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ABSTRACT OF THE DISSERTATION

Auto-Assessment of Student Learning

by

Amirali Darvishzadeh

Doctor of Philosophy, Graduate Program in Computer Science
University of California, Riverside, June 2020

Dr. Thomas F. Stahovich, Chairperson

Solving open-ended problems with paper and pencil is an important part of educa-

tion and constitutes a large share of course workload, especially in science and engineering

programs. However, grading this kind of work can be prohibitively expensive in large

classes. Because of the complexity of handwritten free-form work, there are no existing

computational methods capable of interpreting it. In this dissertation, we aim to work

toward complete interpretation and semantic analysis of handwritten free-form solutions to

homework and exam problems of the sort assigned in undergraduate engineering and science

courses. In our study, students wrote their homework and exam solutions on dot patterned

paper with Livescribe smartpens. Our work comprises three innovations. First, we devel-

oped methods to locate final answers. Our methods locate answers by identifying the boxes

drawn around them. Experiments demonstrated that our methods are both accurate and

efficient at recognizing answer boxes. Second, we developed a novel CNN-BLSTM-CRF

network for semantic labeling of students’ handwritten assignments. Semantic labeling is

the task of classifying pen strokes according to the type of content they represent. Our
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method distinguishes between cross-out strokes, equation strokes, and free body diagram

strokes. The input to our network is a set of pen strokes, which are sorted in chronological

order, and the output is a sequence of labels for the strokes. Labeling strokes in this manner

is an important step in enabling semantic analysis of the writing. Our labeling approach

outperforms existing methods. Finally, we developed a novel GRU-CRF network to locate

complete mathematical equations. The network exploits the temporal context of consecu-

tive strokes and simultaneously finds and groups equation strokes. Once our method has

located the equations, they can be interpreted using existing techniques. Together, this

work provides a significant step toward the automated grading of handwritten free-form

course work.
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Chapter 1

Introduction

In formal education, assessment is the process of collecting and quantifying student

learning. It plays an important role in the teaching and learning processes. Educational

assessment serves several purposes: enabling teachers to watch students’ progress, providing

students with feedback on their performance, motivating students, providing insights on the

effectiveness of teaching approaches, etc. There are two forms of educational assessment:

summative [10, 65, 64] and formative [8, 13, 55]. Summative assessment is conducted at the

end of the learning period and aims to provide a metric to quantify student learning of course

objectives. Formative assessment evaluates student learning during the course of study and

provides feedback to both the instructor and student. There are many established methods

for both summative and formative assessments, with different methods for capturing aspects

of student learning.

Despite the benefits of assessment, grading students’ assignments may be pro-

hibitively time-consuming, especially in large classes. Due to time constraints, many in-
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Figure 1.1: An example of a solution to a free response question to a statics problem.

structors limit their assessment to things that can be easily graded by humans or computer

systems such as fill-in-the-blank questions, surveys, and multiple-choice questions. How-

ever, in many academic subjects, especially in science, technology, engineering, and math

(STEM) disciplines, pen and paper solutions to free-response questions are at the heart of

education and cannot be effectively replaced by multiple-choice exams.

A typical answer to a free response question from a statics course is shown in Figure

1.1. Statics is the branch of mechanics that is concerned with the equilibrium of mechanical

systems subject to forces. The solution to this kind of problem may contain (1) free body

diagrams which are a graphical representation of the forces acting on a mechanical system;

(2) handwritten equations that include arithmetic symbols, alphanumeric characters, etc.;
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(3) diagrams representing geometry; (4) text that may include explanatory text, student

name, and identification, organizational information, etc.

Grading such problems is a time-consuming task. Given the free-form nature

of the solution, it may take significant effort to interpret the solutions. It would not be

unreasonable for a grader to spend 5 minutes on such a problem. In a class of 150 students,

this would be 12.5 hours for one problem. Thus, grading an exam or homework assignment

with multiple problems could take an exorbitant amount of time. Therefore, there is a need

for automated methods of grading.

1.1 Auto-grading Systems

To date, many researchers have studied various methods for automatically grading

students’ assignments. There are two primary ways to do an automated assessment: (1)

change the assessment to make it easier to grade and (2) develop sophisticated tools that

attempt to grade traditional free-form work.

The most extreme examples of the first approach are fill-in-the-blanks questions,

surveys, and multiple-choice questions. These types of assessments allow no free-form work

and instead constrain the answers to make them easy to grade.

More ambitious approaches try to maintain some characteristics of free-form work

while constraining the process of constructing the solution so that the individual solution

elements can be easily identified and then evaluated. For example, Lee and Stahovich [39]

developed Newton’s Pen, a tutoring system for statics problem. Students use smartpens and

dot-patterned papers preprinted with user interface elements to answer statics problems.
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Students are required to separate different parts of the answer (e.g., free body diagrams,

equations, etc.) and sketch them in predefined locations on the page. The user must follow

a specific process for solving a problem so that the system can identify and interpret the

individual solution elements. As a result, the system is able to provide real-time feedback

about the correctness of each solution element.

Similarly, Field et al. [25] developed a computer-assisted tutoring system called

Mechanix that aims to improve students’ ability to sketch free body diagrams and perform

vector analysis. The system relies on the instructor to provide the correct solution to

a problem by sketching it with the software. Once a student has sketched a solution,

Mechanix recognizes the elements and compares them to the elements of the instructor’s

solution. Mechanix then notifies the student if there is any difference, and hence any errors,

in the solution.

Silva et al. [18] developed a tutoring system called Kirchhoff’s Pen, which is

designed to teach students how to apply Kirchhoff’s voltage law and current law. To utilize

the system, a student sketches the schematic of a circuit, annotates its various parts, and

writes the corresponding equations. The system is able to interpret the equations and

provides feedback about any errors.

While these systems do interpret handwritten work, they constrain the solution

process to facilitate interpretation. These systems cannot handle free-form work. There

have been some systems that do consider free-form handwritten work, but they do not

attempt to interpret the work. Instead, they extract features from the writing and use

these features to estimate the correctness of the solutions.
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One study conducted by Stahovich and Van Arsdale [66] investigated the relation-

ship between the spatial and temporal organization of a student’s handwritten solution to

the statics problem and the correctness of the work. They use 10 features to characterize

the organization and hence the student’s fluency in problem-solving. These features quan-

tify properties of the writing such as the extent to which writing is done from the top to

the bottom of the page without revisions, the number of breaks (episodes with no writing),

the number of digressions (episodes of interrupting work on the present problem or work

on another), the amount of writing for equations, etc. They found that these features were

correlated with correctness. More specifically, in a study that examined solutions to 13

exam problems from 122 undergraduate students, they found that these features explained

40% of the variance in the scores of the correctness of the solutions.

Similarly, Lin et al. [42] introduced a novel pipeline to identify and segment im-

portant types of content in students’ handwritten coursework, and then they performed a

lexical analysis to measure the correctness of the solutions. First, their method uses 10

special-purpose features to identify and remove cross-outs (pen strokes used to cross out

erroneous or otherwise undesired writing). Second, they perform preliminary recognition to

recognize prevalent elements in solutions such as alpha-numeric characters, arrows, algebraic

operators, etc. Third, they split the remainder of the written work (i.e., everything except

the cross-outs) into free body diagram and equation strokes. They then group the equation

strokes into “equation groups,” sets of pen strokes that represent portions of an equation.

Then they use Kara’s image-based recognizer [35] to identify letters, digits, math symbols,

and Greek letters in the equation groups. Finally, they compute the lexical properties of
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the equation groups, such as the number of various classes of characters (e.g., digits, letters,

mathematical symbols), ratios of these numbers, and so on. They conducted experiments

on a collection of exam solutions produced by 147 students registered in an undergraduate

statics course taught at the University of California, Riverside. They found that these lex-

ical properties correlated positively and significantly with the grades provided by human

graders. On a dataset comprising free-form solutions to six midterm exam problems, their

model predicted positive correlations between lexical features and the grades provided by

teaching assistants, and the correlation coefficients ranged from 0.27 to 0.37.

Due to the complexity of free-form handwritten solutions, there are no existing

methods that are capable of interpreting them. The goal of my research is to work toward

complete interpretation and semantic analysis of handwritten free-form solutions. My re-

search contributions involve (1) the development of methods for locating the final answers

to free-response questions, (2) improving the accuracy of semantic classification of strokes in

students’ handwritten assignments, and (3) creating a method for finding complete mathe-

matical equations in students’ handwritten assignments.

1.2 Online and Offline Document

There are two forms of handwritten documents: offline and online. Offline docu-

ments are traditionally created on paper, and we can use scanners to digitize them. The

digitized form of offline documents is bitmap images where each pixel denotes the amount

of intensity (gray level) to be displayed. Online documents are created by using special

pens, digitizing pads, computer tablets, and other devices that are capable of recording
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Figure 1.2: An example of a handwritten document. Each stroke is shown with a unique

color.

the writing activity. In the online documents, each page is recorded as a series of consecu-

tive strokes where each stroke is a series of points collected from a pen-down to a pen-up

event. Each stroke contains the two-dimensional coordinates of the points along with their

timestamps. In this thesis, we are interested in providing methods for interpreting online

handwritten documents. Figure 1.2 shows an example of online writing.

Figure 1.3: A typical solution to a statics problem.
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A typical solution to a statics problem is shown in Figure 1.3. Our task is to

evaluate the correctness of such solutions automatically. To estimate correctness, we need to

build a system that not only recognizes the handwritten shapes and alphanumeric characters

in the solution but also is able to understand the meaning of these objects in relationship

with each other. For example, the Fx that is contained within a red circle is used to

label the arrow next to it, and the Fx that is contained within a purple circle is part of

a mathematical equation. The same symbols have different meanings in the two contexts.

Thus interpreting these symbols requires both understanding the characters themselves and

understanding how they relate to the other objects in the solution.

In this thesis, we take several important steps toward enabling the automated un-

derstanding of free-form handwritten solutions. First, we develop methods for locating final

answers to the free-response questions. Once the final answers are found, we can use exist-

ing text recognition techniques to validate the final answers. In the second step, we develop

a method that achieves higher accuracy in the semantic labeling of handwritten solutions

when compared to existing tools. The method can be utilized by Lin’s [42] lexical analyzer

for predicting the correctness of the solution, or by future auto-grading systems that require

semantic labeling of students’ handwritten assignments. To date, many methods [69, 74, 73]

have been developed for interpreting mathematical expressions. These methods process one

equation at a time and require an entire equation to be provided as an isolated object.

However, in the kinds of handwritten solutions we consider, the equations are not isolated,

and locating them is challenging. In the third step, we develop a method for finding and

grouping complete mathematical expressions, and the output of this method can be passed
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Figure 1.4: The final answer to the problem is written in an answer box. The final answer

and the answer box are colored in purple.

to the available equation interpreters [69, 74, 73].

1.3 Approach

Here we provide a brief overview of the methods developed in this thesis. Complete

details are provided in the chapters that follow.

1.3.1 Finding Final Answers

Our first step toward enabling the automated interpretation of handwritten free-

form solutions to statics questions was to develop techniques for locating final answers. In
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the solutions, we consider students drew boxes around their final answers and separated

different parts of the answers via vertical lines. An example of an answer box is shown in

Figure 1.4. In this example, an answer box is colored in purple along with its corresponding

answer. In this case, the answer to part “A” of the problem is “40.199 lb.”. Thus, the

answer box contains the value “40.199,” the units “lb,” and the problem ID “A.” These

three parts of the answer are separated from each other by vertical lines, which we call

splitters in this thesis.

We developed a novel answer box recognizer that can locate these kinds of answer

boxes. The recognizer also identifies the splitters and the there parts of the answer. These

three parts can then be sent to a text recognizer for interpretation.

1.3.2 Semantic Labeling of Students’ Handwritten Assignments

In the second step, we developed methods to identify the type of contents in

students’ handwritten solutions. The pen strokes in a typical handwritten solution to a

statics problem can be categorized into the following three classes:

• Free body diagram: Pen strokes in this class comprise graphics that show the

relationship between the forces and the objects of interest. Diagrams often include

arrows, geometric shapes, and text.

• Text: Pen strokes in this class comprise alphanumeric characters. Most text in a

statics solution comprises equations, although the text is also used for organizational

information, explanatory notations, and the like.
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Figure 1.5: A typical solution to a statics problem. Free body diagram strokes are blue,

cross-out strokes are red, and text is purple.

• Cross-out: Pen strokes in this class are used to indicate that other strokes are

intended to be excluded from the solution. Because students wrote their solutions

with pens, undesired writing could not be erased, but instead was crossed out.

Figure 1.5 shows examples of pen strokes of the various classes.

Our approach to labeling employs a deep neural network model. The input to the

network includes both the raw trajectory of the pen strokes (i.e., the coordinates of the

points) and a set of features computed from each pen stroke. The output of the network is

a classification of each stroke. Our method is fast and outperforms state-of-the-art methods

in semantic labeling of handwritten assignments.
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Figure 1.6: Equation strokes are green, and non-equation strokes are black.

1.3.3 Finding and Grouping Mathematical Equations

In the third step, we developed a method to find and group mathematical equations

in students’ handwritten assignments. To this end, for each stroke, we computed a set of

single and pairwise stroke features. Single stroke features are based on the properties of

individual strokes and consider the stroke in isolation. Single stroke features are comprised

of size, drawing dynamics, location, shape, etc. of the stroke. Pairwise stroke features are

based on the properties of consecutive strokes. These features consist of distances, temporal,

overlap, perceptual relationships, and ratios of properties of adjacent strokes. The single

and pairwise stroke features provide a rich set of observations that can be used for finding

equations. To find equations, we utilize a GRU-CRF network to process strokes of a page
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Figure 1.7: Each equation group is enclosed with a red or purple box.

in sequential order. The network receives single and pairwise features of the strokes on the

page and produces the equation/non-equation labels in its output for each of the strokes.

Figure 1.6 shows the result of the model on finding the equations strokes.

To find individual equations, we extended the model to produce an extra-label for

each of the strokes. The extra-label can be one of the following types:

• Join: This class denotes that the stroke (equation stroke) should be grouped with

the next stroke.

• NoJoin: This class denotes that the stroke (equation stroke) should not be grouped

with the next stroke.

• Unknown: This class denotes that the stroke is a non-equation type and thus should
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not be considered for grouping.

Once the labels are generated, we used a chaining technique to cluster equation

strokes. The chaining method is a post-processing technique that clusters stroke pairs that

have a stroke in common. Finally, we examined the spatial features of the groups generated

in the initial clustering to identify clusters that must be combined to generate the final

equation clusters. Figure 1.7 shows an example of finding and grouping the equation strokes.

1.4 Outline

This dissertation is organized as follows: Chapter 2 describes our method for

locating final answers to free-response questions. Chapter 3 presents our model for the se-

mantic labeling of students’ handwritten assignments. Chapter 4 explains our approach for

finding and grouping equations in students’ handwriting assignments. Chapter 5 provides

conclusions.
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Chapter 2

Answer Box Recognition

2.1 Introduction

With the rise of highly-enrolled classes over the past decades, new challenges have

emerged in the field of education. One of the main challenges is the evaluation of students’

work, which is a tedious and time-consuming task. Many tools and interfaces have been

designed to help students complete their assignments and assist instructors in evaluating

student work [44, 59, 15]; multiple choice exams which can be graded automatically are a

major component of such classes.

Despite the usefulness of multiple-choice assessments, only a limited type of knowl-

edge can be examined using them. There are many exams and homework assignments, espe-

cially in science and engineering courses, that are best assessed by free-response questions.

The most natural and efficient way for students to answer such questions is to write by hand

on a piece of paper. However, grading such handwritten answers has always been a tedious

and time-consuming task for teachers, especially in large classes. Auto-grading portions
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Figure 2.1: This answer box, which is typical of those in our dataset, contains the value

“24.84,” unit “Slugs,” and problem ID “a,” separated by two vertical lines.

of the handwritten answers can reduce grading time for teachers, and provide benefits to

students as they can get quicker feedback on their work. Locating final answers to questions

is an important step toward auto-grading handwritten assessments. Free response answers

may involve equations, free body diagrams, or text, which makes the process of locating

final answers to questions a challenging problem.

In our study, students used Livescribe smartpens to do their homework and answer

the quiz and exam questions in an undergraduate statics course. We asked students to draw

a box around the answer and separate different parts of the answer with vertical lines, which

we call splitters in this work. Figure 2.1 shows an example of an answer written in an answer

box. Splitters are straight lines consisting of one or more strokes that are drawn from the

top edge to the bottom edge of an answer box. A final answer to a statics problem consists

of three parts: the value, unit (such as newton, meter, etc.) and problem ID. Therefore,

each answer box is accompanied by two splitters to help isolate the strokes of each part of

the answer. Once our method locates the answer box and identifies groups of strokes for

the value, unit, and problem ID, a variety of handwritten recognition methods [36, 40] can

be used to recognize and interpret the answers.

Although recognition techniques for identifying isolated shapes exist, our problem
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is more difficult because we have to first locate the answer box before we can recognize it.

Once we locate it, we could use general-purpose shape recognition techniques to verify its

identity, but we developed a new technique that is robust to the wide range of variation in

students’ real-world drawings.

There are many difficulties in locating and recognizing answer boxes: 1) Irreg-

ular quadrilateral shape: Although most answer boxes are sketched like rectangular

shapes, in our dataset, we have observed that some handwritten answer boxes have irregu-

lar quadrilateral shapes (Figure 2.2a). 2) Disjoint edges: Answer boxes are often drawn

with disconnected edges (Figure 2.2b). Thus, recognition techniques cannot assume that

boxes form closed polygons. This leads to complications as sometimes it is difficult to dis-

tinguish the intended end of a box from the contents, particularly when the boxes contain

characters such as “L” and “1”. 3) Classifying answer box/answer strokes: It is

challenging to determine a distinction between answer box strokes and answer strokes when

they are drawn close to each other. Additional difficulties occur when strokes intersect or

are overwritten (Figure 2.2c). 4) Presence of other boxes: A typical handwritten stat-

ics solution may contain boxes and other quadrilateral shapes, which may be identified as

answer box candidates (Figure 2.2d); therefore, eliminating boxes that are not true answer

boxes is a crucial task.

2.2 Answer Localization: System Overview

An overview of the system is shown in Figure 2.3. Our method searches for answer

boxes around the strokes that have large horizontal segments. Each such stroke is a good
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(a) Irregular shape (b) Disjoint edges

(c) Overwritten strokes (d) Presence of other boxes

Figure 2.2: Challenges in answer box recognition: a) An example of an answer box having

an irregular quadrilateral shape. Edges of the answer box at the top-left and bottom-right

do not intersect at right angles. Also, the opposite sides are not equal in length. b) the left

edge of the answer box is disconnected from the bottom and top edges, and the character

“1” next to the left edge might be misrecognized as the left edge. c) The top and bottom

edges of the answer box are overwritten with multiple strokes. d) Not all rectangular shapes

are answer boxes.

candidate for the bottom or the top edge of an answer box. Therefore, we first segment pen

strokes into line segments and identify any strokes with large horizontal segments. Then,

we perform a grouping process in which strokes with large horizontal segments are grouped

with other nearby strokes to form a long horizontal line. For each group, we identify possible

left and right edges and splitters. Groups constructed in this way include both real answer

boxes and non-answer boxes. Lastly, we perform the recognition step that identifies true

answer boxes and rejects the rest.
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Figure 2.3: Overview of the processing steps for locating answers and classifying strokes

into unit, value, and problem ID groups.

2.2.1 Stroke Segmentation

The first step in our stroke segmentation stage is to segment pen strokes into

horizontal and vertical segments. We segment strokes using the corner finding technique

from [27]. Once corners are found, we break strokes into multiple segments. A segment is

a piece of a stroke that starts and ends with corners found by [27]. To identify horizontal

and vertical segments, we compute two properties for each segment: straightness and angle

to the x-axis. The straightness of a segment is computed by:

Straightness =
Path(ps, pe)√

(xs − xe)2 + (ys − ye)2
(2.1)

where ps and pe are start points and endpoints of the segment, respectively. (xs, ys) and

(xe, ye) are coordinates of ps and pe. Path(ps, pe) is the summation of euclidean distance

between each pair of neighboring points from ps to pe. We consider a segment to be

horizontal if it is straight (has straightness greater than 0.9), and the absolute angle between

the x-axis and a line connecting the endpoints of the segment is less than 20°. Similarly,
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Figure 2.4: An example of stroke segmentation.

we consider a segment to be vertical if it is straight (has straightness greater than 0.8), and

the absolute angle between the segment and the y-axis is less than 20°. The straightness

and angle thresholds are chosen empirically.

An example of stroke segmentation is shown in Figure 2.4. First, a set of corners

is found by the speed segmentation method, as shown with red points. Second, we examine

each of the segments (i.e., AB, BC, and CD) to see which segments fulfill the requirements

for a horizontal or vertical segment. In this thesis, we use “segment” to refer to a piece of

stroke that is made by breaking a stroke into smaller pieces, whereas, “stroke” is used for

the sequence of points that are collected from a pen down to a pen up and consists of one

or more segments.

Once the initial set of horizontal and vertical segments in strokes is determined,

we search for long horizontal lines. Each long horizontal line is a candidate to be part of

the bottom or top edge of an answer box. For this purpose, we check horizontal segments

in nearby strokes to see if they form a long horizontal line. This search process is described

in Section 2.2.2.
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(a) (b)

Figure 2.5: Examples of candidate groups generated in the stroke grouping process. Each

group is shown with a unique color.

2.2.2 Stroke Grouping

Grouping strokes is a two-phase process. In the first phase, we group sets of strokes

that form long horizontal lines. Each such group is a candidate for containing strokes of the

top and/or bottom edges of an answer box. In the second phase, for each of the existing

groups, we find the best matches from nearby strokes to create new groups. Each of the

groups in this step is a candidate to contain strokes of an answer box.

We say a group is an ideal answer box group if it contains only the strokes of

an answer box (including the box itself and answer strokes). However, by the end of the

grouping process, some of the groups may contain only a partial set of strokes for an answer

box. Besides, some of the groups generated in the grouping process may contain non-answer

box strokes. The goal of the grouping process is to generate groups that are close to the

ideal answer box groups (i.e., contain most of the strokes that belong to an answer box).

In Figure 2.5, three examples of candidate groups are shown. Each of the groups

is shown with a unique color. Figure 2.5a shows an ideal group that contains all strokes of
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Figure 2.6: The bottom and top edges of the answer box are drawn with multiple horizontal

segments. Here, the strokes inside the answer box are excluded for clarity.

an answer box. Figure 2.5b displays two groups where each has only partial strokes of an

answer box.

Phase one

Let H = {h1, ..., hm} denote a set of strokes that each has a large horizontal

segment (horizontal segment’s width is greater than 2.5cm). We begin by placing each hi

in its own isolated group denoted by gi. Each group potentially contains the top and/or

bottom edges of an answer box. The top/bottom edge of an answer box may be drawn with

multiple strokes. In such cases, the top/bottom edge of the answer box consists of multiple

horizontal segments that are placed in multiple groups.

For example, in Figure 2.6, the top edge of the answer box is drawn with strokes

a1, a2, and a3. Similarly, the bottom edge of the answer box is drawn with strokes a5 and

a4. Initially, each of the horizontal strokes that is greater than 2.5cm in length is placed

in an isolated group, which is shown with a unique color. a5 should be added to the group

of a4 so that there is one single group that contains all the strokes of the bottom edge of

the answer box. Similarly, to have one group that contains the top edge of the answer
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box, we need to merge the groups of a1 and a2 and add a3 to the resulting group. The

horizontal segments in {a1, a2, a3}, and {a4, a5} are the horizontal lines that we are looking

for in phase one of the stroke grouping. The horizontal segments in each of the groups are

intended to form one long horizontal line.

We iterate through the groups to find nearby strokes that need to be added to

them. For each group, we create a set of candidate strokes that potentially can be added

to the group. Each candidate should contain at least one horizontal segment that has a

minimum point-to-point distance less than 1cm to one of the horizontal segments in the

group. We create pairs of horizontal segments where the minimum point-to-point distances

between segments are less than 1cm. In these pairs, one horizontal segment is picked from

the group’s horizontal segments, and one horizontal segment is chosen from the candidate

stroke. We use a pairwise classifier (we discuss the pairwise classifier later in this section)

to decide whether two horizontal segments in a pair should be joined together. If there is

at least one pair where the pairwise classifier decides to join them, the candidate stroke is

added to the group. If the candidate stroke is part of another group, then both groups are

merged into one single group. We keep iterating through the groups and examine nearby

strokes for each of the groups until no more changes can be made to the groups.

An adjacency grid is used to determine the neighborhood of a stroke efficiently.

To construct the grid, the 8.5” × 11” page is divided into a 108 × 140 grid. Each grid cell

has a square shape with a length of 200mm. Each cell stores pointers to the strokes whose

bounding boxes intersect the grid cell. The neighborhood of a stroke is defined by the cells

neighboring the cells containing the stroke. For example, if the stroke is in cell Ci,j and we
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Table 2.1: Pairwise features for grouping strokes in phase one.

Category Feature name Description

Distance dmin Minimum inter-segment point-to-point distance

Distance demin Minimum inter-segment endpoint-to-endpoint distance

Perceptual fintersect A boolean feature which is set to 1 if the two segments intersect or zero otherwise

Temporal ft Number of strokes sketched between the two segments in the drawing sequence

Overlap fIoU The intersection of the projections of points onto the x-axis over the union of the projections

are looking for neighboring strokes that are at most 1cm distant, the neighbors are found

by pointers located at cells Ck,l where k and l are in the ranges [i−5, i+5] and [j−5, j+5].

We use a pairwise classifier to determine if two horizontal segments are part of

a long horizontal line. The classifier considers 5 properties of horizontal segments, and

are shown in Table 2.1. If the classifier decides two horizontal segments are joinable, we

place their strokes into one single group. The classifier is trained by providing examples of

segments that are a continuation of one another, i.e., “Joins,” and segments that are not

continuations of the another, i.e., “NoJoins.”

The pairwise features in Table 2.1 comprise spatial, temporal, and perceptual

measures. dmin is the minimum point-to-point distance between the segments. demin is

the minimum endpoint-to-endpoint distance between the segments. The fintersect feature

is a boolean value indicating whether two segments intersect, and ft indicates the time

gap between the strokes that contain si and sj . The fIoU feature is the intersection of the

projections of the segment points onto the x-axis over the union of the projections. Figure

2.7 illustrates the dmin, demin, and fIoU features. In this figure, xi denotes the intersection
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of the projection of the points onto the x-axis, and xu represents the union of the projection

of the points onto the x-axis, therefore, fIoU = xi
xu

.

An example of this process is shown in Figure 2.8. Two answer boxes are sketched

very close to each other (splitters are excluded for simplicity). The top and bottom answer

boxes are sketched with four and two strokes, respectively. Each stroke is shown with a

unique color. Assume ho, hg, hp, and hy are horizontal segments greater than 2.5cm in

length, whereas hb and hr are horizontal segments greater than 1.5cm and less than 2.5cm

in length. Additionally, assume that the minimum point-to-point distance between hp and

each of horizontal segments hb, hr, and hg is less than 1cm, but all other long horizontal

segments are farther than 1cm from another horizontal segment.

We start by placing each of the strokes of ho, hg, hp, and hy in their own groups.

Let go, gg, gp, and gy denote the groups that contain the strokes of ho, hg, hp, and hy,

respectively. In the first iteration, we use the pairwise classifier to check if any of the

following pairs should be joined: (hg, hp) and (hg, hr). Each of the (hg, hp) and (hg, hr)

pairs has at least one large horizontal segment, and the minimum point-to-point distance

between the horizontal segments in each pair is less than 1cm, and there is no other pair

Figure 2.7: Features used by the pairwise classifier.
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Figure 2.8: Stroke grouping in phase one.

having these two properties. Assume the classifier decides to join (hg, hr) and not (hg, hp).

Therefore, we add hr to group gg. In the second iteration, we check for the following pairs:

(hr, hb) and (hr, hp). Let us assume the classifier decides to join only (hr, hb). Thus, after

the first phase of grouping, there are four groups: {ho}, {hb, hr, hg}, {hp}, and {hy}.

Generating the Training Set for the Pairwise Classifier

In this section, we describe our approach for generating a training set for training

the pairwise classifier used for grouping segments for answer boxes. We started with a set

of known answer boxes and then used the corner finder to segment the pen strokes of each

box. Our system then used a set of rules to assign the segments to the various parts of the

boxes. For example, if a segment was near the top edge of the bounding box of the answer

box, the segment was labeled as being part of the top of the box. Once each segment was

labeled in this way, nearby horizontal segments were labeled as “Join”, and others were

labeled as “NoJoin”.

To understand our method, consider Figure 2.9 that shows an example of a known
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Figure 2.9: Illustration of “Join” and “NoJoin” instances.

answer box. To simplify the Figure, we display only the horizontal segments that are longer

than 1.5cm. Assume that the red box is the bounding box of an answer box. The blue

and green strokes comprise horizontal segments that belong to the top and bottom of the

answer box, respectively. The orange stroke is a horizontal segment inside the answer box

that does not lie on the top or bottom edge of the answer box. The black strokes are

horizontal segments that are outside of the box but close to the top and bottom of the

answer box.

We say a horizontal segment is placed on the top edge of the answer box if there

is at least one point on the segment that has no other segment between it and the top edge

of the bounding box. The a, b, and c are horizontal segments that form the top edge of the

answer box. Similarly, d and e form the bottom of the answer box.

We create instances of the “Join” class by pairing up the horizontal segments that

are placed on the top (i.e., a, b, and c) or bottom (i.e., d and e) edges of the answer box and

have a minimum point-to-point distance less than 1cm. In this example, (a, b), (b, c), and

(d, e) are instances of the “Join” class. To create instances of the “NoJoin” class, we pair up
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horizontal segments that should not be joined together and have a minimum point-to-point

distance less than 1cm. (h, a), (h, b), (h, c), (f, d), (f, e), (g, d), and (g, e) are examples of

the “NoJoin” instances.

We selected AdaBoostM1 with J48 decision trees as our classifier and used WEKA

to train our model. We started with a seed of 1, no re-sampling, and a weight threshold of

100 and trained the model for 10 iterations. The minimum leaf and confidence values were

set to 2 and 0.25, respectively.

Phase two

In this phase, the goal is to generate answer box candidates. First, for each group

gi, we compute the smallest bounding box BBgi enclosing the group’s strokes. Then, for

each pair of (gi, gj), we create a new group containing all of their strokes if and only if it

fulfills the following three conditions:

• (yi − yj) < Py where yi and yj are the y-coordinates of the centers of the bounding

boxes. Parameter Py = 5cm is designed to make sure groups are vertically close to

each other.

• fIoU > 0.7. This feature is the same as the one used in phase one.

• The bounding box of the new group does not intersect with the strokes of other groups.

Figure 2.10 shows an example of processing in phase two. In this figure, the top

and bottom edges of the answer boxes are sketched with six separate strokes. In phase one,

each of the strokes is placed into its own group. Let gpk, gpu, gc, gr, gg, and gb be the groups
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Figure 2.10: Phase two of generating answer box candidates. Here the top and bottom edge

of each answer boxes are drawn with a single stroke shown with a unique color.

that contain strokes Spk, Spu, Sc, Sr, Sg, and Sb, respectively. Assume that the vertical

distance between gpk and gb is greater than Py, but all other pairs of groups are vertically

closer than Py. Also, assume that the value of fIoU for any pair of groups that contains two

different groups from {gc, gr, gg, gb} is greater than 70%. Likewise, assume that the value

of fIoU for the pair (gpk, gpu) is also greater than the 70%. Conversely, assume that for any

pair that contains one group from {gpk, gpu} and one from {gc, gr, gg, gb}, the value of fIoU

that is less than the 70%.

For these conditions, a total of four pairs of groups is generated. gpk and gpu are

combined with each other. However, they are not grouped with any of the other groups

because the resulting value of fIoU would not meet the threshold of 70%. The other three

merged groups that are formed are: (gc, gr), (gr, gg), and (gg, gb). The pair (gc, gg) is

rejected because its bounding box intersects the bounding box of gr. Likewise, the pair

(gr, gb) is rejected because its bounding box intersects the bounding box of gg. Ultimately
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in a subsequent phase of processing, the merged group (gr, gg) is rejected as an invalid

answer box, and only the other three merged groups are identified as true answer boxes.

2.2.3 Finding Left and Right Edges

Several challenges make the process of finding left and right edges difficult: 1) Left

and right edges may not be connected to the bottom and/or top edges of an answer box. 2)

We have observed that some students tend to draw these edges with two or more connected

or disconnected strokes. 3) Some characters such as ‘1’ or ‘L’ that are sketched very close

to the left or right extremes of answer boxes might be misclassified as part of the vertical

edges.

We begin with finding candidate strokes for the left and right edges of each group.

Any stroke or vertical segment whose centroid falls within a certain square-shaped window

at the left and right of the group’s bounding box would be considered as a candidate. The

window’s side length is set to be the same as the height of the group’s bounding box. To

find the strokes for the left and right edge of a group gi, we move the center of the window

to (xmin,
ymin+ymax

2 ) and (xmax,
ymin+ymax

2 ), respectively. Here, xmin, xmax, ymin, and ymax

are the minimum and maximum of x and y in gi.

Once a candidate set is determined, we search for a subset that best represents the

left and right edges of the answer box. Ideally, for each edge, we can find a line that starts

at the endpoint of the top edge and ends at the same side endpoint of the bottom edge.

We utilize a Hausdorff [30] measure to compute the distance of candidates to an ideal edge.

First, we resample each candidate’s points to get 100 equidistantly spaced points. Also, we
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Figure 2.11: The blue box represents the search area for candidate strokes for a left edge.

Those strokes that fall inside the blue box are colored green and are considered as candidate

strokes for the left edge of the answer box. The dashed red line is an imaginary ideal left

edge.

resample ideal edges to obtain 100 points for each edge. Second, for each data point in the

resampled candidate set, we compute the minimum distance to the ideal edge. Similarly, for

each point on the ideal edge, we compute the minimum distance to the resampled candidate

points. We add up all the distances and denote it by distH(c, IE), where c is a candidate

subset, and IE is an ideal edge.

Let CL = {cL1 ...cLm} and CR = {cR1 ...cRn} indicate lists of candidates for left

and right edges of a group, respectively. To find the best subsets, we need to minimize the

following expression:

arg min
cL⊂CL,cR⊂CR

distH(cL, IEL) + distH(cR, IER) (2.2)

Where cL and cR are the candidate subset for the left and right edges, respectively. IEL is

an ideal edge for left, and IER is an ideal edge for the right edge of a group.

2.2.4 Finding Splitters

Identifying splitters enables distinguishing the strokes of the unit, value, and prob-

lem ID. Splitters are straight lines that are drawn from the top edge of an answer box to
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the bottom edge. Each splitter might be drawn with one or more strokes, and a stroke

containing a splitter might be used in drawing the bottom or top edges of an answer box.

For each group gi (i.e., each candidate answer box), we find all strokes whose

centroids fall inside the bounding box of the group. Then, we create a candidate set of

splitters that contains all the vertical segments of these strokes and excludes those that are

identified as left or right edges. We create splitter groups by placing each vertical segment

in a single group. Then, if two vertical segments intersect at their endpoints, their groups

are merged.

We compute h
dxc

for each of the splitter groups in the candidate set. Here, h is

the height of the vertical group, and dxc is the distance between the horizontal lines in the

answer box group at the x-coordinate of the centroid of the splitter group. The value of

the feature is in the range of 0.0− 1.0.

Once the feature is computed for each group, we pick the two groups that have

the largest value as the left and right splitters.

2.2.5 Unit/Value/Problem ID Stroke Grouping

The splitters are used to identify the strokes that comprise the unit, value, and

problem ID of the answer. The splitters divide a candidate answer into three cells, one for

the value, one for the unit, and one for the problem ID. Each stroke that lies inside the

answer box (except for the splitters and ends) is associated with a cell based on the average

x-coordinate of the stroke. Strokes that fall between the left edge and the left splitter are

the value. Strokes that fall between the left and right splitters are the unit. Strokes between

the right splitter and right end are the ID.
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Figure 2.12: yv is the height of a vertical edge, and yBB is the height of the bounding box

of a group.

2.2.6 Answer Box Recognition

A typical statics solution is usually filled with free-body diagrams that are sketched

to illustrate the relationship between objects and the forces of interest. It is highly probable

that some of the stroke groups created above are non-answer boxes but rather are part of a

diagram. In response, we use a series of tests for distinguishing the true answer boxes from

the candidate groups.

Basic Test

For each group, the first test is to check if there is at least one stroke for each of

the value, unit, and problem ID groups. If not, then the group would be removed.

Vertical Edges Test

An answer box in our dataset should contain at least four vertical edges: two

for the left and right edges and two for the splitters. For each of the vertical edges, we

compute yv
yBB

(yv and yBB are shown in Figure 2.12), where yv and yBB are the height of

the vertical edge and the bounding box of the answer box strokes, respectively. If the ratio

of the fraction is less than 50% for any of the vertical edges, the group is removed.
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Figure 2.13: (left), distances from the bounding box to the answer box strokes are illus-

trated. Those distances above the ThrH threshold are colored red. (right), distances have

been reduced after transforming the bounding box to a quadrilateral that better fits the

boundary of the answer box.

Hausdorff Measure

We utilize Hausdorff distance [30] to quantify the quality of sketched answer boxes.

For each point on the answer box, we compute the minimum distance to the points on the

bounding box. Similarly, for each point on the bounding box, we calculate the minimum

distance to the points of the sketched answer box. If there are too many points having

distances above a certain threshold ThrH , the group is unlikely to be an answer box.

Figure 2.13 shows some of the distances from bounding box points to the answer

box points. These distances get larger as the angle between the top and bottom edges and

horizontal framework becomes larger. In response, first, we compute a quadrilateral that

better fits the boundary of the answer box. Then, we compute the Hausdorff distances.

Transforming the Bounding Box

In this step, we transform the bounding box of the answer box into a quadrilateral

shape, which is closer to the boundaries of the sketched answer box. To this end, we move
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the origin of the coordinate system to the center of the answer box. Then, we create four

sets; each contains the points in one of the quadrants of the plane. The points in each set

are used to estimate one corner of the transformed quadrilateral.

To compute the corner point in each quadrant, we begin with computing the angle

associated with each point. We compute the angle for point (xt, yt) as:

angle = arctan(
yt − yt−1

xt − xt−1
) (2.3)

where (xt, yt) is the coordinate of the point drawn at timestamp t. The angle at the first

point of the stroke is set equal to the angle of the second point.

Once the angles are computed, we divide the points in each set into two new sets:

PV and PH . Those points that have angles in the range [−15°,15°] or [165°,195°] are placed

in PH . Similarly, PV contains points having angles in the range [75°,105°] or [255°,295°].

Finally, the x and y coordinates of a corner are computed as:

x =

∑m
i=1 xvi
m

, y =

∑n
i=1 yhi
n

(2.4)

where xvi is the x-coordinate of ith point in PV , and m is the size of Pv. Similarly, yhi is

the y-coordinate of ith point in PH and n is the size of it.

Once all four corners are computed, we draw lines between each pair of the adjacent

corners to form the quadrilateral. Figure 2.13 (right) shows an example of a quadrilateral

produced for the answer box. Then, we consider 200 equidistantly spaced points on the edges

of the quadrilateral, and for each point, we calculate the minimum distance to the points

on the answer box and calculate the percentage of points having distances greater than

the ThrH (in Figure 2.13, red color shows the distances that are greater than the ThrH
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threshold) and denote it by PercBB2P . Similarly, for each point on the answer box, we

compute the minimum distance to the quadrilateral points. Then, we count the percentage

of points having minimum distances greater than ThrH and denote this by PercP2BB. In

our implementation, ThrH is set to be YBB
4 , where YBB is the height of the bounding box

of the group.

The Hausdorff measure [30] is a powerful method to recognize boxes. By designing

two thresholds for PercBB2P and PercP2BB (i.e., PercBB2P < 15% and PercP2BB < 15%)

we can classify groups into box/non-box groups. However, we found that the solutions

often contain boxes that are not answer boxes, such as those contained in free body di-

agrams. Hence, we developed a classifier to recognize answer boxes from the candidates.

The classifier uses several features, including:

• Group properties: Width and height of the group.

• Inner strokes: Number of inner strokes, i.e., strokes that lie completely inside the

group’s bounding box.

• Crossing strokes: Ratio of the crossing strokes to the inner strokes. Crossing

strokes are those that have at least one point inside the bounding box of the group,

and at least one point outside of the group’s bounding box.

• Diagonal length: Ratio of the diagonal lengths of transformed bounding box. The

ratio is computed as the length of the longest diagonal divided by the length of the

shortest diagonal.

• Height of strokes: Ratios of the heights of the bounding boxes of strokes in the
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unit, value, and part ID to the height of the group’s bounding box.

We train a linear SVM [51] model, which uses these features to classify groups into

answer box and non-answer box groups. We use a grid search to learn the value for the

penalty parameter C. In a five-fold cross-validation loop on training data, we compute the

accuracy of the SVM classifier for penalty parameter values that were powers of 2 ranging

from 2−10 to 2+10. The classifier achieved the highest accuracy by using C = 26. The

training data includes examples of both classes.

2.3 Dataset

We used LiveScribe digital pens and dot-patterned paper to collect the data. Par-

ticipants were 102 undergraduate students enrolled in a statics course offered at the me-

chanical engineering department at UCR in the winter of 2017. Students were given digital

pens and dot-patterned notebooks to complete their homework assignments, quizzes, and

exams. A camera at the tip of the pen uses the dots to digitize the writing as timestamped

coordinates. This data contains a mixture of solutions to homework and exam assignments.

These free-response answers involve free body diagrams, calculation steps, formulas, and

text. Each final answer to a statics question includes a tuple of the unit, value, and problem

ID. A unit is a physical quantity (such as a meter or newton). Problem ID is a letter from

“a” to “e”.

We asked students to draw boxes around their final answers, as shown in Figure

2.1. We manually labeled a total of 4,473 answer boxes that were written on 2,022 pages.

These 2,022 pages were selected from 4,219 pages of students’ homework, which were sorted
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by their earliest timestamps. We excluded any pages that contained no answer boxes, or

the answer boxes were not drawn as expected. In other words, if an answer box was missing

any elements of the answer box (top/bottom/left/right edge or splitters) as described in 2.1,

we removed the page from the collected pages. We label each answer box by grouping the

strokes of the box itself (strokes of the top, bottom, left, and right edges and splitters) and

answer strokes (strokes of the unit, value, and problem ID). We split the pages containing

the answer boxes into the training and testing sets so that the training and testing set

contains 1,060 and 962 pages, respectively. In total, there are 2,237 and 2,236 answer boxes

in the training and testing set, respectively.

2.4 Results

2.4.1 Performance of Pairwise Classifier

Table 2.2: Performance of classifiers in phase one of grouping horizontal segments.

Classifier Accuracy Precision Recall

AdaBoost-J48 99.59% 93.89% 94.99%

Random Forest 99.51% 90.28% 93.39%

Bayesian Network 99.16% 92.95% 85.88%

Multi-layer Perceptron 99.14% 90.75% 83.37%

ADT Tree 98.92% 86.16% 84.75%
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In section 2.2.2, we presented our method that creates instances for Join and

NoJoin classes. Here, we create Join and NoJoin instances in the training set, and then

we evaluate the performance of several binary classifiers in separating Join and NoJoin

instances. Table 2.2 shows the performance of some classifiers in grouping horizontal seg-

ments. We have used a 10-fold cross-validation technique to measure the accuracy of each

classifier. The AdaBoost-J48 has achieved the highest accuracy of 99.59 in the classification

task.

2.4.2 Evaluation of Candidate Group Generation

We benchmark our grouping strategy with two general segmentation methods pre-

sented in [49] and [19]. To evaluate the performance of each method in grouping answer

box strokes, we train and test methods on training and testing set, respectively.

During the grouping process, each method categorizes strokes on a page into mul-

tiple groups. Each of these groups is a candidate answer box. Unlike methods in [49] and

[19], which group all of the strokes on a page, our grouping method only produces groups

near strokes that have long horizontal segments and leaves many of the strokes ungrouped.

Therefore, our grouping method is faster than the general segmentation techniques.

By the end of the grouping process, strokes of an answer box may be placed in

one single group, over-segmented in more than one group, or may not be grouped. We say

strokes of an answer box are successfully grouped only if all of its strokes are placed in one

single group with no additional strokes. We found that in most cases where a few strokes

are missing/added to an answer box group, the downstream stroke interpretation process

is not harmed. Therefore, we use a tolerant metric for evaluating the grouping process: we
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define an answer box’s strokes to be successfully grouped if all of its strokes (including box

and answer strokes) are placed in one single group with at most 3 stroke misplacements

(i.e., missing/additional strokes).

Table 2.3: Performance of grouping methods.

Method Total groups TP FP FN Time (sec)

Ours 12, 358 2, 151 10, 207 85 3.6

Delaye and Lee [19] 358, 191 1, 967 356, 224 269 95.1

Perteneder et al. [49] 297, 118 1, 834 295, 284 402 93.2

As shown in Table 2.3, our grouping strategy produces 12,358 candidate groups

on pages in the test set. Whereas, [19] and [49] produce 358,191 and 297,118 groups,

respectively. As a result, our grouping strategy is faster than general segmentation methods.

The column of “Time” shows the average computation time for grouping strokes on an ink

page.

2.4.3 Feature Selection and Importance

We use recursive feature elimination to find an optimal subset of features to use

by the SVM classifier. We recursively prune the least important feature until the classifier’s

accuracy drops when the next feature is removed. At each iteration of the feature selection

process, we evaluate the performance of the classifier by using five-fold cross-validation. The

importance of each feature is computed by taking the absolute value of the weight obtained
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by the SVM classifier during the training. The list of features selected by this method is as

follows (Table 2.4):

• Percp2BB

• PercBB2p

• Width of the group

• Height of the group

• Inner strokes

• Crossing strokes

• Diagonal length

• Height of strokes

2.4.4 Evaluation of Recognition Method

We use intersection over union (IoU) to measure the accuracy of the recognition

methods. The IoU metric is computed as:

IoU(pi) =
Overlap(pi, Gi)

Union(pi, Gi)
(2.5)

where pi is the predicted bounding box, and Gi is the ground truth box. Overlap and

Union are functions that compute the overlap and union of the predicted and ground truth

boxes. We define an answer box i is recognized only if there is a candidate group pi where

IoU(pi) > 90%.
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Table 2.4: The best features for recognizing answer boxes. Features are ranked according

to the absolute values of the weights computed by the SVM classifier.

Feature Weight

Percp2BB 0.9712

PercBB2p 0.9207

Width 0.8989

Diagonal length 0.8741

Heightunit 0.7634

Crossing strokes 0.7348

Height 0.6724

Heightvalue 0.6695

Heightpid 0.6427

Inner strokes 0.6115
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We benchmark our recognition method with N$-recognizer [5], Quick draw [15],

and Paleo sketch [48] methods. N$ recognizer [5] is a multi-stroke object recognizer and

uses geometry and trigonometry to recognize isolated objects. The Quick draw [15] and

Paleo sketch [48] methods use geometric constraints to recognize objects.

Table 2.5: Performance of methods for recognition of answer boxes.

Method Accuracy Precision Recall Time (sec)

Ours (linear SVM) 95.3% 83.57% 91.13% 4

N$-recognizer [5] 88.6% 67.83% 68.88% 28

Qucik draw [15] 78.1% 42.53% 63.86% 1

Paleo sketch [48] 81.5% 50.80% 64.99% 1

We train the classifiers by using answer boxes in the training data and non-answer

boxes generated on the training pages. Each method classifies each group as an answer box

or a non-answer box. The performance of the recognizers is benchmarked in Table 2.5.

2.4.5 Ink Interpretation

Once we have located answer boxes, we utilize Microsoft ink recognizer [2] to rec-

ognize the text in the answer boxes and compare this to the labeled data. The handwriting

recognizer was 91% correct when given correct answer box content. We found that the

majority of the errors were due to the challenges in recognizing units. Some of the units
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consist of special characters or can be written in multiple ways, which make the recognition

process difficult.
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Chapter 3

Semantic Labeling of Handwritten

Assignments

3.1 Introduction

Semantic labeling of online documents is a crucial prerequisite in document anal-

ysis and understanding tasks such as retrieval, recognition, and beautification. In online

handwritten documents, semantic labeling is the task of classifying pen strokes into mean-

ingful classes. A pen stroke is a series of timestamped coordinates beginning when the pen

touches the page and ending when the pen leaves the page. Researchers have developed

various domain-dependent classification algorithms for specific types of data and specific

tasks [62]. Additionally, general methods have also been developed for the classification of

unconstrained documents [34, 19, 63]. However, these methods do not produce satisfactory

accuracy for some problems. Therefore, the classification of pen strokes in unconstrained
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Figure 3.1: A typical answer to a free response question in a statics course contains a mixture

of free body diagrams, text (including equations), and cross-outs. Free body diagram strokes

are blue, cross-out strokes are red, and text is green.

documents remains a challenging problem that requires more attention from researchers.

In this thesis, we are interested in the task of classifying strokes from students’

handwritten homework assignments. More specifically, our dataset comprises handwritten

free response solutions to statics problems. Statics is the branch of mechanics that examines
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the equilibrium of bodies subjected to forces. The solutions were provided by students

enrolled in an undergraduate statics course at UC Riverside. The students used Livescribe

smartpens throughout the quarter to take lecture notes and answer questions on exams and

homework. The smartpens are used with special dot-patterned paper. A camera at the tip

of the pen uses the dots to digitize the writing. Each handwritten page is recorded as a series

of strokes that are represented as a sequence of timestamped coordinates. Our semantic

labeling task is to classify strokes into the following three classes, which are illustrated in

Figure 3.1:

• Free body diagram (FBD): Diagrams used to represent the forces acting on a

mechanical system. Free body diagrams include drawings, text labels, and arrows.

• Cross-out: A cross-out is a set of strokes used to cross out writing. For example, an

“X” is a common cross-out mark.

• Text: This class comprises all writing that is not free body diagrams or cross-outs.

This category primarily comprises equations but also includes explanatory notes, or-

ganizational information (e.g., problem number, student name, etc.), and lines and

arrows showing relationships between other writing.

In this work, we introduce a novel deep neural network model for classifying strokes

into these three classes. This model employs two Convolutional Neural Networks (CNNs),

one that extracts features from pen trajectories and another that extracts features from

domain-dependent stroke features. The output of each CNN is fed into a Bidirectional Long

Short Term Memory (BLSTM) network to encode information characterizing the sequence
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of strokes. Finally, the outputs of the two BLSTM networks are concatenated and passed

to a Conditional Random Field (CRF) layer, which assigns the final classifications.

3.2 Related Work

Stroke classification is the task of classifying strokes into meaningful classes. Early

studies mainly used local information for each stroke and performed isolated stroke classifi-

cation, which leads to poor performance in many domains. However, recent studies utilize

different sources of information to improve classification accuracy. Spatial and temporal

information are the two primary sources of information that many methods take advantage

of. In this section, we go over the methods and sources of information that were used by

researchers for the task of stroke classification.

A method by Jain et al. [34] was one of the first attempts to group strokes of

online handwritten documents into homogeneous groups. They computed the length and

curvature for each of the strokes, and then they used a linear classifier to classify strokes

into text and non-text classes. The method does not exploit contextual information, and

as a result, fails to achieve acceptable accuracy in many domains.

Bishop et al. [11] presented a system for distinguishing between text and graphics

strokes. They utilize a multilayer perceptron (MLP) classifier to compute a confidence value

indicating if a stroke was text or graphics. Then, they used a Hidden Markov Model to

incorporate temporal information between neighboring strokes to acquire better accuracy.

However, their approach is limited in that it does not consider the spatial distances between

strokes.
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Another approach by Delaye et al. [20] investigates the use of a conditional random

field (CRF) in modeling the spatial and temporal relationships between strokes. They start

by classifying strokes using their intrinsic properties and a support vector machine (SVM)

classifier. Then they use a CRF to assign labels to the strokes so that each label is most

consistent with the strokes’ spatial and temporal neighbors.

Van Phan et al. [67] use two recurrent neural networks (RNNs) to label a sequence

of strokes. One RNN processes features characterizing the intrinsic properties of the strokes

and then produces a class label for each stroke. Another processes pairwise stroke features

characterizing consecutive pairs of strokes and then produces a pair of class labels for each

stroke. Then, they use an additional classifier to integrate the outputs of the two networks

to produce the final labels for the strokes. In our approach, each BLSTM computes an

intermediate representation for each stroke, which a CRF layer then uses to produce labels

for the strokes jointly. Thus, their RNNs directly compute labels, while our BLSTMs

compute new features which are then used to compute labels.

Ye et al. [72] presented a graph attention networks for the stroke classification.

They transform the stroke classification problem into the task of classifying nodes in a

graph. In the graph, each node represents a stroke in the document, and edges are used

to model the temporal and spatial relationships between them. Their method considers an

edge between consecutive strokes and between any pair of strokes that are spatially closer

than a certain threshold. Their approach requires a large number of hyperparameters to be

tuned before it can be used on any domain.

Indermuhle et al. [32] deployed a bidirectional long-short term memory (BLSTM)
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Figure 3.2: The overall architecture of the CNN-BLSTM-CRF model.

neural network to recognize various types of content such as text, diagrams, and tables in

online handwritten documents. Their approach extracts a 7-dimensional feature vector for

each of the points in the strokes, whereas, we extract features from the strokes. In addition,

their network learns to map a sequence of m × n labels, to n labels where m and n are

the number of points and strokes, respectively. However, in our approach, our sequence

classifier learns to predict n labels for the n strokes given in the input.

3.3 CNN-BLSTM-CRF Model for Stroke Classification

In this section, we present our hybrid neural network model for classifying pen

strokes from online handwritten documents into three classes: free body diagram, cross-

out, and text. Figure 3.2 shows an overview of the system. In this network, two sets of

input sequences are generated from the pen strokes. The first contains the coordinates of

the strokes, and the second consists of features computed from the strokes. Each of the
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input sequences is fed to a separate CNN-BLSTM network that extracts new features from

the input sequence and encodes the information characterizing the stroke sequence. The

outputs of the BLSTM layers are concatenated and become the input to the CRF layer,

which decodes this information and generates a probable label for each stroke. A brief

description of each layer is provided below.

3.3.1 Input sequences

The input to the network is a page of handwritten pen strokes. Each stroke

comprises a sequence of timestamped coordinates. The ith stroke is represented as

Si = {[x(i)
1 , y

(i)
1 ], ..., [x(i)

m , y(i)
m ]}, (3.1)

where [x
(i)
j , y

(i)
j ] are the coordinates of the jth point. Strokes can have an arbitrary number

of trajectory points, but in our approach, we represent them as having a fixed number of

points (m). The parameter m is set to 250 in our experiments to accommodate most of

the strokes in our dataset. If a stroke has fewer than m points, zeros are added to the end.

If a stroke has more than m points, it is broken down into smaller strokes; each has equal

numbers of points. The first input sequence is constructed by concatenating the trajectory

points of all of the strokes on the page:

I1 = {[x(1)
1 , y

(1)
1 ], ..., [x(1)

m , y(1)
m ], ..., [x

(n)
1 , y

(n)
1 ], ..., [x(n)

m , y(n)
m ]} (3.2)

The value of n is set to the largest number of strokes observed on a page in our

dataset. If the page has fewer than n strokes, strokes containing zero coordinates are added

to the end of the sequence.
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Table 3.1: Domain dependant stroke features [62].

Cross-out fBW Bounding box width
fBH Bounding box height
fD Ink density
fSR Straightness ratio
fX Part of a cross?
fP Part of a set of parallel lines?
fAU Area fraction under the stroke
fAO Area fraction over the stroke
fUH Average underlying stroke height
fTU Time to first underlying stroke

Miscellaneous fNT Normalized time
fLS Is long stroke?
fNL Number of nearby long strokes
fIN Number of intersecting strokes
fID Density of intersecting strokes
fD2N Direction to the next stroke

We create the second input sequence by computing a 16-dimensional feature vector

for each stroke and concatenating them together:

I2 = {[f (1)
1 , ..., f

(1)
16 ], ..., [f

(n)
1 , ..., f

(n)
16 ]} (3.3)

Here [f
(i)
1 , ..., f

(i)
16 ] is the 16-dimensional feature vector corresponding to the ith stroke. As

before, if the page has fewer than n strokes, zero features are added to the end of the

sequence.

Table 3.1 provides an overview of the 16 features, which are taken from [62]. (See

[62] for details.) The first 10 features were designed for identifying cross-out strokes. fBW
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and fBH are the height and width of the minimum bounding box containing the stroke,

respectively. fD characterizes the density of the pen stroke as cross-out strokes may be

drawn as a dense “blob”. Some cross-out strokes are straight lines; fSR characterizes the

straightness of a stroke. Sometimes cross-outs comprise sets of parallel strokes or strokes

that form an “X”. fp and fX are boolean-valued features indicating whether a stroke is part

of a set of parallel lines or a cross, respectively, with nearby strokes. fAU is the ratio of the

area of the bounding box of the stroke to the area of the bounding box containing all of the

strokes that intersect the stroke and were drawn earlier. Similarly, fAO is the ratio of the

area of the bounding box of the stroke to the area of the bounding box containing all of the

strokes that intersect the stroke and were drawn later. Finally, fTU is the time difference

between the stroke and the earliest stroke that have overlapping bounding boxes.

The next six features are designed to distinguish free body diagram strokes from

text strokes. Stahovich and Lin [62] observed that the earliest-drawn strokes are more likely

to be part of free body diagrams rather than equations. fNT is a normalized time where

the earliest-drawn stroke has a normalized time value of 0, and the last drawn has a value

of 1. fLS has a value of 1 if a stroke is three times taller or wider than the average stroke

height. fNL denotes the number of nearby long strokes. Here, two strokes are nearby only

if the minimum point-to-point distance between them is less than twice the average stroke

height. Strokes written in an equation are typically separated from one another, whereas,

many pen strokes in a free body diagram intersect each other. This property is captured by

fIN , which shows the number of strokes intersecting the stroke. fID represents the density
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of the intersecting strokes and is computed as:

fID =
L2

ABB
(3.4)

where L is the sum of the arc lengths of the intersecting strokes, and ABB is the area of

the bounding box of the stroke. Equations are sometimes drawn from left to right. Thus,

fD2N is the direction from one stroke to the subsequent one.

As shown in Figure 3.2, the input sequences I1 and I2 are used as the input to the

left and right CNN-BLSTM networks, respectively.

3.3.2 CNN (feature extractor)

CNN layers have shown outstanding performance in deriving useful features from

images, sequence data, and the like. Each CNN layer performs a linear and a non-linear

operation to transform the input data. In this study, CNN layers have one-dimensional

kernels that are convolved with the input sequence over a single dimension. Details of the

parameter settings are shown in Table 3.2. A CNN network comprises neurons that are

arranged in multiple one-dimensional arrays. Each neuron is connected to the neighboring

small region of neurons of the previous layer via feed-forward connections. We use a Rectified

Linear Unit (ReLU) activation function to apply non-linearity to the neuron values.

3.3.3 BLSTM (encoder)

Recurrent neural networks (RNNs) have shown great promise in processing se-

quential data. Unlike feed-forward networks that pass information in one direction, RNNs

are capable of capturing time dynamics through cyclic connections. LSTM networks are a
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popular and successful type of RNN that were introduced by Hochreiter and Schmidhuber

[28]. Each LSTM unit is equipped with multiple gates that enable it to control the flow

of information. Input, output, and forget gates are at the core of an LSTM cell. More

specifically, the input gate (i) monitors the incoming data, the forget gate (f) decides what

to be discarded from past memory dynamics, and the output gate (o) determines what piece

of information to flow out of the cell.

Formally, we use following equations to update an LSTM unit at time step t:

it = σ(Whi
ht−1 + Uxixt + bi)

ft = σ(Whf
ht−1 + Uxf

xt + bf )

ot = σ(Whoht−1 + Uxoxt + bo)

c̃t = tanh(Whcht−1 + Uxcxt + bo)

ct = ft � ct−1 + it � c̃t

ht = ot � tanh(ct)

(3.5)

where the input vector at time step t is xt, and the hidden state at t is ht. Uxi , Uxf
, Uxo , and

Uxc are weight matrices for the gates, and Wxi ,Wxf
,Wxo , and Wxc are weight matrices for

the hidden state. bi, bf , bo, and bc are biases for the hidden state. c̃t is an intermediate value

that is used to update the cell state ct. A pointwise multiplication operation is denoted by

�. σ and tanh are the sigmoid and hyperbolic tangent functions, respectively.

LSTM units are capable of capturing long-term, past dependencies in their hidden

states. Our network computes two sets of contextual information from neighboring strokes.

The LSTM network on the right channel of our network (as shown in Figure 3.2) produces

contextual information from domain-dependent features extracted from the pen strokes.
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The LSTM network on the left channel of our network produces contextual information

directly from the pen stroke coordinates.

The temporal information about strokes contains valuable information for the

classification task. For each stroke, the contextual information provided by other strokes,

which are sketched near in time, has a positive effect in most cases. In contrast, the context

information computed for two strokes that have a large temporal gap can have a negative

effect. Therefore, we only consider the temporal context between nearby strokes.

For many sequence labeling problems, accessing future contextual information en-

ables the model to encode more complex contextual knowledge from the sequential data.

As proposed in [22], we use bi-directional LSTM (BLSTM) units in our model to provide

a means of considering future contextual information. BLSTM layers are composed of two

separate LSTM networks where one of them processes the input in the forward direction

(i.e., from start to end), and the other operates in the backward direction (i.e., from end

to start). The hidden states of the two anti-parallel LSTMs are concatenated together to

produce the final output.

3.3.4 CRF (decoder)

Many sequence labeling problems require incorporating relations between neigh-

bors in order to predict a label for any individual in a given input sequence. The Conditional

Random Fields (CRF) is a class of undirected graphical models that are used to compute

the conditional probability of the output nodes given the values in the input nodes. In this

way, they are able to jointly predict the best label for each element in the input sequence.

Let h = {h1, ..., hn} denote an input sequence to the CRF layer, which is obtained
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by concatenating the outputs of the two BLSTMs. More specifically, each hi comprises the

ith hidden state of both the forward and backward LSTMs from both the left and right

channels of the model. y = {y1, ..., yn} is the output sequence of the CRF where each yi is

the predicted label for stroke Si.

We use a CRF from [38] to model our sequence labeling task:

P (y|h; θ) =
1

Z(h)
exp{φ(h, y; θ)} (3.6)

where θ = {W, b} represents the set of parameters and Z(h) is the normalization factor.

φ(h, y; θ) is the potential function which is formulated as:

φ(h, y; θ) =
n∑

i=1

φU (hi, yi; θ) +
n−1∑
i=1

φP (hi, hi+1, yi, yi+1; θ) (3.7)

where φU (hi, yi; θ) is the unary potential function that measures the compatibility of the ith

stroke and the label yi. φP (hi, yi, yi+1; θ) is the pairwise potential function that captures

the dependency between adjacent strokes. These potential functions are formulated as

φU (hi, yi; θ) = hTi θ
u
yi

φP (hi, hi+1, yi, yi+1; θ) = hTi θ
p,1
yi,yi+1

+ hTi+1θ
p,2
yi,yi+1

(3.8)

Here, C is the number of classes and θuyi , θ
p,1
yi,yi+1 , and θp,2yi,yi+1 are the parameters of the

CRF.

For training purposes, we search for the optimal solution to maximize the condi-

tional likelihood in our training data. We use the logarithm of the likelihood as follows:

L(θ) =

N∑
i=1

log p(y|h; θ) (3.9)
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Here, N is the number of instances (pages) in our training data. We employ a maximum

likelihood estimation technique to estimate parameters that maximize the log-likelihood.

Finally, decoding is the task of finding the optimal label sequence y∗ that achieves

the highest conditional probability:

y∗ = argmax
y∈Y(h)

p(y|h; θ) (3.10)

We find the most probable label sequence by using the Viterbi algorithm [53]. The Viterbi

algorithm is a dynamic programming approach for efficiently finding the most likely sequence

of labels. Here the maximization occurs over all of the possible labels for each stroke.

3.4 System workflow

We preprocess the pen strokes before feeding them to the neural network. For

the input sequence I1, we use min-max normalization to linearly transform the x and y

coordinate values to map into the range [0, 1]. Likewise, we use z-normalization to normalize

the feature values in the input sequence I2.

As shown in Figure 3.2, I1 and I2 are fed to the right and left CNN-BLSTM

networks, respectively. We observed that BLSTM networks easily overfit the training data.

As a remedy, we apply dropout to the recurrent input signal on the BLSTM networks.

During network training, the dropout rate is set to 0.2. The configuration of the CNN-

BLSTM networks is shown in Table 3.2. Both of the CNN-BLSTM networks utilize the

same hyperparameters. The output vectors of the BLSTM networks are combined together

to form the input to the CRF layer. Finally, the CRF layer jointly predicts the best label
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Table 3.2: Model configuration

Layer no. Type Specifications

1 Convolution Filters = 16, Kernel size = 9, strides = 1

2 Convolution Filters = 32, Kernel size = 9, strides = 1

3 BLSTM Output dimension = 64

4 BLSTM Output dimension = 64

5 BLSTM Output dimension = 64

Table 3.3: Frequencies of stroke types in each dataset.

Dataset
Stroke Type

FBD Cross-out Misc. Notes

Training Data 31.2% 1.2% 67.6%

Testing Data 20.5% 1.4% 78.1%

sequence for the output nodes.

3.4.1 Network Training

We use Keras [16] to implement our neural network model. The entire model

contains 216, 996 trainable parameters. The training and testing experiments were run on

a machine equipped with a 2.66 GHz Xeon(R) CPU. For the configuration described above,

the model training requires approximately 49 hours.
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3.4.2 Optimization method

We use RMSProp [17] to optimize the parameters of the network. At each step of

network training, we feed batches of size 10 to the network. The learning rate is initially

set to 0.001, and at each step is updated according to [17]. Our model achieves the highest

accuracy on the validation set (we discuss the validation set in Section 3.5) at 278 epochs.

3.5 Results

We evaluate the performance of our model on a database of homework assignments,

quizzes, and exams collected from 132 undergraduate students enrolled in a mechanical

engineering course on statics. The students produced writing using Livescribe digital pens.

These pens are used with special dot-patterned paper. A camera integrated into the tip of

the pen uses the dots to digitize the writing as timestamped coordinates.

6,562 pages of handwritten coursework were collected from 12 exam problems,

30 homework problems, and 7 quiz problems. From this, we manually labeled 1,060 pages

comprising solutions to 5 exam problems (293 pages) and 8 homework problems (776 pages).

The exam pages contained 122,058 pen strokes, and the homework pages contained 298,527

pen strokes. The frequencies of the various stroke types in the labeled exam and homework

pages are shown in Table 3.3. We used the homework data for training and the exam data

for testing. We held out 155 pages from the training set for validation.
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Table 3.4: Performance of our model and three baseline networks.

Model Accuracy Precision Recall F1 Score

CNN −BLSTM1 − CRF 88.30% 88.42% 88.30% 88.36%

CNN −BLSTM2 − CRF 91.34% 91.43% 91.22% 91.32%

CNN −BLSTM 90.76% 89.51% 90.46% 89.98%

CNN −BLSTM − CRF 94.70% 96.14% 94.54% 95.33%

3.5.1 Results for Various System Configurations

To evaluate the power of each part of our model, we computed the accuracy with

various parts of the model removed. More specifically, we considered 3 sub-models: (1) The

CNN-BLSTM1-CRF model uses only the I1 input sequence (i.e., the pen stroke coordinates)

for input and excludes the CNN-BLSTM network on the right of the network (i.e., the

domain-dependent features). (2) Conversely, the CNN-BLSTM2-CRF model uses only the

I2 input sequence and ignores the CNN-BLSTM network on the left side of the network.

(3) The CNN-BLSTM model removes the CRF layer and replaces it with a dense layer. All

of these networks utilize the same hyper-parameters as displayed in Table 3.2. As shown

in Table 3.4, our complete model achieved higher accuracy than any of the sub-models,

indicating the importance of all of the elements of our model.
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3.5.2 Comparison with Related Methods

We benchmark our model with three existing methods: (1) The method of Sta-

hovich and Lin [62]; (2) the GSC26 BCC26 19Q method [67]; and (3) the CRF NN [71]

method. The first of these methods was specifically designed for free-form statics solutions,

and the other two are the top-performing systems for classifying strokes into text/non-text

classes on the IAMonDo database [33].

Table 3.5 compares the performance of our method to that of the three benchmark

methods on the testing dataset. Our method performed better than the GSC26 BCC26 19Q

and CRF NN methods on all performance measures. Our method also achieved the highest

overall accuracy of 94.7%. For the most part, our method performed better than the method

from [62] for FBD and text strokes: Our method achieved higher recall rates for both types

of strokes and achieved a higher precision rate for FBD strokes. The precision of our method

for text strokes was only slightly less (about one percentage point) than that of the method

from [62]. Due to the small number of cross-out instances in the training set, most of

the systems have low performance in recognizing cross-out strokes. However, [62] uses a

special purpose, hand-coded cross-out detection technique that achieves high accuracy for

this class.
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Table 3.5: Performance of models for the stroke classification task.

Model Acc.
Precision Recall

FBD Cross-out Misc. FBD Cross-out Misc.

Our Model 94.7% 88.57% 15% 96.14% 87.88% 0.68% 97.00%

Stahovich [62] 92.23% 77.32% 53.91% 97.26% 87.74% 74.26% 93.59%

CRF NN [71] 89.55% 71.84% 9.49% 93.95% 78.24% 0.97% 93.66%

GSC26 LSTM [67] 91.33% 79.97% 27.65% 93.61% 74.81% 0.74% 96.61%
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Chapter 4

Finding and Segmenting

Mathematical Equations in

Students’ Online Handwritten

Assignments

4.1 Introduction

The previous chapter presented techniques for classifying individual pen strokes

into various classes. Here we consider how we group pen strokes into meaningful objects.

More specifically, we describe a method for identifying the pen strokes that comprise indi-

vidual equations.

Mathematical equations are the most abundant type of content in written solutions
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Figure 4.1: Examples of mathematical equations.

to free-response problems in a variety of academic subjects such as engineering, physics, and

science. Mathematical expressions provide visual explanations of the thinking process in

computing the final answers. Our goal is to locate equations so they can be recognized with

existing recognition techniques such as [69, 74, 73].

In the simplest case, an equation is two expressions equated by an “=” sign, where

an expression is a collection of mathematical symbols that are combined according to a set

of formal rules. Figure 4.1 shows examples of equations: (a) is an algebraic expression, (b)

is a vector algebra equation, and (c) is an integral calculus equation.

There are many ways of organizing the equations on a page. For example, each

of the equations in Figure 4.1 is written on a single line on the page. Likewise, each of

these contains exactly two expressions that are set equal to each other. However, it is
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Figure 4.2: Examples of equation segments in our dataset.

common to combine multiple equations on a single line as, shown in Figure 4.2 (a). Here,

the equation Fy = 100cos(60) is combined with the equation 100cos(60) = 50N to produce

a single combined equation Fy = 100cos(60) = 50N . Thus, this equation comprises three

expressions. Likewise, it is common to split equations across multiple lines as in 4.2 (b)

and (c). This equation contains two expressions on one line (b) and a third expression on a

second line (c). For our purposes, we seek to group together all of these expressions for an

equation that are on the same line. We call each such group an equation segment. Thus,

each of the equations in 4.1 comprises its own equation segment. Likewise, each of the three

parts in 4.2 comprises its own equation segment.

Grouping strokes of mathematical equations is a challenging task for the following

reasons:

• Complicated geometric structure: unlike the traditional problem of recognizing

handwritten text, where most of the strokes are written close to the baseline, strokes of

mathematical equations may spread over more than one baseline to form numerators,
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denominators, subscripts, superscripts, etc. Handwritten text is typically organized

into lines and written from left to right and top to bottom, but the writing order for

mathematical equations can be written in varied and complicated arrangements.

• Complicated contextual information: due to the irregular placement of equation

strokes on the baselines, there are many cases where strokes from different equations

are close to one another. As a result, using only spatial information is insufficient.

Other forms of contextual information are needed to identify equation segments ac-

curately.

4.2 Related Work

Clustering strokes into meaningful objects has been the subject of many research

studies. Identifying complete objects in unconstrained documents is a difficult task due

to variations in handwriting and the lack of apriori knowledge about the structure of the

writing. Context-integrated methods use several sources of contextual information (spatial,

temporal, and local) to split strokes into multiple groups.

Many existing approaches consider only local pairwise features. Clustering de-

cisions are based primarily on the geometric relationships between pairs of strokes. This

kind of local information may not be definitive. For example, inter-cluster strokes may

overlap with one another, which could cause the clusters to be merged erroneously. Our

approach considers a much broader temporal context by considering information from the

entire sequence of strokes.

Stahovich and Lin [62] presented a method to split equation strokes into individ-

67



ual groups. Their method produces groups such that the strokes of a group belong to a

single equation and are written on the same baseline. With this method, if an equation

is written on multiple lines, such as an equation that has an expression with numerator

and denominator, then the equation is likely to be placed into multiple groups. In our

method, we aim to find complete mathematical equations rather than finding pieces of the

equations. Moreover, they use local pairwise stroke features to group strokes, whereas, in

our approach, we use global information.

Peterson [50] developed a general-purpose technique for clustering pen strokes.

His method leverages local pairwise stroke features to decide whether or not to place a pair

of strokes into the same group. The pairwise features capture both temporal and spatial

aspects of the stroke pairs. Once pairwise features are computed for every pair of strokes

on the page, these features are passed to a binary classifier (AdaBoostM1 with J48 decision

trees) that computes a “Join” or “NoJoin” label for each pair of strokes. Initial groups of

size 2 are created by grouping pairs of strokes labeled “Join”. Some of the initial groups

may have a stroke in common; therefore, a “chainer” is deployed to join groups that have

at least one stroke in common, producing final clusters.

In Peterson’s method, the decision to join a pair of clusters relies on local contex-

tual information. We observed that in many cases, using only local information can lead

to errors in grouping. For example, in our dataset, there are cases where the strokes of one

equation are very near to, or even intersect, the strokes from another equation. Local infor-

mation is often insufficient for distinguishing the equations in such cases. As a remedy, we

use global contextual information. More specifically, we use context-integrated sequential
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information to produce the initial groups. In our approach, each stroke has access to infor-

mation coming from both previous and subsequent strokes in the chronological sequence of

strokes. Using such information enables more accurate grouping.

4.3 Approach

In this section, we present our method for finding and grouping equation strokes

in students’ online handwritten assignments. Our approach uses both intrinsic properties

of the strokes and contextual information to do this. The intrinsic properties describe the

shapes of the strokes, and the contextual information comes in part from pairwise features

describing geometric and temporal relationships between strokes. A classifier uses these

features to assign two different labels to each stroke. The first label is the type of stroke,

indicating whether it is part of an equation or not – the stroke is “equation” or “other”. The

second label indicates whether or not the stroke is part of the same group as the subsequent

stroke. This label has one of two values, either “Join” indicating that the stroke belongs in

the same group with the next stroke in the chronological order, or “NoJoin” indicating it

does not.

We use the two labels assigned to each stroke to group the strokes into equation

segments via a chaining process. This process groups together consecutive strokes that are

labeled as “equation” and “Join”. We then use a second classifier that examines the initial

groups to determine if they need to be combined.
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Figure 4.3: The architecture of the GRU-CRF model.

4.4 Generating Initial Groups

4.4.1 GRU-CRF for labeling strokes

In this section, we present our model that assigns the stroke type label and the

Join/NoJoin label to each stroke. The model contains two gated recurrent unit (GRU)

layers that both feed into a conditional random field (CRF) layer. The input to the first

GRU is a set of features computed from the stroke itself. The input to the other GRU is a

set of pairwise features. Both sets of features are taken from Peterson [50]. Peterson used

these features with an Ada-Boosted J48 decision tree to group pen strokes into objects.

Here, we use them with a GRU network that computes contextual information, resulting in

a more powerful and accurate grouping approach. We combine the outputs of the two GRUs

with a CRF to provide additional contextual information. Figure 4.3 shows a schematic of

the system.
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4.4.2 Input Sequences

The input to the network is a set of features computed from the pen strokes written

on a single page. Each stroke consists of an arbitrary number of points collected from a

pen-down to pen-up. Formally, the ith stroke is recorded as:

Si = {(x(i)
1 , y

(i)
1 , t

(i)
1 ), ..., (x(i)

m , y(i)
m , y(i)

m )}, (4.1)

where [x
(i)
j , y

(i)
j ] are the coordinates of the jth point and t

(i)
j indicates the time it was drawn.

m is the number of points in the stroke. We extract a 21-dimensional feature vector for

each stroke and combine them together to produce the first input sequence:

I1 = {[f (1)
1 , ..., f

(1)
21 ], ..., [f

(n)
1 , ..., f

(n)
21 ]} (4.2)

where [f
(1)
1 , ..., f

(1)
21 ] is the 21-dimensional feature vector computed for the ith stroke. Each

page can contain an arbitrary number of strokes, but in our method, we assume that they

all have n strokes. The parameter n is set to 1650, which is the maximum number of strokes

on a page in our training data. If a page has fewer than n strokes, zeros are added to the

end of I1.

Table 4.1 shows an overview of the 21 stroke features which are taken from [50].

The first four features describe the size of the stroke. fBW and fBH denote the height

and width of the minimum bounding box containing the stroke, respectively. Likewise, fBA

is the area of the bounding box. fAL is the arc length of the stroke and is computed by

summing up the euclidean distance between consecutive points in the stroke. These features
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Table 4.1: Single stroke features from [50].

Category Name Description

Size

fBW Bounding box width

fBH Bounding box height

fBA Bounding box area

fAL Arc length

Location
fD2LR Distance to left / right

fD2TB Distance to top / bottom

fAV GX Average x of the points in the stroke

fAV GY Average y of the points in the stroke

Shape

fCSS Sum of the curvatures along the stroke

fCSA Sum of the absolute value of the curvatures along the stroke

fCSQ Sum of the square of the curvatures along the stroke

fCSSQRT Sum of the square root of the curvatures along the stroke

fD Ink density

fSR Straightness ratio

Drawing kinematics

fSAV G Average speed in drawing the stroke

fSMAX Maximum speed while drawing the stroke

fSMIN Minimum speed while drawing the stroke

fSDIFF Difference of the maximum and minimum pen speed

fSTIME Total time to draw the stroke

Temporal relation
fTN Temporal distance to the next stroke

fTP Temporal distance to the previous stroke
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Figure 4.4: A visual illustration of curvature formed at point Pi .

are normalized using z-score normalization technique. Z-normalization subtracts the mean

of a feature from original feature values and divides the difference by the standard deviation

value.

One important insight is that certain types of content are more likely to found at

some places on the page rather than in other places. For example, the text for a student’s

name is likely to be found at the very top of the page. Likewise, free body diagrams tend

to be written higher on the page than equations. For this reason, we use four features

that characterize the location of a stroke on the drawing canvas. fD2LR is the minimum

distance from the stroke to the left or right edge of the canvas, and fD2TB is the minimum

distance from the stroke to the top and bottom edge of the canvas. fAV GX and fAV GY

are the averages of the x and y-coordinates of the points, respectively. These features

are normalized using the min-max normalization method. Min-max normalization linearly

transforms the feature values into the range [0, 1].
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The next six features characterize the shape of the stroke. The first four of these

describe the curvature of the stroke. As shown in Figure 4.4, the curvature at point Pi

(denoted by θi) is defined as the angle between the lines formed by connecting point Pi−1

to point Pi and connecting point Pi to Pi+1. θi is computed as:

θi = arctan
δxiδyi−1 + δxi−1δyi
δxiδxi−1 + δyiδyi−1

(4.3)

where δxi and δyi are the horizontal and vertical distances between Pi+1 and Pi,

respectively. The four curvature features are obtained as follows:

fCSS =

N−1∑
i=2

θi (4.4)

fCSA =
N−1∑
i=2

|θi| (4.5)

fCSQ =

N−1∑
i=2

θ2
i (4.6)

fCSSQRT =
N−1∑
i=2

√
|θi| (4.7)

fCSS (Equation 4.4) is the sum of the signed curvatures along the stroke. Here,

turning in the positive direction cancels turns in the negative direction and vice versa.

Also, this value is computed modulo 360◦ so that if the pen stroke turns through a net

rotation of 360◦, the signed curvature value is computed as zero. fCSA (Equation 4.5) is

the sum of the absolute value of the curvature along the stroke. Whereas fCSS represents

the net change direction of the stroke path, fCSA represents the total amount of bending
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of the path. fCSQ (Equation 4.6) represents the sum of the squared curvature along the

stroke, which emphasizes the points that have high curvatures, such as corners. Finally,

fCSSQRT (Equation 4.7) is the sum of the square root of the curvature along the stroke,

which emphasizes points of low curvature. Theses curvature features are normalized using

z-score normalization.

fD is the ink density and measures the compactness of the stroke. Ink density is

defined as:

fD =
f2
AL

fBA
(4.8)

where the arc length is squared to scale similar to the bounding box area. fD is

normalized by the z-score normalization method. fSR is the straightness ratio, which is

defined as the euclidean distance between the endpoints of the stroke divided by the arc

length. fSR ranges between 0 to 1, where the value of 0 denotes that the endpoints have

similar coordinates, and 1 represents a straight line with no curvature along the path.

Stahovich and Peterson [50] observed that students tend to draw familiar objects

(e.g., student name or identification number) faster than they draw complicated shapes and

diagrams. For that reason, we use five features that provide kinematic characteristics of the

stroke. fSAV G, fSMAX , and fSMIN are the average, maximum, and minimum of the pen

speed along the stroke, respectively. fSDIFF is the difference between the value of fSMAX

and the value of fSMIN . Finally, fSTIME denotes the total time of drawing the stroke.

These speed features are normalized using the z-score normalization technique.

The next two features provide the temporal distance to the next and previous
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stroke. fTN is the elapsed time between the last point of the stroke and the first point of

the next stroke. Similarly, fTP is the elapsed time between the last point of the previous

stroke and the first point of the stroke. We use z-score normalization to normalize the fTN

and fTP features.

We also extract 10 pairwise features for each pair of consecutive strokes and con-

catenate them together to form the second input sequence:

I2 = {[pw(1)
1 , ..., pw

(1)
10 ], ..., [pw

(n−1)
1 , ..., pw

(n−1)
10 ]} (4.9)

where [pw
(i)
1 , ..., pw

(i)
10 ] is the 10-dimensional pairwise feature vector computed for the ith and

(i+ 1)th strokes. Table 4.2 provides an overview of the 10 pairwise features which are taken

from [50]. The first five features characterize the distances between the strokes. pwmin and

pwmax are the minimum and maximum distances between a point in one stroke and a point

on the other stroke. pwcentroid measures the distances between the centroids of the strokes’

bounding boxes. pwminLL is the minimum of the distances between an endpoint on one

stroke and an endpoint on the other stroke. pwminXL is the minimum distance between an

endpoint on one stroke and any point on the other stroke. These features are normalized

using z-score normalization.

The next two features measure the overlap of the strokes along the x- and y-axes.

pwXOverlap denotes the length of the intersection of the projections of the strokes along the

x-axis to the union of the projections. Similarly, pwY Overlap is the length of the intersection

of the projections of the strokes along the y-axis to the union of the projections.

pwT is the temporal distance (time) between the last point of the stroke and
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Table 4.2: Pairwise stroke features from [50].

Category Name Description

Distance

pwmin Minimum point-to-point distance

pwmax Maximum point-to-point distance

pwcentroind Distance between centroids of the strokes

pwminLL Minimum endpoint-to-endpoint distance

pwminXL Minimum endpoint-to-anypoint distance

Overlap
pwXOverlap Intersection of strokes’ projection onto x-axis

pwY Overlap Intersection of strokes’ projection onto y-axis

Temporal pwT Temporal gap between the strokes

Ratios
pwRatioLL Ratio of pwminLL to pwmin

pwRatioXL Ratio of pwminXL to pwmin

the first point of the next stroke. This feature is normalized with z-score normalization.

pwRatioLL and pwRatioXL characterize whether strokes are closest to each other at their

endpoints or at other points, and they are computed as follows:

pwRatioLL =
pwmin + k

pwminLL + k
(4.10)

pwRatioXL =
pwmin + k

pwminXL + k
(4.11)

where k is a constant value and is set to 10,000 himetrics. Both pwRatioLL and pwRatioLL

have values in the range of 0.0 to 1.0.
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4.4.3 GRU (encoder)

A Gated Recurrent Unit (GRU) 1 network is an improved version of an RNN and

is used for processing sequential data. Similar to RNNs, GRUs are equipped with feedback

loops that allow them to capture time dynamics. A GRU aims to address vanishing and

exploding gradient problems, which are classical problems in traditional neural networks

that destabilize the network during back-propagation training. These problems introduce

challenges in the training process and make it difficult for the network to capture long-range

dependencies.

To solve the vanishing and exploding gradient problems, GRUs are equipped with

update and reset gates. These gates control the flow of information throughout the network

and can be trained to hold information between time steps with large temporal distances

and add/remove the important/irrelevant information.

Each GRU consists of three main components: an update gate, a reset gate, and

a memory content. The update gate in a GRU network governs the flow of the information

from earlier time steps to the future ones. The update gate determines the fraction of the

earlier information to be passed along to the future time steps. The reset gate indicates

the amount of past information to be dismissed. Current memory content is a vector of

contextual information computed for the current unit.

Formally, we use the following equations to update components of a GRU at time

1This presentation is adapted from [1].
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step t:

ut = σ(Wxuxt +Whuht−1)

rt = σ(Wxrxt +Whrht−1)

h̃t = tanh(Wxhxt +Wrh(rt ⊗ ht−1))

ht = (1− zt)⊗ ht−1 + zt ⊗ h̃t

(4.12)

where ut, rt, h̃t and ht are the update gate, reset gate, candidate activation vector, and

memory content vector, respectively. Wxu, Whu, Wxr, Whr, Wxh, and Wrh are weight

matrices.

Our network computes two sets of contextual information from temporally neigh-

boring strokes. The GRU channel on the left of our network (as depicted in Figure 4.3)

generates contextual information from features computed for each stroke. The GRU net-

work on the right of our network produces contextual information from pairwise stroke

features.

In many sequence labeling problems, future contextual information is just as signif-

icant as the prior information. To leverage both the past and future contextual information,

we process the input sequences in both forward (i.e., from start to end) and backward (i.e.,

from end to start) directions. The final output of each GRU channel is produced by con-

catenating the hidden states of the two anti-parallel networks. Lastly, the left and right

GRU networks are combined by merging the output of the networks at each time step. Us-

ing bi-directional GRU networks, along with contextual information computed for both the

single and the pairwise stroke features, encodes complex contextual knowledge that exists

in the pen strokes.
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4.5 CRF (decoder)

In handwriting datasets, temporally neighboring strokes are highly correlated. In

classification and segmentation tasks, incorporation of statistical dependencies between

neighboring strokes can lead to better performance. CRF’s are a family of undirected

graphical models that provide a statistical framework to model the dependencies between

correlated entities. Here, the role of the CRF is to predict a sequence of labels for the input

elements jointly.

The input to the CRF layer is a sequence of hidden states computed in the GRU

networks. Let h = {h1, ..., hn} denote an input sequence to the CRF layer. Each hi is the

concatenation of the hidden states computed at the ith time step of the left and right GRU

channels. Let y = {y1, ..., yn} represent a sequence of labels predicted by the CRF layer.

We model the dependencies between the GRU’s hidden states by using the linear

chain CRF method:

P (y|h; θ) =
1

Z(h)
exp{φ(h, y; θ)} (4.13)

where θ = {W, b} is a set of weight matrices and bias parameters of the model. Z(h) is the

partition factor that transforms the distribution into a probability distribution. φ(h, y; θ)

represents the potential function which consists of unary and pairwise potential functions

as:

φ(h, y; θ) =

n∑
i=1

φU (hi, yi; θ) +

n−1∑
i=1

φP (hi, hi+1, yi, yi+1; θ) (4.14)

where φU (hi, yi; θ) denotes the unary potential function that measures the consistency of

the ith stroke and the label yi. φP (hi, yi, yi+1; θ) is the pairwise potential function that

measures the consistency of the predicted labels for adjacent strokes. Unary and pairwise
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potential functions are formulated as

φU (hi, yi; θ) = hTi θ
u
yi

φP (hi, hi+1, yi, yi+1; θ) = hTi θ
p,1
yi,yi+1

+ hTi+1θ
p,2
yi,yi+1

(4.15)

Here, θuyi is the parameter for the unary potential function and θp,1yi,yi+1 and θp,2yi,yi+1 are the

parameters for the pairwise potential function.

We use the maximum likelihood estimation technique to search for the optimal

solution. During the training process, we look for parameters that maximize the following

conditional likelihood:

L(θ) =
N∑
i=1

log p(y|h; θ) (4.16)

where N is the number of pages in our training set. We use the gradient descent method

to estimate the parameters.

During testing, we use the Viterbi algorithm to find the optimal labels for the

given input so as to maximize the following conditional probability:

y∗ = argmax
y∈Y(h)

p(y|h; θ) (4.17)

where Y(h) is the set of all possible labels for the given input.

The two labels assigned to each stroke are used to group the strokes into equation

segments via a chaining process. If two consecutive strokes are both of the “equation”

type, and the first is labeled “Join”, then the two are placed in the same equation segment.

Applying this rule exhaustively yields the set of equation segments. The equation segments

that are produced in this step are called “initial groups”.

Consider the example in Figure 4.5 in which all of the strokes have been labeled as

type “equation” and all except the fifth and 11th have been labeled as “Join”. (The number
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Figure 4.5: Two equation segments. The numbers next to the strokes indicate the order in

which they were drawn.

next to each pen strokes indicates that order in which it was drawn.) In this case, the first

five strokes are chained together to form one initial group, and the last six are chained to

form a second initial group.

4.6 Combining Initial Groups

Our goal is to find all of the strokes of an equation segment while excluding all other

strokes. Many of the initial groups produced in the previous step are complete equation

segments. However, there are many cases in which equation strokes are not written in

contiguous temporal sequences. In such situations, an equation segment may be split over

multiple initial groups.

To remedy this, we use a second classifier that examines the initial groups to

determine if they need to be combined. More specifically, this classifier is used to determine

if large initial groups (i.e., those that have a large number of strokes) should be joined with

nearby small groups (i.e., those that have a small number of strokes). This binary classifier

82



Figure 4.6: Many of the strokes in equation segment 1 intersect with equation segment 2.

uses pairwise spatial features computed from the large group and the neighboring small

group to determine if they should be joined together.

Typically, equations are written such that most strokes that belong to the same

equation segment are placed close to one another, and writers try to place spatial distances

between strokes of different segments. Consequently, spatial distances are fruitful sources of

information for segmenting equation strokes. However, due to the variations in placements

of symbols such as subscripts, superscripts, fractions, matrices, etc., many inter-cluster

strokes intersect with one another, or their bounding boxes largely overlap. As a result, it

is not easy to rely on spatial distances to merge equation groups.

In Figure 4.6, two equations are sketched, and each of them is properly grouped

by the GRU-CRF network and placed in one of the initial groups. If we decide to consider

spatial distances between equations to combine initial groups, it is highly likely that these

two groups would be combined. As shown in Figure 4.6, the answer box stroke in equation

2 intersects with many strokes in equation one, and most of the strokes in equation 1

are vertically close to strokes in equation 2. Therefore, to reliably combine initial groups,

spatial distances are not definitive. Instead, we perform a semantic analysis of equations to

determine if equation groups belong to the same equation segment.
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Figure 4.7: Most of the equation strokes are sketched consecutively, and they are shown

with green color. The red stroke is added to the equation afterward.

However, cases exist where students write most of the equation strokes consecu-

tively, and after sketching some unrelated strokes, they add minor changes to the initially

drawn equation. In these cases, most of the equation strokes are drawn in one run, and

minor changes consist of a few strokes. We use spatial features to find and group such cases.

We identify large groups among initial groups, and for each of the large groups, we

perform a local search to find candidate small groups to be merged. We compute pairwise

features between a large group and each of its candidate small groups and use a binary

classifier to decide whether or not the groups should be merged with one another. We

empirically define a group as a large group if it contains at least 10 equation strokes, and

a group is a small group if it at most contains 5 equation strokes. We consider a set of

candidate small groups for a large group wherein each of the small groups there is at least

one stroke that has a minimum point-to-point distance with one of the strokes in the large

group less than 2cm.

Table 4.3 shows an overview of the spatial features used for merging large and

small groups. pwminX and pwminY are the minimum and maximum distances between the

bounding boxes of the groups along the x and y-axis, respectively. The description of the

pwXOverlap and pwY Overlap are similar to what we described for the features in Table 4.2.
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Table 4.3: Pairwise stroke features for grouping small and large equation groups.

Category Name Description

Distance
pwminX Minimum distance along the x-axis

pwminY Minimum distance along the y-axis

Overlap
pwXOverlap Intersection of strokes’ projection onto the x-axis

pwY Overlap Intersection of strokes’ projection onto the y-axis

We explored a variety of classification methods for the task of combining small

and large groups, and we found that the highest accuracy was achieved by using the neural

network classifier.

4.7 System Workflow

We sort the pen strokes in chronological order before feeding them to the network.

As described in Section 4.4.2, we compute and normalize single stroke and pairwise stroke

features to produce input sequences I1 and I2. As shown in Figure 4.3, I1 and I2 are fed to

two separate Bidirectional GRU networks, and the output of the networks are concatenated

and fed to the CRF layer. The CRF layer jointly predicts two sequences of labels for the

output nodes. The first sequence label identifies equation strokes, and the second sequence

label determines if the stroke is part of the same equation as the subsequent stroke. Finally,

we use a binary classifier to combine some of the initial groups created by our network.

We use the L2-regularization method with the parameter set to 0.001, to overcome

overfitting with the GRU networks. Additionally, we apply dropout to the recurrent input
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signal, with the dropout rate set to 0.2.

We use the Keras [16] framework to build our neural network model. The entire

network contains 94, 830 trainable parameters. We use RMSProp [17] as the optimization

method, and at each step of training, we feed samples of size 10 to the network. We

performed the experiments on a machine equipped with a 2.66 GHz Xeon(R) CPU. The

model training required approximately 17 hours.

4.8 Results

To evaluate the performance of our method, we conducted experiments on a

database [62] of handwritten homework assignments, quizzes, and exams collected from

132 undergraduate students that were registered in a mechanical engineering course on

statics at UC Riverside. Throughout the course of study, the students used Livescribe dig-

ital pens and dot-patterned paper to do their written work. The pen tip of the smartpen

contains a built-in camera to digitize the writing activity as timestamped coordinates.

After manually labeling 1, 060 pages containing solutions to free-response questions

from 5 exam problems (293 pages) and 8 homework problems (776 pages). In total, there

are 121, 740 strokes in the exam solutions and 298, 527 in the homework solutions. The

frequencies of the various stroke types are shown in Table 4.4. Miscellaneous Notes strokes

are strokes that are not classified as free body diagram, cross-out, or equation. We used

the homework pages and exam pages for training and testing, respectively. For validation,

during the training phase, we withhold 155 pages of the training data.

We manually labeled 6, 029 equation segments in the training data and 3, 920
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Table 4.4: Frequencies of stroke types in each dataset.

Dataset
Stroke Type

Equation FBD Cross-out Misc. Notes

Training Data 63.8% 31.2% 1.2% 3.8%

Testing Data 76.6% 20.5% 1.4% 1.5%

equation segments in the testing data. The equation segments in the training data contain

an average of 27 strokes, and those in the testing data contain an average of 23.

4.8.1 Results for Equation/Non-equation Classification

In chapter 3, we presented the performance of our approach to classifying strokes

into multiple classes. In this chapter, we are concerned about the accuracy of our network

in distinguishing between two classes: equation strokes and non-equation strokes. Table

4.5 shows the performance of our GRU-CRF network in classifying strokes into these two

Table 4.5: Confusion matrix for equation/non-equation classification.

HHH
HHH

HHHHH
Actual

Prediction
Equation Non-equation

Equation 91,970 1,324

Non-equation 5,115 23,331
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Figure 4.8: An example of the predicted equation segment. Strokes that are correctly

included in the group are shown in green, strokes erroneously excluded from the group are

shown in red, and strokes erroneously included in the group are shown in blue.

classes. Our network achieves an overall accuracy of 94.7%.

4.8.2 Results for Equation Segmentation

We use two types of metrics [50] to measure the performance of our method for

grouping equation strokes. The first type of metric concerns the length of the ink that is

correctly grouped. We define InkFound as the percentage of the true ink contained in the

group generated by our program. Additionally, a program-generated group may contain

extra ink not contained in the true group. We define InkExtra as the ratio of the length

of the extra ink to the length of the true ink. For example, if the true equation segment

contains 10 cm of ink, and 8 cm of that ink is contained in the program-generated group,

the value of InkFound is 80%. Likewise, if the program-generated group contains 1.5 cm of

ink that is not contained in the true group, the value of InkExtra is 15%. The second type

of metric concerns the number of strokes that are correctly grouped. Here we count the

number of strokes that are erroneously included in or excluded from the machine-generated

group.
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Consider the equation segment in Figure 4.8 consisting of strokes forming the

characters “a”, “+”, “b”, “=” and “c”, which have arc lengths of 150, 110, 130, 90, and

140 units, respectively. In this example, imagine that the strokes of “a”, “+” and “b” are

correctly grouped together, but the strokes of “=” and “c” are excluded. Also, imagine that

the strokes of an additional arrow, which has an arc length of 175 units, are erroneously

included in the group. In the case we would obtain InkFound= 150+110+130
150+110+130+90+140 = 62.9%

and InkExtra = 175
150+110+130+90+140 = 28.2%. Likewise, the number of incorrect strokes

would be six, including three erroneously excluded strokes from “=” and “c” and three

erroneously included strokes from the arrow.

Figure 4.9 shows the performance of our equation grouping technique on our test

set containing 3, 920 equation segments. We report the performance for a model comprising

only the GRUs and CRF and for a model that also includes post-processing with our pairwise

classifier that combines small groups with neighboring large ones. Without post-processing,

our methods achieve an average InkFound of 86.2%, and 64.4% of the groups have three

or fewer erroneous strokes. Recall that the equation segments in the testing set have an

average of 23 strokes. With post-processing, our methods achieve an average InkFound of

89.6% and 70.0% of the groups have three or fewer erroneous strokes. The post-processing

achieves a small increase in InkFound, but also produces an increase in InkExtra. Thus

post-processing does correctly add missing strokes to the groups, but also erroneously adds

strokes that do not belong.
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4.8.3 Comparison with Existing Methods

We benchmark our technique against three existing methods: (1) The method of

Stahovich and Lin [62], (2) the IPC-IRL method [63], and (3) the method of Delaye and

Kibok [19]. The first is specifically designed for grouping equation strokes that are written

on a single baseline. If an equation is written on multiple baselines, it is likely to be grouped

into multiple groups, one for each baseline. For example, a fraction might be grouped into

two groups. However, as most of the equation segments in our dataset are written on a

single baseline, this method is appropriate for our data. The other two methods are general

purpose pen stroke grouping algorithms.

For this comparison, we provide our method with all of the strokes on the page, and

it must first identify the equation strokes before grouping them. For the other two methods,

we provide only the equation strokes on the page. Thus, in this comparison, our method

is performing a more challenging task than the other methods. Despite this, as shown in

Figure 4.10, our method outperforms the other methods on all performance measures. Table

4.6 shows the average processing time for our method and the three benchmark methods.

Here, we report processing time for our method both with and without post-processing by

the pairwise classifier. Only Lin’s method is faster than our method. However, our method

is performing a more challenging task as it is both identifying and grouping the equation

strokes. With Lin’s method, additional time would be needed to identify the equation

strokes.
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Table 4.6: Comparison of the average running time for grouping equation strokes on a page.

Method GRU-CRF GRU-CRF-SC Lin [62] Delaye [19] IPC-IRL [63]

Avg. processing time (sec) 1.25 2.54 0.28 39.72 18.96

Figure 4.9: Performance of our equation grouping method without post-processing “GRU-

CRF” and with post-processing by our pairwise classifier that combines small groups with

neighboring large ones “GRU-CRF-SC”.
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Figure 4.10: Performance of four different grouping methods for equation grouping.
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Chapter 5

Conclusions

In this thesis, we have developed methods that support the automatic grading of

students’ handwritten assignments. In this chapter, we review our contributions, discuss

the limitations of our methods, and present ideas for future work.

Our first contribution is the development of techniques for finding final answers

in handwritten solutions to free-response questions. Finding the answers is an important

step toward automated grading. In our study, students in an undergraduate statics course

used Livescribe smartpens to do their homework assignments and answer quiz and exam

questions. We asked the students to draw a box around each final answer and to separate

different components of the answer with vertical lines. The input to our method is a set of

pen strokes on a page. The output is the list of strokes corresponding to each final answer.

Our method is efficient because it avoids expensive search. Processing begins with a search

whose cost is linear in the number of pen strokes on the page. The results of this are then

used to drive local searches with small search spaces.
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On average, our method took only four seconds to process a page of writing from

our data set. Our method proved to be accurate, achieving an overall accuracy of 95.3%

in recognizing answer boxes in our data set. Our methods for locating answer boxes could

be combined with text recognition techniques to enable the automatic interpretation of

handwritten answers.

Our second contribution is the development of a novel machine learning model for

semantic labeling of students’ handwritten solutions to free-response questions. Our task is

to classify the strokes into three classes: strokes that are part of a free body diagram, strokes

that are part of a cross-out, and strokes that belong to text. (Alphanumeric characters that

are included in a free body diagram are classified as free body diagram strokes and not

text strokes.) Semantic labeling reduces the complexity of document interpretation tasks

by separating strokes of different types so that special-purpose techniques can be applied to

each type of stroke separately. Additionally, semantic labeling is required by some existing

techniques [62, 66] that estimate the correctness of a handwritten solution by examining

the properties of the various types of content.

Many methods exist for interpreting handwriting. These methods are effective

because they exploit the known structure of the writing. For example, a page of text may

be written from left to right and from the top of the page to the bottom. For our problem,

there is no fixed spatial organization. A student can write anywhere on the page in any

order. While there is no fixed spatial organization to guide our task, we found that we

could exploit temporal organization. We found that pen strokes in the free-form solutions

frequently have the same semantic type as their temporal neighbors. More specifically,
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each stroke in our data set was proceeded and succeeded by an average of 46 consecutive

temporal neighbors of the same semantic type. Our methods exploit this by processing the

strokes on a page as a temporal sequence. This is a key element of the effectiveness of our

methods.

There are two sequences of inputs to our novel machine learning model: one con-

sists of the raw data points of the sequence of strokes, the other consists of features that

characterize the shapes of the strokes and the spatial and temporal relationships between

each stroke in the sequence and its immediate succeeding neighbor. The output of the model

is a semantic label for each stroke in the sequence. Each input sequence is processed by

its own convolutional neural network (CNN) that extracts new features characterizing the

sequence of stokes. The output of each CNN is then processed by its own bidirectional-long-

short-term-memory (BLSTM) network. The BLSTM networks produce the global context

of the entire sequence of strokes and are used to produce an intermediate feature vector

for each stroke. The BLSTM networks sometimes misclassifying strokes at the boundary

between two semantic types in the input sequence. We remedy this using a conditional

random field (CRF). The outputs of the two BLSTM networks are concatenated and fed to

the CRF, which models the interactions between temporally nearby strokes and predicts a

label for each stroke, such that the label is consistent with the stroke’s neighbors.

In testing, our method proved to work well. On average, our method achieved

94.7% accuracy for semantic labeling, which is 2.47 percentage points more accurate than

a previous state-of-the-art method. Also, our method is faster than existing methods. On

average, our method took about 3.2 seconds to process a page of writing, whereas a state-
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of-the-art method took about 285 seconds.

Our third contribution is the development of a two-step grouping method to find

individual equations in students’ handwritten solutions to free-response questions. Mathe-

matical equations are the most abundant type of content in handwritten solutions in many

academic subjects, especially in science, engineering, math, and technology. The purpose of

our grouping method is to enable existing equation recognition techniques such as [69, 74, 73]

to be applied to free form writing.

Many existing methods for finding meaningful objects in handwritten documents

employ a two-step process. The pen strokes are first categorized into various classes. Then

the strokes of each class are clustered into objects. By contrast, we developed a novel

method that simultaneously finds equation strokes and groups them into equations. Based

on the same insights behind our semantic labeling method, we use sequential information

to do this.

The input to our method is two sequences: one consists of features that describe the

shapes of the strokes, the other consists of pairwise features that characterize the spatial and

temporal relationships between each stroke in the sequence and its immediate succeeding

neighbor. Each input sequence is processed with a separate gated recurrent unit (GRU)

network that computes the global context of each stroke in the sequence and produces an

intermediate representation for each stroke. The outputs of the GRU networks are combined

and fed to a CRF layer to predict labels for the strokes. The model produces two labels

for each stroke. The first indicates whether the stroke is an equation stroke or not. The

second label indicates whether or not the stroke is part of the same equation group as the

96



subsequent stroke. Using these two labels, a chaining process assembles the strokes into

groups representing equations. Sometimes students revisit equations to add to them. This

can result in the equation being grouped into multiple pieces. We remedy this by using a

pairwise classifier that examines spatial relationships between pairs of equation groups to

determine if they should be combined.

Our method can find 70% of the equations with no more than three missing or

extra pen strokes, which is significantly better than existing segmentation methods. On

average, our method takes 2.54 seconds to process a page. The output of our method is

suitable for use with mathematical expression recognizers that could be used to interpret

the equations.

Limitations and Future Works

Our answer box recognizer is designed to locate and find final answers to free-

response questions where each final answer comprises three components (i.e., unit, value,

and problem identification). The next step is to integrate our methods with text recognition

methods to enable interpretation of the answers. One limitation of our method is that it is

designed for applications in which each answer has exactly three components. To use our

method for other applications, it will be necessary to remove this requirement.

Our semantic labeler accurately finds the strokes of free body diagrams and equa-

tions. However, we observed that our method performs poorly in recognizing cross-out

strokes. This is due to an imbalance in our dataset: less than 3% of the dataset is cross-

outs. To improve the accuracy of our model, we need to use training methods that support

imbalanced data sets. Additionally, we would like to extend our method to include ad-
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ditional semantic classes such as explanatory notes, organizational information, geometric

diagrams (rather than free body diagrams), and so on.

While our equation grouper works well and is superior to existing grouping meth-

ods, more work is needed to improve its accuracy. We believe that this could be accom-

plished by combining our grouping method with semantic analysis. More specifically, com-

bining our method with an equation interpreter could improve accuracy by augmenting the

spatial and temporal properties we currently consider with an analysis of the meaning of

the strokes in each group. In some cases, knowledge of the actual mathematical meaning

of the pen strokes is needed to make grouping decisions.

Conclusion

There are no existing methods for automatically grading handwritten solutions to

free-response problems. There are methods [62, 66] that can estimate the correctness of

a solution by extracting features from the writing, but these methods do not attempt to

interpret the work. Handwriting recognizers cannot be directly applied to this problem as

they require individual objects (e.g., equation, word, etc.) to be distinguished from one

another. Unlike with handwritten text, solutions to free-response questions have no well-

defined organization that can be used to distinguish objects. For such solutions, students

can write anywhere on the page at any time.

In this dissertation, we have presented methods to locate various types of objects

in solutions to free-response problems so that interpretation methods can be applied. First,

we developed a method for identifying final answers. Once the answers are found, a text

recognizer can be used to interpret them. Second, we developed a method for semantic
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labeling of the solutions. Our method treats the writing as a temporal sequence, which

proved to be a powerful approach to interpreting the writing. Semantic labeling reduces

the complexity of analyzing the writing by decomposing it into smaller problems, one for

each type of content. Additionally, our labeler can support existing methods [62, 66] for

estimating the correctness of solution from properties of the various types of content. Third,

we developed a method for identifying mathematical equations. The output of our method

can be used with existing methods [69, 74, 73] to interpret the equations.

We have not yet achieved the goal of complete interpretation and semantic analysis

of handwritten solutions to free-response problems. However, we have made significant

advances toward that that goal by developing methods for locating important objects,

including answers and equations, in free-form writing.
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Appendix A

Examples of stroke classification

results by the CNN-BLSTM-CRF

model.
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Figure A.1: Equation and FBD strokes are shown in green and purple, respectively.
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Figure A.2: Equation and FBD strokes are shown in green and purple, respectively.
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Figure A.3: Equation and FBD strokes are shown in green and purple, respectively.
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Figure A.4: Equation and FBD strokes are shown in green and purple, respectively.
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Figure A.5: Equation and FBD strokes are shown in green and purple, respectively.
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Appendix B

Examples of equation segments

recognized by the GRU-CRF-SC

model.
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Figure B.1: A red box is drawn around each perfectly recognized equation segment.
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Figure B.2: A red box is drawn around each perfectly recognized equation segment.
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Figure B.3: A red box is drawn around each perfectly recognized equation segment.
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Figure B.4: A red box is drawn around each perfectly recognized equation segment.
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Figure B.5: A red box is drawn around each perfectly recognized equation segment.

111



Bibliography

[1] Gated recurrent unit. https://towardsdatascience.com/

understanding-gru-networks-2ef37df6c9be.

[2] Microsoft ink recognizer. https://docs.microsoft.com/en-us/windows/win32/

tablet/ink-recognition.

[3] Christine Alvarado and Randall Davis. Dynamically constructed bayes nets for multi-
domain sketch understanding. In ACM SIGGRAPH 2006 Courses, page 32. ACM,
2006.

[4] Christine Alvarado and Michael Lazzareschi. Properties of real-world digital logic
diagrams. In Pen-Based Learning Technologies, 2007. PLT 2007. First International
Workshop on, pages 1–6. IEEE, 2007.

[5] Lisa Anthony and Jacob O Wobbrock. $ n-protractor: A fast and accurate multi-
stroke recognizer. In Proceedings of Graphics Interface 2012, pages 117–120. Canadian
Information Processing Society, 2012.

[6] Ahmad-Montaser Awal, Guihuan Feng, Harold Mouchere, Christian Viard-Gaudin,
et al. First experiments on a new online handwritten flowchart database. DRR, 11:1–
10, 2011.

[7] Ahmad-Montaser Awal, Harold Mouchère, and Christian Viard-Gaudin. A global learn-
ing approach for an online handwritten mathematical expression recognition system.
Pattern Recognition Letters, 35:68–77, 2014.

[8] Randy Elliot Bennett. Formative assessment: A critical review. Assessment in Edu-
cation: principles, policy & practice, 18(1):5–25, 2011.

[9] Akshay Bhat and Tracy Hammond. Using entropy to distinguish shape versus text in
hand-drawn diagrams. In IJCAI, volume 9, pages 1395–400, 2009.

[10] John Biggs. Assessment and classroom learning: a role for summative assessment?
Assessment in Education: Principles, Policy & Practice, 5(1):103–110, 1998.

112



[11] Christopher M Bishop, Markus Svensen, and Goeffrey E Hinton. Distinguishing text
from graphics in on-line handwritten ink. In Frontiers in Handwriting Recognition,
2004. IWFHR-9 2004. Ninth International Workshop on, pages 142–147. IEEE, 2004.

[12] Rachel Blagojevic, Beryl Plimmer, John Grundy, and Yong Wang. Using data mining
for digital ink recognition: Dividing text and shapes in sketched diagrams. Computers
& Graphics, 35(5):976–991, 2011.

[13] Carol Boston. The concept of formative assessment. Practical Assessment, Research,
and Evaluation, 8(1):9, 2002.

[14] Martin Bresler, Truyen Van Phan, Daniel Prusa, Masaki Nakagawa, and Václav Hlavác.
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