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A. THREE~BODY N/D EQUATIONS
In my first talk I should like to construct'tﬁree-body N/D equations,
analogous to the familiar two~b§dy N/D'équationsu We assume that al% the
singularities of a partial-wave amplitude, other than the right-hand

unitarity cut are-known, and we éttempt to construct the amplitude there-

© from.

Cur oﬂject in constructing the N/D equations is not to perform
numerical calculations witﬁ them as they stand. . This alone would be a
complicated humerical-problem but, in a&dition,-one does not kﬁow the
left-hand cut\expl’icitly° We shall not attempt here té obtain a self-
consistent scheme for'calculating the left- and right-hand cuts from
crossing and unitarity, since no such a scheme, free from divergencés
and cutwoff parameters, has been constructedieven fo£ the two-body prbbiem.
Our reasons for constructing N/D equations are mainly theoretical. They‘.

may possibly'serve as a basis for simpler but cruder apprbximations which

can be used to give an estimate of three-body effects. Further, it
appears-to be eésential fo treat resonances oﬁ a par with particlés iﬁ
two~body calculations if the results are to be at all accurate. Sinc¢ a
state'coﬁsistinéuof a particle and a resonance 1is really'a tﬁreemparticle
state, the three-body. equations may be helpful inktreéting doubtful
points ih_the equaﬁions for particlemresonancé scattering; |

Aniother applipation of three—boder/D equations is to the study of
the complex anlane in three=body systeﬁso For this purpose it is

unnecessary to_kﬂow the left-hand and complex singularities, since the

~discontinuities across them can be proved té'be holomorphic functions

«
-

of J . At present we have not-carried out the proof for complex J 3

as there are complicatiohs-caused by the infinite number of helicity

i
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-states which exist neither-in—%he two-body préblem‘for complex 1 or in the
three-body problem for real J . In my next lecture I shall make some
remarks on the three-body problem.with complex dJ ..

We may fegard the three-body problem.as analogous to a two—bédy
'problem with an infinite number of channels. However, there are
compl%cations in the three-body problem which do not exist’in the two-
“body problem. = Such complicafions are associated with disconnected diagrams
in which two partiqles.scatter which the third is unaffected; ~There will.
be unitarity discontinuities associatgd with thé total eneréy and with
all sub-energies, and we must choose our Variableé\carefully if the
unitarity‘equation is to have a form .from which N/D equations can be
constructed.. We shall find that the kinematics associated with the
correct variables are much simpler when the physical "Dalitz" regions
retains~ité shape with increasing energy, as it does in the non-
relativistic.caée, than When it does not. Since-a system with a Dalitz
region of fixed shape possesses all the essential features of the
problem without the kinematical complications, we shall confine our
discussion to such a system in this lecture.

Let us begin by writing down thé many-channel tWo—body N/D equations,
by analogy with which the three-body equations will be constructed. The

equations are

(s)
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The variables i, j-ahd- L are the channél indices..__

Fof the three-body problem, we -shall begin by taking the Omnés
variables. Besidés the total angular momentum J Ithere will bé se&en
variables, which Omnes takes to. be
, . ‘(i) The total energy S .

(ii) The partial energies 's

)2

1 ! 3
12 Sos 89's 85" where, for instance,

17 e ey | \
(iii) The helicities 'M and M' of the initial and final states
with'£espect to some body-centered axis. |
The ﬁnprimed variables refer to the initial state, the‘pfiméd variables
to the final state. The third paﬁtial énergy is not an -independent

variable, since it~is givén by the equation.

For simplicity we have taken all masses equal.
.In constructing the N/D equation we shall take the variable S
to be analogous to the variable s of the two-body problem, while S15

S5 and M will be analogous to the channel index 1 . Now, howéver,

we have two continuous and one discrete channel indices.

r

The scattering amplitude will consist of a connected part Ac

and. three disconnected parts a,, a, and a_, as shown in Fig. 1:

1’ 72 3

,51 - : . N 5 | . a
’ ‘A = A + T oa. . (3)
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The disconnected part a; will contain a &-function &(s. - s.') , so

that
&, = a, a(si.- S5 ) . (L)

We may now write down the unitarity condition'

\
\

Im(A + £ a,) = k(8) (A A + £ a, A
c i o c c 5 i ¢
* =
+ L A a o+ 2 oa al). (5)
1 1,d

The function k(S) is the kinematical factor. We have suppressed the. .
integrations. over the intermediate variables, so that the first.term on
the right of (5) is meant to be

. .
fdsl” dsg'-” ﬁn A, (S, J; 515 S5, M, sl",: sg".,;M”j) , N

XA (8, 35 ", 5", MY, s, s, M) L (6)
An integral.such as (6) is always implied when'préducts of scattering
am@litudes are written down.
Equation (5), the unitari£y eéuatibn; is'straightforwafd. What we
require for our N/ﬁvéquations is fhe diécontinuity équatioh, ﬁhich invol&es
more sophisticated concepts: We have to distinguish between the dis- | é

continuities in the total energy S and the six sub-energies Si’ s.'

1
The usual rule relating a discontihuity,to an imaginary part states

that the change of the amplitude when the imaginary part of all seven

variables changes sign is equal to the imaginary part. It might appear



5 ‘ UCRL~17250

intuitively plausible that the discontinuity in S is equal to the

first term on the right of (5), the discontinuity in s, to the term
ai*Ac and the discontinuity in s," to the term Ac*ai . Tt has been
shown, however, that this conjecture is not correct. One can indeed
deform the contouré of the intermediate—state integrations'so.fhat this
COrrespondenée.is valid, bufﬁwe would then have to integraté over
complex valués of the -s;’s , even when the initial- and final-state

’s as

variables are iﬁ ﬁhe physiéal region. As Wé wish %o treat the s
anaiogous to the channel indices of the two-body problem, we must restrict
the integrafions over them to the phyéicél regibn.

- We therefore cannot take the variable S as our dispersion

variable and the si’s as analogous to the channel indices of the

two~body problem. In order to do this weywoﬁld have to know the dis-

continuity of the amplitude in S , whereas we oﬁly know the sum of the
discontinuities in all the energies. We can overcome this difficulty by

replacing the s.’s and s.'’s Dby the variables.
i i

Xi:—s—-——-’;rﬁ—g,x. —-—'S'—'_—;"m‘e'— | (7)

If the x’s are kept constant and positive and S 1is moved round the

’s and si”s will also move

threshold in the complex plane, all the S;

round their thresholds° Thus ﬁhe discoﬁtinuity in S with the x’s

kept constant is equal»éo the sum of the discontinuities in S and those

in the s’s andv s*’s , and it is given by the fight—hand éide‘of (6).
We therefore take our'variébles to be

S, J, X5 X5 M, xl‘, X2“g Mt
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Equation (2) rewritten in the terms of the x’s is

. XB? = 1 - (8)

- ot
Xt X, x5 = X tX

so .that x and 7x3' arg aga%n not independent variables.
If we plot the three x’s 1in triangular co-ordinates, the physical

Dalitz region has the form shown in Fig. 2. -Within:the triangle fhe values
of ther x’s range from O to 1. Near threshold the physical région is
represented by>the circle, as S .is increéséd it ékpands eventually to
fill the whole triangle at large energiles. Unfortunately there is a
difficulty associlated with'the change of shape of the Dalitz region, and
the variables defined,above'are'stili not.suited to our problem. The
difficulty is assoéiated with the disconnected-terms in the unitarity
equation. The range'of integratioﬁ-in thése terms is restricted by a
d-function 1in one ofvthé si’s , so that one haSztOyintegrate.oyer a
line such as AB in Fig. 2. If we now gradually decrease the value éf
S the physicalarégion beéomesgsmallef and-the line  AB shrinks,
eventua;ly‘becoming a point. If S 1s now decreased still farther, the
analytic continuation of the integral would be algng a path in the
complex xg—plane. Thus, even with our new variables, integrals over
the intermediate variables of the unitarity equation haye sometimes-
to be deformed into the compiex plane. This is precisely the situation
we are trying to avoid.

| We therefére have to fe;define variables in>such_a way that
the shéﬁe of the Dalitz regioﬁ doesinot depend on the energy. It is not
difficult to find suitable vériableé, one can for instance take ratios

of the magnitudes of the center-of-mass momenta. However, the
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kineﬁatics.asspciated_with the new variébles will be complicated and
will involve the solution_of quartic eq{zatiqns° In this talk we .shall
therefofe ¢onfine ourselvés to cases where the shape ,0of  the Dalitz region
does not depend on S , such as the non-relati%istic case. The problem
e has been treated with fully_relativistic kinematics andtN/D equations have
been cohstructed; though the algebra 1§ much more_COmplica£ed.

Before writing down the N/D equapions we shall mention one
kinematic pfoblem, to find the amplitudes associatedlwith the diséonnected
diagrams a, once the éorrespohdingvfwo=body amplitudes ére known. Let
us choose the amplitude ay and, for simplicity, we shall define the »
helicities. M and M’ to be taken with respect to a bodymcentéred axis
aiong the direction of motion of £. Once wé know the amﬁlitude with one
definition of the Bodyncéntered axis, we can eésily obfain it with

respect to another. In terms of the two-body variables, the amplitude a ,

will be
)t ( -p.t
2, (@0 1) t,(s)) P leos o) alpy -py7) 5 (9)

1

of scattering of particles 2 and 3 in their own center-of-mass system.

" where t@ is the twb=body partial wave amﬁlitude and o is the angle
We rewrite (9) as

- _ m, Lom oy Jdmeo gy B
L}L(QJL + 1) tz(sl) i P, (cos 61. ) P, (cos Ol ) e (¢ -9g") 8 .(,,I.fl Dy )

=

vt

(10) .
o :

where ¢l and ¢lg are the initial and final angles between the

direction of motion of particles 1 and 2, ‘in the center-of-mass system of
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N(s) = F(s) + L Cagt BED = FG) y(ge) wisr) (168)
on”
D(8) = 1-‘1[; , ’ dS".—ﬁ——u—H :: ‘_NSS' - ' ; (16b)
49m? |

Again, a product such as

dx. " ax," -Z” FZS')¢J3 Xl;:xg: M, X’W; Xé"}‘M") T
. M - -

: 'X'N(S{,'J; le} X

2"5 M", '-'Xl.’, x27 M') .

is always implied when products -NF areé written down, so that our

integral equation involves three continuous variables S , x, , and : X,

1

and one discrete variable 'M .

.-The function . F. will contain disconnected parts and‘a connected-

part:

F = F_+ % £, (17)

c i

where the &libscript i indicates the presence of a delta function
' S(yi -'-_'--yi')'. It follows from (16) that the function N will also

contain disconnected parts
N = N+ £ n.. , (18)
We can now substitute (17) and (18) into (16). By equating coefficients

of the three &-functions , as well as the terms without &-functions ,

we obtain the following equations for ng and Nc :

A8

G\

LS
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ni(S) = f(8) + % j ast fﬁg:)_'sf@ k(s") 'ni(s') , ' (18}
f.(s') -~ £(8)
Nc(s) = F_(8) +% f jds' s k(s') N _(s")

. _F(s") - F(8) .
+ = - ]ds' ¢ k(8') 1, () +% iij

. (8') - f£(8
xfds, l( ) ( )k(S') nJ.(S’) +_i_fd_sf

s' -8

7 (8') - T,(5)
X gt k(s N (5) . (19)

Tt is not difficult to see that (18) is precisely the equation for
the two-body n-function , with the corréspondence between the functions
in the spaces of two-body and three-body variables Peing given by (1k4).
Thus n, is known, and equation (19) can be solved. It is still not a
Fredholm equation, as the terms fi in the kernel contain delta functions.
However, equations of this form can be reduced to Fredholm equations by
the method used by Weinberg in the Schrgdinger potential problem. We
thus have a Fredholm equation for constructing N . The denominator
function D can then be found from (16). The calculation of ™t from
D itself involves the solution of an integral equation.in X, X5
and M . The disconnected parts can be separated off in the same way as
before.

For simplicity we have_confinéd ourselves to a pure three-body
' préblem,'but the generalization to the case of coupled two- and three-
body channels is straightforward.

The S-integration in (l6)Ois initially taken along the real

y
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axis, but we-can now deform the conﬁour into the complex plane. We
thereby obtain a cbntinuation of our amplitude onto  the unphyéical sheet.
By examing the-integral equation for D-‘:L in terms of D, we can_show
that D has a pole when any of the sub-energies is at a résbnance’Qalue,
rand also that D has the expected cuts on the unphysical.sheét at the

threshold for particle-resonance scattering.

'A

V;\
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_']_ l ' l | ' l' l (/\) lr
) ' 2 77N\ 2' 2 2'
° - ' ( ) ' ~
) 3 5 N 5 3 3!
L J
Ac aq a,
Fig. 1. Connected and disconnected diagrams for.three-particle
scattering.
X, x5
R

Fig. 2. The physical region for, small, intermediate, and large
values of s . N '
w4
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B.  SOME FEATURES OF REGCE TRAJECTORTES WITH THREE-PARTICLE
AND MULTI-PARTICLE INTERMEDIATE: STATES
In this lecture I shouid liké tq make a few'remafks.on the’behavior

of Regge.trajectories when therevare thieenpartiéle as.well as two=
~§article intermediateléfates preseﬁt.' Ideally we should like to prove
from the N/D equations that-the amplitude is merombrphic in the J-plane
~ (except for cuts in the A.F.S. position). -Ihé principleS-ﬁf such an
érgument would be similar to those'of the proqf wheh-only“two—particle
infermediate states are present. Unfortunately there aie difficulties
in ‘the three-particle -case which were not present in)the~two-particle-case
and, while I shall.;utlineja procedure by which fhesé difficulties may
possibly be ovércome; the problem is still faf from solved. HoWever,
'certain qualitative features gf'the Regge trajectofies can be obtained
by plausible reasoning without-the-completé solution of the'problem. In
particular, we Fan obtain informatioh-about.the‘limit'points of ‘the
trajectories at'larée vélues of the ehergy. We- shall relate -these
properties to the hypothesis, suggested by-expeiiment,_that'the
trgjectories risé indefinitely with increasing energy. We shall also make
é few-comments'on.the'behavidr of the phase shift af infinite energy
cin atsystem where the trajectories rise indefinitely, and we shall
observe fhat this behavior is correlated with the-decrease of form factors
at high energy.

i We begin by explaining why'the three-body probiem is more
. C§mplicated than the correspOndiﬁgitWo-bddy prblem, .Let me remind you
of the procedure for establishing &-plane‘~meromorphy[in'thé two-body

‘problem. 'We can show that the elementary partial-wave-projectiqn

formula

»
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1

o0 <[ aepEREE, e
-1 . ‘

though not vaiid for thekcomplete'amplitudé;when £ is not integral, is
valid for the left-hand discontinuity.- (If there is a third double-
spectral function present the formula requires modification, but the
argument still goes through). As the range of integration is finite, we
can conclude that the ieft-hand discontinuity is-a holomorphic function
of £. We then construct the complete amplitude from the left-hand cut by
an N/D equation. if the ampliitude approaches zero Qﬁ high values éf

s the equation will be non-singular, so that N, D and N/D are mero-
morphic functions of £..

The difficulty of the corresponding érgument in the three-body
problem is the infinite number of helicity'states. Our amplitudés are
functions of two‘helicities M and M' and the N/D equationsvwill be
integral equations in energy space and matrix equations in M-space .

If J"is integral the helicities will be reétricted by the condition

Mg J , and the matrices in M-space will be finite. If J is non-
integral the variable M can assume all integral values, and the matrices
will become infinite.

It is unfortunately easy to show that the scattering amplitude
diverges exponentially as M approaches infinity. The Froissart-Gribov

formula for helicity states is

a(J: M, M) = [AMM'(Z) eMMeJ(Z) dz - 4 (2)

where the integral is to be taken around the cut in z , the cosine of

the scattering angle, in the usuval way. The function e 1is a
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hypergeometric function which bears the same relation the Wigner

dMM'J’S as Q, does to P, . Tt tends to infinity as M and M'
begome infinite when 2z 1is fixed and complex. In the three-body
prbblem there are always cuts in the complex z-plane , so that the
amplitude approaches infinity exponentially with M and M?

The above reasoning alone does ﬁot rule out.the possibility of
proving that the amplitude decreases ﬁith infinite M , since we may’have
overlooked a cancellation. However, we can quote an argument of Drummond
@o show that the singularities in the complex z-plane have anvessential
bearing on the.problem, and the J-plane properties of the two-body
amplitude cannot be taken into .the three-body problem Without.modification.
In the two-body problem we can construct positive- and negative-
signature amplitudes, each of which is separately unitary. Anvequivaientv
statement is that we can divide the amplitude into contributions from
the right- and left-hand cuts in the,’z—plane.,_so that two right-hand
cuts or two left-hand cuts combine to give a right-hand cut, while a
right-hand cut combines_wifh a.left-hand cut to give a left-~hand cﬁt.

If we attempt such a division in the three-particle case we shall ﬁow
demoﬁstrate that we reach a contradiction.

First, if we take particles B and C to form a single system
in our angular-momentum analysis, the diagram Fig. 1(a) clearly
corresponds to a right-hand cut. It is not so clear whether Fig. 1(b)
corresponds to a left- or a right-hand cut. .We can settle the question
by making a unitarity combination -of Fig. 1{(a) and 1(b), as in Fig. 1(c).
This diagram corresponds to a right-hand éut, so that Fig. 1(b) must
itself éorrespbnd_fo a right-hand cut. Similafly we oObserve that

Fig. 1(d) corresponds to a right-hand cut, as we are treating particles
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B and C symmetrically in our angular=momentum analysis. If we now
combine Fig. 1(b) and 1(d) by unitarity we obtain Fig. 1(e), which
corresponds to a left-hand cut., We have thus violated the rule that
two right-hand cuts should combine to give a right-hand cut; and the
simple rule that holds in the two-body case.cannot-be general when the
angular momentum is complex. o

| We may ask whether ‘it is péssible to obtain a more_éomplicated

signature system in the three—bOdy case, where more thanvtwo signatures
are involved. . Drummond has shown that.this is indeed'possible for the
simple type of diagrams which we have Just examinéd, but he has

emphasized thaf this system is inadequate for diagrams such as Fig. 1(f).
The signat%?e formalism which applies in the two-body problem does not
appear to posseSS‘a'simpie generalization to the\three—body problem.

To circuﬁvent the difficulties which we encounter whén we attempt
“to tfeat>the three-body problem in the J-plane , we propose to work in
the space'of the cosines of the angles rather than of the angular momenta.
Let us first outline very briefl& how -the two-body problem may be treated
in this fashion. The usual N/D equation is written down, and the N-function
is expanded as ratio of two Fredholm series. We now change our variable
from the angular momentum 1 to the cosine =z of'ﬁhe scattering angle.
Whenever a product a(l,s) b(l,s) is encountered in the Fredholm éeries,
we replace it by the integral hjéz, dz, K(z, 7 5 z2)~A(s, zl) B(s, 22) 5
K be&ng the kernel which occurs in the unitarity integral. ' |
We now continue into the complex z%plane‘ in the usual way. We

can show that the Fredholm series converge, and that théy'have the same
behavior at infinite 2z as the inpuf. The ﬁéxt step is to invert the

Fredholm denominator. (The Fredholm numerators and denominators must
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not be confused with the N and D of the N/D method, both N and D
have a Fredholm numerator and a Fredholm denominator). We mean inversion
in the sense of solving the integral eQuation defined above, if the

Fredholm denominator has the form
8(z -1) + D(s, z)

we have to solve the equation
F(s, z) +D(s, z) + dez* az" K(z, zt, z") F(é, z') D(s, z") = 0 . (3)

The reciprocal of the Fredholm denominator has been written as

8(z - 1) + F(s, z), the significance of the &-function is that it is
the Lengendre transform of unity. In.solving the integral equa@idn we
can go to angular-momentum space, since it tﬁen.hecomes a numerical
cequation.  As the Fredholm denominator in the three~body case does not
involve the helicities, we should be able to carry out that part of the
progrvam,.there,too° We then pass back to z-space again. If D(s, z)
behaves like z“:L at infinite 2z , its Legendre transform will be
holoméfphic in ¢ for Ref > 1. The reciprocal f(s, £4) will therefore
be‘mefomorphic in ¢ ,-and its Legendre transform will. behave like

s B(s) Pa(s)(z) at infinite 2z . By this method we can show that the
scattering amplitude has a Regge asymptotic behavior in z .

It is hoped that -'a similar program can be -carried. out for the
three-body problem. The. integration over angles will now be a three-
dimensional integral dzd@dg®, where @ and @' are the.initial and
final azimuthal'angles. We shall certainly have to integrate over
contours in the complex plane, but this in itself.should not cause

divergence difficulties as it did when we worked with helicity states. .
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~

We shall also have to deform contours of integration in such a way that

the usual rule for combining left- and right-hand cuts in a unitarity

. integral does not hold, but this feature too does not appear to

~contradict the principles of the program. Thus, by examining asymptotic

behavior in the z«plaﬁe._rather than analytic properties in the J-plane>,
we might hope to establish Regge behavior in the three-body problem. We
should emphasize that we are simply outlining a program here and are
not reportihg on completed.wbrk,

| Even though we have not established that Reggeis results can
be extendea té,the three~body problem, we can use plausibility arguments
to infer some properties of Regge trajectories. In this lecture we éhall
interest ourselves in the behavior'df'the trajectories ét high enefgy.
In the two-body problem without spin they approach the value £ = -1 at
high s . This is connected with the fact that the Born terms dominate
the scattering amplitude at high energy. They have an asymptotic behavior

t_l and therefore have a pole in the angular-momentum plane at £ = =1 .

i

In the threémbody problem with spihless particles and only three-line
verfices, a Bbrn diagram is shown in Fig. 2. Eaéh of its three internal
lines gives_one negatiVe power of the momentum transfer;'so.that'it has
an asymptotic behavior tiB In fhe J=-plane 'it has a pole at .

J = -3, so that the Regge trajectories in a problem with such a Born
term would be expected to start and end at J = -3,

o We can now begin to frame a hypothesis regarding the‘béhavior of
Regge trajectories in a.”bodtstrap” theory, vwhere there are no

elementary particles. The only way to disﬁinguish’befween eiemenﬁary and

composite external particles in a scattering process is to couple the

process with one -involving a larger number of particles. Composite,
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extérnal particles would then be treated as bound stateé of the other
external particles. Let us then treat a process A+ B > A + B., first

in the two-particle approximation and then in a higher approximation where
-the AB -channel is coupled with the three-body ACD -channel. In the
more accurate treatment B 1s treated as a bound state of C and D..

The Regge trajectories in the two approximations are shown as curves (a)

and (b) of Fig. 3. 1In the low-energy physical region they should be close

to one another if the-two-particle approximation is adequate. However,
the morevaccurate trajectory should approach £ = -3 rather than
£ = -l».at‘ihfinite s . We have’also made the plausible assumption that
the threé-body trajectory does not begin to turn over until we are well
above ‘the three-particle .threshold. The turn-over point is thus above
the-éorresponding point of the two-body trajectory.

We may now envisage a still better treatment where the particles
A, B or ¢ are themselves regarded as composite, so .that our particles
are treated as bound sub-channels of an n-body system. If the process
is continued indefinitely the trajectories of the fully'bootstrapped
system will go from -w atv S = -0 to +@ at s =+w. The
indefinite rise of the Regge trajectories seems to be borne out by
experiment. At any rate they éhOW'no signs of‘turning over -below the
highes@ energies where resonances have been looked for. It was partly
this fact which led us to draw the curve (b) in Fig. (3) in the manner
we did. The exponential decrease of scattering amplitudes at high
energies and angles may be regarded as experimental evidence in favor
of the 1imit J = - = of the trajectories at s = - o , but-here we
‘have tc be more careful, first because there are probably an infinite

number of trajectories contributing in this limit, and second because

o
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the relation of the asymptotiévbehavior as both s and t bécomev
infinite toc the Regge trajectories is far frém cléar,_ We feelz however,
that.it~is plausible that Regge trajectories in a bootstrap system go
from = to + o . |

(Another suggestion which we may make on an-intuitive‘ngis is

that the point at thch the phase shiftsvturn over.is related to the point .

at which the Regge trajectories turn over. Thus, as we go to an

approximation where systems containing more and more particles are treated,

the phase shifts will take_lbnger and longer to turn over. In fact, if

all the lower Regge trajectories also rise indefinitely, each partial wave

will contain an infinite number of resonances, and the phase shift will

rise indefinitely. In the nmﬁarticle’ approximation it will eventually

turn over and return to zero.
Under these circumstances we may ask whether the definition of a-

bootstrap system as one where the sum of the phase shifts returns to zero

" is reasorable. Properties which serve as a basis for fundamental

definitions should be true, not only in the nmpérticle approximation, but
exactly. We should therefore start with an alternative formulation of

the booﬁstrap hypothésis such as the abéence of polynomial terms as

s or t apﬁroach infinity or;,eq&ivalentlyj_thevabsence of non-Regge
terms in the J-plane . In the tWomparticle approximation, and probably

in the n-particle approximation, this. is equivalent to the phase~shift

~criterion. If the number of particles now becomes infinite the phase-

shift criterion may no longer apply, but analyticity in the ' J-plane
should not be lost.
The hypothesis that the phase shifts of the exact problem never

turn back is helpful in understanding the falling dff of form factors at
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high ehergy. In fact, it appears to be essential in understanding this
fact, which is borne out experimentally. The form factor is given by

an equation of the Omﬁés type. Although Omﬂés' technique is not

@

applicable to the multi-channel problem, much less the multi-body problem,

“all his results can be-established by other methods for these problems.

The multi-channel problem is treated in the book by Muskhelishvili, and
Gross at Berkeley has recently shown that the results can be generalized
to problems such as the' n-body problem where the channel indices are
continuoﬁs variables. Now it is a fﬁndamental featﬁre of thése equations
that they do not posséss solutions with decreasing form factors in all
éhannels when the sum of the plase shifts approaches zeio'at infinity.

Unlike Fredholm eqﬁations, these equations have no exceptional cases. If

the sum of thé phase shifts approaches n , we have extra_pa;améters at
our disposal assoclated with coupling to the "elementaryf_p@;ticle, and
we can obtéin a solution which approaches‘zero at infinit&. If the
phase shift approaches 2x we cén apply still stronger conditions at
infinity, and so on.

We can illustrate the results just quoted by_referring to the
single-channel two-body problem. The form factor is then given by the

function

8 - 8 ) 7 ? |
f0) = el [ ey

© - - Z

Py
=
S

If 8(») = 0, then

P(@) = Exp %j—ﬁ—us— ) | (5)
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which is a non-zero constant. If, on the other hand, &(«) = x , then

. S »:' )
' 0 1 “[s(s?) - ds'
F(S) = EXp log-é- - ;[. f[ (S’)_ ST[]
- 0
S ,
_ 0 1 [8(s') -~ x] ds?
= 5 B f - s, ;8o 6

and we have a falling form factor. Though thié proof bnly applies to thé
single-channel problem, one éan prove similar results for the multi-
channel problem.’ |
We must emphasizé that, as long as Wevrémain-within'the n—pérticle
approximation, the hypofhesis of no elementary particles makes it more
iqiffigﬁlt, not less, to explain falling form factors. In case you find
"this . in cénflict With'your intuition (no elementéry particles -
correspdnding to no 6:function vcores), let us take note of theAchaﬁnel
*I1010BJ

we are examining. With the charge form factor of the proton, for.instance,

wxoJ SuTTTel ® sey weTqoxd 30BXS 9Y} PUB ‘SOSBAIJIOUT U SB JISTTBWS pue
the intultive arguments which suggest that non-elementary particles are

JOTTEBUS SSWODaq 1URISUOD STYL - *JIOTABUSQ OT407dumAse qUBISUOD & 3ATS 013
soft refer to the process y +p - p . If we examine the channel

POATOS oq uBd suoTyenbs x010®I WIOF Apoq-u Syl ‘pszIsayjodAy LAY SM UDTUM

y > p +Pp , we donot obtain a decreasing form factor when the phase
JOTABUSQ 2U3 aABY s2JTUs oseyd ayj JI °°9s8d ApOQ-T3TnNW IO TSUUBYD-TFTOW
shift goes to zero at infinity, as it should in the elementary bootstrap

oy} J0I pesosd oq UBD 4TNSSX SWES OYJ SUOTFTPUOCD 9§3Y3 JSPUN SNTEA
picture.

2AT1BSoU 231BT ® 9ABY pTnomM quUauodxe syl sIoym ‘(g uorlenbs 09 IFuTISISI
If we now make the hypothesis that phase shifts do not turn back

£q usos aoq LW STY) 95BO TOUURYO-ITBUTS oY} Ul ' IO0TABUY2q OT303duhse

in the exact bootstrap solution, we can understand falling form factors

JUBLSUOD TTBWS B 9ATS 09 DPOATOS 2q UeD suoTyenbs ayjz. ‘019z 03 suUIN}dJI
even if we look at the channel y - p + p . As we have just pointed out,

ATTeNjUsAS gng s\ JO sanTea U8ty 03 dn srqerossdde’ surewsx (s)’ JI
equations of the Omnes type can be solved to give falling form factors

- U = (0)Q USUM Ued 3T 3eyy ang ¢ = (©)Q UuUdYM J030BJ WIOJ BUITTRI B
when thg %hase shift approaches ngx ?rlg-))at infinity. We might even

oAT8 07 POATOS 8¢ aouusd UoTyenbs sdAj-souwQ Ue 3BUJ . USSS SABY SM
conjecture that we can obtaln exponentidlly decreasing form factors if

- AT91TUTJOPUT SUTSBOJIOUT OSTB® ST STOUURYD JO JISQUMU 9U3 90UTS ‘SNOTAQO WOLT

the phase shift increases indefinitely, but such a conjecture is far

oSzLT-T4on -te=
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K(z,z',2")
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Fig. 1(b)
Z
L—p- S
A
z, B

Fig. 1.(a,b,c,d,e,f).

Fig. 1(e)

Fig. 1(f)

Feynman diagrams with three-particle inter-
mediate states.
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c
Ly

Fig. 2. Born diagram for a three-particle system.

Fig. 3. Regge trajectories in the two- and three~particle
approximations.

>
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C. ASYMPTOTIC BEHAVIOR OF AMPLITUDES FOR
BACKWARD SCATTERING

The subject of today's talk is the asymptotic behavior of
scattering amplitudes for unequal mass partiéles in the backward direction
as the energy becomes infinite. In this case the cosine of the scattering

angle of the crossed channel remain finite (in fact zero) as s approaches

3 () 2

sin gaf{u)

infinity, so we may question whether the asymptotic formula

is correét. We shall show tha£ the asymptotic formula is correct in this
caéé for, if it werévcorrect at all values of u except u = 0 , there
would be violation of analyticity in 's-t space. We shdli ‘also show
that there must be further trajectories which pass through u =0 at
a=a(0) -1, af0) -2, etc.,‘otherwise\we would have unwanted
singularities in s-t spaceo Finally,we shall report of some work by
Freedman‘and Jiunn-Ming wang, who showed that trajectories generated by
a Bethe-Salpeter eéuation do possess.this sequence of édaughters“, with
residues of Jgst the right value to cancél the unwanted singularities
in the s-t plane.

We bégin by Settiﬁg up the kinematics and expléining the problemu‘
We treat a two-body scattéring amplitude With picn-nucleon kinematicé
but without spin. The variables s and ﬁ ‘are the energies in the two
pion-nucleon channels, t 1is the energy of the channel « + 5 - N + N .
The square of the centernof-mass,momentum qu in.thé u-channel.is given

by the formula &

QW = g W -2 0f + )P e of - 1f)F) @)

while z, s the cosine of the scattering angle in the -u-channel , is
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related to s Dby the formula

z = s/2q1i2 . (2)

u

©

If u is not zero at infinify, z, goes to infinity with s ,
so that asympﬁotic behavior in zZ, is equivalent to asymptotié behavior
in s . If uA:'O , however, qu2 is infinite and z, is identically
equal tb unity. A naive reading of the Regge formula would therefore
indicate that it could not be used to determine the asymptotic behavior
in the 1imit s >w , u =0 . Such a limit is of great practical
.interest, since it represents the infinite energy limit at backward
.scattering for'the other pion-nucleon channel. This is a:region'easily
accessible to experiment, and Fraufschi has ouflined some interesting
results of,expériments<performed in this region. We shall now show that
the Regge asymptotic behavior in the limit s -» « s U % o, together‘
with the usual assumptions of analyticity in the s-t plane, imply an

a(u)

asymptotic behavior of the form ‘y(u)s at u=0.

We start from the Regge asymptotic formula, valid for u % 0

{u .
A(s, u) = Eiﬁééa%ﬁj Pa(u) (zu) + Background term. (3) .

We now write

Fay (5 = e+ o)) -3 “

" )

-

From the formula relating z, and s , we find that

)Sa(u) + Background term (5)

A(s, u) = y(u
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where
l. C: u . . At . . - .
(o) = ——ef) , (6)
.(qu) sin ra(u) I
| - ala)-l . |
The terms of order (zu) in .the expansion of Pa(u) have been

included in the background ‘Eerm°
Note that the formula (5), which has been derived from (3), is

()

Vélid whether or not the asymptotic form is valid at u =0 .

If, the function g(u) were analytic at u = O , the function y(u)
20(u) '

would approach zero 1ike ‘(qu) The background term of (5) would
then dominate over the term 7(u)sa(u) at u =0, and the asymptotic

form sa(u) would not be valid. If, on the other hand, the function

y(u) 1is analytic at w=0 , and if the asymptotic behavior of the

background term at this point is the same as at other values of u s the.
first term of (5) Wwill represent the asymptotic form. We wish to sﬁow
from.analyticity‘in the s-t planeAthat these conditions are in fact
satisfied. | o |

| We shall assumé that the Regge asymptotic form is valid whén
u # 0 . In other words, we assume that the background term in (5)
éﬁpraaches zZero as é éppfbéches infinity like a negativeﬂpowef

1 alu)-1

(say s 2) or like , whichever is larger. This is not implied

: undmbiguously by meromorphy in the EQplane, since we are in an unphysical

regioﬁ of the Auwchannel ; The f=integration of the background term
as a(t, s) Pﬁ(z)

1 .
-5 = e

may diverge, depending on the argument of =z . Nevertheless, whenever one
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can prove meromorphy in the Z-plane one can also prove that the back-

ground term goes to zero (or to sa(u)_l) at infinite s , and that

it does so uniformly in u(u # 0) . This is what one usually thinks of

in connection with Regge behavior, and we shall adopt it as our assumption.

It is now nof difficult to prove that the function 7(u) must be
analytic in u . If »(u) has a branch pointvat u=0, the first
term of (5) will_nqt be an analytic function of wu . It will have a cut
which extends to values of wu other thah~zero. -Since we afe assuming
that the second term of (5) converges uniformly to zero at infinite s
(ﬁ # 0) , we cannot cancel the cut with a cut in this second term. We
~thus conclude that #%(u) cannot have a brénch point at u =0 . A
natural boundary can be similarly excluded, -and one cén.also exclude a
pole or essential singularity in y at u=0 . Thus y -‘is an
analytic function of u at u=0.

We can now show that the first term of (5) dominates over the
background term at s = 0O -' Since A is analytic in u at fixed s in
a neighborhood of u = 0 .and we have just seen that the firstvterm of (5)
is analytic in u , we can conclude»that the second term is also
analytic. .Using the analyticify.in..u., Wang has shown from the maximum-
modulus theofem that an»asymptotic'behévior of sa(u)‘l .for ‘u-¥ O
implies a similar asymptotic behavior for u =0 . Thus the first term
of (5) dominates for s sufficiently large, and it represents correctly
the-asymptotic behavior. This is what we wished to prove.

Let us now observe.what happens when we -include further terms of
the expansion of P, in (3) in Suy main term. If we keep the first two

terms of the expansion, we find that

P

(»;3
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A(S’. u) = y(u) {SO{(u) + -2qgsa(u)-]‘ +

-++} + Background  (7)
' term

<)

If a(u)-1 > 2 , the first two terms of (7) will dominate over the back-
ground term. However, the second term of (7) has a pole at u = 0,
- since q2 is infinite at this point. By going to sufficiently large s ,
-we can show that the background term cannot cancel the pole. We thus
appear to be contradicting the analytic properties in the s-t plane.
The>phenomenqn Just discussed was first observed by Goldberger and
Jones, who suggested that a(u)-l must be less than % . However, one
can easily write the Regge formula with a background term whigh goes down
as fast as we please as u - «» , so that the contradiction‘woul& still
exist,v Furthermore, experimental evidénce strongly indicates that there
are trajectories which rise above « . £ at u=0.
Another way out of the difficulty, which appears fo be the-gorrect
one, is that the background term contains a second Regge trajectory
which cancels the unwanted singularity. Equation (1) réwritten Withv

contributions from two trajectories is

o (u) o, {(u)-1
A(s, w) = () (s o+ 2% T+ (8)

a,(u)
+ 72(u) {s 2 + <9<} + Background term

The condition for cancellation of the pole in the second term of (8) is

ru=0 R (9)
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We are thus led to the conclusion that there is a second trajectory, which
passes through the point u = 0 at one integer below the first. The

residue 7(u) associated with this second trajebtof& must itself have a

pole in u at u = 0 . One may ask whether it is possible for %2' to
have a pole in u , since it has been proved that residues of Regge
trajectories are analytic'in u . The proof was based on énalyficity in

the s-t piane, howevéf, and it did hot examine “the special conditions
at u=0. Our reasbning indicates that a pole ih' 72' at u=0 1is
necessitated by analyticity in the s-t plane. | ‘
By'Similar'reasdning one can shOW‘thét further Regge trajectories
must pass through the points oi(o)-z . oi(o)-B ,:etc., at u=0. The
éorrespondihg y's Thave poies of higher andfhighér'ordef at u=0. In
our treatment we have not been very careful about signature but, By
’ replaciné the Legéndre funcﬁidns ?a in our derivations by the
combinations Pa(Z) + Pa(-z), we»qah‘easily’séé that these t}ajéctories
alternate in éignatﬁre. Théy have'been'called daughfer trajedtorieé by

Freedman and Wang. As equations (8) and (9) show, their effect is to

replace an asymptotic behavior Pa(zu) by an asymptotic behavior sa(u)
at u =0 . Such a replacement is necessitated by analyticity in the
s-t plane.

Our prpof of the existence of daughter trajectories is based on
analyticify in the .s-t plane. As a two-body sysfem satisfying the |
Bethe-Salpeter equation possesses these analyticity properties, it should
‘ﬁe possible to show directly that the daughter trajectories are present
in this system. Thé potential model is too simple, as the momentum q2

never becomes infinite except at infinite energy. Freedman and Wang

have shown directly that the Bethe-Salpeter system does possess daughter

e
CasY
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trajectories, and that the functions y(u) associated %ith the lower
trajectories have poles at u = O with the corrgct résidues.

The results of Freedman and Wang are based on the well-known four-
dimensional symmeffy of the Bethe-Salpeter equation at u = 0 . The
relevance of this symmetry to Regge trajectories was first pointed out by
Domokqs and Surgﬁyi. In the centér-éf—maSS system, the Bethe—Salﬁeter
kernel corresponding to Fig. 1 is

1 2 2 2,-1

ATt g T +p)% +p + T,
P-D) +u :
~ o | (10)

-

wherév Ev= u?. The usual method of treating this eqﬁation is to e%pand

it into spherical harmoﬁics involving the variables £ and m . The
separated kernel depends on ' £ but not on m . Howevef, the firsf factor
of the kernel is invariant undef four-dimensional rotations in p-spéée

We can therefore perform é Wick rotation and expand it in four-

dimensional spherical harmonics or Gegenbauer‘polynomials, whiéh depend

on three integers n(n > £) , 2(¢£ > 0) and m(-£ <m<£) . Thus

1 1 "2._ 372-2.
_ 5 5 Fn-ﬁ(P',p +u}

o x oM e ), )

where w and w' are the initial and final angles in four-dimensional

space with respect to some fixed axis. The functions D are Gegenbauer

i

polynomials which we shall not define. Note that F depends only on
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£ -n and not on £ and n separately. This is analogous. to the
facﬁrthat in three dimensions the kernel depends on £ but not on m-..

The propagator functions in (10) can be similarly expanded in a series

4+1 (w) D£+l (w’)

0 g (12) .

z - G ., D
aon' £;n,n' "n-=4

Since the propagator functions do’not possess spherical symmetry, the
summation in (12) is over two indices n cand n' . We thus have an
« - .-
infinite series of coupled equations in n and ‘n'-, depending oﬁ a
parameter £
When u (= Eg) is equal to zero, all functions in (10) possess

four-dimensional épherical symmetry. Thus the equation (12) will have a
form similar to (iO), and terms with n # n' are zero. We ﬁow have one

equation for each value of n and £ , and the kernel depends only on-

n - 4 . For any solution with a given value zo of £  there will

*

be corresponding solutions with £ . = Lyl 5 £ = EOaE , ete., since

n can be decreased by integers and £ - n must remain constant. If

there is a bound state at ¢4 = £

0’ there will be - corresponding bound
states at ﬁonl 5 £O~2 » ete. The same results is true when _zo is
not integral, so that any trajectory passing through «(0) at u = o
will poésess daughters passing through £ = af0)-1 , ¢ = a0)-2 ,
etc., at u = 0O . This is what we had inferred from our analyticify
reasoning.

By considering the infinite seﬁ of éoupied equations which we
encounter when u is small but not zero, Freedman and Wang were able to
show that the functions y(u) associated with the lower trajectories

did possess poles with the correct residues at u = 0O . These poles
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do not occur in the equal-mass case for, by equation (9), the residues
would then vanish.

We may finally collect the threads of the different arguments of

D
this talk %o conclude that the problem of the asymptotic behavior at large
s enefgies-in the backward direction is solved, and that the leading term
in ﬁhé asymptotic béhavior is sa(o) .
- . |
E + Ph,}i
P - P
E - Ph’ - P

Fig. 1. . Diagram for a simple Bethe-Salpeter kernel.

b
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This report was prepared as an account of Government
sponsored work. Neither the United States, nor the Com-
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A.

Makes any warranty or representation, expressed or
implied, with respect to the accuracy, completeneéss,
or usefulness of the information contained in this
report, or that the use of any information, appa-
ratus, method, or process disclosed in this report
may not infringe privately owned rights; or

Assumes any liabilities with respect to the use of,
or for damages resulting from the use of any infor-

.mation, apparatus, method, or process disclosed in

this report.

As used in the above, "person acting on behalf of the
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mission,

or employee of such contractor, to the extent that

such employee or contractor of the Commission, or employee

of such contractor prepares, disseminates, or provides access
to, any information pursuant to his employment or contract
with the Commission, or his employment with such contractor.

&:-

)

b





