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Abstract

Hydrogeological field studies rely often on a single conceptual representation
of the subsurface. This is problematic since the impact of a poorly chosen 
conceptual model on predictions might be significantly larger than the one 
caused by parameter uncertainty. Furthermore, conceptual models often 
need to incorporate geological concepts and patterns in order to provide 
meaningful uncertainty quantification and predictions. Consequently, several
geologically realistic conceptual models should ideally be considered and 
evaluated in terms of their relative merits. Here, we propose a full Bayesian 
methodology based on Markov chain Monte Carlo to enable model selection 
among 2‐D conceptual models that are sampled using training images and 
concepts from multiple‐point statistics. More precisely, power posteriors for 
the different conceptual subsurface models are sampled using sequential 
geostatistical resampling and Graph Cuts. To demonstrate the methodology, 
we compare and rank five alternative conceptual geological models that 
have been proposed in the literature to describe aquifer heterogeneity at the
MAcroDispersion Experiment site in Mississippi, USA. We consider a small‐
scale tracer test for which the spatial distribution of hydraulic conductivity 
impacts multilevel solute concentration data observed along a 2‐D transect. 
The thermodynamic integration and the stepping‐stone sampling methods 
were used to compute the evidence and associated Bayes factors using the 
computed power posteriors. We find that both methods are compatible with 
multiple‐point statistics‐based inversions and provide a consistent ranking of 
the competing conceptual models considered.

1 Introduction

The geological structure of the subsurface is a key controlling factor on 
groundwater flow and solute transport in aquifers (Maliva, 2016; Renard & 
Allard, 2013; Zheng & Gorelick, 2003), and, therefore, it needs to be properly
represented and accounted for in modeling studies. The needs for 
quantitative and reliable subsurface modeling and management (Refsgaard 
& Henriksen, 2004; Scheidt et al., 2018) are driving hydrogeologists to 
consider conceptual models with increasing geological realism and 
complexity (e.g., see reviews by Hu & Chugunova, 2008; Linde et al., 2015a).
Traditionally, (hydro)geological subsurface heterogeneity has often been 
described in terms of mean values and covariances of the relevant physical 
properties (e.g., through the widely used multi‐Gaussian models). However, 
such conceptualizations may be too simplistic in certain subsurface systems 



and, therefore, insufficient to accurately reproduce and predict flow and 
transport processes (Gómez‐Hernández & Wen, 1998; Journel & Zhang, 
2006; Kerrou et al., 2008; Zinn & Harvey, 2003). Multiple‐point statistics 
(MPS) (Guardiano & Srivastava, 1993; Hu & Chugunova, 2008; Mariethoz & 
Caers, 2014; Strebelle, 2002) offers a means to effectively reproduce 
complex geological structures such as curvilinear features. By using a 
training image, MPS enables geostatistical simulations that honor point data 
and the higher‐order spatial statistics that are captured in the training 
image. The training image is a conceptual representation summarizing prior 
geological understanding about the system under study. It can be 
constructed from sketches drawn by hand or digitalized outcrops, or 
generated by, for example, process‐imitating, structure‐imitating, or 
descriptive simulation methods (De Marsily et al., 2005; Koltermann & 
Gorelick, 1996).

In many real world applications, generally because of the sparsity of direct 
observations, several alternative conceptualizations of subsurface 
heterogeneity (e.g., describing the spatial distribution of hydraulic 
conductivity) might be plausible and proposed by one or several experts. 
Unfortunately, uncertainty pertaining to the choice of the conceptual model 
is often ignored in modeling studies, even if it might be a dominant source of
uncertainty (Bond et al., 2007; Lark et al., 2014; Randle et al., 2018; 
Refsgaard et al., 2012; Rojas et al., 2008; Scheidt et al., 2018). Indeed, 
geostatistical model realizations generated from one training image might 
lead to a vastly different range of predictions than those generated from 
another training image, as shown, for example, by Pirot et al. (2015). 
Conceptual uncertainty should, therefore, be integrated in modeling and 
inversion studies. Ideally, this should be achieved by using formal methods 
to test and rank alternative conceptual geological models based on available
hydrogeological and geophysical data (Dettmer et al., 2010; Linde, 2014; 
Linde et al., 2015a; Schöniger et al., 2014). Bayesian model selection 
(Jeffreys, 1935, 1939; Kass & Raftery, 1995) offers a quantitative approach to
perform such comparisons by computing the so‐called evidence (i.e., the 
denominator in Bayes' theorem) which allows to identify the conceptual 
model, in a chosen set, that is the most supported by the data. However, a 
complication arises when performing Bayesian model selection with complex
spatial priors that are represented by training images. Most MPS‐based 
inversions are nonparametric, which implies that they rely on samples being 
drawn proportionally to the prior distribution, while it is generally not 
possible within a MPS framework to evaluate the prior probability of a given 
model proposal. Hence, MPS‐based inversions cannot build on many state‐of‐
the‐art concepts to enhance the performance of the Markov chain Monte 
Carlo (MCMC) (e.g., Laloy & Vrugt, 2012) and associated approaches for 
calculating the evidence (Brunetti et al., 2017; Volpi et al., 2017). Similarly, it
is not possible within a MPS framework to calculate approximate evidence 
estimates using the Laplace‐Metropolis method (Lewis & Raftery, 1997).



It is only recently that MPS‐based inversions have been proposed (see review
by Linde et al., 2015a). MCMC inversions with MPS (e.g., Hansen et al., 2012;
Mariethoz et al., 2010a) generally rely on model proposals obtained by 
sequential geostatistical resampling of the prior (Gibbs sampling) that are 
used within the extended Metropolis algorithm to accept model proposals 
based on the likelihood ratio (Mosegaard & Tarantola, 1995). Sequential 
geostatistical resampling generates model proposals of the spatially 
distributed parameters of interest by conditional resimulations of a random 
fraction of the current field proportional to the prior as defined by the 
training image. There exist several MPS methods to sample complex spatial 
priors with sequential Gibbs sampling. Examples include the versatile direct 
sampling method (Mariethoz et al., 2010) or the recent Graph Cuts approach 
(Li et al., 2016; Zahner et al., 2016) that enables speed‐ups by 1 to 2 orders 
of magnitude. Since high‐dimensional MCMC inversions necessitate many 
evaluations of model proposals by forward modeling, it is essential that the 
geostatistical model proposal process is fast compared to the forward 
simulation time while ensuring model realizations of high quality that honor 
geological patterns in the training image. Various advances have been made 
to enhance MPS‐based inversions both in a nonparametric MCMC framework 
(e.g., parallel tempering by Laloy et al., 2016) and in a parametric framework
using, for example, spatial generative adversarial neural networks (Laloy et 
al., 2018). Also, ensemble‐based exploration schemes have been explored 
(Jäggli et al., 2017).

State‐of‐the‐art evidence estimators that are compatible with nonparametric 
spatial priors include thermodynamic integration (Friel & Pettitt, 2008a; 
Gelman & Meng, 1998) and stepping‐stone (Xie et al., 2011) and nested 
sampling (Skilling, 2004, 2006). The thermodynamic integration method 
takes the name from its original application, which was to compute the 
difference in a thermodynamic property (usually free energy) of a system at 
two given states. Thermodynamic integration and the stepping‐stone method
sample from a sequence of so‐called power posterior distributions that 
connect the prior to the posterior distribution. The nested sampling method 
is based on a constrained local sampling procedure in which the prior 
distribution is sampled under the constraint of a lower bound on the log 
likelihood function that increases with time. Thermodynamic integration and 
nested sampling transform the evidence, that is, a multidimensional integral 
over the parameter space, into a one‐dimensional integral over unit range in 
the log likelihood space. The stepping‐stone sampling estimator 
approximates the evidence by importance sampling using the power 
posteriors as importance distributions. To the best of our knowledge, 
thermodynamic integration and stepping‐stone sampling have never been 
used to estimate the evidence of subsurface models built with MPS in the 
context of Bayesian model selection, while this is the case for nested 
sampling (Elsheikh et al., 2015). Recent studies in hydrology suggest that 
nested sampling is less accurate and stable than thermodynamic integration 



(Liu et al., 2016; Zeng et al., 2018) and that it is strongly dependent on the 
efficiency of the constrained local sampling procedure. Unfortunately, MPS‐
based inversions cannot benefit from recent improvements in constrained 
local sampling approaches as they require parametric (analytical) forms of 
the prior (Cao et al., 2018; Liu et al., 2016; Schöniger et al., 2014; Zeng et 
al., 2018). Even if thermodynamic integration and stepping‐stone sampling 
are computationally expensive, they are easily parallelized such that the 
computational time is equivalent to the time needed to run a single MCMC 
chain. Moreover, these two methods are easy to implement and flexible in 
the sense that any suitable MCMC method can, provided minimal changes, 
be used to explore the power posterior distributions. The classical brute force
Monte Carlo method (Hammersley & Handscomb, 1964) can also be used to 
estimate the evidence when considering nonparametric spatial priors. 
However, Brunetti et al. (2017) show that Monte Carlo often requires a 
prohibitive computational time to obtain reliable evidence estimates even for
very simple subsurface conceptualizations (e.g., layered models) when 
considering as few as seven unknowns. This limits its application to realistic 
high‐dimensional MPS‐based conceptual models.

One way to circumvent the challenges of nonparametric priors in Bayesian 
model selection is to reduce the model parameter space, for example, by 
cluster‐based polynomial chaos expansion (Bazargan & Christie, 2017) or by 
truncated discrete cosine transform combined with summary metrics from 
training images (Lochbühler et al., 2015). Bayesian inference and model 
selection is then applied on the reduced dimension space whose prior 
distribution is parametric (e.g., multivariate Gaussian distribution). The main 
drawback of such approaches is that truncation may smoothen sharp 
interfaces found in the training images.

In this study, we propose the first full Bayesian method that enables 
Bayesian model selection among geologically realistic conceptual subsurface
models. To do so, we combine sequential geostatistical resampling based on 
Graph Cuts, the extended Metropolis acceptance criterion and evidence 
estimation by power posteriors using either thermodynamic integration or 
stepping‐stone sampling. The advantages and the drawbacks of this new 
methodology are assessed using a challenging application. In this study, we 
compare and rank five alternative conceptual geological models that have 
been proposed in the literature to characterize the spatial heterogeneity of 
the aquifer at the Macrodispersion Experiment (MADE) site in Mississippi, 
USA (Zheng et al., 2011). Among this set of five conceptual models of 
hydraulic conductivity spatial distribution, we aim to identify the one that is 
in the best agreement with multilevel concentration data acquired during a 
small‐scale dipole tracer test (MADE‐5) (Bianchi, Zheng, Tick, et al., 2011). 
The case study at the MADE site is used to demonstrate the ability of our 
Bayesian model selection method to deal with widely different conceptual 
hydrogeological models. We stress that the 2‐D modeling framework used 
herein limits our ability to generalize the findings to actual 3‐D field 



conditions. Extensions to 3‐D is methodologically straightforward but 
computationally very challenging.

2 Theory

2.1 Bayesian Inference and Model Selection

Bayesian inference approaches express the posterior probability density 
function (pdf), , of a set of unknown model parameters, θ={θ1,…,θd}, 
given n measurements, , via Bayes' theorem

(1)

The prior pdf, p(θ), quantifies all the information that is available about the 
model parameters before considering the observed data. Typically, p(θ) is 
represented by multivariate analytical functions (e.g., Gaussian, uniform, and
exponential) describing marginal distributions of each parameter and their 
spatial correlation. With the advent of MPS methods, higher‐order spatial 
statistics of θ can be incorporated in inversions by means of training images. 
In this case, the description of prior knowledge is typically nonparametric 
and sequential geostatistical resampling techniques are used to sample p(θ).
The likelihood function, , summarizes in a single scalar value the 
probability that the observed data have been generated by a proposed set of
model parameters. We consider a Gaussian likelihood characterized by 
uncorrelated and normally distributed measurement errors with constant 
standard deviation, ,

(2)

As the residuals between the observed data, , and the simulated forward 
responses, , tend toward 0, the likelihood increases and, in particular,

. The denominator in Bayes' theorem is the evidence (or 
marginal likelihood), , and it is the cornerstone quantity in most Bayesian 
model selection problems. It should be noted, however, that the explicit 
computation of the evidence can be avoided by using reversible jump 
(transdimensional) MCMC methods (Green, 1995). The conceptual model 
with the highest evidence (Jeffreys, 1935, 1939) is the one that is the most 
supported by the data. A noteworthy feature of the evidence is that it 
implicitly accounts for the trade‐off between goodness of fit and model 
complexity (Gull, 1988; Jeffreys, 1939; Jefferys & Berger, 1992; MacKay, 
1992). More precisely, the evidence quantifies how likely it is that a given 
conceptual model, , with model parameters, θ, and prior distribution, 
p(θ|η), has generated the data ,



(3)

The evidence is used to calculate Bayes factors (Kass & Raftery, 1995), that 
is, evidence ratios of one conceptual model with respect to another. For 
instance, the Bayes factor of η1 with respect to η2, or , is defined as

(4)

Conceptual models with large Bayes factors are preferred statistically, and 
the conceptual model with the largest evidence is the one that best honors 
the data on average over its prior. However, the evidence computation is 
analytically intractable for most problems of interest and the 
multidimensional integral in equation 3 must be approximated by numerical 
means. In this work, the different conceptual models represent alternative 
spatial representations of hydraulic conductivity in the subsurface.

2.2 Evidence Estimation by Power Posteriors

Thermodynamic integration, also called path sampling (Gelman & Meng, 
1998), and stepping‐stone sampling (Xie et al., 2011) are two methods to 
estimate the evidence (equation 3) numerically. The key idea behind both 
methods is to sample from a sequence of so‐called power posterior 

distributions, , in order to create a path in the probability density space
that connects the prior to the posterior distribution (Friel & Pettitt, 2008a). 
The power posterior distribution is proportional to the prior pdf multiplied by 
the likelihood function raised to the power of β∈[0,1]:

(5)

Decreasing β has the effect of flattening the likelihood function. For β=1, the 
posterior distribution is sampled, ; for β=0, the prior 
distribution is sampled, . In thermodynamic integration and 
stepping‐stone sampling, the priors are assumed to be proper and a 
sequence of β values needs to be defined (see section 2.2.3). For each β 
value, one (or more) MCMC runs are used to draw N samples from the 
corresponding power posterior distribution and the corresponding likelihood 
values are recorded. The Markov chains for the different β values can be run 
independently in parallel or sequentially from β=0 to β=1 (serial MCMC) as 
described in Friel and Pettitt (2008a). Thermodynamic integration and 
stepping‐stone sampling have several attractive characteristics: (1) the total 
computing time is equivalent to a normal MCMC inversion provided that all 
MCMC runs are carried out in parallel, (2) they can be applied for any MCMC 
inversion method with only minimal intervention (it is only necessary to add 
the exponent β to the likelihood function), and (3) the only information 
needed is the series of likelihoods obtained from MCMC simulations with 
different β values. Once the power posterior distributions have been 



sampled, the thermodynamic integration and stepping‐stone sampling 
methods use the recorded likelihood values in two different ways to estimate
the evidence (sections 2.2.1, 2.2.2).

2.2.1 Thermodynamic Integration

Thermodynamic integration reduces the multidimensional integral of 
equation 3 into a one‐dimensional integral of the expectation of the log 
likelihood, , as

(6)

For the derivation of equation 6, we refer to Friel and Pettitt (2008a) and 
Lartillot and Philippe (2006). The integral in equation 6 is estimated by a 
quadrature approximation over a discrete set of β values, 0=β1<…<βj<…
<βJ=1. To simplify the notation, we define the expectations of the log 

likelihood functions as  and their corresponding variances

as . In this work, we use the corrected composite 
trapezoidal rule:

(7)

which provides more accurate estimates compared with the classical 
composite trapezoidal rule (first term in equation 7) as it also considers the 
second‐order correction term (second term in equation 7). This corrected 
composite trapezoidal rule was originally employed by Friel et al. (2014) and 
later used by other authors including Oates et al. (2016) and Grzegorczyk et 
al. (2017).

The accuracy of the resulting evidence estimates depends on how the β 
values are discretized, the number of β values used, J (details provided in 
section 2.2.3), the number, N, and the degree of correlation of the power 
posterior samples obtained by MCMC. The uncertainties associated with the 
evidence estimation by thermodynamic integration are often summarized by 
two error types: the sampling error, es, and the discretization error, ed 
(Calderhead & Girolami, 2009; Lartillot & Philippe, 2006). The sampling error 
is related to the standard errors of the MCMC posterior expectations of the 
log likelihoods obtained for each βj. To avoid underestimation of these errors,
the autocorrelation in the MCMC samples should be accounted for in order to
calculate the effective sample size, Neff, (i.e., number of independent samples
within each MCMC chain) as suggested by Kass et al. (1998). The effective 
sample size is defined as



(8)

where ρj(z) is the autocorrelation at lag z. Applying the rules for uncertainty 
propagation to the first leading term in equation 7 and assuming the errors 
of ℓj to be independent of those associated to ℓj−1, the sampling error is

(9)

Discretization errors arise as the continuous integral of equation 6 is 
estimated using a finite number of evaluation points (equation 7). Following 
Lartillot and Philippe (2006), Baele et al. (2013), and Friel et al. (2014), we 
define ed as the worst case discretization error that arises from the 
approximation of equation 6 with a rectangular rule. Hence, ed is half the 
difference of the areas between the upper and lower step functions and it 
can be interpreted as the variance of the trapezoidal rule:

(10)

As a consequence, the variance on the evidence estimates can be 

summarized as .

2.2.2 Stepping‐Stone Sampling

Stepping‐stone sampling (Xie et al., 2011) computes the evidence by 
combining power posteriors with importance sampling. The key underlying 
idea is to write the evidence as the ratio, r, of the normalizing factors in 
Bayes' theorem for β=1 (posterior sampling) and β=0 (prior sampling):

(11)

Since the prior integrates to 1, the evidence is equivalent to r as  
equals 1. The ratio can be expressed as a product of J ratios, rj:

(12)

Then, importance sampling is applied to the numerator and denominator of 

equation 12 using the power posterior  as the importance 
distribution:

(13)

and, finally, the log‐evidence is computed as



(14)

In contrast to thermodynamic integration, the evidence estimated by 
stepping‐stone sampling does not suffer from discretization errors. The 
sampling error can be evaluated as

(15)

The derivation of equations 14 and 15 appears in Fan et al. (2011) and Xie et
al. (2011), and interested readers are referred to this publication for further 
details. The only difference in our equation 15 is that we consider the 
effective sample size as defined in equation 8. Note that equation 13 is only 

valid for the specific choice of  as the importance distribution.

2.2.3 Discretization Scheme for β Values

For small increases of β close to 0, lj increases dramatically and the 
corresponding power posteriors quickly turn from being similar to the prior to
being similar to the posterior distribution (e.g., Friel et al., 2014; Liu et al., 
2016; Oates et al., 2016). As a consequence, the accuracy of the evidence 
estimates increases when placing most of the β values close to 0 (e.g., Friel 
& Pettitt, 2008b; Grzegorczyk et al., 2017; Liu et al., 2016). This is especially 
true for the thermodynamic integration method that estimates the evidence 
as the area below the curve of the expectation of the log likelihood, lj, as a 
function of βj (equation 6). Starting from an initial set of sampling points, Liu 
et al. (2016) use an empirical method that places additional β values based 
on a qualitative search for locations where lj changes strongly in order to 
target additional β values to use. However, this method is subjective and it 
increases the computing time when using parallel computations as the β 
values are not defined at the outset. Friel and Pettitt (2008a) are the first to 
employ a discretization scheme of β values that follows a power law spacing 
as

(16)

Calderhead and Girolami (2009) demonstrate that this scheme significantly 
improves the accuracy of the evidence estimates with respect to the uniform
spacing used by Lartillot and Philippe (2006).

3 Method

3.1 General Framework

It is common to sample the unnormalized posterior pdf of equation 1 with 
MCMC simulations. This is here achieved by combining the extended 
Metropolis acceptance criterion (Mosegaard & Tarantola, 1995) with a 



sequential geostatistical resampling technique (e.g., Graph Cuts) that 
provides conditional model proposals at each iteration featuring similar 
geological patterns as those found in the corresponding training image. For 
each proposed model, θprop, we calculate the forward response and compare 
it with the observed data and, according to the extended Metropolis 
algorithm, accept θprop with probability

(17)

To sample the power posteriors, we simply modify the extended Metropolis 
acceptance criteria by raising the likelihoods in equation 17 with the 
corresponding βk values. We report below the overall algorithm (Algorithm 
1), in which we combine model proposals based on MPS with the extended 
Metropolis acceptance criteria followed by evidence estimation using power 
posteriors.



3.2 Graph Cuts Model Proposals

In this work, to sample spatially correlated parameters, we rely on model 
proposals based on the Graph Cuts algorithm introduced by Zahner et al. 
(2016) with some of the improvements proposed by Pirot et al. (2017, 



2017b). The main steps in the Graph Cuts algorithm are depicted in Figure 1.
Basically, a section of the same size as the model domain, θnew (Figure 1b) is 
randomly drawn from the training image and the absolute difference 
between θnew and the current model realization, θcur (Figure 1a), is computed 
and raised to the power of the cost power, δcp, (Pirot et al., 2017b) to obtain 
the cost image, δ = |θcur−θnew|  (Figure 1d). Two distinct regions of high cost 
and similar size and containing at least p pixels are randomly selected 
(Figure 1e). To choose these terminals, Pirot, Linde, et al. (2017) introduce 
the cutting threshold, δth∈[0,100], defined as a percentile of max(δ), which 
limits the possible terminals to those regions where . A patch is 
defined as the region enclosed by a minimum cost line separating the two 
terminals using the min‐cut/max‐flow algorithm by Boykov and Kolmogorov 
(2004; Figure 1f), and the new model proposal, θprop (Figure 1c), is built by 
cutting the patch from θnew and replacing the corresponding area in θcur.

We manually tune three algorithmic parameters to obtain model proposals 
that preserve the patterns found in the training image: the minimum 
number, p, of pixels in each of the two terminals, the cutting threshold, δth, 
and the cost power, δcp. We have set the cost power to 1 or 2 depending on 
the type of conceptual model considered. The main reason for using graph‐
cut proposals in this work is its computational speed relative to other MPS 
algorithms (see comparisons by Zahner et al., 2016). However, slower pixel‐



based geostatistical resimulation strategies that implement sequential Gibbs 
sampling, such as those presented by Mariethoz, Renard, and Straubhaar 
(2010) or Hansen et al. (2012), could also be used.

3.3 Field Site and Available Data

The MADE site is characterized by an unconsolidated shallow alluvial aquifer 
composed by a mixture of gravel, sand, and finer sediments. The high 
heterogeneity at the MADE site got the attention of the hydrogeological 
community in the mid‐1980s, and numerous studies have been carried out 
since then (see Zheng et al., 2011 for a review). Previous interpretations of 
two large‐scale tracer tests suggest that the structure is consistent with a 
network of highly permeable sediments embedded in a less permeable 
matrix (Bianchi & Zheng, 2016; Feehley et al., 2000; Harvey & Gorelick, 
2000). The case study considered herein focuses on determining the most 
appropriate conceptual model of hydraulic conductivity in a reduced set 
given the multilevel solute concentration data collected during the MADE‐5 
tracer experiment (Bianchi, Zheng, Tick, et al., 2011). The test was 
performed in an array of four aligned boreholes with a maximum separation 
of 6 m. The concentration data used in this work were collected in the two 
inner multilevel sampler (MLS) wells between the outer injection and 
abstraction wells, which were screened over the entire aquifer thickness. 
Before tracer injection, a steady‐state dipole flow field was established by 
injecting clean water. Then, a known volume of bromide solution was 
injected along the entire vertical profile of the aquifer for 366 min followed 
by continuous injection of clean water for 32 days. The flow rates at both the 
injection and extraction wells were kept practically constant during all the 
steps of the test. Bromide concentrations in the MLS wells were recorded at 
19 different times and at seven depth levels (sampling ports) in each of the 
two MLS wells resulting in 266 concentration measurements. Full technical 
details about the experiment can be found in Bianchi, Zheng, Tick, et al. 
(2011). Given the particular design of the borehole array, groundwater flow 
and bromide tracer transport could be simulated only along the 2‐D transect 
intercepting the four wells (the forward model used is described in Appendix 
Appendix A). This was necessary to reduce the computational demands in 
this application of the proposed Bayesian model selection method. In 
practice, the 2‐D model assumes that the concentrations measured at the 
inner MLS wells are mainly the result of transport along straight flow paths 
between the injection and the abstraction wells. To enable such 2‐D 
modeling, we performed a simple 3‐D‐to‐2‐D transformation of the data as 
described in Appendix Appendix A.

3.3.1 Conceptual Models at the MADE Site and Corresponding Training 
Images

We consider five training images that may represent spatially distributed 
hydraulic conductivity fields at the MADE site (Figure 2). The multi‐Gaussian 
training image in Figure 2a was created as a 2‐D unconditional realization 



obtained with the Sequential Gaussian SIMulation algorithm of the Stanford 
Geostatistical Modeling Software (Remy et al., 2009). The corresponding 
variogram parameters (Table 1) were calculated by Bianchi, Zheng, Tick, et 
al. (2011) from the analysis of more than 1,000 hydraulic conductivity values
estimated by means of borehole flowmeter tests (Rehfeldt et al., 1992). 
According to Bianchi, Zheng, Tick, et al. (2011), the mean and variance in 
log10(cm/s) is set equal to −2.37 and 1.95, respectively.





The training images in Figures 2b–2d were generated following Linde, 
Lochbühler, et al. (2015). The highly conductive and connected channels in 
an homogeneous matrix (Figure 2b) is built from the original training image 
of Strebelle (2002) modified according to the channel properties proposed by
Ronayne et al. (2010) for the MADE site. The channel hydraulic conductivity 
is equal to −0.54 in log10(cm/s), the channel thickness is 0.2 m, and the 
channel fraction is 3.25%. The training image in Figure 2c is based on 
hydrogeological facies, and their hydraulic conductivity values correspond to 
those of an outcrop located near the MADE site (Rehfeldt et al., 1992) and 
reported in Table 2.



The training image in Figure 2d is chosen solely on the knowledge that the 
aquifer at the MADE site is constituted by alluvial deposits (Boggs et al., 
1992). Linde, Lochbühler, et al. (2015) and Lochbühler et al. (2014) used the 
training image of Figure 2d as derived from a detailed mapping study at the 
Herten site in Germany (Bayer et al., 2011; Comunian et al., 2011) featuring 
representative alluvial deposit structures and adapted it to the 
hydrogeological facies observed at the MADE site (Table 2).

The training image of Figure 2e is built based on five hydrogeological facies 
identified from lithological borehole data at the MADE site (Bianchi & Zheng, 
2016) and reported in Table 3. This training image is a stochastic 
unconditional realization that was generated following Bianchi and Zheng 
(2016).

Training images should be stationary and approach ergodicity (Caers & 
Zhang, 2004). This implies that the type of patterns found should not change
over the domain covered by the training image (stationarity). Moreover, the 
size of the training image should be sufficiently large (at least double) 
compared to the largest pattern to enable adequate simulations (ergodicity).
Small training images lead to large ergodic fluctuations that deteriorate 
pattern reproduction (Renard et al., 2005). Note that the smallest training 
image considered herein (Figure 2b) is 4 times wider than the size of the 
model domain in the horizontal direction.

In this work, we compare the five conceptual models of hydraulic 
conductivity that, in the following, we refer to as (1) multi‐Gaussian as built 
from the training image in Figure 2a; (2) hybrid that consists of the highly 
conductive channels of Figure 2b overlaid on the multi‐Gaussian background 
of Figure 2a; (3) outcrop‐based built from the training image in Figure 2c; (4) 
analog‐based built from the training image in Figure 2d; and (5) lithofacies‐
based built from the training image in Figure 2e. This selection of conceptual 
models allows us to compare very different parameterizations of the spatial 
heterogeneity at the MADE site. Note that a full assessment of all conceptual
models that has been published for the MADE site is outside the scope of this



study. Since computational limitations prohibit full 3‐D simulations, we 
acknowledge that our findings in terms of the suitability of different 
conceptual models at the MADE site should be treated with some caution. 
Instead, the focus is on a new versatile methodology that enables 
comparison of widely different conceptual models.

3.4 Evidence Estimation in Practice

We discretize the power coefficients β using the commonly used power law 
of equation 16 (Baele & Lemey, 2013; Calderhead & Girolami, 2009; Friel & 
Pettitt, 2008a; Grzegorczyk et al., 2017; Höhna et al., 2017; Xie et al., 2011).
According to these studies, the parameter c should be set equal to 3 or 5 and
J as large as possible with the common choice of 20 ≤ J ≤ 100. In this study, 
we chose c=5 and J=40. For each β value, we run one MCMC chain of 105 
iterations. These choices are dictated by computational constraints. The 
most challenging power posterior to sample is for β=1, for which we run 
three chains to better explore the posterior distribution. Consequently, we 
run 42 MCMC chains for each conceptual model. Given that the log 
likelihoods obtained from the MCMC simulations are the basis for evidence 
estimations by power posteriors, we define the burn‐in period (i.e., number 
of MCMC iterations required before reaching the target distribution) by 
considering the evolution of the log likelihoods. To assess when the log 
likelihood values start to oscillate around a constant value, we apply the 
Geweke method (Geweke, 1992) on the log likelihoods of each chain. This 
diagnostic compares the mean computed on the last half of the considered 
chain length against the one derived from a smaller interval in the beginning 
of the chain (in our case, 20% of the chain length). At first, the Geweke's 
method is applied to the whole chain (no burn‐in), and if its statistics is 
outside the 95% confidence interval of the standard normal distribution, we 
apply it again after discarding the first 1%, 2%, …, 95% of the total chain 
length. The burn‐in is determined in this way for β=1, as this is the most 
challenging case for which burn‐in takes the longest time to achieve. The 
evidence estimates are computed using the thermodynamic integration 
method based on both the corrected trapezoidal rule (equation 7), as well as 
with the stepping‐stone sampling method (equation 14). In order to correctly 
estimate the uncertainty of the evidence estimates, the effective sample size
(equation 8) in each chain needs to be assessed. When evaluating equation 
8, we truncate the sum in the denominator at the lag at which ρj(z) is within 
95% confidence interval of the normal distribution with standard deviation 
equal to the standard error of the sample autocorrelation. The evidence 
estimates are updated continuously after burn‐in to visualize their evolution 
with the number of MCMC iterations. The uncertainty associated with the 

evidence estimates are summarized by standard errors, SE =  
with corresponding 95% confidence intervals. The variances  are 
computed using equations 9 and 10 for the thermodynamic integration and 
using equation 15 for the stepping‐stone sampling method.



4 Results for the MADE‐5 Case Study

4.1 Bayesian Inference

For each of the conceptual models considered, we first show prior MPS 
realizations (i.e., β=0) of hydraulic conductivity fields that are generated 
with the Graph Cuts method (Figure 3). Each set of prior realizations shows 
considerable spatial variability and is in broad agreement with the original 
training image (Figure 2). This is valid for continuous (Figure 3b), categorical 
(Figures 3c–3e), and hybrid conceptual models (Figure 3a).

The posterior distributions (i.e., β=1) are obtained by assuming that the 
standard deviation of the measurement errors,  (mg/L), follows a log‐
uniform prior distribution in the range [1,10] mg/L (seventh column of Table 
4). The lowest mean of the inferred  is obtained for the hybrid conceptual 
model (5.8 mg/L) suggesting that this model enables the best match with the



data. The highest  is found for the outcrop‐based model (9.4 mg/L). The 
acceptance rates are lower (second column in Table 4) than the ideal range 
between 15% and 40% proposed by Gelman et al. (1996), which suggests a 
slow convergence of the Markov chains. The burn‐in time for each chain is 
obtained by the Geweke method (Table 4) as described in section 3.4.

The different conceptual models provide quite different posterior 
distributions of the hydraulic conductivity field (Figure 4), even if certain 
commonalities are observed. For instance, all the posterior models have a 
high‐conductive zone at a depth of 7 m that extends to a depth of 8 m on the
right‐hand side of the model domain. These features are visible in both the 
posterior mean and the maximum a posteriori fields (first and second 
columns of Figure 4). The analog‐ and outcrop‐based conceptual models 
exhibit more variability in the inferred hydraulic conductivity values (Figures 
4c and 4e) with respect to the others, and the lithofacies‐based conceptual 
model is characterized by the smallest posterior standard deviations (Figure 
4d). The Gelman‐Rubin statistic (Gelman & Rubin, 1992) is commonly used 
to assess if the MCMC chains have adequately sampled the posterior 
distribution, which is generally considered to be the case if this statistic is 
below 1.2. We see in the fourth column of Figure 4 that this is not the case 
for all pixel values, especially in the high‐conductivity region, and that a 
larger number of iterations is required for a full convergence. However, we 
note that the evidence estimates are valid as long as the MCMC chains reach
burn‐in, while enhanced sampling decreases the estimation error.



In Figure 5, we show some of the simulated and observed breakthrough 
curves. We have chosen the ones at a depth of 7 m in the monitoring wells 
MLS‐1 (Figure 5a) and MLS‐2 (Figure 5b) because they correspond to a 
region of high conductivity (high concentrations) and the ones at a depth of 
11 m that correspond to low concentrations in MLS‐1 (Figure 5c) and MLS‐2 



(Figure 5d). Note that the range of measured concentration values spans 2 
orders of magnitude (Figure 5). In general, the outcrop‐based conceptual 
model is the worst in reproducing the observed breakthrough curves, while 
the hybrid model is the best performing one; this is particularly clear in 
Figure 5d. Corresponding plots at all measurement locations are found in the
supporting information. The Pearson correlation coefficients between the 
simulated posterior mean concentrations and the observed ones are 0.96 for 
the hybrid model, 0.94 for the multi‐Gaussian and analog‐based models, and 
0.91 for the lithofacies‐ and outcrop‐based models.



4.2 Bayesian Model Selection

In this section, we present the estimated evidence values for each 
conceptual model considered. Overall, the evidence values obtained using 
stepping‐stone sampling and thermodynamic integration based on the 
corrected trapezoidal rule are in good agreement with each other 
considering their 95% confidence intervals (Figure 6). Moreover, except for 
some fluctuations at the early stage after burn‐in, the evidence estimates 
evolve only slowly as a function of the number of MCMC iterations after burn‐
in (Figure 6). We find that stepping‐stone sampling provides evidence values 
that are always lower than the ones estimated with the thermodynamic 
integration. This behavior is somewhat surprising as the stepping‐stone 
sampling technique is not based on a discretization, while this is the case for 
thermodynamic integration leading to an expected underestimation of the 
evidence. The uncertainty associated with the stepping‐stone evidence 
estimator decreases at a sustained pace when increasing the number of 
MCMC iterations, and it is lower than the one associated with thermodynamic
integration (Figure 6 and Table 5). Thermodynamic integration is more 
affected by discretization errors, an error source that is independent of the 
number of MCMC iterations, than by sampling errors (Figure 8). For this 
reason, the width of the confidence intervals obtained by thermodynamic 
integration does not reduce significantly with increasing numbers of MCMC 
iterations (Figure 6).



Both evidence estimators lead to the same ranking of the conceptual models
with the hybrid conceptual model having the largest evidence and the 
outcrop‐based conceptual model having the lowest one (Table 5). The multi‐
Gaussian and the analog‐based conceptual models have very similar 
evidence estimates, and they are the second‐best performing conceptual 
models (Table 5).

For each conceptual model, the means of the log likelihood functions, ℓ, 
increase with increasing β as we move from sampling the prior distribution 
(β=0) to sampling the posterior distribution (β=1; Figure 7). From β=0 to 
β=0.1, the ℓ estimates span 3 orders of magnitude. At very small values of β 
(i.e., < 10−6), the outcrop‐based conceptual model (green line in Figure 7) has
mean log likelihoods that are almost 1 order of magnitude higher than the 
other models. With increasing β, the outcrop‐based model shows a much less
steep increase of ℓ, and at β=10−3, they start to be lower than the log 
likelihood means of the other models. At higher power posteriors (β>0.1), 
the ℓ estimates for the hybrid conceptual model are the highest (red line in 
Figure 7), which explains why the highest evidence value is found for the 
hybrid conceptual model. We also note that the mean log likelihood is not 
increasing continuously when β is close to 1, which we attribute to random 
fluctuations of the MCMC chains (Figure 7).

The percentage ratio of independent MCMC samples after burn‐in is never 
above 10%, and it decreases to values as low as 0.01% for β=1 (Figure 8). 
This is a consequence of the slow mixing of the MCMC chains, and it explains
the increase of the sampling errors with increasing β for both 
thermodynamic integration (Figure 8c) and stepping‐stone sampling (Figure 
8d). The sampling errors of the stepping‐stone sampling method are always 
at least 2 orders of magnitude higher than the ones related to the 
thermodynamic method, but this method is devoid of discretization errors, 
which constitutes the dominant error type for thermodynamic integration. As
mentioned before, using a power law to distribute β values (equation 16) 
ensures that the discretization errors for small β are relatively small (i.e., 
between 10−10 and 10−3; Figure 8b). The pronounced fluctuations of the 

discretization 
errors 
especially for β
> 0.1 (Figure 
8b) are related 
to the fact that 



the mean of the log likelihoods does not increase monotonically for high β 
values.

We now compute the Bayes factors for the best conceptual model (hybrid) 
with respect to each of the other competing conceptual models. In particular,
we follow the guideline proposed by Kass and Raftery (1995) and we present 
twice the natural logarithm of the Bayes factors (Figures 9a and 9b). The 
Bayes factors of the hybrid conceptual model are on the order of 1015 and 
1016 relative to the second best models (multi‐Gaussian and analog‐based) 



and 1058 relative to the worst model (outcrop‐based) for both thermodynamic
integration and stepping‐stone sampling. Note that the measure of twice the 
natural logarithms of the Bayes factors are all larger than 50 (Figures 9a and 
9b). According to the interpretation of Kass and Raftery (1995), we can 
safely claim that the hybrid model shows very strong evidence of being 
superior to the other considered conceptual models. The Bayes factors 
computed with the stepping‐stone sampling method have smaller 
uncertainties (Figure 9b) than the ones based on thermodynamic integration 
(Figure 9a). We note that the relative rankings of the competing models 
obtained with the thermodynamic integration and the stepping‐stone 
sampling methods are consistent and stable as long as the MCMC chains has 
reached burn‐in. Practically, this suggests that we can perform and obtain 
reliable Bayesian model selection results at less computational cost and, 
again, that formal convergence of the MCMC chains is not necessary.

5 Discussion

We have proposed a new methodology targeted at Bayesian model selection 
among geologically realistic conceptual models that are represented by 
training images. For MCMC inversions, we use sequential geostatistical 
resampling through Graph Cuts that is 2 orders of magnitude faster than the 



forward simulation time (i.e., 0.08 vs. 8.35 s). In addition to being fast, the 
model realizations based on Graph Cuts are of high quality and honor the 
geological patterns in the training images. This is true for the five different 
types of conceptual models considered (Figures 3 and 4). Moreover, the 
Graph Cuts algorithm can include point conditioning (Li et al., 2016) even if 
this is not considered herein. In our 2‐D analysis, we find that the hybrid 
conceptual model allows for the best fit of the observed breakthrough curves
(Figure 5). The inclusion of highly conductive channels in a multi‐Gaussian 
background enables enhanced simulations of the maximal concentrations, 
and it is in general agreement with the expected subsurface structure at the 
MADE site (i.e., highly permeable network of sediments embedded in a less 
permeable matrix; Bianchi, Zheng, Tick, et al., 2011; Bianchi, Zheng, Wilson, 
et al., 2011; Harvey & Gorelick, 2000; Liu et al., 2010; Ronayne et al., 2010; 
Zheng & Gorelick, 2003). We find that the outcrop model has not enough 
degrees of freedom to properly fit the solute concentration data (Figure 5). 
Furthermore, we expect that an improved data fit would have been possible 
if we additionally would have inferred certain model parameter values (e.g., 
hydraulic conductivity for each facies and for the geostatistical parameters 
of the multi‐Gaussian field).

In the light of the MADE‐5 solute concentration data considered, the best 
fitting model (hybrid) is also the one that has the highest evidence, while the
outcrop‐based conceptual model has a Bayes factor of 10−58 with respect to 
the hybrid one, the lowest evidence, and the lowest data fit (Table 4, Figure 
6, and Table 5). Linde, Lochbühler, et al. (2015) rank different conceptual 
models (only the analog‐ and outcrop‐based models are exactly the same as 
in the present work) of the region between the MLS‐1 and MLS‐2 wells using 
the maximum likelihood estimate based on geophysical data (cross‐hole 
ground‐penetrating radar data). In agreement with our results, Linde, 
Lochbühler, et al. (2015) find that the analog‐based conceptual model 
explains the data much better than the outcrop‐based conceptual model and
that the latter is the worst performing one in the considered set.

Our results suggest that when comparing complex conceptual models 
represented by training images in data‐rich environments, it may sometimes 
be possible to simply rank the performance of the competing conceptual 
models based on the inferred standard deviation of the measurement errors,

 (Table 4), or the maximum likelihood estimate. Similar results for more 
traditional spatial priors were also found in other studies (Brunetti et al., 
2017; Schöniger et al., 2014). However, note that maximum likelihood‐based
model ranking will sometimes fail miserably as Bayesian model selection 
considers the trade‐off between parsimony and goodness of fit. For instance, 
we expect that if we would have considered an uncorrelated hydraulic 
conductivity field, it would have produced the best fitting model but not the 
highest evidence. Moreover, it is also clear from these results that simply 
sampling the prior (β=0) and then ranking the competing conceptual models
based on the mean of the sampled likelihoods may provide misleading 



results. Indeed, the outcrop‐based model has mean likelihoods of the prior 
model that are almost 1 order of magnitude higher than the ones of the 
other models (Figure 7) and, therefore, such a ranking would suggest that 
the outcrop‐based conceptual model is the best one in describing the data 
while it is actually the worst one.

We find that stepping‐stone sampling almost always provides slightly lower 
evidence estimates than thermodynamic integration (Table 5). This is in 
disagreement with the theory and with results by Xie et al. (2011) and Friel 
et al. (2014). We attribute these unexpected results to the facts that (1) the 
MCMC chains for β close to 1 do not reach full convergence and the stepping‐
stone sampling is sensitive to poor convergence (Friel et al., 2014) and (2) 
most of the contribution to the total evidence estimate comes from the 
terms of equation 7 computed for β>0.1, a region where the mean log 
likelihood does not increase monotonically due to random fluctuations of the 
MCMC chains (Figure 7). We also highlight that the comparison between the 
uncertainty estimates of the evidence values provided by thermodynamic 
integration and stepping‐stone sampling (Figure 6) is not completely fair 
since the discretization errors affecting thermodynamic integration are based
on a worst case scenario that arises from the approximation of equation 6 
with a rectangular rule.

We stress again that our main intent is to present and demonstrate the 
proposed methodology targeted at Bayesian model selection among 
geologically realistic conceptual models. Computational constraints made it 
infeasible to perform model selection in 3‐D. Instead, given the particular 
design of the tracer experiment ( i.e., array of four aligned boreholes), we 
used a 2‐D flow and transport model, and the data were corrected using a 3‐
D‐to‐2‐D transformation that accounts for differences in flow paths for a 
homogeneous subsurface (Appendix Appendix A). Since 3‐D heterogeneity is 
important at the MADE site, our 2‐D model ranking should only be considered
approximate.

Future work should better account for model errors caused by the 3‐D‐to‐2‐D
flow and transport approximation described in Appendix Appendix A. This 
would enhance the ability to make more definite statements about aquifer 
heterogeneity at the MADE site. How to properly account for and represent 
model errors is a challenging task especially in problems involving many 
data, high‐dimensional parameter spaces, and nonlinear forward models 
(e.g., Linde et al., 2017). Another interesting topic that could be explored is 
to apply parallel tempering and use the resulting chains for computing the 
evidence with thermodynamic integration or stepping‐stone sampling (Bailer‐
Jones, 2015; Earl & Deem, 2005; Vlugt & Smit, 2001). Parallel tempering 
allows swapping between chains and, thereby, improving sampling 
efficiency. This may contribute to more robust results, faster convergence 
and, thereby, increase the number of effective samples (Figure 8a).

6 Conclusions



Inversions with geologically realistic priors can be performed using training 
images and model proposals that honor their MPS. Unfortunately, such 
inversions cannot rely on many state‐of‐the‐art inversion methods and 
associated approaches for calculating the evidence needed when performing
Bayesian model selection. In this work, we introduce a new full Bayesian 
methodology to enable Bayesian model selection among complex geological 
priors. To demonstrate this methodology, we have evaluated its performance
in the context of determining, in a reduced set, the conceptual model that 
best explains the concentration data for the case study considered (MADE‐5).
Our methodology is applicable to both continuous and categorical conceptual
models (e.g., a geologic facies image), and it could be used at other sites 
and scales and for different data types. Thermodynamic integration and 
stepping‐stone sampling methods are used for evidence computation using a
series of power posteriors obtained from MPS‐based inversions. They provide
a consistent ranking of the competing conceptual models regardless of the 
number of MCMC iterations after burn‐in. This suggests that one can perform
and obtain reliable Bayesian model selection results with MCMC chains that 
have only achieved limited sampling after burn‐in. Both thermodynamic 
integration and stepping stone sampling are suitable evidence estimators. 
However, we recommend the stepping‐stone sampling method because it is 
not affected by discretization errors and its uncertainty (sampling errors) is 
significantly decreased with increasing numbers of MCMC iterations. This is 
not the case for the thermodynamic integration because it is affected by 
discretization errors that dominate over the sampling errors. From the power
posteriors derived from the test case, we find that (1) ranking the conceptual
models based on prior sampling only (β=0) favors the conceptual model with
the lowest evidence and (2) model ranking based on the maximum posterior 
likelihood estimates (β=1) provides, for this specific example, the same 
results as the formal Bayesian model selection methods considered herein. 
For improved sampling, we suggest that future work should investigate the 
use of parallel tempering results for evidence computations. Moreover, a full 
3‐D analysis or a more formal treatment of model errors due to the 
considered 3‐D‐to‐2‐D approximation would enhance the confidence in 
statements about the suitability of alternative conceptual models at highly 
heterogeneous field sites.

Acknowledgments

This work was supported by the Swiss National Science Foundation under 
grant 200021_155924. Niklas Linde thanks Arnaud Doucet for initially 
suggesting the use of thermodynamic integration. Marco Bianchi publishes 
with the permission of the Executive Director of the British Geological 
Survey. The training images are available at 
https://doi.org/10.5281/zenodo.2545587, and the concentration data of the 
MADE‐5 tracer experiment will be soon available at the website 
(https://www.bgs.ac.uk/services/NGDC/).

Appendix A: Forward Model: From 3‐D to 2‐D



The forward model used by Bianchi, Zheng, Tick, et al. (2011) to simulate the
bromide concentrations during the MADE‐5 experiment is a 3‐D block‐
centered finite‐difference model based on MODFLOW (3‐D flow simulator; 
Harbaugh, 2005) and MT3DMS (3‐D transport simulator; Zheng, 2010). We 
initially consider a fine spatial discretization of 0.1 m in the area around the 
wells (Figures A1a and A1b). However, running such a 3‐D model is 
computationally prohibitive for evidence computations (i.e., 15 min of 
computing time to get one forward response and we need 105 forward 
evaluations for each MCMC chain and power posterior considered). To reduce
the computing time, we perform a simple 3‐D to 2‐D correction of the data 
followed by 2‐D flow and transport simulations using the finite‐volume 
algorithm MaFloT (Künze & Lunati, 2012). Moreover, we restrict the 
simulations to the best fitting cross section (red segment in Figures A1a and 
A1b) between the positions of the injection, extraction, and the two MLS 
wells, which results in an area of 6.3 m × 8.1 m (Figure A1c). For the 
transport equation, we set Dirichlet boundary conditions with the normalized 
concentration to the given fluxes on the left side of the model domain 
(Figure A1c) corresponding to the injection well location. For the pressure 
equation, we set Dirichlet boundary conditions at the west and east sides 
(i.e., pressure difference) and Neumann boundary conditions at the north 
and south sides of the model domain (Figure A1c).



Formal approaches to account for model errors in MCMC inversions exist 
(e.g., Cui et al., 2011), but they are outside the scope of the present 
contribution. In the following, we introduce a simple error model that allows 
us to correct for the leading effects of the 3‐D to 2‐D transformation. These 
modeling errors stem primarily from the 2‐D linear approximation of the 3‐D 
radial distribution of the hydraulic heads, which results in a time shift in the 
breakthrough curves at the MLS wells. To estimate the correction factors, we
consider a uniform hydraulic conductivity model with the geometric mean 
hydraulic conductivity at the MADE site (i.e., 4.3·10−5 m/s; Rehfeldt et al., 
1992). For this model, we perform 3‐D and 2‐D simulations of the MADE‐5 
experiment with MODFLOW/MT3DMS and MaFloT, respectively. As expected, 
the 3‐D simulated hydraulic heads between the injection and extraction wells
do not change linearly as for the 2‐D simulation (Figure A2). We tune the 
injection rate in the MODFLOW simulations to achieve simulated hydraulic 
heads that are as close as possible to the measured ones. We then perform 
MaFloT simulations using the MODFLOW simulated hydraulic heads at the 
injection and extraction wells as boundary conditions, and we compute 
correction factors at the MLS wells. These multiplicative correction factors 
are those that maximize the correlation between the concentrations 
simulated with MT3DMS and MaFloT. The mean correction factors over the 
seven sampling ports in each of the two MLS wells are 1.09 and 1.92. Once 
the correction factors have been applied, the earlier time shifts (Figures A2b 
and A2c) are removed (Figures A2d and A2e). These correction factors are 
used in all subsequent simulations. Note that no attempt is made to correct 
for tracer movement due to 3‐D heterogeneity; the correction is a simple 
geometrical correction to account for the transformation of a uniform 3‐D to 
2‐D flow field. We acknowledge that this is a crude approximation, but we 
deem it sufficient for the purposes of the present paper.
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