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Cytomegalovirus and HIV Persistence:
Pouring Gas on the Fire

Aaron Christensen-Quick,1 Christophe Vanpouille,2 Andrea Lisco,3 and Sara Gianella1

Abstract

The inherent stability of a small population of T cells that are latently infected with HIV despite antiretroviral
therapy (ART) remains a stubborn obstacle to an HIV cure. By exploiting the memory compartment of our
immune system, HIV maintains persistence in a small subset of quiescent cells with varying phenotypes, thus
evading immune surveillance and clinical detection. Understanding the molecular and immunological mech-
anisms that maintain the latent reservoir will be critical to the success of HIV eradication strategies. Human
cytomegalovirus (CMV), another chronic viral infection, frequently co-occurs with HIV and occupies an
oversized proportion of memory T cell responses. CMV and HIV have both evolved complex strategies to
manipulate our immune system for their own advantage. Given the increasingly clear links between CMV
replication, chronic immune activation, and increased HIV reservoirs, we present a closer examination of the
interplay between these two chronic coinfections. Here we review the effects of CMV on the immune system
and show how they may affect persistence of the latent HIV reservoir during ART. The studies described herein
suggest that hijacking of cytokine and chemokine signaling, manipulation of cell development pathways, and
transactivation of HIV expression by CMV might be pouring gas on the fire of HIV persistence. Future
interventional studies are required to formally determine the extent to which CMV is causally associated with
inflammation and HIV reservoir expansion.
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Introduction

Inflammation and HIV flourish in the presence of each
other, and emerging studies suggest that chronic coinfec-

tions such as cytomegalovirus (CMV) may contribute to a
vicious cycle of immune activation and reservoir seeding.1–3

During acute infection, HIV undermines the integrity of the
gut mucosal barrier and lymphoid tissue, promoting micro-
bial translocation and the recruitment of target cells to sites of
inflammation.4 This set of circumstances enables HIV to
establish a larger reservoir of latently infected cells, which
can hide dormant for decades in the face of virally suppres-
sive antiretroviral therapy (ART).5

Three main mechanisms contribute to HIV persistence
during suppressive ART: first, the inherent stability and
longevity of a small population of resting T cells that are
latently infected with HIV despite long-term suppressive
ART.5 Second, latently infected cells can proliferate in re-
sponse to antigenic stimulation or cytokines.6 Third, HIV can

be expressed at low levels despite ART, especially in certain
immunological sanctuaries, promoting immune activation
and further enhancing the recruitment of target cells.3

The presence of CMV coinfection might add a new di-
mension to each of these putative mechanisms of HIV per-
sistence. CMV has a high worldwide prevalence with
estimates ranging from 40% to 100% seropositivity, and es-
tablishes a life-long infection characterized by persistent
antigen exposure and interaction with the host immune sys-
tem. CMV prevalence is further concentrated among older
people and people living with HIV (seroprevalence of 80%–
100%).7–9 In general, CMV is only pathogenic in individuals
with deeply compromised immune systems, but people living
with HIV often have asymptomatic, ongoing CMV replica-
tion in various mucosal sites and effector tissues.10 For ex-
ample, we recently showed that the vast majority of HIV-
infected men who have sex with men (MSM) had evidence of
persistent CMV replication in their genital secretions at one
or multiple time points throughout 1 year of follow-up.11
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This subclinical CMV replication has been associated with
T cell dysfunction and with impaired immune recovery after
HIV infection.12,13,14 As we discuss in this review, persistent
CMV replication can also promote longevity and prolifera-
tion of HIV-infected cells, the recruitment of new HIV target
cells, and directly enhance HIV transcription. Taken to-
gether, we hypothesize that coinfection with CMV could be
an important factor contributing to the establishment and
maintenance of the HIV reservoir during ART.

CMV Coinfection and HIV Persistence

Recent studies suggest that coinfections such as CMV can
exacerbate HIV-related chronic immune activation during
ART, and might augment the size of the latent HIV reser-
voir.1,2,15 For example, a longitudinal study following 107
men starting ART during the earliest phase of their HIV in-
fections (median 3 months since estimated date of infection)
over a median follow-up period of 19 months observed an
association between presence of CMV and Epstein–Barr vi-
rus (EBV) replication in peripheral blood mononuclear cells
and slower decay rate of the HIV DNA reservoirs during
ART.1 Other cross-sectional studies demonstrated that sub-
clinical CMV replication is associated with higher levels of
HIV DNA in both ART-naive and ART-suppressed individu-
als.2,16 Interestingly, in a small cohort of people living with
HIV who underwent myeloablative chemotherapy, HIV DNA
was enriched in CMV- and EBV-specific CD4+ T cells after
immune reconstitution.15 Although we cannot infer causality
due to the observational design of these studies, these findings
support a model in which CMV replication, increased HIV
reservoirs, and inflammation are inextricably linked.

A variety of possible concurrent mechanisms may account
for the relationship between CMV and HIV persistence. Spe-
cifically, CMV may promote HIV persistence through (1) al-
tered chemokine receptor-mediated cell trafficking to sites of
inflammation, (2) induction of inhibitory immune pathways
(e.g., cellular exhaustion, PD-1, and IL-10 expression), (3)
proliferation and clonal expansion of HIV-target cells, (4) in-
hibition of apoptosis, and/or (5) direct transactivation of latent
HIV (Fig. 1). Here, we review what is known about these
mechanisms in the context of HIV and CMV coinfection.

Inflammation and altered chemokine trafficking

In a complex host–virus relationship, CMV elicits and
maintains a high frequency of virus-specific T cells that engage
in a life-long effort to restrain CMV replication and prevent
disease.8,17 Since CMV replication is enhanced by inflamma-
tory stimuli, the virus developed ingenious strategies to induce
and augment inflammation.18 For example, CMV directly
upregulates the expression of several cytokines and inflam-
matory mediators in host cells, including IL-1b, IL-6, and type
I interferon, triggering inflammatory responses.19–22 CMV and
other herpesviruses can also upregulate IL-15,23 which is a
common c-chain cytokine like IL-2 and IL-7. This group of
cytokines can promote the expansion of CD4+ and CD8+ T
cells independently of antigen specificity, making them par-
ticularly relevant to the HIV reservoir.23–25

CMV encodes its own cytokines and chemokine homo-
logues as well as cytokine receptor homologues that can
further modulate levels of human cytokines, chemokines, and
growth factors.19,26,27 For example, CMV alters the expres-

sion of the chemokines RANTES, MCP-1a, and IL-8,28 and
at least six CMV genes (UL33, UL78, UL146, UL147, US27,
and US28) encode chemokine-receptor-like protein. Further-
more, CMV-exposed central memory T cells from cord blood
mononuclear cells demonstrated increased expression of
CCR5 protein,29 which is the main coreceptor for HIV cellular
entry.30 Taken together, the CMV-induced proinflammatory
milieu and disrupted chemokine trafficking could promote the
influx of HIV target cells at sites of HIV persistence.

Consistent with our hypothesis that CMV increases HIV
persistence by recruiting HIV target cells to sites of inflam-
mation, a recent study of ART-treated people living with HIV
demonstrated that CMV replication in the gut was associated
with disrupted mucosal barrier integrity, microbial translo-
cation, and inflammation.3 CMV-induced inflammation in
the gut—a major site of HIV replication—likely attracts HIV
target cells or increases the susceptibility of the local immune
milieu to HIV infection.3,31 The specific effects of CMV
replication and CMV-induced inflammation on the traffick-
ing of HIV target cells remain poorly defined in humans, but
merit deeper investigation. The hijacking of cytokine and
chemokine signaling by CMV leads to an inflammatory en-
vironment that is ripe with HIV target cells.

Induction of inhibitory immune pathways

Not only does CMV induce inflammation but it can also
hinder immunity directed toward CMV-infected cells,32,33

which may have important implications for HIV persistence.
Like HIV, CMV can inhibit human leukocyte antigen (HLA)
expression on cellular surfaces, thereby impairing antigen
presentation.34 However, compared with HIV, the larger
genome of CMV allows for an expanded arsenal of immune
modulatory factors.28,32,34 For example, CMV can produce
decoy viral homologues of HLA class I molecules that allow
it to avoid immunosurveillance by natural killer (NK) cells.32

Such immune diversions—developed by CMV over millions
of years of coexistence with the human species—could favor
immune evasion not only for CMV itself but also for other
coinfecting viruses, such as HIV.

CMV has also evolved strategies to hijack cell-signaling
pathways, such as PD-1 and IL-10, and the disrupted signaling
may coincidentally promote HIV persistence.14,26,27,33,35,36

For example, in a recent study of 45 MSM who were virally
suppressed on ART, seminal CMV shedding was associated
with increased PD-1 expression on CD4+ T cells.14 This may
be important because HIV-specific T cells are enriched in PD-1
expression, and PD-1 expression on CD4+ T cells is positively
correlated with HIV viremia.37,38 Induction of PD-1 signaling
on CD4+ T cells has been postulated as a mechanism to enable
recently infected CD4+ T cells to shift toward a state of per-
sistence, rather than one of activation-induced cell death.39,40

PD-1 expressing CD4+ T cells are highly enriched with inte-
grated HIV DNA,39 and expression of PD-1 by CD8+ T cells
causes impaired HIV-specific immunity.41,42

IL-10 is a cytokine that promotes tolerance and potently
stifles the proinflammatory activities of many immune cell
types by (1) promoting the development of regulatory T cells,
(2) diminishing the proliferative capacity of lymphocytes, (3)
inhibiting the ability of monocytes to activate T cells in response
to antigen, (4) skewing the cytokine expression of monocytes,
and (5) blunting the effector functions of lymphocytes
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(reviewed in Ref.43). HIV itself can stimulate the production of
IL-10 in vitro,44 and IL-10 can inhibit latency reversal in CD4+

T cells and primary human macrophages in vitro.45 This theory
is supported by lymphocytic choriomeningitis virus models,
which show that upregulation of IL-10 production by antigen-
presenting cells is associated with impairment of T cell func-
tions, thus allowing viral persistence.46,47 Inhibition of HIV
replication by IL-10 has been demonstrated in vitro,48 and high
IL-10 plasma levels are associated with the control of viral
replication during pregnancy.49 This has implications for the
reservoir because otherwise productively infected cells may
become quiescent through IL-10 expression.

Interestingly, CMV encodes for several viral homologues
of human IL-10 (hIL-10) produced through alternative splicing
of the UL111A gene.50 The predominant form of viral IL-10,
cmvIL-10, which despite having only 27% amino acid se-
quence identity to hIL-10, binds with high affinity to the hIL-10
receptor.51 Furthermore, cmvIL-10 triggers the same anti-
inflammatory effects as hIL-10. In particular, cmvIL-10 im-
pairs maturation of dendritic cells, downregulates surface HLA
expression, inhibits inflammatory cytokine production and cell
proliferation, activates transcription factor Stat3, and upregu-
lates hIL-10 expression to further promote an immunosup-
pressive environment during infection (reviewed in Ref.52).
The second predominant viral IL-10, latency-associated
cmvIL-10 (LAcmvIL-10), has been described in a model of
latently infected granulocyte macrophage progenitor cells.53

LAcmvIL-10 lacks some IL-10R contact residues because of its
truncated C-terminus and thus retains some, but not all, of the
immunosuppressive functions of cmvIL-10.53 CMV-mediated

IL-10 signaling participates in preventing immune responses,
thus indirectly favoring HIV persistence. Collectively, these
findings suggest that HIV and CMV both hijack IL-10 and PD-
1 signaling. Future studies should address the mechanisms by
which IL-10 and PD-1 benefit CMV and HIV replication, or if
they influence the size of the latent reservoir in vivo.

Proliferation and clonal expansion of HIV-infected cells

The homeostatic proliferation of memory T cells is one
mechanism by which we maintain long-lived immunological
memory. Stem cell memory T (Tscm) cells are particularly
relevant to this process and to the HIV reservoir, as Tscm
cells from people with HIV have the highest levels of per cell
copies of integrated provirus.54 Homeostasis of the latent
HIV reservoir can be preserved, in part, through the self-
renewal capacity of the Tscm cell subset.54 Functional,
CMV-specific Tscm cells are present in people with CMV,
but absent in CMV negative control donors.55 Therefore, it is
theoretically possible for a subset of CMV-specific stem cells
to replenish the HIV reservoir despite ART through homeo-
static proliferation.

Evidence that clonal expansion contributes to HIV per-
sistence is even more compelling. Genetic analyses of HIV
proviruses and integration sites in people with HIV who are
ART-suppressed provide strong evidence for clonal expan-
sion of HIV-infected CD4+ T cells as a crucial mechanism of
viral persistence during suppressive ART.56–60 Self-renewal
capacity of memory CD4+ T cells is important to maintain
immunological memory and can be driven by homeostatic

FIG. 1. Putative mechanisms by
which CMV might promote HIV per-
sistence. Cells harboring latent HIV
could become more numerous through
CMV-associated inflammation, inhib-
itory signaling, proliferation, or inhi-
bition of apoptosis. CMV can also
directly transactivate latent HIV,
which could lead to more target cells
becoming infected. Blue circles with
nucleus represent CD4 T cells with
and without integrated HIV DNA;
purple dots represent inhibitory cyto-
kines; orange circles represent HIV.
Gray circles represent CMV. Squared
cells represent epithelial cells with
signs of inflammation. CMV, cyto-
megalovirus.

CMV AND HIV PERSISTENCE S-25



responses to CD4+ T cell depletion and inflammation, or
directly by antigen stimulation (such as HIV or CMV).61,62

Antigen dose affects immune responses, potentially turning
initial inflammation into immune exhaustion at different
rates.63 CMV antigens in particular are chronically present at
high doses,64 and consequently CMV-specific T cells account
for a disproportionately large subset of total T cell memory
responses.17 This proportion is even greater among HIV-
infected adults, and remains high after ART-mediated suppres-
sion of HIV replication.65,66 Although CMV-specific T cells are
relatively resistant to de novo HIV infection,67 CMV-associated
immune activation could nonetheless induce proliferation of T
cells, including HIV-infected cells. If CMV-induced T cell
proliferation preferentially affects HIV-infected cells, this may
lead to an increase in the HIV latent reservoir.

Studies involving self-renewal and persistent antigenic
stimulation of CD4+ T cells leave many unanswered ques-
tions. For instance, we do not know whether HIV provirus
can compartmentalize and concentrate in distinct subsets of
the adaptive immune system, such as CMV-specific cells. If
the latent HIV reservoir continuously re-establishes itself in
response to CMV-derived antigenic stimulation of the im-
mune system, one might expect that CMV-specific cells
would demonstrate heightened levels of proviral DNA with
evidence of evolution over time, but this has not been in-
vestigated to our knowledge. Little is known about the effects
of subclinical CMV replication on key T cell subsets that
contribute to persistence, such as Tscm cells, central memory
T cells, transitional memory T cells, and CD4+ T cells ex-
pressing PD-1, TIGIT, and LAG3.41,68 IL-7- and IL-15-
mediated expansion of HIV-infected cells also contribute to
persistence during virally suppressive ART,69,70 and the in-
fluence of CMV on this process is also unknown.

Inhibition of apoptosis

Abortive HIV infections can induce cell death through cel-
lular sensors of viral products.71,72 The rapid loss of CD4+ T
cells during acute HIV infection is due, in part, to the innate
cellular defenses that can trigger apoptosis before HIV suc-
cessfully integrates. This is an especially important pathway in
naive T cells, which exhibit heightened antiviral defenses but
are prone to remain quiescent and latent upon successful HIV
integration.73 CMV may interfere with protective immunity
against HIV through the blocking of this defensive apoptosis:
CMV is armed with two proteins that inhibit apoptosis, viral
mitochondrial-localized inhibitor of apoptosis (vMIA) and vi-
ral inhibitor of Caspase-8-induced apoptosis (vICA).74 vMIA
blocks apoptosis by inhibiting cytochrome C release from
mitochondrial membranes and vICA blocks apoptosis by in-
terfering with the activation of Caspase 8 (reviewed in Ref.75).
Neither of these proteins has been studied specifically in the
context of HIV-infected cells. Blocked apoptosis might,
therefore, allow a more robust seeding of the latent reservoir,
especially during acute HIV infection. CMV-encoded inhibi-
tors of apoptosis should be evaluated for their effects on the size
of the HIV reservoir and their ability to promote de novo HIV
infections of quiescent cells.

Direct transactivation of latent HIV by CMV

Although CMV does not generally infect CD4+ T cells,
CMV replication could nonetheless promote inflammation

and HIV persistence by inducing compartmentalized, ongo-
ing HIV RNA expression in effector tissues, despite ART
suppression. This is likely made possible through secreted
mediators of inflammation and/or altered cell-mediated im-
munity, since HIV preferentially integrates into actively
transcribed regions, rendering its expression particularly
susceptible to regulation by host transcription factors.76

Evidence from as early as 1990 has supported the concept
that CMV (especially immediate early genes) can induce
HIV expression by manipulating cellular transcription path-
ways.77 In a related study, CMV infection significantly in-
creased HIV long terminal repeat (LTR)-driven reporter gene
expression in transfected human fetal astrocytes.78

Activation of mammalian target of rapamycin (mTOR)
signaling may be involved in the induction of HIV expression
by CMV as well.79,80 mTOR activation is a common tactic
employed by intracellular pathogens to benefit their own
replication,81 and both CMV and HIV activate mTOR sig-
naling.79,80 Moreover, inhibition of mTOR signaling was
shown to not only impair HIV entry and transcription but also
decreases viremia in a humanized mouse model of HIV in-
fection.82 Interestingly, mTOR also regulates proliferation
and inflammation pathways (reviewed in Ref.81), under-
scoring the potential importance of mTOR in enabling the
chronic, pathogenic effects of HIV and CMV coinfection. In
a human monocyte cell line, CMV was shown to induce ac-
tivation of AP-1 and NF-kappaB.83 These transcription fac-
tors are critical for efficient transcription of integrated HIV,
and NF-kappaB has also been implicated in the establishment
of latency.84

The effects of CMV on the transcriptional environment of
HIV-infected cells are complex, but few studies directly address
this topic in vivo, despite the high prevalence of CMV coinfec-
tion in people living with HIV. Transacting factors that mediate
CMV-induced transcriptional dysregulation, and its effects on
latency or HIV expression, merit further investigation.

Conclusions

The latent reservoir is not static, and the mechanisms by
which the latent HIV reservoir is replenished are still poorly
understood. Defenses evolved by CMV to commandeer the
immune system might create a favorable environment for
HIV reservoir seeding, thus representing an additional hurdle
to be addressed by successful HIV eradication strategies.

Multiple mechanisms may be responsible for larger HIV
reservoirs in the presence of CMV replication (Fig. 1). By
changing the development, trafficking, proliferation, apo-
ptosis, and/or transcriptional environment of HIV target cells,
CMV slows the decay of the HIV reservoir during ART.1 The
degree to which each mechanism contributes to the expansion
of the HIV reservoir in vivo—under which circumstances—
remains unclear, but it is likely that many of them occur si-
multaneously. For example, persistent inflammation due to
CMV could also affect proliferation, susceptibility to apo-
ptosis, and latent HIV transactivation. Thus, synergistic ef-
fects between these mechanisms should also be considered.
One additional caveat to many CMV and HIV studies is that
increased CMV replication could be a consequence of in-
creased inflammation or larger HIV reservoirs. Interventional
studies will be required to determine the degree and direction
of causality between CMV, HIV, and inflammation.
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Many of the strategies aimed at curing HIV use pharma-
cological or biological agents to stimulate cells harboring la-
tent HIV, to purge the latent reservoir.85 However, activation
of latent HIV DNA with immune modulatory interventions
could affect replication of CMV and other human herpes-
viruses, which might, in turn, limit HIV clearance. The effects
of latency reversing agents and immune modulatory therapies
on CMV reactivation are currently unknown and should be
evaluated in clinical trials. Future studies should assess the
replication competence of HIV DNA reservoirs in the setting
of CMV replication, and should seek to determine whether
CMV-induced cell survival and proliferation preferentially
affect HIV-infected cells. By examining the role of CMV in
promoting HIV persistence, we may reveal pathways to disrupt
the latent HIV reservoir, thus aiding successful cure strategies.
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