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CHAPTER 0. INTRODUCTION

[t is generally agreed that the study of the stability and bifurcation of elastic systems can
only be adequately undertaken within the framework of the non-linear field theories of mechan-
ics. However, treatments of the subject in the engineering literature, which are mainly con-
cerned with bifurcation phenomena in special types of bodies such as beams and plates, are
often characterized by an over reliance on free body diagrams, non-explicitly stated assumptions
and selective truncation of nonlinear terms in establishing the field equations of the theory,

procedures which led Truesdell to christen the subject as "unfortunate” {11].

The objective of the present work is a systematic development of the field equations for
various types of rods and plates of interest in applications, within the framework of general
non-linear elastostatics. The possible appearance of bifurcation phenomena is thus inherent to
the formulation. The establishment of approximate kinematic assumptions, as in the plate
theory presented in Chapter 5, is based upon the projection method due to Kantorovich
[43,47]. The use of a consistent linearization procedure, based upon Taylor’s formula in func-
tion spaces [12], is employed as an alternative to the selective truncation of non-linear terms.
Throughout this work, emphasis is placed on the consideration of the effect of shear deforma-
tion and the subsequent transversal warping in the non-linear theories of straight rods and
plates. A consistent treatment of the latter effect leads to results which can not be obtained by

elementary means.

An Overview

The statement of general nonlinear equilibrium equations in terms of stress resultants for

straight rods, is considered in Chapter 1. Motivated by the fact that axial warping of the cross
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section necessarily occurs as a result of shear deformation, the deformed cross section of the
beam is explicitly regarded as a surface in IR® with associated intrinsic or Gaussian frame. The
familiar concepts of axial and shear force then appear naturally as resultanis of the components
of the first Piola-Kirchhoff stress tensor when the Gaussian or intrinsic frame is chosen as the
spatial frame. An interpretation of the second Piola-Kirchhoff tensor, a stress measure without
direct physical meaning, is also examined. Our motivation for this interpretation is the exten-
sive use made in the literature of a constitutive model which assumes a linear relationship
between the components of this tensor and those of the right Cauchy-Green tensor. Careful
derivations of the von-Karman equations, for example [18,61,62], have been based upon the
assumption of such a constitutive model. The discussion and numerical results on approximate
two-dimensional constitutive models presented in Chapter 2, suggest that assuming this consti-
tutive model should be regarded as a mathematical convenience having questionable physical

significance.

The equilibrium eguations in terms of stress resultants developed in Chapter 1, are
applied in Chapter 2 to derive geometrically exact rod theories. First, the classical Bernoulli-
Kirchhoff kinematic assumption is introduced simply by postulating invariance in orientation of
the Gaussian frame over the deformed cross section of the beam. Consistent constitutive equa-
tions in terms of stress resultants are then obtained by a duality argument employing the sta-
tionarity of the total potential energy functional. The resulting theory, capable of modeling
finite extension shearing and bending of the beam, is further specialized by introducing the
additional assumption that the line of centroids is inextensible. The linearization about the
trivial equilibrium configuration of the resulting nonlinear eigenvalue problem leads then to
expressions for the critical load well known in the engineering literature [21-24]. By relaxing
the Bernoulli-Kirchhoff assumption in a manner which leads to a piece-wise linear deformation
pattern of the cross section of the beam, a similar theory is developed for the case of technical
interest of a sandwich beam. In both cases, the fully kinematically nonlinear theories developed

permit a rigorous post-buckling analysis, presented in appendix I, which employs a modification



Introduction 3

of the Poincare perturbation method due to Keller {26,55].

In Chapter 3, the straight rod acted on by end forces, a problem which in fact inaugurated
the subject of elastic stability, is re-examined and an exact second order solution developed. For
this purpose, the exact solution corresponding to Saint-Venant’s problem is first recasi
exclusively in terms of kinematic variables. The resulting displacement field includes a term
which exactly accounts for the axial warping of the cross section within the framework of the
linear theory. In the coniext of the projection method due to Kantorovich, the proposed
expression for the displacement field represents an optimal choice for the coordinate function
of this method for the problem at hand. In addition, this coordinate functions are orthogonal in

the L, sense over the domain spanned by the cross section of the beam.

Taking the exact linearized kinematics as a point of departure, an exact second order solu-
tion is developed by a trivial extension of the results presented in Chapter 1. When the theory
is specialized to the situation in which the line of centroids is assumed to be inextensible, the
resuiting eigenvalue problem leads to a new expression for the critical load which takes into
account, up to second order, the effects of shear deformation and subsequent warping of the
cross section. Inclusion of these effects leads to values of the critical load which are always
lower than those predicted by various proposed modifications of Euler’s buckling load based

upon the Bernoulli-Kirchhoff assumption.

For columns extremely weak in shear T, the results of Chapter 3 show that the effect of
axial warping due to shear deformation, can resuli in substantial reductions of critical load of
the column. An important example of this type of situation is found in the analysis of mul-
tilayer elastomeric bearing, a type of column widely used as mounting and isolation device, and
recently as key element in the development of effective aseismic base isolation systems in
earthquake engineering. Previous analyses of this type of composite column, consisting of thin
elastomeric layers bonded to metal plates, have systematically assumed the metal plates per-

fectly rigid and, consequently, axial warping of the column considered to be completely

T For transversally isotropic elastic solids, the shear modulus is an independent elastic constant,
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prevented. Experimental evidence, however, demonstrates that such an assumption is far for
being realistic. The analysis of these columns presented in Chapter 4, develops an expression
for the displacement field by enforcing compatibility in stresses and displacements between elas-
tomeric pad and metal plate including the flexibility o he resulis of Chapter 3 lead
to an expression for the buckling load of the column which depends upon the stifiness of the
plates.

Finally, the results presented in Chapters 1 to 3 are extended in Chapter 4 to examine the
influence of shear deformation and transversal warping in the non-linear theory of elastic plates.
For this purpose, the projection method due to Kantorovich is employed to derive an approxi-
mate displacement field by enforcing at the outset the shear siress boundary conditions at top
and bottom surfaces. Within the framework of classical linear elasticity, the proposed displace-
ment field is shown io exactly reproduce the field equations of the well known plate theory due
to Reissner [57.58]. When attention is focussed on the nonlinear theory, however, a new for-
mulation is obtained which, when further simplified by introducing an additional assumption,
leads to a plate theory governed by a coupled system of three semi-linear partial differential
equations. These equations reproduce the Reissner theory when the effect of the so-called in-
plane forces is neglected and reduce to the classical von-Karman model in the limit as the shear
stiffness of the plate tends to infinity. Accordingly, the proposed theory furnishes the proper
extension of the von-Karman model to thick plaies. 1t is worth noting that our formulation
does not make use of the questionable linear relationship between second Piola-Kirchhoff and
Cauchy-Green tensors, contrasting previous approaches [61,62]. Such a constitutive model

ieads to incorrect results for beams subjected to axial loads with shear deformation accounied

for.

The formulations developed throughout the present work, are particularly suited for a
numerical treatment employing the finite element method. The basis for such numerical imple-

mentations are examined in appendix 1L
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CHAPTER 1.

A FORMAL FRAMEWORK FOR THE NON-LINEAR

THEORY OF BEAMS

1.1.- Introduction.

Exact equilibrium equations for beams are derived in the present chapter by integration
over the cross section of the beam of the material form of three dimensional equilibrium equa-
tions of non-linear elastostatics. A similar approach can be traced back at least to the work of
Green [1], although the representation of the deformation map as a formal pOWer series expan-
sion in terms of transversal coordinates assumed in [1], is not introduced in the present work.
Starting with the work of Ericksen and Truesdell [2], a considerable body of literature has been
devoted to the formulation of rod theories, either by a direct approach, or by regarding the rod
as a directed medium or Cosserat Continuum [1],{3-8]. A comprehensive account of both

approaches may be found in the important work of Antman [9].

The formulation presented differs from previous ones in the explicit view, adopted
throughout this work, of the deformed cross section of the beam as a surface in £ with associ-
ated Gaussian or inirinsic frame. This point of view is motivated by the fact that warping of
the cross section necessarily occurs as a result of shear deformation. Accordingly, the emphasis
is placed on a formulation capable of taking into account such an effect and, at the same time,
suitable for a systematic consideration of bifurcation phenomena. Furthermore, the explicit
introduction of the Gaussian frame allows the expression of the equilibrium equations in terms

of normal and tangential stress fields acting on the deformed cross section of the beam, that is
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vector fields covering the deformation map. A Lagrangian description is employed throughout
which leads to a simple form of the final equilibrium equations convenient for practical applica-
tions. Mo use is made, however, of the so-calied convected coordinate system briefly discussed
at the end of this chapter.

A physical interpretation of the second Piola-Kirchhoff tensor, particularly useful in the
formulation of approximate two dimensional constitutive models, often used for computational

purposes, is also examined.

1.2.- The Equations of Equilibrium in Terms of Stress Resultants.

This section is concerned with the equilibrium equations for a beam with cross section )
and length L. The case of a straight beam is considered for convenience, with its longitudinal
axis assumed to be a principal axis of inertia and taken to be X'. Nevertheless, the cross section

is allowed to vary smoothly along X'.

Notation

The reference configuration is then B:=(0,L)x{) where (2 C R? is a bounded open set
with smooth boundary 8€2. The deformation map is denoted by ®: BC R*> — R>. Points in B
are designated by X, whereas x = ®(X) designates a point in the deformed configuration
®(B)CR’.

The reference configuration B is covered by a coordinate system {X’ };mu,z@): B— R’
with associated coordinate vector fields designated by {E,) /=123 At each X € B, the coordinate

vector fields are maps E;(X) :B — TyB where Ty B is the tangent space at X€ 8. The nota-

tion K, = 5%1» is often employed in the context of manifolds [10]. Similarly, the deformed
configuration is covered by a coordinate system {x'},.(;,3 with associated coordinate basis

€ = —5647 The metric tensor at a point X €8 is a symmetric, positive definite bilinear form
X

G(X) :TyBxTyB — R with components
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Gy (X) =E,00.E,x0)

whereas the metric tensor g{x) at a point x€®(B), defined in a similar manner, has com-
ponents given by
gy (x) = &,(x).&;(x)

One can then proceed to develop the geometry associated with the deformation of the
body within the framework of these general coordinate systems as in [11,12]. A complete
account in the general context of manifolds can be found in [12] and need not be repeated
here. For the purpose of present work, however, it will be enough to consider the particular
case in which {X/} are the standard coordinates in &> and {E,} is, therefore, the standard basis
in R>. Although {E;} and {¢,} need not coincide, it will be assumed they do so for conveni-
ence. By a slight abuse in notation, points X€ B and x €®(B) will be usually referred to by

their position vectors X and x respectively.

When attention is restricted to the static case, the balance of linear momentum equation

takes the form [11-13]

Div P + PRef(X) B(X) = {) N XeERB (Ii)

where P is the first Piola-Kirchhoff stress tensor, pg,, the density in the reference configuration
B, and B the body forces per unit of volume in B. If F(X) designates the deformation gradient
and J = det(F), the two-point tensor P is related to the spatial Cauchy stress tensor through
the Piola transformation P = J @*F 7 [11,12]. The equilibrium equations (1.1a) are supple-

mented with the balance of angular momenium equation which, in the static case, reduces to

> the symmetry of the Cauchy stress tensor o [11-13]. The counterpart of these equilibrium
equations, in terms of resultant force and moment acting on the deformed cross section, will be

examined next,

Consider an arbitrary cross section (2, a distance X! from the origin, with unit normal

N = ﬁ)l = {16017, The unit vector field normal to the lateral contour 8 is designated by

”

N/ = [0 N12 N13]T.
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(i)  Equilibrium equations for the resultant force R(X*) acting on the deformed cross section ®({1).

The stress vector acting on ®{{}), per unit of area in (, is defined by

Pll
T(X) = P N = {p4 (1.2)
P31

and the resultant force R(X") is thus obtained by integration over (1 (X') as

RO = [[PNlaa (1.3)
0

Integration of (1.1) over the cross sectional area and subsequent application of Green'‘s

formula leads, in components, to

J g;—;fp"l Ty +af [P2 Ny + PP Nl d + [ pres B d2 =0, (i=1,23(1.49)
Q Q [$)

Since the applied load on the lateral contour is given by
?(X) = PIagN; = ? = Pi2 N/z + Pi3 N13 (15)
the equilibrium equation for the resultant force R(X!) takes the final form
d ~ e
—r PNIdO+t=0 1.6)
i i‘ [P N (

where N = [1 0 0]7, and we have assumed, without loss of generality, zerc body forces.

(i) The equilibrium equation for the resultant moment M(X') acting on the deformed section
®(£).
Let xo€R’® be the point in ®({}) image of the centroid (X',0,0) of the underformed
cross section {1 under the deformation map ® :B — R>. The vector field r(X) connecting the

point x with an arbitrary poini x in ® (1) is then defined by

1(X) =x — x0 = ®(X) — 2X)| 2,5 (1.7)
The notation xo = ®, (X') will often be used. Thus, with the stress vector T as given by

(1.2), the components of M may be expressed in the form

M XY =ey [ 7 PP dQ (1.8)
Q
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where €, are the components of the permutation tensor. Differentiation of (1.8) with respect
to X' and use of the equilibrium equations (1.1) yields (Summation convention is enforced

throughout and the index D=(1,2))

dM, P
de (Xl)"”‘f,'jk{f 3‘;1 le d{i — fl‘ aXD g — prefi' B’ dﬂ}
[} Q

) ¢ axp

ar
h 9X7

E,:,,{E 9 pit g ~ [ 251 PPl a0 ~ | presr’ B m}
[ [y} Q

P? dqQ —

= €k

where 7y = €, f r' ¥ dQ is the resultant moment of the applied stresses t on the lateral
9]

contour 8. If Fj designate the components of the deformation gradient F(X), from the

definition of r(X) given by (1.7), it follows that

and therefore

dM,
dx!

y dxh ,
1 - i 1
(X)+mkm€;ik‘gjﬁj dﬂ ""E,‘jk Xm £PJ dA
where use has been made of the fact that J g = P FT, J = det(F) being the jacobian. Since

balance of angular momentum is equivalent to the symmetry of the Cauchy stress tensor g=

€ o =0 " and one finally gets

AM(XY)  _ dxp(X) .
T+m+——7}7—~»x£[PN]dﬂa0 1.9

where by definition x = ®(X) le Y30

Remark
The centroid X€ R* of the deformed cross section ®((}) is given by

o
X=&(X) = ﬁm{@(x) 40

* Recall that €, are the components of a compietely anti-symmetric tensor.
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and even within the linear theory X & x,, the reason being the axial warping of the cross
section 1. Thus, if equation (1.7) is replaced by r = ®(X) — ¥ a different definition of
the resultant moment acting on ®({} is obtained, although the corresponding equili-

SRURCTY. SR,
jyiv E! ORI

brium equation is the same as (1.9) with x, replaced by %. Clearly, t
between resultant moments about either xo or ¥ occurs only in the non-linear theory, and
should become significant only in cases of severe axial warping due to high shear defor-

mation. This point is re-examined in Chap. 3.

Equations (1.6) and {(1.9) represent the most general expression of the equations of
equilibrium for a beam undergoing finite deformations. They are completely consisient with
those of Finite FElasticity. The explicit appearance of the deformation map @ through
Xo = OX)| y2-yi.g I the equilibrium equation for the resultant moment M(XY) should be
noted. This explicit dependence does not occur in the linear theory. The important case of a

cross section with a plane of symmetry is considered next.

1.3- Cross Section with s Plane of Symmetry

in this section, attention is restricted to the case in which the beam of interest has a plane
of symmeiry, taken to be X Ly 2 and bending occurs in this plane. Thus, the external loads are
symmetrically applied with respect to X'—X° on 80, and i@ = 0. The equilibrium equations

(1.6) and (1.9) reduce then to

d;“ JPran+pxh =0
[¢}
—T f Pl A + g(X) =0 (1.10)

dM(X") dxs
ras dxl fP” mefP“m_o

where t = [p(X!) ¢(X") 017 is the applied load on d€} per unit length. Integration of the first

iwo of (1.10) vields

x!

¥
fplldaa.ampmiop(é) g, [P0 dﬂm”HW{Lg(«f) d (1.11)

[t} Q
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where P represents the applied horizontal (compressive) load and H the applied vertical load,
both at X' = 0, On the other hand, since X0 = ®(X),,_,, the most general expression for xo

is given by

b= X'+ u(X) | xg=v(XY (1.12)
where u(X") represents the axial displacement of the line of centroids, and v(X') the
corresponding vertical displacement. The final equilibrium equation for the bending moment
follows by substituting (1.12) into (1.10) and making use of (1.11). The complete system of

equilibrium equations is then

X“ X}
MY +v'(xY) P»+»§f 2(E) del = 11 + u'(XD] H+gf q (&) d¢
0 -0
x! ,
[ Praa=—p— [ p® ae NORE)
[¢) =0 ]
Xl
[ Pran=—H- | g a
(4] =()

It is remarked once again that no approximation is involved in equations (1.13); they are
consistent with the equilibrium equations of Finite Elasticity. In the section 1.4, these equations
will be reformulated in terms of tangential and normal siresses acting on the deformed cross
section. An elementary illustration of equations (1.13), is furnished by the classical Euler's

elastica.

1.3.1.- Example: Euler’s elastica

By assumption, the line of centroids X? = Q is regarded as inextensible. Since the stretch-

ing of this fiber is given by the Euclidean norm of

- r d
AMF!xlmoEl ”lezwo H O]}r“ ﬁ‘l' {X5 X(%]T

from (1.12), the inextensibility condition ||&]|? = 1 may be written as

o= [(I1+u") v]T = [cose sine]” (i.14)

where a(X') represents the angle between the line x = & (X) | y2_ys_, and the X'-axis, for each

X'e(0,L).
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The second assumption is the usual Bernoulli’s kinematic hypothesis. Thus, no shearing
occurs and the bending moment is proportional to the change in curvature of the line of cen-

troids. Conseqguenily

- , da(Xi} \

M(x") = B1(x) 2220 (115

(x" ) )

The substitution of (1.14) and (1.15) into the moment equilibrium equation (1.13)
together with the assumption of no distributed loading; i.e: ¢ (X Y = 0 so that H = 0, leads 1o

the non-linear eigenvalue problem for the elastica

d da (X" ‘
}}T [E1(X Wé}}jrm] + P sing = 0 | XIG(O,L) (1.16a)
@ o= cosa —~ 1, y' = §ina (1.16b)

An account of this classical problem can be found in [14,15]. In the next chapter, a gen-
eralization of problem (1.6) will be presented which takes into account the finite deformation of
the beam due to shearing. The nature of the solutions of the resulting non-linear problem will

he examined in Appendix I using perturbation methods.

1.4.- Basic Kinematic Relations. Alternative forms of the Equilibrium Equations.

The basic kinematic relationships used throughout this work are presenied in this section.
With the aid of these relationships, the equilibrium equations (1.13) will be reformulated in
terms of stress measures which have direct physical meaning. The main objective is a formula-
tion suitable for a systematic consideration of instability and bifurcation phenomena and, at the
same time, capable of taking into account effects such as the warping of the cross section due to

shear deformation.

1.4.1.- Geomeiry of the Deformed Cross Section.

Consider once again, as in section 1.3, an arbitrary cross section {1, a distance X ! from
the origin of the material frame. The dependence of € on X! will be often made explicit by

seiting (XY, For a fixed X' in (0,L) points in G(X') will be denoted simply by
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XLxHeq Wy,

the dependence on X' being understood. These points are mapped onto points x in ®{Q)
through the map
x = R(X) = (X XX i, (1.17)
The lines X = Constant and X° = Constant are mapped onto curves in ®{{}) sometimes
referred to as coordinate curves of the surface (1.17). One also says the coordinates (X%, X% in
{} are convected through the deformation (1.17) 11,12].
The basis veciors B,,E; at a point (X2 X% € 0 (X') are mapped by the deformation gra-

dient V% of (1.17) onto vector fields (convected basis)

%
9.X*

which are tangent to the coordinate curves and, therefore, to the deformed cross section ®((}).

L= ViE, = and I, = ViE, = 9% (1.18)

In addition, the vector field # normal to ®({}) may be defined by

dw . - T R - ai’ 8)%

0 ne=JF 'K M&X‘? X M&X?’ (1.19)
where

dw a% 9% |

dQ “ax2 8 aX3“ (1.20)

is the relation between deformed and undeformed areas dw and 4, respectively. The frame
composed by {f,l;,1;} shown in Fig.1.1, not necessarily orthogonal, is often referred to as the

Gaussian frame in the terminology of differential geometry [16].

For simplicity, attention is restricted throughout the rest of this chapter to the cases in
which the cross section {} is either "narrow’, with a plane of symmetry and applied forces con-
tained in this plane, or to a situation of plane strain. The extension to the general case of an
arbitrary cross section is straight forward and is considered in chapter 3. Thus, we consider the

following situation:
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Figure 1.1 Geometry of the deformed cross section. Gaussian frame.

(i) No twisting of the cross section occurs. Therefore

12,i3 = {}

and the Gauss frame is orthogonal.

(ii) Given the type both of cross section and external loading, warping of the cross section

occurs only in the direction of the symmetry plane X'—X2. Hence, we may assume that

L=-"r=8 ad |ll=1*%

#This is he same as saying that the deformed cross section is a developable surface and, therefore, with zero
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In view of these assumptions, further reference to the X3-coordinate is omitted. Accord-
ingly, X = (X", X?) is employed to designate points in the reference configuration B,
E,=[10l7 and £, = [0 117 for the standard basis at X, and x = & (X', X?) for the deformation

map. With these conventions the relevant part of the deformation gradient is written as

(1.21)

~ 9o’ : .
where we have set x' ; = a7 for notational convenience.

The coordinate expression for the normal and tangential vector fields in the {8,} basis

takes now a particularly simple form. From (1.21) and definitions (1.18) and (1.19), it follows

that
—~1 2 1 —if..1
. dw *2 : dw X2
? Edﬂ E {WX‘J : Edﬂ !xz,z} 2
N I,
where 1 1= ——— , and
|11}
L0 G+ )= || (1.23)

d{}

The coordinate matrix of the unit vector fields A and 1 in the {8,] basis will be denoted by
A (X) and plays a predominant role in subsequent developments. Introducing, for convenience,
the angle ¢ (X, X?) defined in terms of the components of the deformation gradient by

Xlz

tan Y (X' X?) = — xz’ ~ (1.24)

2

the matrix A (X) takes the form

2 i .
Tool viy 1 X2 X g _ cosy  sing i
M g I ] T [ coss (123
where, by definition
i} r 18
i - A 5 (1.25b)

Gaussian curvature [16].
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Obviously, A (X) is an orthogonal matrix depending, in general, on both X! and X°.

1.4.2.- Normal and Tangential Stress Fields. Equilibrium Equations.

The equilibrium equation, with the exception of that involving the bending moment, have
been so far expressed in terms of the first Piola-Kirchhoff tensor. In applications, an expression
in terms of resultant axial and shear forces is often more convenient. For this purpose, we
consider the normal and tangential stress vecior fields o and v covering the deformation map
& B — R That is stress vectors acting on the deformed cross section defined per unit of
undeformed area, and given by

o =n.(PN) r=1L0PN) (1.26)

In view of the definition of A(X) in (1.25), they may be expressed by the relation

Pll
E PZ‘} - A {‘:} (1.27)

The equations of equilibrium in terms of the normal and tangential stress o and 7 foliow

then at once by substitution of (1.27) into (1.13). The complete system of equations consists of
d e 110.0!

dxl»£ AX) H aq + {q (=0 (1.28a)

together with the equilibrium equation for the bending moment

dM x ’
ORI = (X! d 1.28b
v +i’0p(¢>dg [+ o' (xY)] [[Oq(a ¢ (1.28b)

which remains unchanged.

The resultant axial and shear forces are defined by

N={oada v={rda (1.30)
a

[¢}

However, inasmuch as A (X', X?) is in general a function of X?, equation (1.27a) .shows that an
cquation involving N and V (and their derivatives) explicitly is, in general, not possible. The
warping of the cross section due to shear deformation is the physical reason behind the explicit

dependence of A on X’ Due to this warping effect, the angle (X', X?) changes over the
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deformed cross section and, consequently, so does the frame (f,1) and the matrix A,

Whenever warping is neglected, equations (1.28) reduce to a system of non linear ordi-
nary differential equations involving N,V, and M; such as in the example discussed in 1.3.1.
The effect of the warping of the cross section will be discussed at length in the forthcoming

chapters.

1.5.- Physical Interpretation of the Second Plola-Kirchhoff stress tensor

One way of characterizing the response of a general non-linear isotropic elastic material is
through its strain energy function W (E) expressed in terms of the Lagrangian stress tensor E.

The second Piola-Kirchhoff stress tensor can then be computed according to [11-13]

_ awg,m (1.31)

In a variety of problems of practical interest, however, one is interested in situations for

S

which the strain is small in some sense and yet the geometry of the problem is such that large
displacements and rotations are expected to occur. The question often arises of how to general-
ize the classical model o = \ rrace(e) 1 + 2G € of linear elasticity to situations of this type.

Models of the form

§= A trace(E) 1 + 2G E (1.32)

have frequently been considered as suitable generalizations [17,18]. However, inasmuch as the
tensor 8§ is defined as the pull-back of P to the reference configuration [12]; i.e: 8 = F~!P, this
object does not have a direct physical meaning, although P does. One wonders then about the
physical significance of the elastic constants A and G appearing in (1.32), and questions the rea-
sons behind models of this type other than those of mathematical simplicity or computational
convenience.

Restricting our attention to the two dimensional case, the components of the tensor §
admit a simple geometric interpretation in terms of the stresses o and 7 which do have direct

physical meaning. In fact, substitution of the relation P = F S into (1.27) yields
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-1 11
o dw J 0 S
{’T] = —-‘}—a—- . do 2 .{S12 (133)
12 i0

where we have used the fact that the Lagrangian strain tensor is given by E = %[C - 11,

C = FTF being the right Cauchy-Green tensor.

Similarly, planes perpendicular to the X%-axis are mapped, locally, according to

dw,
49,

By o= J F"Tﬁz, where dw; and d{}, are elemental deformed and undeformed areas. An

argument analogous to that leading to (1.33) would show that the normal and tangential stress

o, and , acting on the deformed area dw,; are related to the components of § through

dﬂ] dw; 29. Sn (1 4)
s,
where
do; 3 3
dﬂ[ \/(x 1) + (X 1) (1.35)

Equations (1.33) and (1.34) give an interpretation of the tensor S highly useful in applica-
tions. In the case of beams, for example, these results show that the component S is exactly
proportional to the axial normal stress acting on a deformed cross section of the beam, while
522 is proportional to the transversal normal stress. However, this is not the case for the com-
ponent $'2, unless £, = 0. In section 1.3.1, It will be shown that the values of the com-
ponents of § are in fact exactly proportional to the components of the Cauchy stress tensor with

respect io the convected basis.
In view of (1.33), relationships of the form ¥V = f §12 4, sometimes used in the
0
analysis of beams and plates subjected to large displacements [18], should be regarded as
merely formal with questionable physical significance.

The results contained in equations (1.33) and (1.34) are illustrated in Fig.1.2, and may be

summarized in the following proposition.



Chap.1 19

2 2
X", X
x=¢(X)
: Sy
A
g La ~

B >
Y X, X

Figure 1.2. interpretation of the second Piola-Kirchoff stress tensor 3,

Proposition

Consider a squared neighborhood with sides d{} and 4 £}, parallel to the the coordinate axis

X', X% and deformed onto 2 neighborhood with sides dw,dw,, as shown in Fig.1.2.

The components of the second Piola-Kirchhoff stress tensor § are given, in terms of the

normal and tangential stresses (o',7) and (o;,7,) acting on de and dw, respectively, by
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20
11 do o
S aq J
dw; oy
22 e LT
S a0, 7 (1.36)

Remark

A direct coordinate free proof of this proposition is extremely simple and generalizes immedi-

ately to the three dimensional case. In fact, we have

o =H (P E)
d -1
- 72% JE.IFP &)
-1
d . n
- -;1-;-’)—- JELISE]
~1
- | de o
aal

which proves the first of (1.36). A similar proof holds for the second relation. For the shearing

stress we have

——E,.[(FTF) S E,
||3|| 2 [(FTF) ]

since Cyy = ||1}]? = it follows that

{m

SI2

= E, = J

which proves the third of (1.36).
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1.5.1.- Convected Basis. Alternative Interpretation.

The so-called convected coordinate system is often used in the formulation of rod
theories. Its introduction provides yet another interpretation of the second Piola-Kirchhoff ten-
sor.

Let the reference configuration B, a three dimensional manifold over R?, be covered by a
systern of coordinates {X'} with associated basis {E;}. The convected coordinate system on
®(B) is then defined as

8'(x) = 61 (@' (x)) = 910d7!(x) (1.37)
for any x € B such that x = ®(X).

The usefulness of the convected system lies in the simple coordinate representation taken
by the deformation map @ :B — R>. Denoting the latter by @ = X’o®, from (1.37) follows
that

D(X) = Xo@d lod(X) = X (X) (1.38)
Thus, the convected coordinates 8/ of any point x = ®(X) in ®(B) are numerically equal to
the coordinates X' of the point X € B. Furthermore from (1.37) it immediately follows that the
basis {i;} associated with the convected system is given by

I,(X) =F() R, (1.39)

Hence, the metric tensor Gg v= i,.i 7 in the convected basis reduces to the right Cauchy-

Green tensor C; i.e:

Gg(x) = Co® 1(x) , where x = ®(X) (1.40)

To obtain an alternative interpretation of the second Piola-Kirchhoff stress tensor let o
be the components of the Cauchy stress tensor @ with respect to the convected basis. Accord-
ingly

G = O'Ij é,»@éj
S s b o g iz ma
= Fg lixlj””(y'@ Fi Ff e,@ej (141)

however, by the Piola transformation
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ol - “}f pi ij_ _% s FI! Fj (1.42)

a comparison between (1.41) and (1.42) shows that the nuraerical values of the components

S of the tensor § with respect to the material coordinates {X') are given by

SV (X) = J ofo®(X) (1.43)

The spatial tensor o= J @ is often referred to as Kirchhoff tensor. Thus, equation (1.43)
shows that the components of the Kirchhoff siress tensor €(x) with respeci to the convected basis {81}
coincide with the componenis of the second Piola-Kirchhoff stress tensor S(X) with respect to the

material basis {X'}.

Although the convected coordinate system leads to more compaci expressions of the field
equations, the deformation gradient is implicitly contained in these expressions. In practical
applications, we find a Lagrangian formulation in terms of the material coordinates {X'} more

useful.
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CHAPTER 2.

FINITE DEFORMATION AND BUCKLING OF BEAMS
BASED UPON BERNOULLI’S GENERALIZED KINEMATIC

ASSUMPTION

2.1.- Introduction.

Formulations of non-linear, geometrically exact beam theories in terms of siress resultants
require the introduction of some kinematic constraint. The Bernoulli-Kirchhoff hypothesis is
undoubtly the most widely enforced kinematic constraint. In the context of Chapter 1, this
hypothesis amounts simply to enforcing invariance in orientation of the Gaussian frame over
the deformed cross section ®({2) CR?> of the beam. Under this restriction, the Gaussian frame
plays a role entirely equivalent to that of the directors in beam theories which regard the rod as
a Cosserat Continuum, A comprehensive account of formulations based upon the director

approach may be found in [8].

In the present chapter, the transversally homogeneous beam is first considered under the
aforementioned kinematic hypothesis. Subsequently, the Bernoulli-Kirchhoff assumption is
relaxed to reflect a piece-wise linear deformation pattern of the cross section. This generaliza-
tion allows the rigorous treatment of a case of technical interest: the sandwich beam. The
emphasis is placed on bifurcation phenomena and attention is thus confined to the static case

and hyperelastic material. The results obtained in this chapter may be summarized as follows:
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(i)

(i1)

(iit)

(iv)

The resulis of chapter 1 allow a simple derivation of a geometrically exact theory capable
of modeling finite compression bending and shear of the beam. For the transversally
homogeneous beam, similar results appear 1o be implicit in Antman’s work {19]. For the
sandwich beam, however, the fully non-lingar theory presented seems (o be entirely new.
Finite element implemeniations of our formulation for the transversally homogeneous

beam can be found in [20].

The elastic stability of both types of beams 13 examined by introducing the customary
assumption of inextensibility of the line of centroids. The resuli is then a non-linear
eigenvalue problem for the critical axial load in which finite shear of the beamn remains
accounted for. Kemarkably, the linear problem obtained by consistent linearization about
the reference configuration yields, for both iypes of beams, expressions for the buckling
loads well known in the engineering literature [21,22,23,24,25] which exhibit the impor-

tant reduction experienced by BEuler’s buckling load as a result of shear deformation.

The fully non-linear formulations presented, allow a rigorous study of the post-buckling
behavior for both the transversally homogeneous and the sandwich beam. Making use of
the Poincare-Keller [26] perturbation method, it is shown in Appendix I that the adjacent
equilibrium configurations are locally stable, the bifurcation diagram being the familiar
pitchfork. Similar bifurcation analysis, employing the Poincare-Keller method or the
Liapunov-Schmidt procedure, have been restricted in the past to either Euler’s elastica
{14,15] or to an extensible although unshearable rod [27,28]. Related resulis for the elas-
tica with no-convex sirain energy are given in [29,30]. No results appear to have been
reported regarding the influence of shear in the post-buckling behavior except for those

presented in [18]. The case of the sandwich has been overlooked.

Finally, two dimensional constitutive models convenient for computational purposes, are
examined in the context of approximate theories obtained by consistent linearization.
Such model have often been use within the framework of finite element method

{31,32,33] and, to some extent, to justify models such as the Von-Karman theory of thin
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plates [18].

2.2.- Transversally Homogeneous Beam. Geometrically "Exact” Theory.

2.2.1.- Kinematic Assumption.

The central assumption in the theory discussed in this section, is furnished by Bernoulli’s
"plane sections remain plane" hypothesis. When attention is confined to the case of bending in
a plane of symmetry of the beam, the expression for the deformation map ® :B — R’ con-

sistent with this assumption is given by

, |sing (X h
X = X0 + X COSIII(XI) (21)
where, as in the previous chapter
Xltu(xh
Xp = (P(X)'sz() = V(Xl) (22)

Expressed in geometric terms, (2.1) states that an arbitrary cross section Q (X! is
translated according to (2.2) and rotated an angle ¢(X!) in plane of symmetry. Any warping

effect of the cross section is ignored by (2.1).

From (2.1) the explicit components of the deformation gradient are

14 u' — X%'cosy —siny

v — XA'sing cosys (2.3)

F(X) =
where (') denotes differentiation with respect to X'. In addition the jacobian J = det(F) is
given by

J =1+ u) cos + v'singg — X2y’ (2.4)

Finally, the unit vector fields N = E; = [1 017 and E, = [0 1]7 are mapped onto @ and 1

according to (1.22); i.e
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-1
fi= {-2%— JF TN = [cosy (X1 sing (XH]7 (2.5a)
I=FE,= [-sing (X" cosp(XH]7 (2.5b)

The kinematics of the beam is summarized in Fig.2.1.

T X

B8 X',x'

o i

N

e p—
Jny

|
X| u
Figure 2.1. Kinematics of a transversally homogeneous beam.

Clearly, the assumption (2.1)-(2.2) represents, in the context of Chap.1, the simplest possible

expression for the general kinematics discussed in section 1.4. Explicitly »3—% = ] and the

(X', X%, as defined by (1.24), is independent of X?. Consequently, the matrix A (X' X?) is

independent of X? and , according to (1.25), takes the simple form

costy (X1) —sin (X1

sing (X')  cosy (X?) (2.6)

AXL XY =

2.2.2.- Equilibrium Eguations.

Once an explicit expression for the orthogonal matrix A is known, the equilibrium equa-
tions of the theory can be immediately established. To express them in terms of the axial and

shear forces acting on the deformed cross section, recall that these stress resultants are related
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to the normal and tangential siress fields o and 7 by

szcr da V&frdfi 2.7
Q) 4]

The introduction of these expressions together with (2.6) into equation (1.28a), and use

of the fact that A (X', X?) is independent of X?, leads to

d cosy —sin p(XH
Q}T[Linw cosw]'[m*iq(m =0 (2.83)

together with the equilibrium equation (1.28b) for the bending moment M; i.e:

x! Xl

M+ P+Jp(§) del v = (1 +u) H+J q (&) de (2.8b)
=0 ==(}

which, remarkably enough, always remains unchanged.

It is possible, however, to recast the equilibrium equation (2.8b) for M in a form includ-

ing explicitly the forces N and V. In fact, substitution of (2.8a) into (2.8b) yields

M+ [(1 + ucosy + vsing] V — [v'cosy — (1 + u')cosy] N =0 (2.9

From (2.4) one notices that the term multiplying V is precisely the value of the jacobian J
at X% = 0. Similarly, it is easy to see that the term multiplying N is the component £, of the
Lagrangian strain tensor E. Consequently, equation (2.9) may be written as

M+JyV—E, N=0 X'€(,L) (2.10)
where
Jo =det(F)|,., sothat J=Jy— Xy (2.11)

The use of the equilibrium equation (2.10) rather than (2.8b) is particularly useful in
numerical formulations employing a finite element technique. Next attention is focussed on the
development of appropriate constitutive equations in terms of the stress resultants N, Vand M

under the assumption of hyperelasticity. Only the isothermal case will be considered.

2.2.3.- Constitutive equations for Hyperelasticity.

It will be assumed in what follows, that the material is hyperelastic with strain energy

W (X ,F). The first Piola-Kirchhoff tensor P may then be computed according to
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_aWp)
I

To obtain consistent constitutive equations in terms of stress resultants, it is first neces-

P

sary to derive the conjugate strain measures to the generalized stresses N, V, and M. A duality
argument is then necessary. The derivation will be carried out in some detail.
Consider the total potential energy functional defined, for a hyperelastic material 10 any

configuration x = ®(X), by

@) = [ W.p av - f txdS — [ prs Bx dv (2.12)
B 5, B
where F = V®, 35, denotes the part of the boundary where the stresses t are prescribed, and
88, that part of the boundary where displacements are prescribed. 0B, (8B, = ¢. In addi-

tion, the linear space of kinematically admissible variations is defined in the usual manner; i.e

V={8du:8— R’ |dulyz =0) (2.13)
In order to find the dual strain measures to N, V and M, it is sufficient o focus on the
strain energy part, herein denoted by I17(®), of the total potential energy functional. The

Frechet differential of 11" at an equilibrium configuration x = ®(X) is then

1

3i1(@) = | iffp(vqn.sw da | dx (2.14)
[1] [¢]

where 8F may be easily computed from the explicit expression (2.3) of the deformation gra-

dient, by

5F = -1 V1@ + o 6ul|ug (2.15)
do

Performing the indicated computation one finds

L 11
P
_— . , 1 ¢ ¥ 7 PR -2
511 (@)wg Su gp 4G+ 8 £P A0 + 5y n)j;:,x{},ﬂ]dsz

11 12
— 8¢ |y 1 ng 21}d52+ﬁ, {uim dx (2.16)
ERr Sl
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To interpret the terms appearing in (2.16) recall first that according to (1.7), the bending

moment M may be expressed in terms of components of P as

pli gpn
M = ~[cosp siny]. | X o[ 40 =i x° pn| 40 (2.17)
) Q {

Next, the two integrals appearing in the coefficient multiplying 8¢ in (2.17) may be

identified in terms of the stresses o and 7 as follows. For the first integral one has

A PU o
1. Xz{ 21}d(’z = [—siny cosy]. A..[ }d(l
[71 [A
o
=[x 10 1].[,]du = [ ¥ 7 40 (2.19)
0 : 0
In addition, since P = F~'S and the components of § are related to o and 7 through
(1.36), the second integral may be written as
PIZ
i f X2 {pnfda = [ 757 a0
0 O

= [ Ur-2E,01d0 (2.20)
[¢)

Thus, substitution of (2.18)-(2.20) into (2.17) yields

811 (d) = | {6u'[Ncosy — Vsing] + 8v'[Nsing + Veosyl} dx

+ | {8y'M — 8yl V — 2E,N1} dx (2.21)

St Sy

It should be noticed that integration by parts and standard arguments of variational cal-
culus [33] would yield the equations of equilibrium previously derived. Instead, collecting terms
one finds

L

BI(d) = f [ M8y + N [[v’coszb — (14u)sing]8¢ + cosydu' + sim{;Sv’]
0

+ ¥V [[m(1+u’)cos¢—v'8in¢]8¢ — sinydu’ + cospd v’] } de (2.22)

Observe finally that the stretching of the line of centroids is given by the norm of the vec-

tor field
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1 (1+u")
1 = F|X2=-0' O = v’ (223)
Therefore, the strain measures A, and A, defined by
A, =%0 = (1 + ucosy + v'sing = Jp (2.24a)
A =% = vicosy — (1 + u)sing = Eys (2.24b)

represent the stretching in the direction n normal to the deformed cross section and the shear-
ing of the cross section (in the direction 1), respectively. In view of (2.24), the coefficients
multiplying N and V in (2.21) are identified as the variations (Frechet differentials) of A, and
), respectively. In conclusion, (2.21) may be finally written as

L

SII@) = [ [M 8y’ + N o\, + Var] d@ (2.25)
0

which shows that ', [N, — 1] and A, are the strain measures conjugate to M, N and V, respec-
tively. Accordingly, the strain energy function of the rod is of the form W(X‘,xp’,)\,,,)\,). How-
ever, the question regarding which suitable restrictions are to be imposed on the strain energy
function in order to obtain physically meaningful and, at the same time,well posed problems is
far from settied, even in the simple one dimensional case ([12,13,19] and references therein).
In the sequel, the following constitutive equations are considered

N=EQXY [, -11=EQXY [Jy—1]

V=GQUHr =60 Ep (2.26)
M= EI(XhH y¢'

Equations (2.26) furnish the simpiest constitutive model in terms of the generalized
strains ¢', [n,—1], and A,. In addition, its linearization about the reference configuration yields
the classical constitutive equations of Timoshenko’s beam theory. However, an estimate of the
so-called shear coefficient, requires a more elaborate kinematic assumption. This question will
be considered in some detail in the next chapter. Clearly, the model (2.26) derives from the

strain energy potential W (X' y'x,,A,) defined by

1

WX A, ) = 'Elz' EICXY) ¢ + —%« GO AP+ 5 EQOX) Iy, — 1P (227)

by means of the general relations
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=y,

i _oF a7
a‘l[, 4

== o N = 5*}‘\': {2.28)

The equilibrium equation (2.8) together with the constitutive equations (2.26), comprise
the complete system of equations governing the response of the beam under the kinematic
assumption (2.1)-(2.2). They can be reduced to a system of semi-linear ordinary differential
equations f involving ¢, v and u. However, explicit solutions in terms of quadratures are not
possible in general. Nevertheless, these equations can be easily treated by a numerical pro-
cedure such as the finite element method. All that is needed is a standard weak formulation of
the equations and subsequent discretization by means of interpolation functions as shown in

AppendixIIl. Numerical examples employing our formulation can be found in 1191,

In applications, large axial displacements are seldom encountered. Accordingly, it is often
assumed that the axial displacement is "infinitesimal” so that 1 + '’ = 1. Approximations of
this type will be more systematically treated in section 2.4. The limiting case in which the line
of ceniroids is inextensible is, therefore, relevant to practical applications and is considered
next. Remarkably enough, the consistent linearization of this problem yields the equations of a

theory widely used in the treatment of multilayer elastomeric bearings.

2.2.4.- The Elastica with Shear Deformation.

The stretching of the line of centroids of the beam is given by the norm of the vector
field & defined in (2.23). Hence, the inextensibility condition ||&|| = 1 of the line of centroids
implies

[(Q+u") v'] = [cose sinal (2.29)
where, as in Chap.1, « represents the angle the deformed line of centroids forms with the xi-
axis. The constitutive equation for the shear force takes then the simple form

V=GaXY sinla(X) — ¢ (X)) (2.30)

The substitution of (2.30) and the constitutive equation for the bending moment into the

It is noted that for semi-linear equations the classical energy criterion can be rigorously proved; i.e: stable
equilibrium configurations correspond to a minimum of the total potential energy [12].
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equilibrium equations (2.8) yields, after use is made of the inextensibility condition (2.29), the

systemn of non-linear ordinary differential equations

x!

[ET(X) ¢') + P sina = cose |H + ! g (&) dt
£=0

Xl
. ) = P . _ CcOsYs 1
sina—g) = == sing — 2 H+(Lfl(§) dé X'e(0,L) (2.31)
y' = sina u' = cosa — 1

where it has been assumed for simplicity that the applied distributed (horizontal) force
p(X") = 0. It is noted that the axial force N should be regarded as a reaction to be determined
by the corresponding equilibrium equation.

The linearization of the equations (2.31) about the reference configuration ¢ = o = 0,

gives a linearized deformation characterized by ;b—, a which satisfy

X]
EICX) ') + Pa=H + [f g (&) dE
F~0

Xl
P -1 1
1+ o ] W G0 H + (L) q (&) dé; X'e(,L) (2.32)

azz

V' = a u' =10
It follows immediately from these equations, that the linear part Q; of ¢ is given by the

linear operator L defined by

T X!
Ly = [E“Xl)P] +PE=H+J g(¢) d¢ | X'€(0,L) (2.33)
1+ —— e=0
GO

When proper boundary conditions are appended, the values of P for which the problem
L J = M admits non-trivial solutions, provides the critical axial loads for which bifurcation
occurs. See Appendix 1. It is noted that equation (2.33) differs from the classical Euler‘s bifur-

cation equation (See example 1.3.1, Chap.1) by the fact that the bending stiffness Ef(X') of

due to the shear deformation effect.

the beam experiences a reduction by a factor 1 P

1-%-*-——-—(;Q

Such a result appears to be first derived by Haringx [21,22,23], although in the limited context
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of a linearized approach. No reference in this work is made to the fully non-linear equations
(2.32).

In applications, a variational formulation of the linearized problem is often more con-
venient; i.e: the so called energy method [24,35]. By multiplying the first of equations (2.32) by

¢, the second by [#'—¢] adding and integrating by parts, it immediately follows that

L L
—;-f EHO ' (6))2dE + %—f GQE[V(E)—y(€)12d¢ + Boundary Terms
0 0
(2.34)

P = L
J 7@ - 5@l as

0

M!r—-ﬂ

Clearly, (2.34) is simply the Rayleigh quotient for the linear problem (2.31); in physical
terms, the ratio of the total potential energy to the axial end displacement of the rod. The

minimization of (2.34) over the class of functions with "finite energy" T yields the critical loads.

The critical values of the axial load P can be related to the classical Euler‘s bifurcation

load Pg by the expression (Appendix I)

2P
Poi= £ (2.35)

4P;
I+ 1+GQ

It is interesting to examine the asymptotic behavior of the critical load, as given by (2.35),

in the limiting cases when the shear stiffness tends either to zero or infinity. From (3.35) it is

easily found that

- ~ GO _ \
Poy= P B, 0, as B, 0 (2.36)
while
. P GO
P = Pg [1 ca Pg, as P, (2.37)

It can be shown (see Appéndix D that the critical loads obtained from the linearized prob-
lem (2.33) correspond to values of the axial load for which bifurcation from the trivial equili-

brium configuration actually occurs. In applications, the question often arises regarding the

t The classical example of Sobolev space [36,44,45].
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stability of these adjacent equilibrium configurations. It is shown in Appendix I, using pertur-
bation methods, that these adjacent equilibrium positions are locally stable. In fact, they behave

as parabolas in a neighborhood of the trivial equilibrium configuration.

It should be emphasised that the stability at bifurcation points can not be studied with
only the information provided by the linearized problem. The knowledge of the equations
governing the fully non-linear problem is necessary for this purpose. In contrast with previous
formulations [21,22,23], equation (2.33) arises naturally as the consistent linearization of the

non-linear problem (2.31), making possible the analysis of Appendix L.

2.3.- The Sandwich Beam.

It is a well known result in classical linear elasticity that due to shear deformation a warp-
ing of the cross section of the beam always occurs. One might then ask what effect the warping
of the cross section has, if any, on the overall buckling load of the beam when shear deforma-
tion is taken into account. Clearly, the answer to this question involves the replacement of the
"cross section remain plane" assumption by an alternative deformation pattern. This subject will

be discussed at length in the forthcoming chapters.

Nevertheless, it is possible for composite beams of the sandwich type, widely used in cer-
tain applications requiring lightweight members, to extend the kinematic assumption (2.1)-(2.2)
as to approximately account for the warping effect of the cross section. For simplicity, the case
of a rectangular cross section is assumed throughout and attention is confined to the case in

which the beam is composed of three lavers: a "soft" core of thickness h and top and bottom

flanges each with thickness % For this type of beams, most of the axial load is carried by the

top and bottom layers while the core is mainly responsible for resisting the shear force. It is
then reasonable to assume a piece-wise linear deformation pattern of the cross section, as illus-

trated in Fig.2.2. This assumption turns out to be particularly accurate [25].

Remarkably enough, the inclusion of the described warping pattern has a significant effect
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Figure 2.2. The kinematics of a sandwich beam.

on the overall buckling load, particularly important in the case of low shear stiffness. As
opposed to previous analyses [25], the formulation presented is not restricted to a small angle

approximation and should, therefore, be regarded as a fully non-linear theory.

2.3.1.- The Kinematic Assumption.

Under the assumption of a piece-wise deformation patiern for the cross section of the

beam, the deformation map x = ®(X) takes the form

n |sing (X N 10 O]
X=3Xo+7 [cosn//(X") - 3) cosa(x)) | ¥ 3 SXSTHS
, |sing (X1 , 2 h
£=%p + X [COSIII(XJ) /foglxi\gz (2.38)

X=Xy —

h{wsind;(Xl)] - ﬂ)[-—sina(Xl)

= M e . h
2 COS([I(XI) +2 COSa(Xl)}If 7 ZQX:Q-—"E—

where, as in the previous section, a denotes the angle the deformed line of centroids forms

with the x; axis, and x, is given by (2.2). Introducing the Heaviside step function H(x—¢&) '

1 if x>&
1 A locally integrable function defined by H (x—§) = 0 f x<¢
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the kinematic assumption (2.38a)-(2.38b) can be recast in the following more convenient form

— Sifys
- 2
=%+ X {cosw}

+ {(Xz—fz’i)i{(xi—«-gn(xa-g)[1-H(X%-§)]H[j$} - {_;f:;x ” (2.39)

It is noted that (3.39) differs from (2.1) only by the term containing the Heaviside func-
tions, which accounts for the warping of the cross section. |

From the Kinematics (2.39) the components of the deformation gradient and the normal

and tangential stress fields n and i, can be immediately computed from (1.21)-(1.23). The

matrix A containing the components of f and i takes, according to (1.25), the form

cosyr  sinygs
—Sinys  cosy

h

)]

AT (X! x) = [H(X2+-§—)-H(X2~

. h , k| cosx sina
+ [1-H(X +~2—)+H(X —"2—] —sina cosa (2.40)
Introducing the definitions

Newe =a [ 0@ de  Ve=a [ 106 de (2.412)

ok A

o<lel<s o<lel<5

and
Nﬂange =g f ‘T(‘f) dé Vflange = d f 7'(5) dé (241b)
2<lel<d+s L<lel<drs

where a is the width of the cross section, and making use of (2.40), the equilibrium equations
(1.28a) can be written as

Ncare Nflange P Xl {p(g)]
[chre]+ {V/'lange‘}z{ﬂ}_io q(g) dé: (242)

Equation (2.42) together with the bending moment equilibrium equation (2.8b) comprise

cosa —Sina

cosy —siny
sings  cosys

sina  cosa

the complete system of equilibrium equations for the problem at hand. It has been mentioned

earlier, that the case in which the thickness ratio %<<1 and the core is composed by a ’soft’

material is the most frequently encountered in applications [25]. Accordingly, it is often

assumed that N, = 0 and V4, = 0, so that the total axial and shear forces N and V are
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defined as

N = N/'lange V=V (2.43)

In this event, the equilibrium equation (2.42) takes the following simple form

m = {113} - zo {Z Eg} at (2.44)

In what follows, attention is restricted to this simplified case. The limiting situation in

oS —Simp
sina  CcOSYs

which the line of centroids is regarded as inextensible is examined next.

2.3.2.- Inextensible Sandwich Beam.

Since the inextensibility condition and constitutive equation for the shear force are given
by (2.29) and (2.30), the system of ordinary differential equations governing the problem
differs from (2.31) only in the equilibrium equation for the shear force, now given by (2.44).

Explicitly

x!

LEI (X)) + Psina = cosa |H +ff q(€) d¢
=0

X!

P :
g sina - oo H+i0q(§) dt| . X'e(0.1) (2.45)

sin(a—y) =

u' = cosa — 1 v' = sina
where () designates now the area of the core. The consistent linearization of equations (3.45)

yields a linear problem

x!

(1 (x") :Z']’+P&zH+J q () dt

-
$=[1—-~@%&+-5%H+ioq<s) ag| . X'e.L) (2.46)
R

from which easily follows that the linear part {p' of ¥ is given by

x!
=11 £ T 4 PI = 1
Ly = [1 et ET(XY) &' + Py H+J0q(§) d¢  X'€(0,L) (2.47)

s
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It is noted that due to the effect of shear deformation, the bending stiffness appears in

, in contrast with that of _,__..1_1.3.... found for the homo-

P
(2.47) reduced by a factor of 1 — ey
1+ -
GO
geneous beam. In fact, the critical loads obtained from the associated eigenvalue problem are

now related to Euler‘s buckling load Py according to (see Appendix I)

LU U
P =ca T (2.48)

The asymptotic behavior of P.. is then quite different from that found for the critical

load in the case of a homogeneous beam. Even though one has

- Pr as G — o0 (2.49)

Py
P Pg |1 = =

as in (2.37), from (2.48) it foliows that

P,i=GH—0 as GO —0 (2.50)

which for low shear stiffness exhibits a linear behavior of the critical load as a function of G {3,
quite different from that corresponding to a homogeneous beam predicted by (2.36). For low
values of shear stiffness, The later predicts values of the buckling load substantially greater than
those given by (2.48). It is noted that (2.48) is, in any case, bounded by G Q. Clearly, the dis-
tinction between both theories becomes irrelevant for high values of G (1. For an homogeneous

GQ ., L?
5~ o( 3

isotropic material for example, )} and, except for extremely short beams, both

{2.35) and (2.48) coincide for all practical purposes.

Since the fully non-linear problem (2.45) is at our disposal, It is possible to study the sta-
bility of the adjacent equilibrium configurations at the critical values given by (2.48). Using per-
turbation methods it is shown in Appendix I that such adjacent equilibrium positions are in fact

locally stable equilibrium configurations.

It is finally noted, that the linearized eigenvalue problem (2.46) can be recast, as in the
previous section, in a variational form. The Rayleigh quotient associated with (2.46) takes the

form
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L L

L EOW@Vat + [ GO ©O-T@1de + Boundary Terms
0 0

(2.51)

P =
) L

= 7 (@)12de

24

Equation (2.51) differs from its counterpart (2.37) valid for a homogeneous beam, in the

different expression for "external work" done by the applied end load P, now given as

P L

amf v'dx. Remarkably enough, the same expression for the external work is found for Fuler’s
0

elastica, the difference in Rayleigh quotients being the appearance of the shear strain energy
term in (2.51). This similarity might lead to the erroneous conclusion that the linearized equa-
tions (2.46) furnish the appropriate extension of Euler‘s elastica for the case in which shear
deformation is taken into account. This has been in fact the case in some alternative derivations
[24].

The source of confusion appears to be the angle the resultant axial force forms with the
X'-axis. The equilibrium equation (2.44) shows that a sandwich beam may be viewed as a
homogeneous beam in which the axial force is no longer normal to the deformed cross section,
but forms an angle @ with the X'-axis. Such an assumption leads to the linearized equations
(2.45). The derivation presented shows that this conclusion stems from the assumed warping

pattern leading to the kinematics (2.39),

2.4.- Consistent Approximate Theories.

The consistent formulation of n-order approximate theories relies on the observation that
the classical Taylor’s formula from elementary calculus can be immediately extented to the gen-
eral setting of functional (Banach) spaces. All that is needed for practical purposes are the two

following facts [12,36]

Let X and Y be Banach spaces ¥ , S C X an open set, and f :SCX — Y a given (non-

t By a slight generalization, the same conclusions apply to Banach manifolds [37]. This is in fact the case of
interest for general three dimensional non-linear elasticity [12].
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linear) map. Then

(i)

(ii)

If T is Fréchet differentiable on § then f is continuous on S, Gateaux differentiable, and
the Gateaux differential coincides with the Fréchet differential. Conversely, Gateaux
differentiability and continuity imply Fréchet differentiabiiity. Consequently, the Fréchet

differential may be computed by the Gateaux differential formula

5/ (x0:%) = %[f(aso+ai)1!a=o (2.52)

Higher differentials are computed in the same manner; for example

82 (xp,%:%) = g%[af(xoﬁ,sz)]l(,:o (2.53)

Any smooth (C*) map may be approximated at xo+X€.S by Taylor’s formula; i.e:
flxo +%) = fxp) + 3 7 f(x0:x) + 0 (x0,%) (2.54)
n=1 .
where

llo* (x0,0) ||y

— -0 as |xl[x—0
HXHX

One often writes 8/ (x0;X) = Df (xy).X, where the linear map Df (xp) :X — Y is the

Frechet derivative at xp€S. Lf = f (%) + Df (x0) X is then referred to as the linear part of

fatxp€S.

These two facts can be effectively exploited in mechanics of solids [38] to derive con-

sistent approximations to within arbitrary order to the field equations ¥. If the expansion (2.54)

is carried out about the stress free reference configuration, one is led to a sequence of approxi-

mate problems often referred to as the method of successive approximations [11].

It is shown below, that consistent approximate beam theories, of interest in engineering

applications, can be obtained in a simple manner from the non-linear field equations by a

+ Typically, f is taken to be a vector field over the configuration @ == @, a siress tensor or a strain meas-
ure of interest, X is taken as the product space of the configuration manifold and an appropriate tangent bun-
dle and ¥, the super-imposed infinitesimal deformation, a vector field over ®. See [12] for a complete ac-
count of a covariant formulation not restricted to linear spaces.
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straightforward application of (i) and (ii). Furthermore, the consistent second order approxima-
tion to the equilibrium equations requires only the knowledge of the kinematics of the linear

theory. This fact plays a key role in the developments of the forthcoming chapters.

Second Order Approximate Theories.

Recall that, under the kinematic assumption (2.1)-(2.2), the equilibrium equations (2.8a)
and (2.10) together with the constitutive equations (2.26) comprise the field equations govern-
ing the response of a homogeneous rod. Making use of (2.52) and (2.53) the strain measures

defined by (2.24) takes, up to second order, the form

hz1+7+%97mﬂ+-~

Enwo+[v_ay+%haa$y+~~ (2.55)
E“zo+UT~X%1+%ﬂﬂ+vQ~zww$1+

If the values of the variables at a configuration ®,, characterized by (1,,v,,4,) are desig-

nated by subscript "o", the linearization of the equilibrium equations (2.8a) and (2.10) about

the configuration ®,, take the form

i"Mr W+ Jolo Zp= oG + V] @+ Enl, G, + N )
+{M'+J()V + E]QNii(, mO (256)
aN | -,

lo
I VT +p 4 [Ni"} [ Al Wl +{p}=-0
ax' |4 () dy Vo axt 7 Vle) T e
dE]z 4
The terms within braces in (2.56), the so-called residual, give the out-of-balance forces at
the configuration ®, and appear naturally when the non-linear problem is solved by an iterative
solution procedure [32,38]. If ®, is chosen to be the reference stress free configuration, then

Nl,=V|,=M]|,=F,],=0, and Jy|,=1. Therefore, since A|, = 1, the first approximation to

the field equations takes the form
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M+ V=0 M = EIy'
Vit g=0 V=Gol -yl (2.57)
N+p=0 N=EQu

Thus, the first order approximation yield the well known equations of Timoshenko’s beam
theory. Equations (2.57) could have been derived directly from the three dimensional equations
of linear elasticity [39] without resorting to the non-linear theory and subsequent consistent
linearization process.

Applying again the Gateaux differential formula (2.52) to (2.56), making use of (2.55)
and substituting in Taylor’s expansion formula (2.53); one arrives at the second order approxi-

mation expressed as

M++ETV - -yIN=0 M = EI §'
V' 4+ [y N'+q=0 V=0Ga [V — (+a)y] (2.58)
N -G VI+p=0 N=EQ [# + é—(zv’——&)i]

Higher order approximations may be systematically obtained in the same manner by com-

puting successive terms in the expansion (2.53).

It is noted that once the equilibrium equations are established to within the desired order
of approximation a duality argument, entirely analogous to that of 2.2.3, yields the consistent
conjugate measures of deformation. Thus, appropriate constitutive equations can be immedi-
ately stated by this procedure. In the case of a sandwich beam, for example, the bending

moment equilibrium equation (2.8b) may be written with the aid of (2.44) as

M + JoV + [v'cosa — (1+u")sinalN = 0 (2.59)
and since

!

14

sin(a) = 50 thar & = V'
VN (A4u)? + 7

by (2.52), a computation analogous to that leading to (2.57) and (2.58) shows that the second

order approximation to the equilibrium equations (2.44) and (2.59) is given by
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M+ {l+alV=290
(V+VNl+qg=0 (2.60a)
IN =¢Vi+p=0

In view of (2.60a), the aforementioned duality argument shows that the constitutive equa-

tions consistent with (2.60a) are

M = EI(X)' (XY

V=GV XY - (1+u") ¢(xH] (2.60b)
— Wi ,_1;_~,2 l_;—r?,
N~E(I(X)[zz+2v +2u]

where {1 stands for the area of the core. The physical difference between the axial measures of

deformation appearing in (2.58) and (2.60b) is illustrated in Fig.2.3.

o { | 40’ X e

Figure 2.3. Hiustration of the axial measures of deformation.

The approximations (2.57) and (2.58) or (2.60) illustrate the following facts

(a) The second order approximation to the equilibrium equations involves only linear meas-
ures of deformation; i.e: & LJy. Accordingly, they can be exactly established from the

knowledge of the linearized kinematics. In the case of the kinematic assumption (2.1)-
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(2.2), the linear part is given by

=X+ a(x) - X xt =X+ v(X)
and the systematic application of the equations of linear elasticity yield then (2.57) while
those of non-linear elasticity lead to (2.58). This remark equally applies to the general
case of three dimensional elasticity.

(b) Equations (2.58) and (2.60) have been derived by a consistent linearization process based
upon Taylor’s formula, without resorting to a selective truncation of non-linear terms, a
procedure often invoked. In engineering applications, however, the axial displacements
are usually small in comparison with actual rotations and lateral displacements. Thus, the

additional assumption

[l = max (ol = O w11 @61
is quite realistic in most situations, and leads to the simplification 1 + ' = 1, % = 0in
equations (2.58) and (2.60). In situations for which the additional assumption (2.61) is
not applicable, equations (2.58) or (2.60) can always be employed, although a numerical

treatment may be necessary.

2.4.2.- Remarks on Approximate two-dimensional Constitutive Models.

It has been pointed out in section 1.5 that for computational purposes, particularly in the
context of the finite element method [31,32,33], as well as for the derivation of approximate
theories [18], the ad-hoc constitutive model

S = A¥* rrace(E) + 2G* E (2.62)
is sometimes employed, often in conjunction with the kinematic assumption (2.1)-(2.2)
[31,33]. In this section, it will be examined to what extent convenient models of this type can

be used in the context of the approximate theories discussed in the previous section.

First, recall that according to (1.31) and (2.17) the resultant forces N, V, and M can be

expressed in terms of the components of the stress tensor S as follows
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N=[oaa={[Js"da
[$] [§)

v=frao=[5"do+E,[ s"dq (2.63)
[¢3 [43 [§}
il

P
PR . 2 — 7 1l p
M= { {P“]X 40 i.!X s g0

o o . . E
Next, attention is confined to a second order approximation. Since the linear part of 7&

E
is , according to (2.52), given by L _}%] = g1, the second order approximation to (2.63), takes
the form
v=[5"d0+e, [ oda (2.64)
QO Q

Let us consider again the two cases of the homogeneous and the sandwich beam in the

situation for which assumption (2.61) holds so that it may be assume 1 + ' = 1 and &' ¢ = 0.

(a) Homogeneous Beam: Since €1, = V' — s, equation (2.64) takes the form

V= S2d0+ - §IN (2.65)

0

Equation (2.65) shows, for example, that the formal definition ¥V = f 52 dQ) is mean-
0

ingless unless N = 0 (no axial load) or €}, = 0 (negligible shear deformation). Furthermore,
when the constitutive model (2.62) is assumed S'? = G¥ £, and if P designates the applied
axial (compressive) load applied at the ends of the beam, (2.65) is estimated to within second

order by

v =lc* - ~£— Qi — ol (2.66)

Therefore, since ¥V = GQ[¥' — ¢], it follows from (2.66) that the shear modulus G* in
the constitutive model (2.62) is given, in the presence of axial load and to within a second

order approximation, by

P
# A
G G+ Q (2.67)
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(b) Sandwich Beam. According to the kinematics given by (2.39), €, has the expression

e = 7 = BUHOC+E) — HO0-2)] (2.68)

and the substitution of (2.68) into (2.64) yields

V= [ 8740+ 5~ §IN,. (2.69)
(¢}

For the common case encountered in practice in which assumption (2.43) holds,

N,pre == 0 and (2.69) yields

me sS40 sothat GY =G (2.70)
0

Thus, one arrives to the somewhat surprising result that for a2 sandwich beam the average
of the stress component S'? over the cross section gives the total shear force and, furthermore,

G* = G in the constitutive model (2.62). This result may be interpreted physically as follows.

Physical Interpreiation: The equilibrium equation (2.44) shows that a sandwich beam may
be viewed as an homogeneous beam in which the resultant axial force is no longer normal
{0 the cross section, but forms an angle o = v’ with the X'-axis. See Fig.2.4. When this
approach is taken, instead of the definitions (2.7) for N and V in terms of ¢ and 7, by

equilibrium considerations one has

fo do = Neosta —y) = N
(4]

f? dQ) = Nsinla —¢) + V= N' — ¢l + V
)

However, the relationship (1.36) always holds and, therefore, so does its second order

approximaiion; L.e:

?ﬁ; FdQ mj; S'240 + eu_j; T dO

Clearly, from these equations (2.70) immediately follows.

2.4.3.- A WNamerical Assessment.

The two-dimensional non-linear finite element developed in reference [32] for the
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Figure 2.4. Simplified model for the sandwich beam.

general purpose finite element computer program FEAP [46] was used in order to assess
numerically the accuracy of the estimates given in (2.67) and (2.69). A slender beam with

length

widih = 10 and left end clamped, was subjected to a constant vertical load and pro-
j

ratio
gressively increasing axial load, both applied at its right end. The finite element discretiza-
tion consisted of five 9-node isoparametric elements of equal length. The values of the
elastic constants in the constitutive model (2.62) are shown in Fig.2.5 together with the

finite element mesh.
Figure 2.6 shows the computed lateral stiffness as a function of the axial load for the

case in which G¥ = G + ~£— as in (2.67), and for the case G¥ = G corresponding to

(2.69). The agreement between the computed values and those predicted by the respec-

tive theories is excellent.
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Material Properties Model Properties

E =10° A# = 26666.
G = 500. w® = 400000.
v =10.25 v# =025
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Figure 2.5, Two-dimensional Finite Element mesh and material properties.
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Figure 2.6. Numerical results. Two-dimensional Finite Elasticity Finite Element model.
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CHAPTER 3.

CONSISTENT FORMULATION OF A LINEARIZED
THEORY OF BUCKLING FOR TRANSVERSALLY

HOMOGENEOUS BEAMS

3.1.- Introduction

(i)

(ii)

The formulation presented in this chapter hinges on the following two key facts

The method of successive approximations, based upon Taylor’s formula, shows that only
linear measures of deformation are involved in an exact second order approximation to
the non-linear equilibrium equations. Accordingly, a second order approximation can be
exactly established provided an exact solution to the displacement field in the context of
the linear theory is available.

The exact three dimensional solution for the displacement field corresponding to a beam
acted upon by end loads (Saint Venant’s problem) is known, not only for a linear elastic
isotropic material [40,41], but in the more general situation of transversally isotropic solid
[42]. Furthermore, the conclusions obtained in the former situation carry over with no

essential modification to the latter.

Taking this result as a point of departure, the proposed formulation can be summarized as

foliows

(1)

As a first step, the exact displacement field for a beam acted by end loads is recast
exclusively in terms of kinematic variables, which are taken as the average displacement

and average rotation of the cross section and are designated by # and ¢ respectively. The
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(2)

(3)

resulting kinematics includes an axial warping of the cross section which is shown to be

proportional to the average shear angle of deformation E

Based upon this exact kinematics, one can derive a set of ordinary differential equations
for the variables {i, ¥} which are exact in the sense that their integration yields the exact
solution for {#, ¢}. Remarkably enough these equations correspond to the well known
theory due to Timoshenko and lead to the expression for the shear coefficient first derived

by Cowper [39].

Next, the physical description of the body is restricted to the knowledge of the kinematic
variables {#, $} and attention is focussed on the non-linear theory. A trivial extension of
the results presented in Chap.l allow then the derivation of an exact second order approx-
imation in terms of the variables {#, ¢} to the non-linear equilibrium equations. In this
approach the deformed cross section is viewed as a two dimensional surface and the intro-
duction of its Gaussian frame allows the expression of the final equilibrium equations in
terms of axial and shear forces defined as stress resultants of normal and tangential

stresses.

Once the equilibrium equations are known, consistent measures of deformation dual to
the resultant stress measures can be derived for a hyperelastic material. Thus, no assump-

tion is involved in the derivation of the field equations summarized in Table 3.1.

This formulation is recast into an eigenvalue problem for the critical load by introducing
the customary assumption of quasi-inextensibility. The result is then a new expression for
the critical load which takes into account, to within a second order approximation, the
effect of axial warping due to shear deformation. This expression should be regarded as
an exact second order approximation to the buckling load corresponding to a straight

beam acted on by end loads.

The formulation presented is re-examined in the context of the projection method origi-

nally proposed by Kantorovich ([43] and references therein). Its shown that the exact kinemat-

ics derived in step (1) corresponds to an optimal choice for the coordinate functions of this
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method, for the problem at hand. The physical motivation for the choice of the kinematic vari-
ables is also examined. It is shown that the plane defined by the average angle E not only
corresponds to the average plane of bending but, furthermore, defines the plane in which the
resultant of tangential stresses over the deformed cross section, the shear force, is contained.
However, due to the effect of axial warping the resultant of normal stresses no longer remains

normal to the plane of bending.

3.2.- The Exact Linearized Kinematics.
The exact solution for the displacement field corresponding to a straight beam with axial
axis xj, cross section  CR? with smooth boundary 6§}, symmeiry plane x;—x; and acted

upon by end loads contained in x;—x,, may be expressed as {40,41]

-_—M V. 24 L oy, N

ui(x) = i X1%) i Ix (x0,x3) + xx§ + 5 xt] + o
M, V M., 2 N . .

- + B p—. (0,L)% 3.1
U2(X) 2E12 Xi + 3E12 X 14 2E12 [XZ X3] 0 Xal %€ (O,L) Q ( )
M3(X) == v ;%sz:; - lm

El, EQ

where N, V and M are the resultant axial and shear force and bending moment contained in the

symmetry plane x;—x; I = f [x,]2dQ} the moment of inertia, and x :Q0C R2— R a har-
0

monic function satisfying the Neumann problem

Ax(xpux) =0,  (x3,x9)€80

-;—vxzz + (1—%—)x32] — n3Q2+v) x5 (3.2)

Next, the displacement field (3.1) is reformulated fully in terms of kinematic variables.
These variables will, in turn, be related to the forces N, V and M (generalized stresses) through
appropriate constitutive equations. This approach will be referred to as reduction of the dimen-

sionality of the problem T . We select as a set of generalized kinematic variables, the mean

T Since the equilibrium equations, a system of partial differential equations, are reduced to a set of ordinary
differential equation, the denomination is justified. A systematic procedure of reduction of dimensionality is
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displacement ii(x;) and the average rotation §{x;) about the x;-axis of an arbitrary cross sec-
tion € (x;). Alternative sets will be discussed later. Since the axes {x;} are assumed to be prin-

cipal axis of inertia, 1i(x;) and ¢(x,) may be defined by

- i
alxy) = o -gu(xl,xz,)q)dﬂ (3.3
and
- . 1
Plx)) = — -}—fxzul(xl,xz,aq)dﬂ (3.4)
270
The physical significance of the angle E is illustrated in Fig.3.1.
Figure 3.1. The average rotation E(xl).

In terms of these kinematic variables, the displacement field (3.1) can be recast in the form

u (x) = 7;(x1) — x, ¢ () + B(x)

U (x) = U, (x) + l,(x) , («=2,3) (3.5)

where the components #;(x) ,(i=1,2,3) of the vector field (x), referred to as residual displace-

ment in the sequel, satisfy the conditions
[hde = xH®do=0 (=123 (3.6)
0 0

differential equation, the denomination is justified. A systematic procedure of reduction of dimensionality is
furnished by the Kantorovich method. See section 2.5.
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A physical interpretation of the residual displacement ti(x) will be given shortly. First, it
is noted from (3.5) and the definitions (3.3) and (3.4), that the axial component #;(x) is given

by

#(x) = u(x) — ‘513" f u(x)dQ — % f X, u1(x)d )
0 }

2 _ 1 2 _x
Iy + xoxf — G ‘g[x+x2x3 14§ 5 iix+xzx32]xzdﬂ

G E]

Hence, introducing the function ¢ :{3 — R defined by

x (x2,x3) + x,x% ~ —f Ix+x,x31d Q) — ——-mfxg x+xx31d Q) (3.7)

¢(X2,x3) J= (E;vl

which depends solely upon the geometry of the cross section ) and the Poisson ratic », the

component #;(x) may be expressed as

By (%) = — —5% ¢ (xz,x3) (.8)

Proceeding in the same manner with the components #,(x) and #;(x), we arrive at

B =yl M |2 — 2 IBf N
2 wEL T Q EQ™?
a M N
u3(X) Vi E]2 XyX3 — 70 X (3.9)
together with the result
u3(x)) =0 o (3.10)

To express the residual displacement @ (x) in terms of the kinematic variables # (x,) and

fp—(xl), appropriate constitutive equations for M , V and N will be first derived.

The exact solution of the problem at hand [40,41] shows that o4 = o33 = o3 = 0.

Thus, integration of the constitutive equation oy} = Ee;; + v(oy+033) over § yields

M =—{ x01dQ = EL §'(x) (3.11a)
O
N=[cndn=EQ &) (3.11b)
[t

Similarly, the integration of o1, = Gej; over ) together with condition (3.6) gives
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V“f O"}zdﬂ = Gf €12dﬂ
1] §]
= GQla—4l - V — f
Thus, introducing the average shearing angle

E(X]) == ﬂz’(xl) - @(Xl) (312)

the constitutive equation for the shear force V takes the final form

V=0GQ k Blxp) (3.132)
where
(3.13b)

Kx
I+

Dg—'z.—a

1 Jd¢

— ] ——dQ

o 6X2

is the Timoshenko’s celebrated shear coefficient. The use of the definition of ¢(x,,x3) given by

(3.7) together with a well known identity for harmonic functions 1 and the boundary condition

for x, yields the alternative expression of the shear coefficient

201 + i
K = ] ( W) 1 (3.14)
LI —Q—f xolx + xx31dQ
2 I, 4

first derived by Cowper [39].

It should be noted that for the problem at hand, equations (3.11) through (3.14) are
exact. Summarizing our results, the exact kinematics for a straight beam with axial axis x; and
symmeiry plane xy—x; may be expressed in the form

ul(x) = ﬁ(xi) - X2 J(xl) - ¢(XQ,X3) K E(X])

ur(x) = T (xp) + v [glxgxy) ¢ (x) — x0" (x9)] (3.1%)

uy(x) = + v [xaxa' (x) — x33"(xy)]

where we have written for short

a()q) = H}(xl) s V(X1) = ﬁz(X]) , E(X]) = V’(x;) - _ll_l(xl) (3.16)

The function ¢ :Q) — R and the shear coefficient « are given by (3.7) and (3.14) respec-

o Ox(xx) ax | |
1 £ 9x. df) = J(;xa 3n ds, (a=1,2), provided Ay = 0 in ().
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tively, while g :Q — R is defined by

i h—1
glxyx3) = w{xg - x# — -—Z—wwi] 317N

It is of some interest to compare (3.15) with the classical Bernoulli’s kinematic assump-
tion. First, (3.15) includes an axial warping of the cross section due to the shear deformation
which is proportional to the average shear angle [—E(xl). Second, the lateral displacements u,(x)
and u3(x) in (3.15) depend upon x, and x; through the Poisson ratio. The part proportional to
-u,l/"(xl), therefore proportional to the bending moment, gives rise to the so-called amriclastic sur-

faces [41].

3.3.- The Second Order Approximation

With the exact expression (3.15) for the kinematics of the linearized theory at our dispo-
sal, we proceed to develop an exact second order approximation to the equilibrium equations of

the non-linear theory by making use of the method of successive approximations.

3.3.1.- Kinematic Relations.

Consider the situation in which the externally applied end loads are controlled by a small
parameter €. Accordingly, let the components with respect to the {2} of the applied force

Rl y~0at X;=0 be expressed as

P€=ei’+621=’+"' , H€=e]7+€21—7+-'- (3.18)
In accord with the method of successive approximations, we consider a family of

configurations ®, : Rx B — IR* defined by

P (X) = X+ 10X = X+ eaX) + %u(X) + 0(d) (3.19)
and such that u(X) = —dd:[d)e(X)] |e—o is the exact linearized displacement field given by (3.15).

From (3.19) it immediately follows that

FX) =1+ eGRADu(X) + 0()
J(X) = dedF,) =1+ DIVa(X) + 0(e?) (3.20)



Chap.3 56

JF (X1 =1 + elDIVu(X) — GRAD u(X)] + O(e?)

The explicit expression for the components of GRAD u with respect to the basis {é,xﬁ,}

can be computed from (3.15) as

B=Xl'—¢xf  —b—d, kB —d,xp
GRAD uw(X) = | v'+u(gy"—X,u") vig, wp'—ua") ve, W (3.21)
VX}(Xz{l;,’MEI,) VX},%I D(Xzﬁlml“f’)

Next, recall from Chap.! that the Gaussian frame at a point x in the deformed cross sec-

dw
dQ

-1
tion ® () is composed by {f, 113}, where fi = i JF'E, is the unit vector field normal

to ®(0) and 1, = 1/||1Lll, (@=2,3); being 1, = FE, the convected vector fields tangent to
®(Q). Thus, from (3.20) and (3.21) the components of the Gaussian frame with respect to

the basis {&,) are given, in matrix notation, by

1 0 0 2X, 2
-—@L!ﬁmOJre Ut + b 4kB +1 0 toy' + 1007 + O(ed
dQ
0 ol g, 0 0
0 — ~$,2 0 0
Ml =111+ el 0t +1 0 (kB + X0 vy’ +{-117| + 0@ (3.22)
0 0 0 X; 0
0 ~,3 0 0
(151 i3m 0+ €y O KE+ ~ X3 v$'+ 0 '] + 0(d)
1 0 X, -1

where use has been made of the expression for g(X, X3) given by (3.7). Clearly, the Gaussian
frame is orthogonal to within second order, since 1,13 = €13+ 0(e?) =0+ O(?). Further-

more, in view of (3.22), one has the estimates

Ll =1+ eep+ 0D =1+ ewXa —vi) + 0@D
Nl =1+ eey; + 0@E) =1+ E(VXQEI — 7)) + 0(e) (3.23)
dw

o= 1+ eQXy' +207) + O

As in Chap.1, the relationship between Gaussian frame and the spatial basis {&,} will be

expressed as {f, I, 133 7= A(X) 7 {8,)7. Thus, in view of (3.22) and (3.23) the components of
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the matrix A (X) consistent with the configurations (3.19) may be written in the form

AX) =1+l g(x) + B(X, Xy kBX) + Z(X X)) v/ (X)D| + 0D (3.24a)

where

0 —-10 0 —¢,2 —¢,3 0 0 0
Q=11 00, E=I¢, 0 0, =10 0 —X, (3.24b)
0 00 ¢,3 0 0 0 X; 0

Equation (3.24) admits an extremely simple geometrical interpretation. €1y (X;)
represents a rotation of magnitude E about the Xs-axis, and this is the only effect the kinemat-
ics based upon Bernoulli’s assumption considers. = (X5, X;) reflects the change in orientation
the Gaussian frame experiences over the deformed cross section ®(£2) as a consequence of the
axial warping of ®(Q) due to shear deformation. Finally, £(X, X3) takes into account the

deformation of the cross section due to Poisson’s effect.

3.3.2.- Equilibrium Equations.

Consistent with the expression (3.18) for the configurations ®, : RxB — R 3 we consider

the following representation of the first Piola-Kirchhoff stress tensor

PX)=co+e2P+ 0@ (3.25)
where o = %[PG] |..o is the (symmetric) stress tensor of the linear theory, and
= 2 )

P == ;— :2 [P]|._oa (non-symmetric) two-point tensor. Let us denote by Pé(’ the components
€

of of the first Piola-Kirchhoff tensor with respect to the Gaussian and material frames. For sim-
plicity, the same symbol P, is employed to designate the tensor and its components with respect

to the basis {8;xE,}. Both set of components are related according to P, = A PC Hence, in
view of (3.24) the linear part of PClis given by o = Ti{m'e=° and P Y admits the representa-

tion

PSX) =co+e P, + 0 (3.26)
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The stress vector T, = Peﬁl acting on the deformed cross section ®,(£2) is then given by

To= Py &= PO+ PO, + POyl 3.27
and the normal and tangential stress resultants over @ () are defined as
N (X)) = ef o dQ + 62f PSdQ + 0’ =e N+ XN + 0(%)
Q 0

Véu(Xl) = ef T d + 62f P dO+ 0@ =€V, + € rl}a + 0(e?) (3.28)
Q Q

The equilibrium equations (1.6) for the resultant force then leads to the equalities

= [ P.(0E a0
Q

= [ AP E a0
")

= efo-ﬁldﬂ + ezf [’ic-}- (Qy + Bk + Zvy)olEdQ + 0@
Q Q

and the use of equation (3.28) yields the following second order approximation to the equili-

brium equation (1.6) for the resultant force

N
€ ?2 +
Vs
N “]72—‘1; o1l o1
+ Vot +1 N | + kB Blonfd@ + v [Tlofd + 1 H| + 0(e) =0 (3.292)
2 0 ? o ? o

The second order approximation to the equilibrium equation for the bending moment

M, = M@ = le M + €2 MI&; + O(e% may be written in a similar form as
elM~ H + M~ H—7H+7Pl + 0@) =0 (3.29b)
Equations (3.29) represents the first two terms of a formal expansion of the nonlinear
equilibrium equations in terms of the small parameter € which controls the applied loads. By
equating to zero the coefficient of the first power of € one obtains the equilibrium equations of

the linear theory in terms of stress resultants, in agreement with the principle of successive
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approximations. The coefficient of the second power €’ yields, when set equal to zero, the
second order correction within the nonlinear theory. The second order terms in (3.29a) contain-
ing 2 (X5, X3) and Z(X,, X3) arise as a result of the transverse warping of the cross section and
the Poisson’s effect, respectively, and need to be estimated in terms of resultant forces. For this

purpose, use is made of the following key result:

Lemma

Regardless the shape of the cross section (), the JSollowing relation always holds

f [(25,2 o+ ¢303dQd =0
0
Proof
The proof makes use of the definition (3.7) of the warping function ¢ (X, X3) in terms of

the harmonic function x (X, X3) given by the Neumann problem (3.2). The computation

is somewhat lengthy and details can be found in Appendix II.

Second order estimates of the warping and Poisson’s effects.

Since & (X, X3 and Z(X,, X3 are given by (3.24b), in view of the previous lemma equa-

tions (3.29) reduce to

[N — P + %[N — YV,+ Pl+ 0() =0
6[‘172‘— IT{] + 62{724‘ $N+ Kﬁf (]5,20'11(1&) - Valf X310'12dﬂ + ﬁ] + 0(63) =0
Q Q

M~ H + M- H-aH+7vPl + 0@ =0 (3.30a)
To complete the estimate, the two integrals appearing in (3.30a) will be expressed in

terms of stress resultants as follows. Proceeding as in Appendix Il

- -V
Vl[l"g X30'12d.Q = “VG(I/' _Elgzﬁ‘g; X3'—6X— + (2+V)X2(X3)2

7 a0

- W
= —p Gy "E‘:jz—

Q) X,(xp%0 + | LG SLL Wy
0 b0 2 dn

= -1
= Vw51 [ x(xp0 (3.300)
Q
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Clearly, this term vanishes for cross sections with two axes of symmetry. A similar com-

putation and the definition (3.13b) of the shear coefficient « yields
= _ e Vacif 14 28x
x/3£ b,0011dQ = NBx Q£ #2d0 = w{ >y (X)X a0

= (-8 N+ 7 L f |a+30 (03 + a-Lo 1,7 a0 G300
I 2 )

Therefore, if attention is confined to cross sections with two axes of symmetry, equations
(3.30a)-(3.30c) lead to following expression for the second order approximation to the non-
linear equilibrium equations

No— () V.= —€P — P — O(&d)
[(ed) + (1=k) (ef)] N, + V.= —eH — *H — 0(Y) (3.31)
M+ 1+ (@] V.~ k(eB) N.= 0(&d)

where N, and V. are defined by (3.28) and M, in an analogous manner. Since
4, = et + 0(e) and ¢, = e+0(e?, the subindex "e" may be omited and the second order

approximation tates the final form

N—¢y V=-pP
V+ly+ 0-pl N=—H (3.32)
M—-kBN+1+7] V=0 '

Equations (3.32) should be compared with the linearized system of equilibrium equations

(2.58) derived in the previous chapter. The former show the following two results

(a) Due to warping of the cross section the resultant force N is rotated an extra angle (lmx),—é
and therefore no longer remains normal to the average plane of bending defined by the
angle ¢(X))

(b) However, the shear force V always remains contained in the average plane of bending

regardless the shape of the cross section.

These two conclusions are illustrated in Fig.3.2 and Fig.3.3.
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Figure 3.2. Resultant N of axial stresses over ().

Figure 3.3. Resuitant V of shearing stresses over ® ({2)

3.3.3.- Constitutive Equations.

It is again assumed that the material is hyperelastic with strain energy function W(X,V®)
and attention is restricted to isothermal processes. Let V be the linear space of kinematic
admissible variations defined by (2.13). An argument similar to that presented in section 2.2.3

then shows that the Frechet differential of I (&) = f W dV at the configuration ® :8 — R’
B

may be written as
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WX, V)

- V
oF oF d

811 (@)

fi

h h
(—“2-, 2‘)Xﬂ

i
%N >

[f P(V®)SF d0 | aX,
0

[SIES .

= 1 [Msy'+ Vor,+ Nor,l dx;

|
[P

where

A=V = [1+77

A, =7+ %— [v]? - ;_K,B-z (3.33)

Therefore, in view of (3.33) the simplest possible hyperelastic constitutive model con-
sistent with the non-linear equilibrium equations (3.32) is furnished by that of the linear theory
with the axial and shearing measures of deformation %' and ﬁ’ replaced by A, and A, respec-

tively. The complete system of equations of the second approximation discussed in this section

has been summarized in Table 3.1.

TABLE 3.1

The second order Approximation.

Equilibrium Equations
N—y V=-—P
V+p+0—«) BIN=—H
M+73V P+1+u1 H=0
Constitutive Equations
M(X) = EI(X) §'

V(X)) = GQ Xk [V — (1+7)¢]

N(X) = EQ(x) 7 + ;— ()2 — «;K(B"M

In order to obtain a closed form expression for the buckling load of the rod relevant to
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problems of technical interest, the field equations summarized in Table 3.1 are further res-

tricted by introducing the customary assumption of inextensibility of the line of centroids.

3.4.- The Linearized Eigenvalue Problem for the Elastica.

If the the line of centroids is assumed to be inextensible, the axial force N should then be
regarded as a reaction to be determined from the equilibrium equation (3.32), once the prob-
lem is solved. Thus, under this assumption #=0 and the constitutive equations in Table 3.1
take the form

M = ElL y'(X)) V= GQ « B(X) (3.34)

These equations together with the equilibrium equations (3.32) and the inextensibility

constraint lead to the linear problem

P | H _ P |-
1~—[1—-K]GQK il L K
ELy"+ PV =H x1€(0,L) (3.35)
=0

from which immediately follows that both the average rotation ¥ (x;) and the lateral defiection

v(x) are governed by

P
B Dt irerov B _
Ly = W+ PG =H (3.36a)
1+ P
GQ
LV =H (3.36b)

When proper homogeneous boundary conditions are appended, (3.36) leads to an eigen-
value problem from which the critical values of P may be determined. Alternatively, a varia-
tional formulation may be employed. In this event, from (3.35) easily follows that the lowest

eigenvalue of (3.36), the critical load, is characterized as the minimum value of the funciional

L L
%f ELIy"dx + —;—f GQ«lB)%dx + Boundary Terms
0 ! (3.37)

L
1 — -
5f0 [(5)2 — kB dx
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over the class of functions with finite energy; i.e J, ve HYO,L) and satisfying the essential
boundary conditions [44,45]. It is easily checked that the critical values of the axial load
derived either from (3.35) or (3.36) can be related to the values Py of the Buler’s critical load

by the expression

2P,

P \/ P 4P
1+ [1—«] Gon + 1+ [1—«] coe T Con

The derivation presented heretofore, does not provide any information about the fully

Po= (3.37)

non-linear probiem. Therefore, a stability analysis at bifurcation points, similar to that carried
out in Appendix I for the simplified theories discussed in the previous chapter is not possible.
However, by comparison with these simplified theories and under physical grounds it will be

reasonable to regard such bifurcation positions as leading to locally stable configurations.

3.5.- Comparisen with other Formulations.

Formulations based upon the ’plane sections remain plane’ kinematic assumption have
been discussed at length in the previous chapter. This simplifying assumption allowed the
derivation of fully non-linear theories which, when consistently linearized, yielded well known
engineering approximations to the bending stiffness and buckling loads. These formulations
take into account the so-called effect of shear deformation in an approximate manner, in the
sense that warping of the cross section which necessarily appears as a result of shear deforma-
tion is, except for the case of the sandwich beam, systematically neglected. On the other hand,
the warping effect as well as the Poisson ratio effect, are inherently built into the formulation
presented in this chapter. Furthermore, it is again emphasised that this formulation represents
an exact second order approximation to the three dimensional non-linear theory whenever only

end loads are considered. In the light of these results some comparisons may be drawn.
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Bending Stiffness.

In view of equations (3.34), and (3.35), the constitutive equation for the bending

moment can be written in in the form

— GO«
M= EI, {§ = 7 v (3.38)
1+ ——
GQ

Elz[l — () =L ]

Clearly, if the deformation due to shear is neglected, G — <o and (3.38) reduces to the

classical relation M = EI,V" between bending moment and linearized curvature of elementary

beam theory. However, when shear deformation is taken into account, equation (3.38) shows

the following effects

(a)

(b)

©)

The bending stiffness of the elementary theory experiences a reduction by the factor

1+ —G%— present in the denominator of (3.38). An analogous reduction factor is

predicted by the elementary theory, based upon Bernouilli’s assumption. However to
account for the unrealistic uniform shear stress distribution predicted by this simplified
approach, G is simply relaced by GQ« and the reduction factor takes the form

P

1 + GO

An extra reduction in bending stiffness by the factor 1 — (1—«) P/ G« appearing in the
numerator of (3.38). Such a reduction appears as a result of the axial warping of the cross

section. It is noted that the total effective stiffness predicted by (3.38) results in a value

El . - .
lower than that of T P/GOx obtained under Bernouilli’s assumption.

For a sandwich beam, the constitutive equation for the bending moment takes the form

p -
M= Eli1 — —| v" )

2 GQK } Vv (3 39)

. ~ . . ‘(2 Lore

where, in the case of a "soft core", ) is the total area of the cross section and x = o

The same type of expression was incorrectly proposed by Timoshenko [24], for the case

is small (3.38) reduces for all

of a homogeneous beam. Nevertheless, when GI())
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practical purposes to (3.39).

Buckling load.

66

Similar remarks are applicable to the buckling load, and the situation is summarized in the

Table 3.2. It is noted that the formulation presented yields, in addition, an explicit expression

for the shear coefficient k. Remarkably enough, when G

El,

it >> 1 all the proposed expressions

inciuding the exact formula (3.37) reduce for all practical purposes to that corresponding to the

sandwich beam. For a linear isotropic material, 2 < =

G

beams this will always be the case.

TABLE 3.2.

Proposed expressions for the buckling load.

< 3 and except for extremely short

CRITICAL LOAD General Expression RCLVRN G
£l El,
Homogeneous Beam )
2Pg GO« § P
" ——LEIp
(Haringx, et al) e 7 5, Py ||l caxl fr
1+l
+ GQ«
Sandwich Beam
PE PE
(Plantema, et al) GQ«k I—- Pi
|+ P GO
GQ«
Homogeneous Beam
2Pg GOk Py
(Present Study) | Bt I
-0p [, =) Pz 1—« Gax )" *
GO« GO«k
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However, for a transversally isotropic material the elastic constants G and E are indepen-

GQ
El,

dent [42], and the ratio can take extremely low values, particularly in the case of short

beams. In such an event, since the expressions of the buckling load summarized in Table 3.2

show quite different asympiotic behavior as —%[{L — 0, the buckling load can be severely under
2

estimated unless (3.37) is employed. See Fig.3.4.

1.0
08 -
06 ~
oot HARINGX
1]
e o4
PLANTEMA
0.2
oo ¥ ' !
0.0 0.5 1.0 15
GaK
PE
Figure 3.4. Comparison between different expressions of the buckling foad.

An important example of this type of beam is furnished by a multilayer elastomeric bearing,
widely used in base isolation systems. A complete study of this type of device is undertaken in

the next chapter.

3.6.- Remarks on the Derivation of the Proposed Theory.

The derivation of the first two equilibrium equations in (3.32) made explicit use of the
following two facis
(i) The knowledge of the exact solution, in the context of the linear theory of elasticity, for the dis-

placement field of a beam acted upon by end loads (Saint Venant's problem).
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The consideration of more general types of loading would require, strictly speaking, the
exact solution of the corresponding displacement field. However, the estimates of the terms
appearing in (3.28) show that only the warping function ¢ :Q — R gives an additional non-zero
contribution to the final equilibrium equations (3.32) through the shear factor k. Accordingly,
the explicit expression of the warping function ¢ or, alternatively the value of the shear
coefficient k, 1s all that is required for the consideration of more general loading situations. The
explicit form taken by the residual lateral displacements #,(x) and u5(x) is irrelevant for this
purpose.

Remarkably enough, the warping function ¢(xyx3 takes the same form (3.7) for the
case of a constant load q distributed over the span of the beam [40]. Thus, as pointed out by
Cowper [39], the shear coefficient «x computed from (3.14) remains as an excellent approxima-

tion provided the transversally applied load does not vary wildly over the span of the beam.

(it) A particular choice of kinematic variables was adopted to model the response of the beam.
Namely the average displacement vector §(x,) and the average rotation y(x,) of an arbitrary

cross section Q (x1).

Clearly, the question can be raised as to whether a different choice of kinematic variables
might lead to a complete different description of the response of the beam. This peint will be

examined in the more general context of Kantorovich’s method discussed next.

3.6.1.- Reduction of Dimension in the Theory of Elasticity.

The method proposed by L. V. Kantorovich [43], is essentially a generalization of the
Ritz method and falls in the class of the so-called energy methods of variational calculus. The
method is treated at length in the Russian literature [43,44] and has been extensively applied to
a variety of problems in the linear theory of elasticity [41,43,47]. Applications to the solution of
time dependent problems, particularly in the context of the Finite Element Method are also

well known [45,46].
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In this section, attention will be focussed on the use of Kantorovich method as a sys-
tematic procedure to accomplish the reduction of dimension in boundary value problems of the
theory of Elasticity. We shall restrict ourselves to an outline of the relevant facts. A complete
account of the procedure can be found in [47] and references therein. Applications to non-

linear rod theories can be found in [9].

Outline of the Method
For an elastic beam with axial axis x; and cross section , the displacement field is

expressed in the form

u(x) = ﬁ 1 [ (xg,x3) 4, (x) (3.39
k=0

where the functions ¢y’ = [¢,¢1,¢3] are given a—priori and satisfy the boundary conditions
on the lateral contour d{} of the beam. The objective is to determine the generalized displace-

ments {1, (x}]. For this purpose, the linear space of kinematically admissibie displacements

V=1{1:00,L)xQ — R> | “Ianu = prescribed }

is endowed with the energy norm

L
2 == ...A.—. y 2 _%_G.. . -
ull { : g [aiv ul? 4 + = { [V wYul dQJ dx (3.40)

The total potential energy of the beam loaded in the plane x;—x; by a distributed force q,
say, is then given by the quadratic functional

L
w(x) — M(w = Hu||2—f g(x)

0 Q

J dﬂ] dx (3.41)

and the functions {u,(x;)} are determined by substituting (3.39) into (3.41) and enforcing the
variational condition of minimum potential energy over V. It is easily shown, making use of
standard methods of variational calculus, that this condition leads to a sysiem of ordinary
differential equations for the displacements {f.}. Thus, the solution of a system of partial
differential equations is reduced by Kantorovich method, to the integration of a set of ordinary

differential equaiions.
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Clearly, the success of the method depends upon the choice of the coordinaie functions
{é ) in the expansion (3.39). Remarkably, it can be shown that an optimal choice for the func-
tions {¢,} is possible which is independent of the type of loading and leads to a minimum of
the error between approximate and exact solutions in the sense of the energy norm (3.40) T .
Furthermore, when the expansion (3.39) is limited to N=1, This optimal choice yields the clas-

sical Euler-Bernouilli kinematics of the elementary beam theory.

We are now in the position of re-examine the objection raised in (ii): Does the choice of

kinematic variables affect substantially the response of the beam?

(iia) Clearly, the kinematics (3.15) corresponds to an expansion of the form (3.39) in which,
in view of condition (3.6), the coordinate functions {1, x,, ¢} and {1, g} in (3.15) are

orthogonal over ) with respect to the L? inner product <y, P> wf b1 P2 dQ.
[}

Further, the results of section 3.2 show that these coordinate functions, as given by (3.7)
and (3.17), are exact for the problem at hand of a beam acted upon by end loads. It is
noted that we could have proceeded in reverse order and from the displacement field
(3.15) determine the explicit form if the coordinate functions by enforcing at the outset
the boundary conditions

0"12|an = 0'13!60 =0
This approach will be pursued in the analysis of plates presented in chapter 5.

(iib) Once the functions {¢,} in (3.39), or ¢ and g in (3.15), have been established it is
irrelevant, from a formal stand point, to consider instead of the variables {ii,) an alterna-
tive set of kinematic variables {u,}, say, the later being in a one-to-one, smooth enough
correspondence with the former. The minimization process or the procedure described in
section 2.3 would lead to an equally consistent, in general different, set of ordinary
differential equations. Nevertheless, {u,} and {u,} will generally have different physical

meanings and care must be exercised when solving specific problems, particularly in

T A fairly complete account of this fact including explicit expressions for the functions {¢ k} can be found in
[47]. We have been unable to locate the references made in [47] to the original work of Babuska and Prager.
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regard to the enforcement of the physically meaningful boundary conditions. This point,
as well as the effect in the overall buckling load of a small change in boundary conditions

is illustrated in the following example.

3.6.2.- Example: Narrow Rectangular Cross Section.

Consider a narrow beam with rectangular section acted upon by end loads. The exact dis-
placement field can be found in [40] and is given in terms of polynomials. The following two
sets of generalized kinematic variables are considered.

(a)  First choice.

Let us first consider the set {@,7,4} where, as in section 3.2, (xy) and ¥(x}) are the

components of the mean displacement given by (3.3) and E(x;) is the average rotation

defined by (3.4).

The displacement field then takes the form (3.15) with u; = 0 and the functions ¢ and g

given by

Qx23~-?-1x2 1 \ g=—%—

5

-t 2 _ 4 (
2(1+2) X2 ] 3.43)

1
¢ =%
In view of (3.43), the shear coefficient « given by (1.13b) takes the value

_ 1004 + )
T ¥ 11w (3.44)

(b) Second choice.
Let us consider next the alternative set {u,, v,, ¢} illustrated in Fig.3.5 and defined by

8u,

Up = ul|x2=0= Vo = u2’x2=0 s Yo = -"B—E;Ix2=0 (3.45)

Making use of these definitions, we find that {#,7,¢} and {u,,v,,¥,} are related through
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i

U, =

- 1 I - v
v, = V“"z"a"tll (3.46)

B

v

- 3
wﬂ“"’“"fﬁ"‘[l” 21+

The shearing angle 8,(x;) is defined in a manner similar to (3.12) as

ﬁo(xl) = vo’(xl) - ‘l’o(xl) (3.47)

and can be related to B(x;) as follows. Differentiating (3.46), and making use of the constitu-

tive equalions forMand V together with the equi]ibrium relation M' = —1 , one arrives at
— v(G = — v -
’ {4 ! 3 3
v0=v+-—~2E —v—|~4(1 v)'B (3.48)

The substitution of this relation together with (3.46); in the definition (3.47) leads to

8,(x) = % k Blxy) (3.49)

U

Figure 3.5. The kinematic variables Uy, Vo and ¢,
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To summarize the situation, either from the solution in [40] or by substitution of (3.46)
and (3.49) in the kinematics (3.15), we find that the exact displacement field may be expressed

in terms of the variables (3.45) as

v

b= 5o

Bo

u(x) = u,(x) — xy ¢, (x) — 5%; ENE

urx) = v,(x)) + %" v x3y, () — v xy u'(xy) (3.50)

and the constitutive equations (3.11a) and (3.13a) for the bending moment and shear force

take, in view of (3.46) and (3.49), the form

1

w;+—§-i 301, V==G§lg~ﬁo (3.51)

M = Ei 3

—_
2(1+)

Equation (2.51) shows that when the shear force is expressed in terms of B, the shear

coefficient takes the value % Finally, the second order approximation to the equilibrium equa-

tions takes the form of equation (3.32) where the angle ¢ + (1—«)B is replaced by

2+
6(1 +v) Bo

As remarked in the previous section, the formulations based upon either choices (a) or

g+ (=B =y, +

(b) of kinematic variables, are entirely equivalent, although the sets {@,7,¢} and {u,, Voot )
have different physical meaning. The distinction between both sets becomes important in the
actual modeling of physical boundary conditions. To illustrate the point, let us first assume for

simplicity, as in elementary beam theory, that the Poisson ratio » = 0. Then

V=m,ﬁ=§ﬁa,$=¢f*§ﬁg (3.52)

and the linearized problem for the elastica (3.35) takes, in terms of 8, the form

P 1 H P
1- v+ =11+ —~—-] b
‘ 260 260 G
3
4 7 1 tdd
El ”5— l[la + '5'“ vl =H B X]G(O,L) (353)
U= u,=0

It follows from these equations that the rotation , at x»=0 is governed by exactly the
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same differential equation (3.36) that ¥ and V' satisfy; i.e:

Lg=Ly,=L7V = - (3.54a)

where the explicit form of the linear operator L is

P

P dax?
1+ ——
GO

L= + P (3.54b)

Example

As a concrete example, consider a cantilever beam subjected to axial and vertical forces P
and F applied at the right end x=L, respectively. To model the clamped boundary condition at
the left end we may assumed that either the average rotation @(x) or the rotation §,{(x) van-

ishes at x=0. For these two possibilities, it is easily found that

(a) the condition $(0) = v(0) = 0 leads to a value of the tip deflection

P
+_._.—__._
N IR R T VAR
Pl P ML
5G

(b) while the condition §,(0) = v(0) = 0 yields the value

1+ -
F(L) = FL GO tan(AL) 1
P | — P AL
2G4
where in both cases
P P
E| T Ga |’
A= < |-
1 — P 2L
5GO

Clearly, the boundary condition in (a) leads to a lower value for the tip deflection. Furth-

ermore, since we always have the bound P, < 5G(), the beam subjected to the boundary
condition in (a) can never buckle unless the critical load (3.37) is reached and AL = ~'27T— How-

ever, for the boundary condition in (b) we obtain the surprising result that, if the shear

stiffness G is small enough so that the critical load (3.37) is greater than 2G(), the beam
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may buckle for the lower value P = 2.G Q) of the axial load.

It should be noted that there is no contradiction between the different values for the tip
deflection of the cantilever found in (a) and (b). Physically, the boundary condition at x=0 in
case (a) is essentially different from that in (b), as shown in Fig.3.6. In fact, the difference in
the values found for the tip deflection illustrates the importance a small change in boundary

conditions has in the response of beams extremely weak in shear T .
L 7

L
/

-

(a)  (0) =0 (b) 4 (0)=0

Figure 3.6. Boundary conditions for a cantilever.

A numerical treatment of this effect in the context of the Finite Element Method can be found

in [321].

Nevertheless the question remains regarding which measure of rotation is physically more
appropriate for the modeling of the response of a beam. Beam theories are the result of the
assumption that resultant stress measures such as N, V and M are acceptable for the physical
description of the response of the body. It appears to be physically more appropriate, to relate
this average stress measures to average measures of deformation rather than to the deformation
at a point. The choice of the set {D,'ﬁ,@} of kinematic variables then appears to be physically

more compelling.

1 Experimental research conducted in the E.ER.C. University of California, Berkeley, with multilayer elas-
tomeric bearings confirms this result.
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CHAPTER 4.

A CONSISTENT THEORY FOR THE ANALYSIS OF

MULTILAYER ELASTOMERIC BEARINGS

Introduction

A multilayer elastomeric bearing is a type of composite column consisting of alternate
layers of thin rubber perfectly bonded to metal plates. Due to the extremely high values of the

Bulk Modulus (K)

characteristic of natural rubber, such an arrangement prevents the
Shear modulus (G) s P

ratio

lateral expansion of the rubber layers and, therefore, results in a column capable of withstand-
ing high compressive loads with only a small axial deflection while, at the same time, preserv-

ing the low shear resistance of rubber to shearing [48,49].

The two characteristics of high compressive stiffness and low shear stiffness make this
type of composite column widely used in applications ranging from their traditional use as
vibration mounts, shock absorbers or bridge pads, to their recent application in earthquake
engineering as base isolation devices for the protection of buildings against strong ground
motions [50]. Although the axial dimension of a typical elastomeric bearing is of the same
order of magnitude as its plane dimensions, as shown in Figures 4.1 and 4.3, the low value of

its shear stiffness makes the column prone to buckling under compressive load [48].

In the past, the stability analysis of elastomeric bearings has been based upon the approxi-
mate linearized theory of buckling developed Haringx [21,22,23], in which the effective
compression bending and shear stiffness of the composite column are determined from the so-

called apparent compressive bending and shear stiffness of a single column unit [48,49].
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Figure 4.1 Experimental test of a bearing used in base-isolation systems.

Expressions for these elastic constants can be found in the literature [51,52,53]. As shown in
[32], Haringx’s treaiment may be derived as a second order approximation of the non-linear
equilibrium equations of finite elasticity under the "plane sections remain plane" assumption.
For laminated bearings, this kinematic assumption amounts to considering the plates perfectly
rigid so that the axial warping is completely restraint. An extension of Haringx’s formulation to
the case of plates of an arbitrary shape, not necessarily flat although perfectly rigid, has been
reported in [54]. The fully non-linear theory, not restricted to a small angle or small axial dis-

placement approximations, has been derived in Chapter 2 of this work.

The systematic neglection of the finite stiffness of the plate is, therefore, the central
assumption in previous analysis of the stability of multilayer elastomeric bearings. In certain
applications, particularly in the context of earthquake engineering, this assumption might be

quite unrealistic. Fig.4.1 shows an elastomeric bearing typically used in base isolation systems,



Chap.4 78

under test in the E.E.R.C of the University of California, Berkeley. The severe warping experi-
enced by the plates is apparent and a physical explanation for this effect is illustrated in Fig.4.2.
Due to the shearing of the column, the top and bottom surfaces of any plate are subjected to a
shear stress distribution, a—priori unknown, which causes bending of the thin plate. In this
chapter, a theory which consistently includes the effect of the finite stiffness of the plate will be
developed. Attention is confined to the case of interest in earthquake engineering in which the

plates are flat. Our formulation can be outlined as follows.

"
/T\M+Ve

Figure 4.2. Physical motivation for the warping of the plate.

(i) The distribution of shearing stress acting on an arbitrary plate is first obtained by enforc-
ing compatibility of displacements and shear stress between metal plate and rubber layer.
The exclusive dependence of the lateral deflection of the bearing on the axial coordinate
is the only assumption made beyond those of the linear theory of elasticity. Such an

assumption amounts to neglecting the in-plane extension of the plate.

(ii) Integration of the strain-displacement relations leads to an expression of the displacement
field which includes a warping function depending upon stiffness of the plate and propor-
tional the amount of shear. Thus, the "plane sections remain plane" assumption no longer

holds in the present approach. When attention is confined to the linear theory, the result-
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(iii)

4.1.-

ing field equations are shown to correspond to a Timoshenko type of beam theory in
which the explicit expression of the shear coefficient depends upon the stiffness of the
plate. The limiting cases in which the stiffness of the plate tend to either zero or infinity

are also examined.

According to the formulation presented in Chapter 3, a consistent second order approxi-
matiorn to the non-linear equilibrium equations in terms of resultant forces can be
developed from the knowledge of the linearized kinematics. The results presented in
Chapter 3 are then entirely applicable and lead to an expression for the buckling load
which depends on the stiffness of the plate through the shear coefficient. This expression
yields values of the buckling load always lower than those predicted by Haringx’s formula-
tion. In the limit as the plate becames infinitely stiff, both formulations are shown to coin-

cide.

Basic assumptions.

A composite beam in the form of a typical multilayer elastomeric bearing is illustrated in

Fig.4.3. The x;-axis is taken to be the axial axis of the beam. In the analysis of the composite

system consisting of the rubber layers and steel plates, we shall introduce the following assump-

tions:

(a)

(b)

form

State of plane strain (or stress). Thus, further reference to the x; coordinate will be omit-

ted.

The lateral displacement of the composite system u,(x;,x,) depends solely on the axial

coordinate x;. That is, Poisson’s effect is neglected.

With these two assumptions, the displacement field of the composite system takes the

uilxy,xy) = u (x,x7)
Uy (xy,x7) = v(x;) 4.1
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sz

X1
——p
Figure 4.3. A typical multilayer elastomeric bearing.
and the components of the infinitesimal strain tensor € are then
€] = T
! dx 1
[ ou
e = —vix) + — (4.2)
12 2 ! 6X2

Let G denote the shear modulus of the rubber, We shall assume the metal plates to be
thin enough so that the shearing stress is determined exclusively by the deformation of the

rubber. Hence, from (4.2) the constitutive equation for the shear stress is

0y = 2G €1y = G [V,(X]) + "‘a‘y"] (4.3)
3X2
By differentiating both sides of equation (4.3) with respect to x; it follows that
2 ]
9°u 1 00 (4.4)

ax G dx,
1t will be shown herein that the form of the axial displacement u(x;,x;) follows from the

compatibility between the rubber pad and metal plate. Notice that no constitutive assumption
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for the axial stress o) is introduced for this purpose.

4.2.- Analysis of the plates.

Consider a typical plate of thickness e located at x;={ as illustrated in Fig.4.4. It will be
assumed that the thickness e is small enough so that the usual Kirchhoff’s assumption is appli-

cable.

?"2

. . G X,
i
; h/2

Figure 4.4, Geometry of a typical plate,

No assumption, however, is made regarding the distribution of stresses acting on the top and
bottom surfaces. Denoting by w({,x;) the deflection of the middle surface, the displacement
field is then given by

u(€,xz) = w(l,xy)

dw ({,x,)

uz(g,xz) = X1 dxz

(4.5)

and the components of the infinitesimal strain tensor e by
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d*w (L, x))

€y = Xy T

€2=0 4.6)

Let M and Q be the bending moment and shear force respectively, acting on an arbitrary
cross section a distance x, from the axial axis x;. These forces are given by

4

2
M"‘"‘fxlﬂ’zzdxl Q=
Te

2

o 4.7

kﬂwgm
—_
j 4
—

(ST

If the Young’s modulus and Poisson’s ratio of the plate are denoted by E, and v, respec-

tively, the constitutive equation for the bending moment M follows at once from (4.6) and

4.7 ie:

d2W(C,X2)
dx}
3

E, e
12 (1-v})

M =D, (4.8)

where D)= is the bending stiffness of the plate.

Assuming zero body forces, the equations of equilibrium of the plate are given by

o1t ony=0
ot op,=0 (4.9)

Denote by 7,0~ and 7*,0% the tangential and normal stresses acting on the surfaces

xlmcv—g- and x1==§+—§, respectively. Integration of the second of eqs. (4.9) through the thick-

ness e of the plate gives

2

3
Jond 1+t —771=0 (4.10)

2

uﬁ__[
dx;

however, by equation (4.6),

7 2 7

d*w(l,xp)
fa'gzdxl’-“'"Ep *”“‘"i—x“z—"g“f)c] dX1=O (411)
e =

and thus equation (4.10) yields
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(4.12)

Introducing Ao = o' — o”, and integration of equations (4.9) through the thickness

gives
% +Q0—er=0
iﬁ— + A =0 (4.13)
2

from which we obtain

2
M dr (4.14)

— p— = Ao

dx} dx,

Let us consider next the compatibility conditions to be satisfied by the plate. They can be

formulated as follows:

i) w,xy) = u(éw-g,xz) = u(€+-§,xQ)

(ii) t = o= 0’12(C+"§",x2)

T =g o= 0'12(4"";1»)‘2)

(iii) ot = 011(§+-§—,x2)

g = Ull(C”g',xz)

Conditions (i) and (ii) together with equation (4.4) imply

d?w(¢,xy) 1 dr
"*"“d';;'""" = el ‘a'x"'; (4.15)

Thus, with the aid of the constitutive equation (4.8) and the equilibrium equation (4.13);,

the bending moment M and the shear force (§ may be expressed in terms of the tangential

stress 7 as

D D 2
p  dTt » dT+eT (4.16)

M= 2 LT -l

G dx;,’ G dx}

and by substitution into equation (4.14) we arrive at

_ &t Geydr _ GeyAo _ hh
Lr: e [Dp]dx2 [D,,] p x2€( 2,2) 417
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which is the differential equation of equilibrium for the shearing stress

T = Cfxz(C"“':Zg,

The key point in determining the shear stress 7 is the establishment of proper boundary

Xz) = 012(§+“§',x2)

conditions for equation (4.17). This point will be considered next.

4.2.1.- The boundary value problem.

The distribution of shear stresses on the plate must be such that the resultant moment

and shear force at the end of the plate vanish. Thus, we have the boundary conditions

M == () = () (4.18)
- Ol et

Furthermore, the symmetry of the problem demands the shear stress o1y to be an even

function of x,. This condition together with (4.18) determine, in view of (4.16), the set of

boundary conditions

T(“H(g) == T(“”Xz) XZE(MJ]',”{I")
2725
dr
el B 4.19)
d2T 3
L1\ -0
[d)Qz T] ‘ , h

where the parameter A2 = -ZG)ﬁ has been introduced for convenience.
4

However, the boundary value problem posed by equation (4.17) together with the boun-

dary conditions (4.19) does not have unique solution. Moreover, it might even have no solu-
tion for an arbitrary function f(x,) = )\zé-eg—. To see this, let us note that the completely
homogeneous problem

- d3TH 2dTH — h h
Ly = o -\ o =0 x2€(———5,§-

) (4.20)

with the homogeneous boundary conditions (4.19), has the solution 75 = Constant. Thus, by
Fredholm alternative theorem [55], the problem posed by equation (4.17) with boundary condi-

tions given by (4.19) is undetermined up to an arbitrary constant. Furthermore, for the
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problem to have solution, the forcing function f(x,) = ;\2_.;‘1”. has to be orthogonal to the solu-

tions of the completely homogeneous problem and, therefore, meet the condition
(4.21)

AO’dXz“‘O

wi}“—’g“’}

which shows that the resultant of the normal stresses acting on the plate must be a moment

AM, say.
Nevertheless, a unique solution for the problem posed by equation (4.17) with boundary

conditions (4.19) can be singled out by requiring that
(4.22)

where V = V({-w;—) = V(§+~§-) is the resultant shear force acting on both sides x; = g-—-f—

and x; = C+-2€~ of the plate.
Finally, by multiplying equation (4.17) by x,, integration by parts and enforcement of

conditions (4.19) it is found that the resuitant moment AM is related to the shear force V

through the overall equilibrium condition
(4.23)

AM = —~ Acrx2dx2%-Ve

In conclusion, we can estate that: the boundary value problem posed by equation (4.17) with

“;bg'-ﬁmi}

boundary conditions given by (4.19) together with condition (4.22) has a unique solution, provided the

normal stresses Aar satisfy conditions (4.21) and (4.23).

4.2.2.- Determination of the shear stress 7
A explicit solution for the boundary value problem posed by equation (4.17) with boun-

dary conditions (4.19) and condition (4.22) requires a explicit expression for the resuitant nor-

mal stresses Ao acting on the plate. It will be assumed that they are distributed linearly along
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the plate. The consistency of this assumption will be assessed later. Conditions (4.21) and
(4.23) imply then

Ao = — A—IMM - flf'-xz (4.24)

s
where [ 12h )

The solution of the boundary value problem is then easily found to be

vis,. 4xi. 3 2yx;
- 22—l - 2] 4.25
=13 i % ] AL Siniry Cosh ( p ) (4.25)
where y = fg —Em(lmv,‘;" :

14

The shear stress = given by equation (4.25) is plotted versus the parameter v in Fig.4.5.

SHEAR STRESS DISTRIBUTION
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Figure 4.5. Shear stress distribution.

Notice that as the plate becomes more flexible; i.e: D, — 0 or e — 0, the parameter y — oo

4 2
and the shear stress = tends to the parabolic distribution 7 — %[]~—-}j—;2—]. On the other hand,
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as the plate becomes stiffer y — 0 and the shear stress v — —;:-/-; i.e: takes a uniform distribution

over the plate.
4.3.- The composite system.

Kinematics

Once the distribution of the shear stress v is known, the expression for the axial displace-
ment u,(xy,x,) follows at once. In fact, equation (4.3) and the compatibility conditions (ii) lead

to

u (x1,x,) N

s L
P —v'(x1) + G (4.26)

and the substitution of the expression for 7 given by (4.25) yields

u (o, x) = @(x) — xv'(xy)

vie) (3 2 4 3 h
x;—-—'-z-xy——;-z'[xz

L 2yx,
o |3 P Sinh(

3 Sinky 7 )] (4.27)

where the arbitrary function # (x,) represents the axial displacement of the neutral axis x;.

To express the displacement field fully in terms of kinematic variables we introduce, as in

the previous chapter, the average rotation {[;(xl) of a cross section defined by

X2 u;(xl,xz) dX"z (428)

l_[;(xl) -

;.;3'\’53‘

1
I

ra

where [ = -l%h:‘ is the moment of inertia of the cross section. The substitution of (4.27) into

(4.28) shows that the angle ¢ (x;) is related to the resultant shear force ¥ (x;) by

V(xl)

Plxy) = v'ixy) — e (4.29)
where the constant « has the expression
3
6 430)

o 5 1 1
1"5‘?[1“3[%‘7
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Equation (4.29) relates, through G {}«, the resultant shear force V(x,) acting on a cross
section of the composite system to the angle B(x,) = v'(x;) — ¥(x;) difference between the
slope of the deformed neutral axis and the average angle rotated by the cross section. Hence,
the angle E (x;) gives a measure of the average distortion of a cross section due to shear, and
the constant {Ix represents an "effective” shear area, The parameter x, plotted in Fig.4.6
versus y, has then an analogous significance to that of the shear coefficient in Timoshenko’s

beam theory. In fact, in the limit as y — oo and the plate becomes infinitely flexible, it follows
from (4.30) that « —*% which is in agreement with the expression (3.45) for the shear

coefficient of a rectangular section when v = 0 [39].

SHEAR COEFFICIENT VERSUS STIFFNESS OF THE PLATE
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Figure 4.6. Variation of the shear coefficient & with the stiffness of the plate.

The kinematics of the composite system takes then the f‘ollowing final form
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uy(xg,x1) = G (x) = x5 ' (x) — dlxy) k Blxy)
Uy (xg,x1) = v(xy) 4.3D)

where the shear coefficient « is given by (4.30), and in addition

2
X7+ - x3 3h Sink{=X22

" 2y2Sinh(y) P

y=2 [0 (4.32)

Blxy) = v'(x;) — ¢(x;)

Equation (4.31) has exactly the same form as the displacement field (3.43) with the Pois-

son ratio v = 0. The dependence on the stiffness of the plate of the warping function

¢ :(«-—3’1, -g) -+ R given in the present case by (4.32), is noted.

Constitutive equations

In addition to the constitutive assumption for the shear stress o, given by equation (4.3),

let us cousider for the axial stress o) a relationship of the form

aul(xl,xg)
gy = Ea € = Ea ""“"'"é}—l‘“"m (433)
Since the bending moment M (x;) acting on an arbitrary cross section is given by
4
2
M) =~ [ oy x; dx, (4.34)
_h

2

from equations (4.33) and (4.32) and the definition of ¢ (x;) given by (4.29) it follows that

M(x) = E 1 ¢(xy) (4.35)

K
Therefore, the elastic constant of the composite system £, can be chosen as E, = -1~,[3«

where K, is the so-called apparent bending stiffness of the system [52,53]. The constitutive
equation for the shear force follows immediately from equation (4.29), namely

Vixp = GOk [v' ()= (x))] (4.36)
where the shear coefficient « is given by (4.30). The shear modulus G should be replaced by

¢ er
er

where er is the total height of a single column unit and e the height of the rubber pad
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and one plate {53].

Fauilibrium equations. Linear Theory.

The equilibrium equations in terms of the resultant shear force and bending moment, fol-
low by integration of the equilibrium equations of linear elasticity over the cross section in the
standard manner. The result is

M’(.Xl) + V(x,) = ()
Vi) + glxy) =0 (4.37)

being ¢ (x;) the applied transversal load.

The set of equations governing the behavior of the composite system consists of the con-
stitutive equations (4.35) and (4.36) together with the equilibrium equation (4.37). Formally,
they correspond to a Timoshenko type of beam theory. However, the displacement field given
by (4.31), obtained by enforcing compatibility of siresses and displacements between the steel
plate and rubber pad, includes a warping of the cross section which depends upon the stiffness
of the plate. The expression for the effective shear coefficient given by (4.30) is then con-

sistently derived from this displacement pattern.

Two limiting cases of particular interest in the theory presented heretofore are possible.

They are summarized nexi.

4.4.- Limiting cases.
(a)  The stiffness of the plate D, — .

Typically, this assumption is always made in the analysis of multilayer elastomeric bear-
ings [52,54] where the plate is assumed to be so stiff as to prevent any possible warping of the
cross section of the bearing. However, in some practical applications, such an assumption might
be quite unrealistic as illustrated in Fig.4.1.

From equations (4.25), (4.30) and (4.32), it easily follows that the asymptotic expansions

as y — 0 for the shear stress 7, the shear coefficient k and the warping function ¢(x;) are
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V(Xl) Xf x22 7
7{x1,x7) = i 1+ {2? m‘f"m" 2 + 0(’)’4)
_ 2 4
x =] 105 y2 + O(y") (4.38)
(x) =0 2ﬁmle+w7 2+ 0(yH
¢lx2 53 e oY

Since ¢ {x,) ~ 0 uniformly in (—»m ), in the limit as the plates become infinitely stiff

22
we recover the classical Bernouilli’s kinematic assumption. Furthermore, since the shear
coefficient takes the value x = 1 in the limit as y —0, our derivation provides a rational
justification for the usual choice of G {1 as the effective shear stiffness of columns with

extremely stiff plates. This has been the only case considered in previous formulations, in

which the flexibility of the plate is systematically neglected in the analysis of the bearing.
(b) The case in which either the stiffness D, of the plate of its thickness tend to zero.

This case corresponds to that of an homogeneous beam with elastic constants G and
E = E,. Again, from equations (4.25), (4.30), and (4.32) we find that in the limit as y — 0 the

distribution of shear stresses, the shear coefficient « and the warping function ¢ (x;) reduce to

3V (xy) 4xi. 5 4x
T == 201 [1" h;]:z‘il“m‘%" B(xl)
K - % (4.39)

3
¢ (xy) = 2 x3 - 0 *

The constitutive equations (4.35) and (4.36) together with the equilibrium equations

(4.37) show that in the limit as the thickness of the plate or its stiffness tend to zero, we
recover the classical Timoshenko’s beam theory with shear coefficient « *%. Motice however,

that the usual "plane sections remain plane” deformation pattern no longer holds in the present
approach due to the presence of the warping function ¢ (x;), given by (4.39),, in the kinematics
(4.31). The consideration of the warping of the cross section is precisely what leads to an
expression for the shear coefficient. The agreement between the warping function given by

(4.39); when y — oo, and equation (3.43) with » = 0, should be noted.
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Remark

An elementary derivation of a beam theory that includes warping of the cross section has been
recently reported [56]. Although this theory is claimed to be new, it is in fact completely
equivalent to the classical Timoshenko’s theory. The source of confusion lies in the erroneous
identification made in [56] between the average angle ¢ (x;) defined by (4.28) and the rotation

U, (x;) at the neutral axis. Both angles are related by

3 0xp) = is‘- v, () + % v'(xp) (4.40)
and the analysis contained in sections 2.4 and 2.5, show that this distinction is only relevant to

the enforcement of boundary conditions.

4.5.- The Non-Linear Theory.

4.5.1.- The second order approximation.

Inasmuch as the displacement field derived in section 4.3 is exactly of the same form as
equation (3.15) considered in the previous chapter, the results of that chapter entirely apply to
the large displacement analysis of multilayer elastomeric bearings. The Kinematics of the for-
mulation heretofore presented, as well as the second order approximation to the non-linear

equilibrium equations, are then summarized in Table 4.1 at the end of this Chapter.

4.5.2.- The Eigenvalue Problem for the Critical Load.

Again the formulation presented in section 3.4 is entirely applicable. Nevertheless, for

the case under consideration of an elastomeric bearing some remarks are in order.

(a) The inextensibility assumption expressed by #'(X,) = 0, is particularly accurate for the
case of an elastomeric bearing. This type of column is regarded as incompressibie in the

axial direction for all practical purposes.
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(b) The exclusive dependence of the lateral deflection of the bearing on the axial coordinate,

was the only assumption made to derive the linearized displacement field. This assump-

tion is equivalent, for closely spaced metal plates, to neglecting the in-plane extension of

E
=P

the plate. Due to the high values the ratio T takes in most applications, such an

a

assumption is quite accurate.

Accordingly, the eigenvalue problem arising from

LyX)=H , LvX)=H X€0,L)

where the operator L. is defined by

P
L= Kbll (1 K) GQx d2 ' p
B 1+ -2 dx{
G

(4.45)

(4.46)

with K, being the apparent stiffness of the column, is expected to yield values of the critical

load accurate enough for all practical purposes. The expression of our critical load in terms of

Euler’s buckling load is given by equation (3.37) and has been compared in Table 3.1 with

other proposed formulations. For multilayer elastomeric bearings, the bending stiffness appear-

ing in the expression of Euler’s buckling load is the apparent stiffness K, of the column which

can be determined either from experimental testing or from analytical expressions [53].

As pointed out before, the proposed expression for the buckling load is in agreement with

that due to Haringx, which neglects the the flexibility of the metal plates, in the event of

extremely stiff plates for which x = 1.
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TABLE 4.1: Summary of the Formulation.

Kinematics
Displacement field

xp =X, + 4(X) — X, 9(Xy) — (X)) k B(X))
xy = Xy + viX))

h /LE 2
Y= E, (1-v;)

3
6
K =
N Y I U
2y? y | Tanh(y) vy
o) = 1 L343+ 2 x3 — 35— P giun| 2202
2 42 h? 2y2Sinh(y) h
Gaussian frame
ﬁ}sATm)? AT=A"
€7
7 0 1} 0 d)'(XZ) —
A (X)“"l + 1 0 ‘l‘(Xl)+ "’d)l(XZ) 0 Kﬂ(Xl)

Equilibrium Equations.
Linear Momentum

“{g} - z) (a ?&)] i = m + {“N‘T b + {2,] (1-x) B(X)

Angular Momentum

0=M +v P~ [1+7']

L
H+{q@w4

or, alternatively
O0=M +V+[1+ul V—-«kB' N

94
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CHAPTER 5.

THE EFFECT OF WARPING IN THE LINEAR AND NON-

LINEAR THEORIES OF ELASTIC PLATES.

5.1.- Introduction.

In this Chapter, the formulations presented in Chapters one and three are extended to
examine the influence of the transversal warping, which necessarily appears as a result of shear
deformation, in the linear and no-linear elastic response of plates. The linear theory and a
second order approximation to the non-linear theory will in turn be considered. Our approach

essentially follows that presented in Chap. 3, namely:

(i)  An expression for the displacement field of the plate is first derived in the context of the
linear theory. Since exact three-dimensional solutions are not available, as opposed to the
situation encountered in the analysis of Chap.3, use is made of Kantorovich’s method to
derive an approximate displacement field for which plane sections paralle! to the coordi-

nate planes x3—x,, (a=1,2) no longer remain plane.

(ii) With the explicit expression for the displacemem field at our disposal, the consistent
linear theory and a second order approximation to the non-linear theory are systematically
derived. To develop the latter, the general non-linear equilibrium equations for plates are
first examined. These equations are derived without introducing any kinematic assumption

from the three dimensional non-linear equilibrium equations.

The conclusions obtained in the present analysis are to a large extent analogous to those

found in Chap.3. For beams, the consideration of the axial warping of the cross section led, in
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the context of the linear theory, to a consistent derivation of the well-known Timoshenko’s
beam theory together with an explicit expression for the shear coefficient. It will be seen that
the analogous result for plates is a very simple derivation of the theory due to Reissner [57,58].
In the present approach, the assumptions made in [57,58] regarding the stress distribution

across the thickness appear naturally as a result of the proposed displacement field.

However, a formulation which appear to be new is obtained, as in Chap.3, when attention
is focussed on the non-linear theory. The formulation presented leads to a non-linear plate
theory for which, due to the effect of shear deformation and subsequent transversal warping,
the normal stress resultants over the thickness of the plate are no longer normal to the planes
of bending. This formulation is further simplified by introducing an additional assumption
which allows the definition of an Airy stress function as potential for the in-plane forces. As a
result, the response of the plate is governed by a coupled system of three non-linear partial
differential equations which, as opposed to the classical Von-Karman model, includes the
effects of shear deformation and transversal warping of the plate. Furthermore, the proposed
formulation reduces to the Von-Karman model in the limit as the shear stiffness of the plate
tends to infinity, and reproduces Reissner theory if the non-linear effect of the in-plane forces
1s neglected.

Derivation of non-linear plate theories from the general three dimensional non-linear
theory have been considered in [59,60,611. However, a theory analogous to the Von-Karman
model, thorough treated in [62], which consistently includes the effect of shear deformation
and subsequent transversal warping of the plate has, to the knowledge of the author, not

been yet proposed.

5.2.- The Displacement Field.

Consider a plate with thickness h, whose middle plane coincides with the x;—x; coordi-

nate plane. Let us introduce the kinematic variables {Ti,(x1,x2); ¥, (x1,%2}qu1 2 defined by
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5
7
f u (D dxs , W, (xpx) = —

X3 ui(x)dx3 (51)

aa(xla)C?) = %

[

o |
N;}%Ni:r

%

where [ == ~1—1~2-—h3. The physical meaning of these variables is analogous to that of the kinematic

variables introduced in Chap.3, section 3.1, for the analysis of beams.

According to Kantorovich’s method, the displacement field is to be expressed as an
expansion of the type (3.39). With the experience gained from our previous analysis of beams,
we consider a truncated expansion of the form

u (%) = U, (x1,x0) — x3 0, (x1,x0) — $(xy) k Bolx1,x) (a=1,2)

u3(x) = wlxy,xy) (5.2)

where « ¢(x3) is a polynomial of third degree and B,(x;,xy), (a=1,2) are as yet unknown

functions. In view of definitions (5.1), the polynomial x ¢(x3) must satisfy the conditions

ol

k>l

4
2
J eta= [ xyeGd; =0 (5.3)
Th ;
2

o}

which suffice to determine « ¢ (x3) up to the arbitrary constant «; i.e:

k $plxy) =« ['-%xf - 73(—)—)”] (5.4)

Conditions (5.3) show that the coordinate functions {1, —x3;, —¢(x;)} in the expansion

(5.2) are orthogonal in (-wg—, ~2~/1) in the L, sense. Thus the choice of kinematic variables
defined by (5.1) is not only physically compelling but mathematically convenient.

To determine the functions B8,(x;,x,) we can resort to the minimization process described

in sec.3.5. However, as noted by Kantorovich in [43], it is often advantageous to enforce at the

outset the boundary conditions at xj = :t—z}i so that the functions [_30, are further restricted. For

the expansion (5.2), the enforcement of the stress boundary conditions at X3 = i:él suffices to

completely determine Ba(xl,xz) and the constant «. In fact assuming, without lost of generality,

the conditions
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o 3 p=0 => &3, 0 (a=1,2) (5.5)

Xy=E Xz"':t‘g‘

it follows, in view of (5.2), the explicit expressions

B (x1,x0) = w,o(x1,x9) — . (xp, %)
= _2_ (5.6)
Therefore, the introduction of (5.2) reduces the problem to the determination of the
functions {#,; ¥o)am1 2 and wlxy,xy), the functions B., (a=1,2) being linearly dependent by
virtue of equation (5.6). We next show that the displacement field (5.2) leads, in the context of
the linear theory of elasticity, to what we believe is the simplest derivation of Reissner theory

yet proposed.

5.3.- The Linear Theory.

5.3.1.- Equilibrium Equations.

The integration of the local form of the linearized equations of equilibrium

ougpt Tazt by=0 (a,8=1,2)
Tlga T o333+ b3 =0 (5.7)

leads, when the body forces are assumed to vanish, to the usual global form of the equilibrium

equations, namely

N(xﬁ,ﬁ == O
Vaata=0 (a,=12), (x,x)€N (5.8)
Maﬁ,ﬁ + Va = 0

where, by definition g (x;,x2) = o3l pto sl b and M,g, V,, N,z have the usual mean-
SR S

ing, that is

14

A k
2 2 2
Naﬁ = f (TaﬁdX3 , Maﬂ = ““f X3 U'aBdX3 5 V(x = f a'3adx3 (O"le&2) (59)

by
e

2
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5.3.12.- Constitutive Equations.

The Constitutive equations for a linear isotropic material may be expressed as

Ey v
T ap ™= [l«wyz €,,+ - 033j 3,8 +2G €0p

T3, ™ 20 €3, (o,8=1,2) (5.10)
Equation (5.10), together with the kinematics (5.2) determine the distribution of shear
stresses across the thickness h of the plate as

2
ouma il [

N!}.

2
}Ea(xlax2) - ﬁxsé"g (5.11)

and the integration the shear stress distribution (5.11) over the thickness leads to the constitu-

tive equation for the shear forces

V,=G h% B, =G h% [w,, — ] (5.12)

Before proceeding further, it is noted that the distribution of the stress component o33
over the thickness is completely determined exclusively from equilibrium considerations. In

fact, the local equilibrium equation (5.7), together with (5.11) and (5.12) imply that
2)(3 Vu,a
)| 2n

and integration of this equation over the thickness leads, after use is made of the global equili-

00 33
6x3

=0 3y T mil -

brium equation (5.8),, to

N

3
o33(xy,x9) = g(xy,x7) %“%ﬁ] - %—[—%gi] ] "j’z/l < X3 \-2’1 (5.13)

The distribution of the stress components o3, and o33 over the thickness of the plate is
depicted in Fig.5.1

The resultant moments over the thickness of the plate are defined by equation (5.9),.
Therefore, the corresponding equilibrium equations follow at once from the local constitutive

equation (5.10),, the kinematics (5.2) and the derived expression (5.13) for the stress com-

ponent o33 in terms of the applied load ¢(x,x,). The result may be written as
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Figure 5.1 Shear and iransversal siress distributions.

Mai = D V&y,yﬁczﬁ + (1““‘9’) %{$a’ﬁ+$ﬁ’a]i

-p%¥ -2 5, (a,8=1,2) (5.14)

Constituitive equations for the in-plane forces N,4 defined by (5.9)4, may be established
by the same procedure of integration over the thickness of the local form (5.10); of the consti-

tutive equations. For future reference we state the final result

Nop= 85+ 2Gh € ,p (5.152)

2 y“’y

where we have set

€ap = %- [+ gl (5.15b)
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5.3.3.- The Equations of the Linear Theory.
(a)  First Approach

Combining the constitutive equations (5.12) and (5.14) for shear forces and resultant
moments, respectively, and making use of the equilibrium equation (5.8),, the variables @a can
be eliminated to obtain

Mag=D v wpus + (1=0) w,]

i VaptVae v h? g8
5 2 10(1—y) 7 7ef

The substitution of this equation into the moment equilibrium equation (5.8), yields the

system of partial differential equations

Ve oAy 2P DAw. (ee12) (5.16)
& 10 a 10(1__1,) SO N4 b

where use has been made of the equilibrium equation (5.8),.

Equations (5.16) are exactly the same as those first derived by Reissner, employing a vari-
ational procedure, in the original reference [58]. These equations can be further simplified by
introducing, as noted in [57,58], a stress function x :§ — IR so that the equilibrium equation

(5.8) be satisfied for ¢ = 0.

(b)  Second Approach.

Alternatively, the following procedure is often useful and plays a key role in the non-
linear theory discussed in section 5.4.6. Let us introduce the function w3(x1,x) ) — R

satisfying the conditions

awS(xy,xy)

ax = Ea(xbxz) 5 (azlaz) (5178.)

In addition, we define w8(x;,xy) = w — w®. Thus, in view of (5.6), it follows that

aw?(xy,x))

ry = Y, (x),x) (a=1,2) (5.17b)

The physical meaning of the functions w?®(x,,x,) and w3(x1,x,) is clear. The former

represents the partial deflection of the plate due to bending, while the latter gives the deflection
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due to shear. In terms of these functions, the constitutive equations (5.12) and (5.14} for ihe

shear force and bending moment take the form

Mog= D |v w5, Bag + (1=0) WP gl = D =5 Bap
Vo= Ghi w' ., K= -?; (5.18a)
and the substitution into the equilibrium equations (5.8) yields the uncoupled system of

equations

A2pB— 44 Ba v

R .

D Ghi 2
AwS = w-wg%; , (x1,x) €0 (5.18b)

The solution procedure based upon equations (5.18) is often referred to as "method of
split rigidities”. The first of equations (5.18b) differs from the usual Kirchhoff equations for
thin plates by the term vy /2 Ghx which appears as a result of fact that o33 is not zero but given

by (5.13).

The resulis presented in this section show that the inclusion of the transversal warping of
the plate does not lead to essentially new results, except for the explicit expression (5.2) for the
displacement field, when the analysis is restricted to the framework of the classical linear
theory. Rather, it furnishes a simple and at the same time consistent derivation of a well known
plate theory due to Reissner. However, essentially new results can be obtained in the context of

the non-linear theory considered next.

5.4.- The Non-Linear Theory.

We shall examine first a form of the general non-linear equilibrium equations particularly
convenient for the analysis of plates. These equations are developed essentially by an extension
of the procedure employed in Chapter 1 to establish analogous equilibrium equations for the

analysis of beams.
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5.4.1.- The Non-Linear Equilibrium Equations.

The point of departure, as in Chap.1, is furnished by the three dimensional equilibrium

equations

DIV P(X) + p gy B(X) =0
PFT—FPT =0 xenx<~»§’-’~, ~§’—) (5.19)

where 2C R? is the domain expanded by the middle plane of the undeformed plate, a

bounded open set with smooth boundary 8. The material coordinates are again designated by

(X'} with the X%axis directed along the thickness h of the plate; __Eh, <X »{—2’1, The
corresponding basis {IA'J,} is the standard basis in R>.

(i) Balance of Linear Momentum

The integration of the equilibrium equations (5.19); over the thickness h over plate

together with Green’s formula leads to

;‘N,}

o7 [ prar -0 (aa-12)
&
A
3 2
YL J P + g(x',x) =0 (5.20)

Ny

(ii)  Balance of Angular Momentum.

The components of the average displacement u(X) over the thickness h of the plate are

given by

N
>

2
(XL X% = }}; u(X)ax®,  wx',x? :=3};«f u(X) dX’ (5.21)
4

o

2

Therefore, the position of the average middle surface of the deformed plate is determined

by the map X = ® (X', X?) defined by

=X+ (X, =X+ PN, B =0+ wX XY (XL xYeq (5.22)
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By regarding X = Constant, (4=1,2), in (5.22) we obtain the position of the centroid of

deformed surfaces which correspond to planes perpendicular to the XA-axis in the undeformed

configuration Qx(ms: 5') of the plate. The momeni M~ acting on such surfaces is then given

by

[®(X) — 7| x(P B )dx? (5.23)

¥ A Const,

o
i
| )
ol

For simplicity in the notation, the subscript X Aw Const, will be understood when appropri-

ate and is dropped in the sequel. Equation (5.23) may be written in components as

n

4
5
WA = e f [/ — %1 PA4X (5.24)

l\)l,:—

where the notation M,f is used to distinguish the components of M“ as given by (5.24) from
those usually employed in plate theory which are designated by M a4 Figure 5.2 illustrates the

difference between both sets of components which are related by

M = ¢ al)}Mf (5.25)

The balance of angular momentum equation can then be easily established from equation
(5.24). Proceeding as in Chap.1, differentiation of (5.24) and application of the equilibrium

equations (5.20) leads to (summation convention is enforced throughout and A=1,2; 1=1,2,3)

h L3
oM, clax  ax ( 5P
SR B i prax + [ L — % 2 _ax?
gxt j; oxt  gx f_,z ) X
3
h h A
2 2
. S%Wf PAGC + e, | [ F1 PIax —1x' = 51 PP, — [ pgbldi?
2 h

-k -4
7 2

Since [x — X< (P lﬂﬁh)“{3 LB 0, and we may assume without lost of generality that
ARy

B = 0, the substitution of the balance of angular momentum equation (5.19), yields

M 95! ,
“ te, PAGYY =0 (5.26)
axt "t g x f,.,
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Figure 5.2. Components of the moment M4

Making use of (5.25), equation (5.26) can be recast in terms of the components M
shown in Fig.5.2, which are those typically employed in plate theory. If, in addition, use is

made of the definition (5.22) for the components X', (i=1,2,3), equation (5.26) takes the final

form
h &
2 2
GM‘”’ aw ad 3 3?1” 34 3 -
+ PAax’ — 167, + PAd =0, ,A=1.2) (5.27)
ax’ ' gxd _fﬂ ST £ {a
2 2

Equations (5.20) and (5.27) comprise the complete system of equilibrium equations for a
plate of thickness h undergoing finite deformation. It is noted that no kinematic assumption is

needed to obtain these equations, as the derivation presented shows. For a general non-linear

8 W(X,F)

oF , these equations could be used in a

elastic material with constitutive equations P =

numerical treatment by a Finite Element technique. However, if an approximate kinematic
assumption such as our proposed expression (5.2) which includes the effect of transversal warp-

ing of the plate is introduced, a second order approximation to these non-linear equilibrium
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equations can be systematically derived. To explicitly state this second order approximation in
terms of resultant axial and shear forces we need some geometric preliminaries which will be
considered next. Our approach will be similar to that discussed in chapter 3 in the analysis of

beams.

5.4.2.~ Geometry of the Deformed Plate.

Consider again sections of the plate in the undeformed configuration £1x(— n -]1) paral-

272

lel to the coordinate planes XA4-X3 (4=1,2). These sections are mapped onto surfaces

1 = @0 a_ s 0 the deformed configuration, with unit vector fields given by
1 dan 7 - 1 dw; 7 -
m[?[ﬁ-:i =J ¥ IXiwConst.}!‘l 7 dﬂ; =JF t)ﬂm(‘om;.}zz (5.28)

where d{} 4, (4=1,2), designates the undeformed element of area normal to the X4-axis, and
dw,, (a=1,2}, the corresponding element of are in the deformed configuration. Let 1, = F E py

be the convected basis. The frame composed by the unit vector fields

{3; (%), 51,030, 15(0) (5.29)

furnishes the natural extension for plates of the Gaussian frame considered in our previous
analysis of beams and plays a fundamental role in the formulation that follows. It is again
emphasised that f(X), (4=1,2), and 1,(X), (/=1,2,3) are vector fields over the deformation

map ® B — R 3 that is, vectors at points x = ®(X) parametrized by material coordinates 1.

The relationship between the frame (5.29), henceforth referred to as moving frame , and

the standard basis {&,} in ®(8) will be written as

B 8,
ab= AT {e, (5.30)
i &

it is noted the vector 1 of the frame (5.29) is orthogonal to the plane defined by #; and

T more precisely, ﬁA and l; are maps from B onto the tangent bundle T®(B) of the deformed
configuration ©(B).
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iy However, i, and fy are not orthogonal and, as a result, the "moving frame" (5.29) is not

2= E5.(FTF E3) = Cy3, and from (5.28) and the

orthogonal. To prove this, note first that | Is

definition of convected basis it follows that

do ,

Vcszl Yy

figdy=J &.[(FW"’) 13:3]

== J E}.EA == 0
A similar compuiation shows that
d(;)] dw2 A -
———= Bp.h,= PEIFFDE
{dandﬂzj [ LA L) 1{( ) 2]
= J2E,!
and even within a first order approximation one has
.0y = 0 — €15 + Higher order Terms = 0 (5.31)
Therefore, the matrix A(X) in (5.28) is not orthogonal except in the linear theory where
no distinction is made between undeformed and deformed configurations and, consequently,
A=1
It is shown next that the introduction of the moving frame (5.27), defined through the
matrix A(X) by (5.30), makes possible a simple definition of the resultant axial and shear

forces in terms of the components of the first Piola-Kirchhoff tensor, even when transversal

warping is taken into account.

5.4.3.- Resultant Forces over the thickness of the deformed plate.

Let T4(X) be the stress vector field acting on the deformed surface x? = ®(X)| XAm Const
which corresponds to a plane parallel to X*—X?, (A=1,2), in the undeformed configuration.
The components of T4 with respect to the standard basis {8,) in ®(B) are given by
(P i o =125 and its components with respect to the moving frame {fig, 115,15} will be
designated by {7/*)(,.1,3. As in the previous section, the subscript X4= Constant will be
understood when appropriate and is omitted in the sequel for notational simplicity. The stress

vector T4 can be expressed as
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T4 = PG, =7y + 70, + 7 (4=12) (5.32)
Clearly, 74 are simply the components of the first Piola-Kirchhoff tensor P with respect

{0 the basis [y, 15} and {E;). Thus, in view of (5.30), the relationship between P and 7

is given by
Pl/{ ;‘;1/3
P} = A(X) {7 (5.33)
})3/4 ';';;BA

which is an immediate consequence of the fact that P(X) is a two-point tensor.

it is clear from equation (5.32), that the component 734 represenis the transversal shear-
ing stress over the thickness of the plate while 71 and 72 give the corresponding normal

stresses. Thus, the resultant shear forces ¥4 and in-plane forces N are defined according to

VA =

NI

h
2

P Nt = [ | (a,4=12) (5.34)
"
2

With the aid of equations (5.33) and (5.34), the equilibrium equations (5.20) and (5.27)
can be recast in terms of resultant forces, provided an explicit expression for the matrix AX)
is at our disposal. Restricting ourselves to a second order approximation, an explicit expression
for A(X) can be derived from the linearized displacement field (5.2). As in Chap.3, this fact is

a consequence of the method of successive approximations.

5.4.4.- The Second Order Approximation

To consistently develop a second order approximation to the non-linear equilibrium equa-
tions, recall from Chap.3 thai to within a first order approximation we may write
F=1+ GRAD u(¥X)

J=det(F) =1 + DIV w(X) + - - (5.35)
JET=[1+DiV w11 - [GRAD u(X)]" T+ - -

where the u(X) is taken as the linearized displacement field (5.2) with « and ¢(X®) as defined

by (5.6). Since the components of GRAD u are, from (5.2), given by
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ul»l uth wll’lmKd),ﬁl
GRAD u(X) = u2,1 u2,2 ”l‘/z“K(ﬁ’ﬁz (536)
W,1 W, 0

the explicit expression for A(X) follows at once from (5.28) and (5.30) together with (5.35)

and (5.36). The result can be written as

0 —u’y 0 0 0 —yy 0 0 —p
AX) =T+ |-42; 0 0f+[0 0 —yyl +xe(XH]0 0 -8,
0 0 0 ¢y ¢ O By B2 O

=1 +ZX + 0K X + (X « B(XL XD (5.37)

It foliows from this expression and (5.30), that fi,.h, = —e, in agreement with the result
of (5.31). Equation (5.37) admits the following physical interpretation. The first term is the
only one that appears in the linear theory in which no distinction is made between undeformed
and deformed configurations. The terms {} and x¢& represent additional contributions arising
from the rotation of an element of plate and the transversal warping of the plate due to shear

deformation, respectively. Finally, the term L is due to the in-plane deformation of the plate.

The substitution of (5.37) into (5.33) leads, after use is made of the definition of resul-

tant forces given by (5.34), to

7 |p N —gy V*
PHMY = INM 44—y, VA
-5 |P p gy N g, N
g __El ;);34 2ﬁ _“u2’1;):2/1
+ [ ko] Bt L+ [ {—uk, 7 axe (5.38)
-3 Birti+prt| -7 0

Equation (5.38) admits again a simple physical interpretation. The first term corresponds
to the linear theory, the second appears as a result of the rotation of the plate and the last two
are the consequence of the transversal warping and in-plane deformation of plate, respectively.
These last two terms can be estimated two within a second order approximation from the obser-
vation that the infinitesimal symmetric stress tensor o, is the linear part of the non-symmetric

Piola-Kirchhoff tensor P. Accordingly, the components 7/4 of P with respect to the basis
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{#1, iy, 13} and {E,;} may be written as

L A (5.39)
where o/4 are the components o and ?jA those of a non-symmetric tensor. Given the form of
the last two terms in (5.38), it is clear that only the linear term o in (5.39) needs to be con-
sidered in a second order approximation. Thus, making use of the constitutive equations

(5.11)-{5.12) we obtain

"—wt»

kB, | v :r"MdX3mx/3 &' (X)) o31dx3 +

!
[SIFS

Rl

N,}“‘ﬁwts

T R TRR

Similarly, when use is made of (5.10) and (5.14), we obtain the estimate

14 &
2 2
kB, f ¢ T4 =B, [ ¢/ (o ax’
h h
) )
_ L e
=5V (5.41)

Equations (5.40) and (5.41) complete the estimate of the third term of (5.38). Similar
estimates could be carried out for the terms appearing in the last summand of (5.38). However,

we shail not do so and assume instead, on physical grounds, that this term can be neglected.

If the estimates (5.40) and (5.41) are substituted into (5.38) the equilibrium equation
(5.20) and (5.27) take in terms of resultant force over the thickness of the deformed plate the

final form

9
B
)
x4
oM
X"

[N — 8%, VA =0

(VA + (G, + é-m Net] 4 g =0 (5.42)

au”
x4

+ 6aA+ VA”%EbBbA N“A=0

It is again noted that the linear terms appearing in the equilibrium equations (5.42) fur-

nish the equilibrium equations (5.8) of the linear theory, in accord with the method of
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successive approximations. The additional terms in the first two of (5.42) arise as a result of

the rotation and transversal warping of the plate. Due to the effect of transversal warping, the

resultant axial forces N** are shifted by an angle %ﬂﬁa The resultant shear forces ¥4, how-

ever, remain in the (average) planes of bending as (5.42), shows. The factor of % appearing in

the moment equilibrium equation (5.42); should also be attributed to the effect of the transver-

sal warping.

5.4.5.- Constitutive Equations

To establish constitutive equations for the resultant forces N “  y4 and M the
corresponding measures of deformation need first to be derived. An argument analogous to that

presented in section 2.2.3 is employed for this purpose.

Assume the material is hyperelastic with strain energy W(X,V®). Let V be the linear

space of kinematic admissible variations defined by (2.13) and [1"(®) = f W d¥. We can then
B

show that the Frechet differential of I1" at a configuration ® may be written as

W (X, Vo)

I (P) = 3F

Ak
x( 5 2)

SF dV

-f [ P(V®):F dX3} a0
[]

= [ [M 530 + N8k oy + V4 8y ] dO (5.43)
[1)

where

Mot =87 [€54 + 221“ W,BW, 4 — %“KBB B4l
Ya= W= B+ T ) g, (5.44)
Equation (5.43) shows that ¢4, A, and vy 4, the latter two being given by (5.44), are

the measures of deformation dual to M*!, N% and V4, respectively. It is important to note

that the symmetry of M% and N°! holds only for this second approximation and does not

carry over to the general non-linear theory.
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in view of (5.44), the simplest possible constitutive model consistent with the equilibrium
equations (5.42) is furnished by the constitutive equations (5.12), (5.14) and (5.15) of the
linear theory, with €,4 and E 4 teplaced by A,4 and y 4 respectively. The complete system of
equations of the non-linear theory presented herein is summarized in Table 5.1. Since material
and spatial coordinates are taken as coincident, no notational distinction between both sets of

coordinates has been made. We shall adhere to this convention in the sequel.

TABLE 5.1.
The second order approximation to the non-linear theory.

Equilibrium Equations.

Nepg— o Val,g=0

Voo™

a0

[w»a - %(W’avaﬁl NaB

Maﬁ,ﬁ + [8"B+aasﬁ] Vﬂ - %[W’ﬁm;ﬁﬁ] Naﬂ =0

Constitutive Equations

N(xﬁ = ”‘“‘lE"h"“Vz‘ )\y’y 6043 + 2Gh )\aB
e 4

/‘40“6 = ) [V J%y Baﬂ + (1“‘"1}) _:1):_($a,ﬁ+$ﬁ,a)] - DI—Z.,V ”“'Sq" 80,‘3
—h
6

V, = Gh% [w,o — (I+Tge) Yol (no summ onc)

Nog= Nga  Mopg= Mpg,
Kinematic Variables
ﬁa = W,o ™ Ea
gcxﬁ = %‘[wﬁd,ﬁ + Z{‘E,(x]
— 1 1 5= -
Aaﬂ = eaﬁ + ? W,aW,B - —é- —gﬂoﬁﬁ

The formulation summarized in Table 5.1 could be used as a rigorous basis for a numeri-

cal treatment employing finite differences or the finite element method. It is noted that this for-

mulation reduces to equations (3.33) with ng— in the one-dimensional case. This value for the
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constant x is the result of the inclusion of the transversal warping.

5.4.6.- Simplified Theory.

We present in this section a simplified theory restricted, as the Von-Karman model, to
‘moderate’ rotations and infinitesimal axial displacements which, nevertheless, retains the basic
features of accounting both for shear deformation and axial displacement of the plate. This for-
mulation exactly reproduces the Von-Karman equations in the limit as the shear stiffness of the
plate tends to infinity. On the other hand, it reduces to Reissner theory when the in-plane

forces are zero.

The formulation summarized in Table 5.1 is simplified by introducing, based on physical

grounds, the following two additional assumptions

Additional Assumptions.

(i) The in-plane displacements u, are assumed to be ’infinitesimal’. Accordingly, when
establishing the equilibrium in the deformed configuration ®(B) we may assume
aaﬁ + ﬂ(X,B == Saﬁ
(i) The contribution to the horizontal equilibrium equations of the rotated shear forces is

neglected’. Therefore
Yap Vap=0 => Nygg=0
It is noted that these two assumptions, although sometimes not explicitly recognized, are
equally present in the Von-Karman theory of plates. Assumption (i) is quite realistic in most

applications. The formal reason for assumption (ii) is that it allows the introduction of the

potential ¥ :{} — R for the forces N .4 such that

Nu=Y,2, Np=Y.,;1, Np=-Y,, (5.45)

fActualIy, it can be shown by making use of the principle of virtual work that this assumption is redundant
with (i). We omit the details.
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so that the axial equilibrium equation, which reduces to N,g 5= 0 by assumption (ii), is identi-
cally satisfied.

Making use of assumptions (i) and (ii) the equations of equilibrium and constitutive
equations summarized in Table 5.1 can be combined to yield the following system of partial

differential equations

1+v QNxa i

Maﬂ,aﬂ =D l”a,aﬁﬂ - E 5 = Nag Wsap +q
"g‘h
N
af + aaﬁ _ 1 [q + NaB W,ap (546)
Gh G 2h
6
NaB,ﬂ = 0

It should be noted that for the one-dimensional case with transversally applied load

g = 0, equations (5.46) lead to the eigenvalue problem

P
DE1 5Gh d*w d*w
4«%«P—~~~-2~=0
1+L dX dx
Gh

which is in complete agreement for k = —g— with the general expression (3.36) derived in

chapter 3.

Yet, equations (5.46) can be further simplified by introducing the deflection due to shear
wS(X! X3 Q0 — IR which satisfies (5.17a). The reason for this is that from (5.45) the consti-
tutive equations for the in-plane forces N,z may be reduced to the following simple relation

between the potential Y (X', X?) for the in-plane forces and Gaussian curvatures

AY = Eh %—[{w; wh —{wS; wd (5.47)

where{ . ; .} denotes the differential operator

{figd=fingnt fingu—2 fing .
=AfAg - V(VHV(Vg (5.48)

and, therefore, %{ /., f} gives the Gaussian curvature of the map f:QC R*—R.
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Thus, with the aid of (5.17a) and (5.45), equation (5.46), may be written in the following

form
Alw — A%wS = % Nog W,op + [% + A;’ 1211
G ‘m_l
6
= Sy, w+ 14+ AL 2 | (5.49)
Geh

In conclusion, when the deflection due io shear wS(X! X9 satisfying (5.172) and the
potential Y (X', X?) satisfying conditions (5.45) are introduced, the present theory yields the
coupled system of non-linear partial differential equations shown in Table 5.2. It is again noted
that these equations reduce to the classical Von-Karman equations of plates when the shear
stiffness of the plate Gh — oo. Finally, if the in-plane forces vanish, since w? = w — wS, one
obtains equations (5.18b) of the linear plate theory due to Reissner. The consistency of the

formulation presented and the clear statement of the assumptions required at each step of the

derivation, is noted.

TABLE 52

Large deflection of Plates. ‘
Effects of warping and shear deformation included.

A?w — A? Sn[“g*+-—4—q———v~]+-§5{Y;w}

D Ghe 2
Sy 1 pn v s
V(T w?) e T BY; wt — oY, w
AYY = Eh -;—{{w; w m{ws;w“"}]]
where

- T wS - - Nl nk 94
M= M7= D [y ai=w)1 + (=) V(T — 9w)] - DL L

N=NT=AY 1l - 9(VY)
V= Ghx Y w® x=§-



References 116

[2]

[3]

6]

REFERENCES

Green, A. E. "The Equilibrium of Rods" Arch. Rational Mech. Anal Vol. 3, 417-421.
(1959).

Ericksen, J. L. and Truesdell, C. "Exact Theory of Stress and Strain in Rods and Shells”
Arch. Rational Mech. Anal. Vol. 1, 295-323. (1958).

Green, A. E. and Laws, N. "A general Theory of Rods" Proc. Roy. Soc. (London). Vol.
293, 145-155. (1966).

Green, A. E., Knops, R. J, and Laws, N. "Large Deformations, Superposed Small Defor-
mations and the Stability of Elastic Rods". Int. J. Solids Structures. Vol. 4, 555-577.
(1968).

Green, A. E. and Naghdi, P. M. "Non-Isothermal Theory of Rods, Plates and Shells”". [nt.
J. Solids Structures. Vol. 6, 209-244. (1970)

Ericksen, J. L. "Simpler Static Problems in NonLinear Theories of Rods". Int J. Solids
Structures. Vol. 6, 371-377. (1970)

Green, A. E. and Naghdi, P. M. "On Thermal Effects in the Theory of Rods" Int. J. Solids
Structures. Vol, 15 829-853. (1979)

Naghdi, P. M. "Finite Deformation of Elastic Rods and Shells" Proc. LU.T.4.M. Sympo-
sium on Finite Elasticity. Lehigh University (1980).

Antman, S, 8. "The Theory of Rods" Handbuch der Physik, Vol. VIa/2, Springer, Berlin
1972.

Bishop, R. L. and Goldberg, S. I. Tenser Analysis on Manifolds Dover, New York
1980.

Truesdell, C and Noll, W. "The Nonlinear Field Theories of Mechanics" in Handbuch der
Physik. Vol. I1I/3, Springer, Berlin (1965).

Marsden, J. & T.J.R. Hughes. "Topics in the Mathematical Foundations of Elasticity”
Nonlinear Analysis and Mechanics: Herioi-Watt Symposium, Vol ll. R.J. Knops, editor.
Research Notes in Mathematics Vol. 27, Pitman (1978).

Gurtin, M. Tepics in Finite Elasticity. Society for Industrial and Applied Mathematics.
Philadelphia, Pen. (1981)

Reiss, E. L. "Column Buckling--An Elementary Example of Bifurcation" in Bifurcation
Theory and Nonlinear Eigenvalue Problems. J1.B. Keller and S.S. Antman editors. W.A,
Benjamin, New York 1969.

Dickey, R. W. "Bifurcation Problems in Nolinear Elasticity" Research Notes in Mathematics
Vol 3. Pitman Publishing, London (1976).

Klingenberg, W. A Course in Differential Geometry. Springer-Verlag 1976.

Eringen, C. E. Nonlinear Theory of Continous Media. MacGraw-Hill, 1962.

Fung, Y. C. Foundations of Solid Mechanics. Prentice-Hall 1965.

Antman, S. S. "Qualitative Theory of the Ordinary Differential Equations of Nonlinear
Elasticity" in Mechanics Today, Voll, Nemat-Nasser Editor. Pergamon (1972)



References : 117

{20]
[21]
(22]
(23]

[24]
{25}

[26]

(28]
[29]
{30]

1311

Slater, J. H. "Mixed Mode! Finite Element for Inelastic Analysis" Ph.D Dissertation.
University of California, Berkeley. (1982)

Haringx, J. A., "On Highly Compressive Helical Springs and Rubber Rods and Their
Applications to Free Mountings,” Part . Philips Res. Rep. 3, 401 (1948)

Haringx, J. A., "On Highly Compressive Helical Springs and Rubber Rods and Their
Applications to Free Mountings," Part 11, Philips Res. Rep. 4, 49 (1949)

Haringx, J. A., "On Highly Compressive Helical Springs and Rubber Rods and Their
Applications to Free Mountings," Part [Il. Philips Res. Rep. 4, 206 (1949)

Timoshenko, S. P. and Gere, J. N. Theory of Elastic Stability. MacGraw-Hill, 1951.
Plantema, F. The Bending and Buckling of Sandwich Beams Plates and Shells. John
Wiley and Sons, 1966,

Keller, J. B. "Bifurcation Theory for Ordinary Differential Equations" in Bifurcation Theory
and Nonlinear Eigenvaiue Problems. J.B Keller and S.5. Antman Editors. W.A. Benjamin,
MNew York 1969,

Antman, S. S. "Equilibium States of Non-Linear Elastic Rods" in Bifurcation Theory and
Nonlinear Eigenvalue Problems. J. B. Keller and S. S. Antman, Editors. W.A. Benjamin,
Ney York 1969.

Stakgold, I. "Branching of Solutions of Nonlinear Equation." S./.4.M. Review 13 pp. 289-
332, (1971)

Fosdik, R. L. and James R. D. "The elastica and the Problem of the Pure Bending for a
Non-Convex Store Energy Function" Journal of Elasticity. Vol. 11, No.2, 165-185. (1981)
James, R. D. "The Equilibrium and Post-Buckling Behavior of an Elastic Curve Governed
by a Non-Convex Energy" Journal of Elasticity. Vol. 11, No. 3, 239-269. (1981)

Pinsky, P. M., Taylor, R. L. and Pister, K. 8. "Finite Deformation of Elastic Beams". Proc.
TUTAM Symp. on Variational Methods in the Mechanics of Solids. (S. Nemat-Nasser and
K. Washizu, Editors). Pergamon Press, 1980,

Simo, J. C. and J. M. Kelly, "Two-dimensional Finite Elasticity Analysis of the Stability of
Multilayer Elastomeric Bearings" Report No. UCB/SESM-81/06, Nov. 1981. University of
California, Berkeley. (1981)

Pinsky, P. M. and R. L. Taylor "A Finite Formulation for Elasto-Viscoplastic Beam Struc-
tures." Computational Methods in Nonlinear Mechanics, (T.J. Oden Ed.), North-Holland
Publishing Co., Ch. 17, 1980.

Gelfand, I. M. and Fomin, S. V. Calculus of Variations Prentice-Hall, 1963,

Leipholz, H. "Six Lectures on Stability of Elastic Systems." Solid Mechanics Division,
University of Waterloo. Waterloo Oniario 1975.

Oden, J. T. and Reddy, S. N. Variational Methods in Theoretical Mechanics.
Springer-Verlag, 1976.

Lang, 5. Differentiable Manifolds. Addison-Wesley, 1972.

Hughes, T. J. and K. S. Pister, "Consistent Linearization in Mechanics of Solids and
Structures." Computers and Structures, Vol. 8, 391-397 (1978)

Cowper, G. R. "The Shear Coefficient in Timoshenko’s Beam Theory" Journal of Applied
Mechanics. Vol. 6 (1966)

Love, A. E. H. A Treatise on the Mathematical Theory of Elasticity. Dover, 1944,
Sokolnihikoff, I. S. Mathematical Theory of Elasticity. MacGraw-Hill, 1956.
Lekhnitskii, S. G. Theory of Elasticity for an Anisetropic Solid. Mir, Moscow 1981.



References 118

[43]

[44]
[45]

{46}
(47]

(48]

[49]

[54]

(55}
[56]

Kantorovich, L.V. and Krylov Approximate Methods of Higher Analysis. New York
Interscience. 1962.

Mikhlin, S. G. Variational Methods in Mathematical Physics. Pergamon Press, 1964,

Recktoriks, K. Variational Methods in Mathematics, Science and Engineering. D.
Reidel Publishing Co., Dordrecht-Holland/Boston-U.S.A. 1977.

Zienkiewicz, O. C. The Finite Element Method. Third Edition, MacGraw-Hill, 1979.
MNecas, J., and Hlavacek, 1. Mathematical Theory of Elastic and Elasto-Plastic Bodies.
Elsevier Scientific Publishing Co., Amsterdam-Oxford-New York. 1981.

Gent, A. N., "Elastic Stability of Rubber Compression Springs," J. Mech. Engng. Sc. Vol.
6, No. 4, pp. 318-326. (1964).

Beatty, M. F., "Elastic Stability of Rubber in Compression," In Finite Elasticity, Ed. R. S.
Rivlin, ASME, AMD, Vol. 27, pp. 125-150, (1977) Winter Annual Meeting ASME,
Atlanta, Ga., Nov. 27-Dec. 2, 1977,

Derham, C. J. and A. G. Thomas, "The Design of Seismic Isolation Bearings," In Control
of Seismic Response of Piping Systems and Other Structures by Base Isolation. Ed. J. M .
Kelly. Report No. UCB/EERC-81/01. January, 1981

Roccard, Y., "Note sur le Calul des Propertes des Supports en Caoutchouc Adherent.” J.
Phys. Radium, Vol. 3, 197-293. (1937)

Gent, A. N. and P. B. Lindley, "The Compression of Bonded Rubber Blocks," Proc. Instn.
Mech. Engrs. Vol. 173, No. 3, pp.111-122. (1959)

Gent, A. N and E. A. Meinecke, "Compression, Bending and Shear of Bonded Rubber
Blocks," Polymer Engineering and Science, Vol. 10, No.1, pp.48-53. (1970)

Schapery, R. A. and D. L. Skala "Elastic Stability of Elastomeric Columns". Int. J. Solids
Structures. Vol. 12, pp. 401-417. (1976)

Stakgold, I. Green Function and Boundary Value Problems. Addison & Wesley. 1979,

Levison, M. "A New Theory for Rectangular Beams". Journal of Sound and Vibration.
Vol. 74, pp 81-87. (1981).

Reissner, E. "The Effect of Transverse Shear Deformation on the Bending of Elastic
Plates" ASME Transactions. Vol. 67 (1945)

Reissner, E. "On Bending of Elastic Plates" Quaterly of Applied Mathematics. Vol. 5, No. 1,
55-70. (1945)

Green , A. E. and Zerna, W. Theoretical Elasticity, University Press, Oxford, 1968.

Naghdi, P. M. "The Theory of Shells" in Handbuch der Physics. Vol. VIa/2, Springer-
Verlag, 1972

Ciarlet, P. G. "A justification of the von Karman Equations" Arch. Rat. Mechanics and
Analysis. Vol. 73, pp. 349-389. (1980)

Ciarlet , P. G. Les Equations de von-Karman. Lecture Notes in Mathematics vol. 826,

Springer-Verlag, 1980.



Appendix I 119

APPENDIX I

STABILITY AT BIFURCATION POINTS FOR THE

ELASTICA WITH SHEAR DEFORMATION

In this appendix, the stability of the adjacent equilibrium configurations for both the
transversally homogeneous and the sandwich beam, is examined making use of perturbation
methods. The line of centroids is assumed to be perfectly inextensible, and finite shear defor-

mation is taken into account.

The case of the transversally homogeneous beam is considered first, and taken as a model
problem to present the methodology in some detail. The stability analysis for the sandwich

beam is entirely analogous and will be briefly examined later,

i.- THE TRANSVERSALLY HOMOGENEOUS BEAM

1.- Statement of the Problem,

The system of semi-linear ordinary differential equations (2.31), derived in chapter 2., can

be recast into the following non-linear eigenvalue problem for the applied axial load P
' (x) + F$(x),P) =0 ; x€(0,4) (I.1a)
Y =0, (L)=0 (1.ib)

where

- £ TP o p i
F(y,P) I _\/] [GQ sin‘y + o0 cosy | siny (1.2)
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Remarks

(i) Boundary conditions corresponding to a cantilever beam fixed at x = 1 have been

assumed for simplicity.

(ii) It is noted that F(,P) is an odd function of ¢; i.e:

FQ,P) = —F(—{,P)
This remark plays a key role in the subsequent analysis.
(iii) Problem (I.1) always has the solution $io (x) = 0. The objective is to study possible bifur-
cations from this trivial solution for certain values of the parameter P representing the
applied axial load. For this purpose, the consistently linearized problem about Yo = 0,

considered next, plays a key role.

1.1.- Linearized Problem.

Consider first the linearized problem about the configuration ¢, (x) = 0. The Frechet

differential of F at Y is given by

- d - P P -
Introducing the notation
2py = L. P
A(P) 7 1+ el (1.3)
the following linear problem is obtained
AP Y =0; x€(o,L) (1.4a)
$0) =0; $(L)=0 (1.4b)

Problem (1.4) defines a self-adjoint linear operator (from the Hilbert space
H*(0,L) — L*(0,L)) whose inverse is compact. Hence, its spectrum is discrete and consists of

the eigenvalues and associated eigenfunctions
- 2P
U,(x) =coslh,x]; P, = r (1.5)

En
1+ 1+GQ
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where

2 2n—1)272

Ao e and  Pg, = EI A} (1.6)

2
Notice that Py = ?; is just Euler’s buckling load. Since (1) 0 for any non ftrivial

solution of problem (1.4), the following normalizing condition is chosen

$(0) =1 (.7

Using the definition of branching point and the Frechet differentiability condition, one can

prove the following key fact [4],[5]

Proposition

Bifurcation for the non linear problem (I.1) from the trivial solution ¥» = 0 can only
occur at points which are in the spectrum of the linearized problem (I.4); i.e: at the eigenvalues

P, given by (1.5)-(L.6).

To study the stability of these adjacent equilibrium configurations, departing from ¢, = 0
at points P,, the local behavior of the corresponding branch in a neigborhood of (P,,.¢=0)
needs to be examined. The most convenient way of treating this problem is to make use of per-
turbation theory of operators in Hilbert space. Relevant to the problem at hand are the
Liapunov-Schmidt procedure, which translates problem (I.1) into a non-linear integral equation
{4]; and a modification of Poincare‘s classical method, developed by Keller [1]-[2], which
exploits the connection between problem (I.1) and the associated initial value problem {3],[4].

Use will be made of the latier in the developments that follow.

Z.- Perturbation Analysis for the Elastica with Shear Deformation.

We start the perturbation analysis, by setting

Ylx) = o + e z(x) (1.8)

where the perturbation parameter ¢ is chosen so that
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2(x,P,e)| g =1 19

Thus, since € = yi| g, this perturbation parameter represents physically the rotation of

the cantilever at x = 0, clearly non zero for any non-trivial solution ¢ = ¢ of (I.1).

2.1.- Polncare-Keller's Method.

Let us consider the non-linear initial value problem for z, obtained by substituting (I.8)
into (1.1) and replacing the boundary condition at x = L by the normalizing condition (1.9); i.e:

the problem

2 %-F(ez,P) -0, x€(0,L) (1.10a)
20 =1, 20) =0 (1.10b)

Let z(x,P,e) be the solution of this problem depending parametrically (and continuously)

on P and e. We first note that

o1 - P
l‘«% . Flez,P) 7 1+ oo 12 A(P) z
so that z(x,P,0) satisfies
2"(x,P,0) + A3(P) z(x,P,O) =0, x€(O,L) (I.11a)
z(0,P,0) =1, 2'(0,P,0) =0 (1.11b)
and admits, therefore, the solution
z(x,P,0) = cos [\ (P)x] (1.12)

When P = P,, the solution (I.12) satisfies the boundary condition z(L,P,,0) = 0, and
problem (I.11) reduces identically to (I.4) with z(0,P,,0) = 1 as normalizing condition. The
objective now is to obtain solutions of the non-linear problem (I.1) for P near P, and € near
zero (i.e: y(x) near ¢y = 0). These solutions can be constructed from those of the initial
value problem (1.10) in the following manner.

Let z(x,P,e) be a solution of (1.10). z(x,P,e) will be a solution of the eigenvalue prob-
lem (1.1) if it satisfies the boundary condition at x = L; that is, provided there is a pair (P,¢)

such that
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b(P,e) = z(L Pe) =0 113

This equation becomes then the "bifurcation equation”, and is always satisfied by (P,,0).
By the Implicit Function theorem, it will be possible to obtain a solution (P,e) near (P,,0),
provided one of the derivatives of (P ,€) with respect to either P or ¢ does not vanish at

P=P, and e =0,

(a) Let us examine first %g (P,,0). From (1.13) it follows that

b 9z

3¢ 2,0 3 (L,P,€)
since F(y,P) is an odd function of y, —3 Fl(ez,P) is an even function of € and its deriva-
tive with respect to e is, therefore, zero at € = 0. Differentiation of (I1.10) with respect to
¢ leads then to

o pm=0 => po=o (L.14)

Je Je

Equation (I.14), indicates that z(x,P,e) is an even function of €. In addition, (1.14), shows

that it is not possible to solve (I.13) for € as a function of P.

(b) Consider next -g%(P,,,O). From (1.12) and (1.13) it follows that

b p o o B2
Y3 (P,,0) aP(l,Pn,O)

= — \'(P,) sin[A(P,)]

e s Qn—1‘*w"El . | Qn—Dwx
(1) EI\/1+ 02 sin 5T

=0 (I1.15)

It is, therefore, possible to solve (1.13) in a neighborhood of (P,,0) to obtain a function

P=2P,(e) with P,=P1(0) (1.16)

satisfying (1.13); i.e:

B(e) = b(P,(e)e) =0 117

In addition, by differentiating (I.17) with respect to € and applying the chain rule it is

found that
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_ 4By - 35 p o) by 4 20
= (0) aP(P,,,O).P,, ) + P (P,,0)
which by (1.14) and (1.15) yields the result

d »
o Po(€)|emo=0 (1.18)

Therefore, according to (I.18), P, () is an even function of e.

Once the function P = P(e) is obtained, the behavior of the branch near P = P, and
Yo(x) = 0 is completely characterized by ¥ (x) = ¢ z(x,P,(€),e). The explicit determination

of the function P = P, (e) is considered next.

2.2.- Determination of P = P(e)
First, it is noted that %F (ez,P), where the function F is given by (1.2), admits an

expansion in powers of ¢ of the following form

1, Plsé€ 4
3+GQ]Z 5 + O(e" (1.19)

% Flez,P) = \X(P) { -

Next, the function Z (x,e) is defined by the relation

Z(x,e) = z(x,P(e),e) (1.20)

Clearly, Z(x.,e) is an even function of € since by (1.14) and (1.19) z(x,P,e) and B, (e

are even functions of € too. Therefore, both Z (x.e) and P, (e) admit a power series expansion

of the form
N a 2
B,(e) = P, + P,..(0) %— + 0(eY (1.21a)
2
Z(x,e) = Z(x,0) + Z.. -fz-— + 0(eh (1.21b)

where the sub index e indicates differentiation with respect to €. Substitution of (1.21) into

(1.19) gives

P,
1t

3
3t @a Z°(x,0)

%—» FleZ (x,e),P,(e)] = A2Z(x,0) + {}\,fzﬁ(x,O) Y

N P..(0)
El

2P,

1+Gﬂ

Z(x,O)] fg- + 0(e* (1.22)
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The function Z(x,e), defined by (1.20), satisfies the non-linear initial value problem
(I.10), since z does. Furthermore, it also satisfies the boundary condition at x = L, since
Z(l,€) = z(1,P(e),e) = Ble) = 0, by (1.17). Hence, Z (x,¢) satisfies the non-linear eigenvalue
problem (1.1} with the normalizing condition

Z(0,e) =1 (1.23)

The substitution of (1.21) and (1.22) into (1.1) and subsequent equating to zero of the
coefficients in the resulting expansion in powers of €, leads then to a sequence of problems the
first of which is a linear problem for Z(x,0) identical to (1.4) and, therefore, with solution

Z(x,0) = coslx, x] (1.24)
whereas the second one, the coefficient of the term e, gives rise a linear inhomogeneous prob-

lem for Z.(x,0) of the form

Z3(x,0) —

P..(0 2P
Z"(x,0) + 1,27 (x,0) = 2,2 M-S—z-il + ! ]Z(x,())

1, P
37 Ga 7] GO
20, =0,  Z.(Le=0 125

The homogeneous problem associated with (I.25) has the non-trivial solution given by
(1.24). By Freldholm alternative theorem, problem (1.25) will have a solution only if the right

hand side is orthogonal to (1.24). The application of this solvability condition yields

L
, 14 3P fcos“ (A, x] dx

A 0
(1.26)

El 3 27, L
1+'§'ﬁ’ _{cos A, x] dx

Therefore, up to terms of order O(e?), at each bifurcation point P, the following estimate

holds

R " 2
B,(e) — P, = P_(0) fé— + O(e%)

1+ 3P
EI N, GO
-3 2P, (1.27)
1+ ey

with A, and P, given by (1.6).
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Equation (1.27) leads to the following conclusion:

At each bifurcation point P,, the adjacent equilibrium positions behave locally as parabolas. These

adjacent equilibrium configurations are locally stable and the bifurcation diagram is, therefore, the

pitchfork.

1i.- THE SANDWICH BEAM.

For the sandwich beam, equations (2.54) derived in Chapter 2, lead to a non-linear eigen-

value problem entirely analogous to (I.1a)-(I.1b) with the function F (¢, P) defined now by

sin
cosy — P
P tana P GO
F(P,P) = — e = " (1.29)
v EI 1+ tanza EI 14+ Sin2dl ’
7
cosy ~ G
The linearization about ¢, = 0 yields
. a’ .
DiFWo,P) g = ——F(o+ad) |am
- ._____!i_m;._,.g (1.30)
P

Hence, one has a linearized eigenvalue problem identical to (I.4a)-(1.4b) with A(P) defined

now, in view of (1.30), by

A2(P) = P . (L31)
EIEI - £

The same procedure discussed in detail in sec.2.1 of this appendix shows that the two fol-

lowing facts again hold
(i) %F(cz,P) is an even function of e.

(i) P, (e) is an even function of e.

The results (i) and (ii) are all that is needed to determine the jocal behavior of the
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adjacent equilibrium configuration at P,. Proceeding as in section 2.2, one is led to the follow-

ing power series expansion

%-F[eZ(x,e),P,, (€)1 = A%, Z(x,0) +

P,
2._.
1 A,Z.00) - 22, -§—+---~f~';—4‘1~7 2(x.0)
"%a ]
PO 2
+ m————(m)——_—TZ(x,o) % + O(e?) (1.32)
E’{l""@“ﬁ'

Since Z(x,e) satisfies the non-linear eigenvalue problem (I.1a)-(1.1b), Z..(x,0) satisfies
again an inhomogeneous problem analogous to (1.25a)-(1.25b) with the right hand side now

given by the coefficient of €? in the expansion (1.32). The solvability condition yields then

PEE 1 Pﬂ P’? i
BRI I S D — A
F )\,,!31 a6 + 2 oo 8>0 1.33)
where P, are is the critical load, given by
P,
Py o= —EL (1.34)
1+ _A..Pi..E.f._
GO

being P, and A%, as in (1.6).

Therefore, identical conclusion to that found for the transversally homogeneous beam

holds for the sandwich beam; namely:

The adjacent equilibrium configurations behave locally as parabolas and are locally stable, the bjfur-

cation diagram being the pitchfork.
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APPENDIX II

In this appendix, we give a detailed proof of the foliowing identity employed in chapter 3.

f(012¢,2+0”13¢,3 dQ =0
0

Proof

it is first noted that the exact shear stress distribution over £ C R? can be obtained directly

from the displacement field (3.15). From equations (3.11a), (3.12) and (3.13b) it follows that

x B(xy) (1.1

{‘[';"(xl) _ M(Xl) - V(Xl) _ [ GO

E12 E12 EIZ

and this relation, together with the expression (3.7) for the warping function
¢(xy,x3) 101 — IR, the definition (3.13b) of the shear coefficient k and the displacement field

(3.15) leads to

-_jGalv Y ()2 LAY
(e8] E]z Q X>2 + 2 (Xz) + (1 2 ) ‘X3)
GOt v
gy = — [E}H[X’:; + (2+V)XZX3] (HZ)

which is, of course, in complete agreement with the exact solution of the flexure problem.
Next, we proceed to prove the proposed identity by a direct computation. Since
x £ — R is a harmonic function which satisfies the Neumman problem (3.2), the following

identities hold
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9
‘gﬁVx!de=J;x—é%dI‘

L(xz)z + (1~—12/—-)(x3,)2

X2 + x,3(2+v)x2x3] dA

»-2(1 v)f xx 4O (iI1.3)

and

f X2 dﬁ, sz a
- ~(z+§-y)12m (1~-;~u)13 (IL.4)

where 1, = f (x)? dQ , (a=2,3) are the principal moments of inertia of ().
0

When use is made of the identities (I1.3) and (I1.4), the stress distribution (I1.2) together

with (3.7) leads to

V
[¢,20'12+¢’»3013} aQ = “‘"[ ElL ﬁ“{fﬂ [(X3)2X’2+ 2X2X3X,3] d}

o

However, equation (IL.5) vanishes identically due to the fact that

(6+g—v)(x2x3)2 +1=5)(xp*

dﬂ] (11.5)

xz(Xa) X,z} + “‘”[xz(xs) X»3] dsl

f i(x;;) Y2 + 2x2xx,3] dQ = f

= 2 9%
i)xz(xg) P ds

|

(6+—g—v)(x2x3)2 + (1~%—V)(x3)4] 40

which completes the proof.
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APPENDIX III

FORMAL VARIATIONAL STRUCTURE

In this appendix, we examine the formal variational structure of the formulations
presented in Chapter 2 through 5. For simplicity, the kinematically exact rod theory presented
in Chapter 2, sections 2.1 and 2.2, is taken as a modei problem. The formulations developed in
Chapters 3 and 4 follow exactly the same pattern, and the extension to the plate theory

presented in Chapter 5 and summarized in table 5.1, is straightforward.

1.- Notation.
The foliowing notation is introduced for convenience and employed throughout this
appendix. The axial coordinate X'€ (0, L) is designated simply by X.
%, = [(X+u(1) v(OIT

w=[x, ¢I7

R, =[R' R? MIT

R,=I[N V MIT (I11.1)
cosy —sing 0
A(p) = {sing cosy 0
0 0 1

The components R' and R? of the resultant force R = R‘8, = Na + V1 and the resultant

moment M are defined as in Chapter 1, namely

RO = [PAX) a0, (=10, M) = e, f 000 - x,]' PAX) a0 (112)
[4] O

Thus, the set of components R, and R, with respect to the spatial and Gaussian frames,

defined in (II1.1), are related as
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R,= A R, (111.3)
In addition, we introduce the linear operator IF :[H'(0, L)1> — [L,(0, L)) defined by

X,
w— I(w) = [!l}’] (111.4)

where a "prime" designaies -ﬁ-«. Therefore, the strain measures [A,—1], A; and ¢’ associated
dX

with N | V and M, and defined by (2.24), may be written as

Al 1+ u'—cosy
A t=ATW] v-sing
v v
= AT [IF(w) — & (iIL5)
where we have set fi = [cosy —sing 017, The notation A, = [(A,—1) x; @17 will be often
employed.
Remarks

) Since A, = [(x,—1) A; 17 are the strain measures associated with R, and both R, and
R, are related through (I11.3), equation (IIL.5) shows that [IF(w) — @] are the strain
measures associated with the components R, Obviously, [IF(w) — @il and A, define the

same object in different coordinate systems.

(i) If the rod undergoes pure bending

1+ u —cosp = v —sing =0 <=> A, =EN=0

and, therefore, N = V = 0 in agreement with our intuition.

(iii) Clearly, the strain measures A, are invariant under superimposed rigid body motions.

2.- Weak form of the equilibrium equations.

To further simplify the notation, let us designate by 9, the directions at either X =0 or

T

X = L along which some or all the components of w = [x, 4]’ are prescribed to values desig-

nated by #%. Similarly, dg will designate the directions at X = 0, L along which entries in R,
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are prescribed to have values I.lx. We require 9, )dg = @. The linear space of kinematicaily

admissible variations may then be defined as

Wm[ne[H‘(o, L nla;—"O} (111.6)
l :

Consider next the equilibrium equation (2.10) for the bending moment M. Upon noting

EINE

equation (2.10) may be written as

that

—sinys  cosy
~COS —sing

1+u'
{( v )} IL7)

v

T
_dM | gy dA
dX+]F(W)'dtp

Combining (II1.8) with the equilibrium equation (2.8a) for the components N and V of

(W) R, =0 (111.8)

the resultant force R, and making use of the (II1.3), the weak form of the equilibrium equa-

tions takes the form

Gn,w wf F7(m) AW n3mT(w).%%~(tl/)].Rg(Ag) dx
0
L
~ [ a0 v ax - {n.ﬁx!anmo, for any @€V (111.9)
0

As shown in section 2.2.3, the forces R,(A,) derive from the strain energy potential

W\ A ,¥") according to

aW(r,)

= ~an, (I11.10)

R

Thus, for the simple constitutive model (2.26) proposed in Chapter 2, equation (II1.10)

can be written in the form

R,(A,) = DA, = D.A () .[F(w) — &l (I1L.112)

where

D = diaglEQ GQ EIl (I11.11b)
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3.~ Total potential energy functional

From equations (II1.9) and (II1.11) it immediately follows that

d
G n,w) = 2;;-[n(w-m,)]c,_o (TL12)
where T1(w) is the total potential energy defined by

L

(w) a-j‘ [F(w) - alTAWDA T(w).{lF(w) —n} dX — f g(X)v(X)dX (111.13)
0 0

Equation (I11.13) is perfectly consistent with the fact that the material is hyperelastic with

strain energy given by (2.27).

4.- Linearization of the weak form.

The linearization of the weak form of the equilibrium equations about a intermediate
configuration plays a key role in numerical implementations employing an iterative solution pro-
cedure. A complete account of linearization procedures in the general context of infinite dimen-
sional manifolds can be found in [1]. For the development that follows the relevant results

have been outlined in section 2.4.1.

Consider an intermediate configuration W :R — R3. Let Aw:R — R? be a superim-
posed infinitesimal deformation; that is, a vector field covering W(X). The linear part of

G(n,w) at W(X), denoted by L[Gl;, can be computed as

LIG], = _(}%[G(v,, #+am)| (111.14)

Thus, since G(x,w) is defined by (II1.9), equation (III.14) leads to

L
= TONL e T dA - rwy 4A - 5
L[G];-—_{ ) < @Ay + BT (W) L @ins + BT £ 5@ ayms) R,ax
¢ - JA ~
+ [ |FT AG + W) 5@y LR aX (I11.15)
0

If (I11.14) is again applied to the constitutive relation (II1.11), the linear part L[R,]; of

R, at W(X) can be written as
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LIR,]; = R, + D|ay

2!

dA T
d

dA’
dys

The linearized weak form of the field equations for the problem at hand is obtained by

blAT W) (111.16)

i

_JFT(aw)
Ay

substituting the expression for LIR,l; given by (II1.16) into (I1.15). Employing matrix nota-
tion, the final resuit can be conveniently written as

Fi(aw)
L[G]W~—f[ FT(y) n;,][K + KG]{ " ] dX + G(n,Aw) (I1.17)

Q

Where KG and K have the expressions

0 i‘}(w R,
Kg = (111.18)
T dA T d A
R a0 () FIW).
and
A — ro_
K= Z A DA @ -‘%—m(tp).IF(W) (11.19)
W 48 ) v

K¢ is often referred to as the geomerric stiffness and K7 = K + K represents the
tangent stiffness at the intermediate configuration W IR — IR>? The residual or out-of-balance

forces at the configuration w(X) is given by

) L AG |-
~ G = IR J, ~ [ [F'y 53l A Ry ax (111.20)
0 F'w. m ()

and vanishes identically if W(X) is an equilibrium configuration. By setting LIG]l5 = 0 for any
n€ W in (II1.17) one obtains a classical variational problem from which the incremental defor-
mation Aw :RR — R’ such that Aw(X) — w(X) € W, may be obtained. The numerical treat-
ment of this problem by a finite element technique involves the discretization of the open
interval (0, L) and the interpolation of € W and Aw(X) by means of shape functions. The

procedure is standard and details, which may be found in the literature [2,3,4], are omited.
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