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In situ transmission electron microscopy enables the study of nanoscale solution state events such as 

battery electrode deposition and molecular self-assembly. Recent improvements in electron microscope 

detectors have vastly improved the spatial resolution (pixel count) and temporal resolution (frame rate) 

of microscopy videos, which has resulted in large, information-rich datasets. The central mission of my 

PhD has been to use image analysis techniques and algorithms to translate improvements in microscopy 

signal collection to improvements in materials insight. Towards this, I have developed several novel image 

analysis algorithms built on deterministic image science methods which extract quantitative information 

from raw microscopy datasets. I developed an algorithm to quantify materials dynamics captured with in 

situ microscopy videos and applied this algorithm to quantify the spatiotemporal dynamics of dissipative 

self-assembly processes (Chapters 1-2). I applied image science to track the presence of an unstable phase 

captured in time-resolved cryogenic transmission electron microscopy (Chapter 3). And finally, I applied a 

variety of custom image analysis algorithms to quantify amphiphilic block copolymer morphological 

transitions such as vesical-to-bilayer transitions, droplet-to-bilayer transitions, and droplet dissolution 

dynamics (Chapters 4-5). In each case, I demonstrate the power of deterministic image analysis methods 

for converting raw microscopy datasets into interpretable materials science results. 
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INTRODUCTION 
 

The following dissertation is a collection of works centered on deterministic image analysis for 

transmission electron microscopy (TEM).1–5 My body of work also includes publications which focus 

entirely on TEM data collection,6,7 and publications which focus entirely on spectroscopic data science.8,9 

I believe that my background in materials science and my experience as a microscope operator directly 

strengthened my ability to perform data analysis. First, my knowledge of microscopy and spectroscopy 

made it much easier to communicate with my colleagues and understand the instrument-specific artifacts 

which may be present in the data. I also believe it was much easier for me to mine the data for information 

relevant to the broader study, and present findings to the audience in a way that directly strengthened 

scientific arguments or directly answered scientific questions. Finally, knowledge of microscopy enabled 

me to design studies from the ground up with data science in mind, leading to several interdisciplinary 

studies which merge the fields of microscopy, materials science, and data science. Ultimately, I strongly 

encourage researchers in both microscopy and materials science to investigate data science techniques 

and begin to incorporate these methods into future studies. 

0.1 Transmission electron microscopy techniques 

The TEM offers a diverse set of characterization tools for nanoscale structures.1 TEMs generate images by 

transmitting a beam of electrons through the sample which is then collected by a detector. Electron-

sample interactions generate contrast in the image, which can be used to resolve sub-nanometer 

features.2 There are several methods for imaging solution-state processes using specialized preparation 

techniques and sample holders. Specialized in situ liquid cell TEM (LCTEM) holders can capture a sample’s 

response to a variety of external stimuli such as changes in solvent composition, temperature, or electrical 

bias (Chapters 1,2,4,5).3,4 This makes it possible to record movies of nanoscale dynamic processes in 

solution, which is not otherwise possible. There have been recent improvements in resolution and frame 
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rate of electron detectors. 4k x 4k image resolution is now standard, with frame rates often reaching 100 

frames per second enabling dynamics to be captured with high spatial and temporal resolution.1 LCTEM 

experiments often generate terabyte-scale image datasets exceeding 10,000 frames. While this vastly 

increases the amount of structural information captured, the dynamics captured in these videos are 

difficult to interpret and quantify. Thus, automated image analysis methods are essential for 

characterizing processes captured in LCTEM. In addition, cryogenic transmission electron microscopy 

(cryoTEM) can also be used to study solution state processes (Chapter 3).1 In cryoTEM, the solution sample 

is rapidly frozen, or vitrified, which makes it possible to image snap-shots of the system during individual 

time points in a process. An advantage of cryoTEM over LCTEM is that cryoTEM provides higher-resolution 

structural information on the system, and several images can be taken of the sample at different locations, 

rather than the single location imaged in LCTEM. Modern software designed for cyroTEM allows for 

automated data collection routines, which generate vast libraries of information rich image datasets. 

Again, these datasets benefit greatly from automated image analysis routines that are able to convert the 

raw data into easily interpretable results. 

0.2 Convergence of advanced microscopy and data science 

Signal processing and image processing are becoming increasingly important parts of modern 

transmission electron microscopy studies. Originally, TEM images were collected on photographic film 

where no numerical signal processing was possible.5 Subsequently, more advanced techniques such as 

scanning transmission electron microscopy-energy dispersive X-ray spectroscopy (STEM-EDS) and STEM-

electron energy loss spectroscopy (STEM-EELS) were developed which captured more complex signals in 

the TEM to provide local chemical information about the sample.6 These techniques generate multiple 

signal types that must be collected simultaneously and assembled into multidimensional files. These 

signals must then be processed with methods such as background subtraction and spectrum peak 

integration before they can be displayed as an image. In modern TEM, advanced techniques such as 4D-
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STEM are gaining popularity in which each beam scan position contains a 2D diffraction pattern.7 Such a 

technique requires extremely fast data-transfer speeds and complex reconstruction algorithms in order 

to extract meaningful insight from the data. I believe cutting-edge techniques such as this represent a 

convergence for the fields of microscopy and data science, where strong knowledge in both fields is 

required to conduct a study. 

0.3 Defining a microscope image 

Microscope images are the combination of a numerical 2D signal and a colormap.8 Fundamentally, a 

microscope is an instrument which uses a detector to collect a signal coming from the sample. The 

microscope will then arbitrarily assign a colormap to this signal in order to display the signal to the 

microscope operator as an image. Importantly, the assignment of colormap by the microscope is 

completely arbitrary. The microscope operator should always adjust the colormap of the signal (by 

adjusting brightness and contrast) to best display the signal of interest in the image. Because colormap 

assignment is completely arbitrary, there is no such thing as a “raw image”, only a raw signal. I politely 

encourage manuscript reviewers to stop requesting “raw images”, as this term carries no real meaning. 

The image provided by the microscope is not a raw image, it is a raw signal with an arbitrary colormap. In 

the text that follows, all analysis was applied to the raw signal of the collected datasets. In most cases, the 

datasets were 2D double precision floating point values which contain more information than an 8-bit 

grayscale image. Note that while the words “image processing” and “image analysis” are used throughout 

the thesis, all algorithms and analysis were conducted on the raw signals that compose the images. 

0.4 Summary of chapters  

In the following chapters I will describe a series of image analysis algorithms I developed to quantify 

microscopy datasets. In Chapter 1 I present structural dissimilarity (DSSIM) analysis as a new video 

processing algorithm for quantifying structural change occurring in LCTEM videos.9 I show the algorithm 
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can be used to correlate electrical biasing data to structural change occurring in the microscope. In 

Chapter 2 I apply DSSIM analysis to quantify an electrically fueled dissipative self-assembly process in 

LCTEM and confocal laser scanning microscopy (CLSM) datasets.10,11 In the LCTEM dataset, the analysis 

reveals a wave-like propagation of self-assembly which is then tracked and quantified. The analyses also 

show a strong spatial relationship between the self-assembly process and the electrode. In Chapter 3, I 

apply a cross-correlation algorithm to a time-resolved cryoTEM datasets to track the presence of a 

thermodynamically transient stacked-fiber phase.12 In Chapter 4, I apply a series of algorithms to quantify 

bilayer formation via two pathways captured in LCTEM.13 In the first pathway, I track the rupture and 

spread of a vesicle transitioning to a bilayer on the LCTEM window. In the second pathway, I track polymer 

rich liquid droplets which coalesce and spread as they transition to a bilayer on the LCTEM window. In 

Chapter 5, I present an experimental methodology and data analysis algorithm to quantify electron beam 

interactions with polymer-dense liquid structures in non-aqueous solvent systems.14 Every chapter is 

based on published research, and the reader is directed to the full text document for a complete 

description of the materials system and experimental methodology. Each chapter will contain some 

information on the material system and major outcomes, but the focus of each chapter will be on the 

image processing, analysis methodology, and interpretation of results. 
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CHAPTER 1: Correla8ng electrochemical s8mulus to structural change in liquid 

electron microscopy videos using the structural dissimilarity metric 
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Electron Microscopy Videos using the Structural Dissimilarity Metric” Ultramicroscopy 2024, 257, 
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1.1 Abstract 

In-situ liquid cell transmission electron microscopy (LCTEM) with electrical biasing capabiliDes has 

emerged as an invaluable tool for directly imaging electrode processes with high temporal and spaDal 

resoluDon. However, accurately quanDfying structural changes that occur on the electrode and 

subsequently correlaDng them to the applied sDmulus remains challenging. Here, we present structural 

dissimilarity (DSSIM) analysis as segmentaDon-free video processing algorithm for locally detecDng and 

quanDfying structural change occurring in LCTEM videos. In this study, DSSIM analysis is applied to two in-

situ LCTEM videos to demonstrate how to implement this algorithm and interpret the results. We show 

DSSIM analysis can be used as a visualizaDon tool for qualitaDve data analysis by highlighDng structural 

changes which are easily missed when viewing the raw data. Furthermore, we demonstrate how DSSIM 

analysis can serve as a quanDtaDve metric and efficiently convert 3-dimensional microscopy videos to 1-

dimenional plots which makes it easy to interpret and compare events occurring at different Dmepoints in 

a video. In the analyses presented here, DSSIM is used to directly correlate the magnitude and temporal 

scale of structural change to the features of the applied electrical bias. ImageJ, Python, and MATLAB 

programs, including a user-friendly interface and accompanying documentaDon, are published alongside 

this manuscript to make DSSIM analysis easily accessible to the scienDfic community. 

1.2 Introduc8on 

In-situ liquid cell transmission electron microscopy (LCTEM) with biasing capabiliDes enables soluDon-state 

electrode processes to be recorded with nanoscale spaDal resoluDon and millisecond-scale temporal 

resoluDon.1-5 Direct observaDon of electric potenDal induced phenomena has contributed valuable 

mechanisDc insights towards research in baJeries,6-9 catalysis,10-13 and polymers.14,15 The principal goal of 

many in-situ LCTEM electrochemical studies is to correlate the applied sDmulus to structural changes 

captured in the video, such as material formaDon or dissoluDon. While structural changes may be visually 
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apparent, raw LCTEM videos are oGen difficult to analyze for two main reasons. First, the liquid layer within 

the cell reduces object contrast in the images and introduces a large amount of noise into the data.16 As a 

result, subtle structural changes are easily missed when viewing the raw data. Second, LCTEM videos 

collected on high-framerate microscopes can reach 1000's of frames in size, resulDng in mulDple terabytes 

of data.17 Manually idenDfying and comparing events in the raw data can be extremely Dme-consuming 

and subjecDve. Thus, large datasets require efficient video analysis algorithms to detect and measure 

structural change events so they can be easily interpreted and correlated to the applied sDmulus. 

The most common method of quanDtaDvely analyzing structural change is with image segmentaDon 

algorithms, in which objects are idenDfied and analyzed in every image of the video.18 This has been widely 

used in the LCTEM community to quanDfy dynamic events such as micelle fusion,19 solid electrolyte 

interphase (SEI) layer growth,6 nanoparDcle etching,20 and more.21 However, in some datasets which 

contain mulDple classes of objects or conDnuous objects, segmentaDon can be highly subjecDve or 

impossible. Recently, there have been segmentaDon-free analysis algorithms developed to measure 

structural change without the need to label objects in the images.22 For example, an algorithm was 

developed to quanDfy beam-induced damage over Dme while imaging organic thin-films.23 This was 

accomplished by using the normalized cross-correlaDon metric to compare the first frame and subsequent 

frames of an electron dose-series. The success of this method for characterizing a dynamic process 

unsuitable for segmentaDon analysis demonstrates the need for conDnued development of segmentaDon-

free metrics. Here, we present a new segmentaDon-free video analysis algorithm to highlight and quanDfy 

structural change using the structural dissimilarity (DSSIM) metric, a linear variant of the commonly used 

structural similarity (SSIM) metric.24 

DSSIM is an established measure of the perceived difference between two images, which compares local 

variaDon in the mean, standard deviaDon, and cross-correlaDon of pixel intensity values to produce a new 

dissimilarity image.25,26 DSSIM was originally developed to assess the quality of structural informaDon 
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present in a reference and distorted image, such as comparing a raw image with a compressed image.25 It 

was later adopted by the machine learning community as a metric to evaluate model performance by 

comparing a reconstructed image against a ground truth image.27 The resulDng dissimilarity image will 

highlight regions where the reconstrucDon image deviates the most from the ground truth image. To date, 

DSSIM has found several niche applicaDons for structural analysis in the microscopy community. For 

example, DSSIM/SSIM has been used to idenDfy: neurochemical events from cyclic voltammetry,28 

microcalcificaDon from mammography,29 crack formaDon from X-ray tomography,30 phase changes in 

polarized opDcal microscopy,31 and dynamic behavior in confocal fluorescence microscopy.32 A recent 

LCTEM study used the metric to quanDfy beam-induced gold nanoparDcle growth because segmentaDon 

analysis was not possible.33 To quanDfy growth, they used SSIM to compare pairs of images taken of the 

same region in the liquid cell before and aGer electron irradiaDon. 

For the first Dme, we apply the DSSIM metric to spaDally and temporally quanDfy the sDmulated structural 

changes captured in LCTEM electrochemistry videos. The proposed DSSIM analysis video algorithm 

compares temporally offset frames of the input video to create a dissimilarity video, which measures and 

highlights locaDons where structural change has occurred. In SecDon 1.3, we describe how to apply and 

tune the parameters of DSSIM analysis. In SecDon 1.4, we analyze two in-situ LCTEM datasets from 

different studies and show it is possible to extract quanDtaDve, easy-to-interpret informaDon and gain 

addiDonal insight into electrochemically-driven materials formaDon and dissoluDon. For each dataset, we 

demonstrate DSSIM analysis can be used to evaluate the correlaDon between the applied sDmulus and 

the resulDng structural change. 
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1.3 Methods 

1.3.1 DSSIM analysis workflow 

Figure 1.1 describes the general workflow for applying DSSIM analysis to a video dataset. In step 1, the 

raw data is preprocessed to reduce noise in each frame prior to DSSIM analysis. In this study, noise is 

reduced by using frame averaging (temporal averaging) and Gaussian blurring (spaDal averaging). 

 

Figure 1.1 DSSIM analysis workflow. (A) Raw data is denoised with a combinaDon of temporal and spaDal 

averaging. (B) DSSIM analysis is applied using the defined parameters. Temporally offset images in the 

video are compared in a sliding-window operaDon (leG). Image pairs are analyzed with the DSSIM metric 

which compares the same local neighborhoods of each image to produce a DSSIM image (right). Note 

images have been downsized by a factor of 4 to improve figure legibility. (C) DSSIM analysis results are 

quanDfied with global analysis (enDre image) and regional analysis (cropped image). 
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In step 2, DSSIM analysis is applied to the denoised video. The DSSIM analysis algorithm presented here is 

a sliding-window calculaDon which compares frame � with frame �+�� (Figure 1.1B). First, the two frames 

are compared with the SSIM metric. For every pixel locaDon in each pair of images (Figure 1.1B, orange 

boxes), the metric compares intensity values in a Gaussian-weighted local neighborhood around the pixel 

locaDon (Figure 1.1B, blue boxes). Boarder pixels are excluded from the analysis. The Gaussian-weighted 

intensity values in the local neighborhoods are compared with three components: the mean (m), variance 

(�), and cross-correlaDon (c).26 Then, these components are weighted by the exponents [� � �] and 

mulDplied together to produce a SSIM image (Eq. (1)). The SSIM image is linearly converted to a DSSIM 

image using Eq. (2). DSSIM values are between 0 and 1, where a high value corresponds to a region of high 

dissimilarity. The result of the sliding window algorithm is a DSSIM video, which is shorter than the input 

video by �� frames. 

 

 ���	
�, � + ∆�� = �
�, � + ∆��� ∗ �
�, � + ∆��� ∗  �
�, � + ∆���    (1) 

   

 

 
����	
�, � + ∆�� =

1 − ���	
�, � + ∆��

2
 (2) 

 

There are 3 parameters that will affect the output of DSSIM analysis: the local neighborhood size, the 

temporal offset ��, and the [� � �] DSSIM coefficients. �� and ��+�� denote two local neighborhoods of 

common size (Figure 1.1B, blue boxes) taken from the same pixel locaDon (Figure 1.1B, orange boxes) in 

both images. For example, the analysis shown in Figure 1.1B uses 5 × 5 pixel local neighborhoods which 

are visualized with blue boxes. Every valid pair of neighborhoods is compared with DSSIM to construct the 

final dissimilarity image, and the size of the local neighborhood will determine the spaDal resoluDon of 

the output. �� is the temporal offset of the pair of frames and will determine the temporal resoluDon of 
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the output. [� � �] are the DSSIM coefficients which adjust the relaDve weighDng of the mean, standard 

deviaDon, and cross-correlaDon components. Coefficients were kept at [1 1 1] for the analyses presented 

here. 

Lastly, the output of DSSIM analysis is quanDfied (Figure 1.1C). The simplest method of quanDficaDon is 

calculaDng the global mean DSSIM value for each DSSIM image. This provides informaDon about mean 

structural change occurring in the image, where high mean DSSIM values correspond to a high degree of 

structural change. AlternaDvely, it is oGen useful to perform regional analysis to compare structural change 

across different spaDal locaDons in the data,32 or to closely examine a parDcular event of interest. AGer 

quanDficaDon, the original 3-dimensional video is reduced to 1-dimensional data that is easily interpreted 

and correlated to other types of data. 

1.3.2 Parameter tuning 

The data analysis pipeline described here requires three parameters to be tuned in Step 2. While 

mulDparameter analysis methods are generally considered to be complex, parameter tuning for DSSIM 

analysis is intuiDve and directly related to the spaDal and temporal resoluDon of the physical phenomena 

taking place. The spaDal and temporal resoluDon of the detected dynamics will depend on the temporal 

offset and local neighborhood, respecDvely. Determining the ideal local neighborhood size requires 

consideraDon of the feature size of interest as well as the signal-to-noise raDo. In general, smaller 

neighborhoods are ideal because they have the highest resoluDon and are most sensiDve to small 

structural changes, but can result in arDfacts and ‘false events’ caused by noise. If DSSIM analysis is applied 

to parDcle nucleaDon events, the neighborhood should be smaller than the parDcle (Figure 1.1B). Typically, 

it is best to start parameter tuning with a large temporal offset and a large neighborhood to capture the 

most obvious dynamics. These parameters can then be iteraDvely decreased unDl the output becomes too 

noisy for clear interpretaDon. Depending on the nature of the dynamics, the user should focus on 
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maximizing either temporal or spaDal resoluDon. The structural change must occur over a Dme period that 

is strictly larger than twice the Dme of the temporal offset in order to be captured by DSSIM analysis 

(Nyquist-Shannon theorem).34 

The DSSIM coefficients should generally be kept at [1 1 1]. However, it can be useful to remove one of the 

components of the DSSIM analysis by segng a coefficient to 0. For example, using coefficients [0 0 1] will 

reduce DSSIM to a local normalized cross-correlaDon calculaDon.35 In the case of confocal fluorescence 

microscopy data, it was reported that the mean channel contributed mostly noise in the final output, so 

[0 1 1] coefficients were selected.32 In the LCTEM datasets presented here, no exponent tuning was 

required. 

Overall, we find parameter tuning to be intuiDve and find that the end result is consistent and stable for a 

wide range of parameters. AddiDonally, it is important to note that DSSIM analysis is a computaDonally 

efficient algorithm that is easily parallelizable. This enables users to receive rapid feedback when tuning 

DSSIM analysis parameters. 

1.3.3 Dataset considera8ons for DSSIM analysis 

The DSSIM metric highlights both structural change and object movement. For datasets where both are 

occurring at the same Dme, DSSIM analysis will highlight both types of dynamics.32 For structures that are 

in moDon, object tracking and driG correcDon algorithms could be applied in the pre-processing steps to 

minimize movement from camera driG. This would enable the DSSIM metric to highlight structural 

changes. In the case of LCTEM electrochemical experiments, structures are typically aJached to the 

electrode or the silicon nitride window, and so structural change can be isolated from object movement. 

In general, TEM imaging is beJer suited than scanning transmission electron microscopy (STEM) imaging 

for DSSIM analysis. This is because TEM images can be captured at higher framerates and there are no 

scanlines which result in arDfacts aGer applying DSSIM analysis (Figure 1.2C,E). In addiDon, near-zero pixel 
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intensity values recorded in dark-field STEM imaging can cause instability in the DSSIM metric.

 

Figure 1.2 DSSIM analysis applied to a previously published bright-field liquid cell STEM video.6 A-F) Select 

microscopy frames (top) and corresponding DSSIM frames (boJom) during electrode charging (A-D) and 

discharging (E,F). Bright pixels values correspond to regions of high dissimilarity between frames. BoJom 

labels correspond to the Dmes of the two microscopy frames used to calculate the DSSIM image. Red 

arrows in (C, E) shows STEM scanline arDfact in the DSSIM image. G) CV ploJed as current vs. potenDal 

and H) current vs. Dme with key frames from (A-F) indicated with triangles. (H) contains a mean DSSIM 

plot, with key correlaDve features highlighted with dashed lines. High DSSIM values correspond to 

Dmepoints of high change. I) Mean DSSIM and MSE comparison. 

1.4 Results and Discussion 

1.4.1 DSSIM analysis of bright-field liquid cell STEM 

DSSIM analysis is applied to a previously published bright-field liquid cell STEM video of SEI layer formaDon 

on a Pt electrode.6 In this dataset, an electrochemical liquid cell was configured with Pt electrodes on a 

silicon nitride membrane to create an operando Li baJery. Cyclic voltammetry (CV) was performed, in 

which the electrode potenDal was progressively decreased to induce charging, then progressively 
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increased to induce discharging. During charging, the SEI layer rapidly grows on the electrode and there is 

a negaDve peak in the current (Figure 1.2A-D). During discharging, the SEI layer parDally dissolves and 

there is a posiDve peak in the current (Figure 1.2E,F). 

DSSIM analysis is applied to correlate the features of the recorded CV with the structural changes recorded 

on the electrode during charging and discharging. The dataset consists of 95 images taken across 402 s 

with a frame-Dme of 4.2 s. Preprocessing was done by applying a Gaussian blur with a first standard 

deviaDon of 90 nm (7 pixels) to remove noise. Due to the high signal-to-noise raDo and relaDvely low 

temporal resoluDon, no temporal averaging was applied to this dataset. Next, DSSIM analysis was applied 

with a local neighborhood of 244 × 244 nm (19 × 19 pixels), 1 frame offset, and [1 1 1] coefficients, resulDng 

in 94 DSSIM frames. 

The CV is shown as a current-potenDal plot in Figure 1.2G and reploJed as a current-Dme plot in Figure 

1.2H. The mean DSSIM value for each DSSIM frame is ploJed to directly compare features of the current-

Dme plot with the structural change taking place in the microscope. The analysis shows a clear correlaDon 

between the features of the CV and the resulDng structural change. InteresDng, there is a 9.0 s delay 

between the peak current and peak mean DSSIM during charging, and a 10.0 s delay between the negaDve 

peak current and peak mean DSSIM during discharging. The current value should be directly proporDonal 

to the rate of addiDon or removal of Li. Considering the frame-Dme of this dataset is 4.2 s, the mismatch 

represents 2 frames which could be aJributed to a delay in recording the frames. The mismatch could also 

suggest the addiDon of Li during the peak current is not contribuDng to significant structural change of the 

SEI volume. 

To compare the results of DSSIM with another metric, the analysis workflow described in Figure 1.1 was 

applied but the DSSIM metric was replaced with the mean squared error (MSE) metric. Figure 1.2I shows 

there is very good agreement between the Dmescale of features captured with both metrics. Figure 1.2I 
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also shows disagreement in relaDve peak heights of the two metrics during charging and discharging. This 

discrepancy is unsurprising, as disagreement between the two metrics has been previously reported.36-38 

MSE compares the absolute error between each pixel for the image pair, whereas DSSIM aJempts to 

evaluate perceived differences in structure by comparing local regions of pixels. As a result, DSSIM is less 

suscepDble to single-pixel noise, which may be the reason for the disagreement in relaDve peak heights in 

Figure 1.2I. Another key advantage of DSSIM analysis is the algorithm provides a map of local change for 

each pair of frames, which is not provided with MSE. This makes it easy to assess which regions of the 

image are contribuDng to the mean DSSIM value. Furthermore, the dissimilarity images can aid in 

qualitaDve analysis and reveal events easily missed. For example, Figure 1.3 shows there is a subtle 

structural change that occurs a long Dme aGer moDon has stopped elsewhere in the SEI layer. 

 

Figure 1.3 (A,C) ConsecuDve frames in the bright-field liquid cell STEM video with (B) corresponding DSSIM 

image. Arrow in the DSSIM image highlights an isolated structural change event. 

1.4.2 DSSIM analysis of bright-field LCTEM 

DSSIM analysis was applied to a bright-field LCTEM dataset which captures cyclic electrochemical Cu 

plaDng and stripping on a TiNx electrode. An in-depth descripDon of the electrode fabricaDon and 

experimental details will be released in an upcoming manuscript.39 In this experiment, square-wave 

chronoamperometry was performed in which the electrode potenDal was decreased to −1.5 V (vs. TiNx) 

and held constant to induce Cu plaDng, then instantaneously increased to +1.5 V (vs. TiNx) and held 
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constant to induce Cu stripping. Figure 1.4A-D shows the first plaDng process as the dark Cu domains form 

on the electrode. Figure 1.4E,F shows the first stripping process as the domains dissolve. In total, 4 plaDng 

and 3 stripping processes were performed. 

 

Figure 1.4 DSSIM analysis applied to bright-field LCTEM data.39 A-F) Select microscopy frames (top) and 

corresponding DSSIM frames (boJom) during electrode plaDng (A-D) and stripping (E,F). Bright pixels 

values correspond to regions of high dissimilarity between frames. BoJom labels correspond to the Dmes 

of the two microscopy frames used to calculate the DSSIM image. (G) Square-wave chronoamperometry 

ploJed as current vs. Dme and (H) potenDal vs. Dme compared to mean DSSIM. High DSSIM values 

correspond to Dmepoints of high change. Current and potenDal data was smoothed using a Gaussian-

weighted sliding-window average with a stand deviaDon of 1.5 datapoints. (I) Zoom-in to dashed region in 

H. Black dashed lines mark Dmescale of features in the potenDal plot. Red dashed lines mark the Dmescale 

of the DSSIM peaks using FWHM. 

DSSIM analysis is applied to correlate the features of the square wave chronoamperometry data with the 

structural changes occurring on the electrode during plaDng and stripping. The raw dataset consists of 600 

images taken across 120 s with a frame-Dme of 0.2 s. Preprocessing was done by first temporal averaging 
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every 2 frames, reducing the size of the dataset to 300 frames. Next, a Gaussian blur was applied with a 

standard deviaDon of 120 nm (10 pixels) to remove noise. Then, DSSIM analysis was applied with a local 

neighborhood of 131 × 131 nm (11 × 11 pixels), 1.8 s offset (3 frames), and [1 1 1] coefficients. A frame 

offset of 3 was selected due to the high temporal resoluDon of the iniDal dataset, which meant there was 

liJle measurable change between adjacent frames. These parameters resulted in 297 DSSIM frames. 

The mean DSSIM is calculated for each frame and then ploJed against the current-Dme data (Figure 1.4G) 

and the potenDal-Dme data (Figure 1.4H). The mean DSSIM plot shows that during plaDng, there is a sharp 

peak in Cu structural formaDons which subsequently slows down. During stripping, there is more uniform 

structural dissoluDon that occurs at a slower rate. This signature paJern is observed during each of the 

plaDng/stripping cycles captured in this dataset. InteresDngly, during stripping the DSSIM peaks show 

broadening across each subsequent cycle. This peak broadening is also seen via full-width half-max 

(FWHM) analysis of the stripping peaks in the current-Dme plot (Figure 1.4G). These features in the 

chronoamperometry and mean DSSIM data suggest there is hysteresis across the stripping cycles. To 

further examine this, all DSSIM images were averaged together to display the enDre history of structural 

change in a single image (Figure 1.5). Figure 1.5 shows there were regions that experienced mulDple 

nucleaDon events (red arrows). This suggests there are some locaDons that favor Cu nucleaDon, or the Cu 

does not fully dissolve during stripping. 

 



 

20 

 

 

Figure 1.5 SummaDon of all DSSIM frames from the bright-field LCTEM dataset. Arrows highlight regions 

where mulDple nucleaDon events occurred on the electrode. 

Closer examinaDon of the potenDal-Dme and mean DSSIM plots from the first cycle shows there is a strong 

correlaDon between the shape of the square-wave chronoamperometry and the structural change events 

occurring on the electrode (Figure 1.4I). During plaDng, the potenDal-Dme plot shows a delay of 1.4 s 

before −1.5 V is reached. Applying FWHM analysis to the mean DSSIM peak shows that structural 

formaDon occurs across 1.2 s. During stripping, a similar phenomenon occurs in which there is a delay of 

3.4 s before the voltage reaches +1.5 V. FWHM analysis of the mean DSSIM peak shows that structural 

dissoluDon occurs across 3.2 s. This analysis demonstrates the Dmescale of features in the square-wave 

chronoamperometry correlate with the Dmescale of structural change events occurring on the electrode. 

1.4.3 Comparison of DSSIM analysis and segmenta8on analysis 

Regional DSSIM analysis was applied to individual Cu plaDng and stripping events from the previously 

discussed bright-field LCTEM dataset (SecDon 3.2) to compare the results of DSSIM analysis to the results 

of segmentaDon-based growth rate analysis. Typically, parDcle growth rate is calculated by segmenDng the 

parDcle in each frame and then calculaDng the derivaDve of area with respect to Dme.40 Here, we compare 

growth rates calculated from segmentaDon analysis to the structural change calculated from regional 

DSSIM analysis. 
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Individual parDcle plaDng and stripping events from video 2 were isolated and cropped for analysis (Figure 

1.6). For each frame, the parDcle area was calculated using a standard segmentaDon rouDne that has been 

described previously.40 The green outline labels the edge of the segmented parDcle in each frame (Figure 

1.6A,D). Next, the parDcle growth rate was calculated by first smoothing the parDcle areas (Figure 1.6B,E) 

and then taking the derivaDve of smoothed area with respect to Dme (Figure 1.6C,F). The growth rate plots 

show a sharp increase in size during plaDng followed by a decrease in size during striping. 

 

Figure 1.6 Regional DSSIM analysis compared to segmentaDon-based growth-rate analysis. (A,D) Select 

microscopy frames showing segmentaDon of parDcle (top) and corresponding DSSIM frames (boJom) 

during electrode plaDng and stripping. Bright pixels values correspond to regions of high dissimilarity 

between frames. BoJom labels correspond to the Dmes of the two microscopy frames used to calculate 

the DSSIM image. (B,E) Segmented parDcle areas for each frame ploJed over Dme. Black line indicates a 

sliding-window Gaussian-weighted average. (C,F) Growth rate calculated as the derivaDve of the smoothed 

parDcle area with respect to Dme and mean DSSIM from regional analysis. Dashed lines show key features 

are aligned.   

The same region was then cropped from the corresponding DSSIM frames and the mean DSSIM values 

were calculated. Figure 1.6C,F shows the same features are captured in parDcle growth rate analysis and 

the regional mean DSSIM analysis. Figure 1.6F shows DSSIM analysis correctly captures the subtle decrease 

in growth rate (dashed line). This demonstrates DSSIM can be used as an alternaDve to segmentaDon 
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analysis in cases where the temporal scale and rate of structural change are of interest. It is important to 

highlight that DSSIM analysis provides different informaDon than segmentaDon analysis. Specifically, 

DSSIM analysis will capture changes in object contrast, which are not directly captured in segmentaDon 

analysis. AddiDonally, DSSIM analysis will only provide relaDve informaDon about how a structure is 

changing whereas segmentaDon analysis provides an absolute value about the parDcle size and posiDon. 

For example, Figure 1.6C,F shows the parDcle size is increasing steadily between 50 s and 60 s. While this 

slow growth is sDll visible in the DSSIM(47.5,48.7) images, the mean DSSIM graph does not highlight this 

processes. Note that increasing the temporal-offset of DSSIM analysis would improve the signal of the 

slow growth at the cost of temporal resoluDon. While parDcle segmentaDon is straighhorward in the case 

presented here, DSSIM analysis can be applied to datasets in which segmentaDon is highly subjecDve or 

impossible, such as mulDclass datasets where objects have a wide distribuDon of intensiDes.23,32 

1.5 Code availability and efficiency 

ImageJ, MATLAB, and Python code for applying DSSIM analysis is available via Github: 

github.com/JusDnTMulvey/DSSIM_Analysis. DSSIM analysis is accessible as a MATLAB script, Python 

Jupyter notebook, or ImageJ plugin with an accompanying user-guide. The ImageJ plugin has an easy-to-

use user-interface and can process floaDng-point and integer-type microscopy datasets (Figure 1.7). The 

MATLAB and Python codes are parallelized and can process floaDng point videos data at 100–1000 MB/s 

(depending on neighborhood size) on a modern high-end CPU (32 cores 3.5 GHz, 3200 MHz memory). 



 

23 

 

 

Figure 1.7 ImageJ user interface for applying DSSIM analysis. DSSIM analysis can also be applied using 

Python or MATLAB scripts. 

1.6 Data acquisi8on 

The bright-field liquid cell STEM video of SEI layer formaDon on a Pt electrode was acquired by 

downloading the SI video from the publicaDon.6 The CV data was extracted and aligned to frames using a 

custom computer vision script. Frame Dmes and CV Dmes were esDmated by matching the extracted 

frames to the publicaDon figure Dme stamps and then using linear interpolaDon. The bright-field LCTEM 

dataset of Cu plaDng and stripping on a TiNx electrode and accompanying square wave 

chronoamperometry data was received as raw data.39 

1.7 Conclusion 

We have demonstrated DSSIM analysis can be used to detect and quanDfy structural change in LCTEM 

videos. We showed the method can be used to assist in qualitaDve analysis and reveal structural change 

that is easily missed when viewing the raw data. We also showed the algorithm can be used to 

quanDtaDvely correlate the applied electrochemical biasing to the structural change that occurs on the 

electrode. We verified the accuracy of the metric by comparing it to segmentaDon analysis and found good 

agreement in temporal scale and magnitude of individual parDcle growth rates. Given the computaDon 

efficiency and ease of interpretaDon, we believe there is great potenDal to use DSSIM analysis for real-



 

24 

 

Dme event detecDon during data acquisiDon to highlight changes taking place to the microscope operator. 

This use case may also extend as an automated event detecDon algorithm for applicaDon in sparse 

imaging. 

1.8 References 

(1) De Jonge, N.; Ross, F. M. Electron Microscopy of Specimens in Liquid. Nature Nanotechnology 

2011, 6 (11), 695–704. https://doi.org/10.1038/nnano.2011.161. 

(2) Ross, F. M. Opportunities and Challenges in Liquid Cell Electron Microscopy. Science 2015, 350 

(6267), aaa9886. https://doi.org/10.1126/science.aaa9886. 

(3) Mirsaidov, U.; Patterson, J. P.; Zheng, H. Liquid Phase Transmission Electron Microscopy for 

Imaging of Nanoscale Processes in Solution. MRS Bulletin 2020, 45 (9), 704–712. 

https://doi.org/10.1557/mrs.2020.222. 

(4) Sung, J.; Bae, Y.; Park, H.; Kang, S.; Choi, B. K.; Kim, J.; Park, J. Liquid-Phase Transmission Electron 

Microscopy for Reliable In Situ Imaging of Nanomaterials. Annu. Rev. Chem. Biomol. Eng. 2022, 13 (1), 

167–191. https://doi.org/10.1146/annurev-chembioeng-092120-034534. 

(5) Abellan, P.; Woehl, T. J. Liquid Cell Electron Microscopy for the Study of Growth Dynamics of 

Nanomaterials and Structure of Soft Matter. In In-situ Characterization Techniques for Nanomaterials; 

Kumar, C. S. S. R., Ed.; Springer Berlin Heidelberg: Berlin, Heidelberg, 2018; pp 1–31. 

https://doi.org/10.1007/978-3-662-56322-9_1. 

(6) Mehdi, B. L.; Qian, J.; Nasybulin, E.; Park, C.; Welch, D. A.; Faller, R.; Mehta, H.; Henderson, W. A.; 

Xu, W.; Wang, C. M.; Evans, J. E.; Liu, J.; Zhang, J.-G.; Mueller, K. T.; Browning, N. D. Observation and 

Quantification of Nanoscale Processes in Lithium Batteries by Operando Electrochemical (S)TEM. Nano 

Lett. 2015, 15 (3), 2168–2173. https://doi.org/10.1021/acs.nanolett.5b00175. 

(7) Lee, S.-Y.; Shangguan, J.; Alvarado, J.; Betzler, S.; Harris, S. J.; Doeff, M. M.; Zheng, H. Unveiling 

the Mechanisms of Lithium Dendrite Suppression by Cationic Polymer Film Induced Solid–Electrolyte 

Interphase Modification. Energy Environ. Sci. 2020, 13 (6), 1832–1842. 

https://doi.org/10.1039/D0EE00518E. 

(8) Mehdi, B. L.; Stevens, A.; Qian, J.; Park, C.; Xu, W.; Henderson, W. A.; Zhang, J.-G.; Mueller, K. T.; 

Browning, N. D. The Impact of Li Grain Size on Coulombic Efficiency in Li Batteries. Sci Rep 2016, 6 (1), 

34267. https://doi.org/10.1038/srep34267. 

(9) Leenheer, A. J.; Jungjohann, K. L.; Zavadil, K. R.; Sullivan, J. P.; Harris, C. T. Lithium 

Electrodeposition Dynamics in Aprotic Electrolyte Observed in Situ via Transmission Electron Microscopy. 

ACS Nano 2015, 9 (4), 4379–4389. https://doi.org/10.1021/acsnano.5b00876. 

(10) Yang, Y.; Xiong, Y.; Zeng, R.; Lu, X.; Krumov, M.; Huang, X.; Xu, W.; Wang, H.; DiSalvo, F. J.; Brock, 

Joel. D.; Muller, D. A.; Abruña, H. D. Operando Methods in Electrocatalysis. ACS Catal. 2021, 11 (3), 1136–

1178. https://doi.org/10.1021/acscatal.0c04789. 



 

25 

 

(11) Hwang, S.; Chen, X.; Zhou, G.; Su, D. In Situ Transmission Electron Microscopy on Energy-Related 

Catalysis. Adv. Energy Mater. 2020, 10 (11), 1902105. https://doi.org/10.1002/aenm.201902105. 

(12) Pan, Y.; Li, X.; Su, D. Understanding the Structural Dynamics of Electrocatalysts via Liquid Cell 

Transmission Electron Microscopy. Current Opinion in Electrochemistry 2022, 33, 100936. 

https://doi.org/10.1016/j.coelec.2022.100936. 

(13) Yang, Y.; Louisia, S.; Yu, S.; Jin, J.; Roh, I.; Chen, C.; Fonseca Guzman, M. V.; Feijóo, J.; Chen, P.-C.; 

Wang, H.; Pollock, C. J.; Huang, X.; Shao, Y.-T.; Wang, C.; Muller, D. A.; Abruña, H. D.; Yang, P. Operando 

Studies Reveal Active Cu Nanograins for CO2 Electroreduction. Nature 2023, 614 (7947), 262–269. 

https://doi.org/10.1038/s41586-022-05540-0. 

(14) Liu, J.; Wei, B.; Sloppy, J. D.; Ouyang, L.; Ni, C.; Martin, D. C. Direct Imaging of the Electrochemical 

Deposition of Poly(3,4-Ethylenedioxythiophene) by Transmission Electron Microscopy. ACS Macro Lett. 

2015, 4 (9), 897–900. https://doi.org/10.1021/acsmacrolett.5b00479. 

(15) Subramanian, V.; Martin, D. C. In Situ Observations of Nanofibril Nucleation and Growth during 

the Electrochemical Polymerization of Poly(3,4-Ethylenedioxythiophene) Using Liquid-Phase Transmission 

Electron Microscopy. Nano Lett. 2021, 21 (21), 9077–9084. 

https://doi.org/10.1021/acs.nanolett.1c02762. 

(16) de Jonge, N.; Houben, L.; Dunin-Borkowski, R. E.; Ross, F. M. Resolution and Aberration Correction 

in Liquid Cell Transmission Electron Microscopy. Nature Reviews Materials 2019, 4 (1), 61–78. 

https://doi.org/10.1038/s41578-018-0071-2. 

(17) Spurgeon, S. R. Towards Data-Driven next-Generation Transmission Electron Microscopy. Nature 

Materials 6. 

(18) Rizvi, A.; Mulvey, J. T.; Carpenter, B. P.; Talosig, R.; Patterson, J. P. A Close Look at Molecular Self-

Assembly with the Transmission Electron Microscope. Chem. Rev. 2021, acs.chemrev.1c00189. 

https://doi.org/10.1021/acs.chemrev.1c00189. 

(19) Parent, L. R.; Bakalis, E.; Ramírez-Hernández, A.; Kammeyer, J. K.; Park, C.; de Pablo, J.; Zerbetto, 

F.; Patterson, J. P.; Gianneschi, N. C. Directly Observing Micelle Fusion and Growth in Solution by Liquid-

Cell Transmission Electron Microscopy. J. Am. Chem. Soc. 2017, 139 (47), 17140–17151. 

https://doi.org/10.1021/jacs.7b09060. 

(20) Yan, C.; Byrne, D.; Ondry, J. C.; Kahnt, A.; Moreno-Hernandez, I. A.; Kamat, G. A.; Liu, Z.-J.; Laube, 

C.; Crook, M. F.; Zhang, Y.; Ercius, P.; Alivisatos, A. P. Facet-Selective Etching Trajectories of Individual 

Semiconductor Nanocrystals. Sci. Adv. 2022, 8 (32), eabq1700. https://doi.org/10.1126/sciadv.abq1700. 

(21) Yao, L.; Ou, Z.; Luo, B.; Xu, C.; Chen, Q. Machine Learning to Reveal Nanoparticle Dynamics from 

Liquid-Phase TEM Videos. ACS Cent. Sci. 2020, 6 (8), 1421–1430. 

https://doi.org/10.1021/acscentsci.0c00430. 

(22) Reehl, S.; Stanfill, B.; Johnson, M.; Ries, D.; Browning, N. D.; Layla Mehdi, B.; Bramer, L. Event 

Detection for Undersampled Electron Microscopy Experiments: A Control Chart Case Study. Quality 

Engineering 2020, 32 (2), 244–254. https://doi.org/10.1080/08982112.2019.1638515. 



 

26 

 

(23) Leijten, Z. J. W. A.; Keizer, A. D. A.; de With, G.; Friedrich, H. Quantitative Analysis of Electron Beam 

Damage in Organic Thin Films. J. Phys. Chem. C 2017, 121 (19), 10552–10561. 

https://doi.org/10.1021/acs.jpcc.7b01749. 

(24) Loza, A.; Mihaylova, L.; Canagarajah, N.; Bull, D. Structural Similarity-Based Object Tracking in 

Video Sequences. In 2006 9th International Conference on Information Fusion; IEEE: Florence, 2006; pp 1–

6. https://doi.org/10.1109/ICIF.2006.301574. 

(25) Wang, Z.; Bovik, A. C.; Sheikh, H. R.; Simoncelli, E. P. Image Quality Assessment: From Error 

Visibility to Structural Similarity. IEEE Transactions on Image Processing 2004, 13 (4), 600–612. 

https://doi.org/10.1109/tip.2003.819861. 

(26) Rouse, D. M.; Hemami, S. S. Understanding and Simplifying the Structural Similarity Metric. In 

2008 15th IEEE International Conference on Image Processing; IEEE: San Diego, CA, USA, 2008; pp 1188–

1191. https://doi.org/10.1109/ICIP.2008.4711973. 

(27) Wu, Y.; Rivenson, Y.; Wang, H.; Luo, Y.; Ben-David, E.; Bentolila, L. A.; Pritz, C.; Ozcan, A. Three-

Dimensional Virtual Refocusing of Fluorescence Microscopy Images Using Deep Learning. Nat Methods 

2019, 16 (12), 1323–1331. https://doi.org/10.1038/s41592-019-0622-5. 

(28) Puthongkham, P.; Rocha, J.; Borgus, J. R.; Ganesana, M.; Wang, Y.; Chang, Y.; Gahlmann, A.; 

Venton, B. J. Structural Similarity Image Analysis for Detection of Adenosine and Dopamine in Fast-Scan 

Cyclic Voltammetry Color Plots. Analytical Chemistry 2020, 92 (15), 10485–10494. 

https://doi.org/10.1021/acs.analchem.0c01214. 

(29) Touil, A.; Kalti, K.; Conze, P.-H.; Solaiman, B.; Mahjoub, M. A. Automatic Detection of 

Microcalcification Based on Morphological Operations and Structural Similarity Indices. Biocybernetics 

and Biomedical Engineering 2020, 40 (3), 1155–1173. https://doi.org/10.1016/j.bbe.2020.05.002. 

(30) Ushizima, D.; Perciano, T.; Parkinson, D. Fast Detection of Material Deformation through 

Structural Dissimilarity; IEEE, 2015. https://doi.org/10.1109/bigdata.2015.7364080. 

(31) Madhav, B. T. P.; Venu Gopala Rao, M.; Pisipati, V. G. K. M. Identification of Liquid Crystalline 

Phases in 7O.O9 Compound Based on Structural Similarity Index Measure. Liquid Crystals 2015, 42 (2), 

198–203. https://doi.org/10.1080/02678292.2014.975290. 

(32) Selmani, S.; Schwartz, E.; Mulvey, J. T.; Wei, H.; Grosvirt-Dramen, A.; Gibson, W.; Hochbaum, A. I.; 

Patterson, J. P.; Ragan, R.; Guan, Z. Electrically Fueled Active Supramolecular Materials. J. Am. Chem. Soc. 

2022, jacs.2c01884. https://doi.org/10.1021/jacs.2c01884. 

(33) Bultema, L. A.; Bücker, R.; Schulz, E. C.; Tellkamp, F.; Gonschior, J.; Miller, R. J. D.; Kassier, G. H. 

The Effect of Secondary Electrons on Radiolysis as Observed by in Liquid TEM: The Role of Window 

Material and Electrical Bias. Ultramicroscopy 2022, 240, 113579. 

https://doi.org/10.1016/j.ultramic.2022.113579. 

(34) Shannon, C. E. Communication in the Presence of Noise. Proc. IRE 1949, 37 (1), 10–21. 

https://doi.org/10.1109/JRPROC.1949.232969. 

(35) Prieto, G.; Guibelalde, E.; Chevalier, M.; Turrero, A. Use of the Cross-Correlation Component of 

the Multiscale Structural Similarity Metric (R* Metric) for the Evaluation of Medical Images: R* Metric for 



 

27 

 

the Evaluation of Medical Images. Med. Phys. 2011, 38 (8), 4512–4517. 

https://doi.org/10.1118/1.3605634. 

(36) Ederer, M.; Löffler, S. Image Difference Metrics for High-Resolution Electron Microscopy. 

Ultramicroscopy 2022, 240, 113578. https://doi.org/10.1016/j.ultramic.2022.113578. 

(37) Nilsson, J.; Akenine-Möller, T. Understanding SSIM. arXiv June 29, 2020. 

http://arxiv.org/abs/2006.13846 (accessed 2023-04-24). 

(38) Zhou Wang; Bovik, A. C. Mean Squared Error: Love It or Leave It? A New Look at Signal Fidelity 

Measures. IEEE Signal Process. Mag. 2009, 26 (1), 98–117. https://doi.org/10.1109/MSP.2008.930649. 

(39) Park, J.; Cheng, N.; Pivak, Y.; Sun, H.; Pérez Garza, H. H.; Ge, B.; Basak, S.; Eichel, R.-A. Metal Plating 

and Stripping on a Titanium Nitride Microelectrode: An Electrochemical Transmission Electron Microscopy 

Study. 

(40) Rizvi, A.; Mulvey, J. T.; Patterson, J. P. Observation of Liquid–Liquid-Phase Separation and Vesicle 

Spreading during Supported Bilayer Formation via Liquid-Phase Transmission Electron Microscopy. Nano 

Lett. 2021, 21 (24), 10325–10332. https://doi.org/10.1021/acs.nanolett.1c03556. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

28 

 

 

 

 

 

 

CHAPTER 2: Applying DSSIM analysis to quantify electrically-fueled dissipative 

self-assembly processes captured with liquid cell electron microscopy and 

confocal fluorescence microscopy 
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2.1 Abstract 

Living organisms such as actin filaments and microtubules form complex, dynamic structures through fuel-

driven dissipative self-assembly processes. This enables novel functions such as motility, homeostasis, 

self-healing, and camouflage which are difficult to reproduce synthetically. Designing a synthetic 

dissipative self-assembly system with spatial and temporal control of the self-assembly process may 

enable the development of materials with these properties. Here, I describe two studies in which an 

electrode is used to supply local fuel to synthetic dissipative self-assembly systems. In each study, I use 

DSSIM analysis as a metric to spatially and temporally quantify the local assembly process. I show DSSIM 

analysis performs better than segmentation analysis for studying these systems as there is often a large 

gradient of intensity values in the images which constantly fluctuate due to the competing assembly and 

disassembly processes. In the first example, I use DSSIM analysis to capture and quantify the propagation 

of a wave-like self-assembly process recorded using liquid cell transmission electron microscopy (LCTEM). 

In the second example, I spatially resolve a fiber gel formation process on an electrode recorded using 

confocal laser scanning microscopy (CLSM). These examples demonstrate the advantages of DSSIM 

analysis as a segmentation-free method of quantifying dissipative self-assembly processes. Furthermore, 

these examples demonstrate the versatility of DSSIM analysis, as the technique can be applied effectively 

to both LCTEM and CLSM.  

2.2 Introduction 

Dissipative self-assembly is defined as a thermodynamically out-of-equilibrium process in which fuel is 

consumed to sustain higher order structures such as fibers.1 A key feature of dissipative self-assembly is 

the presence of two competing reactions: a forward reaction which activates precursors into a product 

capable of self-assembly, and a backward reaction which reduces the product back into the precursor 

state.2 Here, I present research on an electrically fueled synthetic dissipative reaction network that 
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reversibly converts cysteine derivative (CSH) into it cystine derivative (CSSC) which is capable of self-

assembling into fibers.3 Simultaneously, the chemical reductant dithiothreitol (DTT) acts to reduce the 

system back to the CSH monomer (Figure 2.1). The goal of these studies is to track the dynamic behavior 

of the self-assembled structures and establish a spatial and temporal control of the system properties. 

 

Figure 2.1 Schematic representation of the CSH/CSSC electrically-fueled dissipative self-assembly process. 

Due to the competing chemical reactions, the self-assembled structures are highly dynamic and therefore 

difficult to study. In situ microscopy techniques are ideal for directly imaging the dissipative self-assembly 

processes in solution, with the goal of capturing and quantifying the material dynamics. In the text below, 

I will present my analyses of two in situ datasets capturing the electrically fueled self-assembly of the 

CSH/CSSC system. The first dataset I will present is a LCTEM video collected by Wyeth Gibson. As described 

in Chapter 1, LCTEM is a technique used to image samples directly in solution using a closed-system silicon 

nitride cell.4,5 Specialized in situ LCTEM holders can capture a sample’s response to a variety of external 

stimuli such as changes in solvent composition, temperature, or electrical bias.6,7 In this dataset, the 

electrically fueled self-assembly of the CSH/CSSC system is captured with nanoscale spatial resolution and 

millisecond-scale temporal resolution (Figure 2.6). The second dataset I will present is a confocal laser 
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scanning microscopy (CLSM) video collected by Serxho Selmani. CLSM is an optical microscopy technique 

in which contrast is generated by the fluorescence response of a material as a laser scans point-by-point 

across the imaging area. In this dataset, Nile red is added into the CSH mixture to track the formation of 

the structures. The micron-scale video shows a CSSC gel forming on an electrode (Figure 2.13). For a 

complete description of the material system and microscopy methodology for the LCTEM8 and CLSM9 

datasets, the reader is directed to the respective manuscripts. The information presented here will focus 

primarily on the image analysis methods applied to the datasets. 

In both cases, the raw microscopy data is difficult to interpret. In the case of LCTEM, the data had to be 

collected at a very low electron dose rate in order to minimize the effect of the electron beam on the 

dissipative process. This resulted in a dataset with a large amount of noise. The structures are clearly 

visible in the raw data, but the dataset required extensive processing to maximize insight into the self-

assembly process. The second dataset was collected using CLSM. While the individual nano-fibers 

structures are too small to be captured with optical microscopy, the micron-scale fiber macrostructures 

are visible with CSLM due to intercalation of Nile red. This dataset is challenging to analyze for several 

reasons: (1) the slow scan rate of CSLM resulted in 1 frame every ~4 seconds so frame averaging to reduce 

noise was not possible (2) fibers were constantly forming resulting in strong contrast gradients which 

made individual fiber segmentation highly subjective or impossible (3) fibers were constantly moving in 

and out of the focal plan which further contributed to the contrast gradient found in this dataset. In the 

sections that follow, I describe methodology for applying DSSIM analysis10 to the LCTEM and CLSM 

datasets and discuss the key outcomes from the analyses.  
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2.3 Liquid Cell Transmission Electron Microscopy (LCTEM) 

2.3.1 LCTEM: Methods and Results 

Image processing and analysis was applied to the LCTEM video to quanDfy the dissipaDve behavior of the 

material. This secDon will first describe the preprocessing pipeline and segmentaDon algorithm applied to 

both movies. Subsequent secDons will describe the details and parameters of how the preprocessing 

pipeline and segmentaDon algorithm were applied to each movie. A final secDon will describe more details 

on DSSIM analysis.  

2.3.1.1 Preprocessing algorithm 

Both movies were preprocessed using a previously reported methodology (Figure 2.2)11–13. The raw LCTEM 

frames were loaded into Matlab from Digital Micrograph 4 files, which preserves pixel intensity values at 

double-precision floaDng point values. Due to the low dose rates and short exposure Dmes, the raw frames 

contained extremely low signal-to-noise raDos, so extensive preprocessing was required prior to analysis. 

First, frames were spaDally reduced to 1024 x 1024 using pixel averaging (Figure 2.2a). Next, frames were 

temporally averaged using a sliding window average. Different temporal averaging was applied to each 

dataset, so the exact details will be described in the relevant secDons. Next, the images were flaJened 

using sequenDal Gaussian filters to isolate the fiber foci by removing the high-frequency noise and low-

frequency background (Figure 2.2b). First, the low-frequency background image was esDmated by applying 

a Gaussian blur with a relaDvely large standard deviaDon to the averaged image. AddiDonally, the high-

frequency noise was removed by applying a Gaussian blur with a relaDvely small standard deviaDon to the 

averaged image. The output image was then divided by the previously calculated background image, which 

results in a flaJened image. The filtering was done sequenDally to opDmize the removal of low-frequency 

and high-frequency noise (details below). UlDmately, the goal was to use filtering to isolate objects with 

diameters in the size range of ~60 nm to ~400 nm (Gaussian blur first standard deviaDons of ~20 nm to 
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~130 nm to account for 3 standard deviaDons of the Gaussian blur). All subsequent analysis, including 

segmentaDon analysis and DSSIM analysis, was applied to the flaJened images. The electrode was masked 

off using the same mask for every frame, which was determined by an intensity threshold. 

 

Figure 2.2 Image pre-processing and segmentaDon pipeline. a) Images were spaDally binned with pixel 

averaging, temporally binned with frame averaging, and contrast corrected by removing outlier pixels 

when displaying the image. Outliers were only removed when displaying the image and remain in the 

image in subsequent steps. b) A Gaussian FFT band-pass filter was applied to isolate the mid frequencies 

of the FFT which correspond to the sample. C) The average Otsu threshold of non-electrode pixels was 

calculated and applied to every image to produce a segmentaDon map.  

2.3.1.2 Segmenta8on algorithm  

Next, an intensity threshold was calculated to segment the sample from the background (Figure 2.2c). 

Because of the image flaJening, it was possible to use a single threshold to accurately segment the enDre 

image. For each flaJened image, the non-electrode pixels were isolated, and the segmentaDon threshold 

was calculated using the Otsu threshold algorithm.14 Then, the average Otsu threshold for all images was 
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calculated. This average threshold was applied to segment every image, which ensures a consistent 

definiDon of which intensiDes correspond to sample and which correspond to background. Finally, the 

flaJened image was labeled by converDng the outline of each object in the segmentaDon map into a green 

outline, which was overlaid onto the flaJened image.  

Image preprocessing and segmentaDon analysis were applied to the LCTEM video. First, the 6114 raw 

Digital Micrograph 4 images were imported into Matlab as double-precision floaDng point values. Pixel 

averaging was applied to convert the images from 4096 x 4096 resoluDon to 1024 x 1024 resoluDon. Next 

a sliding window average of 270 frames (27 seconds) was applied, which resulted in 5,845 frames. This set 

was then subsampled every 30 frames to improve computaDonal efficiency, resulDng in 194 images where 

each image contains 27 seconds of informaDon (Figure 2.3a). Next, a Gaussian blur with a standard 

deviaDon of 10 pixels (30.5 nm) was applied to remove high frequency noise. The background image was 

calculated by applying a Gaussian blur with a standard deviaDon of 50 pixels (152.5 nm). The flaJened 

image was then calculated by dividing the denoised image by the background image (Figure 2.3b). Finally, 

the Otsu threshold segmentaDon rouDne described in “SegmentaDon algorithm” was applied (Figure 

2.3c,d). 

Next, regional segmentaDon analysis was performed. The region maps were generated by taking the 

distance transform of the binary electrode mask, and then thresholding that image at each of the 4 

distance bands. The same methodology was applied for generaDng the verDcal masks, except the distance 

map was generated from a column of white pixels at the leG edge of the image rather than the electrode. 

For each binary segmentaDon map, each band mask image was individually mulDplied by the 

segmentaDon map to isolate the band of interest (Figure 2.4a , Figure 2.5a). StaDsDcs were recorded on 

the isolated parDcles. These staDsDcs were then ploJed for each band (Figure 2.4b,c , Figure 2.5b,c).  
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Figure 2.3 SegmentaDon analysis of the LCTEM video. a) SpaDally and temporally binned LCTEM images. 

b) FlaJened LCTEM images. c)  Binary images showing locaDons of segmented parDcles from b). d) 

FlaJened LCTEM images with segmented structures outlined in green.  

 

Figure 2.4 Regional segmentaDon analysis of the LCTEM video. a) SegmentaDon map divided into 4 colored 

regions based on distance from the electrode. Each region is 600 nm thick. B) Structure density within 

each region ploJed over Dme. Density is calculated by the number of segmented pixels divided by the 

total pixels of the distance band. C) Band density plot normalized to the peak value. The bands reach their 

peak density sequenDally, starDng at the closest band and then moving outward.  
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Figure 2.5 Regional segmentaDon analysis of the LCTEM video. a) SegmentaDon map divided into 5 verDcal 

regions based on distance from the leG side of the image, denoted by color. Each region is 600 nm thick. 

B) Structure density within each region ploJed over Dme. Density is calculated by the number of 

segmented pixels divided by the total pixels of the verDcal band. C) Band density plot normalized to the 

peak value. Arrow highlights Dme points where there is a subtle increase in segmented area in the first 

right region of the viewing area where all other regions are decreasing.  

2.3.1.3 DSSIM analysis  

DSSIM analysis was applied to the flaJened (described above) images of the LCTEM video. The details of 

the analysis are described discussion secDon. Figure 2.6 shows a comparison of the binned data (Figure 

2.6a), flaJened data (Figure 2.6b), and dissimilarity images (Figure 2.6c). Note the Dme reported in Figure 

2.6a is approximately the average Dme of the two frames used to generate the dissimilarity image. 

QualitaDve examinaDon shows the structural change reported in the DSSIM images is well matched to the 

structural changes occurring in the binned images and flaJened images.  

Figure 2.7 shows the results of analyzing the output of DSSIM analysis using verDcal bands in order to 

resolve front 1. The distance bands were generated using the same methodology described in the previous 

secDon, but 400 nm bands were used for the distances bands and the bands overlap (band 1: 0-400 nm, 

band 2: 80-480 nm, band 3: 160-560 nm, ect). Figure 2.10 is the summaDon of all dissimilarity frames, 

which represents a single history map of where structural change has occurred in the viewing area.  
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Figure 2.6 Comparison of processed, flaJened, and DSSIM LCTEM images. a) SpaDally and temporally 

binned LCTEM images. b) FlaJened LCTEM images. c)  Dissimilarity images from DSSIM analysis. Bright 

pixel values correspond to regions of high dissimilarity between frames. Top Dme labels correspond to the 

Dmes (seconds) of the two LCTEM images used to calculate the DSSIM image. 

 

Figure 2.7 VisualizaDon and quanDficaDon of fiber foci dynamics. a) The image was divided into 36 

overlapping verDcal regions, each 400 nm thick, based on distance from leG edge of the image. The dashed 

line shows the size of 1 region. The color gradient shows distance from the leG side of the image for each 

of the 36 regions, with purple being closest and yellow the furthest. Some of the far-right regions were 

omiJed for visual clarity. b) Shows the mean DSSIM signal of each region versus Dme. The green dots mark 

the maximum for each region. c) Shows the progression of the global regional DSSIM maximums for front 

1. Front 1 shows a linear velocity.  
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Figure 2.8 VisualizaDon and quanDficaDon of fiber foci dynamics. (a) Image was divided into 70 overlapping 

regions, each 400 nm thick, based on distance from the electrode. The dashed line shows the size of 1 

region. The color gradient shows the distance from the electrode for each of the 70 regions, with purple 

being closest to the electrode and yellow the furthest. (b) Mean DSSIM signal of each region versus Dme. 

The green dots mark the maximum dissimilarity for each region. (c) Progression of the regional DSSIM 

maximums for both front 1 (Figure 2.7) and front 2. Front 1 shows a linear velocity while front 2 is 

acceleraDng. 

 

Figure 2.9 Dissimilarity images from DSSIM analysis with all assembly front labeled. Bright pixel values 

correspond to regions of high dissimilarity between frames. Top Dme labels correspond to the Dmes 

(seconds) of the two Liquid EM images used to calculate the DSSIM image. 

 

Figure 2.10 SummaDon of all DSSIM images. This shows the enDre history of change within the viewing 

area and shows that the greatest amount of change occurs within ~1000 nm of the electrode.  
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2.3.2 LCTEM: Discussion 

To quanDfy the observed wave-like propagaDon of these self-assembly fronts, regional segmentaDon 

analysis was performed (Figure 2.4, Figure 2.5). Figure 2.4a and Figure 2.5a show the flaJened TEM 

images, and Figure 2.4b and Figure 2.5b show the corresponding structure segmentaDon maps. To resolve 

the spaDotemporal behavior of the fronts, regional density analysis was performed on the segmentaDon 

maps. To resolve front 2, the segmentaDon maps were split into four different 600 nm thick regions based 

on distance from the electrode. For each frame, the object density in each region was calculated and then 

normalized to the respecDve maximum density. This enabled a direct comparison of the Dmes at which 

the structures reached the maximum size in each region. Figure 2.4c shows that maximum structural 

density occurs sequenDally based on the distance from the electrode, which confirms the qualitaDve 

observaDon of the outward-moving front 2. InteresDngly, there appears to be a large Dme delay between 

the 0–600 region and subsequent regions, implying that front 2 may be acceleraDng and moving more 

quickly through regions that are further from the electrode. Regional analysis was also applied to resolve 

front 1 in which the regions were defined verDcally based on distance from the leG edge of the image 

(Figure 2.5). Again, the analysis clearly resolves the self-assembly growth front as it moves across each 

region. 

To quanDfy the characterisDcs of fronts 1 and 2, regional analysis was performed on the DSSIM data (Figure 

2.7, Figure 2.8). The image was divided into several 400 nm thick regions based on distance from the 

electrode. In this case, 36 overlapping verDcal regions (Figure 2.7a) and 70 overlapping distance regions 

(Figure 7b) were defined, which provided a higher spaDal resoluDon while maintaining an adequate 

sample size within each region. To resolve the magnitude of the structural change spaDally and temporally, 

the mean DSSIM value was calculated for each region in every frame (Figure 2.8b). Figures 2.8b and Figure 

2.10 show structural dynamics are greatest in the regions <1000 nm from the electrode and then 

substanDally decrease in the regions >1000 nm from the electrode, consistent with previous confocal laser 
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scanning microscopy data on this chemical system. (14) This observaDon suggests that there is a spaDal 

dependence with respect to the electrode on the interacDon between the electrochemically generated 

oxidant and the CSH reductant. Next, the velociDes of front 1 and front 2 were quanDfied by finding the 

Dme at which the maximum DSSIM value occurs for each region (Figure 2.7b, Figure 2.8b, green dots). This 

represents the Dme at which the structural change is at a maximum within each region. Plogng the 

maximum Dme against the average region distance results in a distance–Dme graph. Figng front 1 with a 

line shows the front is moving at constant velocity. Figng front 2 with an exponenDal fit shows the front 

is posiDvely acceleraDng and confirms the observaDon made from the segmentaDon analysis. This 

behavior implies the material formed during front 1 is acDng as an autocatalyst, and increasing the speed 

of the assembly seen in front 2.  

2.4 Confocal Laser Scanning Microscopy (CLSM) 

2.4.1 CLSM: Methods and Results 

Data analysis on the CLSM video was completed using in-house MATLAB scripts. The analysis can be 

divided into the following steps: 1) image filtering and normalization, 2) structural dissimilarity (DSSIM) 

analysis, and 3) DSSIM region analysis. 

2.4.1.1 Preprocessing algorithm 

Images for the CLSM video were collected, as described above, as 12-bit images. Each image was 1024 x 

248 pixels, with a pixel size of 0.13 µm and a dwell time of 3.15 µs, resulting in a frame time of 3.759 s per 

image. For simplicity, 962 x 248 pixels of the original image are used in the analysis, resulting in an image 

which is 125.0 µm x 32.2 µm. Time = 0 for the movie is defined as the end of the collection of the first 

image. 
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Several standard image processing techniques were applied to the images before analysis. First, a gamma 

correction with an exponent of 0.45 was applied (Eq 1). This was done to better represent the small fibers 

which have poor brightness when viewed on a linear scale. Next, a Gaussian blur was applied with first 

standard deviation of 3 pixels which resulted in a kernel size of 13 x 13 pixels (1.69 µm x 1.69 µm) (Eq 2). 

Gaussian kernels were normalized such that the sum of all values is equal to 1. This standard deviation 

was chosen to remove Gaussian noise without substantially altering the fiber features in the image. Next, 

outliers were removed from the movie to improve contrast in the images for qualitative assessment. The 

images were combined into a single volume, with frame time as the third dimension, then the top 1 

percentile (i.01) and the 99. percentile (i.99) values were calculated. Every value below i.01 was replaced with 

i.01, and every value above i.99 was replaced with i.99 (Eq 3). These outlier percentiles were chosen to 

provide adequate contrast for viewing the data. The resulting contrast corrected volume was converted 

to a grayscale volume with normalized intensities between 0 and 1 (Eq 4) and then displayed as a cyan 

shaded image. Note contrast was assigned for the entire volume, not per individual image. A visual 

summary of the processing pipeline can be seen in Figure 2.11. The resulting normalized CLSM images are 

used in Figure 2.11-2.14 and for clear visualization and qualitative assessment. The same pipeline was 

used to prepare the CLSM images for qualitative analysis. However, outlier percentile values 0.1 and 99.9 

were chosen in Eq 3 to minimize unnecessary processing of the data. Normalized CLSM images from this 

pipeline were used to calculate all DSSIM images (discussed below) and quantitative analysis in Figure 

2.12-2.14.  
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Figure 2.11 Image filtering and normalization steps of select images, calculated from Eq 1-4. 
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2.4.1.2 DSSIM analysis 

The goal of the analysis was to quantify fiber dynamics during dissipative self-assembly. Specifically, to 

quantify the fast dynamics occurring at the fiber-solution interfaces, and the slow dynamics occurring in 

the bulk of the fiber gel which can be seen visually in the CLSM video. Here, [a,b,c] = [0,1,1] was applied. 

This was done to avoid artifacts in the dark regions of the image which were unstable and susceptible to 

noise. [c1, c2, c3 ] = [ .0001, .0009, .00045] which are MATLAB default values for grayscale images. The 

Gaussian-weighted neighborhood was formed with a standard deviation of 3 pixels, which resulted in a 

19 x 19 pixel (2.47 x 2.47 µm) neighborhood. 

As discussed previously, the DSSIM image contains values between 1 and 0, where 1 represents a perfect 

dissimilarity and 0 represents a perfect similarity; the higher the DSSIM value, the more dissimilar the 

local neighborhoods of the images are, which represents regions of high dynamics. Comparison of the two 

images used to create the DSSIM image with the DSSIM image (Figure 2.12) show that regions of high 

fiber intensity in the CLSM image do not necessarily correspond to regions of high dynamics and that the 

fibers are most dynamic at the fiber-water interface.  
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Figure 2.12 Each panel shows CLSM image (t) on the top and (t + ∆t) on the bottom, with resulting DSSIM( 

t ,t + ∆t) image between. Left column, 90 s temporal offset. Right column, 3.75 s offset.  

Each DSSIM image was divided into 5 equal sections at 25 µm intervals from the left edge of the image. 

The mean DSSIM of each region was calculated for each set of images (t ,t + ∆t). This makes it possible to 

track the dynamic motion as a function of distance from the electrode surface over the course of the 
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movie. Note from Eq 5 that each image and therefore each feature is present in two calculations: first as 

(t + ∆t), and then again ∆t later as (t). This can result in periodic oscillation in the DSSIM average plot, as a 

bright, fast moving object passes through a region at (t + ∆t), and then again at (t) as seen in Figure 2.13f 

region 75 - 100 µm. This is most significant at high temporal offsets and fast-moving objects. Additionally, 

if there is a bright, fast moving object it will be counted “twice”, clearly seen in the CLSM video. Here, the 

same CLSM feature produces two bright feature DSSIM image. However, this still signifies high dynamics 

in the region which is the intended outcome of this analysis.  

The normalized CLSM images processed with Eqs 1-4 were also divided into 5 sections, and the mean 

normalized intensity of each section was plotted for the entire movie (Figure 2.14a,c). This analysis shows 

a temporal offset in the intensity increase of each region as the gel forms, which is the expected result. 

However, intensity analysis alone is highly susceptible to bright objects, seen in region 50 – 75 µm of S10b, 

and is unable accurately quantify the dynamics occurring in the dim region 100 – 125 µm relative to other 

regions. Figure 2.14 also shows that fiber dynamics do not necessarily correspond with an increase in 

intensity. In Figure 2.14c, region 50 – 75 µm is increasing in average intensity between 360 s and 540 s, 

while the DSSIM analysis in both Figure 2.13f and S10d show a decrease in dynamics in this region during 

the same timeframe. DSSIM analysis can also be tuned to analyze both fast and slow dynamics by tuning 

the temporal offset, demonstrated here by the different features captures in the plots produces in Figure 

2.13f with a 90 s offset and Figure 2.14d with a 3.75 s offset. These examples highlight the strength of the 

multicomponent DSSIM analysis for quantifying complex dynamics.  
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Figure 2.13 Active dynamic self-assembly fueled by electricity. (a) Processed CLSM snapshots highlighting 

the high dynamics for self-assembly at the gel front (details in Supporting Information). (b) Structural 

dissimilarity frame series generated by calculating the DSSIM of CLSM frames taken 90 s apart. Bright 

pixels represent regions of high structural dissimilarity between local areas in frames of comparison, 

which corresponds to fiber dynamics. (c–e) Snapshots showing different active fiber movements: 

simultaneous fiber growth and shrinkage ((c) green arrow for growing fiber and red for shrinking), waving 

(d), and curling/looping (e) (CLSM images rendered with γ = 0.45 and 150% hue saturation for fiber 

visualization). (f) Mean DSSIM in each region seen in (b). (The working electrode for (a–e) is out of frame 

on the left. Scale bar = 20 μm for (c–e). 
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Figure 2.14 Intensity analysis of normalized CLSM images and high temporal resolution DSSIM images. a, 

CLSM snapshots highlighting the high dynamics for self-assembly at the gel front, processed with Eqs 1-4. 

b, DSSIM frame series of images takes 3.75 s apart, which captures fast dynamics. c, mean normalized 

intensity in each region show in a. d, mean DSSIM in each region seen in b.  

A sliding-window Gaussian weighted mean was applied to the each DSSIM region-mean signal to smooth 

the data. A standard deviation of 3 data points was used to smooth each signal. Instantaneous peaks or 

valleys can be caused by one feature moving very rapidly. Ultimately, the same trends can be seen in both 

the raw and smoothed data, shown in Figure 2.15. 
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Figure 2.15 Comparison of raw signal to filtered signal used in Figure 2.13 and Figure 2.14f. Filtering was 

applied to smooth the signal via convolution of a normalized Gaussian Eq 7. 
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2.4.2 CLSM: Discussion 

The self-assembly dynamics observed in the CLSM video were quantified using DSSIM analysis (Figure 

2.13b,f). DSSIM is a standard measure of the difference between two images, which compares variation 

in the mean, variance, and cross-correlation between local regions of two images (Chapter 1). DSSIM 

images were obtained by comparing two frames taken 90 s (Figures 2.13) or 4 s (Figure 2.14) apart in a 

sliding-window calculation. The 90 s sliding-window calculation quantifies dynamics occurring over a large 

time window, while the 4 s sliding-window calculation captures the high temporal resolution dynamics. 

Each of the 240 DSSIM images was divided into five equally spaced regions with increasing distance from 

the working electrode, and the average DSSIM in each region is plotted for every frame (Figure 2.13, Figure 

2.14). 

The results show that the dissipative self-assembly system is highly dynamic, with the most dynamic 

changes at the fiber–water interface, which is seen for both the 90 and 4 s intervals. The dynamics 

decrease with distance from the fiber front, as can be seen with the time-delayed decline in DSSIM values 

starting with the 0–25 μm region, which is then echoed in the 25–50 and 50–75 μm regions. The 75–100 

and 100–125 μm regions start with low DSSIM values, which steadily increase as the fiber–water interface 

progresses further from the electrode until a peak is reached and then gradually decline. The data also 

shows that the dynamics at the fiber–water interface are highest in the early stages and gradually 

decrease over time. 

2.5 Conclusion 

In this chapter, I have demonstrated how DSSIM analysis can be applied to LCTEM and CLSM datasets to 

derive materials insight on electrically fueled dissipative self-assembly processes. In the LCTEM dataset, I 

used DSSIM analysis as a segmentation-free method to capture a wave-like progression of materials 

assembly. The wave first propagates towards the electrode at a linear rate, then reflects away from the 
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electrode at an accelerating rate. This feature suggests autocatalytic behavior from the system. My 

analysis also showed the material was most active within ~1 µm of the electrode. In the CLSM dataset, I 

used DSSIM analysis to quantify the electrically fueled formation of a fibrous gel. Because of the diffraction 

limitations of CLSM and the constantly changing material structures, segmentation of this dataset was not 

possible. However, DSSIM analysis was able to quantify the spatial and temporal features of the gel 

formation and showed a consistent rate of gel formation within ~100 µm of the electrode before 

decreasing. Together, the studies demonstrate how DSSIM analysis can be used to spatially and 

temporally quantify dissipative self-assembly processes in both LCTEM and CLSM datasets. From a wider 

perspective, these studies contribute towards understanding how the properties of dissipative systems 

can dynamically be controlled via electrical inputs. As electronic signals are found in many modern 

technologies, electrically-fueled dissipative materials may find potential applications in bioelectronics.15,16 
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CHAPTER 3: Tracking transient nanofiber ordered phase in time-resolved cryoEM 

images via template matching and data science 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This Chapter was adapted from a published article (PJ Hurst, JT Mulvey, RA Bone, S Selmani, RF Hudson, Z 

Guan, JR Green, JP Patterson. “CryoEM reveals the complex self-assembly of a chemically driven disulfide 

hydrogel” Chem. Sci. 2024, 15 (3), 1106–1116). Reproduce with permission from the Royal Society of 

Chemistry. © 2024 Royal Society of Chemistry 



 

53 

 

3.1 Abstract 

biological organisms are capable of creating dynamic structures through fuel-driven dissipative self-

assembly. In order to mimic this behavior, a variety of synthetic self-assembly processes have been 

developed that result in the transient formation of polymer structures. These structures form through 

two simultaneous reactions, forward and backward, which generate and break down self-assembled 

structures. Here, we present research on a chemically driven redox system where it was possible to 

separately perform the forward and backward reactions, or perform them synchronously. We discovered 

the existence of a transient stacked nanofiber phase, and designed a systematic time-resolved cryogenic 

transmission electron microscopy (cryoEM) study to track this phase over the course of the reactions. 

Consistent image acquisition conditions enabled a two-step quantitative image analysis pipeline, in which 

the stacked fiber phase was first segmented in each image using a cross-correlation based template 

matching. Data science was used to modify the segmentation algorithm to account for variations in TEM 

defocus, which is impossible to perfectly control when imaging the sample. In step two, the number of 

fibers contained in each of the stacked fiber domains was counted and labeled with the degree of stacking. 

Our key finding is that a thermodynamically unstable stacked fiber phase, briefly observed in the backward 

reaction, is sustained for ∼6 hours in the synchronous process. The collective data suggests that 

chemically driven self-assembly can create sustained morphologies not seen in thermodynamically stable 

assemblies by kinetically stabilizing transient intermediates.  

3.2 Introduction 

In Chapter 2, I discussed electrically-fueled dissipative self-assembly of the CSH/CSSC system. In those 

studies, the electrode was supplying the fuel to the forward assembly reaction.1,2 In this chapter, I will 

present a study on chemically-fueled dissipative self-assembly.3 In this case, the fuel being used to drive 

the forward reaction is the chemical fuel peroxide (H2O2), and dithiothreitol (DTT) is still present as the 

chemical reductant. A key benefit of this system is that it is possible to isolate the individual steps of the 
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reaction sequentially (Figure 3.1). It is possible to only mix H2O2 and CSH to initiate the forward reaction 

(assembly). Then the H2O2 can be removed and DTT can be added to evaluate only the backward reaction 

(disassembly). Alternatively, all components can be mixed from the start to study the synchronous 

reaction. Because the steps can be isolated, this system is ideal for studying the structural differences in 

the sequential (forward then reverse) reactions compared to the synchronous reaction.  

 

Figure 3.1 Chemically-fueled dissipative self-assembly. Left shows the sequential process separated into 

the forward assembly reaction and backward disassembly reaction. Right shows the combined 

synchronous reaction.  

This system was studied with a series of time-resolved cryoEM experiments. In cryoEM, the solution 

sample is rapidly frozen, or vitrified, which makes it possible to image snap-shots of the system during 

specific time points in the reaction. The advantage of cryoEM over LCTEM is that cryoEM provides higher-

resolution structural information on the system, and several images can be taken of the sample at 

different locations, rather than the single imaging location in LCTEM.4 Additionally, the electron beam 

cannot influence the reaction and will not affect the results. The main disadvantage of cryoEM is that each 

timepoint requires a new TEM sample to be prepared which is very time and labor intensive. This severely 

limits the temporal resolution of the technique. For a complete description of the material system and 

microscopy methodology, the reader is directed to the complete manuscript.5 The information presented 

here will focus primarily on the image analysis methods applied to the dataset. 
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In this chapter, I describe the image analysis and data science methods I used to analyze a time-resolved 

cryoEM dataset of the chemically-fueled CSH/CSSC system. The dataset consists of 770 cryoEM images 

collected across 24 timepoints of the reactions. The data collection was carried out at a standard set of 

microscope conditions which were ideal for large-scale data analysis. The goal of the analysis was to track 

the presence of a highly-ordered stacked fiber phase which appeared during the backward reaction and 

in the dissipative reaction. The first part of the algorithm uses cross-correlation based template matching 

to identify the stacked fiber phase in each image.6 The second part of the algorithm labels the degree of 

stacking in each domain, which quantifies the organization of the local fibers. The combined analysis 

reduces the 770-image dataset to a few simple graphs that are simple to interpret. The analysis clearly 

shows the dissipative system is sustaining this thermodynamically unstable phase, which was an 

unexpected and exciting result. 

3.3 Methods 

To quantify and track the fiber stacking, we developed an in-house MATLAB script to segment and analyze 

the stacked fiber phase. Stacked fiber domains were identified by first producing normalized cross-

correlation maps using 108 synthetic templates to select for the stacked phase at different fiber spacings 

and angles in each image (Figure 3.2). This was possible because all cryoEM images were captured at the 

ame nominal magnification (30k), so the pixel size of the fiber structures was consistent. It was found that 

the variation in microscope defocus impacted the normalized cross-correlation, so cross-correlation map 

thresholding was adjusted depending on the defocus of each image, which was estimated via radial 

integration of the fast-Fourier transform (Figure 3.4). Finally, fibers within the segmented domains were 

identified and labeled with the number of adjacent fibers, defined as the degree of stacking (DoS) (Figure 

3.6A–D and S18). The image analysis pipeline was used to analyze 770 cryoEM images across 24 

experimental conditions generating 398 million data points (Figure 3.6-3.9). The resulting analysis tracks 
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the structural evolution of the system by temporally quantifying the mean DoS (Figure 3.6E), DoS 

distribution (Figure 3.6F), and percent coverage (Figure 3.9) present at each timepoint. 

3.3.1 Selection of cryoEM parameters: 

Preliminary studies were carried out to optimize all cryoEM parameters. A TEM magnification of 30k was 

selected for magnification as it is the highest magnification that does not cause visible beam damage of 

the sample using low dose imaging. This allows a large area of the sample to be inspected in a single 

image. On average, each timepoint had approximately 30 images collected. We opted to capture 

additional timepoints rather than repeating the sample multiple times with a smaller number of time 

points. We were also sensitive to the image processing time and therefore had to find a balance between 

the number of images collected and time required for image processing. Our study encompassed 770 

images which were processed in parallel using the UCI HP3. Each image was allocated 30 cores, 100GB of 

RAM, and 1 hour of processing time. It took approximately 23,000 core-hours in total. Because of efficient 

parallelization, the time to complete the entire analysis was 5 hours for a given set of parameters. This 

processing collected 398 million data points with an average of over 500,000 per image with a very large 

standard deviation as images contain little to no stacking. 

3.3.2 Cross-Correlation Template Generation  

Several symmetric templates of alternating black and white stripes were systematically generated to act 

as templates of the stacked fiber phase. Fibers of different thicknesses were accounted for by generating 

template sets with three different pixel spacings: 15, 20, and 25 pixels (Figure 3.3). Furthermore, 

templates were rotated 175 degrees at 5-degree intervals, resulting in 36 templates for each pixel spacing, 

and 108 templates in total. Finally, the templates were masked to be circular which makes them 

symmetric to all fiber directions, such that diagonal fibers do not have higher cross-correlations compared 

to vertical fibers.  
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Figure 3.2 Image processing pipeline for stacked fiber phase segmentation. The image processing steps 

are outlined for a representative image. A more detailed description of each step can be found in the text 

below. The templates have been increased in size for display purposes. 

 

Figure 3.3 Individual segmentation maps for template pixel spacings of 15, 20, and 25 pixels. The 

templates have been increased in size by 4x for display purposes. The right figure shows an overlay of the 

3 individual maps and demonstrates how different template spacings are used to identify different fiber 

stack spacings in the image. Note some highlighted regions are single fibers and not fiber stacks, these 

will be removed from the dataset during fiber stack labeling.  

3.3.3 Stacked fiber phase segmentation 

Figure 3.2 shows the image processing pipeline applied to each cryoEM image. First, a high pass filter was 

applied to remove background features and create a flat image. Next, the normalized cross-correlation is 

computed between each template and the flattened image which results in a correlation probability map. 

The absolute value of this map is taken, which results in equal positive weight to correlation and 



 

58 

 

anticorrelation. This is helpful because a high probability is returned both when the black pixels line up 

with the fibers and white pixels line up with the fringes (correlation), and also when white pixels line up 

with the fibers and black pixels line up with the fringes (anticorrelation). Next, the correlation probability 

map is smoothed with a Gaussian blur to smooth out the high correlation regions. Then, a probability 

threshold was used to convert the probability map into a binary segmentation map. Different probability 

thresholds were used for each image and were based on the estimated defocus of the image (Figure 3.4, 

details in ‘Defocus Threshold Correction‘). Binary maps for the 36 angles are calculated individually for 

each of the 3 templated spacings, resulting in 108 total binary maps. Finally, angles are combined across 

the 3 template spacings by adding the binary maps together for each angle, producing 36 binary maps 

which contain information about both the fiber stack location and fiber stack angle. Note the angular 

information is used to label the degree of stacking, as discussed in ‘Labeling Degree of Stacking’. 

3.3.4 TEM defocus correction 

It is well known that the brightness of the Fresnel fringes around an object will depend on the defocus of 

the microscope; larger microscope defocus values lead to higher intensity of the Fresnel fringes. We found 

that TEM images taken at higher defocus values were more sensitive to the segmentation algorithm and 

had higher normalized cross-correlations values. This makes physical sense, because the algorithm relies 

on the pattern of alternating dark fibers and bright fringes. If the fringes are brighter in some images due 

to differences in focus, it will increase the values of the normalized cross-correlations. To minimize this 

effect, all images were taken around 11 μm of defocus using the autofocus feature in SerialEM. However, 

there was still significant variation in defocus between images. To account for this variation in the 

segmentation algorithm, we estimated the defocus of every image and adjusted the probability threshold 

for segmentation on a per-image basis.  
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We estimated the defocus of every image by first calculating the Fast Fourier transform (FFT) image and 

then taking a radial integration (Figure 3.4A-B). Then, we used a peak-finding algorithm to find the 

distance to the second peak in the radial integration, which is characteristic of the defocus value (Figure 

3.4C). The second peak was chosen because the first peak appeared distorted in many images, likely from 

high-frequency components generated by small features in the images such as fibers. We then took 

CryoEM images of amorphous ice with no sample at known defocus values to use as a calibration curve 

to convert the second-peak distances to the defocus of the images (Figure 3.4D). Note that our algorithm 

was unable to detect peaks below 7 μm of defocus, but this was below the range of defocus values found 

in the experimental datasets. Once all images were labeled with the defocus value, the probability 

threshold for segmentation was adjusted with an empirically determined function (Figure 3.4E).  

Originally, a static threshold of 0.145 was used to segment all images, which appeared to work well for 

most images. However, we observed that images taken at high defocus had inaccurate segmentation and 

were over segmented. We quantified this observation by examining the correlation between image 

defocus and the number of segmented pixels in an image, which should be random and uncorrelated 

features. To examine these features, we plotted the mean segmented pixels across images in different 1 

μm defocus ranges, from 7-8 μm, 8-9 μm, 9-10 μm etc. (Figure 3.4F). Defocus and mean segmented pixels 

should be uncorrelated features and yet there is clearly a trend when a static threshold of .145 was used; 

high defocus images had a greater number of segmented pixels. After the defocus threshold correction 

was applied, the trend was reduced and a more random correlation between defocus and the number of 

segmented pixels was observed (Figure 3.4F). Figure 3.4G shows an uncorrected image which was over 

segmented while Figure 3.4H shows more accurate segmentation after the defocus threshold correction.  
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Figure 3.4 Defocus correction for segmentation algorithm. A) Typical TEM image with B) corresponding 

FFT image. Blue line represents radial integration of the FFT, with the green dot labeling the calculated 

second-peak distance. C) Examples of several radially integrated FFTs from images at different defocuses 

with the calculated second-peak distance. D) Calibration curve which relates defocus value to the 

calculated second-peak distance. Points below 7 μm were omitted from the fit. E) Empirically determined 

curve which adjusts probability threshold for segmentation as a function of image defocus. F) Mean 

segmented pixels of images across different defocus ranges. There was a clear correlation in the 

uncorrected curve which has been removed in the corrected curve. Dashed line represents linear fit. Error 

bars represent standard deviation. G) Uncorrected image with threshold of .145 showing over 

segmentation compared to H) segmentation after defocus threshold correction.  

3.3.5 Labeling degree of stacking  

After the stacked fiber phase was segmented, the goal was to track how well-ordered the stacked phase 

was by quantifying the degree of stacking (DoS) within each fiber stack structure. The DoS is the number 

of fibers present in the local region of the stacked fiber phase. Higher degrees of stacking are more 

ordered and entropically less favorable than lower degrees of stacking. To understand how the structures 

were evolving during the sequential and synchronous processes, it was important to accurately quantify 

the amount and distribution of stacking present at each timepoint.  

The output of the fiber stack phase segmentation algorithm is 36 binary maps of the stacked phase at 

each angle. Each angle was analyzed individually. For each binary object in the segmentation map, the 
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stacked phase was cropped, then rotated to be oriented vertically. The rotation angle is equal to the 

rotation angle of the template. Once oriented vertically, a sliding window vertical integration was 

performed across 100 pixels (Figure 3.5A) to produce a high signal-to-noise 1D intensity profile (Figure 

3.5B). A peak-finding algorithm was applied to find the intensity valleys created by the fibers, which were 

then labeled (Figure 3.5D). This resulted in a local label for the number of fibers at every location in the 

stacked phase. Small gaps in the labeling resulting from noise and non-fiber objects were smoothed over. 

 

Figure 3.5 Labeling degree of stacking. A,B) snapshots of integrated profiles at different locations in the 

fiber stack. Fibers are labeled with orange dots. C,D) The number of fibers at each location is then counted 

and labeled.  

Once each of the 36 angles were analyzed, they were combined into a single DoS map. Because of the 

large number of angles used, the same fiber stack was often segmented and labeled by 2 or more different 

angles of the templates. To resolve this conflict between angles and prevent multiple counting, the 

maximum DoS was taken for each labeled pixel. This was done because the most fibers were counted 

when the angle of the template best matched the angle of the stacked phase, and the highest DoS was 

recorded.  
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3.4 Results  

The stacked fiber phase segmentation and labeling image analysis pipeline was applied to 770 CryoEM 

images across 24 experimental timepoints, generating 398 million DoS datapoints. A datapoint is defined 

as a pixel labeled with the DoS. A subset of labeled images is shown in Figure 3.7. The data generated 

from segmentation and labeling was used to track the structure of the stacked fiber phase across all 

timepoints in this study.  

We analyzed the mean DoS in each timepoint in order to clearly quantify the stacked phase of each 

process over time. The mean DoS presented in Figure 3.6E is determined by treating each image as an 

independent observation of the entire population of stacked fibers present within each timepoint. First, 

the “observed DoS” was calculated for each image by taking the sum of labeled DoS datapoints divided 

by the number of datapoints. By the central limit theorem, the set of observed DoS values should have a 

Gaussian distribution even though the population of fiber stacks does not have a Gaussian distribution.  

Next, the “mean observed DoS” was calculated for each timepoint, which is defined as the mean of the 

observations (Figure 3.6E). Importantly, this calculation gives each image (observation) an equal weighting 

in the calculation of mean observed DoS. This would assume each image contributes the same number of 

datapoints. However, due to the stochastic nature of the system, the distribution of datapoints is very 

heterogenous; some images contain a very small number of datapoints or no datapoints. To account for 

this and remove outliers, images contributing less than 2% of the total datapoints for a given timepoint 

were removed from the mean observed DoS calculation Next, we used the standard error and the t-

distribution to compute the 95% confidence intervals of the mean, which are represented by the black 

error bars in Figure 3.6E and Figure 3.8. Accordingly, we are 95% confident the mean DoS of the entire 

population will fall within the error bars.  
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In addition to this analysis, the “mean combined DoS” was calculated for each timepoint (Figure 20). In 

this case, the datapoints from each image within a timepoint were combined into a single large dataset. 

Then, the mean DoS value of this combined dataset was calculated (mean combined DoS). In this 

calculation, each observation is not given an equal weighting in the mean; images with a large number of 

stacked fibers will contribute more heavily to the mean combined DoS. For comparison, the mean 

combined DoS was plotted with the mean observed DoS (Figure 3.8, green dots). Figure 3.8 shows the 

mean combined DoS values fall within the 95% confidence interval of the mean observed DoS values for 

all conditions.  

Finally, we examined the distribution of DoS datapoints within each timepoint. Figure 3.6F shows a 

normalized bar graph of the distribution which clearly shows there is more high-order stacking in 

Sequential 1579 s, Synchronous 6060 s, and Synchronous 13440 s. Furthermore, we analyzed the amount 

of stacked phase present in the CryoEM images (Figure 3.9). For each timepoint, the binary labeled pixels 

in each image were combined and then divided by the total pixels (image resolution multiplied by number 

of images in the timepoint). In addition, the percent coverage was calculated individually for each image 

within a timepoint and used to calculate the standard deviation of coverage. Note the standard deviation 

of labeled pixels treats all DoS values binary values. 
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Figure 3.6 Quantitative image analysis of the stacked fiber phase. (A–D) Selection of labeled frames from 

key timepoints. Colored tinting corresponds to the degree of stacking. F = forward, B = backward, S = 

synchronous. (E) Mean DoS for each timepoint, high values indicate higher order in the system. Black error 

bars represent 95% confidence interval of mean. (F) DoS datapoint distribution normalized to 1 for 

comparison between timepoint. Scale bars 300 nm. 



 

65 

 

 

Figure 3.7 Examples of labeled images.  
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Figure 3.8 Display of Figure 3.6E with the mean combined DoS labeled for each timepoint (green dots). 

 

Figure 3.9 Density distribution of each timepoint, defined as the total number of labeled pixels divided 

by the total number of pixels in each timepoint. Black dots represent standard deviation of image 

densities within each timepoint. (*) represents standard deviation points omitted for visibility. 

3.5 Discussion 

The analysis reveals that both the sequential and synchronous processes show the presence of the stacked 

fiber phase but exhibit different temporal behavior. In the sequential study, the forward process shows a 

low mean DoS with distributions dominated by low-DoS (≤4), which comes from the random distribution 

of fiber locations and relatively weak inter-fiber interactions (Figure 3.6A). In contrast, the first timepoint 

in the backward reaction shows a sharp increase in mean DoS, indicating a substantial increase in inter-
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fiber interactions (Figure 3.6B and E). The later timepoints show the system returning to a low DoS 

distribution, supportive of the previous qualitative observations that the high-DoS (≥5) stacked fiber phase 

is transient (Figure 3.6E and F). 

In the synchronous process, the mean DoS plot shows a gradual shift towards higher DoS structures during 

the first hour. The 6060 s and 13440 s timepoints (Figure 3.6C and D) show a significant increase in 8+ DoS 

(Figure 3.6F and S21), and the 13440 s timepoint shows the highest mean DoS for all samples analyzed 

(Figure 3.6E). This observation suggests that certain conditions can be exploited to control the order and 

amount of stacked fiber phase present in the system. Later timepoints reveal a drop in stacked phase 

density (Figure 3.9), while some high DoS domains persist (Figure 3.6F). The data shows that the high-DoS 

structures are present for a period of >6 hours, which is substantially longer than the <600 s lifetime 

observed in the sequential system. The data also suggests that evolution of the stacked phase is a complex 

process. Figure 3.6E shows subtle increases and decreases in the synchronous data which may indicate 

the amount stacked fiber phase present in the system is oscillating. 

3.6 Conclusion 

In summary, we have compared the self-assembly mechanisms for a conventional sequential assembly–

disassembly process and a synchronous process. Image processing was used to track the presences of a 

thermodynamically unstable phase within the sequential and synchronous process. Importantly, the 

image analysis presented here was only possible due to careful collection of the data, which involved an 

initial trial-and-error stage to determine the best microscope conditions for quantitative image analysis. 

Once these conditions were determined, all images in the 24 experimental timepoints were collected at 

the same conditions. The results presented above were only possible to obtain because the data collection 

was designed from the start with the intention to perform quantitative image analysis and data science. 

These results contributed well to support the overall narrative, and made it possible for the scientific 



 

68 

 

community to easily interpret the trends occurring in the large cryoEM dataset of 770 images. The analysis 

also made it possible to easily compare the trends seen in cryoEM to the trends found in kinetic Monte 

Carlo simulations of this system (details in full publication). From a broader point of view, the overall 

findings presented here provide information on how to tune the reaction kinetics to select for and 

enhance the yield of a transient, well-ordered phase. We anticipate that these findings will also be useful 

for understanding how higher-ordered systems are maintained using synchronous chemistry and will aid 

in establishing tunable structure–property relationships in applied materials. 
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CHAPTER 4: Observation of liquid−liquid-phase separation and vesicle spreading 

during supported bilayer formation via liquid-phase transmission electron 

microscopy 
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4.1 Abstract 

Liquid cell transmission electron microscopy (LCTEM) enables the real-time visualization of nanoscale 

dynamics in solution. Here, we study the formation of block-copolymer-supported bilayers using LCTEM. 

We observe two formation pathways that involve either liquid droplets or vesicles as intermediates 

toward supported bilayers. In the first dataset, segmentation analysis is used to characterize vesicle 

spread rates and track the rupture of a vesicle membrane as it transitions into a bilayer. In the second 

dataset, a cross-sectional time series is used to show the origin of defect formation in a supported bilayer. 

Our results suggest that bilayer assembly methods that proceed via liquid droplet intermediates should 

be beneficial for forming pristine supported bilayers. Furthermore, this study demonstrates that 

supported bilayers inside the liquid cells may be used to image membrane interactions with proteins and 

nanoparticles in the future. 

4.2 Introduction 

Amphiphilic block copolymers (BCP) are polymers composed of 2 homopolymer blocks with different 

polarities that are covalently connected. Similar to lipids, amphiphilic BCPs are capable of self-assembling 

into a variety of hierarchical structures such as micelles, vesicles, and bilayers. The final structure depends 

on the thermodynamic conditions during the self-assembly process such as temperatures, block length, 

and solvent environment. It is also possible to induce a structural transition by changing the 

thermodynamic conditions, such as heating a solution of worms (cylindrical micelles) to produce micelles.1 

Furthermore, BCP self-assembly processes can be kinetically controlled by slowly or rapidly changing the 

thermodynamic conditions.  

BCP solid-supported bilayers are commonly studied for applications in microchannel transport and protein 

embedding.3  A common method of forming a bilayer is through rupturing a vesical onto a solid surface.4 

While this method has been widely adopted by the bilayer community, the exact mechanisms of vesicle 
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rupture are still unknown.5  Previous studies have observed this process with optical microscopy, but the 

diffraction-limited resolution hinders mechanistic insight.6  There have also been many attempts to model 

solid-supported vesicle rupture with molecular simulations,7  but the spatial and temporal scale of 

simulations are difficult to establish and verify without direct nanoscale observation.  

LCTEM offers an ideal environment to study vesicle interactions with a solid surface at nanoscale 

resolution. Aoon Rizvi of the Patterson Lab captured two bilayer formation pathways using LCTEM. These 

experiments were conducted on the BCP polystyrene-block-polyacrylic (PS200-b-PAA35) in a THF:dioxane 

solution undergoing a morphological transition during a solvent-exchange process, in which water is flown 

into the liquid cell to induce the transformation. In the first dataset, a vesicle can be seen rupturing and 

spreading across the chip surface. In the second dataset, liquid structures can be seen diffusing, 

coalescing, and then spreading to cover the entire chip surface to form a bilayer. The two bilayer 

formation mechanisms are illustrated in Figure 4.1. For a complete description of the material system and 

microscopy methodology, the reader is directed to the complete manuscript.8 The information presented 

here will focus primarily on the image analysis methods applied to the dataset. The text below described 

quantitative image analysis methods which were used to characterize and quantify these two different 

processes.  
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Figure 4.1 Schematic of the two pathways observed during bilayer formation. (a) Vesicle spreading: the 

block copolymers were observed to form vesicles that grew, ruptured, and spread to form supported 

bilayers. (b) Droplet spreading: the block copolymers were observed to undergo liquid–liquid-phase 

separation to form droplets that spread over the surface to form supported bilayers. 

4.3 Methods and Results 

The goal of this analysis was to study the kinetics of vesicle rupture by measuring changes in area and 

contrast of the particles (Figure 4.3). This required accurate segmentation maps – binary images which 

distinguish the particle from the background. A series of standard processing techniques were used to 

improve signal and correct for artifacts introduced from the liquid cell.9  Then, the Otsu method was used 

to segment the images by statistically calculating an intensity threshold to separate the object and 

background,10 and the resulting binary map was processed with morphological operations followed by a 

custom function to define the perimeter of the particle. The resulting segmentation maps were used to 

quantitatively analyze the changes in size and contrast of 4 individual particles in the experimental system 

and 2 particles from the control experiments. 

4.3.1 Image pre-processing 

The raw images were imported into MATLAB directly from the Digital Micrograph 4 image files without 

compression. They were then processed with standard processing techniques outlined in Figure 4.2. First, 

the 99.9% and .1% outliers were removed from the frame and replaced with the 99.9% and .1% value. 
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Next the images were aligned in the dataset. There is often camera drift over the course of the LCTEM, 

and this is likely the primary source of the global shift. Frame alignment was accomplished by finding the 

center of mass of the same particle in each frame, and then aligning based on the center of mass (COM). 

This was done iteratively, by first inverting the image so the dark pixels representing the particles became 

bright, meaning they had a high mass in the calculation. An initial COM guess was given manually for each 

particle. Then, a 329 x 329 pixels (729 nm by 729 nm) area around this COM guess was cropped, and the 

COM of the crop was calculated. The newly calculated COM was then used as the starting guess for the 

next iteration. This was done iteratively until the COM converged (the same COM was calculated for 

multiple iterations). Local pixels around the converged COM were calculated to ensure it was not a local 

minimum. This final COM was then used as the starting guess for the next frame, which continued until 

all COMs were calculated for each particle in each frame. Then images were aligned based on the COM 

location.  

After image alignment, the dataset was time-averaged using a sliding window calculation of 5 frames (10 

seconds). In this calculation new frame 1 is the average of frames 1-5, new frame 2 is the average of frame 

2-6, etc. This improved signal-to-noise ratio and segmentation reliability. Next, the intensity of each image 

was normalized with respect to an empty region of the cell adjacent to each particle. This was done to 

correct particle intensity values for the variation in thickness in different regions of the liquid cell. Before 

segmentation, the images were flattened to correct for the non-uniform illumination caused by the liquid 

cell. This was done in the local crop for each particle due to the large number of artifacts in the dataset. 

First, a local adaptive thresholding algorithm was used to get a rough segmentation map.11  Then the 

background of the rough segmentation map was fit with a first order plane to locally approximate the 

liquid cell gradient. Then the image was divided by the plane to remove the background and flatten the 

image. A flat image is needed for accurate threshold segmentation. The flat images were used for 
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segmentation, as well as the angular intensity map, but were not used for the contrast calculation (details 

on this in data analysis).  

4.3.2 Vesicle segmentation-based area and contrast analysis 

After processing the normalized images were converted to binary images. This was done using Otsu 

method thresholding,10 which finds a statistically significant value which divides the two classes: the object 

and the background. Next, binary operations were performed to identify a representative binary object 

map (Figure 4.2). First, all binary objects except for the largest were removed. Then image closing was 

performed,12 which was done to connect gaps in the perimeter of the object. Then the binary object was 

filled in. Finally, image opening was performed, which removed the sharp features from the edges of the 

image. This “minimum feature size” was applied to prevent random variations in the background to be 

included in the object mask. In the case where there is a sharp feature on the perimeter, smoothing the 

boarder will have very little impact on the area, average intensity, or angular intensity map.  

Once the binary maps were calculated for each particle in each frame, the particle perimeter was 

determined with a custom algorithm, highlighted in Figure 4.6. First, the binary mask of particle was 

transformed into polar space about the center of mass.13  The next goal was to define a continuous 

perimeter around the particle, which was challenging due to rupturing of the cell membranes leading to 

a discontinuous perimeter shown in Figure 4.6. This was corrected by a custom algorithm which moves 

the disconnected pixels upward one pixel at a time (iteratively from left to right, then right to left) until a 

continuous perimeter was defined in polar space, shown as the green line in Figure 4.6. Equivalent, this 

defines a maximum curvature which allows the perimeter to dynamically change as the structure evolves, 

but also prevents instability at gaps caused by ruptures in the membranes. This line was then transformed 

into cartesian space to define the perimeter of the particle. This was repeated for every particle in every 

frame. 
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Figure 4.2 Image processing pipeline for particle segmentation. The image processing steps are outlined 

for a representative image, which are described in more detail in the text above. This pipeline was applied 

to each particle of the study individually.  
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Figure 4.3 Vesicle spreading during bilayer formation. (a) Time series of Video 1: the colored arrows 

indicate each vesicle that was analyzed further, and the red dashed box highlights detector artifacts. (b) 

Time series of individual vesicles in Video 1 (15 e–/nm2·s). Colored outlines correspond to the arrows. (c) 

The area evolution of each vesicle shown above. The dashed line indicates a linear fit. (d) Ratio of average 

membrane contrast to membrane diameter. (e) The evolution of the spread rate for each vesicle shown 

above. 

The perimeters defined above were used for quantitative analysis. The pixel area of each mask was 

converted to area and used to generate the area plot (Figure 4.3c). Contrast was calculated with the 

temporally binned frames before flattening, described in the Image Processing section. Contrast is defined 

as 1 – I_particle / I_background,13 where I_particle is the average intensity in the binary mask, and 

I_background is the average intensity of the background adjacent to the particle. This definition of 

contrast is used to correct for the global fluctuations in intensity seen in Figure 4.3a and Video 1. For each 
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frame, the contrast was divided by the equivalent diameter, calculated as 2 * sqrt(area/pi). This was 

repeated for each particle. The plot of Spread Rate vs Time was generated from the derivative of the Area 

vs Time plot, but required additional signal processing for meaningful interpretation. A 1D Gaussian-

weighted sliding average was applied to the Area vs Time plot to smooth out frame-to-frame variations 

which would otherwise cause instability in the derivate. A normalized 1D Gaussian with a standard 

deviation of 21 frame (42 seconds) was convoluted with the signal before the derivative calculation. The 

raw vs filtered signal is shown in Figure 4.4. The data was extended at the boundary conditions for the 

calculation, and the first and last 21 points are removed in Figure 4.3 because of this boundary condition.  

 

Figure 4.4 Gaussian-Weighted sliding average for signal filtering prior to derivative calculation. Left shows 

unfiltered area calculation, while right shows the filtered signal which was used for the derivative 

calculation shown in Figure 4.3. 

The same segmentation and analysis methodology was applied to a particle in each of the control 

experiments (Figure 4.5). The only notable difference in segmentation methodology was the use of a 

watershed transform to disconnect touching particles. Analysis of the graphs show there is very little 

change in properties within the relevant experimental timeframe.   
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Figure 4.5 Quantitative analysis of a particle in each control experiment.  

4.3.3 Vesicles membrane rupture analysis 

Qualitatively, it is clear the vesicles in Figure 4.3 are changing in morphology as the solvent environment 

changes. The goal of this analysis was to visualize the change in structure by measuring the change in 

intensity at the wall of the vesicle (Figure 4.7).  

Particle 1 was further analyzed after the drift stabilization and processing described above. Once the 

continuous perimeter of the vesicle was defined, the perimeter was lower by 11 pixels (70 nm) in the polar 

transform to define the inner perimeter of the membrane (green lines in Figure 4.6). Next, polar 

transforms of the flat, normalized images were calculated (defined in the Image Processing section). Here, 

the origin of the polar transform is the origin of the image, which is located at the calculated center of 

mass of the vesicle in each frame (See Image Processing section). For each column of the polar transform, 

the normalized values between the top and bottom perimeter were averaged to determine the average 
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angular intensity of the membrane. The color of this average angular intensity was then mapped to the 

cartesian perimeter as a function of angle. Additionally, the average angular intensity profile from each 

frame was concatenated to produce an angular intensity map, which shows the change in membrane 

intensity as a function of time and angle for the entire dataset (Figure 4.7b). Figure 4.7c was produced by 

simply plotting the colored cartesian perimeters on a white background.  
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Figure 4.6  Image processing pipeline for defining particle perimeter from binary map. A combination of 

polar and cartesian transforms were used to define a continuous perimeter of each particle. The images 

above demonstrate how this works when there is a significant gap in the vesicle. The colormap produced 

from the column averaging in polar space was mapped to the perimeter based on angular position in 

cartesian space. 
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Figure 4.7 Membrane analysis of vesicle (V1). (a) Snapshots of the LCTEM Video 1 during the solvent 

exchange process. The outline intensity shows the integrity of the membrane; a high intensity of detected 

electrons means the membrane has been ruptured in that area. (b) Angular intensity map of the vesicle 

pictured above (more details in the SI). The red arrows correspond to the individual areas in the vesicle 

membrane where the rupture was observed. (c) Overlayed particle outlines for the selected frame (top) 

and all frames (bottom). 

We recognize there is some subjectivity in defining the membrane as 11 pixels (70 nm) from the polar 

transform of the segmentation map outline. This was chosen empirically to maximize signal at the 

membrane edge where the thinning and rupture is occurring. Below, we will also provide the angular 

intensity map for the entire pixel range, from the outermost pixel of the perimeter to the center of mass 

pixel (Figure 4.8, center). Here, we see contrast between thick and thin regions is reduced due to the large 

number of pixels, and because most pixels in the center of the vesicle are generally bright. This leads to 

reduced contrast between dense and thin sections. Also, structural changes taking place inside the vesicle 

are now considered in the calculation. For example, there is a reduction in rupture intensity at the 500 

second mark between 300 and 360 degrees, due to the vesicle wall caving inward and creating a region 

of high density here (See Figure 4.7a). While the signal strength changes, the same features can be seen 

in both angular intensity maps. This shows the features are not a result of membrane boundary selection. 

We also show the angular intensity map for the center of the vesicle, excluding the 11 pixels at the 

membrane edge (Figure 4.8, bottom). Here, the intensities are much brighter on average, and become 
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brighter as the vesicle expands. While the intensity does change at some angles as the membrane 

collapses inward, there are not as many features in this angular intensity map.  

 

Figure 4.8 Comparison of angular intensity map for different radial distances. Top shows the angular 

intensity map for the mean intensity values within 11 pixels (70 nm) of the perimeter in the polar 

transform. Center shows the angular intensity map for the mean intensity values from the perimeter to 

the center of mass pixel, average of 35 pixels (222 nm). Bottom shows the angular intensity map for the 

mean intensity values from the center of mass pixel to 11 pixels before the perimeter (the center of the 

vesicle excluding the membrane). All images are displayed on the same contrast boundaries.  

Although forcing the perimeter to be continuous (see Figure 4.6) will impact the resulting angular intensity 

map, as the intensity at each angle is calculated based on the location of the perimeter, Figure 4.9 shows 

the angular intensity map from the discontinuous perimeter, which was taken from the top pixels of the 

polar transform of each segmentation map. Note that because the perimeter may be discontinuous, the 
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radial distances of adjacent angles are not necessarily at similar radial distances. Here, most of the 

features are the same since many regions did not require any correction. The largest differences are 

between 300 and 360 degrees, where a significant correction was needed to make the perimeter 

continuous. Overall, the majority of the features are not affected by the continuous perimeter algorithm 

and are not dependent on this processing technique.  

 

Figure 4.9 Comparison of angular intensity map for different perimeter definitions. Top shows the angular 

intensity map for the mean intensity values within 11 pixels (70 nm) of the continuous perimeter in the 

polar transform (Figure 4.7b). Bottom shows the angular intensity map for the mean intensity values 

within 11 pixels (70 nm) of the discontinuous perimeter (details in Vesicle Segmentation section) in the 

polar transform.  

4.3.4 Video cross sectional time series analysis of bilayer formation 

The formation of the bilayer was characterized with image analysis techniques. We were interested in 

studying two events in the dataset – a boundary dissipation and a boundary formation. The goal of this 

analysis was to visualize the structural transformation occurring in each event by studying the changes in 

contrast (Figure 4.10). We applied a cross-sectional time series to Video 2 to generate a single image which 
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captured the temporal progression of both events to compare the structural rearrangement in the 

material.  

First, the frames were temporally binned by 3 frame (15.5 s) to improve the signal-to-noise ratio. Next, a 

Gaussian kernel with a first standard deviation of 5 pixels (5.4 nm) was convoluted with each frame 

(Gaussian blur) to reduce Gaussian noise. A cross sectional time series implemented using an in-house 

MATLAB script to examine two key events which occur during bilayer formation.13  In each case, the region 

was manually specified by 2 points forming a line, and a thickness in the region of analysis, shown by the 

green outline in Figure 4.10b,c. This region was converted to a vertical crop. For each frame, the vertical 

crop was averaged across each row, producing a 1D column of pixels. Each 1D vertical column was 

concatenated to produce a 2D image, where each column represents a unique frame (time point), and 

each row is the mean intensity of that location in the image. The intensity values in each final image were 

normalized between 0 and 1. This transforms the 3D video into a 2D video that can be easily interpreted. 
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Figure 4.10 LCTEM analysis of droplet spreading during bilayer formation. (a) Snapshots of the LCTEM 

Video 2 (11 e–/nm2·s) during the solvent exchange process. The blue and red boxes highlight examples of 

pristine bilayer formation and defect formation, respectively. (b) Close view of two droplets completely 

fusing together to form a homogeneous bilayer along with the cross-sectional time series of the 

highlighted green box to show a homogeneous bilayer area. (c) Close view of two droplets merging to 

form a bilayer boundary along with the cross-sectional time series of the highlighted green box to visualize 

boundary formation. 

4.3.5 Bilayer coverage calculation 

The percent coverage of the bilayer in the liquid cell viewing area was calculated based on the last frame 

of  Video 2 (Figure 4.10). The dark edges of the cell were omitted from the percent coverage calculation. 

The number of pixels representing the covered area (green tint) was divided by the number of pixels in 

the viewing area (the rest of the image, not including the edge of the cell). The result was 99.8% coverage 

of the bilayer (Figure 4.11).    
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Figure 4.11 Percent coverage of the bilayer in the viewing area for the last frame of Video 2. The covered 

area was segmented manually and given a green tint in the right image. 

4.4 Discussion 

Vesicle rupture is the most accepted mechanism for SB formation.14 The driving force for vesicle rupture 

is proposed to be the high curvature of the vesicles at the substrate-vesicle interface.15 Additionally, it has 

been reported that rupture and spreading occurs through the widening of a pore and attachment of the 

outer membrane surface to the substrate.15 The exposed edge is known to catalyze other vesicles to 

rupture due to the high energy conformation of lipids at the edge of a bilayer. This thermodynamically 

favors larger supported bilayers and makes smaller bilayers (diameter ≈ 300 nm) unstable.15 Our LCTEM 

data (Figure 4.3a), shows individual vesicles undergoing spreading and rupture. In this experiment we 

obtained a partially dry cell, which can be seen from the contrast gradient in the top left of the image 

series (Figure 4.3a).16,17 The area and membrane contrast of 4 individual vesicles within the wet areas of 

the cell were quantified using image analysis (Figure 4.3b-d). An in-house MATLAB script was developed 

to segment the vesicles across each frame in the dataset for quantitative analysis as described above. The 

data shows that the larger vesicles (V1 and V2) grow much faster than the smaller vesicles (V3 and V4) 

(Figure 4.3c). We have previously shown that for a vesicle growth mechanism, the ratio between the 

membrane contrast and the equivalent membrane diameter (C/D)  in the TEM images should increase as 
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the membrane diameter increases.13 This is mainly due to the increase in polymer volume fraction within 

the membrane as the solvent exchange proceeds. However, despite the large area increase for V1 and V2, 

V1 shows a decrease in C/D, and V2 shows virtually no change in C/D. This indicates that the vesicles are 

undergoing spreading rather than growth. Consequently, we can quantify the vesicle spread rate as the 

change in area vs. time (Figure 4.3e). The data shows there is a decrease in the spread rate of V1 and V2 

over the course of the experiment indicating the polymers are becoming kinetically trapped. V3 and V4 

are much smaller and show an increase in C/D with increasing diameters indicating they are likely 

undergoing growth and spreading during data collection. All block copolymer bilayers (Figure 4.3a) were 

< 500 nm in equivalent diameter which is interesting because it has previously been shown that lipid 

bilayers and not stable in this size range.18   

To interpret the membrane dynamics during rupture and spreading, a MATLAB script was developed to 

produce a time-resolved angular intensity map of the segmented membrane for V1 (Figure 4.6, Figure 

4.7). The data shows the vesicle spreading anisotropically, and that multiple localized regions in the 

membrane begin to thin before eventually rupturing between 400 and 500 seconds (Figure 4.7b, c). Other 

regions appear to be more fixed to the substrate, and do not significantly change over time (Figure 4.7c). 

It has previously been shown that the surface chemistry and binding affinity dictates whether vesicles 

undergo intact adsorption or SB formation.19,20 We believe our LCTEM data is a direct visualization of why 

substrate attachment is required for vesicle spreading. When the solvent exchange process is performed 

in a vial (i.e. when the vesicles are not adhered to a surface), the size of the vesicles increases with 

increasing amount of water addition, as determined by dynamic light scattering (Figure 4.8).21 However 

when the solvent exchange is performed and a vesicle is adhered to a surface at multiple locations, the 

size increase in these regions is hindered. This results in the formation of a supported bilayer through 

anisotropic swelling, rupture, and spreading. This mechanism has been previously discussed but not 

directly obsvered.22,23 
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In pathway 2 (Figure 4.10a) we observe the liquid-liquid phase separation (also known as coacervation) 

and the formation of droplets that diffuse across the surface, coalesce, and then spread to cover the 

surface. The resulting SB shows 99.8% surface coverage (Figure 4.11) and minimal nanoscale defects. We 

interpret the early-stage structures as liquid droplets based upon their dynamic motion during fusion. 

Coacervate droplets are typically thought to be membraneless and their spreading and fusion dynamics 

have been less studied compared to vesicles.24 In this dataset, droplets fuse together within a few seconds, 

which is much quicker than what is expected for block copolymer nanoparticles.25,26 Based on control 

experiments we believe that liquid-liquid phase separation occurs at ~10% water content (Figure 4.9). We 

have shown previously that nonionic BCP can form coacervates (stable droplets) in organic water mixtures 

where  slight variations in the water composition may shift the favored phase into the self-assembled 

phase.27  The droplet formation in the LCTEM experiment suggests that the solvent exchange rate was 

slow enough that the polymers are not kinetically arrested in the early stages of SB formation. Due to the 

fact that the liquid-liquid phase separation does not favor stable nanodroplets we were unable to perform 

the same electron dose control experiment. However, as the organic solvent content is higher for droplets 

than for vesicles, we believe that the vesicle control is valid as a guide for the droplet experiments (Figure 

4.5).  

These data show that droplet fusion and spreading can either lead to homogenous bilayers (Figure 

4.10a,b, blue region) or regions with defects (Figure 4.10a,c, red region). To better visualize the droplet 

fusion dynamics and defect formation, cross-sectional time series plots were created for both the red and 

blue regions (Figure 4.10b,c). The analysis of the blue region shows that fusion between the two droplets 

had already started before the droplets appeared in the viewing area of the cell (t < 1576 seconds). The 

higher contrast at the droplet interface indicates a higher polymer concentration and different polymer 

organization at the interface. In our previous studies we have performed self-consistent mean field 

calculations on similar di-block copolymer systems which show a direct relationship between polymer 
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concentration and contrast.13 Over time, the polymer density at the interface decreases, and the resulting 

supported bilayer region becomes homogeneous (t > 2000 seconds). The analysis of the red region shows 

droplet fusion occurs later in the dataset (t > 1800 seconds) and produces a dense region at the interface, 

which we interpret as a defect in the bilayer. This is likely due to the kinetically limited reorganization of 

polymers at droplet interface, which we have previously observed during the formation of block 

copolymer vesicles.13 However, the observations here indicate that premature organization at the droplet 

interface leads to defect formation in the final SB structure (Figure 4.10c).  

4.5 Conclusions 

We have demonstrated that LCTEM can be used to observe and quantify the formation of supported 

polymer bilayers with nanoscale resolution in real time. We observed two pathways of bilayer formation 

derived from vesicle spreading and droplet spreading. Image segmentation and contrast analysis was used 

to quantify individual vesicle spread rates and track the formation of membrane rupture points. This 

method could be extended to image lipid bilayer spreading, although lipids can be much more difficult to 

image.28,29 In addition, image analysis was used to visualize the formation of bilayers via the droplet 

spreading mechanism. The data and accompanying analysis suggest that defects form due to kinetically 

limited reorganization of polymers at droplet interfaces. Our observations make it clear that liquid-

precursors are important to form defect free supported bilayers when using the solvent assisted method. 

The examples presented here demonstrate how image processing algorithms can be used to quantify 

processes captured in LCTEM datasets and directly address materials science questions.   
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CHAPTER 5: Liquid electron microscopy with non-aqueous solvents: evaluating 

the beam-sample interactions of complex liquid structures                                                                             

 

 

 

 

 

 

 

 

 

 

 

 

 

This Chapter was adapted from a published article (Justin T Mulvey, Aoon Rizvi, Joseph P Patterson. “Liquid 

Electron Microscopy with Non-Aqueous Solvents: Evaluating the Beam-Sample Interactions of Complex 

Liquid Structures.” Microscopy and Microanalysis. 2023, 29 (Supplement_1), 1758–1760).  
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5.1 Introduction 

Advances in liquid cell transmission electron microscopy (LCTEM) have made it possible to study solution-

state processes in real-time with nanometer scale resolution.1 Recent LCTEM studies have shown that 

dissolved polymers can form liquid structures during self-assembly,2 which can be controlled to engineer 

the structure and properties of solid-state self-assembled structures.3 However, liquid structures can be 

difficult to study with LCTEM because solvent-electron interactions can introduce undesired beam effects 

such as local radiolysis, pH changes, and heating.4 A recent simulation study of aqueous and non-aqueous 

solvent radiolysis showed that during continuous irradiation, equilibrium radical concentration could vary 

by orders of magnitude between solvents, causing different degrees of damage to materials in solution.5 

Here, we experimentally evaluate beam interactions with liquid structures in non-aqueous media. We use 

LCTEM and quantitative image analysis to show the beam can control the nucleation of polymer-rich 

liquid-liquid phase-separated droplets, which is the first observation in non-aqueous LCTEM. 

Furthermore, we show the beam can be used to stimulate and study internal and external structural 

dynamics in complex phase-separated nanoscale droplets, which have been predicted in literature but 

never observed.6 

5.2 Methods and Results 

A DENSsolutions Ocean Holder with solvent flow capabilities was used to perform solvent exchange 

LCTEM experiments. First, 10 mg/ml of poly(lauryl methacrylate)-block-poly(benzyl methacrylate) (PLMA-

b-PBzMA) dissolved in dioxane was sealed between two SiN chips. The sample was inserted into the TEM 

and pure dodecane was flown into the tip of the holder to initiate solvent exchange with dioxane. After 8 

minutes of imaging at 13 e-/(nm^2 s), a polymer-rich droplet spread across the viewing area. Moving to 

an unimaged area of the cell resulted in the nucleation of more polymer-rich droplets, which then 
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coalesced and spread (Figure 5.1a). Polymer-rich liquid structures with similar characteristics have been 

reported in aqueous systems,7 but this is the first observation in non-aqueous media. 

 

Figure 5.1 A) LCTEM frame-series of dark polymer-rich liquid droplets nucleating, coalescing, and 

spreading under continuous irradiation from the beam. B) Polymer-rich droplet spreading while the beam 

is periodically blanked and unblanked. Time labels are experiment time. C) Frame-series of cropped 

images from droplet spreading shown in B). The green line labels the interface between the polymer-rich 

droplets and polymer-poor continuous phase. D,E) Boundary distance relative to the location in the first 

frame plotted as a function of experiment time (D) and beam irradiation time (E). 

Next, a dose study was performed to determine if the observed formation was a result of beam irradiation. 

The beam was moved to the edge of an already-formed polymer-rich droplet, then blanked and unblanked 

several times to evaluate if the droplet would continue to spread while the beam was blanked (Figure 

5.1b). Quantitative image analysis was used to track the position of the droplet edge during spreading 

(Figure 1c). Figure 5.1d shows there is only significant droplet growth when the beam is turned on. It also 

shows the growth is linear and the polymer-rich droplet is spreading at an average of 24.7 nm/s along the 

image diagonal (Figure 5.1e). The study demonstrates that growth is promoted while the beam is on, and 

continuous perturbation is required to study the growth of these structures. This indicates the beam is 

instantaneously shifting the local equilibrium to favor polymer-rich droplet formation. Note that 
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formation did not occur until 8 minutes into solvent exchange, suggesting both beam irradiation and a 

binary solvent system are necessary for polymer-rich droplet formation. 

The solvent system was changed to determine if different solvent-electron interactions would alter the 

beam effects. The same solvent exchange experiment was performed, but dodecane was replaced with 

hexane. In this system, the viewing area was covered by a polymer-rich continuous phase which contained 

light, phase-separated, polymer-poor droplet structures (Figure 5.2a,b). Upon irradiation, these structures 

dissolved back into a homogeneous, polymer-rich phase which is consistent with the previously observed 

behavior. Unlike the previous study, the polymer-poor liquid droplets were complex and contained 

internally phase-separated polymer-rich nanocompartments which are clearly seen in the first frame of 

each series. To our knowledge, this is the first observation of spontaneous phase-separated droplets 

forming with internal nanocompartments in block copolymer systems. 

 

Figure 5.2 A,B) Selected images from dose study of complex liquid structures with continuous irradiation 

(A) and pulsed irradiation (B). Green arrows indicate internal droplet coalescence and orange arrows 

indicate external droplet coalescence. Time labels are experiment time. C,D) Normalized image intensity 
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of frame-series for each dose study plotted against experiment time (C) and exposure time (D). Frame-

series shown in A,B) are distinguished with dashed lines.  

Several beam dose studies were conducted on the polymer-poor droplets as they dissolved back into the 

polymer-rich continuous phase (Figure 5.2a,b). In 17 dose studies the droplets were irradiated 

continuously, and in 4 dose studies the droplets were irradiated in intervals of 2.2 seconds followed by 

periodic lengths of no irradiation. Quantitative image analysis was used to compare the structural 

dissolution rate between different frame-series and evaluate if dissolution was taking place in the absence 

of the beam (Figure 5.2c,d). For each frame-series, the sum of intensities in each frame was divided by 

the sum of the initial frame, and the output was normalized between 0 and 1. The graphs show the 

structures dissolve at the same rate with respect to dose whether constant irradiation (Figure 5.2c) or 

pulsed irradiation (Figure 5.2d) was applied, confirming the dissolutions were a result of irradiation. 

5.3 Discussion 

Similar to the dioxane/dodecane experiment, we see local beam interactions shifting the thermodynamic 

state of the system to favor a homogenous polymer-rich phase. A closer examination of the frames-series 

reveals unique structural dynamics occurred during the beam-induced droplet dissolution, such as 

internal droplet coalescence and external droplet coalescence (Figure 5.2a,b). This is the first 

experimental observation of dynamics in multicompartment nanodroplets. From this study, the 

unperturbed stability of these complex nanostructures is unknown; it is unclear if the observed dynamics 

and dissolution would occur without irradiation or if the structures are stable indefinitely. In either case, 

it is clear the beam can shift the local equilibrium to stimulate and control structural dynamics. In future 

studies, controlled irradiation may be useful for analyzing and controlling solution-state dynamics to 

engineer complex liquid nanostructures. 
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