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Texture Analysis Using CT and
Chemical Shift Encoding-Based
Water-Fat MRI Can Improve
Differentiation Between Patients
With and Without Osteoporotic
Vertebral Fractures
Nico Sollmann1,2,3,4*†, Edoardo A. Becherucci3†, Christof Boehm5, Malek El Husseini 3,
Stefan Ruschke5, Egon Burian3, Jan S. Kirschke3,4, Thomas M. Link2,
Karupppasamy Subburaj6,7, Dimitrios C. Karampinos5, Roland Krug2, Thomas Baum3

and Michael Dieckmeyer3

1 Department of Diagnostic and Interventional Radiology, University Hospital Ulm, Ulm, Germany, 2 Department of Radiology
and Biomedical Imaging, University of California San Francisco, San Francisco, CA, United States, 3 Department of
Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich,
Munich, Germany, 4 TUM-Neuroimaging Center, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany,
5 Department of Diagnostic and Interventional Radiology, School of Medicine, Klinikum rechts der Isar, Technical University of
Munich, Munich, Germany, 6 Engineering Product Development (EPD) Pillar, Singapore University of Technology and Design
(SUTD), Singapore, Singapore, 7 Changi General Hospital, Singapore, Singapore

Purpose: Osteoporosis is a highly prevalent skeletal disease that frequently entails
vertebral fractures. Areal bone mineral density (BMD) derived from dual-energy X-ray
absorptiometry (DXA) is the reference standard, but has well-known limitations. Texture
analysis can provide surrogate markers of tissue microstructure based on computed
tomography (CT) or magnetic resonance imaging (MRI) data of the spine, thus potentially
improving fracture risk estimation beyond areal BMD. However, it is largely unknown
whether MRI-derived texture analysis can predict volumetric BMD (vBMD), or whether a
model incorporating texture analysis based on CT and MRI may be capable of
differentiating between patients with and without osteoporotic vertebral fractures.

Materials and Methods: Twenty-six patients (15 females, median age: 73 years, 11
patients showing at least one osteoporotic vertebral fracture) who had CT and 3-Tesla
chemical shift encoding-based water-fat MRI (CSE-MRI) available were analyzed. In total,
171 vertebral bodies of the thoracolumbar spine were segmented using an automatic
convolutional neural network (CNN)-based framework, followed by extraction of integral
and trabecular vBMD using CT data. For CSE-MRI, manual segmentation of vertebral
bodies and consecutive extraction of the mean proton density fat fraction (PDFF) and T2*
was performed. First-order, second-order, and higher-order texture features were derived
from texture analysis using CT and CSE-MRI data. Stepwise multivariate linear regression
models were computed using integral vBMD and fracture status as dependent variables.
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Results: Patients with osteoporotic vertebral fractures showed significantly lower integral
and trabecular vBMD when compared to patients without fractures (p<0.001). For the
model with integral vBMD as the dependent variable, T2* combined with three PDFF-

based texture features explained 40% of the variance (adjusted R2 ½R2
a� = 0.40; p<0.001).

Furthermore, regarding the differentiation between patients with and without osteoporotic
vertebral fractures, a model including texture features from CT and CSE-MRI data showed

better performance than a model based on integral vBMD and PDFF only (R2
a = 0.47 vs.

R2
a = 0.81; included texture features in the final model: integral vBMD, CT_Short-

run_emphasis, CT_Varianceglobal, and PDFF_Variance).

Conclusion: Using texture analysis for spine CT and CSE-MRI can facilitate the
differentiation between patients with and without osteoporotic vertebral fractures,
implicating that future fracture prediction in osteoporosis may be improved.
Keywords: bonemineral density, convolutional neural network, opportunistic imaging, osteoporosis, proton density
fat fraction, texture analysis, vertebral fracture
INTRODUCTION

In clinical routine, assessment of areal bone mineral density
(BMD) and the individual risk of bone fracture is commonly
obtained using dual-energy X-ray absorptiometry (DXA) (1–4).
Fractures due to low bone mass and microarchitectural
deterioration are characteristic for osteoporosis, a systemic
skeletal disease with very high prevalence worldwide (1, 4–7).
Osteoporotic fragility fractures can severely impair the health-
related quality of life and have been linked to premature
mortality (1, 8–10). Among osteoporotic fragility fractures,
vertebral fractures are particularly prevalent, with an estimated
12.6-fold increase in the risk of future additional vertebral
fractures (1, 11–13). A major clinical issue of these fractures is
that they occur frequently but can remain asymptomatic for a
long time (13, 14). This can delay diagnosis, timely treatment
initiation, and subsequent approaches to avoid future additional
osteoporotic vertebral fractures (13, 14).

Clinical management requires a reliable assessment of the
individual fracture risk in each patient, but DXA is known to
have inherent limitations including inaccuracy in differentiating
patients with and without prevalent vertebral fractures, in
predicting new vertebral fractures, and for treatment
monitoring in osteoporosis (15–17). Hence, imaging
alternatives to DXA are needed to improve patient care, which
include computed tomography (CT) and magnetic resonance
imaging (MRI) (18–21). Using CT opportunistically for the
assessment of volumetric BMD (vBMD) has become
C, Area under the curve; BMD, Bone
CNN, Convolutional neural network;
sed water-fat MRI; CT, Computed
sorptiometry; GLCM, Gray-level co-
-length matrix; HU, Hounsfield units;
icture Archiving and Communication
n; R²a, Adjusted R²; ROI, Region of
e; UTE, Ultra-short echo-time; vBMD,
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increasingly popular (i.e., extraction of the vBMD from routine
CT data acquired for other purposes than osteoporosis screening,
such as staging in oncologic patients), using conversion
equations for translation of Hounsfield units (HU) into vBMD,
showing overall good correlations with DXA measurements and
sufficient reproducibility (18, 22–25). Regarding MRI,
particularly chemical shift encoding-based water-fat MRI
(CSE-MRI) has developed into a valuable tool to determine a
vertebral body’s proton density fat fraction (PDFF), which is
considered a surrogate biomarker of bone health (19, 21). As
such, the PDFF from CSE-MRI represents a quantitative,
accurate, and robust marker of a tissue’s relative fat content
(26–30). The PDFF is defined as the ratio of density of mobile
protons from fat (triglycerides) and the total density of protons
from mobile triglycerides and mobile water and is a fundamental
property of tissue (29). Osteoporosis has been linked to increased
fat content of bone marrow, given that with aging, the
composition of bone marrow shifts to favor the presence of
adipocytes, while osteoclast activity increases and osteoblast
function declines, leading to osteoporosis (31). Thus, increased
PDFF can be observed in relation to osteoporosis, and inverse
correlations with DXA- and CT-derived BMD have been
reported (19, 32–34). However, a patient’s susceptibility to
fragility fractures is not solely explained by decreased BMD or
alterations in fat content of bone marrow. Importantly, bone
strength and resistance to fracture are also determined by other
factors, including bone geometry and microstructural
architecture (35).

Texture analysis has been applied as an advanced image
analysis technique to provide a spatially resolved evaluation
of osseous structures like the vertebral body in osteoporosis
(18, 19, 36). In essence, texture analysis provides spatial and
heterogeneity information of gray-level values in images,
representing an objective and quantitative approach to analyze
the distribution and relationship of pixel or voxel gray levels (37–39).
In spine imaging, commonly used texture features include
first-order, second-order, and higher-order features, and their
January 2022 | Volume 12 | Article 778537
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extraction has been achieved for sagittal reformations with up to
3 mm slice thickness for routine multi-detector CT, and, more
recently, also for CSE-MRI (40, 41). Yet, it is largely unknown
whether CSE-MRI-derived texture analysis can predict vBMD,
or whether a model incorporating texture analysis based on both
CT and CSE-MRI in the same patients may lead to improved
capability for differentiating patients with and without
osteoporotic vertebral fractures.

Against this background, the main purposes of this study
were to apply texture analysis to CSE-MRI data of the
thoracolumbar spine to predict vBMD, and to facilitate
discrimination between patients with and without osteoporotic
vertebral fractures by implementing texture analysis. We
hypothesize that combining CT- and CSE-MRI-based texture
analysis may result in improved differentiation between patients
with and without osteoporotic vertebral fractures compared to
vBMD and PDFF alone.
MATERIAL AND METHODS

Study Inclusion and Patient Cohort
This retrospective study was approved by the local institutional
review board and was conducted in accordance with the
Declaration of Helsinki. The requirement for written informed
consent was waived due to the study’s retrospective character.

Eligible patients underwent CT and MRI scans covering the
thoracolumbar spine and were identified in our institution’s digital
Picture Archiving and Communication System (PACS). Inclusion
criteria were as follows: 1) age of at least 18 years, 2) acquisition of
routine CT and CSE-MRI within a maximum of six months, and
3) overlap in spatial coverage between CT and CSE-MRI of at least
two consecutive vertebral bodies. The exclusion criteria were as
follows: 1) malignant bone lesions (e.g., vertebral bone
metastases), 2) hematological or metabolic bone disorders aside
from osteoporosis, and 3) motion artifacts in imaging data.
Patients who had undergone previous surgery at the spine and
showed spinal instrumentation were included, but vertebral bodies
with foreign material were excluded from the analyses (due to
metal-related artifacts in imaging data). Both CT and CSE-MRI
were acquired for standard routine clinical indications (e.g.,
lumbar back pain, screening for vertebral fractures).

Overall, 26 patients fulfilled the eligibility criteria and
underwent imaging at the same institution between July 2018
and September 2019. Figure 1 provides an overview of the data
processing pipeline.
Computed Tomography
Image Acquisition
Scanning was performed with five different CT scanners (Philips
iQon, iCT 256, Ingenuity, Ingenuity Core, Philips Healthcare,
Best, The Netherlands; Somatom Definition AS+, Siemens
Healthineers, Erlangen, Germany). Scans in five of the
included patients were performed after administration of either
both oral (Barilux Scan, Sanochemia Diagnostics) and
intravenous (Iomeron 400, Bracco) contrast media, or only
Frontiers in Endocrinology | www.frontiersin.org 3
after administration of an intravenous contrast medium. The
contrast-enhanced scans were acquired either in the arterial or
portal venous phase, triggered by a threshold of CT attenuation
surpassed in a region of interest (ROI) placed in the aorta or after
a delay of 70 s, respectively, which was dependent on the distinct
clinical indication for imaging.

Image data were acquired with all scanners in helical mode
(using asynchronous calibration), a slice thickness of 0.9 to 1
mm, and adaptive tube load. The median tube voltage was 120
kV (range: 120 – 140 kV), the median tube current amounted to
316 mA (range: 118 – 363 mA). Sagittal reformations of the spine
using a bone kernel were either available with a slice thickness of
2 mm (18 patients) or 3 mm (8 patients). The presence of
vertebral fractures was determined in sagittal reformations of the
spine with a bone kernel by a board-certified radiologist with
eleven years of experience (T.B.), using the classification system
described by Genant et al. (42).

Image Processing and Segmentation
From PACS, images were transferred to our in-house developed,
convolutional neural network (CNN)-based framework (https://
anduin.bonescreen.de) (Figures 1 and 2) (43–45). This tool
identifies and labels each vertebra in an automated process,
followed by creating corresponding segmentation masks for
each vertebra as well as its subregions. Furthermore, it adjusts
for the used scanner, scanning parameters, and contrast media (if
administered during imaging) to asynchronously convert
measured HU into vBMD (43–45).

For this study, we used segmentation masks of the trabecular
and cortical compartment of the vertebral body, respectively. By
combining the trabecular and cortical compartment, the entire
vertebral body was enclosed. The generated labels and
segmentation masks of all vertebrae were checked visually by a
radiologist (two years of experience in spine imaging, M.D.), and
were manually corrected if necessary (e.g., in case of labeling or
segmentation errors due to Schmorl nodes, fused vertebral
bodies, or thoracolumbar or lumbosacral transitional
anatomy). Then, the segmentation masks of the entire
vertebral bodies were used for level-wise extraction of integral
vBMD, and subregion masks of the trabecular compartment
were used for sampling of trabecular vBMD. All thoracolumbar
vertebral bodies without foreign material (e.g., due to spinal
instrumentation), severe degenerative changes (e.g, Modic type 3
endplate changes), or vertebral fractures were considered for
integral and trabecular vBMD extractions.

Magnetic Resonance Imaging
Image Acquisition
All patients were scanned using the same 3-Tesla MRI system
(Ingenia, Philips Healthcare, Best, The Netherlands). The pulse
sequence protocol was individually determined based on the
clinical indication for imaging, but included a sagittal six-echo
time (TE)-interleaved three-dimensional (3D) spoiled gradient
echo sequence for CSE-MRI (46).

Imaging was performed in supine position using the built-in-
the-table posterior coil elements (12-channel array). The six
echoes of the CSE-MRI sequence were acquired in two
January 2022 | Volume 12 | Article 778537
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interleaves acquiring 3 echoes per repetition time (TR), using
flyback (monopolar) read-out gradients and the following
imaging parameters: TR/TE1/effective DTE = 8.3/1.32/1.0 ms,
acquisition matrix size = 124 × 122 x 69, acquisition voxel size =
1.80 mm × 1.80 mm × 1.80 mm, receiver bandwidth = 1,083 Hz/
pixel, frequency direction = anterior-posterior, 1 average,
approximate scan time = 3 min 38 s. A flip angle of 3° was
used to minimize T1-bias effects (47, 48).

Image Processing and Segmentation
Reconstruction of raw data, fat quantification, and T2* mapping
were performed offline. The MATLAB-based Reconstruction
Library (MRecon/ReconFrame, version 4.3.3; https://www.
gyrotools.com/gt/index.php/products/reconframe with
MATLAB, version R2021a; MathWorks Inc., Natick, MA,
USA) was used for raw data reconstruction. Water-fat
separation was performed using a graph-cut algorithm,
employing a multi-peak fat model specific to bone marrow and
a single T2* decay model (49, 50). The PDFF maps were
computed as the ratio of the fat signal over the sum of fat and
water signals (29, 51, 52). T2* maps were extracted in addition to
PDFF maps.
Frontiers in Endocrinology | www.frontiersin.org 4
The vertebral bodies were manually segmented using sagittal
images. In the reconstructed maps, manual polygonal ROIs were
carefully placed to enclose the vertebral body using MITK
([http://mitk.org/wiki/The_Medical_Imaging_Interaction_
Toolkit_(MITK)]; German Cancer Research Center, Division of
Medical and Biological Informatics, Medical Imaging Interaction
Toolkit, Heidelberg, Germany; Figures 1 and 3) (51, 52). The
segmentations did not include the posterior elements and were
performed by the same radiologist who had also performed
visual inspection of the results of the CNN-based algorithm for
CT data processing (two years of experience in spine imaging,
M.D.). Level-wise PDFF and T2* values were then extracted from
the segmentation masks for those vertebral bodies that were also
depicted and considered during CT data analyses.

Texture Analysis
On the basis of the distribution of gray-level values, texture
analysis was used to characterize structural image properties of
predefined regions by quantifying different texture features (37–
39). Texture analysis was performed using the segmentation
masks derived from CT and CSE-MRI enclosing single vertebral
bodies, and different first-order statistical moments from global
FIGURE 1 | Overview of the study setup. In this study, texture analysis to extract different texture features was achieved based on computed tomography (CT)
and chemical shift encoding-based water-fat magnetic resonance imaging (CSE-MRI) data. For labeling and segmentation of vertebral bodies from CT data, a
convolutional neural network (CNN)-based framework was used (https://anduin.bonescreen.de). After generation of proton density fat fraction (PDFF) and T2* maps,
vertebral bodies were segmented manually on the PDFF maps. In addition to different texture features, integral and trabecular volumetric bone mineral density
(vBMD) were extracted from segmented CT data, and mean PDFF and T2* values were extracted level-wise from segmented CSE-MRI data.
January 2022 | Volume 12 | Article 778537
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FIGURE 3 | Segmentation of chemical shift encoding-based water-fat magnetic resonance imaging (CSE-MRI) data. CSE-MRI scan of a 74-year-old woman: proton
density fat fraction (PDFF) map [%] with manually prescribed segmentation masks (A) and T2* map [ms] (B) covering the lower thoracic and lumbar vertebral bodies
(T10-L5). Segmentation masks were used to extract PDFF, T2*, and texture features following texture analysis.
FIGURE 2 | Segmentation of computed tomography (CT) data. CT scan of a 63-year-old woman visualized as virtual radiograph-like images in lateral projection
(A, F) and as planar reconstructions in lateral and coronal views (B–E), covering the thoracolumbar spine (T1-L5). Labeling and segmentation of single vertebrae and
vertebral subregions was achieved automatically using a convolutional neural network (CNN)-based framework. Segmentation masks were used to extract integral
volumetric bone mineral density (vBMD), trabecular vBMD, and texture features following texture analysis. However, this patient showed a vertebral fracture at level
T7 (white arrow); thus, extraction of these parameters was not performed for this vertebral body.
Frontiers in Endocrinology | www.frontiersin.org January 2022 | Volume 12 | Article 7785375
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gray-level histograms, second-order features based on the gray-
level co-occurrence matrix (GLCM), and higher-order features
based on the gray-level run-length matrix (GLRLM) were
extracted (Figure 1 and Table 1) (40, 41, 51, 53–55).

The GLCM reflects how often pairs of voxels with a given
gray-level value and offset occur in an image. The entries of the
GLCMs at different angular directions q = (0°, 45°, 90°, and 135°)
were generated by computing the joint probability of two
adjacent voxel intensities at a given offset d = (dx, dy, dz) and
given q, with dx, dy, and dz denoting the displacement along the
x-, y-, and z-axis, respectively. 3D GLCM analysis was achieved
by computation of the co-occurrence probabilities of voxel
intensities from the 26 neighbors aligned in 13 directions.
Averaging over the 13 directions ensures rotation invariance.
Furthermore, a gray-level run is defined as a set of successive
voxels with identical gray-level values that are arranged
collinearly in a certain direction, and the run-length represents
the number of voxels in it. The GLRLM features are calculated
based on the occurrence and distribution of such runs within the
GLCM and measure directional changes in the GLCM.
Analogously, 3D GLRLM was computed by simultaneously
Frontiers in Endocrinology | www.frontiersin.org 6
adding up all possible run-lengths in the 13 directions of the
3D space. For GLCM and GLRLM analysis, direction-dependent
discretization length differences were taken into account when
measurements were combined by averaging or summation. All
steps of the texture analysis were performed with MATLAB
(version R2021a; MathWorks Inc., Natick, MA, USA) using a
radiomics toolbox (https://github.com/mvallieres/radiomics).

Statistical Analysis
For statistical analyses, SPSS (version 26.0; IBM SPSS Statistics
for Windows, IBM Corp., Armonk, NY, USA) and GraphPad
Prism (version 6.0; GraphPad Software Inc., San Diego, CA,
USA) were used. A p-value of < 0.05 (two-sided) was considered
statistically significant.

Descriptive statistics were calculated for integral and trabecular
vBMD, PDFF, T2*, and the different texture features extracted
fromCT and CSE-MRI data, respectively. Shapiro-Wilk normality
tests indicated non-Gaussian distribution for the majority of these
parameters. Integral and trabecular vBMD were compared
between patients with and without osteoporotic vertebral
fractures using Mann-Whitney tests. Furthermore, age and sex
TABLE 1 | Texture features derived from computed tomography (CT) and chemical shift encoding-based water-fat magnetic resonance imaging (CSE-MRI).

Category Texture
Feature

Description Included in CT-Based Texture
Analysis

Included in CSE-MRI-Based Texture
Analysis

Global Varianceglobal Spread of gray-level distribution x x
Skewness Shape of gray-level distribution x x
Kurtosis Flatness of gray-level distribution x x

Second-order
(GLCM)

Energy Uniformity x x
Contrast Local intensity variation x x
Entropy Randomness x x
Homogeneity Homogeneous scene x x
Correlation Linear spatial relationships between texture

elements
x x

SumAverage Spread of the mean voxel co-occurrence
distribution

x x

Variance Voxel co-occurrence distribution x x
Dissimilarity Heterogeneity x x

Higher-order
(GLRLM)

SRE Short-run emphasis x
LRE Long-run distribution x
GLN Similarities of gray-levels x
RLN Similarity in length of runs x
RP Distribution and homogeneity of runs with a

specific direction
x

LGLRE Distribution of low gray-level values x
HGLRE Distribution of high gray-level values x
SRLGLE Joint distribution of short runs and low gray-level

values
x

SRHGLE Joint distribution of short runs and high gray-level
values

x

LRLGLE Joint distribution of long runs and low gray-level
values

x

LRHGLE Joint distribution of long runs and high gray-level
values

x

GLV Weighted variances of gray-level values x
RLV Weighted variances of gray-level runs x
Jan
Global (histogram-based), gray-level co-occurrencematrix (GLCM)-based, and gray-level run-lengthmatrix (GLRLM)-based texture features and their descriptions. The table provides information
aboutwhich texture featureswereconsidered for texture analysis basedoncomputed tomography (CT)andchemical shift encoding-basedwater-fatmagnetic resonance imaging (CSE-MRI) data.
SRE, short-run emphasis; LRE, long-run emphasis; GLN, gray-level non-uniformity; RLN, run-length non-uniformity; RP, run percentage; LGLRE, low gray-level run emphasis; HGLRE,
high gray-level run emphasis; SRLGLE, short-run low gray-level emphasis; SRHGLE, short-run high gray-level emphasis; LRLGLE, long-run low gray-level emphasis; LRHGLE, long-run
high gray-level emphasis; GLV, gray-level variance; RLV, run-length variance.
uary 2022 | Volume 12 | Article 778537
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distributions were compared between the subgroups of patients
with and without osteoporotic vertebral fractures using Mann-
Whitney and Chi-squared tests, respectively.

For vertebral level-wise analyses, data from each vertebral
body were considered as a separate data point. One stepwise
linear regression model using integral vBMD as the dependent
and PDFF, T2*, and all CSE-MRI-derived texture features as
independent variables was calculated. Furthermore, two
additional linear regression models with a stepwise approach
were generated, using the binary fracture status (at least one
osteoporotic vertebral fracture present/no osteoporotic vertebral
fracture present) as the dependent and 1) integral vBMD, PDFF,
and T2*, or 2) integral vBMD, PDFF, T2*, and all CT-derived as
well as the CSE-MRI-derived texture features as independent
variables. Patient age, sex, the number of independent variables,
and the vertebral level (T1-L5) were considered for adjustment of
these regression models.

Furthermore, integral and trabecular vBMD, PDFF, T2*, and
texture features derived from CT and CSE-MRI were averaged
over the included vertebral bodies to provide one value per
parameter in each patient, respectively. Using these mean values,
two additional linear regression models with a stepwise approach
were computed, using again the binary fracture status (at least
one osteoporotic vertebral fracture present/no osteoporotic
vertebral fracture present) as the dependent and 1) integral
vBMD, PDFF, and T2*, or 2) integral vBMD, PDFF, T2*, and
all CT-derived as well as the CSE-MRI-derived texture features
as independent variables. Patient age, sex, and the number of
independent variables were used for adjustment of these
regression models.

Independent variables were included stepwise in the linear
regression models based on a p-value threshold of < 0.05. Per
model, the adjusted R2 (R2

a) is reported with related b coefficients
and 95%-confidence intervals (CIs), and F-tests were performed
to assess statistical significance of the final models after stepwise
inclusion of variables.
RESULTS

Patient Characteristics
Analyses included 171 vertebral bodies of the thoracolumbar
spine, which were derived from 26 patients (15 females, 11 males,
median age: 73 years, age range: 29 – 86 years). Eight of the
included patients had imaging by CT and CSE-MRI on the same
day, the median interval between CT and CSE-MRI acquisitions
was four days.

Eleven of the included patients (42.3%) showed at least one
osteoporotic vertebral fracture according to CT image reading
(only Genant grade 1 fractures: 2 patients, only Genant grade 2
fractures: 2 patients, combination of fracture grades including
Genant grade 3 fractures: 7 patients). Patients with and without
vertebral fractures did not statistically significantly differ in age
(patients with fractures: median age: 75.1 years, age range: 59 –
86 years, patients without fractures: median age: 71.5 years, age
range: 29 – 78 years; p = 0.097) or sex distributions (patients with
Frontiers in Endocrinology | www.frontiersin.org 7
fractures: 3 males & 8 females, patients without fractures: 8 males
& 7 females; p = 0.184).

Regarding the analyzed thoracic vertebrae (89 thoracic
vertebral bodies in total), T1 was considered in five patients,
T2, T3, and T4 in six patients, T5, T6, T10, and T11 in seven
patients, T7, T8, and T9 in eight patients, and T12 in 14 patients,
respectively. Furthermore, for the lumbar spine (82 lumbar
vertebral bodies in total), L1 and L4 were included from 18
patients each, while L2 was considered in 17 patients, L3 in 14
patients, and L5 in 15 patients, respectively.

Volumetric Bone Mineral Density
Patients with osteoporotic vertebral fractures had statistically
significantly lower integral and trabecular vBMD as compared to
patients without osteoporotic vertebral fractures regarding all
included vertebrae (integral vBMD: 153.1 ± 46.5 mg/cm3 vs.
218.5 ± 45.4 mg/cm3; p < 0.001; trabecular vBMD: 77.7 ± 30.3
mg/cm3 vs. 130.8 ± 34.8 mg/cm3; p < 0.001). The minimum value
measured for a vertebral body in patients with an osteoporotic
vertebral fracture was 82.6 mg/cm3 for integral vBMD and 21.6
mg/cm3 for trabecular vBMD, compared to 132.4 mg/cm3 for
integral vBMD and 71.8 mg/cm3 for trabecular vBMD in patients
without osteoporotic vertebral fractures.

Prediction of Volumetric Bone Mineral
Density and Differentiation Between
Patients According to Fracture Status
For the model with integral vBMD as the dependent variable
(independent variables: PDFF, T2*, and texture features derived
from CSE-MRI), R2

a amounted to 0.40 (F(7, 163) = 17.5, p <
0.001), with the following variables being kept in the final model
after the stepwise approach: T2*, PDFF_Kurtosis (global texture
feature, representing the flatness of gray-level distribution),
PDFF_Variance (second-order texture feature, representing the
voxel co-occurrence distribution), and PDFF_Energy (second-
order texture feature, representing uniformity).

For vertebral level-wise analyses with the fracture status as the
dependent variable (independent variables: integral vBMD, PDFF,
and T2*), R2

a of 0.44 was obtained (F(5, 165) = 27.4, p < 0.001;
variables included in the final model: vBMD and PDFF). Including
the texture features in the model (independent variables: integral
vBMD, PDFF, T2*, texture features derived from CT and CSE-
MRI) resulted in a statistically significant model with an improved
R2
a of 0.66 (F(10, 160) = 34.7, p < 0.001; Table 2). Specifically, the

variables included in the final model were CT_Correlation
(second-order texture feature, representing the linear spatial
relationships between texture elements), CT_SRLGLE (higher-
order texture feature, representing the joint distribution of short
runs and low gray-level values), PDFF_SumAverage (second-
order texture feature, representing the spread of the mean voxel
co-occurrence distribution), CT_Varianceglobal (global texture
feature, representing the spread of gray-level distribution),
CT_LRHGLE (higher-order texture feature, representing the
joint distribution of long runs and high gray-level values),
CT_Contrast (second-order texture feature, representing the
local intensity variation), and PDFF_Energy (second-order
texture feature, representing uniformity).
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On a patient level, using the fracture status as the dependent
variable (independent variables: integral vBMD, PDFF, and T2*)
resulted in R2

a of 0.47 (F(4, 21) = 6.5, p = 0.001; variables included
in final model: vBMD and PDFF). Comparable to the level-wise
analyses, including texture analysis in the model (independent
variables: integral vBMD, PDFF, T2*, texture features derived
from CT and CSE-MRI) resulted in a statistically significant
model with an improved R2

a of 0.81 (F(6, 19) = 19.2, p < 0.001,
Table 3). The variables included in the final model were integral
vBMD, CT_SRE (higher-order texture feature, representing the
short-run emphasis), CT_Varianceglobal (global texture feature,
representing the spread of gray-level distribution), and
PDFF_Variance (second-order texture feature, representing the
voxel co-occurrence distribution).
DISCUSSION

In this study, we used texture analysis on CT and CSE-MRI
data covering the thoracolumbar spine in patients with and
without osteoporotic vertebral fractures to predict vBMD,
and to discriminate between patients with and without
osteoporotic vertebral fractures based on models including
vBMD, PDFF, T2*, and texture features. The main findings
are as follow: first, a model including T2* combined with three
PDFF-based texture features explained 40% of the variance in
integral vBMD; second, a model consisting of integral vBMD
and three texture features (CT_SRE, CT_Varianceglobal, and
PDFF_Variance) explained 81% of the variance regarding the
Frontiers in Endocrinology | www.frontiersin.org 8
osteoporotic vertebral fracture status, compared to 47% when
the model was based on integral vBMD and PDFF only.

Main complications of osteoporosis are vertebral fractures as a
result of decreased bone strength, which is determined by a
multitude of factors such as bone geometry, cortical thickness
and porosity, trabecular bone morphology, and intrinsic
properties of bony tissue (35). Of note, DXA as the reference
standard for measuring the areal BMD and assessing individual
fracture risk cannot fully capture many of those factors, thus
harboring well-known limitations for predicting new osteoporotic
vertebral fractures or differentiating between patients with and
without prevalent vertebral fractures, as well as for treatment
monitoring (15–17). In this regard, it is estimated that DXA-
based areal BMD values only account for about 60 to 70% of the
variation in bone strength (35). Yet, texture analysis based on CT
or MRI data can provide spatially resolved assessments of
vertebral body composition, thus supplementing conventional
vBMD measurements with parameters potentially valuable for
improving image-based osteoporosis diagnostics and fracture
prediction. Specifically, it has been demonstrated that texture
analysis with a support vector machine can be performed
opportunistically on routine CT data of the spine, potentially
enabling to discriminate between patients depending on their
fracture status (considering the texture features Energy, Entropy,
and Homogeneity) (40). The support vector machine classifier
operated with linear, polynomial, and radial basis function kernels
to discriminate between healthy subjects and patients with
fractures, while the radial basis function kernel revealed the best
performance (sensitivity of 93.33%, specificity of 79.33%, and
TABLE 3 | Differentiation between patients with and without osteoporotic vertebral fractures including texture analysis – analysis on patient level.

Term Description b coefficient 95%-CI p-value

Integral vBMD – -0.669 -0.010;-0.005 <0.001
CT_SRE Higher-order texture feature, representing the short-run emphasis 0.721 154.622;287.516 <0.001
CT_Varianceglobal Global texture feature, representing the spread of gray-level distribution -0.519 -0.021;-0.008 <0.001
PDFF_Variance Second-order texture feature, representing the voxel co-occurrence distribution 0.351 5.390;36.408 0.011
January 20
22 | Volume 12 | Article
This table shows the variables kept in the final linear regression model (adjusted R2 [R2
a] = 0.81 (F(6, 19) = 19.2, p < 0.001) after a stepwise approach using the binary fracture status (at least

one osteoporotic vertebral fracture present/no osteoporotic vertebral fracture present) as the dependent variable (analyses on patient level). Specifically, it included integral volumetric bone
mineral density (vBMD) and the texture features CT_SRE, CT_Varianceglobal, and PDFF_Variance (b coefficients, 95%-confidence intervals [CIs], and p-values shown per texture feature).
Patient age, sex, and the number of independent variables were considered for adjustment. For analyses on patient level, integral and trabecular vBMD, PDFF, T2*, and texture features
were averaged over the included vertebral bodies to provide one value per parameter in each patient, respectively.
TABLE 2 | Differentiation between patients with and without osteoporotic vertebral fractures including texture analysis – analysis on vertebral level.

Term Description b coefficient 95%-CI p-value

CT_Correlation Second-order texture feature, representing the linear spatial relationships between texture elements -0.639 -1.308;-0.938 <0.001
CT_SRLGLE Higher-order texture feature, representing the joint distribution of short runs and low gray-level values 0.173 -44.109;2028.023 0.060
PDFF_SumAverage Second-order texture feature, representing the spread of the mean voxel co-occurrence distribution -0.183 -134.472;-30.952 0.002
CT_Varianceglobal Global texture feature, representing the spread of gray-level distribution -0.435 -0.020;-0.005 0.001
CT_LRHGLE Higher-order texture feature, representing the joint distribution of long runs and high gray-level values -0.724 0.000;0.000 <0.001
CT_Contrast Second-order texture feature, representing the local intensity variation 0.551 0.000;0.000 <0.001
PDFF_Energy Second-order texture feature, representing uniformity -0.201 -227.524;-36.375 0.007
This table shows the variables kept in the final linear regression model (adjusted R2 [R2
a] = 0.66, (F(10, 160) = 34.7, p < 0.001) after a stepwise approach using the binary fracture status (at

least one osteoporotic vertebral fracture present/no osteoporotic vertebral fracture present) as the dependent variable (vertebral level-wise analyses). Specifically, it included the texture
features CT_Correlation, CT_SRLGLE, PDFF_SumAverage, CT_Varianceglobal, CT_LRHGLE, CT_Contrast, and PDFF_Energy (b coefficients, 95%-confidence intervals [CIs], and p-
values shown per texture feature). Patient age, sex, the number of independent variables, and the vertebral level (T1-L5) were considered for adjustment. For vertebral level-wise analyses,
the data from each vertebral body were considered as a separate data point.
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accuracy of 83% among different kernel functions) (40). Another
study demonstrated that an improved classification of patients
with and without prevalent vertebral fractures is possible by
combining texture features with regional vBMD [area under the
curve (AUC) = 0.88)], with global vBMD showing inferior
performance (AUC = 0.64) (56). Likewise, a set of texture
features derived from routine CT exams in a machine-learning
approach identified patients who would suffer from vertebral
fractures with high accuracy (AUC = 0.97) (57).

Recently, the feasibility of texture analysis based on CSE-MRI
has been demonstrated, which could principally provide insights
into bone health beyond mean PDFF of vertebral bodies (41, 51).
Leveraging CSE-MRI by additionally using texture analysis has
revealed that vertebral bone marrow heterogeneity is dependent
on sex and age, and is increased in postmenopausal women,
which is a patient cohort at particular risk for osteoporosis and
related vertebral fractures (41, 51). Results of the present study
show that a model incorporating T2* and three texture features
based on CSE-MRI predicted the variation in integral vBMD by a
proportion of 40%, while PDFF alone was no significant
predictor in the model. This may be regarded as evidence for
the need for more advanced analyses of CSE-MRI data
beyond mere PDFF. However, further improvement in
explanatory power for vBMD variance based on CSE-MRI-
derived parameters may not be feasible, given that primarily
mineralized tissue (trabecular and cortical bone) contributes to
the vBMD, while PDFF primarily captures the vertebral bone
marrow located in the cavities of trabecular bone (18, 19, 31).
Increased PDFF in osteoporosis and inverse correlations with
DXA- or CT-derived BMD have been previously reported,
though (19, 32–34). Moreover, T2* was kept in the model,
which can be considered an MRI-based parameter related to
bone microstructure and density (58–60). Specifically, it has been
demonstrated that T2* correlates with the density and
orientation of trabecular bone (59). Thus, explanation to a
certain degree of the variance in vBMD by a model including
T2* seems reasonable. In this regard, recent work presented
a 3D adiabatic inversion recovery prepared ultra-short echo-
time (UTE) Cones sequence for direct volumetric imaging of
trabecular bone of the human spine that is robust in suppressing
both water and fat, and can provide high image contrast for short
T2 trabecular bone (61). While previous work has mostly focused
on UTE imaging for cortical bone, this method may be used to
also distinctly visualize trabecular bone, together with T2*
quantification of trabecular bone (61). Hence, the role of T2*
as an MRI-derived marker in osteoporosis may possibly become
more important when UTE imaging using such a sequence is
increasingly available.

An additive approach using quantification from CT and CSE-
MRI may have higher potential for osteoporosis imaging since the
two modalities provide different measures for distinct aspects of
bone health, thus exploiting measures from two separate
techniques as complementary information. Indeed, integrating
texture analysis by adding texture features from both CT and
CSE-MRI to the model with integral vBMD and PDFF increased
the proportion of the explained variance for differentiating
between patients with and without osteoporotic vertebral
Frontiers in Endocrinology | www.frontiersin.org 9
fractures from 47% to 81% according to the results of this
study. Thus, when only relying on integral vBMD and PDFF as
the standard measures derived from CT and CSE-MRI, a
considerably larger proportion of unexplained variance may be
assumed. The final model also included SRE for CT, a complex
higher-order texture feature, and previous work has indicated that
some GLRLM-based features that are defined over information of
consecutive pixels of the same value in a given direction could be
negatively associated with trabecular bone volume as measured by
bone histo-morphometric evaluations (62, 63). One second-order
texture feature of the final model was Variance, which is derived
from GLCM and could capture image intensities and their
differences of directly neighboring voxels and thereby reflect
how orderly a certain microarchitecture is preserved (55). Thus,
it seems reasonable that these variables were kept in the model for
differentiating between patients with and without osteoporotic
vertebral fractures.

To the best of our knowledge, the present study is the first to
combine texture analysis for CT and CSE-MRI data to differentiate
between patients with and without osteoporotic vertebral fractures.
Although vertebral body segmentation as well as texture analysis
are not part of the clinical routine, approaches are feasible without
considerable computational efforts. In detail, CT image
segmentation and vBMD extraction are already established,
automated, computationally optimized, and their computational
effort can therefore be considered negligible in comparison to the
remaining tasks (when implementing a pipeline such as the
herein used CNN-based framework for vertebral body labeling
and segmentation with parameter extraction) (43–45). Details on
the computational efficiency of the water-fat separation for
generating PDFF and T2* maps have been reported previously
for a similar workflow (49). On average, manual segmentation in
PDFF maps required approximately 3 min per vertebral body,
and the parallelized computation of texture features required
approximately 25.5 s per vertebra for CT images and
approximately 8.5 s per vertebra for PDFF maps, using a
machine with 2.0 GHz CPU (Intel Core i7-8550U, 4 cores) and
16 GB RAM. However, there are limitations to this study that need
to be acknowledged. First, the cohort size is small, but overall 171
vertebral bodies were included for analyses. Given our inclusion
criteria that required both CT and CSE-MRI of the thoracolumbar
spine within a certain period of image acquisition, eligibility was
restricted to a rather small number of patients. However, we are
confident that prioritizing quality and comparability of CT and
MRI data over data quantity from high patient numbers is a
justified approach for the purpose of this study. Second, we did
not solely consider the lumbar spine (particularly L1-L3) as the site
for measurements, although it is the common location for BMD
assessments in clinical routine. As a consequence, we are not able to
provide evidence for the common reference site for measurements
exclusively. However, previous work on CT-based texture analysis
has shown that improved classification of patients with and without
prevalent vertebral fractures is possible by combining texture
features with regional vBMD, while, importantly, all
thoracolumbar levels contributed significantly to the classification
(56). Third, an automatic, CNN-based approach was used for
labeling and segmentation of vertebral bodies in CT images,
January 2022 | Volume 12 | Article 778537
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while a manual approach was used for CSE-MRI data. According to
the authors’ knowledge, accurate transfer of segmentation masks
between modalities has not been achieved or made available yet,
which may be related to several issues including different patient
positioning during CT and MRI acquisitions, and a field of view
that exhibits only a partial overlap between the two modalities in
our cohort. Yet, automatic segmentation of vertebral bodies in
CSE-MRI data that could be used for PDFF extraction has been
described recently (64). Future work may explore applications for
transfer and accurate co-registration of segmentation masks
between modalities to further automatize, standardize, and
accelerate medical image analyses.
CONCLUSION

This study used texture analysis for CSE-MRI data of the
thoracolumbar spine to predict vBMD, and to facilitate
discrimination between patients with and without osteoporotic
vertebral fractures. A regression model including T2* combined
with three PDFF-based texture features explained 40% of the
variance in integral vBMD. Further, a regression model consisting
of integral vBMDand several texture features for CT andCSE-MRI
data was able to predict 81% of the variance regarding the
osteoporotic vertebral fracture status, compared to 47% when the
model was based on integral vBMD and PDFF only. Thus, texture
analysis used for advanced processing of routine CT and CSE-MRI
data may improve differentiation of patients according to their
fracture status when compared to vBMD and PDFF alone, which
could improve prediction of the individual fracture risk in the
future. Improved fracture risk prediction by using texture analysis
could have important clinical implications for timely treatment
initiation and prevention strategies in osteoporosis.
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