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A. ThREEBOfiY N/D EQUATIONS 

In my first talk I should like to construct three-body N/fl equations, 

analogous to the familiar two-body N/fl equations. We assume that all the 

singularities of a partial-wave amplitude, other than the right-han1 

unitarity cut are known, and we attempt to construct the amplitude there-

from. 

Our object in constructing the N/fl equations is not to perform 

numerical calculations with theth as they stand. This alone would be a 

complicated numerical problem but,' in addition, one does not know the 

left-hand cut expl1citly. We shall not attempt here to obtain a self-

consistent scheme for calculating the left- and right-hand cuts from 

crossing and uriitarity, since no such a scheme, free from divergences 

and cut-off parameters, has been constructed even for the two-body prbblem. 

Our reasons for constructing N/fl equations are mainly theoretical5 They 

may possibly serve as a basis for simpler but cruder approximations which 

can be used to give an estimate of three-body effects. Further, it 

appearsto be essential to treat resonances on a par with particles in 

two-body calculations if the results are to be at all accurate, Since a 

state cOnsisting. of a particle and a resonance is really a three-particle 

state, the three-body equations may be helpful in treating doubtful 

points in the equations for particleresonance scattering 

Another application of three-body N/fl equations is to the study of 

the complex J-plane in threebody systems. For this purpose it is 

unnecessary to know the lefthand and complex singularities, since the 

discontinuities across them canbe proved to be holomorphic functions 

of J . At present we have not.carried out the proof for complex J , 

as there are complications caused by the infinite number of helicity 
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states which exist neither in the two-body problem for complex 1 or in the 

three-body problem for real .J . In my next lecture I shall make some 

remarks on the three-body problem with complex J... 

We may regard the three-body problem.as analogous to a two-body 

problem with an infinite number of channels. However, there are 

complications in the three-body problem which do not exist in the two- 

'body problem. Such complications are associated with disconnected diagrams 

in which two particles scatter which the third is unaffected. There will 

be unitarity discontinuities associated with the total energy and with 

all s-ubenergies, and wemust choose our variables careñilly if the 

unitarity equation is to have a form from which N/D equations can be 

constructed.. We shall find that the kinematics associated with the 

correct variables are.much simpler when the physical TDalitzTt  re.gions 

retaihs its shape with increasing energy, as it does in the non-

relativistic case, than when it does not. Since a system with a Dalitz 

region of fixed shape possesses all the essential features of the 

problem without the kinematical complications, we shall confine our 

discussion to such a system in this lecture. 

Let us begin by writing down the many-channel two-body N/D equations, 

by analogy with which the three-body equations will be constructed. The 

equations are 

F. (se) -F. (s) 
N. .(s) =-F. .(s) + 	f ds' 	 k (s?) N .(s) , 

1J 	 13 	it 	 5 ?  - s 	 . 
R 	

1(a) 

	

f k.(s) N..(s
D..(s) 	- 
	

ds' 	1 	
. 	 1(b) 

S 
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The variables i, j and 	are the channl indices. 

N 
- For the three-body problem, we shall begin by taking the Omnes 

CO 	
variables Besides the total angular momentum J there will be seven 

variables, which Omns takes to be 

The total energy S 

The partial energies 	
l' 2' l' 

2' where, for instance, 

s1 
 = - P2 + 	

2 

The helicities M and M' of the initial and final states 

withrespect to some body-centered axis. 

The unprimed variables refer to the initial state, the primed variables 

to the final state. The third partial energy is not an independent 

variable, since it is given by the equation 

	

+ s + S3 = 
S' 

+ s 
2 1

+ S 3 ' = S + 3m2  . 	 (2) 

For simplicity we have taken all masses equal. 

In constructing the N/D equation we shall take the variable S 

to be analogous to the variable s of the two-bodyproblem, while 

and M will be analogous to the channel index i . Now, however, 

we have two continuous and one discrete channel indices. 

- 	The scattering amplitude will consist of a connected part Ac 

and three disconnected parts a 1 , a2  and a3  as shown in Fig. 1: 

'xl 

	

A = A+E a.. 	 (3) 
- 	i=l 
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The disconnected part a. will contain a s-function ö(s. - s.') , so 

that 

a. 	= 	. 	(s. - s.') . 

We may now write down the unitarity condition 

Im (A0  + E a.) = k(s) (Ac*  A + E a.A 

	

* 	* 

	

+Z A 	a. •+ Z a. a.)  c 	1  1 	 1,3 

Thë.function k(s) is the kinematicalfactor. We have suppressed the 

integrations.over the intermediate variables, so that thefirst;term on 

the right of (5) is meant to be 

f ds1  ds2 

	

	
Mtr 

A 	(s, J; 	s 

	

2 , M, 	
j': S2 ., M t7 ) 	. 

. A0  (s, J; s1 1 ', si', M 11 
	

Sit 
	

s2 , M')  

An integral such as (6) is always implied when products of scattering 

amplitudes are written down. 

Equation (), the unitarity equation, is straightforward. What we 

require for our N/D equations is the discontinuity equation, which involves 

more sophisticated concepts. We have to distinguish between the dis- 

continuities in the total energy S and the six sub-energies s., 
1 	

S.' 
1 

The usual rule relating a discontinuity to an imaginary part states 

that the change of the amplitude when the imaginary part of all seven 

variables changes sign is equal to the imaginary part. It might appear 

10 
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intuitively plausible that the discontinuity in S is equal to the 

first term on the right of (5), the discontinuity in s to the term 

	

a. A and the discontinuity in s. 	to the term A a. . It has been 
1 C 	 1 	 C 1 

shown, however, that this conjecture is not correct. One can indeed 

deform the contours of the intermediate-state integrations so that this 

corresponden:ce is valid, but we would then have to integrate over 

complex values of the -s 1 's , even when the initial- and final-state 

variables are in the physical region. As we wish to treat the s.'s as 

analogous to the channel indices of the two-body problem, we must restrict 

the integrations over them to the physical region. 

We therefore cannot take the variable S as our dispersion 

variable and the s.'s as analogous to the channel indices of the 

two-body problem. In order to. do this we.woilLd have to know the dis-

continuity of the amplitude in S , whereas we only know the sum of the 

discontinuities in all the energies. We can overcome this difficulty by 

replacing the s 's and s.?)5  by the variables . 

S. -m 2 
	

. 	5.' -m 2  
11 

•2 	
x. - 	2 

S-9m 	 S-9m 

If the x's are kept constant and positive and S is moved round the 

threshold in the complex plane, all the s 1  
.'s and s.''s will also move 

round their thresholds. Thus the discontinuity in S with the x's 

kept constant is equal to the sum of the discontinuities in S and those 

in the s's and s''s , and it is given by the right-hand side of (6). 

14 	
We therefore take our variables to be 

S, J, x., x2 , M, 	x2', M' 

4 



-6- 	 TJCRL-17270 

Equation (2) rewritten in the terms of the x's is 

x + x + x 	 + x + x l 	2 	3 	 2 	3 	= 1 	 (8) 

so that x3  and x 31are again not independent variables. 

If we plot the three x's in triangular co-ordinates, the physical 

Dalitz region has the form shown in Fig. 2. Within the triangle the values 

of the x's range from 0 to 1. Near threshold the physical region is 

represented by the circle, as S is increased it expands eventually to 

fill the whole triangle at large energies. Unfortunately there is a 

difficulty associated with the change of shape of the Dalitz region, and 

the variables defined above are still not- suited to our problem. The 

difficulty is associated with the disconnected--terms in the unitarity 

equation. The range of integration- in these terms is restricted by a 

s-function in one of the s i Is , so that one has to integrate over a 

line such as AB in Fig. 2. If we now gradually decrease the value of 

S the physical-. region becomes smaller arid- the line AB shrinks, 

eventually becoming a point. If S is now decreased still farther, the 

analytic continuation of the integral would be along a path in the 

complex x2 -plane. Thus, even with our new variables, integrals over 

the intermediate variables of the unitarity equation have sometimes 

to be deformed into the complex plane. This is precisely the situation 

we are trying to avoid 

We therefore have to re-define variables in such a way that 

the shape of the Dalitz region does not depend on the energy. It is not 

difficult to find suitable variables, one can for instance take ratios 

of the magnitudes of the center-of-mass momenta. However, the 
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kinematics associated with the new variables will be complicated and. 

will involve the solution .of quartic equations. In this talk we shall 

therefore confine ourselves to cases where the shape of the Dalitz region 

does not depend on S , such as the non-=relativistic case. The problem 

has been treated with fully relativistic kinematis andN/D equations have 

been constructed, though the algebra is much more complicated. 

Before writing down the N/B equations we shall mention one 

kinematic problem, to find the amplitudes associated with the disconnected 

diagrams a. once the corresponding twobody amplatudes are known. Let 

us choose the amplitude a1  and., for simplicity, we shall define the 

helicities M and M I  to be taken with respect to a body-centered axis 

along the direction of motion of 2. Once we know the amplitude with one 

definition of the body-centered axis, we can easily obtain it with 

respect to andther. In terms of the two-body variables, the amplitude a ,. 

will be 

(2 + 1) t (s ) P (cos a )(p1  -p  1  

where t is the two-body partial wave amplitude and a1  is the angle 

of scattering of particles 2 and 3 in their own center-of-mass system. 

We rewrite (9) as 

+ 1) t(s1) 	 61 ) 	
m( 	eim( 	) 6( 	£l 	' 

(10), 

where 
l 
 and 

 l 
 are the initial and final angles between the 

direction of motion of particles 1. and 2, in the center-of-mass system of 
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CO 

N(s) 	F(s) + 	f 2 as 	s) k(5') N(s'), 	 (16a) 

9m 

00  

D(5) 

= 

	

f 	
k(s)N(5') .. 	 (16b) 

	

9m 	 . 	. 

Again, a product such as 

	

2 	F(S', J; x1,x2 ,M, x"  

X N(5, J x1" , x2 17 , Mx1,x2 ,.M') 

is always implied when products NF are. written dom, so that our 

integral equation involves three continuous variables S 
, X,

, and x2  

and one discrete variable. M 

Thefuntibn F. will contain aisconne.cted parts and.a connected. 

part:  

	

F =F 	+ Z f 	 . 	 S 	(17) 

where the siThscript I indicates the resence of a delta function 

It follows from (16) that the function N will also 

cOntain disconnected parts 	 . 	. 

	

.N = N 	+ 	n.  c 
1 

We can now substitute (17) and (18) into (16). By equating coefficients 

of the three 6-functions , as well as the terms without 8-functions , 

we obtain the following equations for n and Nc 

(p 
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n.(S) = f(s) + 	f dST f(S') - f(s) k(s t ) n(S') 
1 

 
S'-S 	

. 
 

1 	 f.(S') - f(s) 
N(S) = F(S) + - 	

j 	
1 

s' - s 	k(s') N(S') 

f 	
F(St)_F(S) 

+ 	dS' 	c5, - 	k(s') ni(S) + - 
1 

)(J f.(s') - f(s) 	
+JdSt dSt 	

- 	
- k(S) n. (St) 

F (s') - F (s) 
X 	SI-s 	k(s t ) N (5) . 	 (19) 

 - 

It is not difficult to see that (18) is precisely the equation for 

the two-body n-function , with the correspondence between the functions 

in the spaces of two-body and three-body variables being given by (14), 

Thus n is known, and equation (19) can be solved. It is still not a 

Fredholm equation, as the terms f. in the kernel contain delta functions. 

However, equations of this form can be reduced to Fredhoim equations by 

the method used by Weinberg in the 5chrdinger potential problem. We 

thus have a Fredholm equation for constructing N . The denominator 

function D can then be found from (16). The calculation of ID 	from 

D itself involves the solution of an integral equation in x 1  , 

and M . The disconnected parts can be separated off in the same way as 

before. 

For simplicity we have confined ourselves to a pure three-body 

problem, but the generalization to the case of coupled two- and three-

body channels is straightforward. 

The S-integration in (16) is initially taken along the real 
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axis, but we-can now deform the contour into the-complex plane. We 

thereby obtain a continuation of our amplitude onto the unphysical sheet. 

By examing the integral equation for 	in terms of D , we can show 

that D has a pole when any of the sub-energies is at a resonance value, 

and also that ID has the expected cuts on the unphysical sheet at the 

threshold for particle-resonance scattering. 

11  

iP 
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2 	
( 	

)

2' 

	

2' 	2 ______ 	_______ 2' 2 ______ _____ 

3 	 3' 	3 	 3 	3 

A 	 a 	 a 
c 	 1 	 2 

Fig. 1. Connected and disconnected diagrams for.three-particle 
scattering. 

X2 x3 

Fig. 2, The physical region for. small, intermediate, and large 
values of s 
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B. SOME FEATURES OF REGCE TRAJECTORIES WITH .THJREE-PPRTICLE 

ND MULTI-PARTICLE INTERMEDIATE STATES 

In'this lecture I should like to make a few remarks on the behavior 

of Regge. trajectories when there are three-particle as well as two-

particle intermediate states present. Ideally we should like to prove 

from the N/D equations that the amplitude is meromorphic in the J-plane 

(except for cuts in the A.F.S. position). The principle.of such ar 

argument would be similar to those of the proof when only"two-particle 

intermediate states are present. Unfortunately there are difficulties 

in the three-particle case which were not present in the two-particle case 

and, while I shall outline, a procedure by which these difficulties may 

possibly be overcome, the problem is still far from solved. However, 

certain qualitative features of the Regge trajectories can be obtained 

by plausible reasoning without the complete solution of the problem. In 

particular, we can obtain information about the limit points of the 

trajectories at large values of the energy. We shall relate these 

properties to the hrpothesis, suggested byexperiment, that the 

trajectories rise indefinitely with increasing energy... 'We shall also 'make 

a few comments on the behavior of the phase shift at infinite energy 

in a 'system where the trajectories rise indefinitely, and we shall 

observe that this behavior is correlated with the-decrease of form factors 

at high energy. 

We begin by explaining why the three-body problem is more 

complicated than the corresponding two-body prpblem. Let inereinind you 

of the procedure for establishing i-plane' nieromorphy, in the two-body 

problem. We can show that the elementary partial-wave'projecticn 

formula 

/ 
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a(, s) 	A(s, z) 2(z)  dz ' 

though not valid for the complete amplitude when 2 is not integral, is 

valid for the left-hand discontinuity. (If there is a third double- 
4 

' spectral function present the formula rquires modification, but the 

argument still goes through). A the range of integration is finite, we 

can conclude that the left-hand discontinuity is a holomorphic function 

of 2. We then construct the complete amplitude from the left-hand cut by 

an N/D equation. If the amplitude approaches zero at high values of 

s the equation will be non-singular,, so that N, D and N/D are mero-

inorphic functions of 2.. 

The difficulty of the corresponding argument in the three-body 

problem is the infinite number of helicity states. Our amplitudes are 

functions of two helicities M and M and the N/fl equations will be 

integral equations in energy space and matrix equations in M-space 

If J is integral the helicities will be restricted by the condition 

M J , and the matrices in M-space will be finite. If J is non- 

integral the variable M can assume all integral values, and the matrices 

will become infinite. 

It is unfortunately easy to show' that the scattering amplitude 

diverges exponentially as M approaches infinity. The Froissart-Gribov 

formula for helicity states is  

a(J, M, M) =f t (z) e(z) dz ' 	, 	(2) 

where the integral is to be taken around the cut in z , the cosine of 

the scattering angle, in the usual way. The function e is a 
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hypergeometric function which bears the same relation the Wignei 

as Q does to P 	It tends to infinity as M and M 

become infinite when z is fixed and complex. In the three-body 

problem there are always cuts in the complex z-plane , so that the 

amplitude approaches infinity exponentially with •M and M' 

The above reasoning alone does not rule outthe possibility of 

proving that the amplitude decreases with infinite. M , since we may have 

overlooked a cancellation. However, we can quote an argument of Druinmond 

to showthat the singularities in the complex z-plane have an essential 

bearing on the.problem, and the J-plane properties of the twobody 

amplitude cannot be taken into the three-body problem without .modification. 

In the two-body problem we can construct positive- and negative- 

signature amplitudes, each of which is separately unitary. An equivalent 

statement is that we can divide the amplitude into contributions from 

the right- and left-hand cuts in the. z-plane , so that to right-hand 

cuts or two left-hand cuts combine to give a right-hand cut, while a 

right-hand cut combines with a left-hand cut to give a left-hand cut. 

If we attempt such a division in the three-particle case we shall now 

demonstrate that we reach a contradiction. 

First, if we take particles •B and .0 to form a single system 

in our angular-momentum analysis, the diagram Fig 1(a) clearly 

corresponds to a right-hand cut. It is not so clear whether Fig. 1(b) 

corresponds to a left- or a right-hand cut. We can settle the question 

by making a uriitarity combination of Fig. 1(a) and 1(b), as in Fig. 1(c). 

This diagram .corresponds to a right-hand cut, so that Fig. 1(b) must 

itself correspond, to a'right-hand cut. Similarly we observe that 

Fig. 1(d) corresponds to a right-hand cut, as we are treating particles 
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B and C symmetrically in our angular-momentum analysis. If we now 

combine Fig. 1(b) and 1(d) by unitarity we obtain Fig. 1(e), which 

corresponds to a left-hand cut. We have thus violated the rule that 

two right-hand cuts should combine to give a right-hand cut ;  and the 

simple rule that holds in the two-body case cannot be general when the 

angular momentum is complex. 

We may ask whether it is possible to obtain a more complicated 

signature system in the three-body case, where more than two signatures 

are invdlved. Drunmiond has shown that this is indeed possible for the 

simple trpe of diagrams which we have just examined, but he has 

emphasized that this system is inadequate for diagrams such as Fig. 1(f). 

The signature formalism which applies in the two-body problem does not 

appear to possess a simple generalization to the three-body problem. 

To circumvent the difficulties which we encounter when we attempt 

to treat the three-body problem in the J-plane , we propose to work in 

the space of the cosines of the angles rather than of the angular momenta. 

Let us first outline very briefly how the two-body problem may be treated 

in this fashion. The usual N/D equation is written down, and the N-function 

is expanded as ratio of two Fredholm series. We now change our variable 

from the angular momentum 1 to the cosine z of the scattering angle. 

Whenever a product a(1,$) b(l,$) is encountered in the Fredholm series, 

we replace it by the integral fdz, dz2  K(z, z1 , z2 )A(s, z1 ) B(s, z2 ) , 

K beng the kernel which occurs in the unitarity integral. 

We now continue into the complex z-plane in the usual way. We 

can show that the Fredholm series converge, and that they have the same 

behavior at infinite z as the input. The next step is to invert the 

Fredholm denominator, (The Fredholm numerators and denominators must 
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not beconfused with the N and D of the N/D method, both N and B 

have a Fredl-iolin numerator and a Fredholm denominator). We mean inversion 

in the sense of solving the integral equation defined above, if the 

Fredholm denominator has the form 

8(z - i) + D(s, z) 

we have to solve the equation 

F(s, z) + D(s, z) + f dz dz K(z, z', z") F(s, z) D(s, z") = 0 

The reciprocal of the Fredholm denominator has been written as 

8(z - 1) + P(s, z), the significance of the 8-function is that it is 

the Lengendre transform of. unity. In solving .the integral equation we 

can go to angular-momentum space, since it then becomes a numerical 

equation. . As the Fredholm denominator in the three-body case does not 

involve the helicities, we should be able to carry out that part of the 

program.there. too. We then pass back to z-space again. If D(s, z) 

behaves like z 	at infinite 2, , its Legendre transform will be 

holomdrphic in £ for Re.€ > 1. The reciprocal f(s, ) will therefore 

be meromorphic in2,and its Legendre transform will behave like 

B(s) P ) (z) at infinite z . By this method wecan show that the 

scattering amplitude has a Regge asymptotic behavior in z 

It is hoped that 'a similar program can be 'carried out for the 

three-body problem. The. integration over angles will now be a three-

dimensional integral dzdØdØ?,  there 0 and 01 are the initial and 

final azimuthal angles. We shall certainly have to integrate over 

contours in the complex plane, but this in itself-should not cause 

divergence difficulties as it did when we worked with helicity states.. 
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We shall also have to deform contours of integration in such a way that 

the usual rule for Combining left and righthand cuts in a unitarity 

integral does not hold, but this feature too does not appear to 

contradict the principles of the programS Thus, by examining asymptotic 
4 

behavior in the z-plane. rather than analytic properties in the Jplane , 

we might hope to establish E.egge behavior in the threebody problem. We 

should emphasize that we are simply outlining a program here and are 

not reporting on completed. work. 

Even though we have not established that Regges results can 

be extended tothe three-body problem, we can use plausibility arguments 

to infer some properties of Regge trajectories. In this lecture we shall 

interest ourselves in the behavior of'the trajectories at high energy.  

In the twobody problem without spin they approach the value . = 'l at 

high s . This is connected with the fact that the Born terms dominate 

- 	the scatteringamplitude at high energy. They have an asymptotic behavior 

and therefore have a pole in the angularmomentum plane at i= l 

In the threehody problem iith spinLess particles and only threelire 

vertices, a Born diagram is shnwn in Fig. 2. Each of its three internal 

lines gives one negative powe' of the momentum trarsfer, so that it has 

an asymptotic behavior t 3 	In the Jplane it has a pole at. 

J = 3 so that the Regge trajectories in a problen with such a Born 

term would be expected to start and end at J = 

• 	 We can now begin to frame a hypothesis regarding the behavior of 

Regge trajectories in a Thootstrap" theory, where there are no • 

elementary particles. The only way to distinguish between elementary and 

composite external particles in a scattering process is to couple the 

process with one involving a larger number of particles. Composite 
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external particles would then be treated as bound states of the other 

external particles. Let us then treat a process A + B - A + B, first 

in thetwo-particle approximation and. then in a higher approximation where 

the AB •channel is coupled with the three-body ACID channel, In the 

more accurate treatment B is treated as a bound state of C and ID 

The Regge trajectories in the two approximations are shown as curves (a) 

and (b) of Fig. 3. In the low-energy physical region they should be close 

to one another if the two-particle approximation is adequate. However, 

the more accurate trajectory should approach 2 = -3 rather than 

2 = -1 at infinite s . We have also made the plausible assumption that 

the three-body trajectory does not begin to turn over until we are well 

above the three-particle threshold. The turn-over point is thus above 

the corresponding point of the two-body trajectory. 

We may now envisage a still better treatment where the particles 

A, B or C are themselves regarded as composite, sothatour particles 

are treated as bound sub-channels of an n-body system. If the process 

is continued indefinitely the trajectories of the fully bootstrapped 

system will go from -co at s = -co to ± 	at s = + oo 	The 

indefinite rise of the Regge trajectories seems to be borne out by 

experiment. At any rate they show no signs of turning over below the 

highest energies where resonances have been looked for. It was partly 

this fact which led us to draw the curve (b) in Fig. (3) in the manner 

we did. The exponential decrease of scattering amplitudes at high 

energies and angles may be regarded as experimental evidence in favor 

of the limit J = - co of the trajectories at s = - co but-here we 

have to be more careful, first because there are probably an infinite 

number of trajectories contributing in this limit, and second because 
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the relation of the asymptotic behavior as both s and t become 

infinite to the Regge trajectories is far from clear. We feel, however, 

that it is plausible that Regge trajectories in a, bootstrap system go 

from 	to + 

cc? 	
Another suggestion which we may make on an intuitive'bais is 

that the point at which the phase shifts turn over is related to the point 

at which the Regge trajectories turn over Thus, as we go to an 

approximation where systems containing more and more particles are treated, 

the phase shifts will take longer and longer to turn over. In fact, if 

all the lower Regge trajectories also rise indefinitely, each partial wave 

will contain an infinite number of resonances, and the phase shift will 

rise indefinitely. In the n-particle approximation it will eventually 

turn over and return to zero. 

Under these circumstances we may ask whether the definition of a 

bootstrap system as one where the sum of the phase shifts returns to zero 

is reasonable. Properties which serve as a basis for fundamental 

definitions should be true., not only in the n-particle approximation, but 

exactly. We should therefore start with an alternative formulation of 

the bootstrap hypothesis such as the absence of polynomial terms as 

s or t approach infinity or, equivalently, the absence of non-Regge 

terms in the J-plane 	In the two-particle approximation, and probably 

in the n-particle approximation, this. is equivalent to the phase-shift 

criterion. If the number of particles now becomes infinite the phase-

shift criterion may no longer apply, but analyticity in the J-plane 

should not be lost. 

The hothesis that the phase shifts of the exact problem never 

turn back is helpful in understanding the falling off of form factors at 
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high energy. In fact, it appears to be essential in understanding this 

fact, which is borne out experimentally. The form factor is given by 

an equation of the Omnes type. Although Omnes technique is not 

applicable to the multi-channel problem, much less the multi-body problem, 

all his results can be-established by other methods for these problems. 

The multi-channel problem is treated in the book by Muskhelishvili, and 

Gross at Berkeley has recently shown that the results can be generalized 

to problems such as the n-body problem where the channel indices are 

continuous variables. Now it is a fundamental feature of these equations 

that they do not possess solutions with decreasing form factors in all 

channels when the sum of the phase shifts approaches zero at infinity. 

Unlike Fredholm equations, these equations have no exceptional cases. If 

the sum of the phase shifts approaches i -i , we have extra parameters at 

our disposal associated with coupling to the "elementary" particle, and 

we can obtain a solution which approaches zero at infinity. If the 

phase shift approaches 2r we can apply still stronger conditions at 

infinity, and so on. 

We can illustrate the results just quoted by referring to the 

single-channel two-body problem. The form factor is then given by the 

function 

 b(s) ds' 
00 

F(s) = 	f 
	s? - sJ 	 () 

MO 

If 	(oo) = 0, then 

5( s ? 	ds T  
F() = Exp[- 	

I 	) 
 sT_so } 

	

(5) 
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which is a non-zero constant. If, on the other hand, 6(co) = 1-t , then 

F 

F(s) 	Explog 	- 

=;xf*tr 
1 	 - ] ds 
;7 J 	s - s  

[6(s) - 	] ds 	s 	 (6) 
0  s -, S 	

j 

and we have a falling form factor. Though this proof only applies to the 

single-channel problem, one can prove similar results for the multi-

channel problem. 

We must emphasize that, as long as we remain within the n-particle 

approximation, the hypothesis of no elementary particles makes it more 

difficult, not less, to explain falling form factors. In case you find 

this in conflict with your intuition (no elementary particles 

corresponding to no 6-function cores), let us take note of the channel 

we are examining. With the charge form factor of the proton, for instance, 
uio; 2UTTTeJ V st uiqo.xd qo'x 3qq pun 'ssou 	u se IlTWS pun 

the intuitive arguments which suggest that non-elementary particles are 
.xTTuIs surooq usuoo sçu 	iotq oiqoqdwAse uqsuoO e GATOoq 

soft refer to the process y + p - p . If we examine the channel 
PATOS aq Uo suoiqnb .iooj tmio; Rpoq-u aqq 'paz 3qqodJqArn GA 

- p + p , we donot obtain a decreasing form factor when the phase 
.xoAq3c qq Aq sqJqs Gsqd 	;i 	so poq-çriui JO 
shift goes to zero at infinity, as it should in the elementary bootstrap 

qO io; pAoJd @q uno qnso.z urs oqj, 	suoqçpuoo soqq .xpim eflTA 
picture. 
OATOU OXOT U OA'q pTnox quuodxo 	.iqx '() uoçnbo oq UI9JJ 

If we now make the hypothesis that phase shifts do not turn back 

unos oq iw siqq oso 	 oqq. ul 	oAq ooqdut/s' 
in the exact bootstrap solution, we can understand falling form factors 

qtisUoo TTUJS  L3  3A1 Oq PATOS  Oct UO suoTnb9 oq. 'o.xoz oq. sunqo.x 
even if we look at the channel y --> p + p . As we have just pointed out, 

TTU'U9A9  qnq S\ JO SOflTA qq oq dn 	 dsuTuro.x (s)C JI 
equations of the Omnes type can be solved to give falling form factors 

)cu = ( co 	uoqx uno ç 	qq 'nq ' a = ( cp9 UO 	JOOJ WJOJ UTTTJ ' 
when the hase shift approaches xli (n>l) at infinity. We might even 

OATS oq.  POAIOS  Oq q.OUWe0 UOUbO odiq-sotxmo un Ot UOOS OALI °M 
conjecture that we can obtain exponentilly decreasing form factors if 

JTO'1TUTJOPUT UTSOOUT 	s souunqo jo oqurnu oqq oouTs 'snolAqo wOaj 
the phase shift increases indefinitely, but such a conjecture is far 

oLi-qon 
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K(z,z' ,z") 

Ls A 	 - 

Fig. 1(a) 	 - 	 Fig. 1(b) 

z 	 Z 

HSA  Z 
Fig. 1(c) 	 L 	Fig. 1(d) 

Fig. 1(e) 

Fig. 1(f) 

Fig. 1.(a,b,c,d,e,f). Feynman diagrams with three-particle inter-
mediate states. 
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Fig. 2. Born diagram for a three-particle system. 

Fig. 5. Regge trajectories in the two- and three-particle 
approxithations. 
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C. ASYMPTOTIC BEHAVIOR OF AIVLITTJDES FOR 

BACKWARD SCATTERING 

The subject of today t  s talk is the asymptotic behavior of 

scattering amplitudes for unequal mass particles in the backward direction 

as the energy becomes infinite. In this case the cosine of the scattering 

angle of the crossed channel remain finite (in fact zero) as s approaches 
V. 	 a(u) 

infinity, so we may question whether the asymptotic formula 

is correct. We shall show that the asymptotic formula is correct in this 

case for, if it were correct at all valties of u except u = 0 , there 

would be violation of analyticity in •s-t space. We shall 'also show 

that •there must be further trajectories which pass through u = 0 at 

a = a(o) - 1 , a(0) 	•2, etc., otherwise we wo'.ld have unwanted 

singularities in s-t space. Finally,we shall report of some work by 

Freedman and Jiunn-Ming Wang, who showed that trajectories generated by 

a Bethe-Salpeter equation do possess.this sequence of "daughters", with 

residues of just the right value to cancel the unwanted singularities 

in the s-t plane. 

We begin by setting up the kinematics and explaining the problem. 

We treat a two-body scattering amplitude with pion-nucleon kinematics 

but without spin. The variables s and ii are the energies in the two 

pion-nucleon channels, t is the energy of the channel 	+ 	N + N 

The square of the center-of-mass momentum 	in the u-channel is given 

by the formula 

2 	1 •2 	.2 	2 	2 	22 = 	(u -2u(ivi +t)+(M -t)J 	 (1) 

while z , the cosine of the scattering angle in the u-channel , is 
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related to S by the formula 

-1 	 2 
z 	= s/2q (2) 

If u is not zero at infinity, z goes to infinity with s , 

so that asymptotic behavior in Zu  is equivalent to asymptotic behavior 

in s . If u = 0 , however, qu 2 is infinite and z is identically 

equal to unity. A naive reading of the Regge formula would therefore 

indicate that it could not be used to determine the asymptotic behavior 

in the limit s - co 	u = 0 . Such a limit is of great practical 

interest, since it represents the infinite energy limit at backward 

scattering for theother pionnucleon channel. This is a:region easily 

accessible to experiment, and Frautschi has outlined some interesting 

results of. experiments performed in this region. We shall now show that 

the Begge asymptotic behavior in the limit s -+ co 	u 0 , together 

with the usual assumptions of analyticity in the s-t plane, imply an 

asymptotic behavior of the form y(u)s 
c(u)at 

 u = 0 

We start from the Regge asymptotic formula, valid for u / 0 

A(s, u) 	
sina(u) 	

a(u) (z) + Background term. 	() 

We now write 

\ ck(u) 	\a(u) - 1 
P 	(z ) = C /z  j 	+ 0(z ) 

cz(u) 	U 	 U 	 U 

From the formula relating z and s , we find that 

a(u) A(s, u) = y(u)s 	+ Background term 	 () 
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where 

y(u) 	 (6) 

The terms of order (z) 	in the eansion of P a() 
 have been 

included in the background term. 

Note that the formula (5), which has been derived from (), is 

a(u) 
valid whether or not the asymptotic form s 	is valid at u = 0 

If, the function 	(u) were analytic at u = 0 , the function y(u) 

would approach zero like 
()2a(u) 	The background term of (5) would 

then dominate over the term y(u)s 	at u = 0 , and the asymptotic 

form 5a(u)  would not be valid. If, on the other hand, the function 

y(u) is analytic at u = 0 , and if the asymptotic behavior of the 

background term at this point is the same as at other values of u , the 

first term of () will represent the asymptotic form. We wish to show 

from analyticity in the st plane that these conditions are in fact 

sati sfied 

We shall assume that the Regge asymptotic form is valid when 

u 0 	In other words, we assume that the background term in () 

approaches zero as s approaches infinity like a negative power 

(say s) or like 
5a(u)l 

 , whichever is larger. This is not implied 

unambiguously by meroinorphy in the £plane, since we are in an unphysical 

region of the uchannel 	The £integration of the background term 

• 	 - 	

r-°° 

J d2 a(, s) P 2 (z) 

100 

may diverge, depending on the argument of z 	Nevertheless, whenever one 
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can prove meromorphy in the 2-plane one can also prove that the back-

ground 	 cx(u)-i term goes to zero (or to s 	) at infinite s , and that 

it does so uniformly in u(u 0) . This is what one usually, thinks of 

in connection with Regge behavior, and we shall adopt it as our assumption. 

It is now not difficult to prove that the function y(u) must be 

analytic in u . If y(u) has a branch point at u = 0 , the first 

term of (5) will.not be an analytic function of u . It will have a cut 

which extends to values of u other than zero. Since we are assuming 

that the second term of (5) converges uniformly to zero at infinite s 

(u 0) , we cannot cancel the cut with a cut in this second term. We 

thus conclude that y(u) cannot have a branch point at u = 0 . A 

natural boundary. can be similarly excluded, and one can also exclude a 

pole or essential singularity in y  at u = 0 . Thus y  is an 

analytic function of u at u = 0 

We can now show that the first term of (5) dominates over the 

background term at s = 0 . Since A is analytic in u at fixed s in 

a neighborhood of u = 0 and we have just seen that the first term of (5) 

is analytic in u , we can conclude that the second term is also 

analytic. Using the analyticity in u , Wang has shown from the maximum- 

a(u)-1 modulus theorem that an asymptotic behavior of s 	for u / 0 

implies a similar asymptotic behavior for u = 0 . Thus the first term 

of () dominates for s sufficiently large, and it represents correctly 

the asymptotic behavior. This is what we wished to prove. 

Let us.now observe what happens when we-include further terms of 

the expansion of Pa  in (3) in our main term. If we keep-the first two 

terms of the expansion, we find that 
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A(s, u) = y(u) (a(u) + 2q2s1 + ...) + Background 	() 
term 

If a(u) -1 > , the first two terms of (7) will dominate over the back-

ground term. However, the second term of (7) has a pole at u = 0 , 

since q2  is infinite at this point. By going to sufficiently large s , 

we can show that the background term cannot cancel the pole. We thus 

appear to be contradicting the analytic properties in the s-t plane. 

The phenomenon just discussed was first observed by Goldberger and 

Jones, who suggested that a(u)-1 must be less than 	. However, one 

can easily write the Regge formula with a background term which goes down 

as fast as we please as u - ca so that the contradiction would still 

exist. Furthermore, experimental evidence strongly indicates that there 

are trajectories which rise above a = -- at u = 0 

Another way out of the difficulty, which appears to be the correct 

one, is that the background term contains a second Regge trajectory 

which cancels the unwanted singularity. Equation (1) rewritten with 

contributions from two trajectories is 

a1(u) 	2 a1(u)-1 
A(s, u) = 71 (u) (s 	+ 2q s 	+ 	J 	 (8) 

a (u) 
+ 72 (u) (S 	+ 	' 3 + Background term 

The condition for cancellation of the pole in the second term of (8) is 

a2 (u) 	a1 (u)-1 

22 	u = 0 	 (9) 

72(u)2u 	7-1  (u) 
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We are thus led to the conclusion that there is a second trajectory, which 

passes through the point u = 0 at one integer below the first. The 

residue y(u) associated with this second trajectory must itself have a 

pole in u at u = 0 . One may ask whether it is possible for y to 

have a pole in u , since it has been proved that residues of Regge 

trajectories are analytic in u . The proof was based on analyticity in 

the s-t plane, however, and it did not examine the special conditions 

at u = 0 . Our reasoning indicates that a pole i° 72 at u = 0 is 

necessitated by analyticity in the s-t plane. 

By similar reasoning one can show that further Regge trajectories 

must pass through the points a1 (0)-2 , a1 (o)-3 	etc., at u = 0 . The 

corresponding y's have poles of higher and higher order at u = 0 . In 

our treatment we have not been very careful about signature but, by 

replacing the Legendre functions P. in our derivations by the 

combinations 	± Pa(_z) wecan easily see that these trajectories 

alternate in signature. They have been called daughter trajectories by 

Freedman and Wang. As equations (8) and (9) show, their effect is to 

replace an asymptotic behavior Pa(z)  by an asymptotic behavior s a(u)  

at u 0 . Such a replacement is necessitated by analyticity in the 

s-t plane. 

Our proof of the existence of daughter trajectories is based on 

analyticity in the s-t plane. As a two-body system satisfying the 

Bethe-Salpeter equation possesses these analytici-ty properties, it should 

be possible to show directly that the daughter trajectories are present 

in this system. The potential model is too simple, as the momentum q2  

never becomes infinite except at infinite energy. Freedman and Wang 

have shown directly that the Bethe-Salpeter system does possess daughter 
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trajectories, and that the functions y(u) associated with the lower 

trajectories have poles at u = 0 with the correct residues. 

The results of Freedman and Wang are based on the well-known four-

dimensional symmetry of the Bethe-Ealpetr equation at u = 0 . The 

relevance of this symmetry to Regge trajectories was first pointed out by 

/ 
Domokos and Suranyi. In the center-of-mass system, the IBethe-Salpeter 

kernel corresponding to Fig. 1 is 

1 

(p - pfl 2 4 
 2 

2 	2 	2-1 	 2 	2 	2-1 
 kt (Ep) +p +) 	[-(E+p) +p +) 

 

-. 
where E = u 2 . The usual method of treating this equation is to expand 

it into spherical harmonics involving the variables £ and m . The 

separated kernel depends on £ but not on m . However, the first factor 

of the kernel is invariant under four-dimensional rotations in p-space 

We can therefore perform a Wick rotation and expand it in four-

dimensional spherical harmonics or Gegenbauer polynomials, which depend 

on three integers n(n > £) , £(2 > 0) and m,(-i < m < £) . Thus 

(p - p) 2 +t  2  

00 	CO 

1 =F 	(p - p 	3 
ip I £=0 n= 

X De 	(w)D £+l ,w ) P n-2 
 

where w and w l  are the initial and final angles in four-dimensional 

space with respect to some fixed axis. The functions B are Gegenbauer 

polynomials which we shall not define Note that F depends only on 
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£ - n and not on £ and n separately. This is analogous to the 

fact that in three dimensions the kernel depends on 2 but not on m 

Thepropagator functions in (10) can besimilarly•expanded in a series 

G
2+1 

- 	 2,n,nT 	2,n,' n-2 	
D, 2  (w') 	 (12) 

Since the propagator functions donot possess spherical symmetry, the 

summation in (12) is over two indices n and n' . We thus have an 

infinite series of coupled equations in n and nT , depending on a 

parameter £ 

When u (= E 
2 
 ) is equal to zero, all functions in (ic) possess 

four-dimensional spherical symmetry. Thus the equation (12) will have a 

form similar o (10), and terms with n n' are zero. We now have one 

equation for each value of n and £ , and the kernel depends only on 

n - 2 	For any solution with •a given value £ of £ there will 

be corresponding solutions with 2 = £_l , 2 = 22 , etc., since 

n can be decreased by integers and 2 - n must remain constant. If 

there is a bound state at 2 = io , there will be -corresponding bound 

states at i r1 
	2o2 , etc. The same results is true wh.en £ 	is 

not integral, so that any trajectory passing through a(0) at u = 0 

will possess daughters passing through 2 = a(o)-i , £ = a(0)-2 , 

etc,, at u = 0 	This is what we had inferred from our analyticity 

reasoning. 

By considering the infinite set of coupled equations which we 

encounter when u is small but not zero, Freedman and Wang were able to 

show that the functions y(u) associated -with the lower trajectdries 

did possess poles with the correct residues at u = 0 	These poles 
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do not occur in the equal-mass case for, by equation (9), the residues 

would then vanish. 

We may finally collect the threads of the different arguments of 

this talk to conclude that the problem of the asymptotic behavior at large 

energies in the backward direction is solved, and that the leading term 

in the asymptotic behavior is 

E + F )4 , P 

E - P )4 , -P 

Fig. 1. Diagram for a simple Bethe-Salpeter kernel. 
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