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ORIGINAL RESEARCH

Osteoarthritis affects more than 30 million adults and 
is the leading cause of chronic disability in the United 

States (1). The current reference standard for osteoarthritis 

detection is radiography, which can detect only late-stage 
osteoarthritis changes owing to its lack of sensitivity to soft-
tissue degeneration (2). MRI provides excellent soft-tissue 

This copy is for personal use only. To order printed copies, contact reprints@rsna.org

Purpose: To organize a multi-institute knee MRI segmentation challenge for characterizing the semantic and clinical efficacy of auto-
matic segmentation methods relevant for monitoring osteoarthritis progression.

Materials and Methods: A dataset partition consisting of three-dimensional knee MRI from 88 retrospective patients at two time points 
(baseline and 1-year follow-up) with ground truth articular (femoral, tibial, and patellar) cartilage and meniscus segmentations was 
standardized. Challenge submissions and a majority-vote ensemble were evaluated against ground truth segmentations using Dice 
score, average symmetric surface distance, volumetric overlap error, and coefficient of variation on a holdout test set. Similarities in 
automated segmentations were measured using pairwise Dice coefficient correlations. Articular cartilage thickness was computed lon-
gitudinally and with scans. Correlation between thickness error and segmentation metrics was measured using the Pearson correlation 
coefficient. Two empirical upper bounds for ensemble performance were computed using combinations of model outputs that consoli-
dated true positives and true negatives.

Results: Six teams (T1–T6) submitted entries for the challenge. No differences were observed across any segmentation metrics for any 
tissues (P = .99) among the four top-performing networks (T2, T3, T4, T6). Dice coefficient correlations between network pairs were 
high (. 0.85). Per-scan thickness errors were negligible among networks T1–T4 (P = .99), and longitudinal changes showed minimal 
bias (, 0.03 mm). Low correlations (r , 0.41) were observed between segmentation metrics and thickness error. The majority-vote 
ensemble was comparable to top-performing networks (P = .99). Empirical upper-bound performances were similar for both combina-
tions (P = .99).

Conclusion: Diverse networks learned to segment the knee similarly, where high segmentation accuracy did not correlate with cartilage 
thickness accuracy and voting ensembles did not exceed individual network performance.

Supplemental material is available for this article.
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Herein we describe the organization and results from the 
2019 International Workshop on Osteoarthritis Imaging Knee 
Segmentation Challenge, which introduced a standardized 
partition for data in the Osteoarthritis Initiative. We present a 
framework to compare and evaluate the performance of chal-
lenge submission entries for segmenting articular (femoral, 
tibial, and patellar) cartilage and the meniscus. We also char-
acterize the extent to which traditional segmentation metrics 
correlate with clinically relevant end points, such as cartilage 
thickness. Finally, we evaluate the potential for using an en-
semble of networks and provide an exploratory analysis of how 
to empirically quantify upper bounds on segmentation perfor-
mance. An abstract version of this work was included as part of 
the proceedings of the Osteoarthritis Research Society Interna-
tional 2020 World Congress (14).

Materials and Methods

Patient Overview
Data for this retrospective study originated from the Osteo-
arthritis Initiative (https://nda.nih.gov/oai), a longitudinal 
study of osteoarthritis progression, and were acquired between 
2004 and 2006. In the Osteoarthritis Initiative, data were 
de-identified, and usage was approved by the institutional 
review board with informed consent from included patients. 
Men and women between the ages of 45 and 79 years who 
were at risk for symptomatic femoral-tibial knee osteoarthri-
tis were included in the study. Patients with inflammatory 
arthritis, contraindication to 3-T MRI, or bilateral end-stage 
knee osteoarthritis were excluded. The dataset comprised 88 
patients with Kellgren-Lawrence osteoarthritis grades 1–4 who 
underwent scanning at two time points (baseline and 1 year), 
resulting in 176 three-dimensional (3D) double-echo steady-
state (DESS) volumes (15). These datasets have been used with 
different holdout splits in prior studies (7–12). In this study, 
we standardized these splits and compared performance with 
new outcome metrics. To determine data splits, we conducted 
a prospective power analysis based on prior work, which in-
dicated that a power of 0.75 required a sample size (N) of 14 
patients. The 88 patients were split into cohorts of 60 patients 
for training, 14 for validation, and 14 for testing, resulting in 
120, 28, and 28 volumes for training, validation, and testing, 
respectively, with approximately equal distributions of Kell-
gren-Lawrence osteoarthritis grade, body mass index, and sex 
among all three groups (Table 1).

MRI Scan Parameters and Segmentations
Patients were scanned using 3-T Magnetom Trio scanners 
(Siemens Medical Solutions) and quadrature transmit/receive 
knee coils (USA Instruments) with DESS parameters as fol-
lows: field of view, 14 cm; resolution, 0.36 mm 3 0.46 mm 3 
0.7 mm zero-filled to 0.36 mm 3 0.36 mm 3 0.7 mm; echo 
time, 5 msec; repetition time, 16 msec; and 160 slices (16). 
Three-dimensional sagittal DESS and corresponding segmen-
tation masks for femoral, tibial, and patellar cartilage as well 
as the meniscus generated manually by a single expert reader 

contrast, and recent studies have shown that morphologic and 
compositional changes in the articular cartilage and meniscus 
are potential imaging biomarkers for early osteoarthritis (3). 
Accurately measuring such tissue properties relies on high-qual-
ity tissue segmentations, for which the reference standard is a 
manual approach. However, manual annotations can be both 
time-consuming and prone to interreader variation; thus, there 
is interest in automated cartilage and meniscal MRI segmenta-
tion techniques.

Convolutional neural networks (CNNs) have shown great 
potential for automating segmentation; however, comparing the 
performance of different networks is a challenge owing to het-
erogeneous partitions of different datasets (ie, different holdout 
splits). Data standardization for semantic segmentation of knee 
MRI has been explored in previous organizational challenges, 
such as the Medical Image Computing and Computer Assisted 
Intervention SKI10 challenge, which provided 1.5-T and 3.0-T 
MRI data for segmenting bone and cartilage in the femoral and 
tibial condyles (4). While this challenge was instrumental in cre-
ating one of the first standardized datasets for knee segmenta-
tion, curated datasets that standardize scan contrasts and field 
strengths and that include additional tissue compartments could 
be useful for future research. Previous studies have shown that 
changes in meniscus and patellar cartilage morphology are cor-
related with osteoarthritis progression (5,6). Larger initiatives, 
such as the Osteoarthritis Initiative, have standardized protocols 
for imaging these soft tissues and have publicly shared expert-an-
notated segmentations for a subset of scans. Different automatic 
segmentation methods have used different data partitions, how-
ever, making it difficult to accurately compare these methods (7–
12). Different data partitions also preclude properly combining 
and evaluating predictions from multiple CNNs through model 
ensembles, which may be superior to a single top-performing 
model in medical imaging tasks (13).

Abbreviations
ASSD = average symmetric surface distance, CNN = convolutional 
neural network, CV = coefficient of variation, DESS = double-echo 
steady-state, 3D = three-dimensional, 2D = two-dimensional, VOE 
= volumetric overlap error

Summary
A multi-institute challenge for knee MRI segmentation was orga-
nized, in which a generalized framework for characterizing and evalu-
ating the semantic and clinical efficacy of automatic segmentation 
methods was validated on six networks submitted to the challenge.

Key Points
 n Among the six assessed networks for knee MRI segmentation, 

segmentation performance with respect to ground truth segmenta-
tions was comparable, and Dice coefficient correlations between 
network pairs were high (.0.85).

 n The performance of the majority-vote ensemble, which generated 
labels by using the majority labels (four of six) across binarized 
segmentations, had comparable accuracy to that of the top-per-
forming networks (P = .99).

 n Estimates in femorotibial longitudinal cartilage thickness change 
for all networks had negligible bias and a 95% CI range within the 
range of observable thickness changes.

http://radiology-ai.rsna.org
https://nda.nih.gov/oai
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correlation (rDice) between segmentation from network A (fA(x)) 
and network B (fB(x)) was defined as in Equation (1):

 (1).

Depthwise region of interest distribution plots, which display 
two-dimensional (2D) section-wise Dice accuracies calculated 
over normalized knee sizes in the through-plane (left-to-right) 
dimension, were used to visualize differences in segmentation 
performance from the medial to lateral compartment (7).

Cartilage Thickness
Cartilage thickness, a potential imaging biomarker for knee 
osteoarthritis progression that has been used as a primary end 
point in recent clinical trials, was also calculated for the three 
cartilage surfaces to assess the clinical efficacy and quality of 
automatic cartilage segmentations (20,21). Although evidence 
has shown the relevance of 3D shape changes of the meniscus 
and meniscal extrusion to osteoarthritis progression, changes 
in meniscal morphology do not follow similar progression tra-
jectories of longitudinal thickness loss. As a result, only carti-
lage thickness was calculated (22,23). Cartilage thickness error 
was defined as the difference in the average thickness computed 
using the ground truth segmentation and the predicted seg-
mentation. The correlation between pixelwise segmentation 
metrics (Dice, VOE, CV, and ASSD) and cartilage thickness 
error was measured using the Pearson correlation coefficient. 
A temporal change in cartilage thickness is the most common 
use of the thickness metrics; longitudinal thickness changes for 
all 14 patients in the test set from baseline to 1-year follow-up 
were compared between the automated approaches across all 
networks and the manually annotated labels (20).

Network Ensembles
In these experiments, we investigated how ensembles can be 
leveraged to improve prospective evaluation on unseen data 

at Stryker Imorphics were used in this study (17,18). A total 
of 28 160 segmented sections with four different tissue classes 
were included in this challenge.

Dataset Distribution
De-identified training and validation sets, which included la-
beled masks as reference segmentations, were shared with 29 
researchers who requested access through the International 
Workshop on Osteoarthritis Imaging website. All participants 
were allowed to use training data from other sources and per-
form data augmentation. One week prior to the challenge, par-
ticipants were provided with the test dataset, which consisted 
of scans without reference segmentations. All participants were 
asked to submit multilabel binarized masks for each scan in the 
test dataset along with an abstract with detailed CNN report-
ing categories, similar to the Checklist for Artificial Intelligence 
in Medical Imaging guidelines, as included in Appendix E1 
(supplement) (19).

Challenge Entries
Five teams participated in the challenge, and a sixth team sub-
mitted an entry after the challenge. Teams were numbered by 
submission time; ordering does not reflect performance ranking. 
A summary of submissions is shown in Table 2. For detailed in-
formation on the six networks, see Appendix E2 (supplement).

Network Evaluation
Networks were evaluated on the unreleased ground truth test set 
segmentations. Evaluation metrics for the challenge were limited 
to average Dice score (range, 0–1) for all tissues separately. Ad-
ditionally, three other pixelwise segmentation metrics were com-
puted: volumetric overlap error (VOE) (range, 0–1), coefficient 
of variation (CV) (range, 0–∞), and average symmetric surface 
distance (ASSD) (range, 0–∞) in millimeters. For all metrics ex-
cept Dice, a lower number indicated higher accuracy.

To compute the similarity in segmentation results between 
different networks, the pairwise Dice correlations among test 
set predictions from all networks were calculated. The Dice 

Table 1: Patient Characteristics across Training, Validation, and Test Datasets

Dataset Sex n Age (y) Age Range (y)
BMI (kg/
m2) KLG 1 (%) KLG 2 (%) KLG 3 (%) KLG 4 (%)

Training Male 31 58 6 10* 45–78 31 6 4 2 16 31 3
Female 29 58 6 9 46–78 33 6 5 1 20 26 3
Total 60 58 6 9 45–78 32 6 5 3 36 57 5

Validation Male 5 68 6 8 52–72 29 6 1 4 11 18 11
Female 9 64 6 4 57–71 28 6 4 0 18 39 0
Total 14 65 6 6 52–72 29 6 3 4 29 57 11

Testing Male 9 73 6 4 65–78 31 6 4 0 25 29 7
Female 5 66 6 9 49–76 31 6 4 0 7 29 4
Total 14 71 6 7 49–78 31 6 4 0 32 57 11

Note.—Age and body mass index (BMI) shown as mean 6 standard deviation. Age, Kellgren-Lawrence osteoarthritis 
grade (KLG), and BMI were calculated for patients at the first time point.
* Indicates significance between the training set compared with the validation and test datasets (P , .001).
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Data Availability
Training, validation, and testing partitions are available in Ap-
pendix E4 (supplement). Code and learned model weights for 
T1 (https://github.com/denizlab/2019_IWOAI_Challenge), T3 
(https://github.com/perslev/MultiPlanarUNet), T5 (http://github.
com/ali-mor/IWOAI_challenge), and T6 (http://github.com/
ad12/DOSMA) have been made publicly available.

Results

Characteristics of Training, Validation, and Testing Datasets
No differences were observed in the distribution of Kellgren-
Lawrence osteoarthritis grades (P = .51), body mass index (P = 
.33), and sex (P = .41) among the training, validation, and test-
ing datasets (Table 1). The mean age of patients in the training 
set was lower than in the validation or testing sets (P , .001).

Challenge Entries
All networks produced nearly identical segmentations across 
varying Kellgren-Lawrence osteoarthritis grades (Fig 1), achiev-
ing high performance even in cases of osteoarthritis grade 3 or 
higher (Fig 1, B, C). Segmentations were similar around features 
such as osteophytes and had similar failure modes in transition 
regions between the medial and lateral condyles (Fig 1, B). Slight 
differences were observed in the posterior femoral condyle and 
near the anterior cruciate ligament insertion site on the femur 
(Fig 1, C). All networks achieved reasonably similar fidelity in 

and to empirically quantify performance bounds. We com-
puted a majority-vote ensemble (E4), which generated labels 
by selecting the supermajority (four of six) label across bina-
rized segmentations submitted by each team. Performance was 
compared with that of individual networks using the metrics 
described above.

Additionally, loss functions such as the Tversky loss tune 
the extent of false-positive and false-negative contributions to 
the final loss for mitigating class imbalance (24). In an addi-
tional exploratory analysis, we used ensembles of submitted 
networks to empirically evaluate the upper bounds of segmen-
tation sensitivity (E*

1
) and specificity (E*

−) that is possible to 
achieve using a combination of the six networks. Ensembles 
E*

1
 and E*

− each consolidated true positives and true negatives 
from all networks, isolating errors in the segmentation to false 
negatives and false positives, respectively. Furthermore, us-
ing these upper-bound performance ensembles, we evaluated 
whether segmentation and cartilage thickness errors were lower 
for networks preferentially optimizing either for sensitivity or 
specificity. (See Appendix E3 [supplement] for information on 
ensemble upper bounds.)

Statistical Analysis
Statistical comparisons were conducted using Kruskal-Wallis 
tests and corresponding Dunn post hoc tests with Bonferroni 
correction (P , a = .05). All statistical analyses were per-
formed using the SciPy (version 1.1.0; https://www.scipy.org/) 
library (25).

Table 2: Summary of Parameters Used for Training Networks Submitted by All Institutional Participants

Parameter Team 1 (29) Team 2 (21) Team 3 (32) Team 4 Team 5 (34) Team 6 (7)

Backbone 3D U-Net 3D V-Net 1 
Dropout 
(30,31)

3D V-Net 1 
Dropout

2D V-Net 1 
Dropout

2D Multiplanar 
U-Net

2D Deep-
labV3 1 
DenseNet 
(33)

2D 
Encoder-
decoder

2D U-Net

Tissues All Patellar 
cartilage

Femoral 
cartilage, 
tibial cartilage, 
menisci

Per tissue All All All All

Batch size 1 1 1 8–16 16 4 4 32
Optimizer RMSProp Adam Adam Adam Adam Adam Adam Adam
Parameter
 h 5E-05 5E-05 5E-05 1E-04 5E-05 2E-04 1E-04 1E-03
 a* 0.995 … … … … … … …
 b1* … 0.9 0.9 0.9 0.9 0.5 0.9 0.9
 b2* … 0.999 0.999 0.999 0.999 0.999 0.999 0.999
 e* … 1E-08 1E-08 1E-08 1E-08 1E-08 1E-08 1E-08
Weight initial-

ization
He Xavier Xavier Xavier Glorot uniform Glorot uni-

form
Glorot 

uniform
He

Activation Softmax Sigmoid Softmax Sigmoid Softmax Softmax Softmax Softmax
Loss WCE 1 soft 

Dice
Soft Dice Weighted soft 

Dice
Soft Dice Cross-entropy Soft Dice Z loss (35) Soft Dice

Note.—Participants with multiple associated networks ensembled outputs of different networks as part of their submission. h = learning 
rate, 3D = three-dimensional, 2D = two-dimensional, WCE = weighted cross-entropy. 
* a, b1, b2, and e are parameters used for Adam optimizer (if applicable).

http://radiology-ai.rsna.org
https://github.com/denizlab/2019_IWOAI_Challenge
https://github.com/perslev/MultiPlanarUNet
http://github.com/ali-mor/IWOAI_challenge
http://github.com/ali-mor/IWOAI_challenge
http://github.com/ad12/DOSMA
http://github.com/ad12/DOSMA
https://www.scipy.org/
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faces (Fig 2, E) (P , .05) but were negligible among the other 
four networks (P = .99). Among these four networks, median 
percentage error in thickness estimates was approximately 5% 
for femoral and tibial cartilage. Median percentage error in patel-
lar cartilage thickness estimates was larger and more variable (Fig 
E1 [supplement]). There was minimal systematic underestima-
tion of cartilage thickness (femoral cartilage, −0.02 mm; tibial 
cartilage, −0.05 mm; patellar cartilage, −0.04 mm) (Fig 5, A–C). 
Bland-Altman limits of agreement 95% CIs (and ranges) were 
6 0.18 mm (0.35 mm) for femoral cartilage, 6 0.17 mm (0.34 
mm) for tibial cartilage, and 6 0.27 mm (0.54 mm) for patel-
lar cartilage. Additionally, there was minimal bias in estimated 
longitudinal thickness changes between segmentations across all 
networks and ground truth masks (femoral cartilage, 0.00 mm; 
tibial cartilage, 0.03 mm; patellar cartilage, −0.01 mm) (Fig 5, 
D–F). Bland-Altman limits of agreement 95% CIs (and ranges) 
for longitudinal thickness changes were 6 0.09 mm (0.19 mm) 
for femoral cartilage, 6 0.10 mm (0.20 mm) for tibial cartilage, 
and 6 0.21 mm (0.42 mm) for patellar cartilage.

There was low correlation between pixelwise segmentation 
accuracy metrics, and cartilage thickness ranged from very weak 
to moderate (highest Pearson r = 0.41). Highest correlations be-
tween all pixelwise metrics and cartilage thickness were observed 
with femoral cartilage thickness (Pearson r . 0.25), while very 
weak correlation among these metrics was observed with tibial 
cartilage (Pearson r , 0.2) (Fig 6). The CV had the highest cor-
relation with femoral and patellar cartilage thickness (Pearson r 
= 0.41 and 0.32, respectively).

Ensemble Comparison
The majority-vote ensemble (E4) achieved similar perfor-
mance to that of the submitted networks for both pixelwise 

segmenting all tissue structures as measured by standard segmen-
tation metrics with respect to ground truth segmentations (Fig 2, 
A–D). For all segmentations, the mean Dice ranged from 0.81 
to 0.90, the mean VOE ranged from 0.17 to 0.31, the root-
mean-square CV ranged from 0.02 to 0.09, and the mean ASSD 
ranged from 0.20 mm to 0.44 mm (Table 3). For femoral, tibial, 
and patellar cartilage, thickness errors ranged from 0.04 mm to 
0.16 mm. No differences were observed in Dice, CV, VOE, and 
ASSD for femoral cartilage (P = .99), tibial cartilage (P = .99), 
patellar cartilage (P = .99), and menisci (P = .99) among the four 
top-performing networks (T2, T3, T4, and T6). These four net-
works had lower ASSD and higher Dice for femoral cartilage (P 
, .05) in comparison with T1 and T5. Additionally, T2, T3, and 
T4 had higher Dice accuracy than T1 and T5 for tibial cartilage 
and meniscus (P , .05 for both). No differences were observed 
in CV for femoral cartilage (P = .14), tibial cartilage (P = .17), 
and patellar cartilage (P = .93). High variance in patellar cartilage 
segmentation was observed among all segmentation metrics, pri-
marily due to one patient who was an outlier (Table 3).

Dice correlations (rDice) between pairs of networks were 
greater than 0.90 for femoral cartilage, 0.88 for tibial cartilage, 
0.86 for menisci, and 0.85 for patellar cartilage (Fig 3). The top 
four networks demonstrated the strongest Dice correlations 
among femoral cartilage, tibial cartilage, and meniscus (rDice . 
0.94). The networks also displayed similar segmentation accu-
racy trends across DESS sections in the medial-lateral direction 
(Fig 4). All networks achieved higher Dice performance in the 
lateral condyle than in the medial condyle.

Cartilage Thickness
Thickness errors from segmentations from T5 and T6 were worse 
than those achieved by other networks for all three cartilage sur-

Figure 1: Sample segmentations (1.25× center zoom) of the lateral condyle in patients with Kellgren-Lawrence osteoarthritis grade 2 to 4 (A–C, respectively). The fol-
lowing tissues were segmented and colored: femoral cartilage (orange), tibial cartilage (green), patellar cartilage (red), and meniscus (purple). Segmentation differences 
appeared negligible among all networks, including the majority-vote ensemble (E4).
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Figure 2: Performance summary of networks submitted to segmentation challenge and majority-vote ensemble (E4) for all tissues as mea-
sured by, A, Dice overlap (Dice), B, volumetric overlap error (VOE), C, coefficient of variation (CV), D, average symmetric surface distance 
(ASSD, in millimeters), and, E, thickness error (in millimeters). Network performances are indicated by violin plots, which overlay distribu-
tions over box plots. Longer plots indicate larger variance in network performance among scans. Thickness metrics were not calculated for 
meniscus.

http://radiology-ai.rsna.org
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and thickness metrics (Table 3). No performance difference 
was observed between the ensemble and the networks with 
the best performance for quantitative segmentation metrics 
(T2, T3, T4, and T6) as well as networks with the best perfor-
mance for cartilage thickness (T1, T2, T3, and T4) (P = .99). 
The ensemble also displayed segmentation accuracy trends 
across DESS slices in the medial-to-lateral direction similar 
to those of the individual networks (Fig 4). Both optimal 
upper-bound ensemble networks (E*

1
 and E*

−) performed 
better than the majority-vote ensemble in pixelwise metrics 
(P , .05) but not in thickness error (P = .99). No per-
formance difference was observed between the two upper-
bound ensemble networks for all tissues (P = .70) (Table 
4). Dice correlations between segmentations from these 
two ensembles were 0.96, 0.96, 0.95, and 0.95 for femoral 
cartilage, tibial cartilage, patellar cartilage, and meniscus, 
respectively (Table 4).

Discussion
In this study, we organized a knee MRI segmentation chal-
lenge consisting of a common MRI sequence (which con-
tains information sensitive to soft-tissue degeneration in 
osteoarthritis) that could be used in prospective studies. We 
organized the Osteoarthritis Initiative segmentation data, 
standardized dataset splits with balanced demographics in an 
easy-to-use format, and developed a framework to compare 
and evaluate the performance of challenge submission net-
works for articular cartilage and meniscus segmentation. We 
showed that the submitted CNNs achieved similar perfor-
mance in segmenting all tissues, independent of network ar-
chitecture and training design. Although a high segmentation 
accuracy was achieved by all models and ensembles, only a 
weak correlation between segmentation accuracy metrics and 
cartilage thickness error was observed. Moreover, we explored 
how a network ensemble approach can be a viable technique 

Table 3: Mean Segmentation Performance for All Submitted Networks and Majority-Vote Ensemble

Metric

Networks

Team 1 Team 2 Team 3 Team 4 Team 5 Team 6 E4

Femoral carti-
lage

 Dice 0.88 6 0.02 0.90 6 0.02 0.90 6 0.02 0.90 6 0.02* 0.87 6 0.03 0.90 6 0.02 0.90 6 0.02†

 VOE 0.22 6 0.04 0.18 6 0.03 0.18 6 0.03 0.17 6 0.03* 0.23 6 0.04 0.18 6 0.03 0.17 6 0.03†

 RMS CV 0.03 6 0.02 0.03 6 0.02 0.02 6 0.01* 0.02 6 0.01 0.04 6 0.03 0.02 6 0.01 0.02 6 0.02†

 ASSD 0.26 6 0.05 0.21 6 0.04 0.21 6 0.03 0.20 6 0.03* 0.28 6 0.06 0.22 6 0.05 0.20 6 0.03†

 Thickness 
error

0.05 6 0.05 0.05 6 0.04 0.04 6 0.03* 0.06 6 0.03 0.12 6 0.07 0.11 6 0.07 0.04 6 0.03†

Tibial cartilage
 Dice 0.87 6 0.03 0.89 6 0.03 0.89 6 0.03* 0.89 6 0.04 0.85 6 0.04 0.88 6 0.03 0.89 6 0.03†

 VOE 0.23 6 0.05 0.20 6 0.05 0.20 6 0.04* 0.20 6 0.06 0.26 6 0.06 0.21 6 0.05 0.20 6 0.05†

 RMS CV 0.05 6 0.03 0.05 6 0.03 0.03 6 0.02* 0.06 6 0.04 0.06 6 0.04 0.05 6 0.03 0.04 6 0.03
 ASSD 0.29 6 0.15 0.27 6 0.17 0.26 6 0.15* 0.28 6 0.18 0.33 6 0.19 0.32 6 0.19 0.26 6 0.16†

 Thickness 
error

0.06 6 0.05 0.05 6 0.03 0.04 6 0.03 0.04 6 0.03* 0.14 6 0.08 0.12 6 0.07 0.05 6 0.04

Patellar cartilage
 Dice 0.83 6 0.08 0.86 6 0.07* 0.85 6 0.10 0.86 6 0.07 0.81 6 0.09 0.86 6 0.07 0.86 6 0.08†

 VOE 0.29 6 0.11 0.24 6 0.09* 0.25 6 0.13 0.25 6 0.10 0.31 6 0.12 0.25 6 0.10 0.24 6 0.11†

 RMS CV 0.09 6 0.07 0.06 6 0.04* 0.12 6 0.10 0.08 6 0.06 0.08 6 0.06 0.07 6 0.05 0.09 6 0.08
 ASSD 0.44 6 0.49 0.26 6 0.08 0.28 6 0.15 0.26 6 0.09* 0.33 6 0.13 0.38 6 0.39 0.26 6 0.12†

 Thickness 
error

0.10 6 0.10 0.08 6 0.06 0.06 6 0.06* 0.06 6 0.05 0.16 6 0.12 0.16 6 0.11 0.06 6 0.04†

Meniscus
 Dice 0.84 6 0.03 0.88 6 0.03* 0.88 6 0.03 0.87 6 0.03 0.83 6 0.03 0.87 6 0.04 0.88 6 0.03†

 VOE 0.28 6 0.04 0.22 6 0.04* 0.22 6 0.04 0.22 6 0.05 0.28 6 0.05 0.23 6 0.05 0.22 6 0.04†

 RMS-CV 0.05 6 0.03 0.04 6 0.02 0.03 6 0.02* 0.03 6 0.02 0.06 6 0.03 0.03 6 0.02 0.05 6 0.02
 ASSD 0.44 6 0.09 0.34 6 0.09 0.33 6 0.08* 0.35 6 0.10 0.42 6 0.08 0.42 6 0.22 0.33 6 0.08†

Note.—Values are shown as mean 6 standard deviation. Average symmetric surface distance (ASSD) and thickness error values are in 
millimeters. Coefficient of variation (CV) is calculated as root mean square (RMS) value, not mean. E4 = majority vote ensemble, VOE = 
volumetric overlap error.
* Indicates best-performing network for each metric.
† Results from majority-vote ensemble achieved performance comparable to or better than the best-performing submitted network.
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for combining outputs from multiple high-performance net-
works and how simulated combinations of network outputs 
can be used to quantify performance bounds and error pro-
files for ensembles.

Despite the vast variety of network approaches, most methods 
achieved similar segmentation and thickness accuracy across all tis-
sues and were comparable to other cartilage segmentation models 
(26). While some networks had significantly lower performance 
compared with submissions for other teams, all networks shared a 
high Dice correlation, suggesting strong concordance in volumet-
ric similarity of the segmentations. In addition, near-identical sec-
tionwise Dice accuracies and failure regions indicated that all net-
works systematically performed worse in the intercondylar notch 
and the medial compartment, which is more commonly affected 
in patients with osteoarthritis (27). The similarity in performance 
and limitations may suggest that independent networks, regardless 
of their design and training framework, learn to represent and seg-
ment the knee in similar ways. The performance similarities may 
also indicate that even the best-performing networks may be data 
limited and may gain minimal benefit from architecture and/or 
training protocol optimizations. In these scenarios, network de-
sign may be motivated by dataset size, where there likely exists 
a trade-off between using smaller networks that are less prone to 

overfitting on smaller datasets and building larger networks that 
can capture generalized image priors from larger datasets. Design 
choices may also be driven by practical limitations, such as com-
putational resources and implementation complexity.

Owing to a similarity in learned image representations, the 
E4 voting ensemble performed similarly to the individual net-
works. When errors among models are minimally correlated, 
majority-voting ensembles can improve performance over best-
performing individual networks. The minimal performance gain 
from E4 may indicate the high correlation among errors from 
individual networks, which was also observed in the high Dice 
correlations among network segmentations. This may also sug-
gest that individual, high-accuracy knee segmentation models 
can achieve performance similar to that of their ensemble coun-
terparts. In the case of models with relatively lower segmenta-
tion (T1and T5) and thickness (T5 and T6) accuracy, the voting 
ensemble improved performance across all metrics, even though 
independently different sets of networks perform poorly across 
different metric types.

Moreover, empirically gauging performance of different 
models on new, unseen data is difficult, as it requires ac-
quiring ground truth labels for comparison. In a prospective 
deployment of segmentation models without the availability 

Figure 3: Dice correlations among segmentations from different networks for, A, femoral cartilage, B, tibial cartilage, C, patellar cartilage, and, 
D, meniscus. Strong correlation was observed for femoral cartilage, tibial cartilage, and menisci, and moderately strong correlation was observed for 
patellar cartilage.

http://radiology-ai.rsna.org
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of ground truth labels, ensembles can provide implicit regu-
larization by limiting the effect of any arbitrary poorly per-
forming network on the output. Furthermore, while vot-
ing ensembles may be an effective method for regularizing 

network outputs, training ensembles to learn relative spa-
tial weightings among models may be a more exhaustive 
method for improving overall performance. In such cases, 
high-accuracy models with low concordance in errors could 

Figure 4: Depthwise region of interest distribution for, A, femoral cartilage, B, tibial cartilage, C, patellar cartilage, and, D, 
meniscus. Segmentation accuracy using Dice as a function of section location from the medial (M) to the lateral (L) end. The field of 
view (FOV) was normalized (0%–100%) on the basis of the first and last section, with a ground truth segmentation in each scan. All 
networks have similar trends in performance across different regions of the knee. All networks share failure points at the intercondylar 
notch (40% FOV) and have considerably lower performance in the medial condyle.
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provide highly complementary information that may be 
useful in training ensembles.

The ensemble upper-bound computation may be helpful in 
empirically quantifying the extent to which ensembles can le-
verage variations in segmentation. While trivial segmentations 
(all 0s or all 1s) would saturate the upper bound, none of the 
six models presented trivial solutions. The performance between 
the optimized upper-bound ensembles, E*

1
 and E*

−, was highly 
concordant in both pixelwise and thickness metrics. Ensembles 
E*

1
 and E*

− isolated errors in the segmentation to false negatives 
and false positives, respectively. The concordance between the 
two ensembles may indicate that the incidence rate of false nega-
tives and false positives is well balanced and that either error has 
an equal contribution to the overall error, reducing the need to 
artificially weight networks to account for class imbalance.

Additionally, thickness estimates across all networks were 
nearly identical despite differences in model architecture and 
training protocol. Beyond the high concordance in thickness es-
timates, thickness errors among the models were also sub-scan 
resolution, which is within the practical limits of thickness esti-
mates measurable from the DESS scan. Median cartilage thick-
ness errors were greater than 0.2 mm, roughly half the resolu-
tion of the DESS voxels among networks with high volumetric 
(VOE and ASSD) and overlap (Dice) performances. The magni-
tude of thickness errors was also slightly below observed 1-year 

changes in cartilage thickness (0.2–0.3 mm), which may indi-
cate the usability of these models for prospective analysis of clini-
cal DESS scans (28). While thickness errors are both sub-scan 
resolution and within the range of observable change, additional 
work toward reducing the high variability of these estimates may 
help make these networks more viable for clinical use.

Compared with cross-sectional thickness estimates, longi-
tudinal thickness estimates had considerably lower variability, 
which may indicate that all networks systematically overestimate 
or underestimate cartilage thickness per patient. In the case of 
longitudinal estimates, this per-patient systematic bias may be 
largely mitigated, which reduces the error when evaluating lon-
gitudinal cartilage thickness changes. The consistency in estima-
tion over time may suggest that these networks capture anatomic 
features that change minimally over time. The lack of bias and 
the limited variability in longitudinal estimates may indicate 
the usefulness of these networks to robustly estimate thickness 
changes in patients with osteoarthritis. The relative time-invari-
ance of these features may also be useful for fine-tuning patient-
specific networks on individual patient scans to perform more 
robustly on future scans of that patient.

The larger variance in thickness estimates compared with 
pixelwise metrics was further indicated by the stark difference 
in performance between the two types of metrics. Individual 
networks that performed best among pixelwise metrics (T2, T3, 

Figure 5: Bland-Altman plots for, A, femoral, B, tibial, and, C, patellar cartilage thickness differences (per scan, Kellgren-Lawrence [KL] osteoarthritis grade computed at 
baseline) and, D–F, longitudinal thickness change (per patient, Kellgren-Lawrence osteoarthritis grade 2–4 at time point 1) for the six networks, compared with the ground 
truth. Positive difference values (y-axis) indicate overestimation of thickness or longitudinal thickness change. Negligible bias (dotted gray line) was observed for all three 
tissues among all networks for both metrics. The 95% limits of error (LoE) (between dashed gray lines) were broader for cross-sectional thickness difference than longitudinal 
differences. The LoE were relatively small for, D, femoral cartilage and, E, tibial cartilage compared with, F, patellar cartilage, indicating better longitudinal estimates. There 
was no systematic trend in networks underestimating or overestimating longitudinal thickness changes.

http://radiology-ai.rsna.org
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T4, and T6) did not necessarily perform the best in estimating 
thickness, and the reverse was also true. Even between optimal 
upper-bound ensembles (E*

1
 and E*

−) and the majority-vote 
ensemble (E*

1
), where there was a significant difference in most 

segmentation metrics, there was no difference in the error of 
thickness estimates between the upper-bound and majority-
vote ensembles.

Overall, the correlations between standard segmentation 
metrics and cartilage thickness were weak. These factors may 
suggest that using traditional evaluation metrics on high-per-
forming models may not be predictive of differences in thickness 
accuracy outcomes among high-performance models. Small im-
provements in segmentation metrics among these models may 
not correspond to increased thickness accuracy. It may also indi-
cate that information learned from pixel-level segmentation ac-
curacy and tissue-level thickness accuracy metrics are somewhat 
complementary among these models. A loss function designed 
to optimize for a combination of segmentation and thickness 
accuracy may regularize model performance among both seg-
mentation and clinical end points.

Despite the large set of networks, there were certain limi-
tations in the study. All compared methods leveraged CNNs 
with minimal postprocessing. Additional non–deep learning 
approaches and practical considerations for postprocessing, 
such as conditional random smoothing fields, can be ex-
plored to further refine CNN outputs. Additionally, while 
the majority-vote ensemble simulated practical methods for 
combining outputs from different models with limited ac-
cess to models, ensemble learning from model logits may 

improve accuracy by learning relative weighting among dif-
ferent models. However, ensemble learning would require 
access to model outputs from training data in addition to 
the testing data, which is challenging in the context of multi-
institutional studies and will be the focus of future studies. 
Furthermore, the test set of 14 subjects scanned at two time 
points may be too small to conclusively detect variations in 
model performance. The availability of larger public datasets 
and future challenges will be essential to further investigate 
segmentation performance variability.

In this study, we standardized a dataset partition using an 
MRI sequence that can be prospectively deployed to train 
and evaluate knee segmentation algorithms. We established 
a generalized framework for interpreting the clinical usability 
of such segmentations beyond using long-standing segmenta-
tion metrics. Using deep learning–based segmentation algo-
rithms from multiple institutions, we showed that networks 
with varying training paradigms achieved similar performance. 
Through these multiple networks, we demonstrated the effi-
cacy of using majority-vote ensembles in cases of limited access 
to training resources or explicit network parameters. Moreover, 
among individual models achieving high segmentation perfor-
mance, segmentation accuracy metrics were weakly correlated 
with cartilage thickness end points.
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