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An energy decomposition analysis (EDA) for single chemical bonds
is presented within the framework of Kohn-Sham density functional
theory, based on spin-projection equations that are exact within
wavefunction theory. Chemical bond energies can then be under-
stood in terms of stabilization due to spin-coupling, augmented by
dispersion, polarization, and charge transfer in competition with
destabilizing Pauli repulsions. The EDA reveals distinguishing fea-
tures of chemical bonds ranging across non-polar, polar, ionic and
charge-shift bonds. The effect of electron correlation is assessed
by comparison with Hartree-Fock results. Substituent effects are
illustrated by comparing the C-C bond in ethane against that in
bis(diamantane), and dispersion stabilization in the latter is quanti-
fied. Finally, three metal–metal bonds in experimentally character-
ized compounds are examined: a MgI−MgI dimer, the ZnI−ZnI bond
in dizincocene, and the Mn−Mn bond in dimanganese decacarbonyl.

Energy Decomposition Analysis | Chemical Bonding

Understanding the chemical bond is central to both syn-
thetic and theoretical chemists. The approach of the

synthetic chemists is based on qualitative, empirical features
(electronegativity, polarizability, etc.) gleaned over the past
150 years of research and investigation. These features are no-
tably absent from the toolbox of the theoretical chemist, who
relies on a quantum mechanical wavefunction to holistically
describe the electronic structure of a molecule; in essence, a
numerical experiment. Bridging this gap is the purview of
bonding analysis and energy decomposition analysis (EDA),
which seeks to separate the quantum mechanical energy into
physically meaningful terms. Bonding analysis and EDA ap-
proaches are necessarily non-unique, but different well-designed
approaches provide complementary perspectives on the nature
of the chemical bond. This task is not yet complete, despite
intensive effort and substantial progress(1–5).

The chemical bond was originally viewed(6) as being electro-
static in origin, based on the virial theorem, and supported
by an accumulation of electron density in the bonding re-
gion relative to superposition of free atom densities. The
chemical bond is still often taught this way in introductory
classes. However, the quantum mechanical origin of the chem-
ical bond in H+

2 and H2 (classical mechanics does not explain
bonding) lies in lowering the kinetic energy by delocalization,
that is, via constructive wavefunction interference. This was
first established(1) 55 years ago by Ruedenberg for H+

2 . A
secondary effect, in some cases, such as in H2, is orbital con-
traction, which is most easily seen by optimizing the form of
a spherical 1s function as a function of bond-length(7). Polar-
ization and charge-transfer contribute to further stabilization.

Analyzing chemical bonds in more complex molecules has
also attracted great attention. Ruedenberg and co-workers
have been developing generalizations of their classic analysis
procedures with this objective(8, 9). Valence bond theory,
while uncompetitive for routine computational purposes, in-
volves conceptually simple wave functions that are suitable
for extracting qualitative chemical bonding concepts(10). The
emergence of the “charge-shift bond” paradigm, exemplified
by the F2 molecule, is a specific example of its value(11). The
widely used Natural Bond Orbital (NBO) approach (12), pro-
vides localized orbitals, predominant Lewis structures, and
information on hybridization and chemical bonds. The quan-
tum theory of atoms-in-molecules (QTAIM) (13), describes
the presence of bonds by so-called bond critical points in the
electron density, as well as partitioning an energy into intra-
atomic and inter-atomic terms. Another topological approach
is the electron localization function (ELF), which is a function
of the density and the kinetic energy density. Many other
methods also exist for partitioning a bond energy into sums
of terms that are physically interpretable (4).

EDA schemes have been very successful at elucidating the
nature of non-covalent interactions(2, 14, 15). These methods
typically separate the interaction energy by either perturba-
tive approaches or constrained variational optimization. Per-
turbative methods include the popular Symmetry Adapted
Perturbation Theory (SAPT)(16, 17) method and the Natural
Energy Decomposition Analysis (NEDA)(18), based on NBOs.
Variational methods include Kitaura and Morokuma (KM)
EDA(19), the Ziegler-Rauk method(20), the Block-Localized
Wavefunction (BLW-EDA)(14) and the Absolutely Localized
Molecular Orbital (ALMO-EDA) of Head-Gordon et al(21–24).
A number of non-covalent EDA methods have been applied to
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bonds(2, 20, 25), although the single-determinant nature of
these methods leads to spin-symmetry broken wavefunctions,
which contaminates the EDA terms with effects from the other
terms.

To address this challenge, we recently reported a spin-pure
extension of the ALMO-EDA scheme to the variational analysis
of single covalent bonds(26). The method, which reduces to the
ALMO-EDA scheme for non-covalent interactions(24), includes
modified versions of the usual non-bonded frozen orbital (FRZ),
polarization (POL) and charge transfer (CT) terms, as well as
a new spin-coupling (SC) term describing the energy lowering
due to electron pairing. The final energy corresponds to
the CAS(2,2) (equivalently, 1-pair perfect-pairing or TCSCF)
wavefunction. While this is a fully ab initio model, it lacks
the dynamic correlation necessary for reasonable accuracy.

By far the most widely used treatment of dynamic corre-
lation in quantum chemistry today is Kohn-Sham density
functional theory (DFT)(27). DFT methods yield RMS errors
in chemical bond strengths on the order of a few kcal/mol,
which approaches chemical accuracy at vastly lower compu-
tational effort than wavefunction methods. The purpose of
this paper is to recast our bonded ALMO-EDA method into
a single-determinant formalism that allows the computation
of a dynamically-correlated bonded EDA with any existing
density functional. After outlining our approach, we turn to
the characterization of a variety of chemical bonds, ranging
from familiar systems, to less familiar dispersion stabilized
bonds, and several single metal-metal bonds.

Variational energy decomposition analysis

The single bond of interest is by definition the difference
between the DFT calculation on the molecule, and the sum
of DFT calculations on the separately optimized, isolated
fragments. This interaction will be separated into five terms:

∆Eint =Emolecule −
frags∑

Z

EZ

=∆EPREP + ∆EFRZ + ∆ESC + ∆EPOL + ∆ECT [1]

Each term is described in a corresponding subsection below.

Preparation energy. We begin from two doublet radical frag-
ments, each of which is described by a restricted open shell
(RO) HF or Kohn-Sham DFT single determinant whose or-
bitals are obtained in isolation from the other. ∆EPREP in-
cludes the energy required to distort each radical fragment to
the geometry it adopts in the bonded state, ∆EGEOM. This
“geometric distortion” arises in most EDAs.

There is a further distortion energy that may also be incorpo-
rated into ∆EPREP. Many radicals have a different hybridiza-
tion than in the corresponding bond. For example, an F atom
has an unpaired electron in a p-orbital while an F atom in a
bond will be sp-hybridized. Or, the amine radical, NH2, is
sp2-hybridized with an unpaired electron in a p-orbital, while
an amine group is often sp3-hybridized or sp2-hybridized with

a lone pair in the p-orbital in a molecule. Rearranging the odd
electron of each radical fragment to be in the hybrid orbital
that is appropriate for spin-coupling will incur an energy cost,
∆EHYBRID, that completes the preparation energy:

∆EPREP = ∆EGEOM + ∆EHYBRID [2]

We define ∆EHYBRID as the energy change due to rotations of
the β hole in the span of the α occupied space from the isolated
radical fragment to the correct arrangement in the bond. This
is accomplished by variational optimization of the fragments’
RO orbitals (in the spin-coupled state) only allowing doubly
occupied-singly occupied mixings. Afterwards the modified
fragment orbitals are used to evaluate ∆EHYBRID. As limited
orbital relaxation is involved, ∆EHYBRID may also be viewed
as a kind of polarization and indeed it was previously placed
in the POL term.(26)

However, ∆EHYBRID is also partially present here in that the
geometry of the radical fragment is fixed to be that of the
interacting fragment. For instance, free methyl radical is an
sp2-hybridized planar molecule while a methyl group in a bond
is a pyramidalized sp3 fragment, and it is the latter that is
employed in this EDA scheme. We have moved ∆EHYBRID
here for that reason, and because it can be much larger than
the other contributions to POL and therefore its presence in
POL can obscure trends in POL and SC across rows as the
hybridization of the radical fragment changes.∗

Nevertheless, regarding orbital rehybridization as part of prepa-
ration (as we do in this paper) or as part of polarization (as
was done previously(26)) are both defensible choices. And in
cases where ∆EHYBRID is large, the consequences of where it
is placed can be considerable, as ∆EPREP, ∆EFRZ, ∆ESC, and
∆EPOL all change as a result. So the reader can compare, and
decide whether they agree with our present choice, correspond-
ing data tables with rehybridization as part of polarization
(and ∆EPREP = ∆EGEOM) are included in the Supporting
Information.

Frozen energy. The second term in Eq. (1), ∆EFRZ, is the
energy change associated with the two radical fragments in-
teracting without permitting spin-coupling, polarization or
charge-transfer. For simplicity (but without loss of generality)
let us assume both radicals have S = 1

2 ;MS = + 1
2 . In the

frozen (FRZ) energy, the fragment wavefunctions are combined
to form a spin-pure triplet single determinant wavefunction
(S = 1;MS = +1) without allowing the orbitals to relax. This
term is entirely a non-bonded interaction and will typically
be repulsive for a chemical bond due to Pauli repulsion. It
includes contributions from inter-fragment electrostatics, Pauli
repulsion, exchange-correlation, and dispersion. The addition
of dispersive effects, a dynamic correlation property, using
DFT should result in smaller frozen energy terms than what
is calculated in the original CAS(2,2) ALMO-EDA method.

A set of orbitals is said to be “absolutely localized” if the MO
coefficient matrix is block-diagonal in the fragments. Since
the atoms partition into fragments, so do their corresponding

∗Even with ∆EPREP so defined, one must still reorient the frozen orbitals to resolve degeneracies
and obtain the correctly oriented closed-shell density, as previously described(26).
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AOs, and hence, the isolated fragment MOs, T, automati-
cally satisfy the ALMO constraint. The “frozen” occupied
ALMOs constructed by block diagonally concatenating iso-
lated restricted open-shell fragments need not be orthogonal
(ALMOs are generally nonorthogonal) so they have an overlap
matrix, σ. Therefore, as a function of interfragment separa-
tion, the frozen density matrix, PFRZ = Tσ−1T†, undergoes
Pauli deformation, even though T is constant.

The energy associated with this density (EFRZ) may then be
computed by HF or DFT. The frozen interaction energy is the
difference relative to non-interacting, prepared fragments:

∆EFRZ = EFRZ −
frags∑

Z

EZ [3]

This ALMO-EDA FRZ term may be further separated into
contributions corresponding to permanent electrostatic inter-
actions, Pauli repulsion, and dispersion(23).

Spin-coupling. The third term in Eq. (1), ∆ESC, is the en-
ergy difference due to electron pairing: that is, changing the
spin coupling (SC) of the two radical electrons from high-spin
triplet to low-spin singlet. The spin-coupling energy accounts
for the difference between destructive wavefunction interfer-
ence (in the high-spin case) and constructive wavefunction
interference (in the low-spin case). It is worth pointing out that
delocalization does not require two spins and is present even
in H +

2 . Like FRZ, SC will be evaluated with frozen orbitals,
but while FRZ is typically strongly repulsive (dominated by
Pauli repulsion), SC is typically strongly attractive in the
overlapping regime associated with covalent bond formation.
For this reason, and because we are primarily interested in the
singlet surface (as opposed to the triplet surface of the initial
supersystem), FRZ and SC may be grouped together into a
frozen orbitals term (FRZ+SC).

From the high-spin frozen determinant (S = 1;MS = +1),
flipping the spin (α → β) of one of the two half-occupied
orbitals reduces the MS value by one (i.e. MS = +1 −→
MS = 0). The objective is to change the spin coupling from
(not bonding) triplet to (bonding) singlet. But in the single
determinant formalism, the result of the spin-flip is a broken
symmetry (BS) ALMO determinant. Its energy, EBS, contains
the desired spin-coupled low-spin (LS) energy, ELS, but also
a single contaminant, which is high spin (HS): EHS = EFRZ,
and SHS = SLS + 1. We may write:

EBS = (1− c)ELS + cEHS [4]

To obtain c, we examine the value of 〈S2〉BS which is contami-
nated in exactly the same way as the energy:

〈S2〉BS = (1− c)〈S2〉LS + c〈S2〉HS

= 〈Sz〉LS(〈Sz〉LS + 1) + 2c(〈Sz〉LS + 1) [5]

Using the calculated 〈S2〉BS value (a derivation of the 〈S2〉
value for a broken symmetry single determinant with non-
orthogonal orbitals is given in the Supporting Information),
we solve for c via Eq. (5):

c = 〈S
2〉BS − 〈Sz〉LS(〈Sz〉LS + 1)

2(〈Sz〉LS + 1) [6]

In turn, this permits us to solve Eq. (4) for the spin-pure energy,
ELS = αEBS + (1− α)EHS, where α = (1− c)−1. This result
corresponds to Yamaguchi’s spin-projection scheme(28, 29).
Finally, with ELS in hand, the spin-coupling term is given by

∆ESC = ELS − EFRZ [7]

where the orbitals are still the frozen fragment ones.

The above derivation is exact because a spin-pure ELS is ob-
tained if 〈S2〉BS and 〈E〉BS are evaluated consistently from the
same 1- and 2-particle density matrices (PDMs). An example
is the case of HF wavefunctions. Unfortunately, this condi-
tion is not strictly satisfied for Kohn-Sham DFT, because the
interacting 2PDM is not available,(30) and thus the value of
〈S2〉BS corresponding to 〈E〉BS is not available. This dilemma
arises because the fundamental theorems of DFT allow con-
struction of the exact ground state energy without knowledge
of the 2PDM. The best that can be straightforwardly accom-
plished is to employ the non-interacting 2PDM (i.e. from the
Kohn-Sham determinant) to evaluate 〈S2〉BS in DFT. For any
functional but HF, this choice leads to a small inconsistency in
the final energy whose remedy is described in the subsection
on charge transfer below.

Regarding comparison of this approach with other EDAs, this
SC term is only partly contained in the frozen orbital term
in EDA schemes such as the Ziegler-Rauk approach(20) used
extensively for bonding analysis(2). Such EDAs form only
one frozen supersystem on the low-spin surface, rather than
separate FRZ and SC terms. The resulting low-spin frozen
energy is exactly EBS above. From the analysis above, due to
spin contamination, ∆EFRZ(BS) > ∆EFRZ + ∆ESC.

Polarization. The fourth term in Eq. (1), ∆EPOL, arises partly
from the orbitals (with low spin coupling) relaxing due to the
presence of the field of the other fragment. ∆EPOL is the term
that includes contributions from polarization in the bond, but
the ALMO constraint prevents charge-transfer contributions.
To provide a well-defined basis set limit, fragment electric
response functions (FERFs) are used as the ALMO virtual
basis (22, 24). The FERFs are the subset of virtual orbitals
that exactly describe the linear response of each fragment to
an applied electric field. Following previous work(22, 24), the
dipole and quadrupole (DQ) FERFs will be used to define
the fragment virtual spaces for electrical polarization. For a
hydrogen atom, the 3 dipole functions are p-like, and the 5
quadrupole functions are d-like.

In addition to electrical polarization, there is another con-
tribution to polarization that we have discussed in detail
elsewhere(31). The frozen orbitals may contract towards the
nucleus to lower their energy without any induced electri-
cal moments. This contraction effect was first identified by
Ruedenberg(1) as part of his classic analysis of the one-electron
chemical bond in H +

2 . We have shown(31) that orbital con-
traction can be accurately modeled by adding a so-called
monopole (M) function to the FERF virtual space for each
occupied orbital. On the H atom, the monopole FERF is a 2s
type function.

Head-Gordon et al.
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The overall FERF basis is thus of MDQ type, and thus:

∆EPOL = ∆ECON
POL + ∆EELE

POL [8]

where(31), ∆ECON
POL = EALMO/M − EFRZ and ∆EELE

POL =
EALMO/MDQ−EALMO/M. Our results showed that orbital con-
traction was very important in bonds to hydrogen but rather
insignificant in bonds only involving heavier elements(31).
This decreased energy lowering in heavy element bonds can
be viewed as arising from diminished violation of the virial
theorem upon spin-coupling with frozen orbitals, relative to
bonds to hydrogen.

The additional mathematics necessary to implement polariza-
tion in conjunction with the approximate DFT spin-projection
method is described in the Supporting Information.

Charge-transfer. The final term, ∆ECT, contains charge-
transfer (CT) contributions, allowing electrons to move be-
tween the fragments. It is the dominant term in ionic bonds,
and an important part of charge-shift bonds (11). Mathe-
matically, we will release the ALMO constraint and reopti-
mize the orbitals to obtain an unconstrained spin-projected
energy. Implemented with HF determinants, this gives the
CAS(2,2)/1-pair perfect pairing energy. With DFT, we obtain
the approximately spin-projected DFT analog, ESP−DFT.

However, as already mentioned, in DFT, the 〈S2〉 value used
in the optimization is only approximate. Moreover, the ap-
proximate exchange-correlation functional accounts for some
amount of static correlation. Hence, ESP−DFT obtained at this
final step is generally lower than the DFT energy of a single
determinant, EDFT. Since DFT functionals are typically de-
veloped (or fitted) to produce accurate results only as a single
determinant, this overcounting of correlation leads to molecules
being slightly overbound (on the order of 1-15 kcal/mol). To
address this issue, we simply rescale the terms calculated on
the approximately spin-projected low-spin surface by a factor,
cR, such that ∆ESC ← cR∆ESC, ∆EPOL ← cR∆EPOL, and
∆ECT ← cR∆ECT. cR is defined as:

cR = (EDFT − EFRZ)/(ESP−DFT − EFRZ) [9]

so that the final interaction energy exactly satisfies Eq. (1).
These cR are tabulated in the Supporting Information.

For DFT, this rescaling scheme will be inadequate for analyzing
bonds whenever a single DFT determinant is itself inadequate
to describe the bond, such as in strongly diradicaloid molecules.
In such cases, it may be preferable to use the approximately
spin-projected result directly, as is quite often done in broken
symmetry DFT calculations(32, 33). In contrast, no rescaling
would be needed for MP2 or coupled-cluster theory because
the spin-projection would be exact, and such methods could
additionally describe strongly diradicaloid systems.

Especially for symmetrical systems, one may inquire about the
nature of the CT term. The spin-coupling term includes some
amount of ionic-like contribution due to the non-orthogonality
of the orbitals. In the limiting cases, when the singly-occupied
spaces do not overlap at all, the spin-coupled state is purely
covalent, and when they overlap fully, for symmetrical systems,
the HF result is obtained. The CT term then measures the

fraction of ionic contribution that was unavailable to the frag-
ments with the FERF and ALMO Hilbert space constraints.

Computational Details

A development version of Q-Chem 4.4 was used for all cal-
culations (34). All calculations were performed using the
ωB97M-V density functional(35) (a range-separated hybrid
(RSH) meta generalized gradient approximation (GGA)) and
the aug-cc-pVTZ basis(36) unless otherwise specified. Numer-
ical tests suggest that ωB97M-V is amongst the most accurate
available for chemical bond energies(35). For decomposition
of the frozen term(23), the dispersion-free functional employed
with ωB97M-V was Hartree-Fock (HF). Decomposition of the
frozen term was carried out using unrestricted fragments form-
ing an unrestricted supersystem. While the preparation energy,
Eq. (2), has two components, we report only their sum here
(see supplementary material for the breakdown). Likewise,
since the contraction energy has been discussed elsewhere(31),
here we report only the total polarization energy, as defined
in Eq. (8). Finally, when HF is used, identical EDA results
(apart from the reclassification of the hybridization energy) are
obtained as with the previously described multi-determinant
(CAS(2,2) or 1PP) method, which is hereafter referred to as
HF-EDA(26).

Results and Discussion

Representative Bonds. We first verify the behavior of the
terms of the EDA by investigating some representative bonds
with the ωB97M-V functional: the C−C bond in ethane (a
nonpolar covalent bond), the H−Cl bond in HCl (a polar co-
valent bond), the F−Si bond in SiF4 (a polar bond with ionic
character), the F−F bond in F2 (a non-polar, charge-shift
bond), and the Li−F bond in LiF (an ionic bond) (see Figure
1 and Table 1). The EDA gives a “fingerprint” for different
classes of bonds: covalent and charge-shift bonds have rela-
tively high spin-coupling energies, polar bonds have relatively
high polarization energies, charge-shift and ionic bonds have
relatively high charge-transfer energies. The EDA thus re-
covers classical bonding concepts from quantum mechanical
methods.(5)

Table 1. EDA of representative bonds (in kcal/mol). Values in paren-
thesis are the percentage of the total stabilizing interaction energy.

PREP FRZ SC POL CT Sum

H3C−CH3 36.9 279.7
-344.6 -11.8 -60.1

-99.8
(82.7) (2.8) (14.4)

H−Cl 13.1 219.0
-253.7 -49.3 -36.7

-107.5
(74.7) (14.5) (10.8)

F−SiF3 41.5 259.1
-227.3 -119.0 -118.8

-164.4
(48.9) (25.6) (25.5)

F−F 9.2 186.3
-124.1 -37.2 -74.3

-40.1
(52.7) (15.8) (31.5)

Li−F 0.0 30.5 2.7
-7.8 -164.6

-139.2
(4.5) (95.5)

4 | www.pnas.org/cgi/doi/10.1073/pnas.XXXXXXXXXX
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Fig. 1. a) EDA of representative single bonds. b) EDA of a few representative bonds
with the FRZ and SC terms summed into a single frozen orbital term.

First-Row Element–H Bonds. This method allows us to inves-
tigate trends across periods and down groups of the periodic
table. To illustrate, first-row element–H bonds were investi-
gated (see Figure 2 and Table 2). Moving right across the first
row, the elements become more electronegative and the E−H
bonds switch from being non-polar covalent bonds to polar
covalent bonds with increasing charge-transfer. This change is
most obvious when the FRZ and SC terms are summed into
a total frozen orbital term (Figure 2(b)). For the non-polar
covalent bonds, total frozen orbital interactions (FRZ+SC)
account for most of the bond energy. By contrast, in the
moderately polar covalent bond in ammonia, POL becomes
significant, and with increasing ionic character in water and
HF, CT is a large source of binding.

Table 2. EDA of first-row E−H bonds (in kcal/mol). Numbers in paren-
thesis are the percentage of the total stabilizing interaction energy.

PREP FRZ SC POL CT Sum

H−H 0.0 245.4
-311.4 -30.6 -11.9

-108.4
(88.0) (8.6) (3.4)

H−Li 0.0 34.8
-51.2 -18.9 -25.3

-60.6
(53.7) (19.8) (26.5)

H−BeH 0.1 188.8
-252.3 -14.6 -22.7

-100.6
(87.1) (5.1) (7.8)

H−BH2 3.7 276.1
-349.0 -21.4 -21.6

-112.2
(89.0) (5.5) (5.5)

H−CH3 15.4 284.6
-356.3 -26.0 -30.9

-113.2
(86.2) (6.3) (7.5)

H−NH2 32.0 293.3
-344.5 -40.8 -55.9

-115.9
(78.1) (9.2) (12.7)

H−OH 32.2 284.6
-310.9 -36.7 -94.5

-125.2
(70.3) (8.3) (21.4)

H−F 27.9 279.4
-268.7 -55.1 -124.2

-140.8
(60.0) (12.3) (27.7)

A variety of density functionals were investigated to determine

Fig. 2. a) EDA of first row element–H bonds. b) EDA of first row element–H bonds
with the FRZ and SC terms summed into one frozen orbital term.

how the HF-EDA terms are altered by the inclusion of dynamic
correlation as well as to check that this method is not too
sensitive to choice of functional. Full data tables comparing
HF, BLYP-D3 (a dispersion-corrected GGA), PBE0-D3 (a
dispersion-corrected hybrid GGA(37)), ωB97X-D (a dispersion-
corrected RSH GGA(38)), B97M-V (a meta-GGA(39) with
VV10 non-local correlation), and ωB97M-V (a RSH meta-
GGA(35) with VV10) for all of the bonds described above are
available in the Supporting Information. Generally speaking,
addition of dynamic correlation decreases the frozen energy
(owing to the inclusion of dispersion), and increases charge-
transfer and polarization stabilization relative to Hartree-Fock.
Figure 3 demonstrates these trends for the C−C bond in ethane
and the F−F bond in fluorine. Some differences between
functionals are inevitable, as none are exact. Overall the
small discrepancies evident in Figure 3 and in the Supporting
Information appear acceptable.

Bonding in Halogens. Dynamic correlation effects in bonds
are most pronounced when the local electron density is high,
such as in molecules with many lone-pairs near each other(40).
Hence, dynamic correlation is necessary for studying bonds
such as those in halogens (see Figure 4). Comparing the HF-
EDA and ωB97M-V-EDA of the homoatomic halogens F2,
Cl2, and Br2, we see that dynamic correlation is indeed very
important to obtain correct bond energies. Moreover, in these
molecules, inclusion of dynamic correlation mostly increases
the CT term, and so it is dynamic correlation associated with
greater electron delocalization that contributes most strongly
to the stability of bonds between halogen atoms, as might be
expected from a charge-shift bond. Dispersion plays only a
modest role (≈9 kcal/mol) in these molecules. This charge-
shift bonding, in which ionic structure contribute significantly
to the ground state, is manifest in the chemistry of halogens,
for example, in the stabilization of charge-separated species
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Fig. 3. Comparison of EDA terms computed at HF, PBE0-D3, ωB97X-D, ωB97M-
V/aug-cc-pvtz of a) ethane and b) F2

during the formation of halonium ions in the halogenation of
alkenes.(41)

Fig. 4. Comparison of the EDA of the E−E bond (E = F, Cl, Br) computed at HF and
ωB97M-V/aug-cc-pvtz (see also Table 3).

Dispersion-Assisted Bonds. In molecules with bulky side-
groups, dispersion can play a significant role in the stabi-
lization of bonds(42, 43). An example is the elongated 1.65 Å
C−C bond in bis(diamantane), which, based on bond length
is expected to have a bond strength of ≈40 kcal/mol(44).
Experimentally, it is considerably stronger (showing no decom-
position up to 300 ◦C), which has been attributed to many
stabilizing dispersive interactions between the interfacial C−H
bonds(45). Comparison of the EDA for this bond vs ethane
(at the ωB97M-V/6-31+G** level) allows quantification of the
forces that stabilize it, as shown in Table 4.

As seen in Table 4, while the POL and CT terms are fairly
similar for ethane and bis(diamantane), the SC term is 82
kcal/mol less for bis(diamantane) following expectations based
on bond length. However, the bis(diamantane) bond is not too

Table 3. EDA of E−E bonds (E = halogen). All energies in kcal/mol.
Numbers in parenthesis are the percentage of the total stabilizing
interaction energy each term represents.

PREP FRZ SC POL CT Sum

F−F 9.2 186.3
-124.1 -37.2 -74.3

-40.1
(52.7) (15.8) (31.5)

Cl−Cl 6.8 154.8
-121.5 -52.8 -47.9

-60.6
(54.7) (23.8) (21.6)

Br−Br 4.4 116.4
-98.9 -40.7 -32.0

-50.8
(57.7) (23.7) (18.6)

Table 4. EDA of bis(diamantane) and ethane (ωB97M-V/6-31+G**). All
energies in kcal/mol. FRZ∗ is the frozen energy less the dispersion
energy.

PREP FRZ∗ DISP SC POL CT Sum

diamantane 46.5 274.1
-60.4 -264.2 -23.1 -47.9

-75.1
(15.3) (66.8) (5.8) (12.1)

H3C−CH3 37.6 285.9
-8.3 -346.5 -22.1 -46.4

-99.7
(2.0) (81.9) (5.2) (11.0)

much weaker than ethane because it also has a less destabiliz-
ing FRZ energy. Applying the ALMO frozen decomposition,
it was found that dispersion accounts for this large increase in
bond strength (60.4 kcal/mol vs. 8.3 kcal/mol of stabilization
for bis(diamantane) and ethane, respectively). Enhanced dis-
persion is the key factor in accounting for the unusual stability
of bis(diamantane), even as the bond-elongation is a result of
partially relieving the close contacts.
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Fig. 5. Metal–metal bonds probed by the ALMO-EDA.

Metal–Metal Bonds. We next consider some single bonds which
are less well studied: main-group and transition metal metal–
metal bonds. We investigated a slightly truncated version of
the Mg−Mg dimer of Jones and Stasch(46), the Zn−Zn bond
in dizincocene from Carmona(47), and the classic Mn−Mn
bond(48, 49) in the dimanganese decacarbonyl complex (see
Figure 5). The relatively new Mg−Mg and Zn−Zn bonds are
interesting for their novelty, and have proven to be impor-
tant chemical synthons(50, 51). However, the nature of these
symmetrically-bonded complexes is difficult to guess on first
inspection because of our unfamiliarity with the chemistry of
Mg and Zn in the formal +1 oxidation state. Will these be
conventional covalent bonds, or will they have charge-shift
character? These systems are therefore good candidates for
use of the EDA, because we can compare their EDA results
against the well-understood systems presented earlier.

The total bond energies obtained for the Mn−Mn bond is in
close agreement with experimental measures (40.9 vs. 38± 5

6 | www.pnas.org/cgi/doi/10.1073/pnas.XXXXXXXXXX
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kcal/mol) (52) and previous calculations(53, 54). There are
no direct experimental measures for the given Mg−Mg and
Zn−Zn bonds. The Mg−Mg bond in ClMgMgCl was extrap-
olated from experimental measurements to be 47.1 kcal/mol,
in close agreement with the results obtained here.(55). Exper-
imental Zn−Zn BDE measurements were obtained from the
homoatomic dimer (which is, in principle, doubly-bonded), but
the measured bond dissociation energy is relatively close to
the Zn−Zn bond calculated here (82.2 vs. 93.7 kcal/mol).(56)
Both classes of bonds have previously been studied by theo-
retical methods.(50, 57, and references therein)

The EDA results are given in Table 5. The Mg−Mg bond
turn out to be a classic non-polar covalent bond analogous
to H2: the bond strength is mainly due to spin coupling (i.e.
electron pairing) between the unpaired electrons on Mg(I)
centers. There is almost no charge transfer: consistent with
the high reduction potential of Mg(0), Mg(0)–Mg(II)/Mg(II)–
Mg(0) contributions are not important in this bond. This is
consistent with NBO calculations carried out in the initial
disclosure of this molecule, which found the bond to be a
covalent single-bond dominated by s-orbital contributions.(46)

On the other hand, the less reducing Zn in the Zn−Zn bond,
which is principally covalent does exhibit some ionic Zn(0)–
Zn(II)/Zn(II)–Zn(0) resonance contributions, much like in
ethane. These ionic contributions account for most of why the
Zn−Zn bond is stronger than the Mg−Mg bond. Our method
provides an accurate dissection of the metal–metal bond in
multimetallocenes, which was not possible before(58, 59). It
also gives new insight into the origins of the relative bond
strengths in metal–metal bonds: although both Mg−Mg and
Zn−Zn bonds have strong covalent stabilization, the more
easily oxidized Zn is further stabilized by ionic resonances,
making it a much stronger bond. This was hinted at in a
recent QTAIM study which showed that main-group–main-
group bonds in M2Cp2 had more “covalent characteristics”,
while transition-metal–transition-metal bonds had “closed shell
ionic characteristics”.(60)

By contrast, the bond in dimanganese decacarbonyl is a charge-
shift bond much like in F2 with CT playing a major role in
stabilizing the bond. Previous studies using QTAIM have
also implicated “closed-shell interactions” and indicated that
the bond is intermediate to a covalent and ionic bond (61)
while other studies favor a more covalent picture(62). This
hybrid covalent-CT stabilization is quantified here and appears
analogous to the charge-shift bonding picture.(11)

Table 5. EDA of metal–metal bonds (ωB97X-D/6-31+G** with BSSE
correction). All energies in kcal/mol.

PREP FRZ SC POL CT Sum

Mg−Mg 0.1 69.7
-118.3 -3.1 -0.2

-51.8
(97.3) (2.5) (0.2)

Zn−Zn 4.1 103.5
-150.0 -7.6 -23.7

-73.7
(82.7) (4.2) (13.1)

Mn−Mn 3.5 33.2
-37.4 -8.0 -27.0

-35.7
(51.6) (11.1) (37.3)

Comparison to Other EDA Methods. The main advantage of
our EDA over alternatives for studying covalent bonds is its
full use of valid, spin-pure intermediate wavefunctions. By
contrast, the Morokuma EDA(19), Ziegler-Rauk EDA(2, 25)
and the ETS-NOCV(20) method utilize broken-symmetry spin-
contaminated intermediate wavefunctions to determine the
energy components, which are likewise non-physically spin-
contaminated.†. The degree of spin-contamination changes
during the stepwise variational optimization of the wavefunc-
tion (e.g. the final state is typically a spin-pure and closed-
shell), and hence the effect of the contamination is inconsis-
tently distributed amongst the energy terms for a molecule.
The spin-coupling energy of the method presented here is dis-
tributed between the Elec, Pauli, and Orb terms in a system-
specific manner in these broken-symmetry based methods.

Another advantage of our EDA is that it can resolve different
classes of chemical bonds. For comparison, the ZR-EDA/ETS-
NOCV energy terms for H−H, H3C−CH3, F−F, and Li−F are
given in Table 6. Note that no chemical fingerprint is evident
from these data which significantly decreases the utility of
broken-symmetry methods for understanding bonded interac-
tions. It is unclear how much of the unphysical negative value
of the H2 Pauli repulsion is due to spin contamination versus
self-interaction error of the functional. The ionic picture of
LiF can be recovered with the Ziegler-Rauk method by first
ionizing the fragments and noting a relatively small Orb term.
However, this requires knowing how the fragments should be
prepared, whereas in our method, the result falls out naturally.

Table 6. EDA of select bonds (ωB97M-V/aug-cc-pvtz) with broken-
symmetry EDA methods. All energies in kcal/mol.

H−H H3C−CH3 F−F Li−F Li+−F–

Prep 0.0 17.9 0.0 0.0 45.6
Elec 3.9 -135.1 -41.9 -17.0 -202.2
Pauli -10.9 194.1 165.2 55.1 42.9
Orb -101.4 -175.5 -161.2 -176.1 -24.3

Conclusions

1. An energy decomposition analysis (EDA) method for single
bonds has been developed in a single-determinant formalism.
This EDA allows use of DFT with approximate spin-projection,
thereby allowing for the efficient inclusion of dynamic correla-
tion effects, such as dispersion.

2. Numerical tests show that the DFT-based EDA is not too
sensitive to the choice of functional, and, relative to use of
uncorrelated Hartree-Fock determinants, has improved the
treatment of a variety of single bonds, including the first row
E−H bonds and the bonds in halogens. Comparisons between
different molecules should all be made with a single functional.

3. The inclusion of dispersion effects allows for meaningful
study of bonds that rely heavily on dispersion, as illustrated
by the example of bis(diamantane).

†This problem does not arise for intermolecular interactions, which are typically between closed
shell fragments. In such cases, broken symmetry solutions do not enter and the ALMO-EDA frozen
energy corresponds directly to that in these earlier EDAs.
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4. Analysis of single metal–metal bonds with this method has
permitted characterization of Mg(I)-Mg(I), Zn(I)-Zn(I), and
Mn(0)-Mn(0) bonds that have been synthesized, and suggests
physical reasons for the range of bond strengths seen in main
group metal and transition metal bonds.

5. The main limitation of this EDA is its restriction to single
chemical bonds. Only technical challenges inhibit the extension
of this single bond EDA approach to correlated ab initio
methods – we are currently working on addressing those issues.
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40. Maksić ZB, ed. (1991) Theoretical Models of Chemical Bonding. (Springer Berlin Heidelberg,
Berlin, Heidelberg).

41. McMurry JE (2015) Organic Chemistry. (Brooks Cole, Boston, MA, USA), 9 edition edition.
42. Wagner JP, Schreiner PR (2015) London Dispersion in Molecular Chemistry—Reconsidering

Steric Effects. Angew. Chem. Int. Ed. 54(42):12274–12296.
43. Liptrot DJ, Guo JD, Nagase S, Power PP (2016) Dispersion Forces, Disproportionation, and

Stable High-Valent Late Transition Metal Alkyls. Angew. Chem. Int. Ed. 55(47):14766–14769.
44. Zavitsas AA (2003) The Relation between Bond Lengths and Dissociation Energies of

Carbon-Carbon Bonds. J. Phys. Chem. A 107(6):897–898.
45. Schreiner PR et al. (2011) Overcoming lability of extremely long alkane carbon-carbon bonds

through dispersion forces. Nature 477(7364):308–311.
46. Green SP, Jones C, Stasch A (2007) Stable Magnesium(I) Compounds with Mg-Mg Bonds.

Science 318(5857):1754–1757.
47. Resa I, Carmona E, Gutierrez-Puebla E, Monge A (2004) Decamethyldizincocene, a Stable

Compound of Zn(I) with a Zn-Zn Bond. Science 305(5687):1136–1138.
48. Dahl LF, Rundle RE (1963) The crystal structure of dimanganese decacarbonyl Mn2(CO)10.

Acta Cryst. 16(5):419–426.
49. Churchill MR, Amoh KN, Wasserman HJ (1981) Redetermination of the crystal structure of

dimanganese decacarbonyl and determination of the crystal structure of dirhenium decacar-
bonyl. Revised values for the manganese-manganese and rhenium-rhenium bond lengths in
dimanganese decacarbonyl and dirhenium decacarbonyl. Inorg. Chem. 20(5):1609–1611.

50. Jones C, Stasch A (2013) Stable Molecular Magnesium(I) Dimers: A Fundamentally Appeal-
ing Yet Synthetically Versatile Compound Class in Alkaline-Earth Metal Compounds, Topics
in Organometallic Chemistry, ed. Harder S. (Springer Berlin Heidelberg) No. 45, pp. 73–101.
DOI: 10.1007/978-3-642-36270-5_3.

51. Li T, Schulz S, Roesky PW (2012) Synthesis, reactivity and applications of zinc–zinc bonded
complexes. Chem. Soc. Rev. 41(10):3759–3771.

52. Goodman JL, Peters KS, Vaida V (1986) The determination of the manganese-manganese
bond strength in Mn2(CO)10 using pulsed time-resolved photoacoustic calorimetry.
Organometallics 5(4):815–816.

53. Folga E, Ziegler T (1993) A density functional study on the strength of the metal bonds in
Co2(CO)8 and Mn2(CO)10 and the metal-hydrogen and metal-carbon bonds in R-Mn(CO)5
and R-Co(CO)4. J. Am. Chem. Soc. 115(12):5169–5176.

54. Xie Y, Jang JH, King RB, Schaefer HF (2003) Binuclear Homoleptic Manganese Carbonyls:
Mn2(CO)x (x = 10, 9, 8, 7). Inorg. Chem. 42(17):5219–5230.

55. Köppe R, Henke P, Schnöckel H (2008) MgCl and Mg2cl2: From Theoretical and Thermody-
namic Considerations to Spectroscopy and Chemistry of Species with Mg-Mg Bonds. Angew.
Chem. Int. Ed. 47(45):8740–8744.

56. Czajkowski MA, Koperski J (1999) The Cd2 and Zn2 van der Waals dimers revisited. Cor-
rection for some molecular potential parameters. Spectrochim. Acta Mol. Biomol. Spectrosc.
55(11):2221–2229.

57. Zhu Z et al. (2006) A Zinc–Zinc-Bonded Compound and Its Derivatives Bridged by One or
Two Hydrogen Atoms: A New Type of Zn-Zn Bonding. Angew. Chem. Int. Ed. 45(35):5807–
5810.

58. Velazquez A, Fernández I, Frenking G, Merino G (2007) Multimetallocenes. A Theoretical
Study. Organometallics 26(19):4731–4736.

59. Pandey KK (2007) Energy analysis of metal-metal bonding in [RM-MR] (M = Zn, Cd, Hg; R =
CH3, SiH3, GeH3, C5h5, C5me5). J. Organomet. Chem. 692(5):1058–1063.

60. Li X et al. (2013) Metal-Metal and Metal-Ligand Bonds in (eta5-C5h5)2m2 (M = Be, Mg, Ca,
Ni, Cu, Zn). Organometallics 32(4):1060–1066.

61. Bianchi R, Gervasio G, Marabello D (2000) Experimental Electron Density Analysis
of Mn2(CO)10: Metal-Metal and Metal-Ligand Bond Characterization. Inorg. Chem.
39(11):2360–2366.

62. Farrugia LJ, Mallinson PR, Stewart B (2003) Experimental charge density in the transition
metal complex Mn2(CO)10: a comparative study. Acta Crystallogr. Sect. B 59(2):234–247.

8 | www.pnas.org/cgi/doi/10.1073/pnas.XXXXXXXXXX

869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930

931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992

Head-Gordon et al.

www.pnas.org/cgi/doi/10.1073/pnas.XXXXXXXXXX



