terization of the Askaryan signal into the time domain

via a discrete Fourier transform. For the definition of

Eq. (D.59), the corresponding discrete inverse trans-

form is

xm =
1

nt
× 2

nt/2∑
k=0

X̃k/∆t exp

(
2πi

mk

nt

)
(D.61)

=2

nt/2∑
k=0

X̃k∆f exp

(
2πi

mk

nt

)
(D.62)

where we exploit the relation ∆t = 1/(nt∆f) of a dis-

crete Fourier transform. The additional factor of 2 was

added because we only sum over the positive frequen-

cies here. This factor of 2 is already part of real FFT

packages such as numpy.fft and does not need to be

taken into account by the user (see Sec. Appendix D.3

for details).

Appendix D.2: Adjustments to different

normalizations

All publications of a frequency-domain parameteriza-

tion of the Askaryan signal that is based on the ZHS

model use an unusual normalization of the continuous

Fourier transform where an additional factor of 2 is

added to the forward transform (Eq. D.59), and corre-

spondingly a factor of 1/2 in the backward transform

(Eq. D.60) (see e.g. [47]). Therefore, Eq. (D.62) needs

an additional factor of 1/2 if a ZHS parameterization

is used.

Appendix D.3: Implementation details

Most parts of the code use the numpy real fft routines.

The default normalization has the direct transforms un-

scaled and the inverse transforms are scaled by 1/nt.

Hence, a analytic parametrization of the amplitudes in

the frequency domain A(ν) with units V/m/Hz can be

transformed into the time domain via

import numpy as np

n = 2**12 # number of bins in time domain

dt = 0.5 * units.ns # bin width in time domain

ff = np.fft.rfftfreq(n, dt)

# get array of frequencies

trace = np.fft.irfft(A(ff) / dt)

If A(ν) is a parametrization from a ZHS paper, we

get the correct time domain representation via

trace = 0.5 * np.fft.irfft(A(ff) / dt)

# additional factor of 2 due to

# ZHS Fourier transform normalization

All other Fourier transforms are normalized such

that Eq. (D.56) is satisfied which is achieved with numpy

via:

def time2freq(trace):

"""

performs forward FFT with correct

normalization that conserves the power

"""

return np.fft.rfft(trace,
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axis=-1, norm="ortho") * 2 ** 0.5

# an additional sqrt(2) is added because

# negative frequencies are omitted.

def freq2time(spectrum):

"""

performs backward FFT with correct

normalization that conserves the power

"""

return np.fft.irfft(spectrum, axis=-1,

norm="ortho") / 2 ** 0.5

Appendix E: Detector simulation

The code snippet in List. 4 shows a typical detector

simulation. With just a few lines of code, we can calcu-

late the antenna response, downsample the time trace

to the detector sampling rate, bandpass filter the sig-

nal and simulate a high/low trigger with a 2 out of 4

antennas coincidence logic.
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1 def get_time_trace(energy, theta, N, dt, shower_type, n_index, R, model,

2 interp_factor=None, interp_factor2=None,

3 same_shower=False, **kwargs):

4 """

5 returns the Askaryan pulse in the time domain of the eTheta component

6

7 We implement only the time-domain solution and obtain the frequency spectrum

8 via FFT (with the standard normalization of NuRadioMC). This approach assures

9 that the units are interpreted correctly. In the time domain, the amplitudes

10 are well defined and not details about fourier transform normalizations needs

11 to be known by the user.

12

13 Parameters

14 ----------

15 energy : float

16 energy of the shower

17 theta: float

18 viewangle: angle between shower axis (neutrino direction) and the line

19 of sight between interaction and detector

20 N : int

21 number of samples in the time domain

22 dt: float

23 time bin width, i.e. the inverse of the sampling rate

24 shower_type: string (default "HAD")

25 type of shower, either "HAD" (hadronic), "EM" (electromagnetic) or

26 "TAU" (tau lepton induced), note that TAU showers

27 are currently only implemented in the ARZ2019 model

28 n_index: float

29 index of refraction

30 R: float

31 distance from vertex to observer

32 model: string

33 specifies the signal model

34 * ZHS1992: the original ZHS parametrization from E. Zas, ...

35 * Alvarez2000: parameterization based on ZHS mainly based on J. Alvarez-...

36 * Alvarez2009: parameterization based on ZHS from J. Alvarez-...

37 * HCRB2017: analytic model from J. Hanson, A. Connolly ...

38 * ARZ2019 semi MC time domain model

39 interp_factor: float or None

40 controls the interpolation of the charge-excess profiles in the ARZ model

41 interp_Factor2: float or None

42 controls the second interpolation of the charge-excess profiles in the ARZ model

43 same_shower: bool (default False)

44 controls the random behviour of picking a shower from the library in the ARZ model,

45 see description there for more details

46

47 Returns

48 -------

49 time trace: array

50 the amplitudes for each time bin

51

52 """

Listing 3: Signature of the signal generation interface. NuRadioMC provides a uniform interface in form of simple

function to all implemented Askaryan modules. This allows to use the Askaryan modules outside of a NuRadioMC

simulation and is a well tested resource/reference implementation for the radio community.



38

1 class mySimulation(simulation.simulation):

2 def _detector_simulation(self):

3 # 1st convolve efield with antenna pattern

4 efieldToVoltageConverterPerChannel.run(self._evt, self._station, self._det)

5 # downsample trace back to detector sampling rate

6 channelResampler.run(self._evt, self._station, self._det, sampling_rate=1. / self._dt)

7 # bandpass filter the signal

8 channelBandPassFilter.run(self._evt, self._station, self._det,

9 passband=[80 * units.MHz, 500 * units.GHz],

10 filter_type='butter', order=2)

11 # run a high/low trigger on the 4 downward pointing LPDAs

12 triggerSimulatorHighLow.run(self._evt, self._station, self._det,

13 threshold_high=4 * self._Vrms,

14 threshold_low=-4 * self._Vrms,

15 coinc_window=40 * units.ns

16 triggered_channels=[0, 1, 2, 3], # select the LPDA channels

17 number_concidences=2, # 2/4 majority logic

18 trigger_name='LPDA_2of4_4sigma')

Listing 4: Example of performing a detector simulation using NuRadioReco.
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