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ABSTRACT OF THE DISSERTATION

Essays on Air Cargo Cost Structures, Airport Traffic, and Airport Delays: Panel Data
Analysis of the U.S. Airline Industry

By

Paulos Ashebir Lakew

Doctor of Philosophy in Transportation Science

University of California, Irvine, 2014

Professor Jan K. Brueckner, Chair

The present thesis is comprised of four essays that address important gaps in passenger- and

cargo-airline research. Seminal studies in airline economics that rely on cross-section methods

make critical homogeneity assumptions and preclude time-specific effects. The essays in this

thesis use panel data, which allow for certain assumptions made by cross-sectional studies

to be relaxed, while shedding light on the intertemporal features of air transport.

The first chapter investigates the cost structure of air cargo carriers by applying a total

cost model used in passenger-airline studies. Using quarterly panel data (2003-2011) on the

domestic operations and costs of FedEx Express and UPS Airlines, empirical results indicate

that the air cargo industry exhibits increasing returns to traffic density and constant returns

to scale. Accounting for carrier-specific differences in cost structure and network size, FedEx

is found to be more cost efficient than UPS (a finding that is reversed when network size

is not controlled). Individually, UPS exhibits substantial economies of density and constant

returns to scale while FedEx’s cost structure is characterized by weak economies of density

and constant returns to scale. Both carriers exhibit economies of size.

xi



The next three chapters embody papers that use quarterly panel data of city-level air traf-

fic, airline delay, and socioeconomic variables. Spanning 10 years (2003-2012), the panel

structure of the data permits the use of fixed effects to control for city-specific heterogeneity.

The second chapter presents a paper prepared for the Airport Cooperative Research Program

(ACRP). The study demonstrates the within-city traffic impacts of urban size, employment

composition, and wages, providing new insights into the determinants of passenger and air

cargo traffic. The essay also confirms that airport traffic is proportional to population,

and that service-sector employment and higher wages induce passenger travel and goods

movement. A city’s share of manufacturing employment, however, only impacts air cargo

traffic. Passenger enplanements exhibit more sensitivity to the proportion of urban workers

providing non-tradable services, compared to the share of workers in tradable service jobs.

The third chapter, co-authored with Andre Tok, examines the determinants of air cargo

traffic in California. The study uses a shorter 7-year panel (2003-2009), and shows that

service and manufacturing employment impact the volume of outbound air cargo. Total

(domestic) air cargo traffic is found to grow faster than (proportionally to) population, while

wages play a significant role in determining both total and domestic air cargo movement.

Metro-level air cargo tonnage are also forecasted for the years 2010-2040, indicating that

California’s total (domestic) air cargo traffic will increase at an average rate of 5.9 percent

(4.4 percent) per year in that period.

The final chapter is co-authored with Volodymyr Bilotkach, and it provides the first evidence

on the impact of airline delays on urban-sectoral employment. Controlling for unobserved

city-specific differences, the empirical estimates of the effects of air traffic on total employ-

ment are comparable to previously reported measures. However, service-sector employment

is found to be less sensitive to air traffic than other studies suggested. New evidence con-

firming that delays have a negative impact on employment is also provided, a finding that

is robust to various model specifications.
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Chapter 1

The Cost Structures of FedEx Express

and UPS Airlines

In view of the air cargo industry’s considerable growth in transported cargo and express

services, this study investigates the cost structures of the leading integrated carriers, FedEx

Express and United Parcel Services (UPS) Airlines, to find empirical evidence on economies

of traffic density and economies of scale in the integrated air cargo industry.1 Much of the

air cargo literature is naturally adapted from studies on passenger airlines, which suggest

that (1) costs per passenger-mile decrease with traffic density on individual airline routes

(2) both major and local carriers exhibit constant returns to scale (Caves, Christensen, and

Tretheway [31]; Gillen, Oum, and Tretheway [46]; Brueckner and Spiller [20]). Air cargo

analysis by Kiesling and Hansen [54] has shown that increasing returns to traffic density and

decreasing returns to scale held for FedEx Express in the 1980’s and early 1990’s.

1Integrated carriers provide all-inclusive parcel shipping services, from forwarding and flying to ground
handling. Considering the dominant presence of FedEx Express and UPS Airlines amongst integrators, both
in terms of traffic volume and revenues, the two carriers are assumed to represent the entire integrated
industry in this paper.
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Analyzing quarterly time-series data from 2003 to 2011, this paper shows that the domestic

(United States and Canada) integrated industry exhibits increasing returns to density and

constant returns to scale. The combined effect of economies of density and economies of scale

on the carriers’ cost structure is captured by economies of size, a measure introduced to the

air cargo literature by Kiesling and Hansen [54]. Controlling for carrier-specific differences in

network and input-price attributes, this study shows that the integrators exhibit increasing

returns to size.

Although the air cargo industry was deregulated a year before the passage of the Airline

Deregulation Act (November 9, 1977), its deregulation has not sparked nearly as much

research interest as deregulation of the passenger airline industry. Despite the thinness of the

air cargo literature, and the limited knowledge of the industry due to sparse data, there has

been a gradual shift of attention towards it in the past decade. Still, the industry’s distinctive

cost structure and success in servicing a range of domestic and international markets remains

unappreciated. Some of the earliest works that address economies of density and scale in

the air cargo industry are by Smith[83] and Carron [30]. Since deregulation, cost-structure

studies of the passenger airline industry continued to examine the nature of density and

scale economies. Caves et al. [31] found that there are substantial economies of density for

carriers of all sizes. They showed that total cost increases 80 percent as rapidly as total

traffic, holding the number of points served fixed. They also found that constant returns

to scale held for major and local carriers. The latter conclusion, however, negated previous

beliefs about cost differentials between major (trunk) and local carriers, assuring that local

carriers could compete with airlines that operate larger networks. Brueckner and Spiller [20]

found stronger estimates of economies of density by taking a more disaggregated approach

that uses a structural model of hub-and-spoke airline competition.

Recognizing the need for a similar empirical analysis of the air cargo industry, Kiesling and

Hansen [54] characterized the cost structure of the largest integrated air cargo carrier at that

2



time, FedEx Express (then Federal Express, Inc). They showed that FedEx Express, and

conceivably the rest of the all-cargo carriers in the industry, exhibits substantial economies

of density and diseconomies of scale. The authors also introduced a third aspect of the in-

dustry’s cost structure, economies of size, that combines the effects of economies of density

and economies of scale. They found that FedEx Express exhibits constant returns to size,

implying that costs rise in proportion to output when the network size is adjusted in step.

This result supported their view that FedEx Express could expand its output and network

size without sacrificing efficiency, an outcome that presumably requires network size to in-

crease less than in proportion to output so as to exploit economies of density. Therefore,

economies of size captures the effects of increasing output levels while adjusting the number

of airports served (points served), assuming that output and points served are functionally

related.

FedEx Express has expanded its operations and markets at a remarkable pace since Kies-

ling and Hansen’s [54] study. Just as Caves et al. [31] reexamined the widely held beliefs

about the cost advantages of major carriers in the passenger airline industry, the following

analysis will attempt to characterize the current cost structures of the two most dominant

air cargo carriers, FedEx Express (FedEx hereafter) and UPS Airlines (UPS hereafter). The

broader implications of this study will also be useful for policy-related questions regarding

cost efficiencies in the air cargo industry. Specifically, the study will provide a baseline frame-

work to understand the cost factors that are involved in network-size and traffic-allocation

decisions. Considering that the current understanding of the air cargo industry is mostly

based on analogies drawn to passenger airlines, it is important to distinguish the unique

characteristics of air cargo operations and to fill the corresponding literature gaps along the

way.

While studying the cost structure of the entire air cargo industry would be a useful exercise,

the distinctive operational characteristics of FedEx and UPS require an analysis focusing on

3



them alone. Specifically, integrated carriers consolidate the supply chain of cargo transporta-

tion, from the consignor to the consignee, according to their own schedule. Other dedicated

air cargo or passenger-cargo (combination and belly freight) carriers mostly offer chartered

services for shippers, forwarders, and third-party logistics providers. Moreover, data from

the U.S. Department of Transportation (DOT) show that FedEx and UPS respectively trans-

ported 53 and 29 percent of the total domestic cargo tons enplaned by U.S. carriers over

the past decade. Together, the two carriers also accounted for just over 90 percent of all

international air freight ton-miles in 2008 (see Morrell [61], p. 99). With operating revenues

over $1 billion, FedEx and UPS are the only cargo carriers officially classified as Group III

carriers by the DOT, further distinguishing them from the rest of the air cargo industry.

Therefore, this study will primarily focus on these two carriers to represent the integrated

air cargo industry.

It should be noted that, despite the many perceived similarities between FedEx and UPS,

the carriers have fundamental differences in demand, network characteristics, and operations

that affect their cost structures. FedEx specializes in expedited delivery of business-related

small packages and letters, using a large air fleet on feeder, point-to-point, and hub-and-

spoke networks. UPS operates a multimodal network of trucks and air freighters for delivery

of packages to businesses and personal customers. A sizable portion of UPS’s traffic is trans-

ported by ground vehicles. Thus, while there is a need to analyze the integrated industry, a

proper study must shed light on the differences between the firms.

1.1 Background

Air freighters used a single hub city (airport) for sorting in the early stages of the air cargo

industry (Noviello et al., [67]). Over the years, increasing demands have led carriers to in-

corporate more hubs into their networks. Both FedEx and UPS now operate nine domestic

4



hubs that are dispersed across the U.S. and Canada. FedEx is based at Memphis Inter-

national Airport, its largest hub (Superhub). The other domestic hubs for FedEx are Fort

Worth Alliance, Indianapolis International, Newark Liberty International, Oakland Interna-

tional, Ted Stevens Anchorage International, Piedmont Triad International (Greensboro),

Miami International, and Toronto Pearson International (Canada). UPS operates from its

Louisville International Airport hub (Worldport) as well as the following additional domestic

hubs: Philadelphia International, Los Angeles/Ontario International, Dallas-Fort Worth In-

ternational, Chicago Rockford International, Bradley International (Hartford), Miami Inter-

national, Columbia Metropolitan (South Carolina), and Hamilton International (Canada).2

Even though air cargo carriers operate hub-and-spoke networks like passenger airlines, the

nature of their hub-and-spoke systems is different. Air freighters typically transfer a larger

proportion of their traffic through a relatively small number of hubs in their network. Parcels

being transported are not sensitive to multiple stops and circuity, so they can be flown in

a manner that allows carriers to operate their hub-and-spoke system most efficiently (Kies-

ling and Hansen [54]). However, flying cargo naturally involves other costly operations that

are not characteristic of transporting passengers. These operations include transshipment,

pallet assembly and disassembly, and the handling of parcels during aircraft changes. De-

mand asymmetry is also inherent in air cargo networks since, unlike passengers, goods being

transported do not make round-trip flights. Goods are generally flown one-way, from man-

ufacturers to retailers, and to consumers (Zhang and Zhang [89]).

Air cargo network structures and hub location have been studied using a variety of ap-

proaches. O’Kelly and Miller [68] provided a detailed review of passenger-airline and air cargo

network designs. The authors evaluated research on hub-and-spoke assignments, spoke-to-

spoke connections that bypass hubs, and the interconnectivity of hubs. A more pertinent

study by Kuby and Gray [55] also challenged the traditional understanding of hub-and-spoke

2See Bowen [17] for major-hub timelines for FedEx and UPS.
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networks, with particular attention paid to FedEx. Kuby and Gray showed that FedEx does

not serve all cities with direct flights to and from hub cities; instead feeder aircraft are used

to service smaller cities while also making intermediate stops at other points in the car-

rier’s network before flying to a hub. Their work provides the underlying framework that

will be used to measure the network size of the integrated carriers in this study. More re-

cently, Bowen [17] provided a comprehensive overview of the spatial network characteristics

of FedEx and UPS.

The air cargo industry has changed considerably since Kiesling and Hansen’s [54] study.

Air express, in particular, has been the driving force of the industry as it meets the speed

and reliability demands of today’s supply chain management. Owing to the increase in

international trade and the recovery from the 2007-2010 financial crisis, domestic air cargo

traffic is expected to grow annually by 2.9 percent through 2029 (Boeing World Air Cargo

Forecast, 2010-2011 ).

Accordingly, the primary focus of this study will be on air cargo services of the leaders in

this industry, FedEx and UPS. Air cargo is defined as the sum of air freight, air mail, and

air express in this study.3

1.2 Conceptual Framework

To start, definitions of economies of scale and density in the context of air cargo transporta-

tion are needed:

3Air freight, a large component of air cargo, is generally used in reference to heavier parcels (excluding
air mail, air express, and passenger bags) that are transported by air. Air mail is composed of letters and
small packages that are flown for postal services of the government. While air mail may also be sent through
express services (e.g. overnight express), air express mostly refers to small packages (usually weighing less
than 100 pounds) that are either time-sensitive or have a high carriage priority (Tsao [88]).
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Degree of returns to density: the proportional increase in output resulting from a pro-

portional increase in all inputs, controlling for network size (points served), average stage

length, load factor, and input prices. Returns to density can be measured by taking the

inverse of the elasticity of total cost with respect to output (Caves et al. [31]). Economies

(diseconomies) of density exist if doubling output holding points served fixed less than (more

than) doubles total cost.

Degree of returns to scale: the proportional increase in output resulting from propor-

tional increases in all inputs and points served, controlling for average stage length, load

factor, and input prices. Returns to scale can be measured by taking the inverse of the

sum of the elasticity of total cost with respect to output and the elasticity of total cost

with respect to points served (Caves et al. [31]). Economies (diseconomies) of scale exist if

doubling both output and points served less than (more than) doubles total cost, controlling

for average stage length and input prices.

Degree of returns to size: the proportional increase in output as a result of a propor-

tional increase in all inputs, controlling for average stage length, load factor, and input

prices. Output and points served are assumed to be functionally related. Returns to size

can be measured by taking the inverse of the elasticity of total cost with respect to output,

without controlling for network size (points served) (Kiesling and Hansen [54]). Economies

(diseconomies) of size exist if doubling output without holding points served constant less

than (more than) doubles total cost.
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1.2.1 Total Cost Model

To provide a comprehensive analysis of FedEx Express and UPS, a total cost model is

specified as follows:

TC = f(Q,P,W,Z), (1.1)

where TC is total cost (sum of operating expenses and capital costs of operating property and

equipment), Q is output (aggregate of freight and mail revenue ton-miles (RTM)), P is the

number of airports served (points served), W includes the prices of production inputs (fuel,

labor, and materials), and Z controls for the average payload-weighted distance between

segment airports (average stage length) and the average utilization of fleet capacity (load

factor). Load factor is calculated as the ratio of payload ton-miles used to available ton-

miles. Controlling for load factor in this model provides the added benefit of understanding

the cost effects of increased route-level traffic (Caves et al. [31]). Carrier-dummy variables

are included in the model to avoid coefficient biases arising from a carrier’s unmodeled cost

and network features that are constant over time.

The following Cobb-Douglas cost function is specified as an approximation to a more general

function:

TCit = Q
βQ
it P

βP
it W

βW
it Zφ

ite
ui+εit , (1.2)

where i indicates the carrier and t refers to the quarter time period. The β coefficients

pertain to the main variables of interest and φ denotes the coefficients for the control variables
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(average stage length and load factor). Taking the log transformation of the Cobb-Douglas

cost function above yields

lnTCit = βQlnQit + βP lnPit + βW lnWit + φlnZit + ui + εit, (1.3)

where ui gives the carrier-specific intercept and the error terms εit are assumed to be ho-

moscedastic and uncorrelated.

Previous studies have cautioned that capital inputs for airlines may not be adjusted optimally

from quarter to quarter and have estimated short-run variable cost models (Caves et al. [31];

Gillen et al. [46]). However, a long-run total cost model has been selected for this study

based on evidence that integrated carriers rely heavily on capital and are able to comfortably

vary working capital with output. Earlier studies claimed that FedEx, for example, is able

to optimally reroute up to 30 percent of its aircraft on a given night to meet its express-

service demands (Chan and Ponder [35]). Bowen [17] also addressed the transitory nature of

FedEx’s and UPS’s networks by calculating the proportion of network segments that were

only flown once by the carriers in 2010 (33 percent for FedEx and 22 percent for UPS).

A more generalized Translog cost function specification would be preferred to make inferences

about second-order effects, as done in Caves et al. [31] and Gillen et al. [46]. However, due

to insufficient variation in this study’s time-series data, the analysis is restricted to the first-

order effects obtained by a Cobb-Douglas technology specification. As noted by Kiesling and

Hansen [54], the limited variation in the data suggests that the second-order effects on the

coefficients would also be small.

The coefficients on average stage length and load factor, Zit, are expected to have negative

signs. The expectation for average stage length can be justified by arguing that, for a given
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number of revenue ton-miles, total costs should be lower when this output is generated over

longer stage lengths, which are less costly to fly on a per-mile basis than shorter stage lengths.

In the absence of this control, one ton carried 1000 miles will effectively be indistinguishable

from 1000 tons carried one mile, a failure that would bias the estimated coefficients. The

load-factor coefficient is also expected to have a negative sign since, for a given amount

of revenue ton-miles, costs are expected to be lower if this output is flown from origin to

destination on fewer flights.

Economies of density captures the effect on total cost of an increase in output holding points

served fixed, a change that raises traffic density. Economies of density are expected to exist

if, for example, costs decline as carriers add flights to a route or increase capacity in existing

markets by using larger aircraft (see Shah and Brueckner [81]; for an analytical model).

When economies of density are present, cost should rise less than proportionally to the

increase in traffic, so that βQ < 1. The degree of returns to density (RTD) is then equal

to the inverse of the elasticity of total cost with respect to output (keeping points served

constant):

RTD =
1

βQ
(1.4)

Economies of density are exhibited if 1
βQ

> 1, with 1
βQ

< 1 indicating diseconomies of density.
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Economies of scale capture the effect on total cost of equiproportional increases in output

and points served. The degree of returns to scale (RTS) is equal to the inverse of the sum

of the elasticities of total cost with respect to output and points served:

RTS =
1

βQ + βP
(1.5)

If 1
βQ+βP

> 1, economies of scale exist, whereas diseconomies of scale exist if 1
βQ+βP

< 1.

Which inequality holds depends on the magnitude of βP relative to βQ. Assuming that

βQ < 1, so that economies of density exist, economies of scale (βQ + βP < 1) require

βP < 1 − βQ > 0. In other words, cost cannot increase too rapidly with points served

holding output constant, with an upper bound imposed on βP .

To understand this idea, consider a stylized cost function QC (Q/P), where C is unit cost as

a function of traffic volume on each route segment, equal to Q/P , with economies of density

yielding C ′ < 0. Including a fixed cost of K (P ), total costs are then K(P ) + QC (Q/P). If

C is a constant function and K (P ) = αP , then doubling Q and P doubles cost, indicating

constant returns to scale, whereas if K ′′(P ) < 0, then costs less than double, indicating

economies of scale. Computing the relevant elasticities shows that K ′′(P ) < 0 is equivalent

to βP < 1−βQ. Note that the cost effect of a higher P holding Q fixed has two components:

the higher cost of serving more points; the cost increases from spreading a fixed output across

more routes, which arises because density on each route falls. The elasticities associated with

these combined effects must be less than 1 − βQ for economies of scale to exist.

Kiesling and Hansen [54] took an approach similar to that of Caves et al. [31], specifying a

cost model for FedEx based on time-series data from 1986 to 1992. Following airline industry

studies, they speculated on three aspects of the air cargo industry’s economic structure:

economies of density, scale, and size. The authors argued that the degree of returns to size
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determines if FedEx can maintain its efficiency (keeping cost per unit of output constant)

as it grows. If, for example, strong economies of density exist along with diseconomies of

scale, efficiency can be maintained if the network expands less than in proportion to output,

so that density rises. They confirmed their a priori expectations by showing that FedEx

exhibits significant economies of density, diseconomies of scale, and constant economies of

size.

Kiesling and Hansen [54] specified a Cobb-Douglas form of a total cost function after devel-

oping a model that includes prices of input factors used in production, such as labor, fuel

and oil, materials and services, and capital. They measured output as the total revenue

ton-miles of freight and mail. Although the authors stated that a Translog functional form

would be preferred, they did not have enough observations given the number of variables

(sufficient degrees of freedom) to estimate the model.

Of the three model variations they investigated, the first included all of the defined variables,

for which they confirmed the expected signs of the coefficients, with statistical significance

for most. The second model dropped the statistically insignificant control variables. As

anticipated, they found substantial returns to density and decreasing returns scale in the

first and second models. However, the degrees of decreasing returns to scale they estimated

(0.62 and 0.54 in the first two models) were unexpectedly high. As a plausible (but still

insufficient) explanation, the authors suggested that the strong diseconomies of scale may

have resulted from increasing unit costs of sorting that arise when points are added to a

fixed-density network. Overall, the findings affirmed the authors’ assumption that, on a

given network, increasing output has little effect on total system costs, and second, that

costs of complicated hub operations, such as sorting, increase as the number of airports

served increases (controlling for traffic density). The authors also relate their findings of

strong economies of density to the efficiency of serving a given set of points by one carrier,

shedding light on the dominant position of FedEx in the all-cargo industry. At the time
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of their study, Kiesling and Hansen [54] mentioned that UPS does not directly compete

with FedEx as a cargo airline, but instead provides a wide range of services that compete

with those of FedEx. This led the authors to suggest that economies of scope should be

investigated between air express and other cargo services offered by multimodal firms such

as UPS and the U.S. Post Office.

In the third model, to determine the degree of returns to size, Kiesling and Hansen [54]

dropped the points-served variable and found that the output elasticity increased substan-

tially to 0.97. The inverse of this elasticity (approximately one) implied constant returns

to size, which they expected for FedEx’s mature network. Strong economies of density, by

itself, implied that FedEx could make substantial unit cost savings by increasing output on

its existing network. Constant returns to size, however, indicates that an increase in output

along with a proportionally smaller increase in points served would not reduce efficiency.

Table 1.1 summarizes Kiesling and Hansen’s findings.

Table 1.1: Kiesling and Hansen’s (1993) Results for FedEx, 1986 - 1992

Model 1 Model 2 Model 3

Degree of returns to scale 0.62 0.54

Degree of returns to density 2.36 4.07

Degree of returns to size 1.04

Source: Kiesling and Hansen [54]

Consistent with past findings, this study expects both FedEx and UPS to exhibit increasing

returns to density and constant or decreasing returns to scale. For a given route, increas-

ing output should have little effect on total cost since this increase can be accommodated

by carrying more cargo on existing flights. The hub-and-spoke configuration of air cargo

networks also facilitates the efficient sorting of shipments, allowing ground-distribution and

transshipment costs to decrease with traffic density (O’Kelly and Miller [68]). Constant or
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decreasing returns to scale are expected for both carriers since establishing new hub oper-

ations can be very costly, even while flying operations and airport ground access can be

replicated inexpensively (Kiesling and Hansen [54]).

The nature of returns to size, however, are expected to be different for the two carriers. FedEx

has maintained a mature network during the period of this analysis, and is therefore likely

to exhibit constant returns to size. In other words, even though there may be economies of

traffic density on FedEx’s existing network, the increase in traffic volume brought by adding

new airports to the carrier’s network would be offset by the cost of adding those airports.

In contrast, evidence showing the growth of UPS’s network implies that the carrier should

exhibit economies of size since the additional traffic revenues generated by new airport-pair

markets would more than counteract the cost of adding new airports to its network.

1.3 Data

The data for this study consist of nine years of quarterly observations for FedEx and UPS,

from 2003 to 2011. The data are primarily collected from two sources: the Form 41 Financial

Schedule and the Form 41 Traffic T-100 Segment (U.S. Carriers) tables [24, 25], which are

both found on the DOT’s Bureau of Transportation Statistics (BTS) website.

The Form 41 Financial Schedule tables include quarterly balance sheet, cash flow, employ-

ment, income statement, fuel cost and consumption, and operating-expense data. The T-100

data are provided monthly at the carrier-origin-destination-aircraft type level. The reported

data in the T-100 tables include scheduled and performed departures, aircraft capacity

(payload), distance between origin and destination airports (stage length), and transported

freight and mail volumes (in pounds) by certified U.S. carriers. The traffic data have been

aggregated to the quarter level for this study. The T-100 tables contain complete data for
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both FedEx and UPS starting from 2002 Quarter 4. Quarter 1 of 2003 is chosen as the start

date for this study to avoid data discrepancies that might exist during the traffic-reporting

changes that took place in 2001-2002.

This study is will be based on the domestic operations of FedEx and UPS, bearing in mind

the compatibility issues between the traffic and cost data for international operations. The

selected T-100 traffic tables provide data reported by U.S. carriers on domestic operations

(U.S. and Canada origin and destination) and international operations when at least one

point of service is a domestic origin or destination. However, the cost data (from the Form

41 Financial Schedule), only provides one indicator (carrier region) to specify the world

region for which carriers providing scheduled services report their operations. These regions

are Domestic (for U.S. and Canada), Atlantic (for Europe), Pacific (for Asia), and Latin

America (for Central and South America). Carriers providing non-scheduled services specify

their operating regions as either Domestic or International. Like the T-100 international-

traffic data, the latter operating region includes operations where one airport is domestic and

the other is foreign (see the BTS T-100 Traffic Reporting Guide [21]). Therefore, the cost

data do not distinguish operating costs incurred on non-scheduled flights from a domestic

airport to a foreign airport from those costs incurred on non-scheduled flights between two

foreign points. Considering that both FedEx and UPS provide scheduled and non-scheduled

services between international points, the reporting discrepancies between the T-100 traffic

data and the Form 41 Financial Schedule preclude a fully reliable analysis of the international

operations and cost characteristics of the carriers in this study. Specifically, output measures

would be understated and operations from foreign hubs would be ignored.4

4The author thanks Anming Zhang and Form 41 Financial Schedule data managers at BTS for their
insights into this data-compatibility issue.
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1.3.1 Description of Variables

Based on the cost categories reported by carriers to the FAA, total cost (TC) is calculated

as the sum of the operating expenses (fuel and oil, employee salaries and benefits, materials

and services, landing fees and rental costs) and capital costs of operating property and

equipment (Kiesling and Hansen [54]). Capital costs are computed as fifteen percent of the

following property- and equipment-cost categories obtained from the carriers’ balance sheets:

flight equipment, ground property and equipment (less depreciation), land, construction, and

capital leases of property (less amortization).

Three categories of input are considered in this study: labor, fuel, and materials. The labor

price is captured by the carrier-average wage of pilots, copilots and maintenance employees.

Expenses on flight personnel and maintenance labor are averaged over the number of pilots,

copilots and maintenance workers reported by the carriers in the Form 41 Financial Schedule

tables. Considering that UPS’s labor force is highly unionized, the fact that only pilots

amongst FedEx’s employees are unionized makes the choice of this employment category a

convenient one (Morrell [61], p. 250). The maintenance-worker category is also selected for

having complete data and for being representative of FedEx’s non-unionized labor. Due to

reporting differences between FedEx and UPS, total employment data for UPS found in the

tables (Schedule P-1(a) and Schedule P-10 ) are significantly low. UPS only reports employee

statistics for flight-related employees, whereas FedEx includes statistics for all employees

involved in ground and air operations. Therefore, the exclusion (or underreporting) of these

employment categories (e.g. transport-related, general managers, cargo handling) would

overstate the price of labor for UPS if it were simply calculated as the ratio of the firm’s

expenses on salaries and benefits to the total number of full-time equivalent employees.

The fuel price is constructed by dividing total air-fuel expenses by the total fuels issued for

revenue and non-revenue operations. The price of material inputs is accounted for in the
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model by the price of purchased materials (assumed to be constant across the carriers), for

which a quarterly Producer Price Index (PPI) is used as a proxy. PPI data, specifically

constructed for scheduled air-transportation, were obtained from the U.S. Bureau of Labor

Statistics databanks.

On the traffic side, output is measured by aggregating the freight and mail tons flown on a

carrier’s network to the quarter level. Although analyzing freight and mail outputs separately

would be preferred, mail volumes transported by the carriers are inappreciable; 70 percent

of intra-US mail is borne by passenger carriers (Morrell [61], p. 77).

Points served has been constructed to measure the core network size of the carriers. FedEx

operates its hub-and-spoke and point-to-point networks in conjunction with a complicated

network of stopovers and feeder points (Kuby and Gray [55]; Johnson and Gaier [52]). While

spoke cities are served by FedEx, these cities also facilitate the consolidation (distribution)

of FedEx’s feeder traffic en route to (from) the hubs. Although UPS also operates a hub-and-

spoke network, trucks are used to transport the carrier’s feeder traffic to regional consolida-

tion hubs (e.g. LA/Ontario International). Outside of their core network, FedEx and UPS

have very fluid network structures to meet the demands of their priority and time-definite

delivery guarantees. Therefore, in light of the basic differences in the carriers’ networks,

and considering the fluidity in their network structures, the following approach is taken to

measure the core network size of the carriers. The underlying idea is to drop feeder and

stopover points, which would otherwise cloud the real network size of the carriers. Hence,

a quarter-specific hub dummy variable is first constructed to identify FedEx and UPS hubs

in the T-100 data. An airport with at least twelve direct flights per quarter (weekly flights)

to or from these hubs is then counted as a single point served. Lastly, the average distance

between takeoffs and landings is weighted by the payload tons available between those points

to measure average stage length.
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A balanced panel, with both carriers in the sample (72 carrier-quarter observations), is then

constructed for these variables, which allows specification of intercept shifts for the carriers

and for the quarters and years in the time series.

1.3.2 Summary of Descriptive Data

FedEx’s cost structure, networks, and services have changed considerably in the past twenty

years. This change has come as a result of both the transformation of the cargo indus-

try’s time-definite express sector, with increased demands from e-commerce and globally

integrated “just-in-time” (JIT) systems, and significant growth and automation within the

company.5 Figure 1.1 illustrates the patterns of domestic air freight and mail volumes for

two time periods, 1986-1992 and 2003-2011, for FedEx and UPS. Figure 1.1(a) pertains to

FedEx in the first time period, while Figure 1.1(b) includes the air freight and mail volumes

for UPS for a side-by-side comparison with FedEx in the second time period. The second

figure (b) uses data from the DOT’s BTS Form 41 Traffic T-100 Segment tables for freight

and mail tonnage. The T-100 segment-level data for FedEx and UPS are only available as

far back as 2002, and volumes reported for 2002 are not complete. Therefore, this study will

only look at the time period from 2003 to 2011.

5JIT is a logistical philosophy introduced to the U.S. in 1997. It provides efficient customer service by
reducing inventory through the use of air cargo transportation. See Zhang and Zhang [89] for discussions on
JIT and liberalization of air cargo services in international aviation.
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Figure 1.1: Domestic Freight and Mail Tonnage

(a) FedEx (1986 - 1992): Source: Kiesling and Hansen [54]

(b) FedEx and UPS (2003 - 2011):
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Figure 1.1(a) shows the increase in domestic freight and mail tonnage resulting from FedEx’s

acquisition of Flying Tigers in February, 1989. FedEx and Flying Tigers operations were

merged by August of that year. As noted by Kiesling and Hansen [54], the merger induced a

50-percent increase in freight and mail tonnage almost immediately. Figure 1.1(b) illustrates

the sporadic growth in freight and mail volume (both scheduled and non-scheduled) of FedEx

and UPS in the second time period. The substantial increase in FedEx’s transported-cargo

volume across the ten-year difference between the two time periods is apparent in the two

figures. Morrell [61] discusses the introduction of Air Cargo Communication Systems (CCS)

and other technological improvements in air-cargo transportation that took place in the early

2000’s (p. 187). In addition to the technology bubble of the late 1990’s, these advancements

possibly facilitated the sharp rise in cargo volumes (observed in the figures) through au-

tomation and reduced transfer and delay times. The significant increase in UPS’s domestic

cargo (around 200,000 tons of freight and mail) can also be seen in the second figure. Both

carriers appear to have recovered steadily after the 2008 recession, following similar patterns

of increases and decreases.

The domestic airports served (points served) are shown in Figure 1.2. It is apparent that

FedEx regularly serves more than twice as many domestic airports as UPS, and that the

variation in points served is modest. It is interesting to note the difference in the network

structure between the two carriers. The black line represents the points that are flown to

(or from) hubs at least 12 times a quarter. This measure of points served is chosen for the

present study. The gray line depicts the number of airports that are served at least 12 times

a quarter by the carriers, without any requirement for a hub connection. The top two panels

in Figure 1.2 initially show that FedEx has a sizable network of airports served beyond the

primary spokes of the hubs, as evidenced by the large gap between the black and gray line.

UPS, on the other hand, seems to operate under 20 airports in addition to those that are

connected to the carrier’s hubs. The lower two graphs of the figure present the standardized

measures (normal scores) of points served to further clarify the network differences between
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the carriers. Again, the trend in UPS’s core network (hub-and-spoke) is the main driver of

the carrier’s entire network, as can be seen from the close association of the black and gray

lines. FedEx’s fringe networks (not hub-related) are apparently disjoint from the rest of the

carrier’s core network. The lower-left panel depicts the reason why this study has chosen to

avoid the non-hub related airports of the carrier: to maintain consistency in measuring the

network size between the two carriers and to avoid noisy data from feeder services. Moreover,

it is interesting to see that FedEx’s core network exhibits a gradual growth in size while the

total network size does not show a clear pattern.
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Figure 1.2: FedEx and UPS Domestic Points Served

A comparison of the summary quarterly financial statistics shows the significant change that

FedEx has experienced in its cost structure. Table 1.2 summarizes the domestic quarterly

statistics for two time periods (1986 - 1992 and 2003 - 2011) of this study. Total cost, labor

price and fuel price are adjusted for inflation using the BLS Consumer Price Index (CPI)

quarterly deflator, normalized to 2003Q1.
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The substantial changes shown in Figure 1.1 and in the summary statistics in Table 1.2

suggest that there is a need for re-evaluating FedEx’s current cost structure to address the

issues of returns to traffic density and returns to scale. Domestic costs for FedEx are more

than three times as high as they were in the Kiesling and Hansen [54] sample period. The

price of fuel has doubled, while the costs of labor, materials and services have also increased

considerably. Likewise, output and capacity have grown substantially in the current time

period. It is also clear that technology has changed, as newer airplanes are able to achieve

higher load factors and to provide a larger carrying capacity per departure (evidenced by

higher load factors and available line haul measures). Drawing parallels to the implications

of Figure 1.2, the means and standard deviations of the two points-served measures indicate

that the network size of the carriers are comparable when focusing on their core hub-and-

spoke airports.

In light of the considerable growth of FedEx since Kiesling and Hansen’s [54] study, it

is important to check if their characterization of the FedEx cost structure still holds. The

same analysis will also be carried out for UPS, to draw comparisons between the two industry

leaders.

1.4 Estimates of the total cost model

The first specification in Table 1.3 assumes that the two carriers have a similar cost structure.

The firms have the same intercept: ui = u holds in equation (3) for both firms. This

assumption might not be acceptable considering that the two integrators serve different

markets and customer bases and that they also have stark differences in their operations and

logistics, but it serves as a benchmark.
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1.4.1 Pooled Results

In the first set of regression results (Pooled 1 and Pooled 2 ) for the panel dataset shown

in Table 1.3, the coefficients on output and the input-price variables all have the expected

positive signs and are significant at the 1-percent significance level. The labor-price coeffi-

cients indicate an elasticity of 0.08, so that a 10-percent increase in wages is associated with

a 0.8-percent rise in costs for the carriers. The coefficients on fuel price imply that costs

are more sensitive to the price of fuel than to the price of labor, with an elasticity of 0.14.

Likewise, the price of materials exhibits a strong positive effect on total cost in all of the

specifications. As expected, the coefficients on the payload-weighted average stage length

and load-factor variables are negative and significant.

In Pooled 1, the positive coefficient on output (0.22) indicates that, holding everything

else constant, a 1-percent increase in the carriers’ output increases their total cost by 0.22

percent. The inverse of this coefficient, 4.52, indicates that the carriers’ operations exhibit

substantial economies of density. This finding is statistically significant in the sense that the

output coefficient is significantly different from 1. The elasticity of total cost with respect to

equiproportional increases in output and points served is equal to the sum of the coefficients

on output and points served (0.91). The inverse of this sum, 1.10, implies that there are

increasing returns to scale. However, the null hypothesis of constant returns to scale cannot

be rejected.6 Pooled 2 includes a dummy variable for UPS to control for carrier-specific

heterogeneity. While most results do not change, this specification reveals that, controlling

for unmodeled cost differences, economies of density still hold but the carriers now exhibit

decreasing returns to scale. The null hypothesis of constant returns to scale, however, still

cannot be rejected at the 5-percent significance level (0.167 standard error). Moreover, the

coefficient on the UPS dummy variable indicates that, all else equal, UPS is less cost-efficient

6Linear-restrictions hypothesis tests of the coefficient values reject the null that the output coefficient is
unity (standard error = 0.071) and fail to reject the null that the sum of the output and the points-served
coefficients is equal to one (standard error = 0.049), at the 5-percent significance level.
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Table 1.3: Pooled Results for FedEx and UPS (Balanced Panel: 72 observations)

Regressor Pooled 1 Pooled 2 Pooled 3 Pooled 4

Intercept 17.330 15.185 18.779 19.806
(1.102) (1.084) (1.765) (1.581)

Output 0.221 0.341 0.642 0.456
(0.071) (0.073) (0.018) (0.087)

Points Served 0.685 0.953
(0.117) (0.167)

Labor Price 0.077 0.079 0.056b 0.060b

(0.023) (0.019) (0.036) (0.034)

Fuel Price 0.144 0.102 0.118 0.153
(0.014) (0.021) (0.016) (0.021)

Materials Price 0.193 0.317 0.423 0.284a

(0.073) (0.081) (0.086) (0.122)

Stage Length -0.845 -1.176 -1.983 -1.478
(0.232) (0.247) (0.276) (0.412)

Load Factor -0.500 -0.466 -0.574 -0.577
(0.079) (0.072) (0.117) (0.113)

UPS Dummy 0.192 -0.125a

(0.072) (0.056)

Adj. R2 0.988 0.989 0.980 0.981
D-W Statistic 1.07 1.20 0.72 0.71

Degree of Returns to Scale 1.10 0.77
Degree of Returns to Density 4.52 2.93

Degree of Returns to Size 1.56 2.19

F-statistic for βQ =1 119.036 81.592 393.33 39.412
(0.071) (0.073) (0.018) (0.087)

F-statistic for βQ+ βP = 1 3.624 3.108
(0.049) (0.167)

Notes: Specifications use natural logarithms for all variables, except for dummy variables and intercepts.
Robust standard errors in parentheses to account for unconditional heteroscedasticity and contemporaneous
correlation: a p ≮ 0.01; b p ≮ 0.05.
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than FedEx. Exponentiation of the coefficient on the UPS dummy implies that UPS is 21

percent less cost efficient than FedEx, ceteris paribus.

The Pooled 3 and 4 specifications allow measurement of economies of size since the effect of

network size (previously captured by points served) is absorbed into output. The coefficients

on output (0.642 and 0.456) are now higher than in the previous two regressions since the

output variable now measures both traffic and points served. The inverse of the output

coefficients, 1.56 and 2.19, show that the carriers exhibit increasing returns to size (constant

returns is rejected at the 5-percent level in both specifications). The results thus indicate

economies of size, showing that growth in output accompanied by an appropriate adjust-

ment in network size increases efficiency, raising costs less than in proportion. However,

the inclusion of the UPS dummy variable in the Pooled 4 regression reveals that, without

controlling for network-size differences, UPS is more (not less) cost efficient than FedEx (13

percent more cost efficient).

Overall, the industry clearly exhibits economies of density and economies of size, while

constant returns to scale cannot be ruled out. This finding is investigated further in the

next section by looking at the cost structures of the carriers individually.

1.4.2 Individual Carrier Results (FedEx and UPS)

This section examines the total cost model for the carriers separately, to determine whether

they individually exhibit economies of density, scale, and size. Table 1.4 shows the results for

FedEx and UPS separately. Payload-weighted average stage length and load factor are again

included as controls in addition to output, points served, and the prices of input factors.

The results for FedEx reveal that the carrier operates under economies of density, decreasing

returns to scale and modest economies of size. The coefficient on output in FedEx 1 is
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Table 1.4: Individual-Carrier Results (Time series: 36 observations)

Regressor FedEx 1 FedEx 2 UPS 1 UPS 2

Intercept 9.572 12.631 15.090 17.661
(1.933) (2.363) (1.680) (2.024)

Output 0.626 0.701 0.331 0.433
(0.108) (0.125) (0.086) (0.112)

Points Served 0.521a 0.901
(0.195) (0.290)

Labor Price 0.078 0.075a 0.059a 0.039b

(0.027) (0.034) (0.024) (0.036)

Fuel Price 0.073 0.077 0.107a 0.201
(0.018) (0.019) (0.047) (0.034)

Materials Price 0.521 0.623 0.172b -0.165b

(0.113) (0.099) (0.171) (0.134)

Stage Length -1.085a -1.450a -0.932 -0.774a

(0.45) (0.559) (0.227) (0.282)

Load Factor -0.742 -0.728 -0.321 -0.445
(0.139) (0.149) (0.077) (0.123)

Adj. R2 0.977 0.972 0.940 0.905
D-W Statistic 1.59 1.40 1.20 1.25

Degree of Returns to Scale 0.87 0.81
Degree of Returns to Density 1.60 3.02

Degree of Returns to Size 1.43 2.31

F-statistic for βQ =1 12.004 5.759 60.784 25.479
(0.108) (0.125) (0.086) (0.112)

F-statistic for βQ + βP = 1 0.526 0.647
(0.203) (0.289)

Notes: Specifications use natural logarithms for all variables, except for dummy variables and intercepts.
Robust standard errors in parentheses to account for unconditional heteroscedasticity and contemporaneous
correlation: a p ≮ 0.01; b p ≮ 0.05.
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significantly different from unity (0.11 standard error) and the inverse of this coefficient

indicates that FedEx exhibits economies of density. The inverse of the sum of the output

and points served coefficients in FedEx 1 (0.87) implies that decreasing returns to scale hold

for FedEx. However, constant returns to scale cannot be rejected at the 5-percent level (0.20

standard error). Considering that decisions on the number of airports to serve are made

concurrently with output decisions, the FedEx cost structure is examined for economies

of size in FedEx 2. The inverse of the output elasticity in FedEx 2 (1.43) indicates that

increasing returns to size hold for FedEx. The output coefficient itself (0.701) is significantly

different from 1 at the 5-percent level, which confirms the finding of increasing returns to

size.

These results show that some of Kiesling and Hansen’s [54] conclusions no longer hold for

FedEx. Kiesling and Hansen found decreasing returns to scale for FedEx (of degrees rang-

ing from 0.54 to 0.62) and much stronger economies of density than in the present results

(degrees of returns to density ranging from 2.36 to 4.07). The authors then showed that

an approximately constant degree of returns to size (1.04) held for FedEx. Clearly, the cost

structure of FedEx has changed significantly in the decade after their study. The current

results suggest that FedEx can enjoy unit cost savings by increasing output on its existing

network of airports. The degree of returns size (1.43) also implies that FedEx will enjoy

some cost savings per unit of output by expanding its services.

On the other hand, the results for UPS show that the carrier exhibits strong economies of

density, decreasing returns to scale, and strong economies of size. Specifically, the inverse

of the output elasticity in UPS 1 (3.02) indicates substantial returns to density hold for

the carrier (an effect that is statistically significant). The inverse of the sum of the output

elasticity and the coefficient on points served is 0.81, which implies diseconomies of scale. The

hypothesis of constant returns to scale, however, cannot be rejected (0.29 standard error).

In the last specification of Table 1.4 (UPS 2 ), the inverse of the coefficient on output (2.31)
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indicates the strong returns to size for UPS. The output coefficient in the last specification

is also significantly different from unity. The results altogether imply that UPS could be

substantially more cost efficient by increasing its output either on a fixed network or on one

that is growing with output.

The coefficients on labor price exhibit the expected positive relationship with cost, and are of

comparable magnitudes for FedEx and UPS. The coefficient estimates for this variable imply

that a 10-percent rise in average pilot and maintenance-worker wages would increase total

costs by around 0.78 percent for FedEx and by 0.59 percent for UPS. The slightly higher

labor-price impact on FedEx’s costs is not expected considering the underlying federal-labor

rules that the companies are governed by.7

The fuel price appears to affect carrier costs in all specifications. This finding is not surprising

in view of the important role that fuel costs play in determining the profitability of air cargo

firms. Even though carriers may pass on the impact of fuel-price increases partially to their

customers (through fuel surcharges, for example), there is not much else that carriers can do

to improve efficiency in the short run (Morrell [61], pp. 212-213).

Figure 1.3 shows the fluctuation in fuel prices during the sample period of this analysis. The

dramatic increase in fuel prices in July 2008, when the price of oil reached its record peak,

is evident in Figure 1.3, as is the subsequent fall in December 2008. Such volatility in the

fuel prices explains why some carriers find it advantageous to purchase their fuel through

hedge contracts. The consistently lower price observed for FedEx in the figure may reveal

the underlying differences in how the carriers purchase fuel. As Kiesling and Hansen [54]

pointed out, most of FedEx’s aircraft fuel is purchased through contracts with suppliers or

is included in wet-lease agreements, which allows the company to be temporarily safe from

7UPS, having started out as a ground-shipping company, and still having strong trucking ties, only
transports a small fraction (around 15 percent) of the company’s daily volume of North American shipments
by air (TranSystems [87], p. 47). UPS is consequently governed by the 1935 National Labor Relations
Act (NLRA) while FedEx, founded as an air cargo company, has always been subject to airline regulations.
Consequently, UPS has stronger labor unions in comparison to FedEx.
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unprecedented cost impacts of short-term price increases. Fuel prices may also vary across

the carriers depending on fleet mix and the regional variation in fuel supply (Greene [48]).

The matter of fuel-price fluctuations needs to be addressed further while also looking into

how the carriers buy their fuel.

Figure 1.3: Domestic Fuel Price (2003Q1 Dollars)

1.5 Conclusion

In view of the continued expansion of FedEx’s integrated services and the emergence of UPS

as a prominent air cargo carrier, this paper reexamines the cost structure of the integrated

air cargo industry. The estimated total cost model for the domestic region of FedEx and

UPS reveals that the carriers, and arguably the rest of the integrated air cargo industry,

have a cost structure that is characterized by increasing returns to density and constant
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returns scale. Different specifications of the cost model also provide comparative results of

the carriers’ cost efficiencies. Specifically, if network-size differences between the two carriers

are controlled, FedEx is found to be more cost-efficient than UPS. This finding implies that

FedEx is able to achieve a given level of output over a set of points with relatively less cost

than UPS. However, allowing for network-size differences between the two carriers, UPS

emerges as the more cost-efficient carrier.

To better understand these cost-efficiency differences between the two carriers, the individual

cost structures of the carriers were examined. Looking at the carriers individually, the results

show that FedEx operates under weak economies of density and diseconomies of scale. In

contrast, while UPS also operates under diseconomies of scale, the carrier exhibits strong

economies of density. The null hypothesis positing constant returns to density was rejected at

the 5-percent significance level in all specifications. However, the null hypothesis of constant

returns to scale cannot be rejected for either carrier, individually, and for the carriers pooled

together (see pooled-carrier results). Therefore, strong evidence suggesting that constant

returns to scale hold for integrated air cargo carriers is found.

Economies of size, which captures the combined effect of economies of density and economies

of scale, is also investigated. The pooled results show that the integrated industry’s cost

structure is characterized by increasing returns to size, suggesting that carriers can maintain

cost efficiency if they adjust their network size in step with output growth. The carrier-

specific results also show that both FedEx and UPS individually exhibit increasing returns to

size. The null hypothesis of constant returns to size is rejected at the 5-percent significance

level in the pooled- and individual-carrier results. The statistically-significant findings of

economies of size for both carriers imply that FedEx and UPS can be more cost efficient

by exploiting economies of density. UPS, however, is able to make relatively more unit cost

savings through economies of density and economies of size, as evidenced by the carrier-

specific point estimates.
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Noting that a given set of points is most efficiently served by one carrier, Kiesling and Hansen

[54] concluded that FedEx falls just short of monopolizing the air cargo industry. Clearly,

as shown by some of the evidence in this study, this characterization of the industry may be

outdated. In addition to competing with FedEx and other integrators in areas that are part

of a broader service mix, UPS presents itself as a strong competitor in air cargo services.

This paper finds that UPS has substantial potential for growth, enabled by strong economies

of density and economies of size.
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Chapter 2

Airport Traffic and Metropolitan

Economies

2.1 Introduction

Airports serve as gateways and hubs for intercity-airline passengers and cargo, playing a key

role in the economic development of urban areas. Although the airport-city relationship has

been examined extensively in the literature, researchers have mainly focused on the economic

impact of airport traffic, while also examining the effectiveness of investments in transporta-

tion infrastructures (Oster, Rubin, and Strong [71]; Pereira and Flores de Frutos [3]; Sheard

[82]). In parallel, empirical studies have addressed urban-agglomeration economies, which

are facilitated by airline services that connect commercial activities between metropolitan

areas (see Rosenthal [76]). Drawing connections between air transport and employment

in metro areas, numerous papers established a positive relationship between airport traffic

and economic development (Button, Lall, Stough, and Trice [27]; Debbage and Delk [39];

Brueckner [19]; Alkaabi and Debbage [1]; Green [47]; Blonigen and Cristea [11]). However, a
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metro area’s provision of air-transport services is itself also determined by local economic and

demographic characteristics. Even though this bidirectional-causality relationship between

airport traffic and urban-economic characteristics has been acknowledged in the relevant lit-

erature (Brueckner [19]; Green [47]), only a small body of empirical work has addressed how

a city’s size and economic features induce passenger and cargo traffic at airports (Brueckner

[18]; Discazeaux and Polese [40]; Alkaabi and Debbage [2]). Moreover, these studies employ

cross-section methods that do not control for city-specific unobserved features that affect the

determinants of air traffic. This paper aims to fill these gaps by examining how air traffic in

a city is impacted by the variation of socioeconomic and demographic features in that city,

over time. The implications of an urban area’s sectoral-employment composition are also

addressed in line with the most recent empirical findings regarding industry mix and airline

traffic (Sheard [82]).

Seeing that planners and policy makers commonly use economic predictors to forecast air

traffic volumes, this paper revisits the question of what urban characteristics determine

airport traffic. Traffic forecasts are instrumental benchmarks for decisions regarding airport

capacity and spending on transportation infrastructures. Private businesses that depend

on air transport services (manufacturers, retail vendors, hotels, etc.) also benefit from air

traffic projections, and presumably base their strategic decisions on such information. While

regional studies may be more suitable for understanding how local economic factors affect air

traffic, national-scale models are also needed to gain generalizable insights into the role of air

transport in the urban economy. However, region-specific differences in national models have

not been sufficiently treated in the literature (Cidell [38]). Thus, exploiting the empirical

benefits of panel data, the present paper aims to provide a national empirical model that

shows how urban socioeconomic factors determine air traffic, while controlling for the unique

and unobserved features of the sample cities.
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A quarterly panel dataset (2003-2012) is first constructed from demographic, socioeconomic,

and airport-traffic measures of metro areas in the United States (U.S., hereafter). Based

on urban economic theory, an econometric model is specified to provide point estimates

of the elasticities of air passenger and cargo traffic with respect to metropolitan-size and

employment features. Accordingly, the dependent variable in this study is the total pas-

senger enplanements and cargo (freight and mail) tons that depart from airports in chosen

metro areas. The variation of demographic and sector-specific socioeconomic characteris-

tics, both across and within metropolitan areas, is used to assess the impact of selected

metro-level factors on air traffic, while controlling for exogenous city features. Given the

panel structure of the data, metropolitan fixed effects are employed to capture remaining

city-related idiosyncrasies. Metro-areas correspond to the U.S. Office of Management and

Budget’s (OMB) 2009 definitions of Metropolitan Statistical Areas (MSA), a subset of the

Core Based Statistical Areas (CBSA). The OMB defines MSAs by consolidating contiguous

counties that hold urban-core area populations of more than 50,000 people, and that also

maintain a substantial level of socioeconomic integration within urban areas, across county

lines (Census [34]).

In view of Brueckner’s [18] findings that pertain to the regulated U.S. airline industry,

this study reveals that the local-economic determinants of a city’s air services have mostly

remained the same since the deregulation of the airline industry. Controlling for unobserved

and city-specific differences, the paper shows that passenger traffic grows proportionally to

city size, while wages and the share of service-sector employment increase demand for air

travel. Moreover, contrary to traditional expectations, an MSA’s share of tradable service

jobs appears to have a weaker impact on passenger enplanements, compared to the share of

jobs providing non-tradable services. Even though the cross-sectional analyses for air cargo

and passenger traffic produce comparable results, the fixed effects estimations reveal that air

cargo enplanements are impacted by employment-composition shifts that increase a city’s

36



share of workers in manufacturing jobs. Data limitations that preclude robust estimations

of cargo-traffic elasticities are also discussed.

2.1.1 Literature Highlights

Brueckner [18] examined metro-area size, employment, and income factors that affect U.S.

air-passenger transport using data for 1970 (while the airline industry was still regulated).

Brueckner revealed that there is a proportionate relationship between a city’s population

and passenger enplanements, and also gave the first empirical insight into the positive rela-

tionship between air traffic and white collar employment. Noting that the airline industry

has reorganized considerably since deregulation, and that advances in technology may have

changed the relationship between airport traffic and local economies, Discazeaux and Polese

[40] used data from 2000 to re-examine the effects of urban employment and size character-

istics on airport traffic in the U.S. and Canada. The authors identified new geography and

market features that affect passenger traffic, but found that the core relationship between air

traffic and urban economic characteristics established by Brueckner [18] remains unchanged.

A more recent study by Chi and Baek [37], estimated the short- and long-term impacts of

economic development on passenger and freight air traffic, while controlling for disruptions

in market equilibria caused by exogenous events. Even though market shocks and short-run

economic growth have minimal effect on air freight traffic, air-passenger traffic was found to

be sensitive to some market shocks and both short- and long-term economic growth. Do-

bruszkes et al. [41] provided an analysis of the metropolitan determinants of air traffic in

Europe.

Air cargo (freight) has received less attention in the relevant literature, even though much

of the a priori expectations for the urban economic determinants of cargo transportation

parallel those for passenger transportation. Growth in air cargo traffic may also introduce
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new airport-related jobs in the short term, and thereby alter the surrounding metro area’s

employment composition through spillover effects. Like passenger traffic, hub-cargo traffic is

also not driven by the hub airport’s local demand, but rather by the market demand of the

cities it connects. Kasarda and Green [53] drew some preliminary connections between global

air cargo traffic and national economic indicators while Chang and Chang [36] addressed

the causal relationship between economic development and air cargo growth. Although

their results mostly pertain to Taiwan, Chang and Chang used Granger causality tests to

demonstrate that the long-term causal link between economic development and air cargo

expansion is bidirectional. Button and Yuan [29] also used this methodology to understand

the causal link between air freight transportation and regional economic development in

the U.S. Their findings suggest that air freight induces local-economic development. More

pertinently, recognizing the lack of research on the spatial distribution of air freight, Alkaabi

and Debbage [2] analyzed socioeconomic variables that they deemed to be the most influential

predictors of the distribution of outbound air freight.

Brueckner [19] and Green [47] addressed the inherent problem of identifying causation in the

airport-traffic and urban-employment relationship. While growth in a city’s workforce or

change in a city’s industry mix is expected to induce enplanements at airports, the aggregate-

passenger traffic at airports could also affect the employment structure of that city. Higher

passenger volumes indicate increased travel between cities, which can improve the access and

connectivity of small metro areas, and thereby change a city’s commercial and employment

structure. Brueckner [19], for example, showed that a city’s service-sector employment grows

by 1 percent if the airline-passenger traffic in that city increases by 10 percent. Button et al.

[27] also found evidence indicating that higher levels of airport traffic increase employment

in areas related to high-tech technology industries.

A growing body of literature, however, suggests that the causal relationship between airports

and urban development is sensitive to empirical specifications of the spatial region, urban size,
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and time period being analyzed (Cidell [38]; Mukkala and Tervo [63]; Neal [64]). Mukkala and

Tervo [63] examined the causal link between air traffic and regional growth in Europe, using

Granger non-causality tests on panel data (region heterogeneity was controlled using fixed

effects). Based on their findings, the authors posited that while airline services stimulate

regional growth in remote areas, economic development in core regions drives airport traffic.

Considering that the present study is based on metro areas (MSAs) that contain a sizable

core-urban population, and that demand for transportation is mostly derived (Ortúzar and

Willumsen [70]), the causal effect running from urban employment to air traffic is assumed

to be much stronger than the effect running from air traffic to employment. Therefore, while

treatment of reverse causation would be important in empirical studies examining the impact

of air transport on urban employment, it is precluded from the present analysis.

2.2 Empirical Specification and Data

The following specification is used to estimate the impact of urban features on air passenger

and cargo (freight and mail) traffic. The dependent variable is the volume of total or domestic

passengers (cargo tons) that are enplaned at an MSA i in quarter t:

Tit = αi + βEit + γXit +
∑

θtQt + εit, (2.1)

where αi is the MSA-specific intercept; Eit denotes the shares of sectoral employment; X it

is a vector of exogenous control variables; Qt represents time dummies (year and quarter);

and εit is the error term. Hence, the empirical point estimates will indicate how much

a change in sector-specific employment shares will impact airport traffic, while controlling

for other city characteristics that also affect traffic (population, wages, unemployment, age

distribution, hub operations, and airport location). Considering that the price of an airline
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ticket (shipping rate) is jointly determined with the volume of passenger (cargo) traffic, the

specified equation assumes a reduced-form relationship that treats price as an endogenous

variable (Brueckner [18]).

A test for redundant fixed effects supports the existence of unobserved heterogeneity in the

sample MSAs. The choice of fixed effects over random effects is based on the Hausman

test. The null hypothesis positing unobserved errors are not correlated with the regressors

is rejected, implying that random effects would give inconsistent coefficient estimates.

Traffic

The passenger volumes and cargo tons carried by aircraft operating at the airports in the

sample are obtained from the U.S. Department of Transportation’s (DOT) Form 41 Traf-

fic T-100 Segment tables, provided by the Bureau of Transportation Statistics (BTS). The

T-100 Segment tables show monthly passenger and cargo traffic data reported by large cer-

tificated carriers at the carrier-origin-destination-service type-aircraft type level. Although

the data are reported by both U.S. and foreign carriers for domestic (U.S. and Canada)

and international operations, international data are only reported when at least one point

of service is a domestic origin or destination (BTS [21]). This paper focuses on U.S. airports

and MSAs (excluding Canada) to maintain compatibility with the socioeconomic data, and

to stay within the scope of the study.

Passenger, freight, and mail volumes are aggregated to the airport level, by carrier-service

type (Passenger-only, All-cargo, and Passenger-Cargo combination). Further, these data are

tracked by the carrier’s region of operation to analyze domestic operations separately from

total operations, which include international services. Therefore, this study captures all

U.S.-airport passenger and cargo enplanements, regardless of whether the traffic is moved by

U.S. or foreign carriers. Considering that 70 percent of intra-U.S. mail is flown by passenger
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carriers (Morrell [61], p. 77), examining freight and mail outputs separately is preferred.

However it has also been reported that mail transported by some integrated carriers (e.g.

FedEx Express), albeit relatively small, cannot be distinguished from freight (TranSystems

[87], p.28). Therefore, although the separate analysis of freight and mail is ideal, it is

precluded by the available data.

Employment and Wages

The socioeconomic features of metro areas in this study are captured by quarterly measures

of total employment and the unemployment rate, obtained from the U.S. Bureau of Labor

Statistics (BLS) Current Population Survey (CPS). Income and sectoral-employment infor-

mation is also included at the MSA level, using data from the BLS Quarterly Census on

Employment and Wages (QCEW ). The BLS recoded these survey and employer-reported

data (initially organized according to the 2002 National American Industry Classification

System NAICS ) to two high-level domains: (1) Service Providing and (2) Goods Produc-

ing. Further disaggregation of the data provides subsector employment information (NAICS

codes in parenthesis):1

1. Service Providing

(a) Education and health service (61, 62)

(b) Financial activities (52, 53)

(c) Information (51)

(d) Leisure and hospitality (71, 72)

(e) Professional and business services (54-56)

(f) Trade, transport and utilities (22, 42, 44, 45, 48, 49)

1A more disaggregated list of the high-level domains is provided in the Appendix.
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(g) Other services (81) excluding Public administration (92)

2. Goods Producing

(a) Manufacturing (31-33)

(b) Construction (23)

(c) Natural resources and mining (11, 21)

This study analyzes the following employment shares of the two high-level domains:

1. Service (SERV ): Total employment share of Education and health services, Financial

activities, Information, Leisure and hospitality, Professional and business services, and

Trade, transport and utilities employment.

2. Manufacturing (MANUF ): Total employment share of Manufacturing employment.

In view of the employment diversity in the service sector, especially as it pertains to air trans-

portation, Sheard’s [82] classification of tradable and non-tradable services is adopted in this

paper. Tradable services include employment groups where the services that are provided by

the employees can be consumed in a different geographical location. As such, employees in

the tradable-service industries benefit from the networking and face-to-face contact advan-

tages afforded by air travel more than employees in service occupations that are not tradable.

Accordingly, Professional-Business, Information, and Finance employment are classified as

tradable services, while Trade-transport-utilities, Leisure-hospitality, and Education-health

employment are classified as non-tradable. Even though the classifications of employment

categories as tradable or non-tradable is not based on an objective approach, the justification

that tradable and non-tradable services have unique air-travel demand characteristics for air

travel is reasonable (Sheard [82]).
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Average weekly wages, across all sectors, are used to proxy for average personal income in

an MSA. Data on the unemployment rate are also used to account for the wealth variation

and economic health of MSAs. Figure 2.1 shows the broad range of passenger-enplanement

volumes and average weekly wages across the sample MSAs in the country (2012Q4 data).2

Figure 2.1: MSA Average Weekly Wages and Passenger Enplanements (2012Q4)

Population

In view of the substantial role that city size plays in determining air-service demand (mainly

through scale effects), data on MSA population are included by aggregating the U.S. Census

2The map in this figure (as well as the subsequent ones) are designed using the U.S. Census Bureau’s
TIGER/Line® shapefiles [32]. The socioeconomic, demographic, and traffic data are obtained from the
BLS QCEW databank [12], U.S. Census Bureau Intercensal Estimates (2000-2010) [33], and the BTS T-100
Segment tables [24], respectively. Airport-specific coordinate and spatial information are obtained from the
2012 BTS National Transportation Atlas Database (NTAD) files [22].
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Bureau’s county-level annual demographic measures. Further, since the population data is

also provided in 5-year age groups, the data are organized by age-group shares (YOUNG

and OLD) to control for the labor-force characteristics of cities in the sample. Figure 2.2

illustrates the U.S. Census Bureau’s population estimates and the corresponding MSA-level

tonnage of departed cargo.

Figure 2.2: MSA Population and Departed Cargo Tonnage (2012Q4)

Hub Cities

Deregulation of airline passenger and cargo services in the late 1970’s brought about major

structural changes in the industry. As carriers were given the freedom to choose the mar-

kets they serve and how frequently they fly between airports, their operations and network

structures naturally conformed to a more efficient hub-and-spoke configuration (Borenstein
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[16]). The new hub features of certain cities could potentially alter the airport traffic and

urban growth relationships established in the literature. For example, hub cities that handle

the highest levels of passenger or cargo traffic in the nation are not necessarily cities that

have high-wage earners or strong concentrations of service-sector jobs (consider Atlanta, GA

and Memphis, TN as examples of passenger and cargo metro areas that fit this scenario)

(Discazeaux and Polese [40]). Therefore, hub cities potentially undermine the empirical links

drawn between employment and airport-traffic characteristics.

The route-level traffic data provided in the BTS T-100 Segment tables do not allow identifica-

tion of true origin (destination) volumes of passengers and freight; that is, local originations

cannot be distinguished from all enplanements (which include transit and intermediate-stop

traffic). Therefore any measurement of locally-generated traffic at major airports is pre-

cluded. Such differentiation is especially important at hubs, where unusually high levels

of traffic that cannot be explained by the features of the hub city are observed. The BTS

T-100 Market data would be a likely solution to this problem, since the data are claimed

to show true origins and destinations of enplaned passengers and freight. However, in the

event that a carrier’s flight number changes at a connecting airport, the data will show that

transported passengers (cargo) terminated their trip at that connection. Therefore, the data

associated with flight-number changes may be misreported. Even though the frequency of

such flight-number changes is not entirely clear, it presents a problem in the usage of the

T-100 Market data.

One solution to capture true originations would be to drop all hub airports (cities) for

passenger and cargo operations from the sample (Brueckner [18]). A problem with this

approach is that a city may contain both hub and non-hub airports. Therefore, selecting

only non-hub cities could weaken the representativeness of the sample. Another solution,

which is employed in this study, is to use a binary variable to indicate whether a city contains

at least one hub airport (HUB). If there are other non-hub airports in this city, HUB is scaled
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down to be a fraction of the city’s airports. Therefore, HUB will control for the connecting

passenger and cargo traffic at hub cities, which would otherwise not be explained by that

city’s characteristics.

The hub status of an airport is determined by the number of carrier-specific domestic points

it serves. Initially, an airport is considered a passenger (cargo) hub if an airline operating

at the airport flies to at least 25 (20) destinations in a given quarter. A k-means clustering

methodology is used to determine these points-served cutoffs, where 2 groups (hubs and non-

hubs) are chosen such that airport-carrier pairs are assigned to the group with the closest

mean number of destinations served. The methodology essentially assigns airport-carrier

pairs to the hub or non-group such that the within-group sum of squares is minimized.

Other considerations, such as established carrier focus cities, are taken to eliminate non-hub

cities that meet the initial hub-selection criteria. The chosen hubs are also cross-checked

for consistency with a sparse record of the airlines’ declared hub airports. FedEx Express

and UPS Airlines operate the first and second largest cargo hub airports (Memphis Intl.

and Louisville Intl.) in the country, respectively. As such, the two carriers are among the

top employers in their respective hub cities, Memphis, TN and Louisville, KY. Seeing that

the vast majority of the traffic departing from these hubs is through traffic, and that the

employment structure of the cities heavily depends on the hub operations, the corresponding

MSAs are dropped from the cargo samples.

Traffic Diversion

The literature presents evidence suggesting that passengers and shippers are attracted to

the enhanced services, network connections, facilities and lower prices that are provided by

airports in large metropolitan areas (Brueckner [18]; Alkaabi and Debbage [2]). In view of

the transportation amenities availed by big cities, passengers (freight forwarders) will forego
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travelling (shipping products) from the closest airport, using surface modes of transportation

to reach larger airports that are farther away and possibly in another metro area. This

traffic-diversion effect, also called a traffic-shadow effect, depresses the volume of passenger

and cargo traffic generated by a small metro area.

Therefore, to capture the degree to which passenger and cargo traffic are diverted from

small-to-large metro areas, a dummy variable (PROXIMITY ) is constructed. PROXIMITY

is equal to 1 if the smallest airport in a small MSA (an MSA that departs less than 300,000

passengers or 15,000 tons of freight annually) is within 150 miles of the largest airport in a

large MSA (an MSA that departs more than 5 million passengers or 175,000 tons of freight

annually). Figure 2.3 illustrates how the smallest airport in a small MSA may be within 150

miles of the largest airport in a large MSA, and potentially faces the traffic-diversion effect

sought to be captured by PROXIMITY.

Figure 2.3: Traffic Diversion from small-to-large metro areas

The small- and large-MSA classifications were also determined using k-means clustering

of the MSA-level traffic data. After creating 4 clusters (groups) based on departed-traffic

volumes, the mean and maximum values of the smallest cluster were used to define the small

and large MSA categories, respectively. Table 2.1 lists the sample MSAs that face traffic

diversion (PROXIMITY equal to 1). Cargo MSAs that are also facing passenger-traffic

diversion are shown in bold typeface.
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Table 2.1: List of MSAs Facing Traffic Diversion (PROXIMITY =1)

Passenger MSAs Cargo MSAs

Appleton, WI Albany-Schenectady-Troy, NY
Asheville, NC Allentown-Bethlehem-Easton, PA-NJ
Augusta-Richmond County, GA-SC Baton Rouge, LA
Bellingham, WA Birmingham-Hoover, AL
Bend, OR Brownsville-Harlingen, TX
Bloomington-Normal, IL Burlington-South Burlington, VT
Charleston, WV Cape Coral-Fort Myers, FL
Charlottesville, VA Cedar Rapids, IA
Chattanooga, TN-GA Charleston-N. Charleston-Summerville, SC
Deltona-Daytona -Ormond Beach, FL Dayton, OH
Evansville, IN-KY Decatur, IL
Fargo, ND-MN Dover, DE
Fayetteville, NC El Centro, CA
Flagstaff, AZ Flint, MI
Fort Wayne, IN Fresno, CA
Kalamazoo-Portage, MI Grand Forks, ND-MN
Killeen-Temple-Fort Hood, TX Huntington-Ashland, WV-KY-OH
Lafayette, LA Jackson, MS
Lansing-East Lansing, MI Kingsport-Bristol-Bristol, TN-VA
Lincoln, NE Lexington-Fayette, KY
McAllen-Edinburg-Mission, TX Madison, WI
Medford, OR Ocala, FL
Mobile, AL Pensacola-Ferry Pass-Brent, FL
Palm Bay-Melbourne-Titusville, FL Providence-New Bedford-Fall River, RI-MA
Peoria, IL Santa Barbara-Santa Maria-Goleta, CA
Poughkeepsie-Newburgh-Middletown, NY Savannah, GA
Rapid City, SD Springfield, MO
Saginaw-Saginaw Township North, MI Stockton, CA
Salinas, CA Tallahassee, FL
Scranton–Wilkes-Barre, PA Vallejo-Fairfield, CA
Shreveport-Bossier City, LA Wausau, WI
Sioux Falls, SD Wichita, KS
Toledo, OH
Wilmington, NC

Notes: Table shows sample MSAs that enplane less than 300,000 passengers (15,000 tons of freight) per
year, and are within 150 miles of a large MSA that enplanes more than 5 million passengers (175,000 tons
of freight) per year. MSAs facing both passenger- and cargo-traffic diversion are shown in bold typeface.
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Weather

In view of climate and weather preferences for industrial establishments, travel destinations,

and the location of transport facilities, controls for temperature are also included at the city

level. Weather data are downloaded from the National Oceanic and Atmospheric Admin-

istration’s (NOAA) Global Historical Climatology Network (GHCN ) [66]. The maximum

January temperature (JANTEMP), measured at airport GHCN stations, is collapsed to the

MSA level, and used to identify cities that are attractive to employment or leisure travel.

Given that warmer locations generally attract leisure travel, a positive sign is expected for

the JANTEMP coefficient in the passenger-traffic regressions. However, for air cargo traffic,

the sign on JANTEMP is ambiguous.

Fuel Price

The price of fuel is an important input cost for both passenger and cargo airlines; traditional

cost-structure studies have shown that a 10-percent increase in fuel price can raise total

costs by 1.6 (1.4) percent for passenger (cargo) carriers (Caves, Christensen, and Tretheway

[31]; Lakew [57]); Onghena, Meersman, and Van de Voorde [69]). Thus, the price of fuel

is naturally expected to have a direct impact on airline operations, while also having an

indirect impact on the economy of a metro area by changing its production capacity and

demand characteristics. While the data show the volatile oil prices observed over this studies

time period, it is important to directly capture the impact of this exogenously-determined

variable.

Data on fuel expenditures, for both passenger and cargo carriers, are obtained from the

DOT’s Form 41 Financial Schedule tables (P5.2 ) (BTS [25]). A quarterly varying fuel price

(FUELPRICE ) is calculated by dividing carrier expenses on fuel (for flying operations) by

the total gallons of air-fuels issued to the airlines. Figure 2.4 shows the fluctuation in fuel
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price over the sample period in this study. The peak-oil prices of July 2008 can be seen in

the figure, as well as the fall in oil prices that shortly followed. While the proposed fuel-price

measures may capture the aggregate impact of fluctuations in the price of oil, note that

there are carrier-specific differences in fuel-acquisition (including contracts that allow them

to avoid short-term price shocks), as well as differences in regional-fuel supply (Kiesling and

Hansen [54]; Greene [48]). Therefore, MSA fixed effect estimations are employed to control

for the latter factors that are otherwise unobserved.

Figure 2.4: Fuel Price (2003Q1 Dollars)

Panel

The choice for the start and end dates of this study’s panel is mainly driven by the availability

of the cargo-traffic data from the T-100 Segment tables. Due to a major BTS reporting-
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requirement change that took place in 2001-2002, the T-100 Segment tables contain complete

operations data (scheduled and non-scheduled) for the two biggest integrated carriers, FedEx

Express and UPS Airlines, starting from 2002 Quarter 1 and Quarter 4, respectively. Morrell

([61], p.2) noted that carriers have been required to report non-scheduled freight traffic as

scheduled traffic since 2003. Therefore, Quarter 1 of 2003 is chosen as the start date for

this study to prevent discrepancies that might exist during the traffic-reporting changes that

took place.

The panel is constructed with MSA cross-sections of quarterly data over the quarters 2003Q1

to 2012Q4. The airport-level traffic data are consolidated to their respective metro-areas

(MSA). The samples for this study are restricted to primary metro areas that enplane more

than 200,000 passengers (1,000 U.S. tons of freight) per year. Non-primary cities are excluded

from this study since they account for insubstantial amounts of passenger or freight traffic,

and could potentially bias estimation results if included. 200,000 enplanements, which is less

than 0.05 percent of total annual enplanements in the U.S., falls within the upper range of the

FAA’s primary airport classification. While the distribution of freight traffic is different from

passenger traffic, the 1,000-annual MSA tonnage cutoff is used to drop cities that account

for insignificant levels of goods enplanements. Note, however, that cities with relatively low

levels of passenger or freight traffic are still included in the sample, usually falling in the

group of MSAs that experience traffic diversion (summarized in Table 2.1). After collapsing

the airport-level data to MSAs and applying the above-mentioned restrictions to the data,

the passenger total and domestic samples are both comprised of 136 MSAs (cross-sections)

while the cargo total and domestic samples include 119-127 and 116-124 MSAs, respectively.

Note, due to missing data for some of the cargo MSAs, the number of cross-section in the

cargo sample vary between the cross-sectional and fixed effects specifications, as well as the

total and domestic samples. Table 2.2 provides definitions of variables in this study, and

Table 2.3 shows summary statistics for MSAs in the sample that meet these criteria.
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Table 2.3: Variable Summary Statistics

Sample: PASSENGER (4,149 obs.) CARGO (3,831 obs.)

Variables Mean Min. Max. Mean Min. Max.
PASSENGERS 1,058,896 31,147 14,354,804

DOMESTIC † 961,647 31,147 10,617,402

CARGO 28,248 57 851,576
DOMESTIC 16,57 107 232,984

CARGO-AC 24,219 0 844,278
DOMESTIC 14,244 0 227,607

POP 1,247,045 79,984 18,597,872 1,332,338 68,246 18,597,872
YOUNG 0.2751 0.2080 0.3853 0.2774 0.2130 0.3853
OLD 0.1743 0.0800 0.3226 0.1708 0.0800 0.3226

TOTEMP 585,821 36,738 8,862,150 626,400 35,954 8,862,150
SERV 0.6071 0.3980 0.8923 0.6104 0.3870 0.7852

PIF (Tradable) 0.1902 0.0605 0.3310 0.1931 0.0770 0.3310
Prof.-Business 0.1175 0.0370 0.2433 0.1182 0.0410 0.2433
Information 0.0195 0.0060 0.0605 0.0200 0.0070 0.0605
Financial 0.0532 0.0180 0.1728 0.0550 0.0230 0.1728

TLE (Non-Tradable) 0.4168 0.2680 0.7770 0.4172 0.2680 0.6645
Trade-Transp.-Util. 0.1835 0.1180 0.2945 0.1856 0.1180 0.2608
Leisure-Hospitality 0.1048 0.0640 0.4900 0.0995 0.0580 0.3205
Education-Health 0.1285 0.0650 0.2236 0.1322 0.0500 0.4144

MANUF 0.0857 0.0100 0.2261 0.0882 0.0100 0.2399
WAGE 675.98 435.60 1,611.82 686.87 435.60 1,611.82
UR 6.54 2.27 17.43 6.42 2.26 17.26

FUELPRICE 1.83 0.84 2.67 1.81 0.88 2.71
HUB 0.11 0 1 0.06 0 1
AIRPORTS 1.24 1 6 1.46 1 5
PROXIMITY 0.13 0 1 0.26 0 1
JANTEMP 8.61 -27.89 27.35 7.87 -27.89 27.35

Notes: Quarterly MSA summary statistics shown here (except for POP, YOUNG, OLD, HUB, and JAN-
TEMP, which are measured annually).
† Summary statistics of non-traffic variables in the domestic sample are not shown separately since the values
are very close to those of the total (international and domestic) sample.

The summary statistics in Table 2.3 show the wide distribution of both passenger and cargo

traffic across cities in the U.S. A smaller gap between total- and domestic-passenger traffic

is also evident, in comparison to the large disparity between total- and domestic-air cargo
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traffic. This difference suggests that a considerable portion of the air cargo traffic in the U.S.

is borne by international services (operated by U.S. or foreign carriers). Given the differing

passenger and cargo samples, the corresponding city-level socioeconomic measures also vary

slightly. While the city-size and employment levels of the cargo sample are larger than the

passenger sample, the sector-level employment concentrations of the samples are similar.

The non-tradable sector appears to dominate the workforce of most cities, particularly

in the area of trade, transport, and utilities (Trade-Transport-Util.). Some cities also ex-

hibit anomalous employment concentrations in leisure and hospitality (Leisure-Hospitality).

Most notably, leisure-and-hospitality employment accounts for 43 percent of Atlantic City-

Hammonton, NJ’s workforce. Other cities where the leisure and hospitality industry is

disproportionately represented include Las Vegas-Paradise, NV ; Myrtle Beach-North Myrtle

Beach-Conway, SC ; Gulfport-Biloxi, MS ; and Orlando-Kissimmee-Sanford, FL. While ex-

cluding cities with outlier-employment structures may be prudent, they are left in the study

in view of the MSA fixed effects that will be used to account for such city-specific differences.

Cities that have unreported data for employment in any of the chosen sectoral categories are

dropped from the sample. From the cities initially classified as hubs, Cincinnati-Middletown,

OH-KY-IN ; Chicago-Joliet-Naperville, IL-IN-WI ; Dallas-Fort Worth-Arlington, TX ; and

St. Louis, MO-IL are excluded for not meeting this full-employment data requirement.

2.3 Results

2.3.1 Passenger Traffic Results — A

The first regression in Table 2.4 essentially replicates the work of Brueckner [18] , using a

quarterly panel dataset. Following up with Brueckner’s suggestion, the period analyzed in

this paper (2003-2012) allows sufficient time for the restructuring of the deregulated industry
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to have taken place (The Airline Deregulation Act was passed by the U.S. Congress in 1978).

Contrary to Brueckner’s expectation, however, and consistent with the results of Discazeaux

and Polese [40], the cross-sectional results of this study (columns 1 and 4) indicate that

the demand characteristics of air travel have not changed significantly after deregulation.

The point estimates for POP, SERV and WAGE, and PROXIMITY are comparable to the

results found in Brueckner’s study. Treating SERV and higher wages as proxies for white

collar employment, Brueckner’s conclusion that the demand for air travel increases with

the concentration of white collar employment still holds. While Brueckner found manufac-

turing employment (representing blue collar jobs) to have a statistically insignificant effect

on passenger traffic, this study finds that increasing an MSA’s share of manufacturing em-

ployment actually depresses passenger travel (a statistically-significant result). Also, unlike

the strictly proportional relationship between city size and traffic that Brueckner found in a

cross-sectional analysis, the 0.9689 (0.9420) coefficients estimated for POP are significantly

different from 1 in this study (0.010 standard error), implying that passenger traffic does not

rise equally as fast as city population.

Since total employment in a city is proportional to population, the model shows how com-

positional shifts in sectoral employment affect passenger and cargo volumes at the corre-

sponding metro areas. For example, the coefficient on SERV reveals the extent to which an

increase in a city’s share of service employment, for an equivalent reduction in the excluded-

employment groups (non-service and non-manufacturing), would generate passenger or cargo

traffic. Since the excluded-employment sectors generate traffic themselves, a positive (nega-

tive) coefficient for SERV indicates that any decline in traffic is more than (less than) offset

by a gain in traffic from a higher service share. Therefore, the coefficient estimates for SERV

(MANUF ) indicate the degree to which service (manufacturing) employment can generate

traffic, relative to the non-service and non-manufacturing employment groups.
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Turning to the control variables, the exponentiated HUB and PROXIMITY coefficients

indicate that around 2.2 times as much traffic is flown through hub cities relative to their

non-hub counterparts, and around 47 percent of small-city passengers are diverted to large

airports in neighboring cities. As an important cost driver for airlines, FUELPRICE exhibits

the expected negative coefficient in all of the specifications. However, the coefficients on

FUELPRICE are insignificant, possibly due to the year dummies absorbing the impact of

the volatile oil prices in the sample period. Finally, the positive and significant coefficient

on JANTEMP is not surprising, as it implies that temperate-climate cities attract more air

passengers.

Given the panel structure of the data, this study provides new insights into air-travel demand

characteristics by controlling for the unique unobservable features of cities. Specifically, the

fixed effect estimates (in columns 2, 3, 5, and 6) account for unobserved and time-invariant

city features that may influence the determinants of air traffic. For example, a city’s dis-

tance from the center of the U.S. population (Texas County, Missouri according to the 2010

Census) affects the volume of air traffic since urban areas located closer to the population

centroid are preferred for airline-hub operations (Brueckner [19]). While the effect of a city’s

centrality is possibly accounted for by the HUB dummy, other uncaptured regional char-

acteristics, such as airport policies, facilities and transportation infrastructure, fuel supply,

and proximity to national boundaries (Discazeaux and Polese [40]), can impact air transport

considerably. Airfare levels (endogenously determined in the specified model) are affected by

the proximity of small sample cities to important business and leisure destinations. Small ur-

ban areas that are close to major destinations are expected to face lower airfares on average,

which in turn stimulates traffic (Brueckner [18]). Therefore, in a cross-sectional analysis,

the distance between certain city-pair markets is an unmodeled city feature that could po-

tentially bias coefficient estimates through its effect on fares. More pertinently to air cargo

transportation, access to transshipment nodes (sea ports, rail and truck terminals), ware-

house facilities, and customs brokerage services, are unobserved regional differences that
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affect goods movement. The fixed effect estimations are instrumental in controlling for these

characteristics that are unique to urban areas, while capturing the variation of socioeconomic

factors within cities to explain changes in the volume of air traffic. Hence, city-specific vari-

ables that are mostly constant over time (HUB, PROXIMITY, and JANTEMP) are dropped

in the fixed effects specifications, preventing singularity issues in the estimations.

Even though the POP coefficient is greater than unity in the fixed effects regressions (columns

2, 3, 5, and 6 in Table 2.4), suggesting that traffic rises faster than city size, linear-restrictions

tests show that the coefficient (approximately 1.17) is actually not significantly different

from 1. The SERV coefficient indicates that a 10 percentage-point increase in the share

of service-sector employment would increase total and domestic passenger enplanements by

around 0.20 percent, while the coefficient on WAGE shows that a 1-percent rise in a city’s

average weekly wages increases total (domestic) passenger by 0.32 (0.34) percent. In view of

air transport as a luxury good, an income-elasticity that is greater than 1 would be expected

from a demand relationship. However, the coefficient on WAGE, which is well below unity,

suggests that the predicted reduced-form relationship status of Equation 2.1 holds (Brueckner

[18]). Consistent with Brueckner’s [18] conclusions, unobserved supply-side factors (such as

higher fares in markets that connect wealthy cities) may weaken the income-elasticity that is

measured by the model. Still, the predicted impact of WAGE in this study is considerably

weaker than the unitary income-elasticity that Brueckner estimated. The results for SERV

and WAGE, together, suggest that urban affluence induces air traffic, and are consistent with

the implications of the negative sign of the unemployment-rate coefficient (UR). Interestingly,

a higher rate of unemployment (UR) appears to have a stronger dampening effect on domestic

traffic, compared to its effect on total traffic.

The sign on MANUF becomes positive in the fixed effects regressions, implying that a

given city’s total and domestic air traffic increase as more workers in that city join the

manufacturing workforce (coming from non-service occupations). However, the marginal
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effect size of this result suggests that a 10 percentage-point increase in MANUF results

in a mere 0.05 percent gain in total passenger traffic. Lastly, age-group shares (YOUNG

and OLD) are included to account for differences in the labor-force size of cities, as well as

changes in the labor-force structure within cities over time. The results suggest that the OLD

age group (mostly retired) has a higher demand for air travel, possibly reflecting the group’s

high propensity for leisure travel. Elderly travelers (known as Snowbirds) that seasonally

migrate between colder and warmer regions may account for considerable increases in air

travel, especially in cities where a high concentration of retirees reside.3 The cross-sectional

results, however, exhibit the expected negative signs on the YOUNG and OLD coefficients,

consistent with hypothesis that MSAs with a larger share of their population in the labor

force (20-59 age group) require more air-travel services.

Columns 3 and 6 also provide the coefficients for the fixed effects estimations, but with stan-

dard errors (SE ) that are clustered around the cross-section MSAs. The clustered standard

errors account for heteroscedasticity across cities, while controlling for potential correlation

in the residuals within cities over time. Evidently, the significance of the coefficients on POP,

SERV, and WAGE are robust to the strict requirements of the clustered standard errors.

Therefore, the findings that hold in the robust total- and domestic-regressions of Table 2.4

are as follows: (1) traffic is proportional to city size, and (2) service-sector employment,

along with higher wages (white collar jobs), increases demand for passenger air travel. The

fixed effects results also confirm that the unobserved effects marginally discount the effect

of city size (POP), and inflate the impact of service-sector employment and wages.

2.3.2 Passenger Traffic Results — B (Service Disaggregated)

Bearing in mind the diversity of industry groups within the service sector, tradable services

(PIF ) are separated from non-tradable services (TLE ), following Sheard [82]. The traditional

3The author thanks Nicholas Sheard for this insight.
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expectation is that employees in tradable-service establishments demand higher air-transport

services while also benefiting the most from agglomeration economies that are harnessed

from a city’s improved air services (Sheard [82]; Rosenthal [76]; Brueckner [19]). The cross-

sectional results for total and domestic passenger traffic in Table 2.5 confirm this expectation,

exhibiting a positive and significant coefficient for PIF that is larger than the coefficient for

TLE (statistically significant: standard error = 0.385). A 10-percentage point increase in the

share of tradable (non-tradable) employment services increases total passenger enplanements

by 0.36 (0.21) percent.

It is interesting to note, however, that the effect sizes are reversed when MSA fixed ef-

fects are applied. Now, an increase in a city’s employment share of non-tradable services

has a stronger impact on passenger traffic than the same increase in a city’s employment

share of tradable services (statistically significant difference: standard error = 0.395). The

corresponding coefficient estimates, which are also statistically significant in the clustered

standard-error specifications, may indicate that an increase in a city’s provision of leisure,

hospitality, trade, and transport services are reasonably important determinants of tourism

and commerce-related air travel. Considering that jobs in the Leisure and hospitality indus-

tries are generally confined to a particular location, they are strictly defined as non-tradable

in this analysis. However, services (e.g., retail, dining, lodging, entertainment, etc.) pro-

vided in these industries have a distinctive and potentially substantial impact on leisure travel

and tourism ([82]). The Trade, transport, and utilities industries also include employment

in transportation-related services, which conceivably have a considerable correlation with

business and trade-related air transport. Therefore, the relatively stronger impact of non-

tradable services on passenger traffic (compared to tradable services) may largely be driven

by location-specific jobs that share unique relationships with tourism and air transport.

The traffic impact of the remaining variables in the fixed effects analysis do not change.

The domestic-only traffic results (columns 4-6) also continue to exhibit comparable results
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to the total traffic. The domestic-only traffic results (columns 4-6) also continue to exhibit

comparable results to the total traffic.

Table 2.4: Passenger Traffic — A

PASSENGERS Total (Domestic & International) Domestic

(1) Pooled (2) Fixed (3) FE, (4) Pooled (5) Fixed (6) FE,
OLS Effects (FE) Clust. SE OLS Effects (FE) Clust. SE

INTERCEPT -7.3030a -6.2987a -6.2987 -6.7057a -6.5538a -6.5538
(11.653) (4.840) (1.560) (10.846) (5.045) (1.617)

POP 0.9689a 1.1660a 1.1660a 0.9420a 1.1694a 1.1694a

(93.645) (12.416) (3.988) (93.010) (12.496) (3.979)

SERV 2.4924a 2.0218a 2.0218a 2.4394a 2.0315a 2.0315a

(16.572) (11.126) (3.392) (16.669) (11.158) (3.416)

MANUF -5.6215a 0.5228c 0.5228 -5.2944a 0.4588 0.4588
(26.624) (1.717) (0.600) (25.942) (1.507) (0.527)

WAGE 1.2010a 0.3210a 0.3210b 1.1519a 0.3366a 0.3366b

(17.358) (4.940) (2.297) (16.911) (5.198) (2.426)

UR -0.0093c -0.0039c -0.0039 -0.0095c -0.0054b -0.0054
(1.755) (1.668) (0.662) (1.828) (2.311) (0.922)

YOUNG -4.5123a -1.3526 -1.3526 -4.2647a -1.2195 -1.2195
(8.319) (1.355) (0.445) (7.935) (1.234) (0.401)

OLD -4.6511a 1.2975c 1.2975 -4.5498a 1.6754b 1.6754
(8.001) (1.648) (0.545) (7.854) (2.128) (0.705)

FUELPRICE -1.2178 -0.3519 -0.3519 -1.0738 -0.3108 -0.3108
(0.718) (0.879) (1.404) (0.648) (0.779) (1.242)

HUB 0.8017a 0.8100a

(26.971) (28.021)

PROXIMITY -0.6427a -0.6506a

(25.926) (26.830)

JANTEMP 0.0051a 0.0044a

(4.598) (4.197)

Adj. R2 0.8944 0.9940 0.9940 0.8943 0.9937 0.9937
Observations 3807 3955 3955 3807 3955 3955

Notes: PASSENGERS, POP, WAGE, and FUELPRICE are in natural logs.
Sample is restricted to MSAs enplaning more than 200,000 passengers per year.
Dummies for years and quarters are suppressed.
Absolute t-statistics in parenthesis: (1), (2) based on robust standard errors; (3) based on clustered standard
errors: ap < 0.01; bp < 0.05; cp < 0.10.
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Table 2.5: Passenger Traffic — B (Service Disaggregated)

PASSENGERS Total (Domestic & International) Domestic

(1) Pooled (2) Fixed (3) FE, (4) Pooled (5) Fixed (6) FE,
OLS Effects (FE) Clust. SE OLS Effects (FE) Clust. SE

INTERCEPT -6.4598a -6.4720a -6.4720 -5.7450a -6.7092a -6.7092
(10.043) (4.926) (1.555) (9.120) (5.114) (1.608)

POP 0.9554a 1.1662a 1.1662a 0.9267a 1.1696a 1.1696a

(88.621) (12.371) (3.898) (87.360) (12.453) (3.900)

PIF 3.5640a 1.3784a 1.3784c 3.6607a 1.4545a 1.4545c

(11.337) (4.932) (1.826) (11.875) (5.200) (1.927)

TLE 2.1401a 2.3372a 2.3372a 2.0380a 2.3143a 2.3143a

(11.918) (9.398) (2.875) (11.699) (9.258) (2.824)

MANUF -5.8569a 0.4513 0.4513 -5.5625a 0.3946 0.3946
(26.628) (1.487) (0.518) (25.955) (1.300) (0.454)

WAGE 1.0711a 0.3423a 0.3423a 1.0038a 0.3558a 0.3558a

(14.205) (5.266) (2.376) (13.669) (5.487) (2.477)

UR -0.0025 -0.0050b -0.0050 -0.0018 -0.0064a -0.0064
(0.471) (2.116) (0.801) (0.339) (2.696) (1.022)

YOUNG -4.2438a -1.2687 -1.2687 -3.9588a -1.1443 -1.1443
(7.605) (1.269) (0.416) (7.148) (1.156) (0.375)

OLD -4.3225a 1.3564c 1.3564 -4.1754a 1.7282b 1.7282
(7.257) (1.733) (0.570) (7.037) (2.207) (0.728)

FUELPRICE -1.0960 -0.3934 -0.3934 -0.9350 -0.3480 -0.3480
(0.648) (0.986) (1.570) (0.566) (0.875) (1.384)

HUB 0.7820a 0.7876a

(26.808) (27.899)

PROXIMITY -0.6276a -0.6334a

(25.076) (25.917)

JANTEMP 0.0043a 0.0035a

(3.724) (3.193)

Adj. R2 0.8949 0.9940 0.9940 0.8951 0.9937 0.9937
Observations 3807 3955 3955 3807 3955 3955

Notes: PASSENGERS, POP, WAGE, and FUELPRICE are in natural logs.
Sample is restricted to MSAs enplaning more than 200,000 passengers per year.
Dummies for years and quarters are suppressed.
Absolute t-statistics in parenthesis: (1), (2) based on robust standard errors; (3) based on clustered standard
errors: ap < 0.01; bp < 0.05; cp < 0.10.
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2.3.3 Cargo Traffic Results — A

Despite the difficulties in tracing the movement of air cargo goods, due to data limitations,

Table 2.6 and Table 2.7 show some clear patterns of how a city’s socioeconomic factors affect

demand for air cargo traffic.

Starting with the cross-sectional results, total (domestic) traffic appears to grow less than

proportionally with city size, as shown by the 0.850 (0.847) coefficient on POP, which is

significantly different from unity. In comparison to the corresponding results for passenger

traffic, the large coefficient on HUB implies that air cargo operators funnel a substantial share

of their traffic through hub cities (around 11 times as much compared to non-hubs). As per

Kiesling and Hansen’s [54] claim, air freighters typically employ a relatively small number

of hub airports in their network, but consolidate, sort, and transfer a larger proportion of

their traffic through those hubs compared to passenger carriers. Thus, it is also unsurprising

to see a stronger traffic shadow effect for air cargo traffic (consistent with Alkaabi and

Debbage [2]), indicating that around 66 percent of cargo traffic is diverted from small to large

MSAs. This finding is reasonable in view of the limited and inflexible set of transport-facility

choices available for shippers and freight forwarders, in comparison to alternative-airport

choices that passengers usually have. Unlike passenger traffic, the negative and significant

coefficient on JANTEMP indicates that warmer regions enplane less cargo traffic. The

spatial distribution of the manufacturing-employment concentration supports this finding,

since the highest shares of manufacturing employment are found in regions that experience

colder winter seasons.

In the fixed effects estimations, the coefficient on POP indicates that air cargo traffic is

actually proportional to population. Therefore, for a given city, a 1-to-1 relationship is

expected between its population growth and enplaned cargo traffic. The results also show

that a 10 percentage-point increase in MANUF leads to a 0.48 (0.83) percent growth in total
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(domestic) cargo traffic. The coefficient estimates for MANUF in the domestic sample is

also significant (although only marginally) for the regressions using clustered standard errors

(column 6). While shifting a city’s labor force towards service jobs induces passenger traffic,

the corresponding impact on cargo traffic lacks statistical significance when unobserved city

features are controlled in the fixed effects estimations. The negative and significant UR

coefficient, however, suggests that growth in the unemployment rate of a city reduces its

domestic cargo enplanements. Although this finding only holds for domestic-cargo traffic, it

is consistent with the passenger-traffic findings, and supports the notion that economically-

stable urban areas generate more traffic. Further, although statistically insignificant, the

sign of the coefficient on WAGE implies that the demand for cargo services is elastic with

respect to income.

The YOUNG and OLD age-group shares also exhibit the expected negative impact on cargo

traffic in the cross-sectional results. However, the positive and significant coefficient on

YOUNG in the fixed effects estimations was not anticipated. The remaining fixed effects

variable coefficients mostly exhibit the expected signs, but prevent any conclusions from

being drawn due to their statistical insignificance.

2.3.4 Cargo Traffic Results — B (Service Disaggregated)

Table 2.7’s cross-sectional results show that the employment share of non-tradable services

has a stronger impact on total and domestic cargo traffic, compared to the share of tradable

services. In contrast, recall that passenger traffic is more elastic with respect to the share of

tradable-service employment. Thus, in view of the industries that make up the non-tradable

service categories (particularly the trade, transport, and utilities category), the results pos-

sibly imply that air cargo enplanements are sensitive to the concentration of establishments

that provide the needed transportation infrastructure and labor capacity to support goods
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movement. The fixed effects estimations in Table 2.7 show similar patterns observed in Table

2.6, where the shares of service employment are insignificant, and manufacturing employment

emerges as an important driver of air cargo traffic.

The poor performance of the fixed effect estimations in the results summarized in Tables

2.6 and 2.7 might be explained by the underlying cargo-data problems. While the issue of

unknown true originations is also shared by the data for passenger traffic, the circuitous

nature of air-goods movement makes it more difficult to associate cargo traffic with geo-

graphical areas. Thus, drawing a link between metro-area socioeconomic characteristics and

air cargo traffic is clearly a challenge with the segment-level traffic data that are available.

The insignificant coefficient estimates obtained by using clustered standard errors for cargo

traffic (in columns 3 and 6) indicate that the data gaps may be too wide, precluding robust

estimations of the impact of key socioeconomic variables.

The suppressed year- and quarter-dummy coefficients are insignificant in all of the regres-

sions related to cargo traffic. However, in the passenger-traffic regressions, the coefficients

on the second and third quarter dummies are positive and significant in all of the speci-

fications, suggesting that higher traffic levels are observed in those quarters compared to

the first (excluded) quarter. The year dummies are all insignificant in the passenger-traffic

regressions.
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Table 2.6: Cargo Traffic (All-Cargo and Passenger-Cargo Services) — A

CARGO Total (Domestic & International) Domestic

(1) Pooled (2) Fixed (3) FE, (4) Pooled (5) Fixed (6) FE,
OLS Effects (FE) Clust. SE OLS Effects (FE) Clust. SE

INTERCEPT -1.1635a -6.9841 -6.9841 -3.2895a -9.2589b -9.2589
(17.220) (1.561) (0.547) (2.779) (2.407) (0.783)

POP 0.8500a 0.9996a 0.9996 0.8470a 1.2937a 1.2937
(40.328) (2.748) (0.884) (46.635) (4.455) (1.349)

SERV 3.2279a 0.4411 0.4411 3.9007a -0.0381 -0.0381
(13.746) (0.794) (0.271) (19.207) (0.081) (0.025)

MANUF -2.6701a 4.8727a 4.8727 -2.880a 8.2559a 8.2559c

(4.963) (3.723) (0.926) (6.974) (6.535) (1.649)

WAGE 0.0025 0.2696 0.2696 -0.0550 0.1239 0.1239
(0.015) (1.367) (0.726) (0.403) (0.684) (0.358)

UR -0.0140 -0.0089 -0.0089 -0.0209b -0.0197a -0.0197
(1.326) (1.304) (0.544) (2.322) (3.281) (1.420)

YOUNG -5.0586a 6.6734c 6.6734 -0.6773 -0.2228 -0.2228
(4.170) (1.712) (0.496) (0.606) (0.079) (0.023)

OLD -8.6354a -11.9114a -11.9114 -5.2752a -4.5171b -4.5171
(9.504) (4.967) (1.395) (6.534) (2.139) (0.589)

FUELPRICE 0.761 0.3158 0.3158 1.5159 0.7474 0.7474
(0.233) (0.227) (0.348) (0.536) (0.548) (0.724)

HUB 2.3931a 2.2485a

(26.948) (30.741)

PROXIMITY -1.1068a -0.8339a

(25.565) (22.929)

JANTEMP -0.0097a -0.0164a

(4.217) (8.633)

Adj. R2 0.7134 0.9541 0.9541 0.7473 0.9535 0.9535
Observations 3407 3623 3623 3375 3558 3558

Notes: CARGO, POP, WAGE, and FUELPRICE are in natural logs.
Sample is restricted to MSAs enplaning more than 1,000 tons of freight per year.
Dummies for years and quarters are suppressed.
Absolute t-statistics in parenthesis: (1), (2) based on robust standard errors; (3) based on clustered standard
errors: ap < 0.01; bp < 0.05; cp < 0.10.
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Table 2.7: Cargo Traffic — B (Service Disaggregated)

CARGO Total (Domestic & International) Domestic

(1) Pooled (2) Fixed (3) FE, (4) Pooled (5) Fixed (6) FE,
OLS Effects (FE) Clust. SE OLS Effects (FE) Clust. SE

INTERCEPT -2.5955c -6.491 -6.491 -5.3583a -10.0938a -10.0938
(1.850) (1.453) (0.527) (4.280) (2.758) (0.900)

POP 0.8824a 0.9832a 0.9832 0.8938a 1.3738a 1.3738
(39.982) (2.700) (0.885) (48.729) (4.944) (1.490)

PIF 1.4425a 1.3736 1.3736 1.3082a -0.1388 -0.1388
(3.189) (1.374) (0.463) (3.111) (0.154) (0.048)

TLE 3.9698a 0.0487 0.0487 4.9713a 0.3066 0.3066
(11.086) (0.069) (0.030) (15.199) (0.524) (0.200)

MANUF -2.4601a 5.0194a 5.0194 -2.5759a 8.1948a 8.1948
(4.612) (3.741) (0.935) (6.265) (6.360) (1.596)

WAGE 0.1992 0.2325 0.2325 0.2293 0.0983 0.0983
(1.164) (1.181) (0.625) (1.560) (0.545) (0.284)

UR -0.0203c -0.0068 -0.0068 -0.0299a -0.0210a -0.021
(1.917) (0.934) (0.387) (3.296) (3.209) (1.326)

YOUNG -5.5432a 6.6401c 6.6401 -0.0166 -0.4613 -0.4613
(4.601) (1.703) (0.494) (0.015) (0.164) (0.048)

OLD -9.2891a -12.3669a -12.3669 -6.2249a -5.2912b -5.2912
(9.989) (5.121) (1.445) (7.516) (2.502) (0.685)

FUELPRICE 0.6193 0.3456 0.3456 1.3167 0.738 0.738
(0.190) (0.249) (0.385) (0.468) (0.543) (0.731)

HUB 2.3398a 2.1708a

(26.622) (29.472)

PROXIMITY -1.0394a -0.8669a

(26.479) (24.171)

JANTEMP -0.0080a -0.0139a

(3.473) (7.234)

Adj. R2 0.7149 0.9543 0.9543 0.7513 0.9536 0.9536
Observations 3407 3633 3633 3375 3568 3568

Notes: CARGO, POP, WAGE, and FUELPRICE are in natural logs.
Sample is restricted to MSAs enplaning more than 1,000 tons of freight per year.
Dummies for years and quarters are suppressed.
Absolute t-statistics in parenthesis: (1), (2) based on robust standard errors; (3) based on clustered standard
errors: ap < 0.01; bp < 0.05; cp < 0.10.
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2.3.5 Multicollinearity

Total passenger traffic appears to increase less than proportionally to POP in the cross

sectional analysis (column 1 of 2.4), but only because SERV also increases with POP ; when

SERV is removed from the specification, traffic is actually proportional to POP.4 Therefore,

the POP coefficient is less than unity in the cross sectional results due to multicollinearity

with the SERV measure. This finding only holds for total passenger traffic, however. In the

cross sectional analysis, the remaining traffic measures (Domestic Passenger, Total Cargo,

and Domestic Cargo) all increase less than proportionally to POP, even when SERV is

removed from their respective specifications. Therefore, when multicollinearity is controlled,

most of the cross sectional analysis results remain unchanged. The proportional relationship

that is found between total passenger traffic and population, however, is consistent with

equivalent fixed effects estimation result (where the identifying variation comes from within-

city changes over time).

Multicollinearity is concerning in the disaggregated service specifications, where a corre-

lation between tradable (PIF ) and non-tradable (TLE ) service employment shares may be

suspected. The plots shown in Figure 2.5, however, demonstrate that the correlation between

these two groups is minimal in both passenger and cargo samples. Even so, the disaggregated

service regressions were run with only one of these service measures, as well as with MANUF

removed. The results in these test regressions indicate that the estimated coefficients for

PIF and TLE are robust to varying specifications, abating the multicollinearity concerns.

4MANUF exhibits no correlation with POP. See Appendix for scatter plots showing the relationship
between POP, SERV, and MANUF.
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Figure 2.5: Tradable (PIF) versus Non-tradable (TLE) Employment Shares

2.4 Conclusion

While the variation of socioeconomic factors across U.S. cities has been used to understand

demand for passenger and cargo air traffic, this study, using a fixed effects specification,

provides the first evidence showing how changes in population, employment structure, and

income affect airport traffic. Despite the considerable restructuring that the airline industry

has endured since deregulation, including significant advancements in technology and the

events of September 11, 2001, the impact of metro-area population and employment-structure

on airport passenger enplanements mostly remain unchanged.

Consistent with past findings on the regulated industry, city size is found to have a nearly

proportional relationship with air traffic. While white collar employment remains an im-

portant determinant of the demand for air travel, the income-elasticity of passenger traffic

appears to be attenuated. Contrary to cross-sectional findings, as well as traditional views,
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the city fixed effects estimations of this study show that employment growth in non-tradable

services has a larger impact on passenger traffic, compared to growth in tradable services.

These findings are reversed for air cargo traffic, where tradable (non-tradable) services ex-

hibit a stronger influence on demand in the cross-sectional (fixed effects) analysis. However,

the qualitative results showing the impact of sectoral employment on air cargo traffic render

statistical significance only in the cross-sectional analyses, where city-specific differences are

not controlled. Taken together, the results suggest that employment concentration in non-

tradable service jobs (presumably those related to leisure, hospitality, trade, transport, and

utilities) have substantial impact on airport traffic.

In summary, both passenger and cargo traffic are found to grow proportionally with metro-

area population, while a shift that increases the share of service (manufacturing) employment

in a city has considerable impact on passenger (cargo) traffic. The statistical significance

of the results show that city-level socioeconomic effects on passenger traffic are robust to

specifications that allow for heteroscedasticity and autocorrelation in the error structure.

However, most of the corresponding results for air cargo traffic do not pass the error-structure

robustness checks. A worthy challenge for future research is to repeat the present exercise

with more accurate data on cargo movement.
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Chapter 3

Determinants of Air Cargo Traffic in

California

3.1 Introduction

The air cargo industry is seldom brought up in the literature without mention of its remark-

able growth and its importance to global trade and commerce. The rapid maturation of

air cargo markets in the 1990’s led industry analysts to project an average 5-percent annual

growth in domestic air cargo traffic between 1998 and 2017 (FAA [43]; Boeing [14]).1 This

pace of growth also instilled great concern in California’s policy makers and airport planners,

seeing that four of California’s international hubs, Los Angeles (LAX ); Metropolitan Oak-

land (OAK ); San Francisco (SFO); Ontario (ONT ), rank amongst the country’s top sixteen

airports in handling cargo tonnage.2 Regional and state-wide studies have mostly been inter-

1The FAA’s March 2000 long-range forecasts [43] anticipated air-freight revenue ton miles to increase
from 26.6 million to 36.5 million by 2005, and to 48.4 million by 2010.

2Ranks are based on our calculation of airport shares of all outbound cargo from airports in the United
States. For the years 2003-2009, national ranks of the four airports are as follows: (4) LAX ; (12) SFO ; (13)
OAK ; (16) ONT. Data source: Bureau of Transportation Statistic (BTS), T-100 Segment tables.
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ested in assessing the impacts of increased air cargo traffic on the state’s economy and, more

immediately, on the capacity constraints faced by airports that already handle high volumes

of cargo (TranSystems [87]; Tsao [88]; BAEF [5]; BAEF [6]; Erie, Mckenzie, MacKenzie, and

Shaler [42]).3 While the expansion of air cargo transportation initiated numerous studies on

the role of goods movement by air, current numbers show that the growth of air cargo traffic

in California has slowed down markedly over the 2000-2009 period (TranSystems [87]). The

slowing of both outbound and inbound air cargo traffic is especially revealed at California’s

major airports.

California’s air cargo demand was comprehensively explored by a TranSystems report [87]

prepared for the state’s Department of Transportation (Caltrans). The report underscored

the industrial, demographic, and geographical diversity of California’s economic zones, ad-

vising transportation planners to attune their air cargo demand forecasts to changes in the

unique economies of the regions served by the state’s airports. Therefore, a valuable ag-

gregative question that arises is how the total air cargo traffic at airports in California is

affected by the characteristics of the corresponding metropolitan economies.

At the national scale, Brueckner [18] examined the effect of metro-level socioeconomic and

demographic factors on air-passenger transport, using data for 1970 (eight years prior to the

deregulation of the airline industry). Alkaabi and Debbage [2] attempted to find specific em-

ployment, establishment, and wage variables that explain the geographic distribution of air

freight in 2003. More recently, Button and Yuan [29] addressed the issue of causality between

air freight transportation and regional economic development. Our research aims to extend

the foundational work of these studies while addressing the research needs, as highlighted

by the TranSystems [87] report, for understanding how regional economies impact air cargo

traffic in California. Hence, this paper will examine the socioeconomic determinants of out-

3Economic reports published in 2000 by the Bay Area Economic Forum (Air Transport and the Bay Area
Economy-Phase 1 and 2 ) [6, 42] expected air cargo volume at SFO, OAK, and SJC to grow an annual
average of 6 percent, between 2000 and 2020.
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bound total and domestic air cargo traffic for a sample of 22 airports across 15 metropolitan

areas in California, using seven years of quarterly data (2003-2009). Based on the key-traffic

determinants identified in this study, and using county-level economic forecasts prepared for

Caltrans as input data, we give insights into the expected short- and long-term growth in

the state’s cargo tonnage.

Consistent with the past literature, we find empirical evidence confirming a direct relation-

ship between metropolitan socioeconomic factors and air transport. Specifically, we show

manufacturing and service-related employment have a considerable impact on air cargo traf-

fic. Despite the sharp fall of high-technology manufacturing employment, subsequent to the

collapse of the internet bubble in 2000, California’s manufacturing firms are believed to still

be important drivers of traffic. The role that other employment areas play in determining air

cargo demand is also expected to be nontrivial, although not as clear a priori. Our results

demonstrate that, analogous to the passenger-air travel literature, metropolitan character-

istics such as city size, income, age distribution, and hub operations have a sizeable impact

on air cargo traffic. These findings can be used to inform policies related to airport expan-

sion, and to gain some understanding of the demand and spatial distribution of air cargo

in California. We also provide metro-level traffic forecasts for the 2010-2040 period, which

indicate that California’s volume of total (domestic) air cargo will grow at an average rate

of 5.9 percent (4.4 percent) per year.
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3.2 Background

The air cargo industry has markedly expanded since its deregulation in 1977.4 Although

the regulatory reforms affecting air freighters set a precedent for the imminent deregulation

of passenger airlines, the air cargo industry has not received its deserved attention in the

literature (Bailey [7]; Carron [30]). The relatively small modal share of cargo tons that are

flown by airlines and the sparse nature of the data on air cargo operations have left the

economic impact of air cargo transportation mostly overlooked in earlier studies. Shortly

after Tsao’s [88] report on California’s air-goods movement brought attention to the paucity

of air cargo studies for the state, several research reports unequivocally corroborated the value

of air cargo to California’s economy and international trade (BAEF [5]; Hansen, Gosling,

and Rice [49]; Erie et al. [42]; SCAG [79]). These reports have drawn more attention to the

importance of air cargo transportation in California as researchers also consider the value-

to-weight ratio of transported goods to capture the economic impact of air cargo operations

(TranSystems [87]).

Although Tsao [88] outlined the many research gaps in understanding the role of air cargo

in California’s goods movement, the authors of the TranSystems [87] report point to the fact

that the existing literature, albeit thin, has addressed the effects of air freight on Califor-

nia’s economy. The TranSystems report cited works as early as the 1988 California State

World Trade Commission study, which was first to note that more than half of the state’s

export-trade goods, measured by value, are transported by air. Therefore, it has long been

recognized that air cargo plays a key role in California’s export economy.

4The difference between air cargo and air freight should be distinguished as they are sometimes used
interchangeably in the literature. According to the Airport Council International (ACI ), air cargo is defined
as the sum of freight, mail, and passenger baggage revenue tons. This definition is consistent with the U.S.
Department of Transportation’s and Government Printing Office’s description of air freight as only being
property (excluding express, mail and passenger baggage) that is transported by air.
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By transporting high-value goods, air cargo accounts for a significant share of the value of

California’s commodity exports. The Boeing Company’s World Air Cargo Forecast 2012-

2013 (Boeing [15]) estimates that goods transported by air are generally worth more than

$7.26 per pound ($16 per kilogram). According to the Foreign Trade Division of the U.S.

Census Bureau statistics prepared by WISERTrade, goods flown by air between 1998 and

2008 accounted for just over half of the state’s $1.240 trillion export of commodities (Tran-

Systems [87]). Commodities transported by air, depending on city-pair markets, include

express shipments, small packages, electronics (computers, telecommunication equipment,

and machinery), pharmaceutical products, specialized equipment, and perishables (Boeing

[15]). Therefore, California’s international airports are pivotal in connecting the state’s

manufacturing and service-related businesses to markets overseas, particularly those in the

Pacific Rim countries.

International trade and air cargo operations are facilitated by multilateral agreements, which

relax constraints on route designations, service frequencies, and pricing. These arrangements

came about during the air cargo liberalization period of the 1990’s, which enhanced bilat-

eral treaties through agreements such as Open skies (Zhang and Zhang [89]). Zhang and

Zhang [89] addressed matters related to liberalization of air cargo services by giving a general

overview of approaches to liberalization and by outlining the U.S. Open skies initiatives with

their resulting liberalization movements in bilateral and multilateral air-service agreements.

The authors also discussed the underlying issues of jointly liberalizing agreements for pas-

senger and cargo services. Zhang and Zhang [90] developed a multi-market oligopoly model

for air cargo liberalization to understand how all-cargo and mixed passenger-cargo carriers

compete.

The aforementioned studies on the impact of air traffic on California’s economy mirror the in-

clination of the national-level research, especially with regard to passenger airlines. Studies

have drawn connections between passenger-airline service and employment in metropoli-
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tan areas (Oster, Rubin, and Strong [71]; Button and Taylor [28]; Debbage and Delk [39];

Brueckner [19]; Alkaabi and Debbage [1]; Green [47]), suggesting that growth in air traffic is

associated with the economic development of metro areas. Brueckner [19], Green [47], and

Sheard [82] show that growing passenger numbers at an airport stimulate service-related

employment in the corresponding metropolitan area. Their findings can be used to evaluate

the effects of airport expansion on urban economic development.

The purpose of the present study is to measure the effect of a city’s socioeconomic variables on

aggregate air cargo traffic at metropolitan areas in California. In addition to identifying the

baseline-socioeconomic features of cities that influence air cargo volume, this study will also

address the traffic impact of city-level employment composition. While a similar examination

of all U.S. cities would be useful, and more generalizable, the size and unique economic

characteristics of California suggest that a state-level analysis is also appropriate.5 Further,

successful air cargo operations must maintain a balance between outbound and inbound

loads, even while the transported products are significantly different. California provides a

sufficiently-large market for carriers to comfortably meet this condition.6

3.3 Data and Empirical Framework

By associating airports to their corresponding metro areas, we can assess the impact of

urban-socioeconomic factors on outbound air cargo traffic (total and domestic) across cities

in California. Hence, the dependent variable for our model is the total cargo tons (freight

and mail) that is flown from airports in chosen metro areas. The cargo tons carried by

aircraft operating at the airports in our sample are obtained from the U.S. Department of

Transportation’s (DOT) Form 41 Traffic T-100 Segment tables [24], which can be found

on the Bureau of Transportation Statistics (BTS) website. Freight and mail volumes are

5See Lakew [56] and Alkaabi and Debbage [2] for national-level studies of air cargo traffic determinants.
6We thank an unnamed conference proceeding referee for this insight.
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aggregated to the metro-area level by carrier-service type (all-cargo and passenger-cargo).

Using these data, we constructed a panel that has metropolitan-area cross-sections and

quarter periods, over 7 years (2003 to 2009). Since the largest integrator, FedEx Express,

did not report complete data on its freight volumes to the DOT until Quarter 4 of 2002, our

sample begins in Quarter 1 of 2003. FedEx Express also does not sufficiently differentiate

between freight, express freight, and mail in the data (Form 41 Traffic) [87]. Accordingly,

we analyze the two outputs of the industry (freight and mail) together as cargo.

Our metro-area definitions are based on the 2009 metropolitan and micropolitan statistical

area (MSA) delineations created by the U.S. Office of Management and Budget (OMB).

Under the umbrella of Core Based Statistical Areas (CBSA), metro areas correspond to

urban regions containing more than 50,000 people, while micro areas contain between 10,000

and 50,000 people. This level of aggregation is chosen for our study’s socioeconomic variables,

as well as most of the aforementioned studies, since the inherent geographical definition of

the areas is based on a consolidation of counties that contain the core-urban population and

maintain high levels of socioeconomic interactions (Census [34]).

We then classified the cargo-airport cities in our base sample analogously to the Federal Avi-

ation Administration’s (FAA) passenger primary-airport classification. The FAA maintains

a 10,000-passenger enplanement cutoff for separating primary airports from the smaller non-

primary airports. Similarly, we restricted our sample to cities that depart more than 50 U.S.

tons (100,000 lbs.) of freight annually (consistent with cutoff used by Alkaabi and Debbage

[2]). This cutoff eliminates noisy data that may arise from including cities that account for

insubstantial amounts of freight traffic. Hence, our sample is restricted to approximately 22

primary airports, contained in 15 MSAs across California. The exact number of MSAs in

our sample varies over the periods and regression specifications of our study. The airports

and MSAs represented in our study are summarized in Table 3.1.
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Figure 3.1 illustrates the geographical distribution of California’s population (in 2009) and

cargo airports.7 15 of the 26 California MSAs are included in our sample.

Figure 3.1: Cargo airports and MSA Population of California (2009)

Industry-specific socioeconomic variables on employment, number of establishments, and

average weekly wages are collected from the U.S. Department of Labor’s Bureau of La-

bor Statistics (BLS) Quarterly Census of Employment and Wages (QCEW ) [12], at the

MSA level. The data were organized into high-level groups, Goods-producing and Service-

providing, from which we select the following employment categories to calculate industry-

7The map in this figure (as well as the subsequent ones) are designed using the U.S. Census Bureau’s
TIGER/Line® shapefiles [32]. The socioeconomic, demographic, and traffic data are obtained from the
BLS QCEW databank [12], U.S. Census Bureau Intercensal Estimates 2000-2010 [33], and the BTS T-100
Segment tables [24], respectively. Airport-specific coordinate and spatial information are obtained from the
2012 BTS National Transportation Atlas Database (NTAD) files [22].
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sector level shares:8 Manufacturing (31-33) and Service-related. The Service-related category

used for this study comprises of Professional and Business (54-56), Information (51), Finan-

cial activities (52, 53), Education and Health (61, 62), Leisure and Hospitality (71, 72),

and Trade-Transportation-Utilities (22, 42, 44, 45, 48, 49) employment. The remaining (ex-

cluded) employment categories are Natural Resources and Mining (11, 21) and Construction

(23), Public Administration (92), Other services (81), and Unclassified (99). We supple-

mented this data with QCEW ’s statistics on average weekly wages (for all industries) to

control for income variation across MSAs.9

Population has been used to capture city-market size in previous studies, and has exhibited

an important role in determining both cargo and passenger traffic. Brueckner [18] found

a significant 0.95 point estimate for the elasticity of passenger travel with respect to a

city’s population. We expect a similar, if not stronger, relationship to hold between MSA

population and air cargo traffic. Thus, we also included population data, provided by the

U.S. Census Bureau’s Intercensal Estimates 2000-2010 (Census [33]), at the MSA level.

3.3.1 Empirical Model

In view of shipping rates (price) being jointly determined with the level of air cargo traffic,

we specify a reduced-form equation that treats price endogenously (Brueckner [18]):

Tit = α + βEit + γXit +
∑

δiDi + τ t + εit, (3.1)

where Tit represents the total (domestic) outbound-cargo traffic for a metro area i in quar-

ter t; α is the intercept; Eit denotes the shares of manufacturing and service employment;

82-digit North American Industry Classification System (NACIS ) codes are shown in parentheses.
9See Appendix for more dissagregated industry groups.
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Xit is a vector of exogenous-control variables (population, average weekly wage, and pop-

ulation shares by age); Di indicates MSA dummy variables that affect cargo traffic (to be

discussed);10 τt denotes the quarterly-time trend variable, and εit is the error term. The

time-trend variable is included to control for unobserved features that vary quarterly but

are constant across MSAs. A separate model is specified, using quarter and year dummy

variables, to better identify the time effects in the sample period. The results, which are

shown in the Appendix, can be compared to the model specified in Equation 3.1.

The variables in Equation 3.1 were chosen bearing in mind that the demand for goods

being transported between cities depends on the nature of active industries at both the

origin and destination MSAs. Cities with a high share of businesses that manufacture goods

will likely favor using air cargo services more than cities that are not driven by production

activities. Air transport generally facilitates the movement of time-sensitive finished products

to wholesale markets, retail vendors, and the end-users; however, manufacturers may also use

air cargo services in their supply chain to transport inputs for products they are developing.

On the consumption side, service-providing industries (financial and legal firms, medical

establishments, information technology, and pharmaceutical companies, etc.) are expected

to rely heavily on the expedited and door-to-door delivery services guaranteed by express

forwarders and integrators to maintain their competitiveness.

Considering that the age distribution of an MSA’s population will determine the city’s labor

structure (Brueckner [19]), and ultimately demand for cargo traffic, variables that measure

the share of the population that is not in the work force are included in Xit. YOUNG

measures the population share of the 19-and-younger age group, while OLD measure the

population share of the 60-and-older age group. By selecting these population share variables,

we effectively excluded the age group of the MSA’s population that is predominantly in the

10Lakew’s [56] national-scale study includes an MSA-specific intercept (fixed effects) in a similar reduced-
form specification. The study’s fixed effects estimations control for unobserved city-specific differences that
are constant over time.
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work force (ages 20-59). Hence, we expect larger shares of YOUNG and OLD to have

a depressing effect on air cargo traffic. The remaining control variables in our study are

explained in the following paragraphs.

The T-100 Segment data on freight and mail volumes is reported at the segment level,

precluding us from using the data to discern cargo volumes that are truly originating from

(destined to) airports.11 To get around this challenge, we can take Brueckner’s [18] approach

and restrict our sample to airports that do not serve as hubs in California. However, such

airports can also be found within the same MSA as the hub airports themselves, and exclud-

ing them would seriously restrict our sample and ability to generate robust point estimates.

Therefore, rather than dropping the hub airports, we created hub-dummy variables that are

scaled by the number of airports in the hub city (Brueckner [19]). If a city has at least

one hub airport, the indicator equals 1. If this city has other non-hub airports (in addition

to at least one hub airport), the variable is set equal to the fraction of non-hub airports

that are in that city. Specifically, for the Los Angeles-Long Beach-Santa Ana MSA, the hub

variable is set equal to 1/2 since LAX, which serves as a metro hub for FedEx Express,12

is amongst three other important cargo airports in the MSA (BUR, LGB, and SNA). For

the San Francisco-Oakland-Fremont MSA, the hub variable is set equal to 1/2 since the

MSA is served by SFO and OAK (a regional hub for FedEx Express). Even though SFO

is not an integrated carrier’s sorting hub, it serves as a transfer point for connecting traffic

between international and domestic flights. Lastly, we set the hub dummy equal to 1/2 for

the Riverside-San Bernardino-Ontario MSA to account for UPS Airlines’ hub operations at

11The BTS T-100 Market data are structured to indicate the true origin and destination of transported
cargo (freight and mail) between market cities. Although these market-level data would be preferred, the
data are flight-number driven, and may be erroneous when flight numbers change at connecting airports. A
flight-number change will show that transferring cargo, for example, is destined to (then originating from)
the connecting airport. Therefore, we decided to use the more consistently reported volumes of departed
(landed) cargo data that the T-100 Segment tables provide.

12Our calculations show that FedEx Express accounted for around 21 percent of all departed cargo at
LAX while also accounting for nearly 17 percent of all landed cargo at the airport, between 2003 and 2009.
FedEx Express maintains a large presence in Los Angeles, operating the Metroplex sorting and warehouse
facilities at LAX.
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ONT. Although the traffic levels are not substantial, this MSA is also served seasonally by

PSP. ONT serves as a pure hub for regional traffic; parcels coming from (going to) beyond

the region are sorted at ONT and ultimately flown through UPS Airlines’ main hub (SDF )

in Louisville, Kentucky (TranSystems [87]).13 Therefore, the hub variable is designed to

account for the fact that the majority of the observed traffic at a hub city is connecting,

such that the total cargo is much larger than can be explained by the characteristics of that

city. In all areas with multiple airports, cargo tons are summed across the relevant airports.

Alkaabi and Debbage [2] showed that traffic is diverted from small MSAs to larger ones

through a traffic shadow effect. This issue was addressed by Brueckner [18, 19] for passenger

traffic, hypothesizing that travelers located in small metro areas would prefer driving or

taking a bus to a large airport nearby. By providing better network services, frequent

flights, and lower fares, large airports are generally attractive to passengers. We can expect

that air cargo forwarders would also prefer to transport goods from large airports for similar

reasons. Because the connectivity and specialized cargo services offered by large airports

are desirable for goods movement, air cargo traffic may be depressed at smaller airports

nearby. To address this traffic-diversion effect, we took a similar approach to Brueckner

[19] and Alkaabi and Debbage [2], using a dummy variable to indicate that a small metro

area is in the vicinity of a large one. Our PROXIMITY dummy variable is set equal to 1

if the smallest airport in a small MSA (an MSA that generates less than 15,000 US tons

of freight annually) is less than 100 miles away from the largest airport in a large MSA

(an MSA that generates more than 175,000 US tons of freight annually).14 The 100-mile

cutoff was chosen to allow for consistent comparisons of our findings with the results of the

13FedEx Express and UPS Airlines are integrators that provide all-inclusive transportation of cargo from
origin to destination, taking on the role of a shipper, forwarder, and carrier. To provide such door-to-door
services, under very stringent time constraints, integrators also operate a large fleet of trucks and vans.

14The small- and large-MSA cutoffs were determined by using a k-means clustering methodology. This
methodology separates the MSAs into a chosen number of cluster groups (4) by locating a significant break in
their outbound-freight volume. Small and large MSAs were separated by choosing the mean and maximum
values of the smallest cluster group (out of 4 groups), respectively. The smallest (largest) airport in an MSA
was then chosen as the airport that enplanes the lowest (highest) levels of that MSA’s annual-freight traffic.
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relevant literature (Alkaabi and Debbage [2]). By including the PROXIMITY indicator

variable, we can capture the tendency for cargo traffic to understate locally-generated traffic

at small MSAs that are located near large ones. Given that the traffic levels change at

airports over time, the proximity indicator may also change values accordingly. We expect

that PROXIMITY will be inversely related to the cargo generated by a small MSA.

3.4 Results and Discussion

Tables 3.2 and 3.3 provide definitions and descriptive statistics for the variables used in the

regression analysis.

3.4.1 Estimation Results

Table 3.4 exhibits the estimation results for the linear-regression analysis we used to assess

the impact of socioeconomic characteristics on air cargo traffic in California.15 The dependent

variables for the regressions are ACTRAFFIC (MSA cargo tons transported by all-cargo

services) and TRAFFIC (MSA cargo tons transported by all-cargo and passenger-cargo

services). Although passenger carriers transport a smaller fraction of the total air cargo tons

in most markets, they still play a considerable role at gateway markets in California. Based

on our calculations, passenger carriers that transport cargo in their belly holds (or as Combi

aircraft), accounted for around 7 percent of all departed cargo tons in our sample MSAs,

over the 2003-2009 period. Therefore, we considered the cargo tons carried by passenger

airlines as part of the total traffic departing from (landing at) MSA airports in our sample.

15See Appendix for the corresponding results with year and quarter dummy variables. The results in the
Appendix closely resemble the results with a trend variable, shown in Table 3.4.
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Table 3.3: Variable Summary Statistics

MSA POP WAGE SERV MANUF YOUNG OLD HUB PRXM

Los Angeles-Long 12,703,921 841.72 0.663 0.114 0.288 0.143 0.25 0.00
Beach-Santa Ana (43,806) (46.40) (0.010) (0.008) (0.007) (0.006) (0.00) (0.00)

San Francisco- 4,185,192 1,058.78 0.680 0.069 0.242 0.168 0.50 0.00
Oakland-Fremont (60,959) (63.10) (0.008) (0.003) (0.002) (0.007) (0.00) (0.00)

Riverside-San 3,939,582 635.56 0.591 0.092 0.332 0.138 0.50 0.00
Bernardino-Ontario (188,220) (17.12) (0.021) (0.010) (0.004) (0.004) (0.00) (0.00)

San Diego-Carlsbad- 2,969,919 795.88 0.639 0.080 0.274 0.151 0.00 0.00
San Marcos (50,538) (31.57) (0.009) (0.003) (0.004) (0.005) (0.00) (0.00)

Sacramento-Arden- 2,056,446 778.19 0.563 0.048 0.288 0.157 0.00 0.00
Arcade-Roseville (53,463) (24.96) (0.011) (0.006) (0.004) (0.007) (0.00) (0.00)

San Jose-Sunnyvale- 1,756,136 1,312.06 0.623 0.191 0.270 0.145 0.00 0.00
Santa Clara (37,124) (74.15) (0.016) (0.009) (0.001) (0.006) (0.00) (0.00)

Fresno 884,514 587.58 0.494 0.078 0.340 0.134 0.00 0.00
(24,955) (26.31) (0.015) (0.003) (0.003) (0.004) (0.00) (0.00)

El Centro 160,340 542.61 0.379 0.045 0.332 0.138 0.00 0.00
(7,924) (18.74) (0.014) (0.003) (0.003) (0.003) (0.00) (0.00)

Bakersfield 778,221 634.71 0.452 0.048 0.341 0.126 0.00 1.00
(40,597) (25.66) (0.010) (0.002) (0.002) (0.002) (0.00) (0.00)

Santa Rosa- 469,193 718.08 0.595 0.122 0.258 0.182 0.00 1.00
Petaluma (4,929) (25.72) (0.012) (0.009) (0.004) (0.012) (0.00) (0.00)

Redding 175,846 581.88 0.626 0.043 0.266 0.216 0.00 0.00
(1,367) (21.54) (0.011) (0.002) (0.007) (0.009) (0.00) (0.00)

San Luis Obispo- 261,129 616.65 0.593 0.060 0.245 0.196 0.00 0.00
Paso Robles (4,651) (26.76) (0.009) (0.004) (0.006) (0.009) (0.00) (0.00)

Visalia-Porterville 414,039 520.16 0.401 0.081 0.363 0.130 0.00 0.70
(16,111) (19.26) (0.014) (0.003) (0.001) (0.002) (0.00) (0.46)

Chico 216,057 552.4 0.603 0.053 0.263 0.201 0.00 1.00
(2,903) (22.81) (0.006) (0.006) (0.005) (0.007) (0.00) (0.00)

Salinas 406,298 656.62 0.460 0.038 0.304 0.142 0.00 1.00
(3,224) (28.19) (0.029) (0.005) (0.003) (0.006) (0.00) (0.00)

Notes: Quarterly means reported (annual means for POP, YOUNG, OLD, and HUB), 2003-2009. Standard
deviations are in parentheses.
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Table 3.4: Regression results (420 obs.)

Total (Domestic & International) Domestic (—DOM )

(1) ACTRAFFIC (2) TRAFFIC (3) ACTRAFFIC (4) TRAFFIC

INTERCEPT
-11.909a -15.893a -8.291a -11.781a

(3.771) (4.812) (2.669) (3.671)

POP
0.979a 1.169a 0.709a 0.880a

(10.061) (11.761) (7.134) (8.897)

SERV
7.539a 5.840a 10.463a 9.054a

(4.234) (3.240) (5.803) (1.803)

MANUF
1.765b 0.894 2.435a 1.600c

(2.193) (1.086) (2.902) (1.905)

WAGE
0.640a 0.883a 0.524b 0.717a

(2.552) (3.374) (2.114) (2.810)

YOUNG
0.939 1.018 2.039 2.237

(0.374) (0.697) (0.822) (0.875)

OLD
-19.253a -12.879b -27.750a -22.133a

(3.603) (2.367) (5.077) (4.036)

CAP
1.555a 1.338a 1.886a 1.703a

(13.884) (11.883) (16.585) (15.283)

HUB
3.911a 3.660a 4.031a 3.770a

(23.465) (21.542) (22.590) (21.663)

PROXIMITY
-1.556a -1.595a -1.553a -1.589a

(19.608) (19.424) (20.038) (19.991)

TREND
0.002 -0.004 0.007 0.002

(0.706) (0.442) (1.554) (0.494)

Adj. R2 0.967 0.968 0.965 0.966

Notes: The dependent variables, POP, and WAGE are in natural logs.
Absolute t-statistics in parentheses, based on robust standard errors: ap < 0.01; bp < 0.05; cp < 0.10.
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Table 3.4 shows the coefficient estimates for total (domestic and international) and domestic

cargo traffic, separately. The coefficients on POP in (1) and (2) indicate that a nearly propor-

tional relationship between population and total air cargo traffic holds. Linear-restrictions

hypothesis tests confirm that the coefficients are not significantly different from 1 (standard

errors = 0.097 and 0.099, for (1) and (2), respectively). Specifically, the point estimates

for POP suggest that a 1-percent increase in city size raises all-cargo traffic (passenger-belly

and all-cargo traffic) by around 0.98 percent (1.2 percent). The higher elasticities for total

traffic may be indicative of city size having substantial influence on international traffic,

where a considerable amount of the traffic is borne by passenger carriers (passenger-cargo).

This finding is unsurprising considering that California’s largest cities (Los Angeles and San

Francisco) are gateways to both national and state traffic coming from (going to) Pacific Rim

countries. Therefore, the corresponding POP coefficients potentially reflect the inherent at-

tractiveness of large metropolitan areas for international cargo operations. Large cities offer

access to larger and specialized cargo facilities (customs brokerage services, for example),

wider network connections, and more intermodal-transportation options. At the state level,

we can also expect that large cities have higher demand for air cargo services to satisfy the

supply-chain needs of their numerous manufacturing and service establishments. Meanwhile,

the coefficients on POP in (3) and (4) are less than unity, showing that domestic traffic rises

less than proportionally to metro population. However, this finding holds with statistical

significance only for ACTRAFFIC—DOM.

Considering that a city’s employment and total-population levels are proportional, our spec-

ification in Equation 3.1 essentially captures the effect of employment-composition changes

on traffic. Therefore, for example, the estimated MANUF coefficient shows what happens

when employment shifts into manufacturing from the excluded (non-manufacturing and non-

service) sectors, holding the share of service employment (SERV ) constant. To the extent

that the excluded sectors themselves generate cargo traffic, there is a reduction in traffic

that is in turn more than counterbalanced by a gain in traffic as the share of manufacturing

87



employment increases. Thus, the magnitude of the MANUF coefficient reveals the extent

to which manufacturing employment can generate cargo, relative to the excluded sectors.

Likewise, the coefficient on SERV shows the cargo-generating ability of employment in the

service sector, relative to the excluded sectors.16

In Table 3.4, the shares of manufacturing and service employment both exhibit the ex-

pected positive and significant signs. The 1.77 (2.44) MANUF coefficient indicates that

a 10 percentage-point increase in the share of manufacturing employment, increases total

(domestic) all-cargo traffic by 0.18 percent (0.24 percent). Columns (3) and (4) show that a

rise in the share of manufacturing employment has a stronger impact on domestic traffic in

comparison to its impact on total traffic. Moreover, the MANUF coefficient mostly exhibits

significance in the all-cargo specifications, which is consistent with the expectation that man-

ufacturers rely on the time-definite and just-in-time delivery services provided by integrators

(such as FedEx Express and UPS Airlines), combination carriers (operate a combination of

freighter and passenger fleet), and non-asset based logistics providers that employ the all-

cargo services of integrators, combination carriers, and ACMI (aircraft, crew, maintenance,

insurance) carriers.

California’s manufacturing sector has gone through substantial restructuring since the 2000

dot-com bubble collapse. Computer parts, electronics, and other high-tech products produced

by firms across the state were presumably the main drivers of the surging air cargo traffic

levels of the late 1990’s. Shortly after March 2000, however, manufacturing employment in

California fell by 27 percent over three years (TranSystems [87]). The semiconductor industry

in Northern California provides some insight into how high-tech firms have rearranged their

focus from production to other specialized roles in the industry. The impact of this significant

drop was mostly concentrated in the Bay Area, while high-tech manufacturing firms in

16We thank Jan Brueckner for his insights into the traffic impact of sectoral-employment shifts captured
by our model’s specification.
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the southern part of the state were relatively unharmed by the end of the dot-com bubble

(TranSystems [87]).

Considering the vast service-related businesses in California that rely heavily on expedited

goods transportation, the relatively-strong influence of SERV on total and domestic cargo

is unsurprising. MSAs with a high concentration of service-related businesses also appear

to have a higher domestic demand for transporting goods by air. Specifically, the point

estimates on SERV indicate that a 10 percentage-point increase in the share of service-

related occupations results in a 0.58-percent (0.91-percent) rise in the total (domestic) cargo

traffic, while the same growth yields a 0.75-percent (1.05-percent) increase in cargo tons

carried on total (domestic) all-cargo services. Like manufacturing, the service-sector appears

to also rely heavily on all-cargo services in comparison to passenger-cargo services. Overall,

the results mostly reflect the capability of large integrators (mainly FedEx Express and UPS

Airlines) to facilitate the supply chain of businesses that require next-day and specialized

transportation of small packages (TranSystems [87]). These large integrators maintain a

dominant presence at key airports in California, catering to the highly elastic demand of the

service industry.

The significant coefficient on WAGE indicates that average MSA wages (representing in-

come) play an important role in determining the level of both total and domestic cargo

traffic. A 10-percent increase in average weekly wages raises total cargo tons at an MSA

by 8.8 percent while also raising domestic cargo tons by 7.2 percent. The larger coefficient

for total cargo possibly indicates the propensity of wealthier cities to be involved in export

businesses and international trade. These point estimates are consistent with the strong

correlation found by Alkaabi and Debbage [2] between per capita personal income, average

high-tech wages, and the spatial distribution of national air freight. The highest average

wages are mostly concentrated in Northern California, as can be seen in Table 3.3. Figure

3.2 also highlights the other high-wage earning metro areas in California, and the associated
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large volumes of total cargo traffic for the most recent quarter in our sample (2009Q4).17

The concentration of highly skilled jobs at high-tech establishments in the southern region

of the San Francisco Bay explains why average wages of the metro area are well above the

state’s average. The significant income elasticities we observe can also be explained by the

reliance of high-tech firms on air cargo for transporting inputs (electronic components) and

other manufactured products (computers, mobile phones, and other high-value goods).

Figure 3.2: MSA Average Weekly Wages and Cargo Enplanements in California (2009Q4)

Turning to the passenger side, Brueckner [18] was first to confirm the relationship between

metro area passenger-air traffic and white collar employment. Finding a point estimate of

17Maps displaying the spatial distribution of the MSA-employment concentrations in the manufacturing
and service sectors are provided in the Appendix.
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2.4 for the elasticity of air travel with respect to white collar employment, Brueckner also

demonstrated that blue collar employment (measured by manufacturing employment) has

no effect on passenger traffic. Our model allows for a similar inference, whereby MANUF

continues to measure blue collar employment and SERV can proxy for white collar jobs

(measuring high-skill, professional, business, legal, information technology, and financial

sector employment). Therefore, our industry-share results indicate that both white collar

and blue collar employment increase outbound air cargo traffic in California. In view of the

relatively higher wages earned by employees in the service sector, particularly in tradable

services, the implications of white collar employment are consistent with the results found

for WAGE.

The coefficients on the OLD population-share variables exhibit the expected negative signs in

all specification, and are significant. Analogous to passenger-traffic findings (Brueckner [19]),

however, the coefficients on the YOUNG variable are insignificant for total and domestic

cargo. OLD and YOUNG were included in the specifications to control for the variation in

labor structure (relative work-force size) across MSAs in our sample. Consistent with our

expectations, the results indicate that a high concentration of residents in the retirement age

(60 and over) significantly depresses demand for cargo traffic. Although we also anticipated

a similar effect from a high share of young residents (19 and under), who are presumably also

not in the city’s labor force, both the sign and significance of the variable do not support

our expectation.

The dummy variables all exhibit the expected signs in Table 3.4. First, by including the CAP

dummy, we control for the unique labor structure that a state’s capital city may have. The

CAP dummy captures the high concentration of state-government employment in the capital,

for example. The positive and significant CAP dummies indicates that the Sacramento-

Arden-Arcade-Roseville MSA exhibits high cargo-traffic demand (particularly for domestic

traffic), facilitated by the freight-handling facilities at MHR and SAC. The exponentiated
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coefficients for CAP show that the capital city generates 3.8 (5.5) times as much cargo

traffic as an equivalent non-capital city in California. Taking government-employment as

a white collar occupation, the positive coefficient also supports our finding that a higher

concentration of white collar jobs increases cargo traffic.

The HUB dummy coefficient is positive and significant, signaling the higher levels of through-

traffic that are captured by the variable. Specifically, exponentiating the hub coefficients

informs us that hub cities enplane 39 (43) times as much total (domestic) air cargo traffic

as their non-hub counterparts in the sample. This figure is expectedly higher for all-cargo

services, which operate a purer form of hub-and-spoke services (around 50 times more cargo

is handled through hubs by all-cargo services). PROXIMITY also confirms our a priori

belief that a small airport, in the 100-mile vicinity of a large airport, will experience traffic

diversion.18 The results imply that freight shippers and forwarders greatly prefer large metro

areas to small ones. This finding is largely determined by integrators, which provide all-

inclusive services for transporting goods from the shippers (consignors) to the customers at

the destination (consignees). The exponentiated coefficients on PROXIMITY indicate that

approximately 80 percent of total and all-cargo traffic is diverted away from small airports

to large airports that are within 100 miles. The observed traffic-diversion effects may also

indicate the need for carriers to access customs facilities at large (international) airports.19

Brueckner [19] and Green [47] treated the contemporaneous and lagged effects of passenger-

airport traffic on economic development, respectively. The authors’ concern that employment

is co-determined with traffic in a relationship like Equation 3.1 is reasonable for passenger

traffic. More passenger traffic indicates increased travel between cities, which can improve the

connectivity of small metro areas, changing the city’s commercial and employment structure.

Although the same relationship cannot be as clearly drawn with air cargo transportation,

18Recall that multiple airports are consolidated within an MSA.
19However, it is interesting to note that inbound international flights to OAK and ONT (hubs of FedEx

Express and UPS Airlines) clear customs in Anchorage, Alaska (ANC ) [87].
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one could still argue that increased cargo traffic can introduce more jobs in the locality of

an airport and change the city’s labor specialization through spillover effects (Button and

Yuan [29]).20

3.5 Forecasts: 2010-2040

The socioeconomic variables used in this study are variables of interest to transportation

planning and policy-oriented government entities. As such, The California Economic Fore-

cast’s (TCEF, hereafter) 2013 report provides long-term population and socioeconomic fore-

casts of sectoral employment, income (wages), and industrial production for all 58 counties

in California (TCEF [86]). The employment categories for which we obtained county-level

forecasts directly correspond to the industry groups of the BLS QCEW data we used in

our analysis (both are based on NAICS ). Therefore, we aggregated the county-level per-

sonal income and employment data that match our service- and manufacturing-employment

categories to the MSA level, and we evaluated the forecasted trends in a city’s labor char-

acteristics. The employment and wage forecasts obtained from TCEF were developed us-

ing county-specific econometric models that simultaneously determine employment, income,

wages, population, and demand for housing. These econometric models use exogenously-

determined national, state-level, and regional forecasts of economic characteristics as inputs

see the forecast-methodology report by Schniepp [80] for details).

The 2013-2040 socioeconomic and population forecasts indicate increasing trends in all MSAs

of our sample. Therefore, considering the positive and significant coefficient estimates for

most variables in the regression results, we expected that the corresponding air cargo traffic

20Since this reverse causality may lead the employment-share variables to have some correlation with
the error term in Equation 3.1, we also specify and estimate a two-stage least-squares (2SLS ) model. The
2SLS equations use 1-year (4 quarters) lagged employment shares for the chosen employment categories as
instruments. While the exact point estimates are different (marginally in most cases), the results of the
2SLS estimation are consistent with the findings presented in this paper. The 2SLS -model results can be
made available by the authors upon request.
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at our sample MSAs will also exhibit rising volumes in the forecast period. We filled the

3-year gap between the end date of our panel (2009) and the beginning of the forecasts (2013)

with actual quarterly data obtained from our original data sources.

3.5.1 Economic Forecast Highlights

Consistent with the strengthening of the national economy and growing cities, California’s

county-level economic indicators for 2013 are optimistic. The short-term U.S. GDP forecasts

exhibit rising figures, with declining unemployment due to new jobs (unemployment rate in

California is forecasted to drop to 6.9 percent by 2015) [86]. The 2013 TCEF report views

falling unemployment rates and rising housing prices as positive signs of the state’s recovery

from the 2008-2009 financial crisis. Five of California’s counties (San Francisco, Sacramento,

San Jose, Orange, and San Joaquin) are projected to be leading urban areas in the growth of

the national housing sector. California’s export economy is also expected to remain strong,

mainly driven by the job creation of port cities in the state (Los Angeles, Long Beach, Port

Hueneme, and Oakland) (TCEF [86]).

To forecast metro-level total and domestic air cargo tonnage, we used the TCEF forecasted

annual values for metro-level population, service-sector employment (Professional and Busi-

ness, Information, Financial Activities, Educational and Health, Leisure and Hospitality, and

Trade-transport-utilities), Manufacturing employment, and income21 as inputs to the econo-

metric model shown in Equation 3.1. Our forecasts use the TCEF economic forecasts for the

2013-2040 period, and our original quarterly data sources for the 2010Q1-2012Q4 period,

as inputs. Due to the lack of compatible population-projection data, age-group shares after

2012 are assumed to be constant at 2012 shares. We also assumed that the dummy variables

(CAP, HUB, and PROXIMITY ) will remain unchanged in the forecast period. In view of

21We approximated an equivalent measure to the BLS QCEW average weekly wages from the forecasted
personal-income data.
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the insignificant coefficient on TREND, and the potential specification issues it may raise in

a long-term forecast, we dropped the trend variable in the forecasts.

Based on the estimated coefficient values (slopes) for the variables in our model, Figures 3.3

and 3.4 show total air cargo forecasts for the 2010-2040 period. The thin line in the figures,

which ends in 2012Q4, shows the actual (observed) air cargo tonnage in the sample MSAs.

Starting in 2010Q1, the overlapping thick line represents the forecasted air cargo tonnage for

the same MSAs. Therefore, the 2010Q1-2012Q4 period can be used to evaluate the accuracy

of the forecasted data.22 The corresponding domestic traffic forecasts are provided in the

Appendix.

Figures 3.3-3.4 and Table 3.5 reveal the optimistic outlook for air cargo traffic in California

over the next 30 years. The 5.9-percent annual growth rate for total cargo (all-cargo and

passenger-cargo services) at all metro areas is comparable to the 5.6-percent annual growth

(in RTKs) forecasted by Boeing’s World Air Cargo Forecast 2012-2013 (Boeing [15]) for

Latin- and North-American markets, in the 2011-2030 period.23 The Boeing growth rates

are estimated using economic and trade indicators for air cargo markets and international

trade lanes. Moreover, Table 3.5 shows that the Bay Area airports are expected to sustain

the 6-percent annual traffic growth that was projected by the Bay Area Economic Forum

(BAEF [5, 6]) for the years 2000-2020.

Evidently, growth rates in the combined cargo tonnage of all-cargo and passenger-cargo

services are higher than the growth rates of all-cargo services alone. This finding may

indicate shippers’ increasing use of belly-cargo space on passenger jets. Domestic cargo

traffic is also not expected to grow as fast as total cargo in all metro areas, while showing

a faster rate of growth for total tonnage compared to all-cargo tonnage. Although SFO ’s

traffic levels are not expected to reach 2000 levels until 2020 (TranSystems [87]), the metro

22Forecast performance details can be provided by the authors upon request.
23The corresponding annual growth rate of our forecasted traffic in the 2011-2030 period is 5.3 percent.
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Table 3.5: Annual Average Traffic Growth Rate (2010-2040)

Total (Domestic & International) Domestic (—DOM )

MSA (1) ACTRAFFIC (2) TRAFFIC (3) ACTRAFFIC (4) TRAFFIC

Los Angeles-Long
0.0340 0.0451 0.0311 0.0409

Beach-Santa Ana

San Francisco-
0.0436 0.0597 0.0335 0.0465

Oakland-Fremont

Riverside-San
0.0477 0.0651 0.0329 0.0457

Bernardino-Ontario

San Diego-Carlsbad-
0.0276 0.0436 0.0177 0.0295

San Marcos

Sacramento-Arden-
0.0389 0.0553 0.0290 0.0413

Arcade-Roseville

San Jose-Sunnyvale-
0.0437 0.0616 0.0409 0.0553

Santa Clara

Fresno 0.0516 0.0712 0.0386 0.0542

El Centro 0.0241 0.0318 0.0205 0.0265

Bakersfield-Delano 0.0721 0.0869 0.0644 0.0757

Santa Rosa-Petaluma 0.0305 0.0523 0.0165 0.0324

Redding 0.0300 0.0486 0.0175 0.0316

San Luis Obispo-
0.0620 0.0922 0.0404 0.0620

Paso Robles

Visalia-Porterville 0.0375 0.0481 0.0324 0.0409

Chico 0.0212 0.0384 0.0098 0.0233

Salinas 0.0598 0.0819 0.0448 0.0609

All Metro Areas 0.0416 0.0588 0.0313 0.0444
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area’s total cargo tonnage (including traffic from OAK ) appears to be approaching the traffic

levels of the Los Angeles metro area, particularly for domestic traffic.

In the 2010Q1-2012Q4 period, with the exception of the San Diego MSA, the predicted data

appear to perform well for large metro areas (those departing more than 10,000 tons per

quarter, for example), and especially for total traffic. The latter finding is not surprising

in view of the stochastic nature in the usage of passenger-cargo services for transporting

freight. The quarterly traffic variations are also captured in both the total and domestic

traffic forecasts until 2012Q4.

The TranSystems [87] study applied Boeing’s 2015-2020 cargo growth-rate estimates to Cal-

ifornia’s 2008 airport-level cargo traffic, by trade lanes, and came up with 2015 and 2020

traffic projections. We aggregated their airport-level projections to match our metro ar-

eas, and compared it to forecasts made by our model for those years. Table 3.6 shows the

projections reported in the TranSystems study alongside our equivalent estimates.

Table 3.6: Annual Traffic Forecast Comparison (in U.S. tons)

TranSystems [87] Forecasts Forecasts

Metro Area 2000 2008 2015 2020 2015 2020

Los Angeles 2,247,613 1,884,952 2,542,000 3,176,000 2,501,768 3,152,072
Ontario 511,472 501,552 606,000 696,000 911,768 1,176,320
San Diego 153,221 136,687 161,000 181,000 143,904 191,472
San Francisco-Oak. 1,714,094 1,124,358 1,436,000 1,724,000 1,823,088 2,514,504
San Jose 163,142 84,878 100,000 112,000 95,784 130,752
Sacramento-Mather 251,327 145,505 172,000 193,000 191,416 261,096
Fresno - 9,921 12,000 13,000 14,304 18,592

Total 5,040,870 3,887,852 5,029,000 6,095,000 5,682,032 7,444,808

Notes: TranSystems’ reported metric tons are converted to US (short) tons. The TranSystems Los Angeles
traffic is adjusted to include traffic from LGB, BUR, and SNA airports. The San Francisco-Oakland metro
area is also adjusted to include traffic from SFO and OAK. Lastly, for comparison purposes, our quarterly
traffic measures are first multiplied by 4 (to approximate annual traffic), and then by 2 (to account for
inbound traffic).

99



Although rough approximations were made in Table 3.6 to associate our forecasts to the pro-

jections of the TranSystems [87] report, the table illustrates that estimations using different

models and methodologies arrive at somewhat comparable traffic projections for large cities.

The more optimistic forecasts shown by our results indicate that traffic at some metro areas,

most notably San Francisco-Oakland, will return to the peak 2000 levels earlier than the

2020-date predicted by the TranSystems. However, since our aggregation level precludes us

from seeing the airport-level driver of this outcome, we cannot specifically state that SFO ’s

air cargo tonnage will reach 2000 levels before 2020. Also, while our forecasts for the San

Diego MSA in the 2010-2012 period severely underestimate traffic levels, Table 3.6 reveals

that our forecasts for 2015 and 2020 are similar to projections made by TranSystems.

3.6 Conclusion

We investigated the impact of metropolitan socioeconomic characteristics on air cargo traffic

in California. Using publicly-available data on airline operations, employment, and demo-

graphics of metropolitan areas, we constructed a panel dataset from which point estimates

showing the impact that metropolitan characteristics have on air cargo traffic were gener-

ated. The socioeconomic variables studied in this paper exhibited their expected positive

effect on air cargo traffic, and the corresponding forecasts indicate rising volumes of air cargo

in cities throughout California.

By drawing analogies to passenger-travel studies (namely, Brueckner [18]), we let manufac-

turing and service-related employment represent blue collar and white collar employment,

respectively. Our findings suggest that, unlike passengers enplanements, air cargo traffic

increases with both blue and white collar employment in California. Although the effect of

blue collar employment is not as high as the effect of white collar service-sector jobs, we
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found that a 10 percentage-point increase in the share of manufacturing employment still

raises domestic cargo traffic by 0.24 percent.

Our results showed that a proportionate relationship between total outbound air cargo and

city size holds (similar to passenger-travel findings), while domestic traffic appeared to rise

less than proportionally with city population. Average wages (income) showed the expected

strong and positive relationship, with both domestic and total cargo traffic, reinforcing the

expected strong relationship with white collar employment and demand for air cargo services.

Another key finding is that the cargo traffic diversion to large-nearby airports is substantial,

as evidenced by the highly significant and negative point estimates of our PROXIMITY

coefficient. Recall that this dummy variable indicates whether a small freight airport is

within 100 miles of a large airport. Our results show that such small airports would have 80

percent of their outbound traffic diverted to larger airports.

We also provide air cargo traffic forecasts based on forecasted employment, wage and de-

mographic features of counties in California. Our forecasts indicate that total (domestic)

air cargo traffic will rise at an average rate of 5.9 percent (4.4 percent) per year, over the

next three decades (2010-2040). Further research can be done to capture the determinants

of air cargo traffic within metro areas. But, considering the recent airport-capacity concerns

expressed by the aviation community in California, we hope to have identified some key

determinants and trends of air cargo traffic in the state.
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Chapter 4

Airport Delays and Metropolitan

Employment

4.1 Introduction

Recent studies have examined how air travel affects urban development while tackling model-

ing issues that inherently arise from the endogeneity of the airport-traffic and metropolitan-

employment relationship. However, growing passenger volume can lead to increased airport

congestion and delays, which in turn can also affect airport traffic and urban-employment

characteristics. On the one hand, delays can serve to inhibit the otherwise positive effect of

air traffic on regional economic development (an effect documented for road congestion by

Hymel [50]). On the other hand, congestion brings about the need for services to manage its

negative effects (hotels, restaurants, and retail shops to accommodate stranded passengers,

additional manpower to rebook travelers on missed connections, etc.). In this important

respect, air traffic delays are rather different from surface-road congestion and, thus, require

further investigation.
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Not accounting for any potential change in urban employment due to airport delays effec-

tively overestimates or underestimates the impact of air traffic on regional development.

Measuring the effect of delays on local employment, therefore, is an interesting question

that has not been explored yet. This paper starts filling the above-identified gap in the

literature by examining the impact of airport delays on the economic development of cities,

and by re-evaluating studies that measure the impact of air travel on regional development

(now including air traffic delays as a control variable in the analysis). We take advantage

of a 9-year panel of quarterly observations, covering metropolitan-area-level observations for

U.S. airports that account for a considerable portion of the nation’s scheduled-commercial

passenger services. We use data for both total and industry-specific employment, as well as

various measures of air traffic delays.

In addition to contributing to the literature on the effects of air travel on regional develop-

ment, our study adds to the discussion of the cost of air travel delays. Published estimates

in this area are mostly aggregate. Most recently, Peterson, Neels, Barczi, and Graham [73]

determined that a 10-percent reduction in airline delays would raise net welfare in the U.S.

economy by almost $17.6 billion, while a 30-percent drop in the number of delayed flights

would result in a $38.5 billion increase in welfare. These estimates stem from a black-box

aggregated model, whereas our study provides evidence at the regional level, focusing on

what Peterson et al. would consider indirect effects of delays (those not directly borne by

the airlines and passengers).

Results of our data analysis demonstrate the following. First, controlling for unobserved city-

specific characteristics, we confirm the positive effects of passenger air traffic on employment.

Our estimates for total employment are similar to those reported from cross-sectional studies.

However, we find that the service-sector employment is less sensitive to changes in passenger

air travel than previously reported by Brueckner [19]. Contrary to recent evidence provided

by Sheard [82], we also determine that air traffic impacts employment in non-tradable services
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jobs, but does not affect industries that provide tradable services. At the same time, however,

if we decide not to account for MSA-specific heterogeneity, our results confirm the traffic

and sectoral-employment relationships found by Sheard.

A robust relationship between delays and employment levels is found, indicating that a 10-

percent increase in the number of flights delayed leads to about a 0.2 percent decrease in

total and service sector employment, a 0.7-percent decline in employment in the leisure and

hospitality sector, and a 1.1-percent reduction in employment related to goods production.1

The rest of the paper is organized as follows. The next section reviews the relevant literature,

followed by a description of the data, methodology, and results. The last section concludes

the paper, and some of the auxiliary results of our analysis are exhibited in the Appendix.

4.2 Literature

This study contributes to the following strains of literature. In broad terms, we are adding

to our understanding of the effects of congestion on regional development. The existing liter-

ature here has focused on road congestion, and includes only a handful of studies. Relevant

works include Boarnet [13], Fernald [44], Hymel [50], and Sweet [84, 85]. Our study extends

this literature by examining the effects of airport congestion.

While air travel delays have been studied quite extensively, most of the pertinent work deals

with their causes rather than their effects. Examining the effect of route- and airport-level

competition, Mazzeo [60] demonstrated that both the length and frequency of flight delays

decrease with competition. Lee and Rupp [58] revealed how significant pilot-wage reductions

affect their effort level, and thereby an airline’s on-time performance. More recently, Prince

1Note that we use the terms sector and industry interchangeably in this paper.
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and Simon [75] showed that as multimarket contact between carriers increases, delays also

increase.

The existing literature on the effect of air traffic delays consists of macro-level studies at-

tempting to put a dollar figure on the impact of delays on the economy, and micro-level work

examining the relationship between delays and airfares. Among the former, the following

studies are of note. Analyzing U.S. Department of Transportation’s (DOT) data of scheduled

flights in 2007, a report by the majority staff of the Joint Economic Committee [51] detailed

the costs associated with airline delays to carriers, to travelers, and to the U.S. economy.

The report’s estimates showed that the indirect costs of delays incurred by industries to be

around $10 billion [51]. Even though this is a fractional share of their estimated total burden

to the economy ($40.7 billion), the report claimed that the service (lodging, food, and retail)

and public transportation industries were particularly affected by the delays.2 Commissioned

by the Federal Aviation Administration (FAA), a National Center of Excellence for Aviation

Operations Research (NEXTOR) study estimated direct and indirect costs associated with

airline delays in 2007 [65]. NEXTOR’s comprehensive report projected $28.9 billion in direct

costs to airline delays, accounting for lost demand in air travel and costs incurred by both

carriers and passengers.3 The estimated indirect costs, calculated as a reduction to the 2007

U.S. GDP, amounted to $4 billion. NEXTOR’s estimated total cost to the economy ($32.9

billion) is around $8.1 billion short of the JEC measure, shedding light on the challenges of

estimating the cost-impacts of airline delays.

Peterson et al. [73] addressed the discrepancies in the indirect-cost estimates of the afore-

mentioned delay-impact works, noting that the studies attribute the transferred costs of

2At the regional scale, a study by the Partnership for New York City [74] on the congestion-caused delays
of New York’s major airports (JFK International, Newark Liberty International, and LaGuardia) suggested
that this externality accounted for more than a $2.6 billion reduction in the region’s economy in 2008.

3Morrison and Winston [62] considered the value of time of passengers to calculate the minute-level
median cost of delays for passenger ($55.42), which they found to be higher than minute-level operating cost
of delays for airlines, $40.16 (reported in 2000 dollars). Pels et al. [72], using a 1995 air-travel survey for Bay
Area airports, found that the mode-choice trends of business passengers reveal their higher value of time in
comparison to leisure travelers.
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users to the aggregate loss of welfare in the economy, entirely. The authors also pointed to

the delay-induced reduction in the labor productivity of business travelers, and in outputs

(inputs) of goods and services in industries that are dependent on air transport. Noting that

these delay costs are not confined to industries affiliated with airlines, the study emphasized

the importance of incorporating the indirect impacts of delays that are felt in other sectors of

the economy (those specializing in the provision of leisure, hospitality, and tourism services,

for example). Using a commodity- and industry-based model that accounts for the ancillary

costs of flight delays, Peterson et al. found that a 10-percent reduction in airline delays

would raise net welfare in the U.S. economy by almost $17.6 billion, while a 30-percent drop

in the number of delayed flights would result in a $38.5 billion increase in welfare.

Studies of the price effects of delays include Forbes [45], Bilotkach and Pai [10], and Bilotkach

and Lakew [9]. Forbes [45] examined the impact of competition at New York’s LaGuardia

airport. Finding that the fare-impact of delays are stronger on competitive routes, Forbes

demonstrated that an additional minute of delays decreases airfares by $1.42. Bilotkach

and Pai [10] found a comparable reduction in ticket prices due to delays, using a sample of

one-stop itineraries. Focusing on the cause of delays, Bilotkach and Pai also showed that

weather delays (out of carrier’s control) have a stronger impact on fares than delays caused

by the carrier. More recently, Bilotkach and Lakew [9] examined the price effects of delays

using aggregated airport-level data. They confirmed the expected price-delays relationship,

and concluded that weather and late aircraft delays have the most robust effect on airfares.

Research on the relationship between air traffic and regional development has seen some

resurgence recently. Most of the papers in this line of literature, however, use cross-sectional

data analysis. These studies have shown that increased airport traffic is associated with

higher service-sector employment and lower employment in manufacturing industries (Brueck-

ner [19], Blonigen and Cristea [11], Sheard [82]). Similar works have also measured the effect

of air cargo traffic on urban development (Oster, Rubin, and Strong [71], Kasarda and
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Green [53], Green [47], Button and Yuan [29]). A dynamic-panel data analysis employed by

Bilotkach [8] demonstrated that the number of destinations served from an airport appears

to have a stronger impact on regional development than the level of passenger air traffic.

Bilotkach’s work, however, uses aggregated data on employment, without breaking it down

by industry sectors as we do in the present paper.

4.3 Data

In the following empirical analysis, we use data on metropolitan employment, city-level

controls, air traffic, and air travel delays. Additionally, we include data on weather and

characteristics of airline networks and airport locations to construct instruments for po-

tentially endogenous explanatory variables (traffic and delays). Descriptions of the variables

used in this study are provided in Table 4.1. Table 4.2 presents the corresponding descriptive

statistics for the variables. All of the data used in our analysis are aggregated to the Core

Based Statistical Area (CBSA), a geographic area defined by the U.S. Office of Management

of Budget (OMB).4 Our study focuses on the Metropolitan Statistical Area (MSA) subset

of the CBSA (where the urban core contains at least 50,000 people).

Using metro-level socioeconomic data from the Bureau of Labor Statistics (BLS) [12] and

airport-level traffic and delay data provided by the DOT’s Bureau of Transportation Statis-

tics (BTS) [24], we construct a 9-year quarterly panel (2004Q1-2012Q4) for airline operations

in U.S. airports. Our panel also includes metro-level demographic data from the U.S. Cen-

sus Bureau and weather data from the National Oceanic and Atmospheric Administration

(NOAA) [66]. We calculate traffic and delay variables at the quarter level to match the BLS

socioeconomic data. The three-month length of a quarter is expected to be short enough to

4The OMB constructs CBSA geographic delineations by joining adjacent counties whose urban-core area
populations demonstrate substantial levels of socioeconomic interaction (Census [34]).
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allow important variation in our traffic and delay variables within a given year, while also

being long enough to capture sufficient changes in urban employment levels.

Airport-passenger volumes and delays are collapsed to their corresponding MSAs. While

the MSA serves as an appropriate physical and economic area to analyze airport-traffic and

delay impacts, the economic data used in our analysis precludes any examination of airport-

specific effects of traffic within a city. This limitation in the data can be severe in cases

where airports with sizeable traffic and unique characteristics are located within the same

MSA. To account for this issue, we specify models with city fixed-effects, which capture the

urban-growth impacts through traffic and delay variations within cities.

We focus our analysis on metropolitan areas where at least one airport in that city enplanes

more than 10,000 passengers a year (classified as a primary airport by the FAA) and departs

more than 100 flights per quarter. MSAs that are missing employment data in any of the

selected industries are also dropped. The resulting number of MSAs in our sample range

from 175 to 190 (for specifications without delay measures). Details on the data and variables

prepared for our analysis are discussed below.

Socioeconomic and demographic data

Industry-level data for metro-area employment are obtained from the Bureau of Labor Statis-

tics’ (BLS) Quarterly Census of Employment and Wages (QCEW ) [12].5 At the most aggre-

gate level of this quarterly data, we have selected the following QCEW high-level employment

domains (shown here with their corresponding industry NAICS codes):6

1. Service Providing

5Data are based on the National American Industry Classification System (NAICS ).
6See Appendix for a complete (more disaggregated) list of industries under these high-level employment

domains.
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(a) Education and health service (61, 62)

(b) Financial activities (52, 53)

(c) Information (51)

(d) Leisure and hospitality (71, 72)

(e) Professional and business services (54 - 56)

(f) Trade, transport and utilities (22, 42, 44, 45, 48, 49)

(g) Other non-Public Administration services (81)

2. Goods Producing

(a) Manufacturing (31 - 33)

(b) Construction (23)

(c) Natural resources and mining (11, 21)

We also analyze subsets of the QCEW ’s super-sector groups, Service Providing and Goods

Producing. Consistent with Sheard’s [82] classification of industries, we delineate sectors

that provide tradable services and commodities from those that do not. An industry sector

is considered to be tradable if the goods or services that are produced by its employees can

readily be acquired or consumed in a different geographical location (Sheard [82]). Hence,

Professional and business services, Information, and Financial Activities (EMPPBIF ) are

classified as sectors providing tradable services from the Service-Providing group (SERV ),

while Manufacturing is naturally selected as the tradable sector from the Goods-Producing

group (EMPGDS ). Industries involved in the provision of such tradable goods and services

benefit greatly from the face-to-face contact facilitated by airline services (Brueckner [19]).

Therefore, consistent with Sheard’s findings, we expect that air traffic will have a notice-

able impact only on the employment levels of industry sectors with tradable goods and ser-

vices. The employment sectors that are not considered tradable are Trade-transport-utilities,
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Leisure and hospitality, and Education and health services. These employment areas, denoted

EMPTLE, consist of jobs that mostly cater to the local urban area, and presumably do not

heavily depend on the direct-personal contact enabled by air transport.

Lastly, we also examine the employment characteristics of the Leisure and hospitality sector,

in view of the delay-impact implications that we invoked in the introductory section of this

paper. We believe that the spillover effects of airport delays may actually stimulate employ-

ment in the local accommodation, entertainment, dining and recreational service-sectors.

Therefore, the impact that both air traffic and delays have on this sector’s employment

levels will be studied separately.

We supplement our socioeconomic data with annual-county population figures (collapsed to

their corresponding MSAs) provided by the U.S. Census Bureau. Further, in line with the

existing literature, we use the population data to construct population-share variables based

on two main age groups, YOUNG (15 and younger) and OLD (65 and older). The baseline

group (16 to 64) is assumed to be representative of a city’s population in the labor force.

Traffic and Airport data

Our key passenger-traffic measure is the number of passenger enplanements (PAX ) from all

primary airports in the MSA. This information is aggregated at the quarterly level from

the BTS Form 41 Traffic T-100 Segment tables [24]. This dataset provides disaggregated

passenger and freight traffic data for all flights where at least one point of operation is

domestic (in the U.S. or Canada).

Other airport-related information that we include in our data analysis are as follows. We

use detailed airport location data from the BTS National Transportation Atlas Database

2012 (NTAD) [22] to link U.S. airports to their corresponding MSAs through county-MSA
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associations. Since the current (2013) OMB definitions of CBSAs do not correspond to

the CBSA definitions that the BLS socioeconomic data are aggregated to, the OMB’s 2009

CBSA county delineations were used to complete this crosswalk. The NTAD airport-location

data also specify the latitude and longitude coordinates of the airports, which allowed us to

measure great-circle distances between airports. The inter-airport distances are then used

to construct variables that capture the diversion of passenger traffic between cities in our

sample. This traffic-diversion effect (also known as a traffic shadow effect) is proxied by a

binary variable (PROXIM.) that equals 1 when the smallest airport in a small MSA is within

a 150-mile radius of the largest airport in a large MSA (equals 0, otherwise).7

One of the main instruments we use for passenger traffic is HUB. This variable is equal to

1 if an MSA has one airport and it happens to be a passenger hub. If there are multiple

airports in that hub city, the hub variable is equal to the fraction of airports in that MSA (to

discount the hub’s share of enplanements). At the most basic level, an airport is classified

as a passenger hub if at least one carrier at that airport serves at least 25 destinations per

quarter.8

The following justification for the suitability of the HUB instrument is adapted from Brueck-

ner [19]. Since hub airports facilitate sizable levels of connecting and intermediate-stop traffic,

in addition to local enplanements, we can say that HUB (as a driver of traffic) satisfies the

relevance requirement of an appropriate instrument. However, fulfilling the exclusion re-

quirement of an instrument (no correlation with the error term) with HUB, is less palpable.

Given that populous cities provide a strong base for local enplanements, hubs are likely to

7Small MSAs enplane less than 300,000 passengers a year, while large MSAs enplane more than 5,000,000
passengers annually. These cutoffs were chosen using k-means clustering of enplaned passengers at the sample
airports; the mean and maximum values of the smallest cluster (out of 4 clusters) were used to delineate
small and large MSAs, respectively. The smallest and largest airports in a given MSA respectively enplane
the least and most passengers, relative to other airports in that MSA.

8A k-means clustering analysis of the number of carrier-specific domestic destinations served (in 2003)
from the sample airports was used to select the 25 points-served cutoff for hubs. Some airports were removed
from the resulting list of airports since they were deemed to be non-hubs or focus cities. We thank Ethan S.
Singer for his insights into determining the hub status of airports.
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locate in larger metropolitan areas to benefit from this natural scale advantage. And con-

sidering the strong proportionality between city size and employment levels, it follows that

the hub status of airports and city employment may be correlated. Note, however, that the

exclusion requirement for a suitable instrument necessitates that unobserved determinants of

employment are not correlated with the instrument (HUB). Therefore, since POP controls

for city size in our specifications, it is reasonable to assume that the remaining unobserved

features in the error term (which may raise a city’s employment to levels higher than a city

of comparable size) have negligible relations to the classification of an airport as a hub.

A variable that measures how close a city’s airports are to the center of the U.S. population

is also calculated, and is used as an alternative instrument for traffic.9 This instrument,

denoted CENTR., is expected to be correlated with traffic since cities located farther away

from the population center of the country are less likely to be used by airlines as traffic-

consolidation hubs. Given that there is no association expected between the distance of a

city to the country’s population centroid and that city’s employment characteristics (all else

equal), correlation between CENTR. and the error term in our key specifications is unlikely,

or sufficiently small. While certain coastal hub airports are obvious exceptions to the location

assumptions of this instrument, the efficiency gains of a central location in hub-and-spoke

networks are likely to have a considerable impact on traffic levels.

Other instruments we have constructed for traffic are LEISURE and SLOT. LEISURE is

a dummy variable equal to 1 for vacation cities (Orlando, FL; Las Vegas, NV ; Atlantic

City, NJ ; Myrtle Beach, SC ; Gulfport, MS ), where the air travel demand is expected to be

considerably unique. Correlation between LEISURE and employment specialization (namely

in the services sector) is likely, but not necessarily with employment levels. Hence, LEISURE

9The population center of the U.S. is estimated by the U.S. Census Bureau, and is reported to be Texas
Cnty, Missouri (in 2010). The corresponding decimal coordinates of the center are 37.517534 °N, 92.173096
°W. Great-circle distances are calculated from the city airports in our sample to the center of population.
For a city with multiple airports, the average distance of the MSA’s airports to the population centroid is
measured.
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is expected to meet the exclusion requirement of a proper instrument by lacking correlation

with error term. MSAs of slot-controlled airports operating at capacity (DCA, EWR, JFK,

and LGA) are captured by the SLOT variable. SLOT is equal 1 if an MSA has at least

one airport that is slot controlled. If that MSA has multiple airports, SLOT is equal to

the fraction of non-slot controlled airports in that MSA (to discount the slot-controlled

airport’s share of enplanements). Even though traffic may play an important role in airport

congestion, capacity constraints are considered to be the major determinants of an airport’s

SLOT status. CENTR., LEISURE, and SLOT are time-invariant variables in our sample.

While HUB and PROXIM. may vary slightly over time for some cities (due to hub-status

changes or traffic re-allocation), their within-city disturbances are inconsequential to our

estimations.

Delays

The delay data are obtained from the BTS On-Time Performance databank, which gives

detailed information on airline delays, flight schedules, gate-to-gate travel times and other

flight-level measures for non-stop operations of certified U.S. major carriers (airlines that

account for 1 percent or more of the domestic revenues of scheduled passenger operations)

[26]. Our delay statistics are based on the complete data provided by BTS over the 9-year

period of this study (over 5 million flights observations per year).

In this dataset, departure (arrival) delays are calculated as the difference between scheduled

the scheduled departure (arrival) time and the actual departure (arrival) time. We refer

to this measure as the schedule delay, which is often reported as the on-time performance

statistics of airlines. Noting that carriers are able to manipulate scheduled times to improve

their overall on-time performance statistics (known as schedule padding), several studies

(e.g., Mayer and Sinai [59]; NEXTOR [65]; Rupp [77]; Ater [4]) have chosen to measure
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delays as the difference between the actual travel time and the minimum travel time (or some

percentile level of fastest time) recorded for a particular segment (excess time). While some

of these studies have controlled for carrier-specific differences in fleet-mix that might bias the

measure of minimum-flight time, Rupp [77] emphasized the potential for excess time to be

affected by anomalous fast flight times (potentially caused by strong tail winds, for example).

Moreover, as argued by Rupp, passengers are attuned to the schedule delays, rather than

excess time. Time-sensitive travelers (e.g., business passengers) plan their trips according

to the scheduled time, not the unimpeded time. Considering the potential for erroneous

measurements of excess time and our desire to focus on passenger-perceived delays, we have

chosen to use schedule delays for the delay metric of this paper.10

The following measures of delays are constructed:

Departure delay are defined as the difference between a flight’s scheduled and actual gate-

departure time. We calculated the quarterly frequency (COUNTDEL) and sum (SUMDEL),

of departures delayed for at least 15 minutes at the departure/origin MSA. When comput-

ing these measures, we are using the FAA’s 15-minute cutoff for delayed flights. We then

computed the minute-level mean delays (MEANDEL) of all flights in the sample (including

early and on-time departures).

Arrival delay is defined as the total delay of a flight arriving at its destination gate, including

its departure and en-route delays. We calculated the quarterly frequency of arrival delays

(COUNTDEL), as well as the sum of arrival delays (SUMDEL) for flights delayed for 15

minutes or ore at the arrival/destination MSA. Parallel to the depature delays, we also

calculated the minute-level mean delays (MEANDEL) of all arrivals in the sample MSAs.

The mean-delay-minutes measure is computed for all flights. On-time flights are recorded

at zero minutes of delay, and flights departing (arriving) ahead of schedule are assigned

10Excess time is potentially affected by within-carrier differences in fleet mix (varying speeds based on
aircraft type), changes in navigation procedures/routes, and flights operating during off-peak hours.
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negative delay numbers. Measuring delay averages only for flights that are delayed would

be problematic since a city with 100,000 flights out of which only 2 are delayed for an hour

each will look the same as a city with 1,000 flights, each delayed for an hour. This issue

does not apply to the other delay variables (COUNTDEL and SUMDEL) since they measure

aggregates and appear along with passenger volume in the regressions.11

We also aggregated counts of canceled flights by origin and destination MSAs (canceled). For

the latter measure, note that canceled (collapsed to a destination) still counts the number

of flights that are canceled at various origin MSAs. Thus, this measure captures the impact

that origin-city cancellations have on a particular destination city.

Observations with outlier measures for delays are dropped from outbound and inbound

samples used for this paper. Specifically, observations with mean departure delays ≥ 120

minutes (2 hours) and mean arrival delays ≥ 90 minutes (1.5 hours) are excluded from the

outbound and inbound samples, respectively. This restriction results in 22 (2) observations

being dropped from the outbound (inbound) samples.

Descriptive statistics for the calculated delay measures are reported in Table 4.2. The table

shows that, on average, arrival delays are shorter than departure delays. This finding indi-

cates that the airlines tend to make up some time en route — evidence of either schedule

padding or operational differences between on-time and delayed flights (possibly due to, for

example, higher speed for flights delayed on departure, at the expense of fuel economy).

Weather

Our weather data are downloaded from the NOAA’s Global Historical Climatology Network

(GHCN ) stations [66]. Weather stations that are located within the premises (or vicinity)

of airports in our sample were then selected for our panel. We calculated the MSA averages

11We thank Jan Brueckner for this insight.
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of the highest January temperatures (JANTEMP) recorded at the corresponding airport

GHCN stations (in degrees Celsius). JANTEMP is included as a control for traffic, seeing

that warmer regions (Sunbelt locations) attract leisure travelers. Similarly, we calculated

the quarterly averages of recorded precipitation (PRCP) and snow (SNOW ) levels (in mm).

However, PRCP and SNOW are used to instrument for delays. The summary statistics for

these weather measures are shown in Table 4.2.

Table 4.1: Variable Definitions

Variables Definition

TRAFFIC
PAX Enplaned (landed) passengers at MSA

DEMOGRAPHIC AND SOCIOECONOMIC
POP Total MSA population (annual)

YOUNG Share of MSA population of age 14 and under
OLD Share of MSA population of age 65 and over

EMPTOT Total MSA non-farm employment
EMPSERV Service-related empl.

EMPPBIF Professional, Business, Information, and Finance empl. (Tradable)
EMPTLE Trade-transp.-util., Leisure-hospitality, and Educ.-health services empl. (Non-tradable)
EMPLH Leisure-hospitality empl.

EMPGDS Goods-producing empl.
EMPMNF Manufacturing empl.

DELAY
CANCEL Number of departure cancellations at departure airports in MSA
COUNTDEL Number of flights delayed (≥ 15 mins.) at departure/arrival airports in MSA
MEANDEL Mean-delay-mins. of all flights at departure/arrival airports in MSA (all flights)
SUMDEL Sum-delay-mins. of flights delayed (≥ 15 mins.) at departure/arrival airports in MSA

WEATHER
JANTEMP Average maximum January temperature recorded at airports in MSA (degrees C)
PRCP Average precipitation (rain & melted snow) levels recorded at airports in MSA (mm)
SNOW Average snowfall levels recorded at airports in MSA (mm)

DUMMIES
HUB MSA hub indicator, scaled by number of airports in MSA
CENTR. MSA’s average airport distance to population centroid of U.S. in 2010 (Texas Cnty, MO)
LEISURE Dummy = 1 for Orl., FL; L. Vegas, NV; Atl. City, NJ; Myr. Beach, SC; Gulfp., MS
SLOT Dummy = 1 for MSAs with Slot-controlled airports (DCA, EWR, JFK, LGA)
PROXIM. Dummy = 1 if small MSA airport is within 150 miles of large MSA airport

Notes: Variables represent quarterly measures (except for POP, YOUNG, OLD, JANTEMP, and HUB,
which are measured yearly). CENTR., LEISURE, and SLOT do not vary over time.
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4.4 Empirical Framework

Our analysis quantifies the impact of traffic and various airline-delay measures on industry-

level employment variables, while controlling for the relevant socioeconomic, demographic,

and other exogenous city features. Overall, our data-analysis technique of choice is a MSA-

level fixed effects model that accounts for endogeneity of both traffic and delay measures

through a conventional two-stage least squares (2SLS ) instrumental-variable methodology.

Note that the null of the redundant fixed effects test, which states that the fixed effects are

equal to each other, is rejected. Hence, the test results suggest that unobserved heterogeneity

exists in our sample MSAs.12

We specify an empirical model that invokes the following reduced-form relationship between

an MSA i’s employment E, outbound (inbound) traffic T , departure (arrival) delays D, and

exogenous city features X, in quarter t:

Eit = αi + βTit + δDit + γXit +
∑

θtQt + εit, (4.1)

where αi denotes the MSA-specific intercept, Qt represents time (year and quarter) dummies,

and εit is the error term. The variables included in Xit are total population, population

shares by young- and old-age groups, and the maximum January temperature. In line with

prior research (Brueckner [19]), Equation 4.1 treats the relationship between air traffic,

delays, and economic development as a contemporaneous one (i.e., the three variables of

interest are determined simultaneously). It is unclear how much the observed traffic and

delay levels are themselves a consequence of (or codetermined with) the corresponding city’s

employment characteristics. Therefore, to address the potential endogeneity of both airline

12The reported standard errors are robust to heteroscedasticity across MSAs and autocorrelation within
MSAs.
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traffic and delays in this relationship, a 2SLS estimation is used. To remain consistent

with the literature and enable interpretation of our coefficient estimates as elasticities, the

employment, traffic, and delay measures are included into all specifications in logarithmic

form.

Note that relying on panel data represents a departure from the cross-sectional analy-

sis, which remains more popular in the literature on air traffic-development relationships

(Brueckner [19], Blonigen and Cristea [11], Sheard [82]). For comparison purposes, we have

also conducted all of our empirical analysis without MSA fixed effects. The correspond-

ing results, which are tangentially referred to in this paper, are available from the authors

upon request. We should also note that potential co-determination issues of city population

(POP) and urban-employment size (EMPTOT ) are avoided by lagging the POP 4 quarters.

Therefore, while our empirical sample begins in 2004Q1, measures for POP begin as early

as 2003Q1.13

Instruments are chosen to fulfill the following identification and exclusion criteria: strong

correlation with traffic (delays) and weak (or no) correlation with the error term in Equa-

tion 4.1. HUB, CENTR., PROXIM., LEISURE, and SLOT are variables that fulfill this

criteria, and are constructed analogous to the corresponding variables used in Brueckner

[19]. Likewise, to instrument for delays, we use the average precipitation (PRCP) and snow

levels ( SNOW ) of MSAs. Figure 4.1 shows the shares of various the delay sources identified

by BTS. Even though Extreme Weather delays usually account for less than 10 percent of

all sources, BTS’ detailed definitions reveal that the complete spectrum of weather-related

sources actually account for a sizable portion of the delays categorized as NAS delays. The

weather delays included in the National Air System (NAS) category, like other sources in that

category (Air Traffic Control, traffic, and airport operations), are delays whose effects can

be reduced through remedial measures of the FAA. The Extreme Weather delays category,

13Brueckner [19] lags population 6 years to avoid this potential endogeneity problem.
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on its own, represents flights delayed due to weather incidents — such as high winds, tor-

nadoes, hurricanes and blizzards — that prohibit flight operations altogether (BTS [23]).14

This information supports our choice of weather as a good instrument for delays (combined,

NAS and Extreme Weather account for a substantial portion of delays).

Figure 4.1: Share of Delays by Cause

Delay shares calculated for sample airports. Data source: BTS On-time Performance [26].

14Rupp and Holmes [78] also found that weather factors are important determinants of flight cancellations.
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4.5 Results

The estimation results are presented in Tables 4.3-4.14. In all of the specifications we report,

delays are instrumented for with the weather variables PRCP and SNOW. Also, instruments

PROXIM., LEISURE, and SLOT, are used in all of these specifications to account for the

endogeneity of the traffic levels. Tables 4.3 through 4.8 include the HUB instrument in

addition to the aforementioned instruments. Then, analogous to the HUB instrument, results

using CENTR. as a traffic instrument are reported in Tables 4.9-4.14. We separately report

results for departure and arrival delay measures (Tables 4.3-4.5, 4.9-4.11 and Tables 4.6-4.8,

4.12-4.14, respectively). The dependent variables we use are Total Employment (Tables

4.3, 4.6, 4.9 and 4.12); Service Employment (Tables 4.4, 4.7, 4.10 and 4.13); and Goods

Employment (Tables 4.5, 4.8, 4.11 and 4.14).15

Each table includes five specifications: baseline regression (without delay measures), and four

specifications that include a different delay metric (number of canceled flights, number of

delayed flights, mean delay in minutes, and total minutes of flights delayed). All specifications

control for MSA-specific heterogeneity via the corresponding fixed effects, include the same

set of control variables (suppressed from some of the tables to save space), and also contain

year and quarter indicator variables (suppressed from all tables) to control for time-specific

effects.

Tables 4.3, 4.6, 4.9 and 4.12 also report results of the Sargan-Hansen test. We have four

over-identifying restrictions in all the specifications, meaning that, under the null hypothesis

of no correlation between residuals and instruments in the 2SLS model, the test statistic

follows a chi-square distribution with four degrees of freedom. In every case we report,

15We have investigated all of the cross sectional and fixed effects regressions without instruments as well.
Seeing that the qualitative results are similar to the results of the estimations using instruments, and in
view of the serious endogeneity concerns in our empirical specification, we have decided to only exhibit the
instrumented results in this paper. Results of estimations that do not use instruments are available upon
request.
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the null hypothesis is not rejected, suggesting that our instruments are valid. The same

is observed in all other regressions, for which the Sargan-Hansen statistics are not directly

reported.

In our interpretation of the results, we will focus on the following issues, in addition to

evaluating the traffic-employment and delays-employment relationships for all the delay and

employment metrics we have used here. First, we will examine whether the outcome is

sensitive to our choice of delay measures (arrival versus departure delays) and instruments

(HUB versus CENTR.). Second, by comparing specifications with delays to the baseline

regressions, we will be able to see how the inclusion of delays alters the corresponding

employment elasticities with respect to passenger air traffic. Finally, we can directly compare

our elasticities to those reported in Brueckner [19]. Note that Brueckner’s study uses a cross-

sectional data set, whereas we are relying on a panel. Thus, our identifying variation comes

from within MSAs over time, rather than across the metropolitan areas, as in Brueckner’s

work.
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4.5.1 HUB Instrument results

Table 4.3: Departure Delays (HUB Instrument for Traffic) — Total Employment

EMPTOT

(1) (2) (3) (4) (5)

INTERCEPT 6.7510a 5.7984a 5.6148a 5.8946a 5.7061a

(0.9412) (0.9830) (1.0044) (0.9859) (0.9934)

POP 0.3807a 0.4685a 0.4711a 0.4666a 0.4774a

(0.0840) (0.0933) (0.0941) (0.0933) (0.0950)

PAX 0.0627b 0.0509 0.0686b 0.0461 0.0595c

(0.0298) (0.0328) (0.0305) (0.0335) (0.0319)

YOUNG 1.6238c 1.7458b 1.9354b 1.7112b 1.9045b

(0.8997) (0.7543) (0.7709) (0.7485) (0.7628)

OLD -4.2107a -4.2352a -4.2462a -4.0576a -4.2003a

(0.7955) (1.0523) (1.0435) (1.0621) (1.0481)

JANTEMP -0.0007 -0.0009b -0.0009b -0.00079c -0.0008b

(0.0004) (0.0004) (0.0004) (0.0004) (0.0004)

CANCEL -0.0080b

(0.0041)

COUNTDEL -0.0232c

(0.0119)

MEANDEL -0.0240c

(0.0134)

SUMDEL -0.0201c

(0.0103)
Observations 4874 3603 3603 3603 3603

Adj. R2 0.9994 0.9995 0.9995 0.9995 0.9995

Sargan-Hansen 0.2486 3.0914 2.3888 4.0930 2.3888
(p-value) (0.9694) (0.5427) (0.6647) (0.3936) (0.6647)

Notes: EMPTOT, POP, PAX, CANCEL, COUNTDEL, MEANDEL, and SUMDEL are in natural logs.
Dummies for Years and Quarters are suppressed.
Robust clustered standard errors in parentheses: ap < 0.01; bp < 0.05; cp < 0.10.
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Table 4.4: Departure Delays (HUB Instrument for Traffic) — Service Employment

EMPSERV

(1) (2) (3) (4) (5)

PAX 0.0474b 0.0415 0.0574b 0.0333 0.0492b

(0.0222) (0.0264) (0.0233) (0.0270) (0.0246)
CANCEL -0.0069b

(0.0034)
COUNTDEL -0.0192c

(0.0102)
MEANDEL -0.0263b

(0.0120)
SUMDEL -0.0147c

(0.0083)

EMPPBIF (Tradable Services)

PAX 0.0620 0.0581 0.0661 0.0528 0.0625
(0.0587) (0.0659) (0.0563) (0.0688) (0.0606)

CANCEL -0.0039
(0.0068)

COUNTDEL -0.0093
(0.0185)

MEANDEL -0.0160
(0.0224)

SUMDEL -0.0079
(0.0160)

EMPTLE (Non-Tradable Services)

PAX 0.0331b 0.0314 0.0508b 0.0213 0.0417c

(0.0148) (0.0215) (0.0226) (0.0223) (0.0223)
CANCEL -0.0092a

(0.0034)
COUNTDEL -0.0235b

(0.0101)
MEANDEL -0.0341a

(0.0126)
SUMDEL -0.0201b

(0.0087)

EMPLH

PAX 0.0844 0.0849 0.1460b 0.0460 0.1186c

(0.0521) (0.0685) (0.0719) (0.0704) (0.0716)
CANCEL -0.0295a

(0.0089)
COUNTDEL -0.0703a

(0.0271)
MEANDEL -0.1186a

(0.0343)
SUMDEL -0.0599a

(0.0231)

Notes: All variables reported here are in natural logs.
Dummies for Years and Quarters are suppressed.
Robust clustered standard errors in parentheses: ap < 0.01; bp < 0.05; cp < 0.10.
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Table 4.5: Departure Delays (HUB Instrument for Traffic) — Goods Employment

EMPGDS

(1) (2) (3) (4) (5)

PAX 0.1480 0.0982 0.1855 0.0691 0.1412
(0.1166) (0.1365) (0.1368) (0.1361) (0.1438)

CANCEL -0.0400a

(0.0129)
COUNTDEL -0.1131a

(0.0406)
MEANDEL -0.1268a

(0.0428)
SUMDEL -0.0976a

(0.0351)

EMPMNF

PAX 0.1586 0.1273 0.1434 0.1232 0.1344
(0.1579) (0.2134) (0.1900) (0.2216) (0.2033)

CANCEL -0.0070
(0.0164)

COUNTDEL -0.0231
(0.0456)

MEANDEL -0.0208
(0.0526)

SUMDEL -0.0198
(0.0392)

Notes: All variables reported here are in natural logs.
Dummies for Years and Quarters are suppressed.
Robust clustered standard errors in parentheses: ap < 0.01; bp < 0.05; cp < 0.10.
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Table 4.6: Arrival Delays (HUB Instrument for Traffic) — Total Employment

EMPTOT

(1) (2) (3) (4) (5)

INTERCEPT 6.7958a 5.8340a 5.5175a 5.8483a 5.6153a

(0.9398) (0.9898) (1.0445) (1.0125) (1.0239)

POP 0.3795a 0.4700a 0.4909a 0.4773a 0.4898a

(0.0833) (0.0928) (0.0984) (0.0955) (0.0979)

PAX 0.0594b 0.0464 0.0592b 0.0412 0.0559c

(0.0280) (0.0311) (0.0502) (0.0315) (0.0292)

YOUNG 1.7000c 1.7308b 1.8006b 1.6786b 1.7936b

(0.8758) (0.7597) (0.7677) (0.7521) (0.7626)

OLD -4.1894a -4.2380a -4.3648a -4.2067a -4.2907a

(0.8041) (1.0668) (1.0497) (1.0687) (1.0502)

JANTEMP -0.0007c -0.0009b -0.0010b -0.0008b -0.0009b

(0.0004) (0.0004) (0.0004) (0.0004) (0.0004)

CANCEL -0.0067c

(0.0040)

COUNTDEL -0.0228c

(0.0133)

MEANDEL -0.0248c

(0.0151)

SUMDEL -0.0189c

(0.0113)

Observations 4816 3594 3594 3594 3594
Adj. R2 0.9994 0.9995 0.9995 0.9996 0.9995

Sargan-Hansen 0.2601 3.8887 3.4359 4.8591 3.6228
(p-value) (0.9674) (0.4113) (0.4877) (0.3021) (0.4595)

Notes: EMPTOT, POP, PAX, CANCEL, COUNTDEL, MEANDEL, and SUMDEL are in natural logs.
Dummies for Years and Quarters are suppressed.
Robust clustered standard errors in parentheses: ap < 0.01; bp < 0.05; cp < 0.10.
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Table 4.7: Arrival Delays (HUB Instrument for Traffic) — Service Employment

EMPSERV

(1) (2) (3) (4) (5)

PAX 0.0460b 0.0460c 0.0558b 0.0381 0.0534b

(0.0218) (0.0256) (0.0218) (0.0253) (0.0227)
CANCEL -0.0051

(0.0034)
COUNTDEL -0.0157

(0.0105)
MEANDEL -0.02449c

(0.0131)
SUMDEL -0.0135

(0.0090)

EMPPBIF (Tradable Services)

PAX 0.0604 0.0586 0.0634 0.0552 0.0623
(0.0575) (0.0642) (0.0542) (0.0680) (0.0565)

CANCEL -0.0024
(0.0069)

COUNTDEL -0.0072
(0.0219)

MEANDEL -0.0112
(0.0269)

SUMDEL -0.0063
(0.0187)

EMPTLE (Non-Tradable Services)

PAX 0.0328b 0.0372c 0.0512b 0.0272 0.0478b

(0.0149) (0.0204) (0.0205) (0.0208) (0.0206)
CANCEL -0.0072b

(0.0032)
COUNTDEL -0.0226b

(0.0107)
MEANDEL -0.0331b

(0.0133)
SUMDEL -0.0194b

(0.0091)

EMPLH

PAX 0.0845 0.1150c 0.1590b 0.0814 0.1486b

(0.0526) (0.0647) (0.0683) (0.0717) (0.0674)
CANCEL -0.0228b

(0.0083)
COUNTDEL -0.0669b

(0.0294)
MEANDEL -0.1070a

(0.0357)
SUMDEL -0.0588b

(0.0246)

Notes: All variables reported here are in natural logs.
Dummies for Years and Quarters are suppressed.
Robust clustered standard errors in parentheses: ap < 0.01; bp < 0.05; cp < 0.10.
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Table 4.8: Arrival Delays (HUB Instrument for Traffic) — Goods Employment

EMPGDS

(1) (2) (3) (4) (5)

PAX 0.1311 0.0857 0.1548 0.0567 0.1372
(0.1094) (0.1304) (0.1362) (0.1374) (0.1372)

CANCEL -0.0358a

(0.0132)
COUNTDEL -0.1186b

(0.0483)
MEANDEL -0.1354a

(0.0515)
SUMDEL -0.0995b

(0.0405)

EMPMNF

PAX 0.1586 0.1217 0.1319 0.1161 0.1290
(0.1582) (0.2106) (0.1860) (0.2237) (0.1919)

CANCEL -0.0053
(0.0179)

COUNTDEL -0.0208
(0.0581)

MEANDEL -0.0219
(0.0688)

SUMDEL -0.0163
(0.0494)

Notes: All variables reported here are in natural logs.
Dummies for Years and Quarters are suppressed.
Robust clustered standard errors in parentheses: ap < 0.01; bp < 0.05; cp < 0.10.
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4.5.2 CENTRALITY (CENTR.) Instrument results

Table 4.9: Departure Delays (CENTR. Instrument for Traffic) — Total Employment

EMPTOT

(1) (2) (3) (4) (5)

INTERCEPT 6.7488a 5.7922a 5.5995a 5.8942a 5.6955a

(0.9413) (0.9824) (1.0036) (0.9862) (0.9932)

POP 0.3814a 0.4696a 0.4724a 0.4676a 0.4790a

(0.0840) (0.0933) (0.0941) (0.0933) (0.0950)

PAX 0.0621b 0.0503 0.0689b 0.0453 0.0594c

(0.0298) (0.0328) (0.0307) (0.0334) (0.0320)

YOUNG 1.6257c 1.7514b 1.9506b 1.7144b 1.9182b

(0.90000) (0.7558) (0.7729) (0.7497) (0.7645)

OLD -4.2116a -4.2428a -4.2538a -4.0553a -4.2055a

(0.7951) (1.0529) (1.0441) (1.0617) (1.0486)

JANTEMP -0.0007 -0.0009b -0.0009b -0.0007 -0.0008b

(0.0004) (0.0004) (0.0004) (0.0004) (0.0004)

CANCEL -0.0085b

(0.0040)

COUNTDEL -0.0244b

(0.0118)

MEANDEL -0.0252c

(0.0134)

SUMDEL -0.0212b

(0.0103)
Observations 4872 3603 3603 3603 3603

Adj. R2 0.9994 0.9995 0.9995 0.9995 0.9995

Sargan-Hansen 0.000387 2.8284 2.0393 4.0209 2.0249
(p-value) (0.999998) (0.5859) (0.7285) (0.4032) (0.7312)

Notes: EMPTOT, POP, PAX, CANCEL, COUNTDEL, MEANDEL, and SUMDEL are in natural logs.
Dummies for Years and Quarters are suppressed.
Robust clustered standard errors in parentheses: ap < 0.01; bp < 0.05; cp < 0.10.
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Table 4.10: Departure Delays (CENTR. Instrument for Traffic) — Service Employment

EMPSERV

(1) (2) (3) (4) (5)

PAX 0.0469b 0.0410 0.0576b 0.0327 0.0491b

(0.0222) (0.0264) (0.0233) (0.0270) (0.0246)
CANCEL -0.0073b

(0.0034)
COUNTDEL -0.0198c

(0.0102)
MEANDEL -0.0272b

(0.0120)
SUMDEL -0.0155c

(0.0083)

EMPPBIF (Tradable Services)

PAX 0.0622 0.0581 0.0661 0.0528 0.0625
(0.0588) (0.0659) (0.0563) (0.0689) (0.0606)

CANCEL -0.0039
(0.0068)

COUNTDEL -0.0092
(0.0185)

MEANDEL -0.0519
(0.0225)

SUMDEL -0.0079
(0.0160)

EMPTLE (Non-Tradable Services)

PAX 0.0326b 0.0309 0.0512b 0.0206 0.0416c

(0.0148) (0.0216) (0.0229) (0.0223 (0.0225)
CANCEL -0.0096

(0.0035)
COUNTDEL -0.0245b

(0.0102)
MEANDEL -0.0352a

(0.0127)
SUMDEL -0.0201b

(0.0088)

EMPLH

PAX 0.0845 0.0848 0.1460b 0.0459 0.1186c

(0.0521) (0.0686) (0.0718) (0.0705) (0.0717)
CANCEL -0.0295a

(0.0089)
COUNTDEL -0.0704a

(0.0273)
MEANDEL -0.1187a

(0.0344)
SUMDEL -0.0600a

(0.0232)

Notes: All variables reported here are in natural logs.
Dummies for Years and Quarters are suppressed.
Robust clustered standard errors in parentheses: ap < 0.01; bp < 0.05; cp < 0.10.
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Table 4.11: Departure Delays (CENTR. Instrument for Traffic) — Goods Employment

EMPGDS

(1) (2) (3) (4) (5)

PAX 0.1465 0.0965 -0.3339 0.0670 0.1408
(0.1166) (0.1367) (0.3555) (0.1361) (0.1446)

CANCEL -0.0412a

(0.0129)
COUNTDEL -0.1164a

(0.0407)
MEANDEL -0.1300b

(0.0427)
SUMDEL -0.1005a

(0.0352)

EMPMNF

PAX 0.1571 0.1258 0.1443 0.1212 0.1341
(0.1579) (0.2139) (0.1908) (0.2218) (0.2042)

CANCEL -0.0081
(0.0164)

COUNTDEL -0.0261
(0.0458)

MEANDEL -0.0238
(0.0526)

SUMDEL -0.0224
(0.0394)

Notes: All variables reported here are in natural logs.
Dummies for Years and Quarters are suppressed.
Robust clustered standard errors in parentheses: ap < 0.01; bp < 0.05; cp < 0.10.
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Table 4.12: Arrival Delays (CENTR. Instrument for Traffic) — Total Employment

EMPTOT

(1) (2) (3) (4) (5)

INTERCEPT 6.7935a 5.8266a 5.4943a 5.8522a 5.5949a

(0.9399) (0.9892) (1.0436) (1.0119) (1.0231)

POP 0.3802a 0.4715a 0.4932a 0.4761a 0.4923a

(0.0833) (0.0928) (0.0984) (0.0955) (0.0980)

PAX 0.0588b 0.0454 0.0593b 0.0420 0.0557c

(0.0280) (0.0311) (0.0287) (0.0316) (0.0294)

YOUNG 1.7020c 1.7389b 1.8105b 1.6771b 1.8044b

(0.8760) (0.7615) (0.7695) (0.7511) (0.7642)

OLD -4.1904a -4.2427a -4.3754a -4.2054a -4.2980a

(0.8036) (1.0671) (1.0504) (1.0687) (1.0504)

JANTEMP -0.0007c -0.0009b -0.0010b -0.0008b -0.0009b

(0.0004) (0.0004) (0.0004) (0.0004) (0.0004)

CANCEL -0.0072c

(0.0040)

COUNTDEL -0.0241c

(0.0132)

MEANDEL -0.0239
(0.0150)

SUMDEL -0.0201c

(0.0112)
Observations 4815 3594 3594 3594 3594

Adj. R2 0.9994 0.9995 0.9995 0.9995 0.9995

Sargan-Hansen 0.000384 3.6551 3.1448 4.8483 3.3460
(p-value) (0.999998) (0.4547) (0.5339) (0.3032) (0.5017)

Notes: EMPTOT, POP, PAX, CANCEL, COUNTDEL, MEANDEL, and SUMDEL are in natural logs.
Dummies for Years and Quarters are suppressed.
Robust clustered standard errors in parentheses: ap < 0.01; bp < 0.05; cp < 0.10.
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Table 4.13: Arrival Delays (CENTR. Instrument for Traffic) — Service Employment

EMPSERV

(1) (2) (3) (4) (5)

PAX 0.0455b 0.0453c 0.0558b 0.0387 0.0533b

(0.0218) (0.0256) (0.0219) (0.0254) (0.0227)
CANCEL -0.0055c

(0.0033)
COUNTDEL -0.0167

(0.0104)
MEANDEL -0.0237c

(0.0130)
SUMDEL -0.0144

(0.0089)

EMPPBIF (Tradable Services)

PAX 0.0606 0.0588 0.0634 0.0552 0.0623
(0.0576) (0.0644) (0.0542) (0.0679) (0.0565)

CANCEL -0.0024
(0.0070)

COUNTDEL -0.0071
(0.0219)

MEANDEL -0.0113
(0.0267)

SUMDEL -0.0063
(0.0188)

EMPTLE (Non-Tradable Services)

PAX 0.0322b 0.0364c 0.0513b 0.0278 0.0477b

(0.0149) (0.0204) (0.0207) (0.0208) (0.0208)
CANCEL -0.0077b

(0.0032)
COUNTDEL -0.0237b

(0.0107)
MEANDEL -0.0323b

(0.0132)
SUMDEL -0.0204b

(0.0091)

EMPLH

PAX 0.0847 0.1149c 0.1590b 0.0812 0.1486b

(0.0526) (0.0648) (0.0683) (0.0717) (0.0674)
CANCEL -0.0228a

(0.0083)
COUNTDEL -0.0669b

(0.0295)
MEANDEL -0.1072a

(0.0357)
SUMDEL -0.0588b

(0.0247)

Notes: All variables reported here are in natural logs.
Dummies for Years and Quarters are suppressed.
Robust clustered standard errors in parentheses: ap < 0.01; bp < 0.05; cp < 0.10.
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Table 4.14: Arrival Delays (CENTR. Instrument for Traffic) — Goods Employment

EMPGDS

(1) (2) (3) (4) (5)

PAX 0.1294 0.0831 0.1549 0.0584 0.1367
(0.1095) (0.1308) (0.1372) (0.1373) (0.1382)

CANCEL -0.0372a

(0.0132)
COUNTDEL -0.1221b

(0.0485)
MEANDEL -0.1331a

(0.0515)
SUMDEL -0.1028b

(0.0406)

EMPMNF

PAX 0.1570 0.1194 0.1320 0.1179 0.1286
(0.1583) (0.2112) (0.1870) (0.2235) (0.1930)

CANCEL -0.0066
(0.0180)

COUNTDEL -0.0240
(0.0585)

MEANDEL -0.0195
(0.0688)

SUMDEL -0.0193
(0.0497)

Notes: All variables reported here are in natural logs.
Dummies for Years and Quarters are suppressed.
Robust clustered standard errors in parentheses: ap < 0.01; bp < 0.05; cp < 0.10.
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Beginning with the sensitivity of our results to the choice of instruments and departure versus

arrival delay, we can see that the estimation results do not change much if we use HUB rather

than the CENTR. instrument, or departure instead of the arrival sample. The former point

largely mirrors Brueckner’s findings, even though CENTR. performs more successfully in

our analysis. We should note that, despite their stability across the choice of instruments

and departure versus arrival delay analyses, the estimation results noticeably depend on the

measures of delay we use. Specifically, while the frequency of delayed flights (COUNTDEL)

and total minutes delayed (SUMDEL) exhibit rather similar results, only marginally changing

the estimate of the impact of traffic as compared to the baseline specification, the length

of delays (MEANDEL) and the count of canceled flights (CANCEL) render the baseline

estimates of the impact of traffic statistically insignificant.

In light of the above points, we will base our discussion predominantly on Tables 4.3-4.5. As

a reminder, Table 4.3 includes regressions measuring the impact of traffic and delays on total

employment at the MSA level. Tables 4.4 and 4.5 present results for the impact on service

and goods employment, respectively. We employ four measures of service employment and

two measures of goods employment in our analysis. Of those, total service employment and

total goods employment have also been used in Brueckner [19], allowing for direct comparison

to our point estimates.

The baseline estimation for the effect of passenger air traffic on total employment implies

that a 10-percent increase in passenger enplanements would yield a 0.59-0.63 percent growth

in city-level employment. Despite being lower, this estimate is reasonably close to the 0.72-

0.88 percent effect reported by Brueckner in his cross-sectional analysis. At the sample

mean, an increase of 75,000- passenger enplanements (a 10-percent increase) per quarter will

yield 2,500 new jobs. To put this into context, 75,000 passengers is equivalent to about 1.5

additional daily Boeing-737 services. These elasticity estimates are not affected much by

adding COUNTDEL and SUMDEL to the specifications.
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Estimates of the elasticity of total employment with respect to these two delay measures

suggest that a 10-percent increase in the number of delayed flights (around 100 additional

delayed departures per quarter for the mean observation) or an equivalent increase in the

total minutes of delay (over 6,000 extra delay minutes per quarter at the sample mean)

would decrease employment by 0.2 percent (around 835 jobs at the sample mean). Further,

a 10-percent increase in the number of canceled flights costs around 334 jobs. A similar

delay elasticity of total employment is observed for the mean-delay metric (MEANDEL),

where a 10-percent increase in delays implies a 0.24-percent decline in employment. Then,

an additional 100 delayed departures at the sample mean will have about the same effect on

employment as delaying every flight at the MSA by an extra 40 seconds.

Our estimates of the elasticity of service-sector employment with respect to the air passenger

traffic imply that a 10-percent increase in traffic increases this employment measure by

around 0.47 percent. Note that this is significantly less than the corresponding estimates

reported by Brueckner (according to his results, an equivalent increase in traffic yields 1.1

- 1.27 percent more employment in service jobs). Thus, at the sample mean, an increase of

75,000 of passengers per quarter will yield around 1,366 additional service-sector jobs.

Turning to the disaggregated employment categories in Tables 4.4 and 4.5, it appears that

the relationship between air traffic and service-sector employment is only significant for

the non-tradable services sector, where a 10-percent increase in traffic yields nearly 598

jobs in non-tradable services at the sample mean. The results showing the effect of traffic

on tradable versus non-tradable sector employment are fundamentally different from those

reported by Sheard [82]. However, Sheard’s work relies on cross-sectional data, and our

estimates without MSA fixed effects also exhibit positive relationships between traffic and

tradable-sector employment. Moreover Sheard used departures (not passenger volume) as

the measure of air traffic, and his dependent variables are the sectoral shares of employment.

Thus, his results are essentially reflecting how traffic influences shifts in sectoral employment
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(non-service to service, for example). We, on the other hand, are measuring the impact of

air traffic on sectoral-employment levels.

Delays robustly decrease service-sector employment, with the exception of tradable services,

where the coefficients have the expected sign but lack statistical significance at conventional

levels. Interestingly, estimates of the service-sector employment elasticity with respect to

the count of delayed flights (as well as the elasticities of both tradable and non-tradable

services) are of the same order of magnitude as those found for total employment. The same

observation holds true for these elasticities with respect to the number of canceled flights

and mean delay.

Results showing the impact of delays on leisure and hospitality employment (EMPLH ) con-

trast our initial expectations. We had previously discussed a potential channel for increased

delays to positively affect employment in these sectors (through the need for infrastructure

and services that accommodate stranded travelers). Yet, the outcome is quite the oppo-

site, suggesting that delays in fact reduce employment in the leisure and hospitality sectors.

Further, when COUNTDEL or SUMDEL are included in the regressions, the impact of air

traffic on employment in these sectors becomes positive and significant, with the estimated

elasticity similar to that reported by Brueckner for the entire service-sector employment.

Moreover, employment in the leisure and hospitality sector is about three times as sensitive

to delays compared to the non-tradable sector. It thus appears that as delays harm business

and employment in general, the corresponding spillover effect to the leisure and hospitality

establishments far outweighs any potential positive impact of delays that create service jobs

aimed at accommodating stranded passengers. Notably, our results here are in line with the

particularly harmful impacts of delays on lodging, food, and retail services reported by the

JEC [51] and PFNYC [74] studies. Based on firm-survey results in New York City, PFNYC

[74] suggested that delays lead business to hold less meetings in New York, and to choosing

alternative meeting methods that do not require in-person contact (e.g., teleconferencing).
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These firm decisions would in turn lower occupancy in hotels and restaurants, while also

reducing other business-related retail purchases.

As reported in previous studies, there appears to be no clear statistically significant connec-

tion between passenger air traffic and employment in the goods-producing sector (EMPGDS ).

Delays, however, do have a negative impact on this employment category, where a 10-percent

increase in the COUNTDEL (SUMDEL) costs around 712 (615) jobs in these sectors, at the

sample mean. At the same time, we find no statistically-significant relationship between

our delay measures and employment in the manufacturing sector. Note, however, that all

the relevant point estimates are quite similar to those reported for total employment.16 Ad-

ditionally, the results render some support to the possibility of delay-induced reduction in

productivity of goods-producing businesses that rely on air services (Peterson et al. [73]).

Overall, air travel delays show the expected negative effect on employment. There are

also clear differences in the estimates of this effect across sectors. Interestingly, the goods-

producing sector employment exhibits the highest sensitivity to delays, followed by the leisure

and hospitality sector. Manufacturing and tradable services, on the other hand, are not

affected by delays. The latter conclusion is in contrast to what is reported in the recent

studies [82]. The higher sensitivity of the goods producing sector employment as compared

to leisure and hospitality is unexpected.

4.6 Conclusion

This paper provides the first attempt to analyze the impact of air travel delays on city-level

employment, both total and sectoral. Previous studies suggested that road congestion can

16Bearing in mind that construction employment is also included in the EMPGDS category, we isolated and
regressed construction employment (logged analogously to EMPGDS ) on traffic, delays, and the remaining
control variables in our baseline specification. The results indicate that delays have a negative and significant
impact on construction employment, suggesting that this employment category is potentially driving the
delay-impact outcome of EMPGDS.
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inhibit urban development Hymel [50]. Given the importance of air travel for business in the

modern world, one would be right to hypothesize a similar effect for the airport congestion.

Yet, this hypothesis has not yet been analyzed.

Our work takes advantage of a 9-year quarterly panel data, covering major airports across the

U.S. We use detailed data on passenger air traffic, delays, and employment, aggregated to the

MSA level. Our data analysis strategy is rather conventional, with the exception that, unlike

most previous studies, we rely on within-MSA (rather than across-MSA) variation to identify

the key relationships. We use the same instruments for passenger air travel volumes as those

employed by Brueckner [19], and delineate service sectors into those providing tradable and

non-tradable services, as suggested by Sheard [82]. Considering the services that are used to

accommodate delayed and stranded passengers, we also pay specific attention to the leisure

and hospitality industry, as we postulate that this sector might be positively affected by air

travel delays.

Our data analysis results confirm some of the findings in the literature, while also detecting

surprising relationships. We confirm the positive effects of passenger air traffic on employ-

ment, and our estimates of this effect are similar to those reported in cross-sectional studies.

However, we find that the service-sector employment is less sensitive to changes in passenger

air travel than previously reported by Brueckner [19]. We also determine that air traffic does

have an impact on employment in non-tradable service jobs, but not in industries provid-

ing tradable services. This finding contrasts results reported by Sheard [82]. At the same

time, however, our analysis that does not account for MSA-specific heterogeneity confirms

relationships found by Sheard.

We find a rather robust relationship between delays and employment levels. A 10-percent

increase in the number of flights delayed leads to about a 0.2-percent decrease in total and

service sector employment, a 0.7-percent decline in employment in the leisure and hospitality

sector, and a 1.1-percent reduction in employment in goods producing industries. The higher
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sensitivity of goods-producing sector employment as compared to leisure and hospitality

comes out as a surprise to us.

Overall, this study provides the first evidence on what we consider to be an important

relationship between air traffic, delays, and employment. As both the volume and importance

of air travel in the globalizing world is expected to increase, understanding its effects on the

local economy also becomes an increasingly important issue.
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Appendix

.1 Airport Traffic and Metropolitan Economies

.1.1 BLS QCEW Industry List

List of Industries (with corresponding NAICS codes) provided by the U.S. Bureau of Labor

Statistics (BLS) Quarterly Census of Employment and Wages (QCEW )

Source: http://www.bls.gov/bls/naics_aggregation.htm

1. Goods-Producing

(a) Natural resources and mining

i. Sector 11 (Agriculture, forestry, fishing and hunting)

ii. Sector 21 (Mining)

(b) Construction

i. Sector 23 (Construction)

(c) Manufacturing

i. Sector 31-33 (Manufacturing)

2. Service-Providing

(a) Trade, transportation, and utilities

i. Sector 42 (Wholesale trade)

ii. Sector 44-45 (Retail trade)

iii. Sector 48-49 (Transportation and warehousing)
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iv. Sector 22 (Utilities)

(b) Information

i. Sector 51 (Information)

(c) Financial activities

i. Sector 52 (Finance and insurance)

ii. Sector 53 (Real estate and rental and leasing)

(d) Professional and business services

i. Sector 54 (Professional, scientific, and technical services)

ii. Sector 55 (Management of companies and enterprises)

iii. Sector 56 (Administrative and support and waste management and remediation services)

(e) Education and health services

i. Sector 61 (Education services)

ii. Sector 62 (Health care and social assistance)

(f) Leisure and hospitality

i. Sector 71 (Arts, entertainment, and recreation)

ii. Sector 72 (Accommodation and food services)

(g) Other services

i. Sector 81 (Other services, except public administration)

(h) Public administration

i. Sector 92 (Public administration)

(i) Unclassified

i. Sector 99 (Unclassified)
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.1.2 Population and Employment Share

Figure 2: POP, SERV, and MANUF Scatter Plots
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.2 Determinants of Air Cargo Traffic in California

To examine period-specific (seasonality) effects in our sample more closely, we have specified

the following variation of our base model:

Tit = α + βEit + γXit +
∑

δiDi +
∑

θtQt + εit, (2)

where Qt now represents year and quarter dummies (all other letters denote the same vari-

ables in the base model). The corresponding coefficient estimates for the model based on

Equation 2 are shown in Table 15. With the exception of the time variables, the results

shown here can be compared side-by-side with the output for the base model (found in

Table 3.4).

Without much significance, the coefficients of the year dummies show signs that cargo traffic

decreased after the 2007-peak year for national passenger and cargo traffic. The fall in

traffic, captured by the 2008 and 2009 dummies, possibly reflects the shock of high oil prices

observed in July of 2008, as well as the economic effects of the recession that shortly ensued.

The quarter dummies do not reveal the seasonal variation that is traditionally expected

for air cargo traffic, with higher demand anticipated during the holiday season (QTR 4 ).

This finding is inconsistent with the claim that FedEx Express sees around a 50-percent

rise in the daily packages it handles at OAK as early as September (TranSystems [87]).

However, the insignificant coefficient on QTR 4 precludes us from quantifying the effect of

peak-commercial activities during the holiday season on air cargo traffic levels.
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Table 15: Regression results with time dummies (420 Observations)

Total (Domestic & International) Domestic (-DOM )

(1) ACTRAFFIC (2) TRAFFIC (3) ACTRAFFIC (4) TRAFFIC

INTERCEPT -13.525a -17.911a -9.437a -13.250a

(4.095) (5.201) (2.899) (3.949)

POP 0.976a 1.174a 0.680a 0.859a

(9.756) (11.558) (6.566) (8.374)

SERV 7.636a 5.816a 10.968a 9.432a

(4.130) (3.121) (5.802) (5.008)

MANUF 1.389c 0.469 2.019b 1.158
(1.704) (0.562) (2.371) (1.358)

WAGE 0.799a 1.071a 0.667a 0.880a

(3.073) (3.948) (2.597) (3.333)

YOUNG 2.179 2.441 3.261 3.583
(0.830) (0.894) (1.261) (1.344)

OLD -18.139a -11.192b -27.910a -21.764a

(3.296) (1.599) (4.893) (3.829)

CAP 1.533a 1.306a 1.889a 1.695a

(13.589) (11.494) (16.433) (15.032)

HUB 3.884a 3.621a 4.029a 3.757a

(23.214) (21.290) (22.390) (21.414)

PROXIMITY -1.553a -1.592a -1.549a -1.585a

(19.429) (19.216) (19.898) (19.821)

Results continued on the next page...
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Regression results continued (Table 15) with time dummies (420 obs.)

Total (Domestic & International) Domestic (-DOM )

(1) ACTRAFFIC (2) TRAFFIC (3) ACTRAFFIC (4) TRAFFIC

YR 2004 0.021 0.002 0.035 0.018
(0.859) (0.021) (0.291) (0.153)

YR 2005 -0.030 -0.061 -0.005 -0.0326
(0.266) (0.535) (0.048) (0.289)

YR 2006 0.051 0.005 0.077 0.0367
(0.507) (0.050) (0.762) (0.360)

YR 2007 0.095 0.010 0.157 0.083
(0.882) (0.093) (1.462) (0.761)

YR 2008 0.087 -0.020 0.202c 0.105
(0.738) (0.166) (1.717) (0.880)

YR 2009 -0.047 -0.186 1.108 -0.018
(0.369) (1.435) (0.846) (0.141)

QTR 2 0.148c 0.142c 0.173b 0.166b

(1.943) (1.830) (2.262) (2.156)

QTR 3 0.092 0.092 0.096 0.093
(1.225) (1.199) (1.269) (1.219)

QTR 4 0.022 0.002 0.033 0.016
(0.290) (0.025) (0.423) (0.206)

Adj. R2 0.967 0.968 0.965 0.966

Notes: The dependent variables, POP, and WAGE are in natural logs.
Absolute t-statistics in parentheses, based on robust standard errors: ap < 0.01; bp < 0.05; cp < 0.10.
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Figure 3: MSA Manufacturing Employment Shares (2009Q4)
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Figure 4: MSA Service Employment Shares (2009Q4)
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.3 Airport Delays and Metropolitan Employment

Table 16: First Stage Regressions — HUB Instrument, Departure Delay

PAX CANCEL COUNTDEL MEANDEL SUMDEL

(1) (2) (3) (4) (5)

INTERCEPT 2.7925a -4.2619a -3.7608a 1.5736a 0.4825
(1.0751) (1.1030) (1.0182) (0.3662) (1.0372)

POP 0.9631a 0.7436a 0.8678a 0.0827a 0.8585a

(0.0509) (0.0571) (0.0554) (0.0208) (0.0562)

YOUNG -8.4988a -1.0199 -2.3087 -0.9111 -2.9629
(3.0880) (3.010) (2.6566) (0.9323) (2.6487)

OLD -11.1174a -10.5530a -10.2624a 0.1290 -9.8871a

(2.2946) (2.3675) (2.1565) (0.8867) (2.1846)

HUB 1.1588a 0.8428a 1.2055a -0.0265 1.0777a

(0.1949) (0.1631) (0.1677) (0.0409) (0.1614)

LEISURE 0.8169a -0.2286 0.0584 -0.0057 0.0405
(0.2526) (0.5164) (0.6522) (0.0888) (0.6305)

SLOT 0.2612 1.8105a 0.3724 0.1074 0.6197
(0.4695) (0.6528) (0.5362) (0.1358) (0.5284)

PROXIM. -1.2512a -0.5650a -1.0228a -0.0449 -0.9970a

(0.1198) (0.1181) (0.1218) (0.0455) (0.1240)

PRCP -0.0720a 0.0997a -0.0050 0.0483a 0.0206
(0.0206) (0.0229) (0.0242) (0.0068) (0.0241)

SNOW 0.0071b 0.0188a 0.0072b 0.0053a 0.0080b

(0.0031) (0.0050) (0.0035) (0.0017) (0.0035)

JANTEMP -0.0002 0.0011 0.0132b 0.0038b 0.0119b

(0.0056) (0.0055) (0.0052) (0.0018) (0.0052)

Observations 3603 3603 3603 3603 3603
Adj. R2 0.8853 0.7077 0.8369 0.2452 0.8205

Notes: Dependent variables and POP are in natural logs.
Dummies for Years and Quarters are suppressed.
Robust clustered standard errors in parentheses: ap < 0.01; bp < 0.05; cp < 0.10.
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Table 17: First Stage Regressions — CENTR. Instrument, Departure Delay

PAX CANCEL COUNTDEL MEANDEL SUMDEL

(1) (2) (3) (4) (5)

INTERCEPT 0.3140 -5.2691a -5.8324a 1.7283a -1.2717
(1.2590) (1.0536) (1.1148) (0.3443) (1.0815)

POP 1.1232a 0.8623a 1.0358a 0.0793a 1.0090a

(0.0513) (0.0505) (0.0548) (0.0178) (0.0534)

YOUNG -7.6285b -1.9856 -2.4219 -1.1277 -3.2605
(3.7986) (3.1996) (3.2921) (0.9226) (3.1559)

OLD -9.7019a -11.1088a -9.7999a -0.0985 -9.6683a

(2.4456) (2.5775) (2.4400) (0.9461) (2.4548)

CENTR. 0.000143c -0.000150a -0.000013 -0.000035 -0.000043
(0.000073) (0.000056) (0.000059) (0.000024) (0.000059)

LEISURE 0.9931a -0.0812 0.2539 -0.0074 0.2177
(0.2962) (0.5246) (0.6856) (0.0870) (0.6578)

SLOT 0.0754 1.7141a 0.2038 0.1164 0.4738
(0.3583) (0.4967) (0.3626) (0.1140) (0.3578)

PROXIM. -1.2010a -0.5930a -1.0117a -0.0540 -0.9950a

(0.1387) (0.1202) (0.1323) (0.0446) (0.1313)

PRCP -0.0638a 0.0624a -0.0241 0.0428a -0.0017
(0.0201) (0.0223) (0.0262) (0.0063) (0.0253)

SNOW 0.0042 0.0188a 0.0054 0.0056a 0.0067c

(0.0035) (0.0051) (0.0038) (0.0017) (0.0038)

JANTEMP -0.0007 -0.0029 0.0070 0.0040b 0.0064
(0.0057) (0.0054) (0.0057) (0.0018) (0.0056)

Observations 3603 3603 3603 3603 3603
Adj. R2 0.8664 0.6955 0.8106 0.2497 0.7988

Notes: Dependent variables and POP are in natural logs.
Dummies for Years and Quarters are suppressed.
Robust clustered standard errors in parentheses: ap < 0.01; bp < 0.05; cp < 0.10.
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Table 18: First Stage Regressions — HUB Instrument, Arrival Delay

PAX CANCEL COUNTDEL MEANDEL SUMDEL

(1) (2) (3) (4) (5)

INTERCEPT 2.8462a -4.9073a -2.9382a 2.2121a 0.7687
(1.0909) (1.2973) (0.9905) (0.3002) (1.0152)

POP 0.9619a 0.7664a 0.8162a 0.0241 0.8395a

(0.0520) (0.0625) (0.0524) (0.0147) (0.0541)

YOUNG -8.5677a -0.2653 -1.7318 0.5513 -2.4802
(3.1242) (3.4220) (2.6205) (0.7843) (2.6343)

OLD -11.3721a -10.5134a -9.3134a 1.0512 -9.3131a

(2.3217) (2.5402) (2.0335) (0.7421) (2.0151)

HUB 1.1653a 0.9880a 1.0226a -0.1743a 0.9969a

(0.1954) (0.1964) (0.1576) (0.0355) (0.1582)

LEISURE 0.8200a -0.2523 -0.0392 -0.0520b -0.0641
(0.2527) (0.5012) (0.6055) (0.0232) (0.6061)

SLOT 0.2777 1.8016a 0.5425 0.2369b 0.6963
(0.4738) (0.6623) (0.6090) (0.1012) (0.6635)

PROXIM. -1.2678a -0.5681a -1.0686a -0.0410 -1.0611a

(0.1223) (0.1264) (0.1176) (0.0308) (0.1205)

PRCP -0.0721a 0.1153a -0.0100 0.0382a 0.0064
(0.0207) (0.0244) (0.0219) (0.0044) (0.0222)

SNOW 0.0065b 0.0208a 0.0066b 0.0047b 0.0080b

(0.0032) (0.0059) (0.0033) (0.0019) (0.0032)

JANTEMP -0.0003 0.0018 0.0109b -0.0002 0.0104
(0.0056) (0.0059) (0.0050) (0.0014) (0.0050)

Observations 3594 3594 3594 3594 3594
Adj. R2 0.8848 0.7018 0.8426 0.2856 0.8345

Notes: Dependent variables and POP are in natural logs.
Dummies for Years and Quarters are suppressed.
Robust clustered standard errors in parentheses: ap < 0.01; bp < 0.05; cp < 0.10.
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Table 19: First Stage Regressions — CENTR. Instrument, Arrival Delay

PAX CANCEL COUNTDEL MEANDEL SUMDEL

(1) (2) (3) (4) (5)

INTERCEPT 0.3388 -6.1544a -4.7140a 2.6196a -0.9263
(1.2783) (1.2434) (1.0611) (0.2991) (1.0674)

POP 1.1233a 0.9070a 0.9596a 0.0002 0.9795a

(0.0522) (0.0554) (0.0503) (0.0130) (0.0517)

YOUNG -7.6702b -1.3070 -1.8151 0.3473 -2.6355
(3.8552) (3.6738) (3.1759) (0.7904) (3.1469)

OLD -9.9172a -11.1130a -8.9223a 0.7630 -9.0071a

(2.4947) (2.7476) (2.2642) (0.7906) (2.2469)

CENTR. 0.000144c -0.000157b -0.000008 -0.000032b 0.000020
(0.000074) (0.000063) (0.000055) (0.000016) (0.000057)

LEISURE 0.9975a -0.0805 0.1269 -0.0775a 0.0987
(0.2968) (0.5118) (0.6360) (0.0246) (0.6349)

SLOT 0.0895 1.6761a 0.3938 0.2662 0.5527
(0.3630) (0.4843) (0.3735) (0.1646) (0.4211)

PROXIM. -1.2152a -0.5946a -1.0568a -0.0517 -1.0525a

(0.1416) (0.1294) (0.1280) (0.0314) (0.1299)

PRCP -0.0638a 0.0754a -0.0254 0.0351a -0.0106
(0.0202) (0.0236) (0.0233) (0.0044) (0.0234)

SNOW 0.0035 0.0206a 0.0051 0.0052a 0.0067c

(0.0036) (0.0053) (0.0035) (0.0019) (0.0035)

JANTEMP -0.0007 -0.0029 0.0057 -0.0008 0.0053
(0.0057) (0.0059) (0.0053) (0.0014) (0.0054)

Observations 3594 3594 3594 3594 3594
Adj. R2 0.8659 0.6852 0.8214 0.2743 0.8150

Notes: Dependent variables and POP are in natural logs.
Dummies for Years and Quarters are suppressed.
Robust clustered standard errors in parentheses: ap < 0.01; bp < 0.05; cp < 0.10.
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