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Chlorhexidine and Mupirocin Susceptibility of Methicillin-Resistant
Staphylococcus aureus Isolates in the REDUCE-MRSA Trial

Mary K. Hayden,a,b Karen Lolans,b Katherine Haffenreffer,c Taliser R. Avery,c Ken Kleinman,c Haiying Li,b Rebecca E. Kaganov,c

Julie Lankiewicz,c Julia Moody,d Edward Septimus,e Robert A. Weinstein,a,f Jason Hickok,d John Jernigan,g Jonathan B. Perlin,d

Richard Platt,c Susan S. Huang,h for the Agency for Healthcare Research and Quality (AHRQ) DEcIDE Network and Healthcare-
Associated Infections Program and the Centers for Disease Control and Prevention’s (CDC) Prevention Epicenters Program

Department of Medicine (Infectious Diseases), Rush University Medical Center, Chicago, Illinois, USAa; Department of Pathology, Rush University Medical Center, Chicago,
Illinois, USAb; Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, Massachusetts, USAc; Hospital Corporation
of America, Nashville, Tennessee, USAd; Division of Internal Medicine, Texas A&M Health Science Center College of Medicine, Houston, Texas, USAe; Cook County Health
and Hospitals System, Chicago, Illinois, USAf; Office of HAI Prevention Research and Evaluation, Centers for Disease Control and Prevention, Atlanta, Georgia, USAg;
Division of Infectious Diseases, University of California Irvine School of Medicine, Orange, California, USAh

Whether targeted or universal decolonization strategies for the control of methicillin-resistant Staphylococcus aureus
(MRSA) select for resistance to decolonizing agents is unresolved. The REDUCE-MRSA trial (ClinicalTrials registration
no. NCT00980980) provided an opportunity to investigate this question. REDUCE-MRSA was a 3-arm, cluster-randomized
trial of either screening and isolation without decolonization, targeted decolonization with chlorhexidine and mupirocin,
or universal decolonization without screening to prevent MRSA infection in intensive-care unit (ICU) patients. Isolates
from the baseline and intervention periods were collected and tested for susceptibility to chlorhexidine gluconate (CHG)
by microtiter dilution; mupirocin susceptibility was tested by Etest. The presence of the qacA or qacB gene was determined
by PCR and DNA sequence analysis. A total of 3,173 isolates were analyzed; 2 were nonsusceptible to CHG (MICs, 8 �g/
ml), and 5/814 (0.6%) carried qacA or qacB. At baseline, 7.1% of MRSA isolates expressed low-level mupirocin resistance,
and 7.5% expressed high-level mupirocin resistance. In a mixed-effects generalized logistic regression model, the odds of
mupirocin resistance among clinical MRSA isolates or MRSA isolates acquired in an ICU in intervention versus baseline
periods did not differ across arms, although estimates were imprecise due to small numbers. Reduced susceptibility to
chlorhexidine and carriage of qacA or qacB were rare among MRSA isolates in the REDUCE-MRSA trial. The odds of mupi-
rocin resistance were no different in the intervention versus baseline periods across arms, but the confidence limits were
broad, and the results should be interpreted with caution.

Health care-associated infections due to methicillin-resistant
Staphylococcus aureus (MRSA) are associated with high at-

tributable mortality, increased length of stay, and excess cost (1).
Colonization with MRSA typically precedes infection and plays a
major role in its dissemination in hospitals (2). Both targeted de-
colonization (i.e., decolonization of patients who are identified as
carrying MRSA) and universal decolonization (i.e., decoloniza-
tion of populations of hospital patients regardless of MRSA colo-
nization status) have been demonstrated to decrease cross-trans-
mission and infection (3, 4).

The anterior nares are the primary reservoir for MRSA in
humans, and the application of topical nasal mupirocin is a
common decolonization strategy (5). Mupirocin interferes
with bacterial protein synthesis by competitive inhibition of
bacterial isoleucyl-tRNA-synthetase (6). High-level mupirocin
resistance (HLMR) is conferred by the mupA or mupB gene,
both of which encode novel isoleucyl-tRNA-synthetases (6).
These genes are carried on plasmids, enabling their spread.
Low-level mupirocin resistance (LLMR) results from muta-
tions in the native chromosomal isoleucyl-tRNA-synthetase
gene; these mutations are typically stable and nontransferable
(7). HLMR has been associated with decolonization failure (8),
while LLMR may predispose to early recolonization (9). Pro-
longed and widespread use of mupirocin for decolonization
has been associated frequently, but not universally, with the
development of mupirocin resistance (10, 12).

Antiseptic bathing of patients, most commonly with chlo-
rhexidine gluconate (CHG), is another evidence-based approach
to MRSA decolonization; antiseptic baths are often employed to-
gether with nasal mupirocin (4, 13, 14). CHG kills by binding
covalently to the bacterial cell membrane, resulting in depolariza-
tion and cell death. CHG susceptibility testing methods and
breakpoints have not been standardized. Broth microdilution,
which was developed to predict the activity of systemic antibiotics,
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is the susceptibility testing method reported most frequently, de-
spite questions about its relevance for predicting the activity of a
topical biocide such as CHG (15). Reduced susceptibility to CHG
in MRSA occurs via efflux, and identification of plasmid-medi-
ated genes, such as qacA and qacB, that encode multidrug efflux
pumps has been considered genotypic evidence of CHG nonsus-
ceptibility by some (16, 17). However, the relationship between
the carriage of multidrug efflux pump genes and decreased sus-
ceptibility to CHG is inconsistent; phenotypic susceptibility has
been demonstrated in MRSA strains that carry qacA or qacB, and
reduced susceptibility has been reported in strains that lack these
or other multidrug efflux pump genes (15, 18–20). The inconsis-
tency may be due in part to the ability of the pump encoded by
qacA, but not that encoded by qacB, to utilize CHG as a substrate.
Despite this important functional difference, qacA and qacB are
closely related genetically and are difficult to differentiate without
DNA sequence analysis; most publications do not distinguish be-
tween the two genes.

The relationship between reduced CHG susceptibility and
clinical resistance in MRSA is even more tenuous. CHG has been
used widely in health care for more than 50 years, and reduced
susceptibility as measured by in vitro methods has been reported
across the globe (18, 20–24, 46), yet decolonization failure related
to nonsusceptibility has been described only rarely (16, 25, 26). Of
note, topical concentrations of CHG used for decolonization re-
main �200-fold higher than the highest CHG MICs and mini-
mum bactericidal concentrations (MBCs) recorded for staphylo-
cocci (15, 25).

The Randomized Evaluation of Decolonization versus Uni-
versal Clearance to Eradicate MRSA (REDUCE-MRSA) trial
(ClinicalTrials registration no. NCT00980980) was a cluster-
randomized, multicenter study designed to compare three
MRSA control strategies: (i) screening and isolation, (ii)
screening, isolation, and targeted decolonization with mupiro-
cin and CHG, and (iii) universal decolonization with CHG and
mupirocin without screening (27). Universal decolonization
with CHG and mupirocin was found to be superior to both
alternative strategies in reducing MRSA infections. In order to
evaluate the effect of decolonization on the susceptibility of
MRSA to CHG and mupirocin, we conducted a secondary anal-
ysis of isolates collected during the baseline and intervention
periods from all three study arms and subjected them to phe-
notypic and genotypic susceptibility testing.

(This research was presented in part at the 20th Annual Meet-
ing of the Society for Healthcare Epidemiology of America 2011,
Dallas, TX, 1 to 4 April 2011, and at IDWeek 2014, Philadelphia,
PA, 8 to 12 October 2014 [28].)

MATERIALS AND METHODS
Selection of MRSA isolates. Isolates were collected over a 7-month
baseline period (1 August 2009 to 28 February 2010) and an 18-month
intervention period (8 April 2010 to 30 September 2011) from patients
in intensive-care units (ICUs) that were participating in REDUCE-
MRSA (27). In this pragmatic clinical trial, 43 Hospital Corporation of
America (HCA)-affiliated hospitals in 16 states were assigned at ran-
dom to one of three MRSA prevention strategies, with all adult ICUs in
a given hospital assigned to the same strategy. Arm 1 employed admis-
sion screening for MRSA and isolation of patients who were found to
be colonized or infected; arm 2, targeted decolonization (i.e., admis-
sion screening, isolation, and decolonization of patients who were
colonized or infected with MRSA with a 5-day regimen of twice-daily

intranasal mupirocin ointment and daily CHG baths); and arm 3,
universal decolonization (i.e., no screening; decolonization of all pa-
tients with 5 days of twice-daily intranasal mupirocin ointment and
daily CHG baths for the entire ICU stay).

During the trial, microbiology laboratories at each participating hos-
pital were instructed to collect the first clinical or anterior-nares screening
isolate of MRSA per ICU patient. If both a clinical isolate and a surveil-
lance isolate were available, the clinical isolate was preferred. MRSA iso-
lates were shipped to a central laboratory at Rush University Medical
Center (RUMC) for confirmation of MRSA status and further testing.
Isolates were excluded if they were not MRSA or if they could not be
verified to have been collected from a patient during or after an ICU stay
during a study period. Additionally, in arm 3, because screening for
MRSA was to have been discontinued during the intervention period,
isolates collected from screening cultures were excluded. Clinical isolates
were considered to have been acquired during an ICU stay (to be “ICU
attributable”) if they were collected between 3 days after ICU admission
and 2 days after ICU discharge.

All isolates were tested for susceptibility to CHG and mupirocin. A
sample of 15 isolates per hospital per study period, as well as any isolate
with a CHG MIC of �4 �g/ml, was tested further for the presence of qacA
and qacB. Baseline period isolates were selected at random. During the
intervention period, the isolates with the latest culture dates were pre-
ferred, in order to enrich for isolates with the greatest potential exposure
to the intervention. If fewer than 15 isolates were available, all isolates
were tested.

Clinical and demographic data were extracted from HCA elec-
tronic corporate data warehouses. This study was reviewed and ap-
proved by the Harvard Pilgrim Health Care Institutional Review Board
(IRB), the central institutional review board for the trial (reference
number 367981), and by the IRB of RUMC. Written informed consent
was waived (27).

Laboratory procedures. (i) Confirmation of MRSA. Local clinical
laboratories identified MRSA isolates according to their standard prac-
tices. At the RUMC laboratory, S. aureus identification was confirmed by
examination of colony morphology and the results of a rapid latex agglu-
tination test (BactiStaph kit; Remel, Lenexa, KS). Isolates with atypical
results underwent Gram staining, tube coagulase testing, and automated
identification by the MicroScan WalkAway system (Siemens, Washing-
ton, DC). Methicillin resistance was confirmed by Kirby-Bauer disk dif-
fusion testing on Mueller-Hinton agar (Becton, Dickinson [BBL], Sparks,
MD) using a 30 �g cefoxitin disk (Oxoid, Lenexa, KS) (29). Isolates that
tested susceptible to methicillin underwent mecA PCR (30); mecA-posi-
tive isolates were classified as MRSA.

(ii) CHG and mupirocin susceptibility testing. CHG susceptibility
testing was performed using broth microdilution and a complete inhibi-
tion endpoint (47). Starting with a 20% (wt/vol) CHG solution (Sigma-
Aldrich, St. Louis, MO), a 2-fold dilution series (from 32 to 0.0625 �g/ml)
was prepared daily. An isolate was classified as nonsusceptible to CHG if
the MIC was �4 �g/ml, which is outside the wild-type distribution of
CHG MICs for S. aureus (epidemiologic cutoff) (31, 48). Susceptibility to
mupirocin was determined by the Etest method (bioMérieux, Durham,
NC) according to the manufacturer’s instructions. LLMR was defined as a
MIC of 8 to 256 �g/ml and HLMR as a MIC of �512 �g/ml (6). When
MICs were compared between groups, a 4-fold difference was considered
significant (32). MBCs of CHG were determined in triplicate for all qacA-
or qacB-positive isolates and for isolates with CHG MICs of �4 �g/ml
(33).

(iii) PCR for qacA and qacB. A real-time PCR assay was developed and
was used to identify qacA and qacB (see the Supplemental Data and Table
S1 in the supplemental material) (34). Isolates were tested after overnight
growth on tryptic soy agar with 25 �g/ml ethidium bromide (Sigma-
Aldrich), which was added to provide selective pressure for strains that
harbored efflux pumps such as those encoded by qacA and qacB (35). S.
aureus SK2355 (qacA), S. aureus SK2725 (qacB) (gifts from Arnold Bayer
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[36]), and S. aureus NRS123 (qac negative [37]) were included as control
strains in every run.

(iv) DNA sequence analysis of qacA and qacB amplicons. To distin-
guish between qacA and qacB, a conventional PCR primer pair was de-
signed to amplify a 1,423-bp region internal to both genes (Supplemental
Data and Table S1). pCR-BluntII-TOPO vector (Invitrogen, Carlsbad,
CA)-cloned products were sequenced bidirectionally (ACGT Inc., Wheel-
ing, IL). Sequences were compared to canonical qacA and qacB reference
sequences (GenBank accession no. GU565967.1 and AF053772.1).

(v) MLST. All isolates positive for qacA or qacB underwent multilocus
sequence typing (MLST). The protocol, including allelic number and se-
quence type (ST) assignment methods, is available at the S. aureus MLST
database (http://saureus.mlst.net/).

Statistical analysis. Because this was a secondary analysis, the sam-
ple size was not calculated. Demographic and clinical characteristics
were compared between arms with generalized linear mixed models
that accounted for within-hospital clustering. A generalized logistic
mixed-effects regression model was used to estimate the effects of the
trial on mupirocin resistance. Generalized logistic regression resem-
bles logistic regression except that it simultaneously estimates the odds
ratios (OR) for both low- and high-level resistance relative to no re-
sistance. Mixed effects were used to account for randomization by
cluster (38). Because hospitals did not submit every MRSA isolate they
collected, we used multiple imputation to generate estimated effects
that incorporated the isolates with unknown susceptibility patterns
(39–41). Trial effects were assessed by a 4-degree-of-freedom differ-
ence-in-differences test of the interaction, comparing the difference in
the odds ratio for each level of resistance, for the baseline versus the
intervention period, across arms. Analyses were performed using SAS
proc glimmix software, version 9.3 (SAS Institute).

RESULTS
Characteristics of MRSA isolates and patients. A total of 7,405
eligible MRSA isolates were identified by local laboratories during
the baseline and intervention periods; 4,566 isolates were sent to
the central laboratory. Of these, 1,393 were excluded, leaving
3,173 (43%) isolates for analysis (Fig. 1).

Most isolates were collected from the anterior nares of pa-
tients on the first day of hospitalization (Table 1). On average,
patients from whom MRSA was isolated were elderly and had
multiple comorbid conditions. Isolate or population descrip-
tors were similar among the three arms during both the base-
line and the intervention periods. Collection site and hospital
day of specimen collection differed in arm 3 during the inter-
vention period, when surveillance cultures for MRSA were dis-
continued (Table 1).

CHG susceptibility. CHG MICs for all MRSA isolates col-
lected during the baseline period displayed a narrow, unimodal
distribution that did not change significantly during the inter-
vention period (Fig. 2). The CHG MIC50 and MIC90 were 2
�g/ml and 4 �g/ml, respectively, for both the baseline and
intervention periods. There were no significant differences in
MIC distributions or in the MIC50 or MIC90 when isolates were
stratified by arm or when only the clinical isolates acquired in
an ICU were analyzed (data not shown). Two clinical MRSA
isolates (both identified in arm 1, intervention period) were
nonsusceptible to CHG (MIC, 8 �g/ml) and carried qacA (see
Table 3). For the subset of non-CHG-susceptible or qacA- or
qacB-positive isolates tested, MBCs were never more than

FIG 1 Eligible, collected, and analyzed methicillin-resistant Staphylococcus aureus (MRSA) isolates. 1, Surveillance cultures were discontinued in arm 3 during
the intervention period; only clinical cultures were collected. 2, All qualifying surveillance and clinical isolates. 3, MRSA isolates identified in clinical cultures
(surveillance isolates excluded). 4, Clinical isolates of MRSA were attributed to an intensive-care unit (ICU) stay if the specimen was collected during the period
from the third day after ICU admission through the second day after ICU discharge.

Susceptibility of MRSA Isolates to CHG and Mupirocin
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4-fold higher than MICs, indicating that the isolates were not
tolerant to CHG (see Table 3) (33).

Mupirocin susceptibility. Among all MRSA isolates collected
during the baseline period (n � 735), 7.1% expressed LLMR
(range, 5.9% in arm 2 to 8.1% in arm 1) and 7.5% expressed
HLMR (range, 5.0% in arm 1 to 11% in arm 3) with no significant
differences in prevalence among arms. Because arm 3 did not col-
lect surveillance cultures during the intervention period, we re-
stricted further analyses to clinical isolates. Using imputed values
for the number of mupirocin-resistant isolates, we did not find a
significant difference-in-differences in the proportion of LLMR or
HLMR isolates between baseline and intervention periods across
arms for all clinical isolates or for clinical isolates attributable to an
ICU stay (Table 2.) The small number of clinical isolates attribut-

able to an ICU stay (Fig. 1) resulted in extremely wide confidence
intervals (CI) for these comparisons (Table 2).

qacA, qacB, and MLST. We tested 411 baseline isolates and 403
intervention isolates for qacA and qacB by PCR. Five MRSA iso-
lates (0.6%) were found to carry qac genes: 4 carried qacA, and 1
carried qacB (Table 3). One isolate was collected during the base-
line period (arm 1), and 4 isolates were collected during the inter-
vention period (3 in arm 1 and one in arm 3). Isolates were sub-
mitted from 5 different hospitals; 4 isolates were submitted from
hospitals located in Florida.

We identified three different S. aureus sequence types by
MLST, including a novel sequence type (ST2484) characterized
by a tpi allele that had not been described previously (Table 3).
The novel sequence type was submitted to the MLST website

TABLE 1 Characteristics of MRSA isolates (n � 3173) and patient population according to study period and intervention arm

Variable

Baseline (7 mo) Intervention (18 mo)

Arm 1 Arm 2 Arm 3 Arm 1 Arm 2 Arm 3 P valuea

Isolate descriptors
No. of isolates 221 305 209 1,082 1,155 201
Median (IQR) month of collection 3 (2) 3 (2) 3 (2) 11 (9) 10 (9) 10 (9)
Median (IQR) hospital day of collection 1 (1) 1 (1) 1 (2) 1 (1) 1 (1) 2 (4) 0.0087
No. (%) collected from:

Anterior nares 168 (76.0) 230 (75.4) 134 (64.1) 869 (80.3) 974 (84.3) 0b

Blood 7 (3.2) 11 (3.6) 16 (7.7) 44 (4.1) 43 (3.7) 42 (20.9)
Sputum or tracheal aspirate 30 (13.6) 32 (10.5) 29 (13.9) 98 (9.1) 70 (6.1) 79 (39.3)
Other site 16 (7.2) 32 (10.5) 30 (14.4) 71 (6.6) 68 (5.9) 80 (39.8)

Population descriptors
Median (IQR) patient age (yr) 69 (22) 68 (21) 65 (25) 69 (24) 70 (23) 68 (25)
No. (%) female 104 (47.1) 134 (43.9) 100 (47.9) 513 (47.4) 570 (49.4) 91 (45.3)
No. (%) with the following comorbid condition:

Chronic obstructive pulmonary disease 103 (46.6) 120 (39.3) 87 (41.6) 424 (39.2) 463 (40.1) 67 (33.3)
Diabetes 88 (39.8) 123 (40.3) 78 (37.3) 412 (38.1) 431 (37.3) 75 (37.3)
Congestive heart failure or myocardial infarction 104 (47.1) 131 (43.0) 91 (43.5) 438 (40.5) 495 (42.9) 81 (40.3)
Renal failure 66 (29.9) 99 (32.5) 71 (34.0) 341 (31.5) 349 (30.2) 62 (30.9)
Cerebrovascular disease 23 (10.4) 50 (16.4) 30 (14.4) 154 (14.2) 148 (12.8) 32 (15.9)
Peripheral vascular disease 38 (17.2) 37 (12.1) 33 (15.8) 123 (11.4) 142 (12.3) 26 (12.9)
Cancer 17 (7.7) 26 (8.5) 24 (11.5) 96 (8.9) 108 (9.4) 19 (9.5)

No. (%) with a history of MRSAc 80 (36.2) 100 (32.8) 70 (33.5) 333 (30.8) 251 (21.7) 57 (28.4) 0.0496
a For difference among intervention arms during the baseline or intervention period. Comparisons were conducted with generalized linear mixed models that accounted for within-
hospital clustering. Only significant P values (�0.05) are shown. P values are not shown for baseline period comparisons, because there were no significant differences among
intervention arms during the baseline period.
b During the intervention period, collection of surveillance cultures was discontinued in arm 3.
c MRSA isolated from a surveillance or clinical culture within 1 year prior to the date of collection of the MRSA isolate included in this study.

FIG 2 Distributions of chlorhexidine gluconate (CHG) MICs for all evaluable methicillin-resistant Staphylococcus aureus (MRSA) isolates (n � 3,173) collected
during the baseline (hatched bars) and intervention (black bars) periods for arm 1 (a), arm 2 (b), and arm 3 (c). Two isolates for which the CHG MIC was 8 �g/ml
(nonsusceptible) were identified in arm 1 during the intervention period.
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curator and was approved. All other isolates belonged to clonal
complex 8, a lineage of MRSA identified commonly in the
United States (42).

DISCUSSION

In a large sample of MRSA isolates collected during the
REDUCE-MRSA trial, decreased susceptibility to CHG, as mea-
sured by CHG MICs and carriage of qacA or qacB, was rare and
was similar in frequency among MRSA isolates identified in
decolonization arms and in the screening and isolation arm.
The prevalence of mupirocin resistance at baseline was moder-
ate (7.1% LLMR and 7.5% HLMR), and the odds of mupirocin
resistance during the intervention versus the baseline period
did not differ between the targeted or universal decolonization
arms, on the one hand, and the screening and isolation arm, on
the other. One theoretical explanation for our findings is that
the success of decolonization applied diligently in all ICUs of a
hospital reduced the prevalence of MRSA sufficiently to pre-
vent the selection of resistance. The generalizability of our
findings is strengthened by the large number of isolates tested
and their broad geographic distribution across 16 states.

The low prevalence of nonsusceptibility to CHG in the popu-
lation is striking. Two of 3,173 isolates tested nonsusceptible to
CHG (MIC, 8 �g/ml), and 5 of 814 isolates were found to carry

qacA or qacB. Only one of these isolates was identified in a decolo-
nization arm, suggesting that CHG nonsusceptibility and qacA or
qacB carriage were independent of exposure to decolonization.

The optimum susceptibility testing method and break-
points for CHG and S. aureus are not defined. We used protocols
endorsed by the Clinical and Laboratory Standards Institute
that are widely accepted as reference methods for categorizing
bacterial susceptibility to antibiotics and that have been used
often in other studies of staphylococcal susceptibility to CHG,
allowing our results to be compared to those in published re-
ports. The susceptibility breakpoint for CHG applied in this
study was derived from the MIC epidemiologic cutoff, a stan-
dard approach used when validated breakpoints are not avail-
able (31, 48). As in other reports (15, 19, 20), qacA was not a
specific predictor of CHG resistance: three of five qacA-positive
isolates were susceptible to CHG, and MBCs were always
within 2 doubling dilutions of MICs. Of note are two isolates
that carried qacA and expressed LLMR; the combination of
LLMR and qacA carriage was a risk factor for decolonization
failure in one case-control study (16).

Our results are consistent with several other published surveys
that infrequently identified phenotypic or genotypic evidence of
reduced susceptibility to CHG in MRSA isolates from U.S. health
care facilities (22, 23, 35). More recently, reports have emerged of

TABLE 2 Odds of ICU MRSA isolates expressing low-level or high-level mupirocin resistance in the intervention versus the baseline period, by
intervention arma

MRSA isolate category

Mupirocin
resistance
category

Arm 1 Arm 2 Arm 3

No. of resistant
isolatesb/1,000 trial
participantsc

OR (95% CI)

No. of resistant
isolatesb/1,000 ICU
trial participantsc

OR (95% CI)

No. of resistant
isolatesb/1,000 trial
participantsc

OR (95% CI)Baseline Intervention Baseline Intervention Baseline Intervention

Clinical MRSA isolates Low-level 8.6 8.0 1.0 (0.22, 4.85) 4.2 6.4 1.4 (0.34, 6.14) 6.6 3.0 0.5 (0.1, 2.14)
High-level 6.5 5.1 0.8 (0.11, 5.68) 5.4 5.5 0.9 (0.15, 5.44) 5.2 3.5 0.7 (0.16, 3.01)

ICU-attributable
MRSA isolates

Low-level 2.1 3.8 1.7 (0.37, 7.55) 3.5 3.1 0.4 (�0.01, �99) 2.5 1.6 0.7 (0.10, 4.64)
High-level 2.5 3.4 1.5 (0.25, 9.02) 3.8 2.8 0.7 (0.09, 5.06) 1.6 2.0 1.4 (0.13, 15.63)

a A mixed-effects generalized logistic regression model was used to estimate the effects of the trial on mupirocin resistance.
b Numerators are based on imputed values.
c The numbers of study participants in each trial phase were as follows: in arm 1, 5,680 during the baseline period and 23,963 during the intervention period; in arm 2, 5,775 during
the baseline period and 22,522 during the intervention period; in arm 3, 6,101 during the baseline period and 26,500 during the intervention period.

TABLE 3 Characteristics of MRSA isolates that carried the qacA or qacB gene

Isolate ID
Hospital
locationa

Intervention
arm Study period

Culture
type

qac
identityb ST

CHG MICc

(�g/ml)
CHG MBCc

(�g/ml)
Mupirocin
susceptibility profiled

B4607 Florida 1 Baseline Surveillance qacA 8 4 4 S
I06127 Florida 1 Intervention Surveillance qacA 2484 8 8 S
I44233 Florida 1 Intervention Surveillance qacB 8 4 8 S
I01137 Texas 1 Intervention Clinical qacA 8 8 8 LL
I1939e Florida 3 Intervention Clinical qacA 450f 4 16 HL
a Five different hospitals.
b Determined by DNA sequence analysis of a 1,453-bp coding region of qacA and qacB that included 6 codons (codons 26, 152, 167, 291, 323, and 380) that predicted amino acid
differences between qacA and qacB. The sequences obtained were compared with those of the canonical qacA (GenBank accession no. GU565967.1) and qacB (GenBank accession
no. AF053772.1) genes. Three isolates (I06127, I01137, and I1939) matched the canonical qacA gene at all 6 codons. B4607 matched qacA at 3/6 codons, including codon 323, cod-
ing for aspartic acid, which predicts a multidrug efflux pump with the ability to use CHG as a substrate. I44233 matched the canonical qacA gene at 5/6 loci but coded for alanine at
codon 323, a pattern consistent with qacB, which codes for an efflux pump that is not active against CHG.
c Testing was done in triplicate. Results represent consensus values.
d S, susceptible; LL, low-level resistance; HL, high-level resistance.
e ICU-attributable isolate.
f ST450 is a single-locus variant of ST8 (differs at aroE).
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a higher prevalence of CHG nonsusceptibility or of an increase in
the frequency of acquired multidrug efflux genes among MRSA
isolates from wards where CHG bathing had been ongoing for
years. McNeil et al. reported that 22.7% of MRSA surveillance
isolates collected over a 7-year period at a children’s hospital in
Texas carried qacA or qacB (18). Warren and colleagues identified
a statistically significant increase in the annual prevalence of qacA
and qacB among MRSA surveillance isolates cultured from pa-
tients in a surgical ICU between 2005 and 2012, although the
increase was not linear (49). These reports, together with the few
descriptions of decolonization failure associated with reduced
CHG susceptibility (16, 25, 26), justify surveillance for CHG re-
sistance during sustained decolonization programs that employ
routine CHG bathing.

While our inability to detect increases in CHG or mupirocin
resistance in the decolonization arms of this trial is encouraging,
our study has limitations. First, most of the MRSA isolates avail-
able for investigation were identified in cultures collected from
patients on the first day of hospital admission; these patients
would have had little exposure to CHG or mupirocin during tar-
geted or universal decolonization interventions. While some pa-
tients may have undergone decolonization during an earlier ICU
stay, readmissions to study ICUs were not tallied, so information
about prior exposure to decolonization is unknown. Second, iso-
lates were not selected randomly but instead comprised a conve-
nience sample. We may have reduced the risk of sampling bias by
testing isolates in a central laboratory and delaying the release of
results to participating hospitals until after the trial closed. Third,
the intervention period was relatively short (18 months), and re-
sults may not be generalizable to longer periods of routine decolo-
nization. Fourth, we looked for only two efflux pump genes; other
efflux pumps that can use CHG as a substrate have been described
in S. aureus (18, 35).

Some limitations of our study apply specifically to the detec-
tion of mupirocin resistance. Most notably, few ICU-attributable
isolates were available for analysis, resulting in imprecise estimates
of odds ratios for a difference-in-differences in the prevalence of
mupirocin resistance during the intervention versus the baseline
period, across arms. Other investigators have reported increases in
both LLMR and HLMR associated with increases in mupirocin
use in hospitals (43, 44); exposure to mupirocin was an indepen-
dent risk factor for colonization with mupirocin-resistant MRSA
in a case-control study of general inpatients in one hospital (45).
The risk of the development of mupirocin resistance appears to be
greatest when mupirocin use is widespread and sustained over
long periods, and when it is applied to extranasal anatomic sites,
such as vascular catheter exit sites and wounds (4, 6). Whether the
application of mupirocin to the anterior nares of all ICU patients
will eventually select for mupirocin resistance and reduce the ef-
fectiveness of the universal decolonization strategy could not be
determined by our analysis, but the issue remains a concern and
should be monitored.

In summary, CHG nonsusceptibility and carriage of qacA
or qacB were rare in a large sample of MRSA isolates from
the REDUCE-MRSA trial. We did not detect an increase in the
odds of mupirocin resistance in the intervention versus the
baseline period, but confidence limits were broad, and our re-
sults should be interpreted with caution. Health care facilities
that use CHG and mupirocin for targeted or universal decolo-

nization should monitor S. aureus isolates for resistance to these
agents.
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