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Abstract:  In this  paper,  a  state-space  method for  double-beam systems with  variable  cross-

sections is  developed, making it  possible  to calculate  the transverse vibration of the double-

beams accurately and effectively. Due to the variability of double-beam cross-sections with the

viscoelastic interlayer in-between, the governing equations of vibration for the systems become

highly  coupled  partial  differential  equations,  making  the  problem difficult  to  solve.  A basic

double-beam  system  is  introduced  to  modify  the  original  governing  equations  to  two

inhomogeneous  differential  equations.  With  the  separation  of  variables,  several  mode-shape

coefficients and a state variable are defined to construct the state-space equations. The coupling

terms  and  variables  are  transferred  into  the  constant  coefficient  matrix  of  the  state-space

equations, making them decoupled. Numerical procedures are presented to solve the state-space

equations  to  obtain  the  homogenous  and  inhomogeneous  solutions  including  the  natural

frequencies  and  mode  shapes  in  free  vibration  and  dynamic  responses  in  forced  vibration,
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respectively. The method has substantial advantages in decoupling high-order partial differential

equations and can be further extended to solve complex structural systems.  Numerical results

also demonstrate that the method is accurate and efficient. An engineering application with a rail-

bridge with floating slab track is finally discussed in detail with the method. 

Keywords:  Double-beam  system;  Variable  cross-section;  Transverse  vibration;  State-space

method. 

Introduction

Double-beam systems are a series of idealized structural  models,  in which there are two

parallel  beams (upper  and  lower  ones)  connected  with  an  interlayer.  Numerous  engineering

applications  of them can be found in fields  of aerospace,  civil,  and mechanical  engineering,

including floating slab tracks (Xin and Gao 2011), sandwich and composite beams (Arikoglu and

Ozkol 2010), continuous dynamic vibration absorbers and isolators (Kawazoe et al. 1998; Hu et

al. 2023), double-beam cranes (Zhang et al. 2008), and double-walled carbon nanotubes (Murmu

and Adhikari 2012). To address issues associated to structural dynamics, vibration control and

optimal design, much attention has been drawn to the dynamic characteristics of double-beam

systems in the past decades.

Since 1964, three groups of the dynamics of double-beam systems have been developed. In

the first group, double-beam systems are without interlayer damping (Oniszczuk 2000; Li and

Sun 2015; Mao and Wattanasakulpong 2015) or with viscoelastic interlayer but with restrictions

such as two identical beams (Vu et al. 2000; Wu and Gao 2015) and simply supported boundary

conditions (Pavlovic et al. 2012; Wu and Gao 2015). In the second group, simple viscoelastic

interlayer, two different beams and arbitrary boundary conditions are considered in the systems
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(Li et al. 2016). In the third group, the models become more complicated. They consider more

specific facts, such as Timoshenko beams (Zhang et al. 2014), realistic interlayer types (Brito et

al. 2019; Li et al. 2021a), partially distributed foundation (Liu and Yang 2019), constant axial

loads  (Liu  and  Yang  2019;  Han  et  al.  2020),  cracked  beams  (Chen  et  al.  2021a),  and

hygrothermal environments (Chen et al.  2021b).  Even with numerous research attempts,  few

have  studied  the  double-beams  with  variable  cross-section,  which  are  widely  spread  in  real

beam-type structures. 

If the variable cross-section is adopted, the equations of vibration would be changed as the

coupled partial  differential  equations  with variable coefficients,  which is  more difficult  to  be

decoupled. Manconi and Mace (2017) analyze the coupling problems between multiple flexible

structures. The perturbation method is used to study both weak and strong couplings for both

discrete and continuous systems. However, their investigation is mainly about mode veering. An

analytic framework (Zhang et al. 2014) is developed to study vibrations of double Timoshenko

beams with variable  cross  sections  and various  discontinuities.  The dynamical  responses are

solved by dividing the entire  system into a series of distinct components and organizing the

compatibility and boundary conditions. Using a modified transfer matrix method, the dynamics

of a discretely connected double-beam system are analyzed (Wang et al. 2016), and the variation

of cross section is considered. Zhou et al. (2023) propose an approximate discretization method

for vibration of a viscoelastic connected Timoshenko double-beam system with variable cross

section. The above studies all require discrete structures, which lead to many structural elements.

The  computation  is  time-consuming,  and  the  efficiency  of  them  is  reduced  significantly.

Although Li et al. (2021) obtain closed-form solution for vibration of functionally graded beam
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with variable cross-sections, the varying of cross-section must be continuous and the boundary

conditions are simply supported.

State-space approach has proven to solve the complex and coupling problems (Lee et al.

2007; Khdeir and Aldraihem 2016). Based on previous works on state-space approach (Palmeri

et al. 2003; Palmeri and Ntotsios 2016), Palmeri and Adhikari (2011) investigated the transverse

vibrations of a double-beam system with inhomogeneous beams, arbitrary boundary conditions,

and rate-dependent interlayer. The mode shapes used for assumed shapes were buckling modes

instead of vibration modes.  Further,  the damping was not considered in free vibration while

simplified Rayleigh’s damping model was adopted in forced vibration. Although improved state-

space approaches (Li et al. 2021a, 2021b) were proposed to solve vibrations of damped double-

beam systems, the beams are both with uniform cross-section. 

The investigation presented in this paper is on the double-beam systems with variable cross-

sections. For the beams with variable cross-sections, many previous analysis methods require the

spatial discretization of the structure, such as finite element method and other similar approaches.

In addition, other methods discretize the structure in the modal space, such as the assumed mode

method. The total number of the structural elements and the total number of the assumed modes

directly  affect  the  solutions  of  these two types  of  approaches,  respectively.  While  both total

numbers are determined by the frequency range of interest,  the conclusions presented in the

literature suggest that the required number of modes is smaller than the number of structural

elements. The computational efficiency of the assumed mode method is thus more favorable.

Based on these approaches and conclusions, an improved state-space method is developed in this

paper. A basic double-beam system with uniform cross-section and pure elastic interlayer is first

introduced. The original equations of vibration of the to-be-solved system are modified by that
4
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basic system. Furthermore, three modal coefficients  are defined together with a state variable.

Using these constants and state variables, the governing equations in time space are decoupled

into a set of first-order state-space equations. The natural frequencies and mode shapes in free

vibration and dynamic responses in forced vibration are solved based on the derived state-space

equations. Finally, the proposed method is verified with several numerical examples and results

from the finite element method. A realistic engineering application, which is a beam bridge with

floating  slab  track,  is  analyzed  to  illustrate  the  practical  application  value  of  the  proposed

research work. 

Mechanical model and governing differential equations

The mechanical model of the double-beam system with variable cross-section is shown in

Fig. 1(a), in which two slender beams are interconnected with a viscoelastic interlayer. The two

slender beams with length L are homogeneous. The assumptions for the studied systems include

that (1) two slender beams are Euler-Bernoulli beams, (2) deformation of two beams is in the

linear elastic range, (3) forces exerted on the two beams are transverse, (4) the variable cross-

sections of two beams are symmetric variables with respect to their central axes, and (5) the

change in the cross-sections must be continuous and smooth, without any abrupt changes.

Based  on  the  above  fundamental  assumptions,  the  coupled  governing  equations  for  the

vibration of whole systems are expressed as:

(1a)
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(1b)

where  is transverse deflection of either beam (i = 1 or 2 representing the upper beam or

lower beam),  and t are the spatial co-ordinate and the time, the prime notations indicate partial

derivatives with respect to x, the dot notations indicate partial derivatives with respect to t, 

and  are beam flexural rigidity and beam mass per unit length,  K and C are the stiffness

coefficient and damping coefficient per unit length of the viscoelastic interlayer, and  ,

 are the exciting forces acting on the upper and lower beams, respectively. 

The boundary conditions at the ends (x=0,  L) of two beams are arbitrary. Commonly used

ones can be found in literature (Li et al. 2021a). The initial  conditions of Eq. (1) of the two

beams are 

(2a)

(2b)

Referring to the perturbation method, the present study defines a basic double-beam system

here. The solutions of the basic double-beam system are used to form a basic solution space. In

this space and with the concept of the state-space, the solutions of Eq. (1) will be solved. The
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mechanical model of such basic double-beam system is shown as Fig. 1(b). The cross-sections of

two slender beams are constant. The masses and flexural rigidities of the two beams are uniform.

The interlayer is purely elastic. The lengths and boundary conditions of the two beams are the

same as the ones in  to-be-solved double-beam system. Following the same assumptions,  the

governing  equations  for  the  free  vibration  of  the  basic  double-beam  system  are  written  as

follows.

(3a)

(3b)

where  and  are constant beam flexural rigidity and constant beam mass per unit length, and

K0 is the stiffness coefficient per unit length of the pure elastic interlayer. 

Free-vibration characteristics 

Solution of natural frequencies 

The natural frequencies of the to-be-solved system are analyzed in this subsection. In the

present study, the solutions of the basic system are used to construct the solution space and solve

the dynamic responses of to-be-solved system. First, it requires to introduce these basic solutions

into Eq. (1), which are the governing equation of to-be-solved system. Specifically, Eq. (3) is

adopted to modify Eq. (1) and make the left side of Eq. (1) to be the same as the left side of Eq.

(3). The revised Eq. (1) becomes a kind of governing equations of a forced vibration for the basic

double-beam system. Therefore, the basic solutions can be substituted into the modified equation
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and the orthogonality condition can be applied. Following the above introductions and vanishing

the exciting  forces   and ,  Eq.  (1)  can be rewritten  for  the free vibration as

follows: 

(4a)

(4b)

By separating the variables, the assumed solutions of Eq. (4) can be expressed as

,  (i   1,  2)

(5)

where Tn(t) is the time function and  is the mode shape function of two beams. It is worth

noting that  are the mode shapes of the basic double-beam system. 

Substituting Eq. (5) into left side of Eq. (4) and applying the orthogonality condition of the

basic double-beam system from (Li and Sun 2015), the key equation of to-be-solved double-

beam system can be derived out by following the similar derivations developed in (Li and Sun

2015): 
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                                    (6)

and  is the natural frequencies of basic double-beam system. 

Third,  three  mode-stiffness  coefficients,  a  mode-shape  coefficient  and  a  mode-mass

coefficient is proposed herein to simplify the coupling terms of the right side of Eq. (6). The

assumed solutions to Eq. (4), which could also be denoted as  , are

substituted into the terms of the right side of Eq. (4), and the orthogonality computation is carried

out.  Then,  all  the  terms  of  the  right  side  of  Eq.  (6)  and  these  coefficients  are  derived  out

specifically in Appendix A. 

Fourth, a state-space approach is proposed to decouple all equations in state space. If there

are total  N modes considered, a state variable  

with dimension 2N by 1 is introduced. The key equation Eq. (6) can be written in a state form as:

         (7)

where

(8a)

                                                                                       (8b)

(8c)
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and [0], [I],   are all with dimension  N by  N.  FMWs(t)   [F1Ws(t)···FNWs(t)]T (s=2, 3 or 4),

FMK(t)   [F1K(t)···FNK(t)]T,  FMC(t)   [F1C(t)···FNC(t)]T and  FMM(t)   [F1M(t)···FNM(t)]T are  three

stiffness vectors, an elastic force vector, a damping force vector and an inertial  force vector,

respectively. All of them are with dimension N by 1. According to Eq. (A.1) to Eq. (A.7) and

state-variable  ZM(t),  those  equivalent  forces  vectors  in  Eq.  (7)  are  derived out  and listed  in

Appendix B. 

With those coefficient matrices in a state form, Eq. (7) is rewritten as:

                                                                                                                     (9)

where

(10)

It is worth noting that   is a state-space representation with dimension 2N by 2N. As a

result, Eq. (9) and Eq. (10) are the final state-space equations for the free vibration of the double-

beam system with variable cross-section.

The solutions to free vibration of to-be-solved system with the corresponding equations of

vibration  Eq. (1) for  ,  can be written as   and

, where   and   are the mode shape functions of upper

beam and lower beam, respectively. Further,  is the time function in which  is the
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natural frequency and  is imaginary unit. It is worth noting that ,  and 

in here are all for to-be-solved double-beam system instead of the basic double-beam system.

Substituting  into the state variable ZM(t) yields

(11)

 where 

(12a) 

                                                                                     (12b)

and submatrices ,  and  in Eq. (12) are all with dimension N by N. 

Equations (9) and (11) are both the state equations of a same double-beam system. The state

variables of those two equations are also same. Therefore, the eigenvalues of  in Eq. (9) must

be the same as the eigenvalues of  in Eq. (11). The eigenvalues of  are , which

is directly  related to the natural  frequencies  of the system. Once the eigenvalues  of   are

obtained by analytical  or numerical  methods,  the natural frequencies of to-be-solved double-

beam system could be determined. The relationship between the eigenvalues of  and natural

frequencies of to-be-solved double-beam system is , in which
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 is  undamped  natural  frequency  and   is  damped  natural

frequency.

Solution of mode shapes

Based on the obtained natural frequencies, the corresponding mode shapes are calculated in

this  subsection.  Similarly,  the  mode  shapes  of  the  basic  double-beam  system are  the  basic

solutions and they are used to construct the solution space. According to the modal perturbation

method (Lou and Chen 2003),  the  n-th mode shape of to-be-solved double-beam system are

assumed as 

,  (i   1,  2)

(13)

in which  are the n-th mode shapes of basic double-beam system, and  are the n-th

additional  perturbation  increments.  qnhi are  corresponding  Lagrangian  coordinates  associated

with the mode shape , and Qni = N-dimensional vectors with qnni  1.

The assumed solutions, which represent the  n-th mode only, to the free vibration of to-be-

solved double-beam system are expressed as

,  (i=1,2)

(14)

Substituting Eq. (13) and Eq. (14) into Eq. (1) with , the equations of

vibration to the free vibration in n-th mode could be rewritten as
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(15a)

                                     (15b)

Further,  with  ×Eq.  (15a) and  ×Eq.  (15b) as well  as integrating them with

respect to x from 0 to L, each term in Eq. (15) is derived out and listed specifically in Appendix

C.

Reorganizing all the terms as shown in Eq. (C.1) to Eq. (C.7), the integral of  ×Eq.

(15a) and ×Eq. (15b) with respect to x from 0 to L are finally expressed as

(16a)

(16b)

Setting the values of k as 1 to N and combining all the integral equations together, the final

algebra equations for n-th mode shapes of to-be-solved double-beam system would be

(17)
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in which

(18a)

(18b)

(18c)

(18d)

and P11k, P22k, P21k and P12k are all coefficient vectors with dimension 1 by N. The zero vector and

unknown variable vector are with dimension 2N by 1.

Solving the algebraic Eq. (17) and combing qnn1=qnn2=1, the vectors Qn1 and Qn2 are obtained.

By the assumptions as Eq. (13), the n-th mode shapes of to-be-solved double-beam system are

finally determined. Other mode shapes should be calculated by the same procedure.

Forced-vibration responses

In this section, the forced vibrations of the to-be-solved double-beam system subjected to

dynamic  loads  are  analyzed.  Based  on  Eqs.  (9)  and  (10),  the  general  form  of  state-space

governing equations for forced vibrations is

(19)

where
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(20a)

(20b)

(20c)

and matrices ,  and  are same as Eq. (10), Eq. (B.4) and Eq. (8c). 

Eq. (19) are first-order nonhomogeneous state-space equations with time-invariant coefficient

matrix. An alternative incremental solution is adopted herein. Dividing the entire time domain

into small intervals of equal length,  Δt, and setting the initial time as , the division times

can be denoted as  ,  , …,  ,  ,  . A piecewise linear force vector is applied in each

interval,  followed  by  the  incremental  solution  of  Eq.  (19)  expressed  as,  similar  to  those  in

(Muscolino 1996):

(21)

where

                                                                                         (22a)

(22b)
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                                                                             (22c)

and  and  are complex matrices listing the eigenvector and eigenvalues of , respectively.

Previous  studies  prove  that  Eq.  (21)  supplies  an  unconditionally  stable  step-by-step

procedure. The numerical errors of Eq. (21) only depends on the modeling of the force vectors as

stepwise linear function. If the time interval is small enough and the real forcing function in each

time interval is close to the stepwise linear function, the numerical errors can significantly be

reduced to a  negligible  range.  After  the  state  variables  in  Eq.  (21)  are  solved,  the  dynamic

responses of whole double-beam system will be obtained from Eq. (5). 

Summarizing the above derivations, the flowchart of the proposed state-space approach is

illustrated in Fig. 2. The black flow path represents the solution procedure for the free vibration

analysis. The red one, however, is for the forced vibration analysis. Therefore, following the

procedure  as  shown  in  Fig.  2,  the  modal  information  and  the  dynamical  response  under

dynamical loading of a double-beam system with variable cross-section can be obtained using

the derivations in both the main text and the three appendices. The accuracy of the proposed

approach  depends  on  the  particular  solution  space  constructed  from the  chosen modes.  The

specific analysis and conclusions can be found in the authors’ previous work (Li et al. 2021b).

Numerical examples and discussion

Numerical  examples  are  applied  to  validate  the  proposed state-space  approach.  Detailed

discussion is accomplished to illustrate the influences of structural parameters. Validations and

discussions are made in the following three subsections: (Ⅰ) free vibration, (Ⅱ) forced vibration,
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and  (Ⅲ)  engineering  application.  The  basic  structural  parameters  are  E  5×109Nm-2,  ρ =

1×103kgm-3, I  1×10-4m4, A  1×10-2m2, e  EI  5×105Nm2, m  ρA  10kgm-1, and L  10m.

Verification and discussions of free vibration: natural frequencies and corresponding

mode shapes

In this example, the accuracy of the proposed method for the free vibration is verified. The

natural frequencies and mode shapes are calculated using both the proposed state-space method

and the finite element method (FEM). The finite element software applied in this study is MSC

Nastran.  As for the specific model  in  the Nastran,  CBAR is a typical  Euler-Bernoulli  beam

element, and it is used for two slender beams. The viscoelastic interlayer adopts a simple spring-

dash model, and scalar spring connection CELAS1 is chosen to simulate it. The mesh type is

CURVE and the dimension of each mesh is 0.05m. 200 elements are built for each beam in the

system, which ensures the accuracy of the simulations. Two cases are designed as follows:

Case  1:  Simply  supported-simply  supported  upper  beam  and  simply  supported-simply

supported  lower  beam,  e1  e2  e,  m1  m2  m,  e1(x)   e1[10.1sin(πx/L)]3,  e2(x)  

e2[10.2sin(πx/L)]3, m1(x)  m1[10.1sin(πx/L)], m2(x)  m2[10.2sin(πx/L)], K0  1×105Nm-2, K

 5×104 ~ 2×105Nm-2, C  0Nsm-1.

Case 2: Clamped-free upper beam and simply supported-simply supported lower beam, e1 

e2  e, m1  m2  m, e1(x)  e1[10.2x/L]3, e2(x)  e2[0.80.2x/L]3, m1(x)  m1[10.2x/L], m2(x)

 m2[0.80.2x/L], K0  5×103Nm-2, K  2×103 ~ 1×104Nm-2, C  0Nsm-1.

The  first  six  natural  frequencies  of  the  two  cases  are  listed  in  Table  1  and  Table  2,

respectively. Compared with the ones from FEM, the results agree to each other very well. The

corresponding mode shapes are also shown in Fig. 3 and Fig. 4, respectively. Compared with the
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ones from FEM, it  is  shown that  they are same.  Although the calculation  accuracies  of the

proposed methods and FEM are both excellent, the calculation number in the proposed method is

much less than that in FEM. In order to precisely simulate the two beams with variable cross-

sections and the continuous elastic interlayer between them, a minimum number of 400 CBAR

elements  and  201  CELAS1  elements  are  used  in  the  FEM  model.  These  two  numbers  of

structural elements have been optimized and shown to be the minimum values that make both the

free and forced vibrational  solutions stable and convergent.  In this  case,  the total  number of

nodes and nodal degrees are 402 and 1206, respectively. The corresponding dimension of FEM

matrix is 1206×1206. However, the dimension of state-space matrix is only 20×20 when ten

basic modes are considered. On a computer CPU, the computational space is 1454436 versus

400, indicating that  FEM requires more than 3600 times more computational  space than the

proposed approach. Computation of the proposed method is thus faster with such less occupied

space in the CPU. 

In these models, the boundary conditions may be the same or different for the two beams.

Multiple types of boundary conditions have also been calculated. In contrast to the restrictions in

previous  studies,  the  proposed  method  can  handle  models  with  more  general  boundary

conditions.  The  cross  sections  of  both  beams  are  varied  in  the  longitudinal  direction.  The

changes contain curve type (Case 1) and linear type (Case 2). These two types exist widely in

real structures. 

In general, the natural frequencies are increased with the increase of interlayer stiffness (as

shown in Table 1 and Table 2). However, there are two different phenomena. First, there are

some tiny changes in the natural frequencies of synchronous vibration modes in Case 1, while

they are usually unchangeable in previous works. It is because the cross-sections of two beams
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are mutative, and they are not identical. Tiny relative displacements exist in those synchronous

modes.  Through the relative  displacements,  the increase  of  interlayer  stiffness  produces  tiny

increase in natural frequencies. Second, the changes of natural frequencies in Case 2 are very

small. It is because the relative displacements between two beams are very small. Even with the

interlayer stiffness increased significantly, the natural frequencies grew very little. 

Finally, a parametric analysis of the accuracy of the state-space approach with respect to the

variability of the cross-section is completed herein. The model in Case 1 is adopted. The change

rate of cross-section  μ is defined as the ratio of area at midspan to area at end of the beam.

Parameters  of  the  double-beam  system  are  modified  as  e1(x)   e1[1μsin(πx/L)]3,  e2(x)  

e2[1μsin(πx/L)]3, m1(x)  m1[1μsin(πx/L)], and m2(x)  m2[1μsin(πx/L)]. The first six natural

frequencies are calculated and compared with the ones from the FEM in Table 3. It is shown that

the  increase  of  μ produces  a  small  yet  significant  increase  in  error  in  each  modal  natural

frequency.  More  changes  in  the  variational  cross-sections  would  reduce  the  computational

precision  of  the  proposed state-space  approach.  However,  since the  maximum value  is  only

0.4%, the overall error with the present method is within the acceptable range of values. The

accuracy of this study is still high, and its application potential is strong.

Verification  and discussions  of  forced vibration:  dynamic  responses  and  frequency

responses

The proposed state-space  approach is  validated  for  the forced vibration  of  double-beam

system with variable cross-section in this subsection. A concentrated harmonic force,  F1(x,t)  

f0sin(2πfωt)δ(x0.5L) with the amplitude of force  f0  5000N, is applied at the midspan of the
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upper beam. Two cases with same geometrical  parameters as the ones in last subsection are

applied herein. Boundary conditions and interlayers are listed as follows: 

Case  1:  Simply  supported-simply  supported  upper  beam  and  simply  supported-simply

supported lower beam, K0  2×105Nm-2, K  2×105Nm-2, C  0 ~ 1000Nsm-1.

Case 2: Clamped-clamped upper beam and clamped-clamped lower beam, K0  1×104Nm-2,

K  2×104Nm-2, C  0 ~ 200Nsm-1.

The dynamic responses of two beams are calculated by the proposed state-space approach

and FEM. Eight modes are adopted in both state-space approach and finite element method to

conduct the calculations. The results of two cases are plotted in Fig. 5 and Fig. 6, respectively. It

is shown that the dynamic responses of two beams from the proposed state-space approach are in

good agreement with the ones from FEM. Both resonance vibration (fω  3.74Hz or 7.17Hz) and

ordinary vibration (fω  20Hz or 25Hz) are adopted to demonstrate the good agreement. The

precision  and  reliability  of  the  proposed  method  are  thus  validated  for  the  forced  vibration

analysis. 

Furthermore, the frequency responses at midspan of two beams are obtained by the proposed

method  and  are  illustrated  in  Fig.  7  and  Fig.  8.  The  resonance  occurs  when  the  exciting

frequencies  fω are close to the system natural frequencies  fn. If the midspan amplitudes of the

corresponding  mode  shapes  are  not  zero,  the  resonance  brings  the  peak  values  at  natural

frequency locations (such as 3.73Hz, 31.56Hz, 32.50Hz and 45.67Hz in Fig. 7; 7.17Hz, 12.30Hz

and 38.60Hz in Fig. 8).

As to the damping of interlayer, the dynamic responses of two beams are reduced along with

increased damping. However, in the synchronous vibration modes, the dynamic responses are

not affected by damping significantly. It is because the relative velocities between two beams in
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synchronous vibration modes are small so that the damping cannot produce enough damping

force. On the contrary, the damping apparently reduces the dynamic responses in asynchronous

vibration  modes.  As shown in Fig.  7 and Fig.  8,  the peak values  of asynchronous vibration

modes (such as 31.56Hz, 32.50Hz and 45.67Hz in Fig. 7; 12.30Hz, 22.08Hz and 39.3Hz in Fig.

8)  are cut  down.  Some peak values  (such as  45.67Hz in Fig.  7 and 12.30Hz in Fig.  8)  are

eliminated due to the damping. The above phenomena are consistent with previous papers about

double-beam systems with uniform cross-sections, and it should be considered in future optimal

and design works.

Engineering application: a rail-bridge with floating slab track

To  further  illustrate  the  practical  application  potential  of  the  proposed  method,  an

engineering application is analyzed and discussed in detail in this subsection. The designed rail-

bridge is  in  Chengdu-Kangding Railway in Sichuan Province,  China,  which  is  a  high-speed

railway. The bridge is a single span simply supported bridge with variable cross-section. The

elevation view of the bridge is shown in Fig. 9(a), and cross-sectional view of three key cross-

sections of the bridge are shown in Fig. 9(b) to Fig. 9(d). Since it is a high-speed railway and the

location of the bridge is close to a residential area, floating slab track structure is used to build

the track system on the bridge. The cross-sectional view of floating slab track (Type: CRTS ) isⅡ

shown in Fig. 9(e). 

To concentrate on the dynamics of the bridge and track system, three simplifications are

made: (1) With the shear deformation of bridge ignored, the Euler-Bernoulli beam with variable

cross-section is applied to simulate the bridge; (2) The rails and fasteners are ignored so that the

whole floating slab track is simplified as one concrete beam; (3) The interactions between wheels
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and rails are simplified, and the loads of trains are simulated as a series of moving concentrated

loads. Based on these simplifications, the designed bridge with floating slab track is modeled as a

double-beam system. Due to the steel  connectors between track slabs,  all  track slabs on the

bridge behave as one beam in transverse deformation, and thus they are modeled as the upper

beam. The bridge is the lower beam with variable cross-section. The rubber mat between floating

slab track and bridge is treated as the interlayer. The geometrical and material parameters are

listed in Table 4. 

The  variable  cross-section  of  the  rail-bridge  can  be  considered  symmetrical,  since  the

vertical locations of the centroids in the three key cross-sections are 1.79m, 1.86m and 1.45m

from the top of the bridge beam, respectively. The maximum difference is only 0.41m or 1.03%

compared to the total length of the bridge of 39.94m. The changes of the centroid locations are

small  in  terms of the entire  length of the bridge.  The three centroids  lie  approximately in  a

horizontal  line,  which  remains  normal  to  all  three  key  cross-sections  before  and  after

deformation.  Therefore,  the Euler-Bernoulli  beam theory  is  still  suitable  for  the  bridge.  The

proposed method is able to analyze this rail-bridge with floating slab track. Furthermore,  the

validations in (Martinez-Castro et al. 2006) demonstrate that the Euler-Bernoulli beam theory is

accurate  to  calculate  the  dynamic  responses  of  the beams with asymmetrical  variable  cross-

sections. Unlike the model in (Yu et al. 2022), the models in previous works (Martinez-Castro et

al.  2006)  have  small  differences  in  the  asymmetrical  cross-sections.  All  the  centroids  are

approximately in a horizontal line and all bending planes are treated in one plane. Accordingly,

the Euler-Bernoulli beam theory is still useful. 
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The first six natural frequencies and corresponding mode shapes are solved by the proposed

method and FEM for comparison purpose. As shown in Table 5 and Fig. 10, the accuracy of the

proposed  method  in  free  vibration  is  verified.  Meanwhile,  the  proposed  method  has  a  high

precision for the double-beam system with asymmetrical cross-sections when the differences of

asymmetrical  cross-sections  are  small.  The  specific  design  certifications  require  that  the

minimum natural frequency of rail-bridges must be larger than 2.66 Hz in China, 2.88 Hz in

Japan, and 2.66 Hz in EUROCODE. The 1st natural frequency of the whole structure is 4.41Hz.

Therefore, the design meets the requirements of the above specifications. The first six natural

frequencies are all in the range of low frequency, which is less than 20 Hz. The main vibrations

of  system belong  to  the  low-frequency  vibration.  It  is  in  line  with  most  previous  research

conclusions on the structures equipped with floating slab track. The further vibration reduction

works on the low-frequency vibration are needed. In each mode shape, the amplitude of floating

slab track (W1) is more than the amplitude of bridge (W2). It proves that the vibration of floating

slab track occupies the main position of entire structural vibration. Therefore, the vibration of

rail-bridge is reduced effectively.

In terms of forced vibration, the dynamic responses of whole system under moving high-

speed rail trains are analyzed herein. The standard CRH2 high-speed rail train is adopted, and the

schematic diagram of the train formation is shown as Fig. 11. There are eight train-cars in one

train formation, which consists of motor cars (M) and trailer cars (T). The corresponding static

force  and  dynamic  force  of  each  wheelset  are  calculated  and  shown in  Table  6.  Since  the

interactions  between  wheels  and  rails  are  simplified,  the  loads  of  CRH2  trains  are  finally

simulated  as  a  series  of  moving  concentrated  loads  as  shown  in  Fig.  12.  Combining  the
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geometrical parameters of CRH2 train, the details about the moving concentrated loads are listed

in Table 7.

According to Eq. (1), the mechanical model of the rail-bridge with floating slab track and the

model  of  the  moving loads  can  be  obtained  from literature  (Museros  and Martinez-Rodrigo

2007; Li et al. 2021b). The governing equations for the vibration of the rail-bridge system are

written as

(23a)

(23b)

in which

(24)

and i (1, 2…, 8) is the number of train-cars, j (1, 2…, 4) is the number of wheels in one train-

car, Pij is the simplified moving concentrated loads shown in Table 7, A(Pij) is amplitude value of

the loads,  L(Pij) is location of the loads,  H(ttij) is the Heaviside unit function acting at time tij,

δ(xxij) is the Dirac delta function acting at location xij, V is the constant train speed.

Substituting Eq. (24) into Eq. (23), the dynamic responses of the whole system are solved

out by the proposed approach. The maximum displacements at midspan of floating slab track and

rail-bridge under different speeds of train are drawn in Fig. 13 (a) and (b), respectively. Since the
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designed maximum speed of Chengdu-Kangding Railway is 250km/h which is also 70m/s, the

speed range in Fig. 13 is set between 5m/s and 70m/s. According to the design certifications, the

dynamic displacements of rail-bridges must satisfy some restricted values. For the designed rail-

bridge in this paper, those restricted values should be 0.04995m in UIC and German, 0.024975m

in Japan and 0.02854m in China. In Fig. 13(b), the maximum midspan displacements of bridge

under different speeds of trains are all smaller than 0.00444m, which is much smaller than the

above restricted values. Therefore, the design meets the requirements of the above specifications.

Furthermore, it is found that there are three peak values in Fig. 13(a) and one peak value in

Fig. 13(b) when the speed of trains is between 35m/s and 40m/s. The partial enlarged views of

such area are drawn as subfigures in Fig. 13(a) and Fig. 13(b). These peak values were related to

resonances and a concept of critical speed was defined. The classical definition of the critical

speed is the train speed at which the dynamic response of the railway track and other surrounding

structures is intensely amplified, and extraordinary large vibrations occur due to resonances (He

et al. 2023). When the speed of train reaches the critical speeds, the frequency produced by the

train-cars is close to the natural frequencies of structures, causing the resonance. As shown in

Fig. 12 and Table 7, there are three distances between two adjacent wheel forces: 2.5m, 15m and

5m. When 2.5m is considered as the wheel spacing, the exciting frequencies generated by the

moving  trains  at  peak  values  locations  are:  1/[2.5m/(35.4m/s)]14.16Hz,

1/[2.5m/(36.7m/s)]14.68Hz and 1/[2.5m/(37.68m/s)]15.07Hz. Those exciting frequencies are

same as the natural frequencies of structure shown in Table 5. It is indeed the resonance that

brings the peak values in Fig 13. The midspan displacements-time figures of both floating slab

track and rail-bridge under those three critical speeds are plotted in Fig. 14 to Fig. 16. When the

train speed is a non-critical speed, the midspan displacement-time figure is shown in Fig. 17.
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Comparing Fig. 17 with Fig. 14 to Fig. 16, the dynamic responses of both floating slab track and

rail-bridge show stronger periodicity and oscillation when the trains speed is critical speed. The

maximum displacements at midspan are also significantly lager in Fig. 14 to Fig. 16. 

Comparing the subfigure in Fig. 13(a) with the subfigure in Fig. 13(b), it is observed that

there are three peaks in dynamic responses of floating slab track but only one peak in rail-bridge.

The resonance of rail-bridge at two critical speeds (35.4m/s and 37.68m/s) disappeared. To better

explain this phenomenon, additional numerical experiments based on the same rail-bridge model

are performed. The excitation force in these numerical experiments is simplified to be a fixed

concentrated harmonic force instead of the moving concentrated force. The excitation frequency

of the moving concentrated force is kept and considered in the new fixed concentrated harmonic

force, while the amplitude is neglected. Therefore, the new concentrated harmonic force applied

at the midspan of the upper beam is  with . 

Three excitation frequencies (14.16Hz, 14.68Hz and 15.072Hz), which correspond to three

critical speeds (35.4m/s, 36.7m/s, 37.68m/s), are input as the exciting frequencies of the fixed

concentrated harmonic force. The midspan displacement-time figures of two beams are drawn in

Fig. 18 to Fig. 20. For the floating slab track shown in Fig. 18(a), Fig. 19(a) and Fig. 20(a), all

the  midspan  displacements  are  increased  continually  with  time.  For  the  bridge,  the  same

phenomenon is only found in Fig. 19(b). They are typical resonance responses. Different from

these responses, the dynamic responses of rail-bridge in Fig. 18 (b) and Fig. 20(b) show obvious

beat phenomenon instead of resonance phenomenon. The main reason for that difference in the

dynamic responses is that these three natural frequencies (14.16Hz, 14.68Hz and 15.072Hz) are

too  close  to  each other.  When one of  these  three  natural  frequencies  is  applied  as  exciting
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frequency, the beat vibration is easy to be generated because the vibration frequency is too close

to the other two natural frequencies, which is the sufficient condition to initiate a beat vibration.

It is shown with the dynamic responses in Fig. 18(b) and Fig. 20(b). In addition, even in the

resonance  responses  shown  in  Fig.  18(a),  Fig.  19(a)  and  Fig.  20(a),  a  tiny  beat  vibration

phenomenon may be found too. 

Based  on  the  above  interpretation  inferred  from  the  dynamical  response  under  a  fixed

concentrated harmonic force, the vanishing of some resonances in the system under a moving

train can be understood. Due to the mutual influence between the three resonances above, the

rail-bridge may behave beat vibration at two critical speeds (35.4m/s and 37.68m/s) when the

moving trains are considered. The dynamic response of the rail-bridge cannot be continuously

increased as in resonance. The two peak values in Fig. 13(b) are eliminated. Although those two

peak values are absent, the dynamic response in that speed range is still much larger than that at

other speeds. When driving the trains to pass bridges, it still needs to avoid those speeds.

Conclusions

This paper aims to investigate the double-beam systems with variable cross-sections for their

dynamic responses. A novel state-space approach is developed to solve the natural frequencies

and corresponding mode shapes of the free vibration and obtain the dynamic responses of the

forced vibration. The main conclusions could be drawn as follows.

The dynamic problems of the double-beam system with variable cross-section are analyzed

and  quantified  with  the  proposed  method.  Due  to  the  variable  cross-section,  the  governing

equations of vibration are highly coupled partial differential equations with variable parameters.
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The  proposed  method  can  decouple  those  partial  differential  equations  and  obtain  the

homogeneous and non-homogeneous solutions. 

Unlike most of previous analysis methods that require a discretization of the structure, the

proposed method is an improved state-space approach. A basic double-beam system consisting

of two uniform beams and a pure elastic interlayer is initially defined. The modal information of

the basic double-beam system is then used to construct a solution space in which both free and

forced vibrations of the to-be-solved double-beam system are obtained using the notion of the

state-space. Several numerical examples are presented and discussed, while comparisons with

FEM results show very good agreement, verifying the proposed methodology and demonstrating

its potential use in addressing the study of engineering structure. In particular, the example of a

rail-bridge with a floating slab-track has been studied. 

The effects of interlayer on the dynamic characteristics of the whole double-beam systems

must consider the relative displacement and relative velocity between two beam components. In

previous  research  conclusions,  only  stiffness  and damping  of  the  interlayer  are  sufficient  to

analyze  the  influences.  However,  the  cross-sections  of  two  beams  in  this  paper  might  be

changeable.  Even if the vibration modes are  synchronous and two beams are identical,  some

relative displacements and relative velocities may exist due to the non-uniform cross-sections.

Unlike previous results, the natural frequencies of those modes are changeable with stiffness and

damping of interlayer.  As a result,  the properties of interlayer  itself  are not enough. It  must

combine the relative displacement and relative velocity, which are determined by cross-sections

of two beams and mode shapes. 

In engineering application part, the usage of floating slab track reduces the vibration of rail-

bridge effectively.  The  shortcoming  is  that  the  main  vibrations  of  whole  system are  in  low
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frequency  range,  which  brings  vibration  pollutions.  Further  vibration  reduction  works  are

needed. When the high-speed train passes the bridge, the critical speeds may lead to resonance

since their exciting frequencies are close to natural frequencies of the structure. If some natural

frequencies  are  too close  to  each other,  the  critical  speeds  may initiate  beat  vibration.  Both

resonance and beat vibration generate huge dynamic responses in structures. Therefore, critical

speeds must be avoided. The variable cross-sections of beam systems exist in a large number of

real engineering structures. It is necessary to study the double-beam systems with variable cross-

sections because of its practical values. The proposed method can help engineers design and

optimize  double-beam systems  and  other  similar  vibration  reduction  systems  in  engineering

practice.  

Appendix A
All the terms of the right side of Eq. (7) are derived out specifically as follows: 

(A.1)

(A.2)
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(A.3)

(A.4)

(A.5)

(A.6)

                                                                 (A.7)

Appendix B
The equivalent forces vectors in Eq. (8) are derived out as follows 

(B.1)
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(B.2)

                            (B.3)

(B.4)

where [ΦMWsC] (s=2, 3 or 4), [ΦMKC], [ΦMCC] and [ΦMMC] are all N by 2N coefficient matrices.

Appendix C

The  integrations  of  ×  Eq.  (19a)  and  ×  Eq.  (19b)  are  derived  and  listed

specifically as follows:

(C.1)

(C.2)
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(C.3)

(C.4)

        (C.5)

        (C.6)

(C.7)

in which Φki4, Φki3, Φki2, Φkii0, Φk120, Φk210 and ΦkiM (i=1,2) are all N by 1 constant vectors.
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Table 1. Natural frequencies of double-beam system fn (Hz); Case 1

Mode K=5×104 N/m2 K=1×105 N/m2 K=2×105 N/m2

Presen FEM Error Present FEM Error Present FEM Error (%)
n=1 3.73 3.73 0 3.73 3.73 0 3.74 3.74 0
n=2 14.47 14.47 0 14.59 14.5

9

0 14.65 14.65 0
n=3 16.12 16.12 0 22.51 22.5

1

0 31.56 31.56 0
n=4 21.50 21.50 0 26.58 26.5

8

0 32.50 32.50 0
n=5 31.16 31.16 0 31.89 31.8

9

0 34.64 34.64 0
n=6 37.73 37.72 0.03 40.32 40.3

1

0.02 45.67 45.67 0
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Table 2. Natural frequencies of double-beam system fn (Hz); Case 2

Mode K=2×103 N/m2 K=5×103 N/m2 K=1×104 N/m2

Presen FEM Error Present FEM Error Present FEM Error (%)
n=1 4.07 4.09 0.49 5.32 5.34 0.37 6.66 6.84 2.63
n=2 7.74 7.74 0 8.39 8.38 0.12 9.53 9.52 0.11
n=3 12.84 12.84 0 13.16 13.1

6

0 13.66 13.68 0.15
n=4 20.14 20.14 0 20.36 20.3

6

0 20.75 20.74 0.05
n=5 28.47 28.47 0 28.62 28.6

2

0 28.86 28.86 0
n=6 38.98 38.97 0.03 39.09 39.0 0.03 39.28 39.27 0.03

38

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797



Table 3. Natural frequencies of double-beam system fn (Hz); Case 1

Mode μ = 0 μ = 0.4 μ = 0.8
Presen FEM Error Present FEM Error Present FEM Error (%)

n=1 3.51 3.51 0 4.05 4.05 0 5.31 5.31 0
n=2 14.04 14.04 0 15.09 15.0

8

0.07 18.25 18.20 0.27
n=3 31.59 31.59 0 30.69 30.6

4

0.16 32.34 32.21 0.40
n=4 32.02 32.02 0 34.42 34.4

1

0.03 38.29 38.21 0.21
n=5 34.78 34.78 0 35.88 35.8

6

0.06 46.98 46.86 0.26
n=6 44.86 44.86 0 47.52 47.4

0

0.25 47.67 47.58 0.19
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Table 4. Geometrical parameters and material parameters of rail-bridge with floating slab track

Structure Parameter Value Structure Parameter Value

Floating
Slab

Track

E1  

Rail-Bridge

E2

W1*H1 A2-1 (Cross-section 1-1) 17.845 m2

A1 0.51m2 A2-2 (Cross-section 2-2) 11.265 m2

I1 0.0017m4 A2-3 (Cross-section 3-3) 6.6225 m2

ρ1 2500kg/m3 I2-1 (Cross-section 1-1) 23.20202 m4

L1 39.94m I2-2 (Cross-section 2-2) 20.02999 m4

Rubber
Mat K

I2-3 (Cross-section 3-3) 10.42134 m4

ρ2 2500kg/m3

L2 39.94m
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Table 5. Natural frequencies of rail-bridge with floating slab track fn (Hz)

Mode n=1 n=2 n=3 n=4 n=5 n=6
Present 4.41 13.5

0

14.16 14.49 14.68 15.07
Finite element

method

4.40 13.4

9

14.16 14.49 14.68 15.07
Error (%) 0.23 0.07 0 0 0 0
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Table 6. The main vehicle weight parameters and corresponding wheelset forces 

T1 M2 M3 T4 T5 M6 M7 T8

Train Weight (t) 42.8 48.0 46.5 42.0 44.1 48.0 46.8 41.5
Passenger Weight (t) 4.4 8.0 6.8 8.0 4.4 8.0 4.1 5.1

Total Weight (t) 47.2 56.0 53.3 50.0 48.5 56.0 50.9 46.6
Static Force of Each

Wheel (kN)
115.6 137.2 130.6 122.5 118.8 137.2 124.7 114.2

Dynamic Force of

Each Wheel (kN)
167.7 198.9 189.3 177.6 172.3 198.9 180.8 165.5
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Table 7. The locations and amplitudes of the moving concentrated loads

P11 P12 P13 P14 P21 P22 P23 P24

Location (m) 0 2.5 17.5 20 25 27.5 42.5 45
Amplitude (kN) 167.7 167.7 167.7 167.7 198.9 198.9 198.9 198.9

P31 P32 P33 P34 P41 P42 P43 P44

Location (m) 50 52.5 67.5 70 75 77.5 92.5 95
Amplitude (kN) 189.3 189.3 189.3 189.3 177.6 177.6 177.6 177.6

P51 P52 P53 P54 P61 P62 P63 P64

Location (m) 100 102.5 117.5 120 125 127.5 142.5 145
Amplitude (kN) 172.3 172.3 172.3 172.3 198.9 198.9 198.9 198.9

P71 P72 P73 P74 P81 P82 P83 P84

Location (m) 150 152.5 167.5 170 175 177.5 192.5 195
Amplitude (kN) 180.8 180.8 180.8 180.8 165.5 165.5 165.5 165.5
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Figure captions
Fig. 1. The mechanical  model of double-beam systems: (a) with variable cross-section; (b) with constant cross-

section.

Fig. 2. Flowchart of the proposed state-space method for a double-beam system with variable cross-section.

Fig. 3. The first six normal mode shapes of the double-beam system for Case 1, K=2×105Nm-2, C=0Nsm-1: (a) Mode

1; (b) Mode 2; (c) Mode 3; (d) Mode 4; (e) Mode 5; (f) Mode 6.

Fig. 4. The first six normal mode shapes of the double-beam system for Case 2, K=5×103Nm-2, C=0Nsm-1: (a) Mode

1; (b) Mode 2; (c) Mode 3; (d) Mode 4; (e) Mode 5; (f) Mode 6.

Fig. 5. Dynamic responses at midspan point of two beams for Case 1: (a) Upper beam displacement (3.74Hz); (b)

Lower beam displacement (3.74Hz); (c) Upper beam displacement (20Hz); (d) Lower beam displacement (20Hz).

Fig. 6. Dynamic responses at midspan point of two beams for Case 2: (a) Upper beam displacement (7.17Hz); (b)

Lower beam displacement (7.17Hz); (c) Upper beam displacement (25Hz); (d) Lower beam displacement (25Hz).

Fig. 7. Frequency responses at midspan point of two beams for Case 1: (a) Upper beam; (b) Lower beam.

Fig. 8. Frequency responses at midspan point of two beams for Case 2: (a) Upper beam; (b) Lower beam.

Fig. 9. The design diagram of the rail-bridge with floating slab track (Unit: cm): (a) Elevation view of bridge; (b)

Cross-sectional view 1-1; (c) Cross-sectional view 2-2; (d) Cross-sectional view 3-3; (e) Cross-sectional view of

floating slab track (Type: CRTS ).Ⅱ

Fig. 10. The first six normal mode shapes of the rail-bridge (W2) with floating slab track (W1): (a) Mode 1; (b) Mode

2; (c) Mode 3; (d) Mode 4; (e) Mode 5; (f) Mode 6.

Fig. 11. The schematic diagram of the standard CRH2 train formation (M: motor car; T: trailer car).

Fig. 12. The schematic diagram of a series of moving concentrated loads.

Fig. 13. Maximum displacements at midspan points of two beams under different speeds of trains: (a) Maximum

displacements at floating slab track midspan; (b) Maximum displacements at rail-bridge midspan.
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Fig. 14. Displacements at midspan points of two beams under 35.4m/s: (a) Displacements at floating slab track

midspan; (b) Displacements at rail-bridge midspan.

Fig. 15. Displacements at midspan points of two beams under 36.7m/s: (a) Displacements at floating slab track

midspan; (b) Displacements at rail-bridge midspan.

Fig. 16. Displacements at midspan points of two beams under 37.8m/s: (a) Displacements at floating slab track

midspan; (b) Displacements at rail-bridge midspan.

Fig.  17.  Displacements  at  midspan points  of  two beams under  30m/s:  (a)  Displacements  at  floating slab  track

midspan; (b) Displacements at rail-bridge midspan.

Fig. 18. Displacements at midspan points of two beams under harmonic force with exciting frequency 14.16Hz: (a)

Displacements at floating slab track midspan; (b) Displacements at rail-bridge midspan.

Fig. 19. Displacements at midspan points of two beams under harmonic force with exciting frequency 14.68Hz: (a)

Displacements at floating slab track midspan; (b) Displacements at rail-bridge midspan.

Fig. 20. Displacements at midspan points of two beams under harmonic force with exciting frequency 15.072Hz: (a)

Displacements at floating slab track midspan; (b) Displacements at rail-bridge midspan. 
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