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TWO DIMENSIONAL WATER WAVES IN HOLOMORPHIC
COORDINATES

JOHN K. HUNTER, MIHAELA IFRIM, AND DANIEL TATARU

ABSTRACT. This article is concerned with the infinite depth water wave equation in two
space dimensions. We consider this problem expressed in position-velocity potential holo-
morphic coordinates. Viewing this problem as a quasilinear dispersive equation, we establish
two results: (i) local well-posedness in Sobolev spaces, and (ii) almost global solutions for
small localized data. Neither of these results are new; they have been recently obtained by
Alazard-Burqg-Zuily [1], respectively by Wu [23] using different coordinates and methods.
Instead our goal is improve the understanding of this problem by providing a single setting
for both problems, by proving sharper versions of the above results, as well as presenting
new, simpler proofs. This article is self contained.

1. INTRODUCTION

We consider the two dimensional water wave equations with infinite depth with gravity
but without surface tension. This is governed by the incompressible Euler’s equations with
boundary conditions on the water surface. Under the additional assumption that the flow is
irrotational the fluid dynamics can be expressed in terms of a one-dimensional evolution of
the water surface coupled with the trace of the velocity potential on the surface.

This problem was previously considered by several other authors. The local in time ex-
istence and uniqueness of solutions was proved in [15 21, 22], both for finite and infinite
depth. Later, Wu [23] proved almost global existence for small localized data. Very recently,
global results for small localized data were independently obtained by Alazard & Delort [3]
and by Ionescu & Pusateri [13]. Extensive work was also done on the same problem in three
or higher space dimensions, and also on related problems with surface tension, vorticity,
finite bottom, etc. Without being exhaustive, we list some of the more recent references
[T, 21, @1, 5] 71, 8, [14], [16], [19], 25].

Our goal here is to revisit this problem and to provide a new, self-contained approach
which, we hope, considerably simplifies and improves on many of the results mentioned
above. Our analysis is based on the use of holomorphic coordinates, which are described
below. Our results include:

(i) local well-posedness in Sobolev spaces, improving on previous regularity thresholds,
e.g. in [I], up to the point where the transport vector field is no longer Lipschitz, and has
merely a BMO derivative.

The first author was partially supported by the NSF under grant number DMS-1312342.

The second author was supported by the National Science Foundation under Grant No. 0932078 000,
while the author was in residence at the Mathematical Science Research Institute in Berkeley, California,
during the Fall semester 2013.

The third author was partially supported by the NSF grant DMS-1266182 as well as by the Simons
Foundation.
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(ii) cubic life-span bounds for small data. These are related to the normal form method,
but are instead proved by a modified energy method, inspired from the authors’ previous

article [10].

(iii) almost global well-posedness for small localized data, refining and simplifying Wu’s
approach in [23].

We consider both the case of the real line R and the periodic case S!. Our equations are
expressed in coordinates (t,a) where v corresponds to the holomorphic parametrization of
the water domain by the lower half-plane restricted to the real line. To write the equations
we use the Hilbert transform H, as well as the operator

p=tu_im
2
Note that P is a projector in R but not on S*.

Our variables (Z, Q) represent the position of the water surface, respectively the holomor-
phic extension of the velocity potential. These will be restricted to the closed subspace of
holomorphic functions within various Sobolev spaces. Here we define holomorphic functions
on R or on S! as those whose Fourier transform is supported in (—oo, 0]; equivalently, they
admit a bounded holomorphic extension into the lower half-space. On R this can be de-
scribed by the relation Pf = f, but on S' we also need to make some adjustments for the
constants.

There is a one dimensional degree of freedom in the choice of «, namely the horizontal
translations. To fix this, in the real case we are considering waves which either decay at
infinity,

lim Z(a) —a =0.

|or] =00
In the periodic case we instead assume that Z(a) — « has period 27 and purely imaginary
average. We can also harmlessly assume that ) has real average.

In position-velocity potential holomorphic coordinates the equations have the form

Zi+FZ, =0,
: |Qal?
Qi+ FQou—i1(Z—a)+ P b =0,
where B
F:P{@], J = |Za|%

For the derivation of the above equations, we refer the reader to Appendiz [Al In the real
case these equations originate in [I7]. The changes needed for the periodic case are also
described in the same Appendiz [Al There are also other ways of expressing the equations,
for instance in Cartesian coordinates using the Dirichlet to Neumann map associated to the
water domain, see e.g. [1] . Here we prefer the holomorphic coordinates due to the simpler
form of the equations; in particular, in these coordinates the Dirichlet to Neumann map is
given in terms of the standard Hilbert transform.

It is convenient to work with a new variable, namely

W=27-a.
2



The equations become
W,+ F(1+W,) =0,
(1.1)

Qi+ FQ, —iW + P PQ;'Q} =0,

where
A=A

=11 2
L T =

These equations are considered either in R x R or in R x S!.

As the system (L)) is fully nonlinear, a standard procedure is to convert it into a quasilin-
ear system by differentiating it. Observing that almost no undifferentiated functions appear
in (L)), one sees that by differentiation we get a self-contained first order quasilinear system
for (W,,Q.). To write this system we introduce the auxiliary real function b, which we call
the advection velocity, and is given by

Qa Qo
s=r| %) r 9.

The reason for this will be immediately apparent. Using b, the system (.I]) is written in the
form

_Qa
Wi+ b(1+W,) = T
Qi +bQ, —iW =P {‘Qaq

where the terms on the right are antiholomorphic and disappear when the equations are
projected onto the holomorphic space. Differentiating with respect to « yields a system for
(Wa, Qa), namely

Qa _ Qa
W+ bW — (0u — % w1 WE, — |
et +1+Wa<Q T+, (1+Wo) A
R ) Q. QP
« b ac T « oo T aF P
Qo 00 ZW+1+W1+W< 1+WW) ~Qala [J X

The terms on the right are mostly antiholomorphic and can be viewed as lower order when
projected on the holomorphic functions. Examining the expression on the left one easily sees
that the above first order system is degenerate, and has a double speed b. Then it is natural
to diagonalize it. This is done using the operator

Qa
1+ W,

The factor R above has an intrinsic meaning, namely it is the complex velocity on the water
surface. We also remark that

(1.2) A(w,q) = (w,q— Rw),  R:=

AWa, Qo) = (W, R), W :=W.,.
3



Thus, the pair (W, R) diagonalizes the differentiated system. Indeed, a direct computation
yields the self-contained system

1+ W)R,
Wt+bWa+ﬂ = (1+W)M,
1+ W
(1.3)
R+ bRy —i (1
t « 1_'_ W )
where the real frequency-shift a is given by
(1.4) a:=i(P[RR.] - P [RR.]).
and the auxiliary function M is given by
R R o _ -

1.5 M = . °— —b, = P[RY, — R,Y] + P|RY, — R,Y].
(15) e | |+ P |
The function Y above, given by

W
I+ W

is introduced in order to avoid rational expressions above and in many places in the sequel.
The system ([L3]) governs an evolution in the space of holomorphic functions, and will be
used both directly and in its projected version.

Incidentally, we note that when expressed in terms of (Y, R) the water wave system be-
comes purely polynomial, see also [24],

Y, +0Y, + |1 =Y [’R, = (1 - Y)M,
{ R+ bR, —i(14a)Y = —ia,
where M is as above, and
b=2R(R— P(RY)), a=2RP(RR,).

However, we do not take advantage of this formulation in the present article.

The functions b and a also play a fundamental role in the linearized equation which is
computed in the next section, Section 2l The linearized variables are denoted by (w, ¢) and,
after the diagonalization, (w,r := ¢ — Rw). The linearized equation, see (2.1I), has the form

1 R
By + bOIW + ————1, a_
O+ b0e)w + <"+ T

w= (1+W)(Pm+ Pm),

(1.6) 1+a
(O + b0, Tow n n,
where _ _
o Ta + Row N Ruw, . R(ry + Row)
S (1+W)2' 1+ W

In particular, we remark that the linearization of the system (IL3]) around the zero solution
is

L wy + 14 =0,
(1.7) r, — 1w = 0.
The analysis of the linearized equation, carried out in Section [ is a key component of this

paper.
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It is also useful to further differentiate (L3]), in order to obtain a system for (W,, R,):
[(1+ W)R,]a
1+ W

Rta + bRaa - _baRa +1 <

W, + bW, + = bWy + (1 + W)R,Y, + W, M + (1 + W)M,,

(1+a)W, Qg

(1+W)? 1+W

In order to better compare this with the linearized system we introduce the modified variable

R := R,(1+ W) to get the system
R,

W, +bW,, + : ~baWeo +RY, + WM + (1 4+ W) M,

TW
o S (1+a)W,
R, +bR,=— 1|0, — | R —— —q, RM.
o ( +1+W) “( w7
Expanding the b, terms via (L3]) this yields
R R
W.: + bW, . W, =Gy,
o TTEw T iew ?
(1.8) R, + IR, (1 +a)Wa _x
' 1+ W »
where

_ R
Gy =RV, — —2_ W, +2MW, + (1 + W)M,,
? TTwo et T1+W)

R, R, :
Ky = -2 R+ 2MR + (Ry R, o)
2 <1+W+1+W) + + ( — iGq)
Next, we define our function spaces. The system (L7 is a well-posed linear evolution in

the space M, of holomorphic functions endowed with the L2 x H > norm. A conserved energy
for this system is

1 1
(1.9) Eqg(w,r) = / §|w|2 + 2—2,(7“@ — 7ry)da.
The nonlinear system (L.1]) also admits a conserved energy, which has the form
1 1 ~ ~ 1, - -
(L10)  EV.Q) = [ WP+ 5(QQu — QQu) = ;(V*Wa+ WAV, da.

As suggested by the above energy, our main function spaces for the differentiated water wave
system (L3) are the spaces H,, endowed with the norm

(W, R)II3,, - Z los(W. R)I2, .

where n > 1. As an auxiliary step, we Wlll also consider solutions (W, R) in the smaller
space
H, = H" x H""z,

with n > 2.
To describe the lifespan of the solutions we define the control norms
1
(1.11) A= Wiz + [IYlzee + D> Rl ooy g

5



respectively
1
(1.12) B = [ID[>Wlzumo + | RallBaro-

where |D| represents the multiplier with symbol [£]. Here A is a scale invariant quantity,
while B corresponds to the homogeneous H; norm of (W, R). We note that B and all but
the Y component of A are controlled by the #; norm of the solution.

Now we are ready to state our main local well-posedness result:

Theorem 1. Let n > 1. The system (3) is locally well-posed for data in H,(R) so that
W + 1| > ¢ > 0. Further, the solution can be continued for as long as A and B remain
bounded. The same result holds in the periodic setting.

In terms of Sobolev regularity of the data, this result improves the thresholds in earlier
results of Wu [22, 23] and Alazard-Burg-Zuily [I]. However, a direct comparison is nontrivial
due to the fact that the above two papers use different coordinate frames, namely Lagrangian,
respectively Eulerian.

As an interesting side remark, the above result makes no requirement that the curve
{Z(a);a € R} determined by W be nonself-intersecting. If self-intersections occur then the
physical interpretation is lost, but the well-posedness of the system ([L3)) is not affected.

Our second goal in this article is to consider the question of obtaining improved lifespan
bounds for the small data problem. Since the nonlinearities in our equations contain qua-
dratic terms, the standard result is to obtain an O(e~!) lifespan for smooth initial data of
size €. However, this problem has the additional feature that there exists a quadratic normal
form transformation which eliminates the quadratic terms in the equation. In the setting of
holomorphic coordinates considered in this paper, this is most readily seen at the level of the
system (LT]). There, the quadratically nonlinear terms may be removed from the water-wave
equations by the near-identity, normal form transformation

(1.13) W=W—=2MunWa, Q=Q—2MuwR,

where the holomorphic multiplication operator 9, is given by Mg = P[fg]. For a more
symmetric form of this transformation, one can replace R by Q.. However, it is more
convenient to use the diagonal variable R. For (W, Q) we have

Proposition 1.1. The normal form variables (I.13) satisfy equations of the form

(1.14) {Wt TQ=6
Qi —iW =K,

where G, K are cubic (and higher order) functions of (W, W, R, Wy, Ry), given by

G = 2P[(F — R),RW + W, FRW + WR(WF) + F,WRWIW|
— P[WRY — W(P[RY] + P[RY])],

W2 +a

1+ W

(1.15)

K:P{(F’(1+W)—R)R+2ZP[ }-%W+2P[bRa]~§RW :
The proot is straightforward; one rewrites the system (LI) in terms of the normal form
variables (W, @), (B18). The original variables are (W, @), but the derivatives of @) from the

perturbative terms G and K are expressed in terms of R and eliminated. We also make use
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of the identity P + P = I. The details are left for the reader. We note that the difference
R — F'is quadratic,
R— F = P[RY — RY].

Heuristically, having cubic nonlinearities yields an improved O(e~?2) lifespan for initial data
of size €. However, implementing this idea directly is fraught with difficulties. To start with,
while GG, K are cubic and higher order terms they also depend on higher-order derivatives
of (W,Q); thus it is not possible to directly close energy estimates for the normal form
variables (W, Q). This is related to the fact that the normal form transformation (LI3) is
not invertible, and further to the fact that the system (1) is fully nonlinear, as opposed to
semilinear.

There are at least two existing methods in the literature which attempt to address this
difficulty. One such method, introduced by Wu [23], is based on the idea that any trans-
formation which agrees quadratically with the above normal form transform will have the
same effect as the normal form transform, but perhaps one can also choose such a transfor-
mation such that it is invertible. In Wu’s work this transformation is an implicit change of
coordinates, which is further followed by a secondary normal form transformation. A related
example where an implicit change of coordinates is fully sufficient appears in the work [I1]
of the first two authors for the related Burgers-Hilbert problem.

A second method, which appears in the work of Shatah etc [18], is based on a mix of
quadratic energy estimates for high derivatives of the solutions, combined with a normal
form method for low derivatives. This works well for water waves in dimension three, but is
not precise enough for the two dimensional problem.

In the present paper we propose an alternative approach for two dimensional water waves,
which seems to be both simpler and more accurate. Precisely, rather than attempting to
modify the equations using a normal form transform, we instead construct modified energy
functionals which have cubic accuracy. A significant advantage of this idea is that it applies
even for the leading order energy functionals, which to our knowledge is new. In a simpler
setting, this method was first introduced by the authors in [10] in the context of the Burgers-
Hilbert problem.

Our first result is translation invariant, and yields a cubic lifespan bound.

Theorem 2. Let ¢ < 1. Assume that the initial data for the equation (L3) on either R or
St satisfies

(1.16) (W (0), B(0)) ]|, <e.

Then the solution exists on an ¢ 2 sized time interval I. = [0,T.] , and satisfies a similar
bound. In addition, the estimates

sup [[(W(t), (t))]

w1 S [(W(0), B(0))]

0 n>2,

hold whenever the right hand side is finite.

Our second result assumes some additional localization for the initial data, and establishes
almost global existence of solutions. This applies only for the problem on R, and relies on the
1

dispersive properties of the linear equation (7)), whose solutions with localized data have ¢~ 2

dispersive decay. To state the result we need to return to the original set of variables (W, Q).
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We also take advantage of the scale invariance of the water wave equations. Precisely, it is
invariant with respect to the scaling law

(W(t,a),Q(t, a)) — (AW (A, \2a), A2 Q()t, \2a)).
This suggests that we should use the scaling vector field
S =t0; + 2a0,,
and its action on the pair (W, @), namely
SW,Q) = (5 =2)W, (5 = 3)Q).
However, these are not the correct diagonal variables; to diagonalize we use the notations

(w,r) = AS(W, Q).
Then (W, R) solve the linearized equations and define the weighted energy
(1.17) 1. Q) () Fyr == W Q)17 + I(W. R)®)IF, + | (w,r)(®)]I3,-

Then we have

Theorem 3. There exists ¢ > 0 so that for each initial data (W(0),Q(0)) for the system
(LTI satisfying

(1.18) W, @)(0)[[3ys, < € < 1,

the solution exists up to time T, = e and satisfies

(1.19) W, Q) OBy Se [t < T

as well as

(1.20) W[+ |Wa| + [|[DEWa| + |R|+|Ral S —,  |t| < T

0

This lifespan bound was originally established by Wu [23]. Here, we prove the same result
under less restrictive assumptions, and, hopefully, with a simpler proof. We should also
mention here the recent work of Tonescu-Pusateri [12],[I3] and Alazard-Delort [3], where
global well-posedness is proved for small localized data. In a follow-up paper we provide a
simplified proof of this result as well.

While our research for this paper was largely complete by the time [13] and [3] appeared,
there is one idea from Ionescu and Pusateri’s article [13] which we adopted here in order to
shorten the exposition; this is the fact that in order to close the estimates it suffices to use
a single iteration of the scaling vector field S. However, our implementation of this idea is
different from [I3], and also more efficient, in the sense that we use no higher derivatives of
S(W, Q).

For the reminder of the introduction we provide a brief outline of the paper. The first step
of the analysis is to study the linearization of the equation (ILTI); this is done in Section 2l
We begin with the diagonalisation of the linearized equations; this in turn leads to energy
estimates, which are crucial in the proof of the local well-posedness result. The linearized
energy functional is then refined so that cubically nonlinear estimates can be proved; this
is essential in the proof of the improved lifespan result. We make no use of dispersive

decay in this normal form analysis, so it works also for spatially periodic solutions. The low
8



regularity threshold is reached by using various bilinear Coifman-Meyer type estimates, as
well as multilinear versions thereof.

In Section Bl we consider the equations for higher order derivatives of the solution. The
principal part of these equations is closely related to the linearized equations studied in
the previous section. After some normalization, the quadratic bounds follow directly from
the ones for the linearized equation. The emphasis there is again on obtaining cubically
nonlinear estimates. The essential idea is to construct a modified energy functional with
better estimates. Our modified energy essentially combines the linearized energy, for the
leading part, with the cubic normal form energy for the lower order terms. This is similar
to the approach in the paper [10] devoted to the Burgers-Hilbert problem.

Section [ contains the proof of the local well-posedness result. We begin with more regular
data, both in terms of low frequencies and in terms of high frequencies. For such data, a
standard mollifier technique suffices in order to establish well-posedness. The rough H;
solutions are obtained as uniform limits of smooth solutions by using the estimates for the
linearized equation. The same construction yields their continuous dependence on data.

In Section Bl we prove the cubic lifespan bounds for small initial data in Theorem [II

In Section [l we provide the proof of the long time results. The cubic lifespan result is a
straightforward consequence of the cubic energy estimates. The proof of the almost global
result is slightly more involved, as it requires, as an intermediate step, to prove the t3
dispersive decay for a limited number of derivatives of (W, R). These bounds are obtained
from the vector field energy estimates, essentially in an elliptic fashion via Sobolev type
embeddings.

Appendix [Al includes, for reader’s convenience, a complete derivation of the holomorphic
water wave equations. Finally, Appendix [Bl contains a collection of bilinear, multilinear
and commutator estimates which are used at various places in the paper. We are grateful to
Camil Muscalu for useful conversations pointing us in the right direction for this last section.

2. THE LINEARIZED EQUATION

In this section we derive the linearized water wave equations, and prove energy estimates
for them. We do this in three stages. First we prove quadratic energy estimates in Ho, which
apply for the large data problem. Then we prove cubic energy estimates in H, for the small
data problem. Various bilinear, multilinear and commutator estimates which are used in
this section are collected in Appendix Bl

2.1. Computing the linearization. The solutions for the linearized water wave equation
around a solution (W, Q) are denoted by (w,q). However, it will be more convenient to
immediately switch to diagonal variables (w, ), where

r:=q— Rw.

The linearization of R is

_ Qa_Rwa . Ta+Raw
o= +W 1+ W
while the linearization of F' can be expressed in the form
0F = Plm — m)],

9



where the auxiliary variable m corresponds to differentiating F' with respect to the holomor-
phic variables,

mo— Qo — Ruw, + Rwa _Ta + R,w I R’wa
o J (1+W)2 J (1+W)2'
Denoting also -
_ R(ro, + Row)
n:=ROR T

the linearized water wave equations take the form
wy + Fw, + (14+ W)P[m —m] =0,
@+ Fqo + Qo Plm —m] —iw+ P[n+n] =0.

: R :
Recalling that b = F' + oW this becomes
(0, + bo)w + (1 + W)P[m — m] = fiwa
P et TIrwW
(0 + 004)qg + QoaPlm —m] —iw+ Pn+n] = Fgo
t a)qd a - 1—|—W
Now, we can use the second equation in ([[.3]) to switch from ¢ to r and obtain
Ruw,
b0, 1+ W)Pm—m|=——,
(O + b0, )w + (1 + W) Plm — m| W
1+a . R(rg+ R,w

Terms like Pm, Pn are lower order since the differentiated holomorphic variables have to be
lower frequency. The same applies to their conjugates. Moving those terms to the right and
taking advantage of algebraic cancellations we are left with

1 R
b0, = o p = ')
o) (0 + 8)w+1+w7‘ +1+Ww G(w,r)
(O + bOy)1 — 2'11:‘;/_10 = K(w,r),
where

Gw,r) = (1+W)(Pm+ Pm), K(w,r)= Pn— Pa.

We remark that while (w,r) are holomorphic, it is not directly obvious that the above
evolution preserves the space of holomorphic states. To remedy this one can also project the
linearized equations onto the space of holomorphic functions via the projection P. Then we
obtain the equations

(O + MpOy)w + P {LTQ} +P [ Ra_ w} = PG(w, 1),

(2.2) 11—|—+W 1+W
, a
(O + MO, — iP L m Ww] = PK(w, ).

Since the original set of equations (I.TJ) is fully holomorphic, it follows that the two sets of

equations, (2] and (2.2)), are algebraically equivalent.
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In order to obtain cubic linearized energy estimates it is also of interest to separate the
quadratic parts G2 and K? of G and K. These are split into quadratic and higher terms as
shown below

G=GY+gt" K= K& 46,
For the quadratic parts we have
PGP (w,r) = — P[Wr,]+ P[Rw,], PK®(w,r)=—P[Rr,],

with PG (w,r) = PG® (w,r) and PK® (w,r) = —PK® (w,r). We can also rewrite the
above expressions in a commutator form

(2.3) PG (w,r) = — [P,W]7, + [P, Rl wa, PK®(w,r)=—[P,R|F,.
The cubic terms have the form
G (w,r) = PmBY + PmBH) £ W(Pm + Pm), K& (w,r)= PnGY — ppbH.

For the purpose of simplifying nonlinear estimates, it is convenient to express G* and K£®)

in a polynomial fashion. This is done using the variable Y = Then we have

1+ W'

Pm = Plwa(1=Y)’R — (ro + Row)(1 = Y)Y],
PmBY) = Plro(W + Y)Y — Ryw(l = Y)Y —wo(2Y — YR,
PnBt) = Pl—r, YR+ R,w(1 —Y)R].

2.2. Quadratic estimates for large data. Our goal here is to study the well-posedness
of the system (Z3) in L? x Hz. We begin with a more general version of the system (Z2),
namely

1 R,
P|—— P
2.4 (O + MpDa)w + [1+W }+ {1+W } G,
' ) 1+a
(O + Mp0,)r — iP L +Ww} =K,

and define the associated positive definite linear energy
ED (w,r) = / (1 + @)l + S(rra)da.
R

We remark that, by Proposition 2.6 a is nonnegative and bounded, therefore
E(2)(w r) & Eo(w,r)

lin

Our first result uses the control parameters A and B defined in (LTT), (TI2):

Proposition 2.1. a) The linear equation [2.4) is well-posed in Ho, and the following esti-
mate holds:

(2.5) thlg,gw r) = 2R / (1+a)w G —ito K da+ O(AB)E (w,r).

11



b) The linearized equation [2.2) is well-posed in L* X Hz, and the following estimate holds:
d
(2.6) i Bl (w,r) Sa BER)(w.r).
Proof. a) A direct computation yields

% (14 a)|w|2da — 23%/(1 + )0, + M) + aidlb, Plw da,

+ / la + (1 + a)b)a] [w]? da.

A similar computation shows that

d
pr I(rd,r) da = 25 /(& + M0, )1 Oy dor.

Adding the two and using the equations (2.4]), the quadratic (w7, ) term cancels modulo
another commutator term, and we obtain

d
(2.7) EE};B(w,r) = 2%/(1 +a)0 G — iy K do + err,

where

erry :/ [a; + (14 a)b)o] |w]*da — 29‘%/(1 + a)l fiN_|w|2da

— 2§R/+au_) ([Y, P] (ra + Row) + [P, blw,) dev.

Using the auxiliary function M in (L), we rewrite it as
erry = /(at + bay) |w|* + M (1 + a)|w|* do — 2%/&10([}7, P] (ro + Row) + [P, blw,) dov.

The error term is at least quartic. To conclude the proof of (ZX)) it suffices to show that
(2.8) lerri| < ABEj) (w, 7).

For the first term, by Proposition in the Appendiz Bl we have |a; + ban| < AB. For
the second term we combine the pointwise bounds |a| < A% in Lemma together with
| M|z~ < AB in Lemma 2.8

For the last term it remains to estimate the commutators in L?. Two of them are obtained
using Lemma 2.1

= 1
1Y, P]7allzz S NIDIEY sasollrll -
and suffice due to the bounds for b and Y in Lemmas 2.72.51 For the remaining piece we
write [V, P](R,w) = [P, P|[Y R,]Jw] and use (B to estimate
— - — 1 1
IP[PY RoJw]|lr2 S w2 | P[Y Ralll smo S w2 I1DI2Y || saroll| D2 Bl paros

where the bilinear bound in the second step follows after a bilinear Littlewood-Paley decom-
position from (B.12) and (B.IH).

b) To estimate the terms involving G and K we separate the quadratic and cubic parts.
It suffices to show that the quadratic terms satisfy
(2.9) 1G® (w, )| 2 + K (w, ) 13 Sa B(lwllez + 171l ,3),

I,
12

1P, blwallzz S [|ball Barol[w]] 2,



while the cubic and higher terms satisfy
(2.10) 1G9 (w, )| 2 + 1K (w, )| 4y Sa AB([wllzz + |17 ,1)-

In order to obtain the estimates claimed in (2.9),(21I0) we use the Coifman-Meyer [6] type
commutator estimates described in the Appendiz [Bl, Lemma 211 Precisely, for the first term
in PG@ (w,r) we use (BI0) with s = 0, and o = 1 to write

| 1P, W]Tallze S 1D Wllsaolirl
For the second term in PG® (w,r) we use (B.I0) with s = 0 and o = 1 to obtain
I[P, Rl @al[ 2 S [|RallBaollw]| 2,
and for PK® (w,r) we use (BI0) with s = 1, and o = £, and conclude that
1P, R 7all 1y < | Rallmniollrl -

The same estimate applies to the antiholomorphic parts of G and K, and (23] follows.
For the cubic and higher parts of G and K we apply the same type of commutator estimates,
as well as the BMO bounds in Proposition 2.2] as follows:

[Plra(l = Y)YW]|lz2 S [Irll 3 (1= Y)Y W]

using (B.I6]) at the last step.

I1Plw(l = Y)RoY]re S llw(l = Y)|lr2[|P[RaY ]l Bro Sa lwll2l| B 01 1Y ]
using (B.12)) and (B.19)) at the last step.

[Plwa(2Y = Y*)R]||2 S wll 12100 PI2Y — Y?) Rl 5r0, Sa [wllzz Y] 2| Rl 520
using (B.12), and (B.I4) at the last step.

. _ o
D7 PlroY Blll2 S [I7ll 53 100 PIY Bl 2 Sa l7]] 3 1Y [z | Bl aro,
again by (B.12)) and (B.14]). Finally,
[1DI2 Plw(1 = V) RaB]|l 12 < [[w(1 = Y)[| 22| D]* P[RaR)l|saro

svob Sa Y llzell7ll

BMO?

1
Sa llwl[z2[[| D12 Rl aol| Rall Baro

follows using (B.12)) and (B.13).
U

2.3. Cubic estimates for small data. For the small data problem it is of further interest
to track the solution on larger time scales. For this we add to the equations the holomorphic
quadratic parts PG? and PK® of G and K and consider the linear equations

1+ W 1+ W
1+a
1+W

For this problem we add appropriate cubic terms and define the modified energy

(O + M. w - P [ L ] P { B w] P Wi — R + G,
(2.11)

(0 + Mydo)r — iP { w} — _P[Rr,) + K.

lin

ES (w,r) = / (14 a)|w]? + S(rr) + 23(Rwra) — 2R(Ww?) do.
R
13



Then we have:
Proposition 2.2. Assume that A < 1. Then
(2.12) EP(w,r) = (14 O(A))Ey(w,1).

lin

In addition, the following properties hold:
a) The solutions to (ZI1)) satisfy

(2.13) thl(m)(w )= 2%/ (1 +a)w — iRro — 2Ww) G +i(F — Rw) K, da
+ OA(AB) lin ('lU, T)-

b) For solutions to the linearized equation ([2.2) we have:

d
thl(wZ (w T) < ABEI(Z3H (w T)

Proof. For (2.12) we need to estimate the added cubic terms in EI(WB (w,r). The second is
trivially bounded, while the first is rewritten as

Q/wP[Rra] dov.

By Lemma 2] we have || P[Rr,]||z: < |||D|%R||BMO||7“||H%, hence (2.12]) follows.
a) To prove the estimate (ZI3) we compute the time derivative of the cubic component
of the energy E3 (w,r), using the projected equations for w and r and the unprojected

equations for R and W:
d _ _ _ _ _ _ _
7 (% / Rwr, do — R / Ww2da) 29/—2'era — Rryro +1Rww, + RroG + RwK, da

(2.14)

+ R / Row? + 2Wuwry + 2WwF da + errs,

where
(2.15)

W2 +a _ _ a—W
N . B B . _
erry = \s/{ <z ( W ) bRa> wr, — Rwo,, (imbra 1P [1 " Ww} + P[Rra]>
W% R, ~ _
W -W o
+§R/{ (bW + T Ra - (1+W)M)

R, _ _
T Ww] + P[Wr, — Rwa]) } dov.

Adding this to (Z3) (but applied to solutions to (2I1I)) we obtain

—R’f’a (Sﬁbwa

- \)\%
+2WU] (?Jﬁbwa — P |:1_|_7W7"a:| + P |:

dt lin
where

d _ - _
(2.16) —E(w,r) = 2§R/ (1+a)w — iRro — 2Ww) G +i(r — Rw) K, da+erry +errs,

errs = 2erry — 2%/awP (W7, — Rw,| da.
14



Given the bound (Z8)) for erry, the proof of ([2I3) is concluded if we show that

(2.17) lerrs| < ABEy(w, ).
Further, recalling the estimate (2.9]), which in expanded form reads
(2.18) 1P [Wro — Rwa] |12 + | P[RF] 3 < Bll(w,r)ll . 45

it suffices to estimate errs,
(2.19) lerry| S ABEy(w, ).

For the remainder of the proof we separately estimate several types of terms in errs:

A. Terms involving b. Here, we use the bounds for b in Lemma 27, which give
1
0allBM0 Sa B, 11D[2b] o Sa A
We first collect all the terms that are contained in the first integral in erry and include b,

We claim that
1 1
(2.20) (1] S (NP2 Rl saollballBrio + [ RallBaoll| D120l saro) lwl| 2 l7 ] 3 -
Integrating by parts we get I; = I, + I3, where
Iy, = /RawP[bra] dao, I3 = /—Rra,‘)ﬁbwa — Rwd, (Myry) da.

The first term on the right has a commutator structure and will be estimated separately
later, see I5 below. The bound for I3 is proved in the appendix, see (B.35]).

We next collect all the terms that are contained in the second integral in erry and include
b, and rewrite them as

I :/ w20, MW + 2Wwdt,w,, do :/—2wwabW + 2Wut,w,, do :/—QWwP[bwa] dao.
The expression Plbw,] is bounded in L? using Lemma 21 to obtain

L] S W |z [[ball marolw][ 72

B. Quadrilinear terms bounded via both L?-L?> and H: - H : pairings. This
includes the following expressions:

I — / RuwPlbro] do — / Plbra] P[Row] do,

_ W o _
Is = /RraP {1+Wra} da = /P[RTQ]P [Yra} dao,

L= / RraP[ Ha w} do — / B Rro| P [Raw(l — V)] da,

Iy = /WwP L fi}‘vw} da = /P[Ww]P [Ro(1—=Y)w]| da,
Iy = / WuwP L vara} do = / P[Wuw)P [Yr,] da



The strategy here is to bound the first factor in both L? and H?z 2z, and the second, partially
in L2 and partially in H~z. For the first factor we have by Lemma 2.1k

_ - 1 1
[Plbra]llzz + [|P[Rrolllr2 S ([1D]20]lBaco + [[|D]2 Rl sao) 7l 3 S AII?“IIH%
[Plra]ll ;3 + IP[Rra]ll ;3 S ([ballsmo + | Rallsmo)llrll 3 < Blirll 3

as well as

|P[Wwl|| 2 + [||D]Z PlRuwlll 2 S (IW | sao + |1DIZ Rl|sao)lwl 2 < Allw]| e,

| PIW |y + 11D P[Ru]l S (D12 Wllsao + [ Rallzvo)llwllz2 S Bllewl)za.
We now consider the second factor in the above integrals. For P[R,w] we have

_ _ 1
1Y PlReawilll2 S IRallsarollwlizz, 1Y PlRakawilll -y S 11D Rl suollwl 2.
k k

The same argument applies to P [Ra(l — Y)w} once we use the decomposition

— }_/) Z Ra,zk’wk

keZ

P [(1 - Y/)Raw} =P — P Z YkRa,<kwk

kEZ

+ Z(l —Y) ik Ro <kwy.

keZ

The first term is easily bounded in L? by Lemma Il The second is also in L? using (B.14))
for the product of the first two factors. Finally, the third is bounded in H -2 by estimating
k
[Ra,<kllze S 22 A
It remains to consider the expression

Yra =

ZYkrka +ZY<krka

Here, the first term is estimated in L? using Lemma 2ZT], while the second goes into H -3,
C. Quadrilinear terms bounded via an L? - L? pairing. This includes the following
expressions:

_ a—W 505
Iy = /Rwaap [1 ¥ Ww} fo= _/aaP[Rw]P (a(1=Y) = Y)w] da,
ho= [ Rud.PiRrda = [ 0,P(Rulo,PIRr.) do.

I = / R PIWT, — R, do / PIRra) PIWF, — Rit]da,

Iy = /WwP[Wfa — Rw,] da = /P[Ww]P[WFa — Rw,] da.

In all cases both factors are estimated directly in L?, using Lemma 2] see also (Z.IJ).
16



D. Trilinear estimates. This includes the terms:

W2 _ W2
1132/%wrada:/wP[me] da, f:Tj‘%f,
_[W-W _ - W-—-W _
Ly= [ WP |—— = [ wP[P =
14 /w [1+WRQ} do /w [Pgw]da, g 1+WR°”

I = /sz [(1+W)M] da = /wP[Phw] dov, h=(1+W)M.

Using Lemma 2.1l we have
(2.21)

1 =
[hsl S NIPEPF | paollwllzzllrl

wbo Hul SIPgllsaollwll, 1hs| < 1P| syollwlz,

so it suffices to show that
1
11 D|2 fllsmo + gl Bvo + ||l Bro S AB.

The f bound follows from the algebra property of BMO2 N L™ in (B16) in view of (B24)
and (B.28). The g bound is obtained by writing

W — W—
P P, .
1—|—W Z <k<1+W)Rka+Z k<1+W)R<k7o¢

For the first term we use (B.I4)), while for the second, (B15)). Finally, the 2 bound is trivial
due to (B.32). The proof of ([ZI3)) is concluded.
b) To prove the bound (2.I4) it suffices to apply the estimate in ([ZI3) with

F = PF*(w,r), G = PG**(w,7).

Given the estimate (2.I0) for the cubic components of F and G and the pointwise bound
(B.24)) for a, it remains to consider the terms

/RTQPF(3+) da, /WwP]—"(?’JF) da, /Rw) PGB da
For the first one we use the second part of ([2.2]]) to get

1
S NIDE R e |17l 1F D2 S ABI|(w, )3

(2.22) ‘ / Rro PFE) da [ER

The second one is directly estimated as

(2.23) /Rwﬁa/Cda S MDPE R pellw] 221K 3 S ABIl(w, 7)I3

PERS [=

On the last term, using the first part of (2.21]), we get

(2.24) /Rwﬁa/Cda S NDE R pellw] 22l 3 S ABIl(w, 7)I3

PERS [=

The proof of the proposition is concluded.

17



3. HIGHER ORDER ENERGY ESTIMATES

The main goal of this section is to establish two energy bounds for (W, R) and their
higher derivatives. The first one is a quadratic bound which applies for all solutions. The
second one is a cubic bound which only applies for small solutions. The large data result is
as follows:

Proposition 3.1. For any n > 1 there exists an energy functional E™® with the following
properties: (1) Norm equivalence:
E"®(W, R) ~a Eo(0"'W,0" ' R),
(i) Quadratic energy estimates for solutions to (IL3)):
d
EE"’(Q)(W, R) <4 BE™®(W,R).
The small data result is as follows:

Proposition 3.2. For any n > 1 there exists an energy functional E™®) which has the
following properties as long as A < 1:
(i) Norm equivalence:
E™® (W, R) = (1+ O(A))Ey(0" "W, 0" 'R),
(i) Cubic energy estimates:
d
EE"v<3> (W,R) <4 ABE™®)(W_ R).

We remark that the case n = 1 corresponds to bounds for (W, R). But these solve
the linearized system (2.2)), so the above results are consequences of Proposition 2] and
Proposition In the sequel we consider separately the cases n =2 and n > 3.

3.1. The case n = 2. We use the system (L8) for (W,,R := R,(1 + W)), which for

convenience we recall here:

R, R, _ R,

W + bW _ W, =RY, — —% W, + 2MW, + (1 + W)M,,
Nt Wt T o Vet +(1+W)
(1+a)“a Ra Ra = .

R, +R, —i——————— = -2 — | R+ 2MR B — 1ag).
o I W W 1yw) T + (Hafla —ida)

Here we have isolated on the left the leading part of the linearized equation. We want
to interpret the terms on the right as mostly perturbative, but also pay attention to the
quadratic part. Thus, for bookkeeping purposes, we introduce two types of error terms,
denoted err(L?) and err(H2), which correspond to the two equations. The bounds for these
errors are in terms of the control variables A, B, as well as the L? type norm

N2 - || (Wom Ra)

||L2><H%'
By err(L?) we denote terms G, which satisfy the estimates
| PG|z Sa ABNy,
and B )
cither ||PG|[2 Sa BNy or [[PG||,, 1 Sa ANs.
18



By err(H %) we denote terms K, which are at least cubic and which satisfy the estimates
IPK]l, 3 Sa ABNz,  [[PE|r2 $a ANy,
and B
|PK||2 Sa ANs.
The use of the more relaxed quadratic control on the antiholomorphic terms, as opposed
to the cubic control on the holomorphic terms, is motivated by the fact that the equations

will eventually get projected on the holomorphic space, so the antiholomorphic components
will have less of an impact. A key property of the space of errors is contained in the following

Lemma 3.3. Let ® be a function which satisfies

(3.1) |19l S A, [ID2®]|suo $ B.

Then, we have the multiplicative bounds

(3.2) ® - err(L?) = err(L?), o - err(H%) = err(H%),
(3.3) ® - Perr(L?) = Aerr(L?), & Perr(H?)= Aerr(H?).

The proof of the lemma, based on Lemma 2.1} is relatively straightforward and is left for
the reader. We will apply this lemma for ® which are arbitrary smooth functions of W and
W. Then the estimates (3.I) are consequences of our Moser estimates in (B.17).

We now expand some of the terms in the above system. For this we will use the following

bounds for M, see (B.32) and (B.33):

(3.4) IMliw S AB, M|, S AN,.
First we note that

(3.5) MW, =err(L?), MR =err(H?).

The first is straightforward in view of pointwise bound for M. For the second, by Lemma 3.3
we can replace MR by M R,. After a Littlewood-Paley decomposition, the H3 estimate for
MR,, is a consequence of the pointwise bound in (34]) for low-high and balanced interactions,
and of the 2 bound in (B4) combined with Lemma T for the high-low interactions.

It remains to estimate MR, in L?. If the frequency of M is larger than or equal to the
frequency of R,, then we can use the H > bound for M. We are left with

> RiaMey =) RiaM(Rep,Yar)+ Y Y RieaPaM(R;,Y)).

k k k  j>k

For the first sum we use .
IM(Rap, Yai) || oo S 22 A%,
For the second we bound
1D RuaPacM(R;, )72 S D 21D Rlfe [ Vil * S AN,
ko >k >k
Next we consider (1 4+ W)M,, for which we claim that
M, = R,Ys — RyYs + PIRW o — Roo W] + err(L?),

P[RW o — Ry W] = A 'err(L?).
19
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By Lemma B3] this shows that

(1+W)M, = RY, — %Wa + P[RW o — Roa W] + err(L2).
To prove ([B.0]) we write
My = RyYy — RYy + P[RY o — RooY ] + P(g1 + 292)
= R,Y, — R,Yy + P[RW,, — RuaW| — Pf + P(g1 + 2g5),

where

f=RWY)aa — Raa(WY), g1 = RYas — RooY, g2 = RoYs— RoYa.
For f and g; we have L? bounds
[Pfllze S ABN,, I1Pgillz2 S BNy,
which follow from commutator type bounds

- _ 1
(3.7) [P[R®au]llr2 S [|[RallBrol|®allrz,  [[P[Raa®]lr2 S [[Rall 41 1 DI2 || Bao,

derived from Lemma Il For the first term in g, we have a similar L? bound, but for the
second we split

p[RaYa] - P[Z Rk,a}_/k,a] + Z R<k,a}_/k,a-
k k

The first sum is bounded in L? using Lemma ZZI], but for the second we only get a H -2
bound,

1Y ReraYiall -y S AN,
k

Finally, we also claim that
ity = RoRo + P[RRoa] + err(H?),  P[RRn] = A 'err(H?),
which is again a consequence of commutator type estimates for holomorphic V:

_ ~ 1
3.8) PRVl 43 SRallamoll Ve, IPRVle2 S DR[|V 3 -

Taking into account all of the above expansions, it follows that our system can be rewritten
in the form

R R,W _ 2RW _ _
o 2 —92RY, - —2_2 4+ P[RWaa — Raa W L%,
W I+w O w7 J+err(L)

1 W, R, R, ~ 1
(O +baa)R—i% = -2 (1 W + 1 +W) R — P[R.oR| + err(H?).

(Or + b0y )W, +

One might wish to compare this system with the linearized system which was studied before.
However, the terms on the right cannot be all bounded in L? x H 2, even after applying the
projection operator P. Precisely, the terms on the right which cannot be bounded directly

. ROJ . Ra Ra
in L2 x H> are —21+7WWQ, respectively —2 (1 W + . —I—W) R.

20



But these terms can be eliminated by conjugation with respect to a real exponential weight
e* where ¢ = —2Rlog(1 + W). Then

\%% R
0= 20— Oy +00y)p = 2R—S— — 2M.
¢ w0 =20
We denote the weighted variables by
w = e**W,, r=e*R.

Using (B3) and Lemma B3 it follows that Mw = err(L?), Mr = err(H2). Then we get the
equations

+ Ba,,_ P[RW 4o — Rooa W] + err(L?),

Ta
b, _
R I
re + bro — i% = —P[RooR] + err(H%).

We are not yet in a position to use our bounds for the linearized equation since w and r are
not exactly holomorphic. We project onto the holomorphic space to write a system for the
variables (Pw, Pr). At this point one may legitimately be concerned that restricting to the
holomorphic part might remove a good portion of our variables. However, this is not the
case:

Lemma 3.4. The energy of (Pw, Pr) above is equivalent to the energy of (W, Ry)

(3.9) [(Pw, Pr)| ~a [l(w, )] ~a [[(Wa, Ra) = Ns.

L1 L1 L1
L2xH?2 L2xH?2 ||L2><H§

Proof. The estimate for w is easy. We trivially have [|w||zz <a ||[Wallzz, while for the
converse we write

Wl £ [ Wae? Wo da = [ WoPw da £ [Wal 2] Pule
To obtain the estimate for r we write
ID|ZP(e?(1+ W)R,) = e?(1 + W)|D|2 Ry + [P|D|2, e*(1 + W)]R,.
We bound all terms in L?. The one on the left is ||| 74> while the first one on the right

is &~ |[Ral ;3 It remains to bound the commutator on the right, for which we have, with
P =e?(1+ W),

I[PID|2, @] Rallr2 < DI @] 2]l DI2 Rl saro S |Wallzz-

Now, we write the system for (Pw, Pr):

1+W

Pr,
P m, Pw, + P — P

{ Rai Pw} = P[RWo — Ry o W] + Gy + err(L?),

. 1+a)Pw — -1
Pn—i—ﬂﬁbpra—zp [%] :—P[RQQR]+K2+GTT(H2),
where
_ R, = _ [ +a)Pw
Gy = —PlbPw,| — P —Pw| , Ky, = P[bPr, Pl— .
2 [bPwd] {1+W “’} 2= PlbPro]+i { 1+W]

21



We claim that Gy = err(L?) and K, = err(Hz). As in Lemma B4 we have
[Pwllz2 + [|1Prll ;3 Sa ANo.
Then, using the commutator bounds in Lemma 2.1, we estimate G5 by
1G22 Sa (ballBaro + | RallBrro) || Pwl 2 Sa ABN,.
Similarly, we bound K, in H 2 by

D 1 fa—W
HK2HH% SA ||baHBMO||PTHH% + H‘D‘z <1 +W)

||J5w]|Lz SJA ABNQ,
BMO

and in L? by

a—W _
P <a A*N,.
| I1Pule Sa 4N,
Finally, in view of the bilinear estimates (B.7), (8), we can replace P[RW ., — Roo W]
and P[R,.R| by P[RPw, — W Pr,], respectively P[RPT,| modulo acceptable error terms.
Taking into account the discussion above, we obtain a system for (Pw, Pr) which is very
much like the linearized system in the previous section:

1 —
12122 S I1D12bll sasoll Prl g +

Pr, R, _ _
Pwy + My, Pw, + P L n W} + P {1 n pr} = P[RPw, — W P7,] + err(L?),

(14 a)Pw )
1+W ’
The results of Proposition B.] and Proposition follow from the energy estimates for

the linearized equation, namely part (a) of Propositions 21122 further, if n = 2 then we
can take

D=

Pry+ 9, Pr, —iP [ } = —P[RP7,) + err(H

E"®(W,R) = E2(Pw, Pr),  E"9(W,R) = E®(Puw, Pr).

lin lin

3.2. The case n > 3, large data. We follow the same strategy as in the case n = 2
and derive the equations for (W1, R(=1D) We start again with the equations (I3)) and
differentiate n — 1 times. Compared with the case n = 2, we obtain many more terms. To
separate them into leading order and lower order, we call lower order terms any terms which
do not involve W=1 R~ or derivatives thereof. In the computation below we take care
to separate all the leading order terms, as well as all the quadratic terms which are lower
order. Toward that end we define again the notion of error term. Unlike in the case n = 2,
here we also include lower order quadratic terms into the error. As before, we describe the
error bounds in terms of the parameters A, B and

(3.10) N, = (W=D, R=D))|

Sl
L2xH?2

The acceptable errors in the W1 equation are denoted by err(L?) and are of two types,
err(L?)1? and err(L?)B. err(L?)P consists of holomorphic quadratic lower order terms of
the form

]D[V\](J')I:{(n—j)]7 P[W(j)R(n—j)]’ p[w(j)R(n—j)]’ 2<j<n-—2.
By interpolation and Holder’s inequality, terms G in err(L?)!? satisfy the bound

|G[r2 < BN,
22



By err(L?)B! we denote terms G which satisfy the estimates
| PG||z2 <S4 ABN,,

and
either ||PG|z2 <a BN, or HPGHH*I <a AN,,.

2 Y

The acceptable errors in the R~ equation are denoted by err(H %) and are also of two
types, err(H2)? and err(H2)B. err(H2)? consists of holomorphic quadratic lower order
terms of the form

p[R(j)R(n—j)]’ P[R(j)R(”_j)], 2<j<n-—2,
and
p[V\/’(J')V\/’(n—j)]7 p[W(j)W(n—j—l)]’ 1<j<n-—1.
By interpolation and Hélder’s inequality, terms K in err(H %)[2} satisfy the bound
1K1 < BNo, [|K|lz2 S AN,

By err(Hz)B we denote terms K which satisfy the estimates
IPK] 1 Sa ABN,, PG> Sa A*N,, IPGll2 Sa AN,

We begin by differentiating the terms in the W equation, where we expand using Leibnitz
rule. For the b term we have

I HOW,) = bW 4+ (n — )b, WD 4 p(=UW, + erry,

R, R, _ _
+ )W(” D 4 oW RR™ D + erry.

= pWb -1 _
a Tt ><1+W 1+ W

Here erry only contains lower order terms, so by interpolation and Holder’s inequality we
getﬁ erry = err(L?). The difference erry — err; is cubic,

erry = erry + (n — YMW®™Y + W, (P[R"VY] + P[R"VY]).

Using the L*> bound for M in (3.4]), Sobolev embeddings and interpolation it is easily seen
that erry = err(L?).
A similar analysis leads to
LA+ W)R,  [1+W)R" ], R, _ e
" 1( 7 _ hd _ W(n 1) Raw(n 1)
1+ W w14 W
+ RV ((n —2)W, — (n — 1)W,,) + err(L?).

Here we remark that all terms in the W1 equation have the same scaling; thus, whenever all the
Sobolev exponents are within the lower order range, we are guaranteed to get the correct L? estimate after
interpolation and Holder’s inequality. The same applies to all the terms in the R~ equation.
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In the M term we also bound lower order terms by Holder’s inequality and interpolation to
obtain

0" [(1+ W)M) = erx(I?) + R" VW, — - fizv WD
+P[RWIY — RO-DW 4 (n — 1)(R,W Y — R-DW,)]
+ p[_R(N—l)Wa + Ra W(n—l) + R(N—I)Wa - Ra(l -+ W)W(n—l)

1+W (14 W)?
+ RW Y — RO-DW 4 (n — 1)(R,W ™D — R-DW ).
Estimating also the quadratic P terms, the above relation takes the simpler form
R,
1+W
+ (n = 1)(R,W"D — R-DW ) + err(L?).

1+ W)M] = R"IW,, — WO 4 P[RWY — REDW]

Now we turn our attention to the R equation. We begin with

0" L (bRy) = bRV + (n — 1)by RV + 5"V R, + erry

= bRg"‘”+(n—1)( o e )R<"—1>+£R<"—l>+ fe

— R(n—l)
1+W 1+W 1+ W 1+W

+ erry,

where we trivially have errs = err(H %) as it contains only lower order terms, both quadratic
and higher order. In addition, the difference is cubic, and is given by

Ri-1 R )

— =(n—1)MR™V + R, (b1 — _
erry —errg = (n—1) + ( W 17w

We claim that this is also err(H %). The L? bound follows trivially by interpolation and
Holder’s inequality.

The H: bound is also ecasy to obtain for the second term, where the unfavorable R~
factors only appear with a convenient frequency balance as R, (P[R™ VY] — P[R"VY]).
Consider now the H2 bound for the first term. Since M = Oy (AB), the nontrivial case is
when M has the high frequency, where we need to estimate

D2 Y MR V|2 S I|D"2 M| 2| DR paso S ABN,.
k

Here, we have used the bound (B.33]).
For the remaining term in the R equation we write
W-a (1+aWrb g0-D

TW (1w 1xw I

1+4+a W("_l) i o - ) N
- (1+)W)2 T w (P[RRCY + (n —1)RR™™Y 4 R, RV

—P[RRIV + (n = )RRV + RyR™))) + errg.
24
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Here err; contains lower order quadratic terms in W (without a) as well as cubic terms which
. . 1 . .
can be easily estimated, so err; = err(Hz). The difference errg — err; only contains lower

order terms so it also can be placed in err(H %). Just as in the case of the W™~ equation,
quadratic P terms can also be placed in the error. Then the above relation becomes

W—-a (1+a)Wr1 RoR™1) err(H
= S E— err
1+ W (1+W)?2 1+ W

Combining the above computations we obtain the differentiated system

NI

8n—1 )

+i <P[RR§7—1>] +(n—1)R,R™Y +

_ - 1+ W)RMD) R _
W(n 1) bw(n 1) (( e «a @ W(n 1) _ G
¢ HOWa T 1+ W Tirw ’
_ _ (1 +a)Wr1)
R L ppn=1) _ ( =K
¢ T T T W !
where
——n U Wb _ (n —1) Ro v 4 P[RW(Y - WRIY)]
1+W 1+W “ @

+ R D(nW, — (n — HW,) + n(R, W™D — W, R"™V) + err(L?),

Ra ROC — B — 7 — ¥
b= <1+VV * 1+W) RO — (P[RRYV) = nRo R™ V) + err(H?).

After the usual substitution R = (1 + W)R" 1 we get

R R
ai (e% W(n_l):G
1+W+1+W ’

(1 +a)WrD
Rt‘l—bRa—Z(( ]_—|>—W ):Kl,

WY WD

where

LR RR . . )
iv‘v - n1R+W — P[RR,] — nR.R + err(H?).

The more delicate terms here are the ones on the right where the leading order terms appear
unconjugated. We would like to eliminate those with an exponential factor as in the n = 2
case, but their coefficients on the right are not properly matched. To remedy that we take
the additional step of the holomorphic substitution

R=R—-R,W"? 1 (2n - 1)W,R"2.

With the exception of exactly three terms, the contribution of the added quadratic correction
is cubic and lower order, so we obtain

(o R R R R
W(TL 1) bw(n—l) 22 o W(n—l) _ (] o W(n—l)
0TV +1+W+1+W " 1+W+1+W
+ P[RW Y — WR V] £ nR(W, + W,) + n(R,W™ Y — W, R" V) 4 err(L?),

(]_ _I_ a)W(n_l) B Ra Ra ~ = = 21
W =-n R — P[RR, —nR,R +err(H?2).

R; + bR, —i _
et ! W 11w
25
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Now we can multiply by e"® where, as before, ¢ = —2Rlog(1 + W), in order to eliminate
the unbounded terms on the right. We get an equation for (w := e?W "= r .= ¢?R):

« RO{ x — B — — —

wy+ b + - Iv‘v a0 = PIRWS ™ = WRED) o n(Rad — Wor) + ere(L?),
1 ] .

e (%) = —P[RR{™V] = nBR,7 + err(H?).

As (w,r) are no longer holomorphic, we project and work with the projected variables.
After some additional commutator estimates which are identical to those in the n = 2 case
we obtain

( Pr., P
Pwt+9ﬁwaa+P{ T_] P{R v

1+W 1+W

(3.11) + nP[RyPw — W, Pr] + err(L?),

(1 +a)Pw

P Pro —iP |t
ry + My Pry — 1 [ oW

Compared to the linearized equation in the previous section, here we have two additional
terms that need to be estimated. We have

} = P[RPw, — WPr,]

\

] — —P[RPF,) — nP[R,PF] + err(H?).

Lemma 3.5. a) The energy of (Pw, Pr) above is equivalent to that of (W™~ RM=1)

(3.12) |(Pw, Pr)ll, oy ~a lw,r)l L, s ~a No,
b) The additional error terms above are bounded,
(3.13) |(P[R,Pw — W, Pr], P[RQPF])HLZXH% <a BN,

Proof. a) For w we argue as in the proof of Lemma [3.4] to get
1Pwllzz =a [[wllze ~a WO 2.

For 7 we need, again as in the proof of Lemma B.4], with ® = ¢?(1 + W), to bound in L? the
difference

K = |D|2Pr — ®|D|z RV,
= HD‘%P, PRV + ‘D‘%P[efb(_Raw(n—m + (2n — 1)W,LR™2)),

as well as the similar difference but with all P omitted. It suffices to prove the estimate
1 n=2
1K |2 Sa [IWED g2 + [WED| T IIR(”_”III’E,

which follows by standard multiplicative and commutator estimates.

b) For the first term P[R,Pw] we directly use the Coifman-Meyer type estimates in
Lemma 21l For the second we bound W, in L*"~% and r in L= by Holder’s inequality
and interpolation. For the third we have to bound |||D|2 P[RaP7]| 2. For the balanced
frequency interactions, by Coifman-Meyer it suffices to bound R, in BMO and r in H 3. For
the high-low interactions, on the other hand, the half-derivative goes to R, and we need to
bound |D|2R,, and r in L*"~6 respectively Lo

O
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Given the above Lemma B8, the n > 3 case of the result in Proposition Bl is a direct
consequence of our quadratic estimates for the linearized equation in Proposition 21l(a).

The small data cubic energy estimates in Proposition are proved in the next section.
The key is to produce a modified cubic energy, whose leading part is given by

B (w,r) = / (14 a)|w]* + S(7ra) + 2nS(Ra@F) + 2(S[Rwry) — R[Waw?]) da.
We claim that the evolution of this energy is governed by the following

Lemma 3.6. Let (w,r) be defined as above. Then
a) Assuming that A < 1, we have

(3.14) B (P, Pr) ~ Ey(Pw, Pr) =~ N,
b) The solutions (Pw, Pr) of [BI1) satisfy
d

(3.15) EEZ&(;?L)(Pw,Pr) = 2/§R(w cerr(L2)2) — (7, - err(H%)m) da

+ OA(ABN,).
Further, the same relation holds if (w,7) on the right are replaced by (W=, RM=1)),

Proof. a) Given the bounds already proved in Proposition for the linearized equation, it
suffices to estimate the additional term,

'/Rau_ﬁ do

For this we use interpolation to bound R,, w and 7 in L=, L2, respectively L =2 in terms
of A and N,,.

b) Here, we begin with the cubic linearized energy, El(fg. According to the bound (2.13)
in Proposition 222 we have

< AN,,.

~Y

%El(f;f(Pw, Pr) = / 2R ((nP[RoPiw — WoPF] + Perr(L?)) - (0 — P[Rry) — P[Wyul))

—2$

(—nP[R,P7] + Perr(I?)) - (7a + P[Rw]a)) da

2
+ 04 (AB||(Pw, Pr)||L2XH%> .
By the Coifman-Meyer type estimates in Lemma 2] the following bounds hold:
(3.16) IP[Rralllzz + | PWow]llz2 + [|P[Rw]] 3 < All(w, )

AR It
Combining this with (813]) and with the bounds for the error terms we get

%E}fg(m, Pr) < / 2R ((nP[Ro P — W, Pr] + Perr(L?)?) - )
- 29 ((—nP[RaPF] + Perr(H=)?) ~Fa) da
+ 04 (AB|(Pw, P2, ).

where the output from all error terms which are cubic and higher error terms is all included

in the last RHS term.
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It remains to consider the contribution of the extra term in EZZY;:;’L) and show that
% / (R, PwPF) da = / R (RoPw — WoPr)Pw) + S (R PTPT,) da
(3.17)
2
+ 04 <ABH(Pw,Pr)HL2XH%> .

Denote by G, respectively K, the two right hand sides in ([BI1]). By the definition of error
terms and by ([BI3) they satisfy the bounds

1(Gus K53 S4 BNwe | Kulli Sa AN,

Then their contribution in the above time derivative is estimated

‘ / S(Ro PG, PF + R, PWPK,) da <a ABN,,

_ ‘ / S(RLPFE,Pr + PR, Pa]PEK,) da

by using Holder’s inequality for the first term and the Coifman-Meyer commutator estimate
in Lemma 2.7 for the second.

The contributions of the b terms are collected together in the imaginary part of the ex-
pression

I= /8a(bRa)PwPr + Ry P(bPw,) P + Ry PwP(bPT,) do
_ / R ([b, P)(Piwa) Pr + Palb, P(Pr,)) da.

Since ||bs||Brro < B, we can bound using Lemma 2., and then use Hélder’s inequality for
all terms.
Next, we consider the remaining contribution of the time derivative of R, for which we
use the equation (L3)). This is
- W — _ _ wW?
S / PwPrd, (ﬁ) do = R / PwPTW , do — R / PwPrd, ( H;Va) da.
The first term on the right yields the second term on the right of ([BIT), while the rest of

the terms are directly bounded using Holder’s inequality:.
It remains to consider the contribution of the remaining left hand side terms in (B.I1]).

Pry . o . .
The expression W in the r equation yields the third term on the right of (BI1), plus
the quartic term

/ SR, P(Pr,Y)Prda = / S(R,[P,Y](Pry) PF + R,Y Pr,Pr) da.

In the first term we apply a commutator estimate and then Holder’s inequality, and in the
second we use Holder inequality directly.

1+W
1
P [ ra Pw} yields the first term on the right of (BI7), plus a Holder quartic term.

R, : ) . .
The contribution of P [ Pw} is purely a Holder term. Finally, the contribution of

1+W
O
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3.3. Normal form energy estimates: n > 3 , small data. In this section, we construct
an n-th order energy with cubic estimates. One ingredient for this is the high frequency
cubic energy E}L‘;ﬁ) in Lemma However, this does not suffice, as the right hand side of
the energy relation (BIH) still contains lower order cubic terms. Here we use normal forms
in order to add a lower order correction to E}Zﬁ), which removes the above mentioned cubic

terms. We recall that the normal form variables (W, Q) are given by

W =W — 2Mgw W,
(3.18) { mw

Q=Q — 2MuwR,

where 9, F' = P[uF’]. They solve an equation where all nonlinearities are cubic and higher,

(319> {Wt‘l’Qa:Ga

Q —iW =K,

see Proposition [l
The obvious energy functional associated to the normal form equations (LI4]) is

Bigo = [ (WP +3(Q7Q1) do.
In view of Proposition [[LT], this functional satisfies an energy equation of the form

d
(3.20) EEJT\L]F’O = quartic + higher,

but it has several defects:

(1) It is expressed in terms of Q™ rather than the natural variable R,
(2) It is not equivalent to the linear energy £\ (W= R(n=1),

(3) Its energy estimate has a loss of derivativélsyf
However, the last two issues concerning E7 . arise at the level of quartic and higher order
terms, and they are specific to the water wave problem. This motivates our strategy, which is
modify Ey . by quartic and higher terms to obtain a “good” energy E™®) without spoiling
the cubic energy estimate (3.20).

We carry out this procedure in two steps: (i) we construct a modified normal form
energy E%,. that depends on (W=D R~} and is equivalent to the linearized energy
El(f,f (W=D R=1): this addresses the issues (1) and (2) above, but not (3); (ii) we sepa-
rate the leading order part £y ;. and modify that to the correct high frequency expression

E,:LZ.’SL) defined in the previous section, which was inspired from the analysis of the linearized
equation. This modification is needed due to the quasilinear nature of our problem. Thus,
we obtain an energy E™®) with good, cubic estimates.

The first step described above is implemented in the following proposition:
29



Proposition 3.7. There exists a modified normal form energy E} . of the form

n  __ 1m n
ENF - ENF,high + ENF,louN

Epion = / (1~ 4nRW) (WP + S[RR,]) + 20S[R, W R] dar

+2 / SRWTIR,] — RIW(W D)2 da,

(3.21)
Bt = R / < UWOWEWO 4 3 g, WOR® R(l)) do,
Jk-+H=2n—2 jk+H=2n—1
such that
(3.22) ENp = EXpo + (quartic and higher terms),
and

(3:93) R pyugn = [1+ O E(WOD BON) By, = O(A)E(W), R).
Moreover, the sums in (3.21) for EYp,,,, contain only indices (j,k,1) with 1 < j, k,l <n—1.

Remark 3.8. The normal form transformation is expressed at the level of (W, Q) variables,
and cannot be easily switched to the level of (W, R). For this reason, initially the compu-
tation of the mormal form energy is done in terms of the original variables (W,Q). The
interesting fact in the above proposition is that in the end we are able express the energies
in the convenient variables (W, R).

Proof. We start from the normal form energy E} ., and express it in terms of (W, R) and
their derivatives. First, consider the term involving W . Using (B.I8), we get that

/ WO do = / (WO — 4R W07 (D Wo)] + 4100 (Mo W) .

The higher-order derivatives W1 cannot be removed from the last term, but it is quartic

and therefore harmless. The cubic term also contain derivatives of order n + 1, but as we

show next they integrate out; as a result, the cubic energy is equivalent to the linear energy.
Moving the projection P across the inner product, we have

/ 700 0 (M W) v = / WG (PIW,RW]) do = / WO (W RW) da
which shows that

/ W12 do = / W2 — 4R [W<" I(WoRW)] da + quartic.



Thus, expanding derivatives, we get

/ W™ 2 da = / (W2 — ARW O WIRW — dn|W ™ 2RIV,

(3.24) _4Z< ) R [V O W O=+0] RO — ARV, W ORI da

+ quartic.

Integrating by parts in the cubic term that contain derivatives of W of the order n + 1, we
get

/&e ORIV do — —% /(%Wa)|w<">|2da
In addition,
/ RIWL VORIV do — % / (R W2 4 ROV, (7)) da

It follows that

/ W2 da = / (1 — dnRW,,) (W™ |2 — 4nz_l C)?R (W (=7 D] Ry )
=2
— 2R[W, (W2 dov + qu;rtic.
A similar, but longer, computation for the terms involving Q yields
/g[@m)@gz)] . o/ (1= 4nRW) (Q) — QuW™) (G — Q™)
+ 20 (Qaa W™ Q™ + Qua W™ Q™) +2QuWMQL da

n—1

1 = j '

4 / Z (n ;— )%[QWQ("‘””]?RW(” do + quartic.
=3

Up to quartic corrections, we may replace Q™ by R~ Y and QY by RU=Y for j < n in the
cubic terms on the right-hand side of this equation. Further, we have

MQ — ROIW = (1+W,) "1+Z(n ) Dyy m=d)

=R+ n(R, WY —W,,R"?) +Z< )R(J W (=)

J
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Thus, we obtain
(3.25)
/ I[O™MOM] da = S / (1 — 4nRW.) RRy, + 2nRa W ™R + 2R, W™ R da

n—1
1 = j j
e 8" st
j=3

Adding (324)) and (B25), we find that

EyNpo = Eyp + quartic terms,

where E% . is given by ([B.21) with

n—1
n n = (n i )
ENFiow = —4/2 (j)?)? [W( A774 J+1)] RIWD dav
j=2

n—1

1 _ . .

+4 / 3 (”j )%[R(”‘I)R”‘J“]%W(’) da
=3

n—3

+23 / nR(WO RO — RAW-D) 1 R, S (" . 1) ROW "D da,
» J
J=2

which, after we substitute W, by W, gives us an energy of the form stated in the proposition.

It remains to establish (322). The second estimate follows immediately from Holder’s
inequality and interpolation. So does most of the first, except for two terms. By the Coifman-
Meyer estimate in Lemma 2.I] we have

).
H?2

/ RW DRI da = / WD PIRRI™Vda = O(A) WV | 2 || R
On the other hand, for the integral

/ RWI[R" YRV da,

we do a Littlewood-Paley decomposition, using the H 2 norm of R™=D if the two R frequen-

cies are high, and interpolation and Hoélder’s inequality otherwise.
O

To get our final energy functionals E™®) we replace ER g hign I ENp by its nonlinear
version, EZZ.’SL) = EZ;;:,)’Z)(Pw, Pr). That is, we define

n n n n,(3 n n,(3
(3.26) E™® = Er o — ENFhign + Ehz'g(;h) = ENFiow + Ehis(zh)‘

Note that £™®) differs from E% . only by a quartic term.
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Now we proceed to prove Proposition B2 The norm equivalence is already known from
BI4) and [323)), so we still need the energy estimate. First, we write

d 3 d d ,(3)
EEn,( ) = EEKTF + i (Egigh - ]T\lehigh) :
This equation shows that there are no cubic terms on the right-hand side, since the derivatives
of B} and EZng,? — BN pign contain only terms that are quartic or higher order.

Next, we write

d d d .

EEn’(s) = EE]y\L/F,low + EE}”’!(]%)
Both expressions have cubic terms, but these cancel due to the prior computation. To
make this cancellation precise, at this point we make the convention that all multilinear
expansions are in terms of W and R. To make this cancellation explicit, we introduce a
truncation operator A* that removes the cubic terms and retains everything which is quartic
and higher.

Hence, we obtain

d . d . d ne
(3.27) EE ) = At (E NF,zow) + A (EEhi;h)) .

It remains to prove the following estimates:

d

(3.28) A <$ Ez"mow) ‘ <. ABN2,
d n

(3.29) ‘A‘* (ﬁEh;gg)‘ <4 ABN2.

The second bound follows directly from ([B.15]), so it remains to prove (3.28)).

3.4. Estimates for lower order terms: proof of (3.28)). We have two main types of
energy terms (or their complex conjugates) to consider,

I = /W(j)W(k)V_V(”doz, jHk+l=2n-2, 1<jkl<n,
I, = /W<ﬂ'>R<k>R<l>da, jHk+l=2n-1, 1<jkl<n.

To estimate their time derivatives it is easiest to use the unprojected form ([L3]) of the
equations for W and R, which for our purposes here we write in the form

(0, + b0)W = —bo(1+ W) — R, =G,

(3.30) W —a
(O + b0a)R = TrwW T

Of G and K we will only need their quadratic parts and higher,

BB W2 +a
* = b, W + P(RY) + P(RY Kt = — .
G bW + P(RY) + P(RY), W
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Then, we have

At (%h> = / P bW, + GPHWOWO + W1 (—pW,, + G2H W
+ WOW®BI(—pW, + G*F) da

Distributing derivatives, we separate the terms with undifferentiated b as
/ b0, (WOWHWO) g = / b WOWOWD g,
therefore all terms involving b have the form
/b(m)W(j)W(k)W(”da, m4+j+k+l=2n—1, 1<m<n—-1, 1<jkl<n-—1,

which we can estimate by Holder’s inequality and interpolation, using Lemma 2.7 to get the
b bounds
1 1
I1DZbllsrio Sa A ID]"72b]l2 Sa N,

The remaining terms have the form
/ FIP(RYYWHOWOdq,

These are again estimated by Hélder’s inequality and interpolation, using the bounds proved
in Lemma 2.7, which show that

IID12 P(RY )| 3o Sa A% [[[D""2 P(RY)||12 Sa AN,

The argument for I is similar, using the algebra property of L> N H?*, together with the
L% and H™ ! bound for a in Proposition in order to show that

| K* || Baro Sa A% I|D|" K|z Sa ANs.

4. LOCAL WELL-POSEDNESS

As the water wave equations ([[LT]) are fully nonlinear, the standard strategy to prove well-
posedness would be to differentiate the equations to turn them into a system of quasilinear
equations for (w,q) := (Wa, Q,), and then apply an iteration scheme. The problem with
a direct implementation of this idea is that the quasilinear problem is degenerate, and di-
agonalizing it requires using the exact equations; thus the diagonalization would fail in an
approximation scheme.

To remedy this, we use the form (L3]) of the equations in terms of the diagonal variables
(W, R) directly. Projecting those on the holomorphic space we obtain

(0, + MD)W + P {%Ra] _ K(W.R),
(4.1)
(0, + 9M,0,) R — iP {%} _ K(W,R),

where K(W, R) := P[(1 +W)M] and K(W,R) := P |al.
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We now turn to the business of solving the system (Z1]). The state space for this will be
the space H,, endowed with the norm

(W, B)l, =Y IIOS(W, R, s

k=0

where n > 1. As a preliminary step, we will also consider solutions in the smaller space
H,=H" x H"+%, with n > 2.

We remark that, given a solution in H, for the above equation, we already know how to
obtain uniform energy estimates for it for n > 1. The issue at hand is to convert those
estimates into a well-posedness statement. We also remark that our energy estimates are
expressed in terms of the control norms A and B. These are in turn mostly controlled using
the H; norm of (W, R). The exception is the L* bound for Y, which, as it turns out, can
be bounded in terms of its initial data and the #; norm of (W, R).

To better understand the evolution of the 7—[1 norm of the solution it is convenient to use
the language of frequency envelopes. We say that a sequence ¢, € (2 is a H; frequency
envelope for (W, R) € H' if (i) it is slowly varying, ¢;/c, < 279~ with a small universal
constant d, and (ii) it bounds the dyadic norms of (W, R), namely ||P,(W, R)|;, < c.

Our main result here is:

Proposition 4.1. a) Let n > 1. Then the problem (1)) is locally well-posed in for initial
data (W, R) in H,.

b) (lifespan) There exists T = T([[(W, R)|;,, [|Y[|) so that the above solutions are well
defined in [0, T, with uniform bounds.

¢) (frequency envelopes) Given a frequency envelope cj, for the initial data in Hy, a similar
frequency envelope C(|[(W, R)|5,, [|Y||z=)cr applies for the solutions in [0, T7.

Thereom [lis a consequence of the above proposition. The statement about the persistence
of solutions for as long as A, B remain bounded is a consequence of the energy estimates in
Proposition 2.1l and Proposition B.I where the constants depend only on A and B.

We remark that the well-posedness result in part (a) carries different meanings depending
on n. If n > 2, then we obtain existence and uniqueness in C(H,,) together with continuous
dependence on the data with respect to the stronger H, topology. On the other hand if
n = 1 then we produce rough solutions C'(?;) as the unique strong limit of smooth solutions,
with continuous dependence on the data with respect to the stronger H; topology. The H;
continuous dependence is a standard consequence of the strong H,, continuous dependence on
data together with the frequency envelope bounds. However, for n = 1, we do not establish
a direct uniqueness result.

The proof proceeds in several steps:

4.1. Existence of regular solutions. Here we consider data (W, R)(0) € H,, with n > 2,

and prove the existence of solutions in the same space. Our strategy is to obtain approximate
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solutions by solving the mollified system

14+ P.yW
(8 + Py, 0u P )W + Py P [ﬁ&wa} = P.yG(P.yW, P_yR),
4.2 =
( ) 1 _'_ CLN)P<NW
14+ P.yW
where P_y is a multiplier which selects frequencies less than N, and
by = b(P<xW, P.yR), ay = a(P-yR).

For fixed N these equations form a system of ordinary differential equations in H,,, which
admits a local solution. We can consider it with a single data, or with a one parameter
family of data. The latter will help with the dependence of data for our original equation.

We will prove uniform estimates for this evolution in H,, n > 1, and then obtain our
solution (or one parameter family of solutions) as a weak limit on a subsequence as N — co.

The (G, K) terms are Lipschitz, indeed C* from H,, to H,, therefore harmless. The H,,_;
norm of (W, R) is estimated directly by time integration,

(at+P<NmbNaaP<N)R_ZP<NP |:( :| :P<NK(P<NW,P<NR),

(4.3) (W, R)[I3,_, S c(l(W, R)|3,)I(W, R)|3,-

d
L
It remains to estimate the Hy norm of 97(W, R). We differentiate the equations ([A.2) n
times. This yields

1+ P yW
(at + P<NmbNaOéP<N)W(n) + P<NP [MaaP<NR(n):| - Gna
' oo (1 + ay) Py W™
(8t + P<NmbNaaP<N)R( ) - ZP<NP |: (1 + P<;W)2 = K,r“

where all other terms, included in GG, and K,,, are estimated directly in Hy in terms of the
H™ norm of (W, R). We observe that the fact that we work in H,, with n > 2 allows us to
use pointwise bounds for R, R,, b, b,, and thus deal with a larger number of terms in this
fashion.

To bring this to the standard form, where we can apply energy estimates previously
obtained in Section [2, we make the substitution

R™ := R™(1 + P_.yW).

Multiplying in the second equation by (1 4+ P-yW), all of the commutator terms are also
perturbative, and we obtain the system

1
Oy + PoyMy 0, PN )W™ + PP [713 Rgﬂ] = G,,
( t <N~tby <N) <N 1+ P_yW <N
. 1+ ay)P.yW™
P P ") _iP_yP ( —K
(at + <Nmb1vaoe <N)R 1< N [ (1 +P<NW) ns

where G,, and K,, are appropriate replacements of the (perturbative) terms in ([@4]), G,, and
K, respectively.
For this system we do energy estimates as before, with the energy functional
E" = /(1 +ay) W2+ Im(R™9,R™) + R™|? da.
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We obtain

dE"
< el (WL R B, R,
We combine this with (£3]). Since
1
1Bl 3 S RN 3 1Y [z + [RI[22[[[ DI2Y [ Baso,
we have that
(W, R)I[3, < c(l(W, R)I3, ) (E" + (W, R)I3, ).

which leads to a bound for our approximate system which is uniform in N,
(4.5) (W, R)(®)]l3, S NW, R)(0)ll3,., 0 <t <T([(W, R)(0)l3,, [Y(0)] )

Similarly, one can consider a smooth family of data (W, R;) in #H,, for h € [0,1]. Then
the solutions depend smoothly on h, with a lifespan uniformly bounded from below. We
consider the h derivatives (w,7) = 9,(Wy, Ry,). These solve the linearized equation, which
when considered in H,,_1, can be written in the same form as ([£.4]), with perturbative terms
on the right. Thus, we obtain

(4.6) 1@, 7)), S (@, 7)(O) 20,1 0 <t <T(W, RY(O)][4,, [[Y (0)[| 2ov)-

In the same manner one can obtain estimates for the second order derivatives with respect
to hin ‘H,_o, etc. Passing to a weak limit on a subsequence as N — oo we obtain a family of
solutions (W, Ry,) which is uniformly bounded in H,,, with A derivatives uniformly bounded
in H,_1, etc.

4.2. Uniqueness of regular solutions. In the previous subsection we have constructed
H,, solutions for n > 2. Here we prove that these solutions are unique. For later use, we
show that uniqueness holds in the larger class of ’Hn solutions for n > 2.

Suppose we have two H, solutions (W, Ry) and (Ws, R,) to (). Subtracting the two
sets of equations we obtain a system for the difference (w,7), namely

(8, + My, 0o + P [1 i Wlfa} =G,
(@7) 1+W,
) . (1 + al)zb 7
(O + My, 0 )T — i P {7(1 W T K,
where

1+ W, 1+W,
- . (1 + al)zb2 (a1 — &2)W2:|
K =K (W1, Ry) — K(Wa, Ry) + My, _y,0uRo + i P
(Wi, By) = KW, Bo) My, 0a R 40 l(1+wl)2(1+w2) 1+ W,

With implicit constants depending on the H, solutions (W, Ry) and (W, R,), we have
(G K)o S (@, 7) 1346

Then we simultaneously do energy estimates for (w,7(1 + Wy)) in H2 = L? x H2 and for
R in L?, and then apply Gronwall’s inequality to get (w,7) = (0, 0).
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4.3. H, bounds. The solutions produced above have a lifespan which depends on the H,,

size of data. Here we prove that in effect the lifespan depends only on the H; size of data,

and that we have uniform bounds for as long as the H; size of the solutions is controlled.
Precisely, suppose we have an H,, solution (W, R) which satisfies the bounds

(W, R)(0)[lz, < Mo,  [[Y(0)][z~ < Ko.

Then we claim that there exists 7' = T(M, Ky) so that the solution exists in [0,7] and
satisfies the bounds
(4.8) (W, B)|| o 0.091,) < M(Mo,Ko)s [ ][ze(o,r)xr) < K(Mo, Ko),
as well as the H,, and ’Hn bounds

[OW, B)llze(0r:,) < C (Mo, Ko)l| (W, R)(O) |3,

[(OW. B)llori) < CMo Ko)[(W, R)(O) [,

To prove this, we begin by making the bootstrap assumption
(W, R)|[ Loy <2Ms [[Y][L=qorxr) < 2K.

We will show that for a suitable choice M (M, Ky) and (Mo, Ky), depending only on M,
and Ky, we can improve this to (48], provided that T" < T'(My, Ky).
We begin by applying the linearized energy estimates obtained in Proposition 2I]to (W, R)

(4.9) (W, R) ), S e“NW, R)(O)]ly, O =C(M,K).

Applying the energy estimates proven in Proposition 3.1 (iz) for the pair (W, (1+W)R,)
we get
(4.10) [(Wa, (1+W)Ra) ()]l S €' [(Wa, (1+ W) Ra)(0)[l54,-

~Y

To combine (L9) and (£I0) we need to invert 1 + W. However a brute force argument
introduces a constant which depends on both K and M, which wreaks havoc with our
bootstrap. Instead we do a more careful argument, using the pair of bounds

1
11+ W)Rall 3 Sk IRall g + IWall 2l DI Rl o,

(4.11) )
IRall ;3 Sic 11+ W)Rall 3 + [Wallz2 || DJ> R | .
Since )
DRI~ Sic 1RI 3l Rall 4
we obtain
I|D2 Rl[2« S M3 (1 + ||| D|2 Rl| 1),
SO

I|D]Z R[ 1 < CoM2e2°t, Cy = Co(K).
Then it follows that
(1.12) |(W, R) (D)L, < CoMie™™.
Since M appears only in the exponent where it is controlled by choosing ¢ small, the bound
(A12) suffices in order to bootstrap M. It remains to recover the bootstrap assumption on
|Y||z. For this we use an estimate of the form

Y7 S IWallzal[ WL+ W) 72| .
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The bound for the first factor is independent of K. For the second we write the transport

equation
W 32w R R
(815 + baa) (1 + W)3 = (1 + W)3 ([P, Wa]m - P |i1—|—7W:| a) .

We can estimate the right hand side in L? with constants depending on . To bound

\W%
RERE in L? we use an estimate of the form

d
£||u||%z = / b |u|? + 2R(0; + b0, )uii de.
R

For the second term on the right we use the Cauchy-Schwarz inequality and for the first
term we use a Littlewood-Paley trichotomy. When the frequency of b, is strictly less than
the frequencies of u and u then we can move half of derivative on either of u or u; otherwise
Coiman-Meyer type estimates apply, and we obtain

1
I/RbaIUIQdOéI S Nballzarollullz: + 11D12bll sasollull 3 l1ull e

We conclude that

d 1
(4.13) Slullzz S 1BallBarollullze + 1IDI2 bl arollull g llwll e + ull 22 ]|(9: + bOa)ull 2.
We apply this estimate to m(t) to obtain
A% A%
—(t < ||—=—=(0 tC(K :

This leads to
Y7 S MoK + tC (K, M).
Hence in order for our bootstrap argument to succeed we need to find IC, M and T so that
M > 2C,(K)MECTMT (2 5 9( MK 4 tC(K, M)).
This is easily achieved by succesively choosing
K2 =10MoK3, M =10C,(KK)M3, T < C(K, M) .

Thus, the bootstrap is complete. .
The next step is to show that we can propagate the full H,, norm given control of H; norm
of the solution (W, R). For higher derivatives we can use Proposition Bl to obtain

(4.14) (W, R)(t)ll, < Ce“ (W, R)(B)llyg,,, € =C(K,M).

We also need to control the growth of the L? norm of R; for this we use equation for
which we can easily obtain L? bounds of the RHS. Applying (E13]) we obtain

R[> < [R(O)]| 22 +tC(K, M).

The H,, bound shows that the solution can be continued for as long as it stays bounded in

Hi, i.e., at least until time T'(Ky, My).
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4.4. H, solutions for n > 2 . Our goal here is to obtain solutions for H, data. We already
know that such solutions, if they exist, are unique. The idea is to approximate a M, data
set (W, R)(0) with H,, data in the 4, topology. As the uniform #, bounds hold uniformly
for the approximating sequence, we would like to conclude that on a subsequence these
approximate solutions converge weakly to the desired solution. The only difficulty with this
plan is that the 7, convergence does not guarantee uniform pomtw1se convergence for R.
This is because the lowest Sobolev norm we control for R is the H?2 norm, and that does
not see constants.

To address the above difficulty, we take an approximating sequence of data (Wy, Ry)(0)
which has the following two properties:

(i) (Wy, Ri)(0) = (W, R)(0) in H,,

(ii) Rk(0) — R(0) uniformly on compact sets.

The second requirement effectively removes the Galilean invariance. It suffices to ask for
pointwise convergence at a single point; in view of the known average growth rates for BMO
functions, this implies the weighted uniform convergence

[og(2 + |a]) ™" Ri(0) — R(0) [z — 0.

We will use the second requirement (ii) to produce weighted uniform bounds for the R
part of the solution. Starting from the uniform bound

[(We, Rl S 1
we estimate uniformly most of the terms in the Ry equation to obtain
(0t + 2R Ry 0n) Riel[ o < 1.
This yields a uniform bound for R along the corresponding characteristic
a(t) = 2RRy (), a(0) =0,
namely

| R, a(t))] S 1.

~Y

This in turn shows that locally in time we have
la(t) S 1,
which leads to the uniform bound
|Bi(£,0)] S 1,
and further to the global bound
| Ri| < log(2 + |af).

This in turn yields a similar bound for 9;W,, and 0; R}, and suffices in order to insure local
uniform convergence of (Wyg, Ry) on a subsequence. Thus, the desired solution (W, R) is

obtained in the limit.
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4.5. Rough solutions. Here we construct solutions for data in H; as unique limits of
smooth solutions. Given a H; initial data (W, Rg) as above we regularize it to produce
smooth approximate data (WE, RE) = P, (W, Ry). We denote the corresponding solutions
by (W* RF). By the previous analysis, these solutions exist on a k-independent time in-
terval [0, 7] and satisfy uniform #; bounds. Further, they are smooth and have a smooth
dependence on k.

Consider a frequency envelope ¢ for the initial data (W, Ry) in #,. Then for the regu-
larized data we have
< Ck2(n_1)k, n > 2.

~

I(WE. Bo)ll3,

Hence, in the time interval [0, 7] we also have the estimates
(4.15) I(W*, B[, S ex27D%, n>2.

We will use these for the high frequency part of the regularized solutions.

For the low frequency part, on the other hand, we view k as a continuous rather than a
discrete parameter, differentiate (W*, R¥) with respect to k& and use the estimates for the
linearized equation. One minor difficulty is that the linearized equation (2.]) arises from the
linearization of the (W, Q) system in (ILT]) rather than the differentiated (W, R) system in
([C3). Assuming that (W* QF) were also defined, we formally denote

(W, 1%) = (. W*, 0,Q" — ROLWF).

These would solve the linearized equation around the (W*, R¥) solution. For our analysis
we want to refer only to the differentiated variables, so we we compute

8awk = 8ka,
Oor* = (1 + WH)OL.R" — RFw”.

We take these formulas as the definition of (w*,r*), and observe that inverting the 0,
operator is straightforward since the above multiplications involve only holomorphic factors
therefore the products are at frequency 2¥ and higher. To take advantage of the bounds in
Proposition 2l for the linearized equation, we need a H, bound for (w*(0),7%(0)), namely

(4.16) 1(w"(0), 7*(0)) 13, S ex27.

The bound for w*(0) is straightforward, but some work is required for 7*(0). This follows via
the usual Littlewood-Paley trichotomy and Bernstein’s inequality for the low frequency fac-
tor, with the twist that, since both factors are holomorphic, no high-high to low interactions
occur. ‘

In view of the uniform H; bound for (W* Q*), Proposition EI] shows that in [0,77] we
have the uniform estimate

(4.17) (0, 7l S ex2-
Now, we return to (W*, R¥) and claim the bound
(418) ]|P§k(8ka, 8kRk)HHO 5 Ckz_k.

Again the W* bound is straightforward. For 0, R* we write

OR* = (1= Y")(0ur* + RLOWT),
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where again all factors are holomorphic. Then applying Py, restricts all frequencies to < 2%,
and the Littlewood-Paley trichotomy and Bernstein’s inequality again apply.

Now we integrate ([AI8]) over unit & intervals and use it to estimate the differences. Com-
bining the result with (ZI5) we obtain

(W1 — Wi, R — Rl
||03(Wk+1 — Wy, Rpy1 — Rk)”}lo

< Ck2_k,

~Y

< Cka.

~

(4.19)

Summing up with respect to k it follows that the sequence (W¥, R¥) converges uniformly
in H, to a solution (W, R), which also inherits the frequency envelope bounds from the data.

The frequency envelope bounds allow us to prove continuous dependence on the initial
data in the H! topology. This is standard, but we briefly outline the argument. Suppose
that (W, R;)(0) € H, and (W;, R;)(0) — (W, R)(0) — 0 in H;. We consider the approxi-
mate solutions (W%, R¥), respectively (W*, R¥). According to our result for more regular
solutions, we have

(4.20) (W5 RE) —(WF RF) -0 in H,.
On the other hand, from the H; data convergence we get
(WE RF)(0) — (W, R;)(0) =0 in H; uniformly in j.
Then the above frequency envelope analysis, shows that
(W RF) —(W;,R;) =0 in H; uniformly in j.
Hence we can let k£ go to infinity in (.20 and conclude that
(W,,R;) —(W,R) =0 in H.

5. ENHANCED CUBIC LIFESPAN BOUNDS
In this section we prove Theorem 2l Given initial data (W, R) for (L3)) satisfying
(W, B)(0)][, <,
we consider the solutions on a time interval [0, 7] and seek to prove the estimate
(5.1) (W, R)(t)llz, < Ce, te€]0,T],

provided that 7' < e~2. In view of our local well-posedness result this shows that the
solutions can be extended up to time 7. = ce~? concluding the proof of the theorem.
In order to prove (5.I]) we can harmlessly make the bootstrap assumption

(5.2) (W, R)(#)|l5, <2Ce, te0,T].

From (5.2)) we obtain the bounds
A, B S Ce.

Hence, by the energy estimates in Proposition applied to (W, R), and those in Proposi-
tion B2 with n = 2, applied to (W,, R,) we obtain

[OW, R) ez S 1OW, RYO)lli, + TABIW, B)l| o) S €+ T

Hence, the desired estimate (5.1) follows provided that T' < (Ce) 2.
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6. POINTWISE DECAY AND LONG TIME SOLUTIONS

In this section we prove the almost global existence result in Theorem Bl This is achieved
via a bootstrap argument for the energy norm ||(W, Q)(t)||wsu defined in (LI7) as well as
the control norms A(t) and B(t) in (LII),(LI2). In order to have a more robust argument
we will work with a stronger norm ||[(W, R)||x = A(t) + B(t), namely

1
(W, B)||x = Wz + 1Bl zoe + D> Wallzoe + | Rl o0
Then we will establish the energy estimates

(6.1) sup [[(W, Q)(t)[bwn < €,

[t|<Te

as well as the pointwise bounds

(6.2) (W, R)lx Sety™2, [ <T,
for times T, satisfying
(6.3) T.<e ", <1

A continuity argument based on our local well-posedness results shows that it suffices to
prove that (6.2) and (6.1]) hold for all 7, as in (6.3]), given the bootstrap assumptions

(6.4) |tS\1£ (W, Q)(t)|[wn < Ce,
(6.5) I(W,R)|x <Ce(t)™2, 0<t<T,

with a large constant C' (independent of ).

6.1. The energy estimates in (6.1]). Here we use the bootstrap assumption (6.5) in order
to establish (6.4). The only role of (6.4) is to insure that a solution with appropriate
regularity exists up to time 7,. We summarize the result in the following

Proposition 6.1. Assume that in a time interval [=T,T| we have a solution (W, Q) to (L))
which satisfies (LI8)) and ([6X). Then we also have the energy estimate

(6.6) IV, Q) 3y S ), t€[-T,T]
for some Cy > C.

Then the bound (6.1]) holds with a constant independent of C' for times as in ([6.3]) if we
choose ¢ = C; .

Proof. The energy bound for (W, Q) is a consequence of the conserved energy (LI0). The
energy bounds for (W, R) and (w,r) := AS(W,Q) follow by Gronwall’s inequality from
the cubic energy estimates for the linearized equation in Proposition 2.2} indeed, by our
bootstrap assumption ([635) we have A(t), B(t) < Ce(t)~2, therefore,
t 252 s —1 s
[, ) @)y S €50 7 (w, 1) (0) 13

~

which suffices for T, as in (63)). Finally, the bound for 9*(W, R) with 1 < k < 5 follows also
by Gronwall’s inequality from the cubic energy estimates in Proposition .2 O
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6.2. The pointwise estimates. Here we use the bootstrap assumption (€3] in order to
establish (6.2)). To state the main result here we introduce the notation

(6.7) w(t,a) = 11 + !

)= ((a)/{t) + (t)/{)

<1,

NI=

Then we have:

Proposition 6.2. Assume that [66) and ([@H) hold in some interval [T, T]|. Then we also
have

(6.8) W]+ |R|+ || DIz Wa| + |Ra| S e(t)"2 ()9 w(t, a)

Then our pointwise bound (6.2]) follows for times as in (6.3]), and the proof of Theorem
is concluded.

We remark that the result we prove here is somewhat stronger than what we need. How-
ever, on one hand this is what follows from our analysis, and on the other hand this stronger
result will come in handy when we prove the global result in a follow-up paper.

The rest of this section is devoted to the proof of the above proposition. We note that
([E3) plays no role in this argument.

In order to obtain pointwise bounds it is convenient to work with the normal form variables
(W, Q), given by ([LI3)). Then we prove several very simple Lemmas. The first one shows
that we can harmlessly replace (W, R) by (W,Q,) in the pointwise estimates.

Lemma 6.3. Assume that ([6.6) and (63) hold in some interval [=T,T]. Then
(6.9) I(W =W, R=Qa)llx < &5 (W, Qu)llx
Proof. 1t suffices to show that

I(W =W, Qa = R)|Ix S ()5 [I(W, R)||x

For the W bound we have W — W = Mgy W, so we use Sobolev embeddings, product
Sobolev bounds and interpolation to estimate

19w Wall 2o + ||D]2 (M W) [ 100 < [RWW, | 1 + || D2RWW,)|| s
SND2W ||| Wallzoo + [|W | oo ([[Woall e + [|D*W | 14)
1 1
S (W e + [ Walle) A2 W] 12,5
< C2E() 1O | (W, R)|x.

which suffices since € is small.
For the R bound we write

Qo — R=W,R —20,(MpwR)

and a similar argument as above applies.

Our second lemma translates the energy bounds to (W, Q)
Lemma 6.4. Assume that ([66) and ([©3) hold in some time interval [=T,T]. Then

(6.10) 1OV, @)1, + ISV, Q) S O
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Proof. For W we estimate the quadratic terms
IRWWallz2 +110°(RWWo)llze S W |z (Wallz2 + 10°Wallz2) + [[Wall o [0° W] 2
S eWallpe + 10°WlL2),

By interpolation and Sobolev embeddings we can combine (6.6) and (G.5]) to obtain the
rough bound

WL + 1Rl S €,
which we will use to supplement ([G3). For Q we first bound the quadratic term in H 3
IRWR| .1 S Wz llRl 41 + IWI 2Rl e S €(lR] g + W 4)-
For higher derivatives we write
Qo = R(1+W,) — 20,(Mpw R)

and apply the same method.
The goal of the reminder of the proof is to prove that

(6.11) ISV, Qllsgsi, S elSW.R) 15,
Recalling the notation (w,r) = (SW, SQ — RSW), we first write ST as
SW = w4 2P[RwW, — RW,w — 2RW W, + 2P0, [Magww],

and use the L? bound on SW to estimate all but the last term in L?, and the last term in
H~'. Finally, for SQ we have

1+ W,

Here it suffices to estimate the contribution of w in L?, while the contribution of r, is
estimated by

SQ = SQ — Mopsw R — Mogw SR = r + Rw — 2P(RwR) — 2P [%W(T‘J‘ + Raw)]

ORW
14+ W)

where ||| D]z H|| gaso is estimated using (B16), (BIZ). The proof of L) is concluded. [

1
lraH |, -y S Nrll s ([H] e + [[|1D]2 H[5ar0),

The advantage of working with (W Q) is that they solve an equation with a cubic nonlinear
term, namely ([I4), where the nonlinearities G and K are given by (LI5). They involve
second order derivatives of W and (), which is why one cannot simply use the above equations
as the main evolution.

Lemma 6.5. Assume that (61) and (63) hold in some time interval [=T,T]. Then

63

. 2
(6.12) (G, K)lg, S Eﬁf)C1 :

Proof. Given the expression above for G, it suffices to bound each factor in each term in
suitable LP norms, interpolating between the L? norms in (6.) and the L™ norms in (6.5).
For K the argument is similar, but we also need to use Lemma 2.4] in the Appendix [Bl in

order to distribute the half derivative. O
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Taking into account the correspondence, established in the last three lemmas, between
the original variables (W, Q) and the normal form variables (W, @), it follows that we can
restate Proposition in the following linear form:

Proposition 6.6. Suppose (W, Q) solve (LI4) and that the following bounds hold at some
time t:

ISW, Q) lsgre, + 1OV, Q) S 1,
(G Kl S (07"
Then
(6.13) W +(|D|2Q| + |D*W| + ||D|2Q| < () 2w(t, a).

Combining the scaling bound with the equation (LI4]) we are led to a system of the form

(6.14) { 2048,11/:(/ + tﬁftQ :~C~;1 = S:W —N G,
200,Q — itW = K, .= 5Q — K.

where

(6.15) (G Kl ST

From here on, all our analysis is at fixed ¢.
After the substitution

(w,r) = (W,|DQ),  (g,k) = (G, |D|2 Ky +|D|zQ),
the above system is written in a more symmetric form as

200w — it|D|%r =g,
(6.16) !
2a0,r —it|D|2w = k.
For this it suffices to establish the following result:

Lemma 6.7. The following pointwise bounds hold for solutions to (6.10):
_1
(6.17) jwl+ |r| S el 72 ([[(w, 7)|[ 22 + [[(g, k)| 22),

1 1
()4 " ((a)/(t) + (t)/(a))2

(6.18)  [w|+[r| S ()72 ( ) (N Cw, )2 + g, B[ a-1),

(6.19)

1wl + |05 < (1)} ( ! !

0T (@) + (1))}

fT}(le la)st part is applied with k& < 2, which justifies the exponent 5 in the definition (6.7)
of w(t,a).

) (I (w, P) [ g2wsz + (| (g, K) [ 1)

Proof. Without any loss in generality we assume that || > 1. It is convenient to work with

frequency localized versions of (6.16), at frequency —2°, with ¢ € Z. The localized dyadic
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portions (wy, ) solve similar equations with frequency localized right hand sides (gy, k).
Further, a straightforward commutator estimate shows that

(6.20) D e ke < N Cw, )13 + 119, k) e

Lel

To prove (6.17) we observe that the system (6.16]) is elliptic away from frequency 2¢ ~ t2a 2
and degenerate at frequency zero. At frequencies less than o' our source for the pointwise
estimate is Bernstein’s inequality. Comparing the two frequencies yields the threshold o = #2,
2¢ = ¢=2. Thus, we distinguish the following regions:

Case A: 2° < t=2. We group all such frequencies together. We can harmlessly discard
the it|D|? term from the equations and compute

d 2

Slw(a)? = 2R(0w,),

and similarly for r. Depending on the sign of a we integrate from either +o00 or —oco and
apply the Cauchy-Schwartz inequality to obtain
w2 * S la| ™ lwere|| 2 llawep-2 ol 2.
We remark that by Bernstein’s inequality we also get
wei-z| S 87 lwepel| 2.
It follows that
wei—2| S (t+ o))"
Case B. t72 < 2. Here we have three regions to consider:
B1. The outer region |or| > [¢|272 where the problem is elliptic, with ad, as the dominant
term. , X
B2. The inner region |a| < [t|272 where the problem is elliptic, with it|D|2 as the

dominant term. )
B3. The intermediate region |a| = [t|272 where the problem is hyperbolic.

We consider three overlapping smooth positive cutoff functions x°,;, X’,.q and x5, asso-
ciated with the three regions. In order to keep the frequency localization we assume that
all three cutoffs are localized at frequency < 2¢, at the expense of having tails which decay
rapidly on the 27¢ scale. We remark that the three cutoffs begin to separate exactly at
2t =172,

For the regions B1 and B3 we use elliptic estimates, while for B2 we use a propagation
bound.

Using the frequency localized form of (6.16) we can bound

1
1X6ut @ (we, 7o)l 22 S 181X uel DI (res we) |22 + 11 (ges Ke) | 2.
After some commutations this gives

£
2" axou(wes o)l 2 S 221t IXoue (re, we)llz2 + [1(ge, ko) | 22 + | (we, 7o) -

Taking into account the localization of x*,, this yields

(6.21) 2" axgue(we, re)llz2 < (g Kellze + [l (we, 7o) | 2.
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By Bernstein’s inequality this gives the pointwise bound

iy —
(6.22) Xout| (e, )| S 272 |07 (1 (9o ko)l 22 + [[(we, 7o)l 2) -

A similar computation, but with the roles of the two terms on the left in (G.I0]) reversed
gives

¢
(6.23) [t122 i (we 7o) 22 S (1(ges ko)l + 1] (we, o) 2.
By Bernstein’s inequality this gives the pointwise bound

(6.24) Xinl (we, )| S H7 (1(ges e[ 22 + [l (wes 7o) | 22) -

It remains to consider the intermediate region, where we produce instead a propagation
estimate. Precisely, for x! _,(wy, ) we estimate

(4020, — it*)Xbeatwell 2 S 11202000 X eatve = it| D Xoearo) 22
+ [ DIZ X e = 1 peqoe) 12
_t
S 18272 (e, ke)llzz =+ [[(re, we) | 22),
and similarly for r,. Applying
d P

for u = x* _w, and u = ¢ _,re, integrating from infinity and using the Cauchy-Schwarz
inequality yields

_ _¢
Xmeal (We, 1) S a2 (61272 (|1 (g2, Ke)ll 22 + [[(re; wo) [ 22) | (e, we) | 2.

Using this in the interesting region |a| ~ [¢|¢2 and the inner and outer estimates away from
it we obtain

_1 L L
(6.25) Ximeal (We, 1) S 172 ([[(ge, ko) 17211 (rywe) 172 + 1| (e, we) | 2).

Now, we prove the bounds in the Lemma by dyadic summation. There are several cases
to consider:

Case 1: t72 < 2¢ < 1, where all three bounds coincide, and it suffices to prove (6.IX).
Assume that the two norms in the right hand side of (GI8]) are < 1. For a we have three
cases:

(a) |a| > 2, where we are in case Bl for all £. There we need only (6.22) to conclude that

1
L - .
|(wp—2 ) (@] S Y 272l ™ & tlla] 7

20=t—2

(b) [t] < |a| < t2, where we are successively in case B1, B2 and B3. There we use (6.22))

(6.25)) and (6.24]) to conclude that

a™2t? 1
_ _1 iy _
[(wpz s rp2)(@ S D T a2+ Y 272 o]
20 —t—2 20 —q2¢—2

~ [t~ [log(1+ ]| ™)+ |a] % +[a] " S |a] 2.
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(c) |a] < |t|, where we are in case B3 for all £. There we need only ([6.24)) to conclude that

1
[(wp-2 s -z (@] S D 117 S 7 log(lt] + 2))-

20=t—2

Case 2: 1 < 2°. Here we have two subcases:
(i) |a| > |t|, where we are in case B1 for all £. There we need only ([622)) to conclude that

[(ws1,751) (@) S 22 2o 7 (1w, )z + 11(g, Bl z2) = lad = (1w, m) 22 + (g, B)ll2),

2¢=1

which suffices for (6.I7). In order to also obtain ([6.19) we also use the Bernstein bound
14

(6.26) |(we, 7o) S 22| (we, 7e) || 2
Then we obtain
0" (ws,rs1) (@) £ Y min{2™al ([ (g, k) e + 1w, ) ), 274 w0 g}

20—1

< lal=2 (g, k)l + | (w, )l -1)2 | (w, 7“)||H2k+2

(i) |a| < ||, where we are successively in cases B1, B2 and B3. There we use (6.22)) (625
and ([624) to conclude that

(wsr,r21)(@)] S <Z|tr1+|ar%+ > 2‘%\*) (1w, )22 + (g, )l 2)

26=1 2l=q—2¢2
_ _1 _ _1
= (17 Pog@ + It1/lal)l + It =% + 1817 ) Il =2 (1w, 7)1 22 + 19, K)lz2)

S lal 72 (1w, 7z + (g, #)122),

which suffices for (617).

Finally, the bound (6.19]) is obtained exactly as in (i) by combining the last computation
with the trivial pointwise bound for 9% (wy, 7¢) obtained from Bernstein’s inequality (G.20).
Separating the contributions from cases B1, B2 and B3 we obtain

0% (wsr1,751) ()| ST+ IT+111,

where by (6.22) and (6.26) we have
072t2
r="" min{2E D92 ()| (w, )|l + (g, k) la-2), 275 (w, 7| s}
20=1

TN
S =T (w, )l -+ 1, k) [+ (1w, 7) || r2er2)
by (G.25]) we have

17 = a1 (1w, )+ 10 R) )l 0, e
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and by (6.22)) and (6.26) we have

o0

. 1 — — 3
r= Y min{2% 2 o 7 (|| (w, )+ (g, B) 1), 272 (w, 1) o}

20=q—2¢2

1, — 1 1
S lal2 [t (1w, )=+ (g, W) =) 211 (w, 7)o

APPENDIX A. HOLOMORPHIC EQUATIONS

In this section we give an alternative derivation for the evolution equations for water
waves in conformal coordinates. They were first obtained in [I7], and also later in [9] 24]
but using a different set up. We use a holomorphic form of the equations, as in [9, 24], but
we compactify the equations even more, as we will show below. We also express the normal
derivative of the pressure on the boundary in terms of our variables.

We consider two-dimensional, irrotational gravity water waves in an inviscid, incompress-
ible fluid of infinite depth. First, we discuss the localized case on R in which the waves decay
at infinity. The spatially periodic case is almost identical, and we describe the appropriate
modifications afterwards.

1.1. Holomorphic coordinates. Suppose that at time ¢ the fluid occupies a spatial region
Q(t) € R? whose simple nondegenerate boundary I'(t) = 9Q(t) approaches y = 0 at infinity.
Then there is a unique conformal map F(¢) : H — Q(¢) from the lower half-plane

H={a+il:p <0}
onto (t), with = = x(t, o, f) and y = y(, «, ), such that z = x + iy satisfies
z—(a+if) =0 as a+if — oc.

Since F(t) is conformal, we have x, = yg, 15 = —yo. If f(t,-) : Q(t) — C is a time-
dependent spatial function and ¢(¢,-) = f(¢,-)oF(t) : H — C is the corresponding conformal
function, then g, = f; + x¢ fo + yify, SO

1 1 .
(A1) fi=g:— ; (TaTt + Yalt) Go — ; (zpe +ypye) 95, J = 22 + Yo

Also, if f +1ig : H — C is a holomorphic function with boundary value F' + iG on the real
axis # = 0 that vanishes at infinity, then F' = HG where the Hilbert transform H is defined
by

1 o0 / ) )
Hf(a) = ;p.v./ % do/, He™™ = —j(sgn k)e™*.

We denote by P = %(I — iH) the projection onto boundary values of functions that are
holomorphic in the lower half-plane and vanish at infinity. That is, P projects functions
onto their negative wavenumber components.
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1.2. Water waves in holomorphic coordinates. Let ¢ : 2(¢) — R be the spatial velocity
potential of the fluid, chosen so that it vanishes at infinity, and ¢ = ¢ o F : H — R the
corresponding conformal velocity potential,

Ut o, 8) = ¢ (ta(t, o, B),y(t, v, B)).
Then 1) is harmonic since ¢ is harmonic; we denote the conjugate function of 1 (t, «, 5) by
0(t, «, 5). The velocity components of the fluid (u,v) = (¢, ¢,) are given in terms of ¢ by

(A.2) u = % (Tatha +2505), v= % (Yoo + ysts) -

The conformally parametrized equation of the free surface I'(¢) is x = X (¢, ), y = Y (¢, ),
where X (t,a) = z(t,a,0), Y(t, ) = y(t, @, 0).

To avoid any confusions, we emphasize that the variable Y used through this section
has a different meaning than elsewhere in the paper; it is the vertical component of the
parametrized free surface Z(t, ).

Since (z —a) +i(y — ) is holomorphic in the lower half-plane and vanishes at infinity, we
have

(A.3) X=a+HY, Y =—-H(X —a).

Let W(t,a) = 9(t, v, 0) denote the boundary value of the conformal velocity potential and
O(t,a) = 0(t, a, 0) the conjugate function, where © = —H WV and

(A.4) djﬁ‘ﬁzo =HYV,=-0,.

After these preliminaries, we transform the spatial boundary conditions for water-waves into
conformal coordinates.

Kinematic BC. A spatial normal to the free surface I'is (=Y, X,,). The kinematic BC, that
the normal component of the velocity of the free surface is equal to the normal component
of the fluid velocity, is

(X, Ys) - (=Y, Xo) = (u,v) - (—Ya, Xa) on I'(¢).
Using (A.2) and (A.4) in this equation and simplifying the result, we get
(A.5) XY =Y, X, = —0,.
In addition, the function z;/z, is holomorphic in H and decays at infinity, so the real part

of its boundary value on the real axis is the Hilbert transform of its imaginary part. After
the use of (A.H), this gives the equation

Oa
Solving (AA)—-([A.0) for X;, Y;, we get an expression for the velocity of a conformal point on
the free surface

O. 0. e, 0.

Dynamic BC. Bernoulli’s equation for the pressure p in the fluid, with gravitational ac-
celeration g = 1, is

1
(A.8) ¢t+§\v¢|2+y+p:0.
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The arbitrary function of ¢t that may appear in this equation is zero since we assume that ¢
vanishes at infinity and p = 0 on the free surface which approaches y = 0. The spatial form
of the dynamic BC, without surface tension, is

1
¢t+§|v¢\2+y:0 on I'(¢).

Using (Al to compute ¢, evaluating the result at § = 0, and using (A.4)—-([A.Gl), we find
that

O 1
Pelg—o = Ve + H [7] Yoo j@i-

We also have

1 2 _ 1 2 2
5|V¢|hk0__§j(wa+—@a).
Hence, the dynamic BC in conformal variables is
(A.9) W+HE£!D+i{W—@ﬂ+Y:O
‘ ' J| ooy e e '
To put these equations in holomorphic form, we define
(A.10) Z=X+iY, Q=T +i0, F:P[@], J =242

Then Z, ), F' are the boundary values of functions that are holomorphic in the lower half-
plane, and P[Z — a] = Z — o, PQ = Q. The kinematic BC (A1) is equivalent to

(A.11) Z,+ FZ, =0.

Applying the holomorphic projection P to the dynamic BC ([A.9), using Hilbert transform
identities, and simplifying the result, we get that

|Qal’
J

Thus, the holomorphic equations are (ATI)—(AT2).

(A.12) Qt+FQa+P[ }:i(Z—oz), J = |Z2

1.3. The normal derivative of the pressure. In this subsection, for comparison purposes,
we compute the normal derivative of the pressure in terms of our variables. This played a
role in the subject as the Taylor sign condition

dp

onry
was identified as necessary for the well-posedness of the water wave equation, see [20]. In

our context this is automatically satisfied, see the discussion at the end of this section.
From Bernoulli’s equation ([A.8)) we have that

op 1 1 1
O L il =5 0 (04 5IV0R )
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Converting (-derivatives to a-derivatives and using the evolution equations, we find that

v, O,
Ip¢t|5_g = Oa {—G)t +— (XY — Yo Xy) + -

0.\ | V.0,
——%%L+&ﬂ<7>+ J}

vl +0;
——8,1 [H(T)—FX—OK} .

(XaXt _I' YaY;)

Since ygl,_y = Xq and

v2 + 0]
2 a a
IVl ‘5:0 -7
we find that P 1
p B 2
—Jo, =115 (0~ Ho) V9| =0

To put this equation in holomorphic form, we introduce

=t o-lo,-i0). 9-1@. v,

Ra
where |Vo|* = r7 and r|,_, = R is defined in (L2). Then, using the fact that dr = r, and
Or =0, we get that

| —

_Jg_i 11 i[P(RR.) - P(RR.)] =1+,

where a is defined in (IL4]). Comparing this result with Wu [23], we see that up to Jacobian
factors, our 1+ a is proportional to her a. Moreover, as shown in [22] under the assumption
of non-self intersecting boundary, we have a > 0. A shorter alternate proof of this fact is
provided in our Lemma 2.6} further we impose no condition on the self intersections of the
curve Z(t, «).

1.4. The periodic case. In the spatially periodic case, the map F(t) is uniquely determined
by the requirement that the holomorphic function z(¢, o, f) — (v +i/3) is a periodic function
of o, whose real part approaches zerad as f — —oo. It follows that RZ (¢, ) — « has zero
mean with respect to «, otherwise the holomorphic function would have nonzero limit.

In the original coordinates, the velocity field u+ v is holomorphic, periodic and bounded.
Thus it has a limit ug + ivg as § — oo. Further, this limit is independent of time. By
extension, in the holomorphic coordinates (), also has a limit ug + ivy as b — oo. Thus, we
can normalize () by setting

Q = Qo + (uo +ivg)(a +iB) + c(t),

where Qg is periodic with average zero, and ¢(t) is a real normalization constant needed for
Bernoulli’s law. One could continue the computations using uy and vy as constants of motion,
but this is not needed because we can factor them out using a Galilean transformation. From
here on we set them equal to zero.

The relation ([A.H) rests unchanged,

(A.13) X.Y; — Yo X, = —0,.

2The imaginary part need not have zero mean even if the average height stays equal to zero.
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In integrated form this expresses the conservation of mass. Consider now both terms divided

by J, then this becomes
O,

The function on the left is holomorphic and its real part has limit zero as [ goes to infinity,
so we can get its real part using the Hilbert transform. Hence ([A.G]) also holds, and (A7)
follows. Similarly, the derivation of (A.9) remainss unchanged.

To put the equations (A7) and [A9]) in holomorphic form we keep the definition of the
operator P as

1
P= (I —iH)

even though it is no longer a projector, as it selects exactly half of the zero mode. With the
same notations as in (A.10), the equations (A1) and (A12) remains unchanged.

Concerning the balance of averages in these two equations, we remark that in (A1l the
terms RZ; and F have purely imaginary averages while Z, has average 1. The nontrivial
average here is that of F', which contributes to the motion of nonzero frequencies. In the
second equation (A.I2]), the real part of the average of @) is nonzero due to the integrating
constant in Bernoulli’s law; however this plays a trivial role, as it does not affect any of the
remaining equations. Further, R has no zero modes.

All equations in the first section of the paper remain unchanged, most importantly the
expressions for the frequency shift a, the advection velocity b and the auxiliary function
M. Further, all estimates in Lemmas 2.6] 2.7 remain unchanged; only the zero mode
estimates need to be added, and those are straightforward. The normal form transformation
also remains valid.

We next consider the linearized equations. The derivation of (2.1) is purely algebraic, so
it stays unchanged. We remark that the average of w is purely imaginary, while the average
of r is the same as the average of ¢ and is purely real.

There is some choice to be made when writing the projected equations (2.2)). The operator
P defined as above is no longer a projector, so we can no longer use it directly. The new
question that arises here is how we treat the zero modes. For that we introduce some variants
of P which differ in how the zero modes are treated. Defining P, as the projection onto the
zero modes, we define the projectors

]_ .
Pi=P—cPR, P =P+RR,  P'=P+iSh,

and similarly P*, P" and P’. We have the relations
P=P 4+ P =P+ P =py P 4P, P'P" = PP =0, P! = —iP"i.

With these notations, it is natural to project the first equation using P?, and the second
using P". Thus instead of (2.2)) we write

. . 1 i Ra 3
(@ —I—szaa)w+P’ [WTQ] —‘—Pz |:1 +Ww:| = P’g(w,r),

A.14
( ) 1+a

1+W

(O + P 0y)r — iP" { w] = P"K(w,r).
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The quadratic part of G has real average, and K has imaginary average, both of which get
projected out. So

P'G? = PR, — W7,],  PK® = —P*RF,).

After a similar modification in (2.4)), the statement and the proof of Proposition .l remain
largely unchanged; the difference is that P gets replaced by P* in erry.
Moving on to the cubic estimates, the equation (2.I1) is replaced by

. . 1 . R
1 ? _ ? a_ — ﬁ U, — r
s (O + P'b0,)w + P L n Ta} + P L n w] P*Rw, — W7,| + G,

(@+V@V—mﬂ£;;4:—MWM+K.

Also, the cubic energy needs to be modified. Precisely, the zero modes of w and r do not
affect the quadratic terms on the right hand side above. Hence, the cubic energy correction
should not involve these zero modes either,
(A.16) Eg@mﬂ:i/UA%MwP+%&ﬂJ+ZMRw%Q—Q%GN@ﬁ%dw

R
With this modification, the result in Proposition remains valid, and the proof applies
with minor modifications.

The higher energies in the periodic case are even more similar to the nonperiodic case,
since differentiation eliminates the zero modes, and the frequency localization is achieved
using only P* and P*.

An alternative to the above scheme is to select just the negative wave numbers in the
linearized equation. Then we lose the evolution of the average of the imaginary part of w.
This is not so significant since we have the conservation of mass relation

/YXada = const,

where the (time independent) constant on the right can be set arbitrarily (say to zero) by a
vertical translation of the coordinates,

(Z,Q) — (Z +ic,Q — ct).
This gives

/Yda = z/(Z —a)(Zy — 1) da + const,

where the average of Y plays no role on the right. This shows that also for the linearized
equation, the average of w is determined by the initial data and the negative frequencies of
w and W,

/Swda = i/wWa + Ww, da + const.

Again, the constant can be removed as the pair (i, — iR) solves the linearized problem. It
follows that the contribution of the average of w to the linearized equations can be viewed

as cubic and higher.
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APPENDIX B. NORMS AND MULTILINEAR ESTIMATES

Here we prove some of the estimates used in Section 2, and Section Bl We use a standard
Littlewood-Paley decomposition in frequency

1=) P,
keZ

where the multipliers P, have smooth symbols localized at frequency 2. .
A good portion of our analysis happens at the level of homogeneous Sobolev spaces H?,
whose norm is given by

1f1

ire ~ Q125 Pef 1) 2l = 12 P fll ez
k

We will also use the Littlewood-Paley square function and its restricted version,

1

S()(a) = (Z |Pk<f><x>\2)2, Senw) = (3 [Pul)2.

keZ i>k
The Littlewood-Paley inequality is recalled below
(B.1) ISCHe@) = [f ey, 1 <p <o
By duality this also yields the estimate
(B.2) 1D Pefiller S U Uf) P llw, 1< p< oo,
keZ keZ

The p = 1 version of the above estimate for the Hardy space H; is

(B.3) 111 = ISl pzez

which by duality implies the BMO bound

(B.4) IS Pedellnio S 1IS() o
kEZ

The square function characterization of BMO is slightly different,
(B5) fulfysio ~sup sup 2 [ [S.u(w)f de
el JQ

We will also need the maximal function bound

(B.6) [ Perfllzzrge S 1fll2, 1 <p<oo.

2.1. Coifman-Meyer and and Moser type estimates. In the context of bilinear esti-
mates a standard tool is to consider a Littlewood-Paley paraproduct type decomposition of
the product of two functions,

F9= farmag + > fegar—at Y frg:=Trg+T,f +11(f.g).
kez kez k—]<4

Here and below we use the notation f, = P.f, fex = P-if, etc. By a slight abuse of

notation, in the sequel we will omit the frequency separation from our notations in bilinear
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Littlewood-Paley decomposition; for instance instead of the above formula we will use the

shorter expression
f9=> fergn+ Y frgex+ D frgn

keZ keZ keZ

Away from the exponents 1 and co one has a full set of estimates
1 1 1

(B.7) ITsgller A Dller S Ufleollglza, 2= 2400 T <pgr <o

Corresponding to ¢ = oo one also has a BMO estimate

(B.8) 1Trglle + [IIC, 9l S W Nl2ellgllBaco, 1 <p < oo,

which in turn leads to the commutator bound

(B.9) I[P, gl flle S 1 fllzellgllBaros 1 <p<oo.

For p = 2 we also need an extension of this, namely

Lemma 2.1. The following commutator estimates hold:

(B.10) D1 [P, R | DIwl|z> S D17 R pmolwllzz, 020, s=0,

(B.11) DI [P, R | Dl"w]|z> S 1DI7* Rl ellwllpo, o >0, s =0.

We remark that later this is applied to functions which are holomorphic/antiholomorphic,
but that no such assumption is made above.

Proof. If 0 = s = 0 then (B.I0) is the classical commutator estimate of Coifman and Meyer
(B.9), so we take 0 + s > 0. We consider the usual paradifferential decomposition, and
observe that the expression [P, R] |D|7w vanishes if the frequency of w is much larger than
the frequency of R. For the remaining frequency balances we discard P, and we are left with
having to estimate the expressions

Jnn = Z 2% (27F| D))* (Rywy), Ju = Z 209k R.27F | D|Tw ..
! !

In the term f,;, the o derivatives are already moved to R, so this is bounded using (B.g)) if
s = 0, and directly if s > 0. For the remaining part we only need the infinity Besov norm of
Ry, as

fuallZe S Y12  Rell e 1277 DI7wanllZ2 S Sup 127 9% Ry [0 D 1127 DI w7
k k

S DI Rlumollwllze-
The proof of (B.II)) is similar. O

Next we consider some similar product type estimates involving BMO and L* norms.
We define

1
[[ul] = [ID[>ullBro-

BMO?
Then
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Proposition 2.2. a) The following estimates hold:

(B.12) 1Y~ wevillsmo S lullsaollvllsaro,
k

(B.13) 1D @ D)7 (wwr) [ 3mo S llullsaolvll g, g >0,
k

(B.14) [ Zu<kvk“BMo [u]| L ||| Brro

(B.15) 1> @ *D) (warvi)llmo S lullge, _llollsro, o >0.
k

b) The space L™ N BMO? is an algebra,

¢) The following Moser estimate holds for a smooth function F':
(B.17) IHE @) 5rr08 Stz 1l 5,08

Proof. a) For (B.12)) we fix a cube @, which by scaling can be taken to have size 1. Suppose
first that o = 0. For k > 0 we use the square function estimate,

Y S wvellvg S Nusvrlle oy S luslle 2 lvlle @) S 1S50(w)llz2@)l1S50(0)r2(0)
k>0
< llullsmollvl saro-
For k > 0 we subtract the average and estimate the output in L°°,
1> wor = (weon)lle@) S D 10alwrvr)lli= S D 28 ullzrollv] zao-
k<0 k<0 k<0

Adding the two we get

1Y~ wvr — (urv)oll@) < llullsaolvllsaco,

and (B.12) follows.

The case k < 0 is similar in the proof of (B.13). For & > 0 we first eliminate directly the
low frequency output,

1P<o Y - 27F 1D (o)l saro S Y 2 [lurllpollonlle S llullzarollvll g,
k>0 k>0

For the high frequency output we consider a bump function xg adapted to @, which is
localized at frequency less than 1, and thus does not change the frequency localization of the
factors it multiplies in the sequel. Then, we have

1P~0 Y (27D w2y < IxePso Y (27FID)) (ukvr) | 12

k>0 k>0

S Mo Poo Y @D (uwvn) = + 1Poo (27D (xquivi) | -
k>0 k>0
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For the commutator term we gain a small power of 2¥ so L™ bounds suffice. The remaining
term is bounded in L? in terms of the square function using orthogonality,

1Po0 D710 CcquivllEe S 3 IxquellZallonlEe S IxaSso(w)lE vl g,
£~0 k>0
< lullaollvlze, .

The argument for (B.I4) is similar, with the following modification in the case k > 0,
which leads to L? rather than L' bounds:

1
1>~ uakvellzi) S 1) xeuarvllrz@) S llullze( ZIIX@kaILz Ik

k>0 k>0
S ullzelix@S>o(v)ll2@)- S |IUI|Loo||v||BMo~

Finally, the bound (B.19) is similar since
1 DD uckll S [lull go,
b) With the same paradifferential decomposition as before we need to estimate the terms

fnn = Z | D% ugvy, frn = Zonukv<k-
2 2

For fy; we use (B.I4)), while for f5;, we use (B.12]).
c) We write

F(u) = [m ukF'(u<k) dk

= / ukP<kF'(u<k) dk —|—/ ukPk (u<k dk‘ + / ZukPkﬂF (u<k) dk.
- - §>0

For F'(u.j) we can use the chain rule to obtain the bound
1Pesi F' (i) | S 27, 5 > 0.

With o = £ we estimate |D|”F(u). The first term in [D[7F(u) is

fi = / (27 uy,) Po F' (usy,) dik,

—00

and is estimated in BMO exactly as in the proof of (B.14).
The second term is

fg = /_OO (2_k|D|)"(ukPkF'(u<k)) dk‘,

and is estimated as in the proof of (B.13]).
The last term is Z f3.j, where

§>0

f3; = / 27F0,270 Py F' (uy,) dk.
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The k < 0 case is easy; it follows using pointwise estimates. For fixed j and k£ > 0 we bound
3. by

I f5.5.50ll720) S lIxafs0ll72 5/ IxQ27 k2 PiF" (uy) |72 dk

—00

< 2N Sao(IDFWIEs S 27 [alBaroe.

~

A more standard algebra estimate and the corresponding Moser bound is as follows:

Lemma 2.3. Let 0 > 0. Then H° N L™ is an algebra, and

(B.18) 19l e S Al ollgllzoe + 1F <Nl 7o

In addition, the following Moser estimate holds for a smooth function F':

(B.19) IE ) e Shullzoe Nl e

We also need to consider some multilinear estimates. Our starting point is the bound
1 1
- faller S 1T W Fillzrs F T2 L<np; < oo

. j
j=1n

Adding derivatives, we need the following generalization:

) <

Lemma 2.4. The following estimate holds for o >0 and 1 <r,p; 00!
(B.20) DI falller S D MDI fell o TTUGN 00 == 5
=1 Ak ! p;

The same bound holds if for s replaced by BMO whenever p,(f) = 00.

Proof. By induction it suffices to consider the case n = 2. After a Littlewood-Paley decom-
position we place the derivatives on the highest frequency factor and apply either (B) or

B.8), or ([B.12),(B.14). O

2.2. Water-wave related bounds. Here we consider estimates for objects related to the
water wave equations, primarily the real phase shift a and advection velocity b. We recall
that these are given by
_ R _
= 23P[RR,], b=2RP — | = 2R(R — P[RY]).

0= 23PIRR, | - 2R PRV
These are estimated in terms of the control parameters A and B defined in (LII]), (12,
and in terms of the H® Sobolev norms of W and R. In all nonlinear bounds the implicit
constant is allowed to depend on A.

We begin with the auxiliary variable Y = which inherits its regularity from W

due to (B.17) and (B.19):

A%%
1+ W’
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Lemma 2.5. The function Y satisfies the BMO bound

(B.21) I1D|2Y || saro Sa B,
and the H° bound
(B.22) 1Y Nl 70 Sa W] go

We continue with bounds for a. In particular the positivity of a is established, providing
a short alternate proof to Wu'’s result in [22]:

Proposition 2.6. Assume that R € HiNH%. Then the real frequency-shift a is nonnegative
and satisfies the BMO bound

(B-23) ||CLHBM0 5 HRH2

BMO3’
and the uniform bound
(B.24) lall= S IR[Z, -
Boo,2
Moreover,
(B:25)  [[[Dallzwo S | RallsaollIDI2 Rljpe,  lall 3 S 1 Rall 3l DI2 Rl[ze,
2 2
(B26) H(&g + b@a)aHLoo 5 AB,
and
(B.27) lallgs S IRl ot 1Rl 01 5> 0.

Proof. We recall that a =i (15 [R’Ra} —P [RRQ} ) Switching to the Fourier space, this leads
to the representation

(B.23) (0= [ mine pHiepma R RO

Here £ and 7 are restricted to the positive real axis due to the fact that R is holomorphic.
To prove the positivity of a we represent the above kernel as

min{€, n} L ensop = /

Ligsny Ly dM.
M>0

Inserting this in the previous representation of a and inverting the Fourier transform we
obtain

a:/‘1|D|>MR‘2dM7

and the positivity follows.
To prove both the BM O bound and the pointwise bound for a we use a bilinear Littlewood-
Paley decomposition,

(B.29) a =Y i (RiRock — RiRacr) +i (P [RiRay] — P [RiRag]) -

k
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To estimate the first term in BMO we use directly the bound (BI13) with o = 1. To estimate
it in L> we use the Cauchy-Schwarz inequality,

1Y RiRa<illie S O 25 IRN7<) O 27 | Reklliee) S IIRIIZ% :
k k k 0,2

For the second term in a we rewrite the symbol of the bilinear form as

1 1

which allow us to rewrite it in the form

1 _ _ _
5P zk:z (RyRok — RiRay) — |D|(RyRy).

Now the two terms are estimated in BMO using (B.12), respectively (B.13)), and in L* by
the Cauchy-Schwarz inequality as above.

The proof of (B.2) is essentially identical to the proof of (B.23)).

We continue with the proof of (B:26]), where we begin with the decomposition in (B:29).
For the first term in (B.29) we apply the time derivative to obtain the expression

o _ W —a _ W —a
Ay = [b0,, P]RR, Ri[b0,, P-1.04|R + 1P, — | R, RpP1.0y | —— | -
1= k) <k + R <k0a| R +i k<1+w) <k + 1R Py (1+W)

In the first term of A; we split the commutator according to the usual Littlewood-Paley
trichotomy. We get several terms:

betaBRiRa <k + bk RepaReo <k + 2" Pe(byRin) Re <k + bin Rk o R <k

In all cases we use the B norm to estimate the highest frequency term, and the A norm
for the other two. The second term is similar; for comparison purposes we list the ensuing
terms:

Rkb<k,aR<k,a + 2mRkP<kaa(mem) + Rkme<k,aa-
The third and fourth terms in A; require the bound

W —a
| — )l 1. S B,
1+W /) "B;

which follows by combining the bounds (B.24)) and (B.25) for a with the similar bounds for
W and Y.

Now we consider the last term in (B.29). This has two components, one of the form
28R Ry, and the other of the form |D|(R;R;). The first component yields an output

_ _ W —a _ W —a
Ay =1b avP @ b avP (e P P e Ry P, a |\ 7 | a7 |
2 [8 k]RR 7k—|—Rk[8 ka]R—i-Z k(l—l—W)R’k_'_ZRk ka (1—|—W)
which is treated in exactly the same way as A;.
The second component yields the slightly more involved output

As = b0a| D|(RiRi) — |D|(Ps(bRa) Ry) — [ D|(Rx Pi(bRa))
, W —a , _ W —a
+Z‘D‘ (Pk (1 —|—W) Rk) +’L‘D‘ (RkPkaa (1 —|—W)) .
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The last two terms are no different from above, but in the first three there is a more delicate

commutator estimate. We split b = by + b>j, and estimate the output of b directly for

each term using the s = % case of Lemma 2.7 The output of by, on the other hand, is

expressed as a commutator
bk 1DI<t)0a(RiRi) + D] (lb<k, PelRoi) + |D| (Rulb, PR )

The last two terms are like 27| D|(b-y.oRxRx) and can be estimated directly. For the first
term we bound 0, (R R;,) in L™ by 2_5, and then we need to show that
o<k 1 Plal |z < 22 [1DJ20] maro-
Indeed the kernel of [bo, |D|<k] is bound by
92k - 95k

b<ile) = b T30 =32 = (5 e — 1)t

which integrates to 25 .
Finally, (B.27) is a direct consequence of the commutator estimates in Lemma 211 O
Next we consider b, for which we have the follwoing result

Lemma 2.7. Let s > 0. Then the transport coefficient b satisfies

(B.30) [1DI*bllsmo Sa D[Rl syo, — [I|DIbllze Sa [IDIR]|z2.
In particular we have
(B.31) IID12bllma0 Sa A, ballzaio Sa B.

Proof. Recall that
b=RP[R(1-Y)]=R— P(RY).
Hence, it remains to estimate d,P(RY). Consider first the BMO bound. As before, the
role of P is to restrict the bilinear frequency interactions to high - low, in which case we can
use the bound (B.14]), and the high-high case, where (B.13]) applies.
A direct argument, taking into account the same two cases, yields the L? bound. U

Next we consider the auxiliary expression M:

Lemma 2.8. The function M satisfies the pointwise bound

(B.32) | M][ Sa AB,

as well as the Sobolev bounds

(8.3 Mg Sa AN,
Proof. For the pointwise bound we claim that

(B34 M= S 1R g Y]

This suffices since each of the the right hand side factors is bounded by v/ AB by interpolation.
To achieve this we write M in two different ways,

M = P[RY, — R,Y] + P[RY,y — R,Y]| = 04 Pcissa( P[RY] + P[RY]) — (RY + R.Y).
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We apply a bilinear Littlewood-Paley decomposition and use the first expression above for the
high-low interactions, and the second for the high-high interactions, to write M = M; + M,
where

M, = Z[Rky<k o™ R<k,aYk] + [RkY<k,a - R<k,aYk]7
Z 8 RkYk —|— P[Rkyk]) — (Rk,aYk + Rk,aYk).

We estimate the terms in M, separately; we show the argument for the first:
I Al § 20 R g5l S IR g~V
]<k 2 2 2 2
For the first term in M, we note that the multiplier 9, P, 4P has an O(2%) L* bound.
Hence, we can estimate
1Mo S ) 2| Rillpos [ Yill e S (Rt IS [
k 2 2

For the L? bound we consider again all terms in M; and M, separately. For an M; term
we compute

IS ReYepal?
k

~Y

H7L7

3 S sup 27| Yoapallzo -;2(2”‘”’“!|Rkl|iz SV IR, o

For My we compute

IMa )12,y S D 28" VF ViRl S IV 7w |IRIP, aa
k

2

Finally, we also need a quadrilinear bound related to the energy estimates:

Lemma 2.9. The following estimate holds for holomorphic functions R, w and r :
(B.35)

‘/Rrafmbwa—Rwaimbmda (11012 Rl srollball sro+| Rall suoll D120l saso) el 2 vl 4

Proof. We denote by I; the integral on the left. In a first step we replace the holomorphic
multiplication operator 15, by the corresponding paraproduct operator

Toof =) Pberfi.
k
Thus, I; is replaced by
I = / —Rro Tpywe + RwoTpyro da.
To estimate the difference I] — I; we observe that for holomorphic f we have

My f = Tpof + P Poufi)-
k

64



We use this for f = w,, respectively f = r,. Then

Z pbkwk7a Z Pbkrk,a] do.
k k

Applying the bounds in Lemma 2] to estimate each of the four factors in L? we obtain

1 1
[ = 13| S (112 Rl sasollball Brro + || RallBaro [ D120l Baro) 1wl 2l |l ;4

as needed.

It remains to estimate the integral I{. We take a Littlewood-Paley decomposition and
denote by k, 7,1 the frequencies of w, r, respectively b. After canceling the common terms
we are left with

]{ :/ Z Rjrj@blwk,a do —/ Z erj@blwk,a do = Iy — I5.

k<l<j J<I<k

LI = / —P[Rr,)P + P[Rw,)P

The first sum I, can be estimated using only the infinity Besov norms for R, and |D|%b,

1 . k—j
|Lo| S 1RallzmolllDI20ll a0 Y (G — k)22 [l 3 1wk 2
k<j

1
S [[RallBuoll| D120l saro Il ;3 [Jw]l 2.

The argument for I3 is slightly more involved since we cannot gain rapid decay in k — j.
Instead, we rewrite it as

I3 = /Z Rywi o Z birj o doe — / Z Rywg obirj o do:= I — I3,
k

J<i Jk<l

The first term has a product structure, and we can bound each factor in L? using Lemma 1]
to obtain

1
I5] S | RallsaollID12bl saolIrl 3 1wl ze.

The second term is bounded in the same manner as I,

1 J=ly k=l
1151 S D12 Rl saollballzao D 277 772 Il g lwll 2
k<l

1
S D12 R parollballaollr(l ;3 wll 2.

Thus, the proof of (B.3]) is concluded.
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