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Multiscale finite element methods for miscible

and immiscible flow in porous media

Ruben Juanes

Tadeusz W. Patzek

Department of Civil and Environmental Engineering

University of California at Berkeley

631 Davis Hall, Berkeley, CA 94720-1710

Abstract

In this paper we study the numerical solution of miscible and im-

miscible flow in porous media, acknowledging that these phenomena

entail a multiplicity of scales. The governing equations are conserva-

tion laws, which take the form of a linear advection-diffusion equation

and the Buckley-Leverett equation, respectively. We are interested in

the case of small diffusion, so that the equations are almost hyperbolic.

Here we present a stabilized finite element method, which arises from

considering a multiscale decomposition of the variable of interest into

resolved and unresolved scales. This approach incorporates the effect

of the fine (subgrid) scale onto the coarse (grid) scale. The numerical

simulations clearly show the potential of the method for solving mul-

tiphase compositional flow in porous media. In particular, the results

for the Buckley-Leverett problem are unparalleled.

key words: flow in porous media, conservation laws, multiscale phenomena,

finite elements, stabilized methods
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1 Introduction

One of the main difficulties when solving flow and transport in fractured

porous media stems from the fact that, very often, these processes are not

dominated by diffusion. This makes the mathematical problem almost hy-

perbolic, which naturally develops sharp features in the solution. Classical

numerical methods produce a solution that either lacks stability, resulting in

nonphysical oscillations, or accuracy, by showing excessive numerical diffu-

sion.

A huge number of publications, which we do not attempt to review here,

has emerged to provide a solution to this fundamental problem. Despite the

attention advection-dominated flow has received from the scientific commu-

nity in the past decades, there is still a need for new numerical techniques.

Modern characteristics methods like Eulerian-Lagrangian Localized Adjoint

Methods (ELLAM) [7] require a fine grid to accurately track the characteris-

tics in a highly nonlinear problem, and state-of-the-art stabilized methods like

Streamline-upwind/Petrov-Galerkin (SUPG) [5] or Galerkin Least Squares

(GLS) [16], are not as effective in the presence of reaction and production

terms [10].

Development of novel numerical methods for the complete equations of

multiphase compositional flow in multidimensions must necessarily start from

simplified models in one space dimension. These reduced model problems

should display, however, the key features which pose difficulties in obtain-

ing satisfactory numerical solutions such as, for instance, wild nonlinearity,

shocks or near-shocks, boundary layers and degenerate diffusion. The key

point of the proposed formulation is a multiscale decomposition of the vari-

able of interest into resolved (or grid) scales and unresolved (or subgrid)

scales, which acknowledges the fact that the fine-scale structure of the solu-

tion cannot be captured by any mesh. However, the influence of the subgrid

scales on the resolvable scales is not negligible. By accounting for the subgrid

scales, the oscillatory behavior of classical Galerkin is drastically reduced and

confined to a small neighborhood containing the sharp features, while the so-

lution is high-order accurate where the solution is smooth. This ensures that

2



the numerical solution is not globally deteriorated. The method does not

emanate from a monotonicity argument and, therefore, it does not rule out

small overshoots and undershoots near the sharp layers. These localized wig-

gles could be removed using a shock-capturing technique (see, e.g., [9] and

the references therein).

The mathematical and numerical formulations are described in Section 2,

within the unified framework of conservation laws. Under certain simplifying

assumptions, miscible flow takes the form of a linear advection-diffusion equa-

tion, while immiscible flow leads to the classical Buckley-Leverett equation.

Several representative numerical simulations for both miscible and immisci-

ble flow are presented in Section 3. In Section 4 we draw the main conclusions

of this investigation.

2 Numerical formulation

2.1 Initial and boundary value problem

We shall understand miscible and immiscible flow in porous media as scalar

conservation laws of the form [8]:

∂tu+∇ ·F = q, x ∈ Ω, t ∈ (0, T ], (1)

where u is the conserved quantity, F is the total flux of that quantity, q is the

rate of production (per unit volume), Ω is the spatial domain and (0, T ] is

the time interval of interest. With the usual notation, ∂t(·) refers to partial

derivative with respect to time. The total flux has the form [8,12,13]:

F = f(u)−D(u)∇u, (2)

where f is the hyperbolic part of the flux and D is the diffusion tensor. Both

are allowed to be nonlinear functions of the unknown u. For expositional

simplicity, we consider homogeneous Dirichlet boundary conditions only:

u = 0 on ∂Ω, (3)
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where ∂Ω is the boundary of the domain. The initial conditions are

u(x, t = 0) = u0(x). (4)

For the linear case, we introduce the following equivalent notation:

∂tu+ Lu = q, x ∈ Ω, t ∈ (0, T ], (5)

where Lu is the linear advection-diffusion operator in conservation form:

Lu := ∇ · (au−D∇u), (6)

and the advective velocity a and the diffusion tensor D are independent

of u. The boundary and initial conditions are given by Equations (3)–(4), as

before.

2.2 Weak form

The weak form of the mathematical problem relaxes the regularity require-

ments of the solution u. It is obtained by multiplying the differential equation

by a smooth function v which vanishes on the boundary ∂Ω, integrating over

the entire domain Ω, and applying Green’s formula to the flux term, to get

the integral equation:

∫

Ω

∂tu v dΩ−

∫

Ω

F · ∇v dΩ =

∫

Ω

qv dΩ. (7)

The relation above needs to be satisfied at each fixed time t for all func-

tions v belonging to some appropriate space of functions V . The choice

of the functional space V depends on the form of the diffusion tensor and,

for the purpose of this paper, it is sufficient to understand it as comprising

smooth-enough functions which vanish on the boundary. The weak form of

problem (1)–(4) is then stated succinctly as follows: seek u ∈ V for each

fixed t ∈ (0, T ], such that

(∂tu, v) + a(u, v;u) = l(v) ∀v ∈ V , (8)
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where

(∂tu, v) :=

∫

Ω

∂tu v dΩ, (9)

a(u, v;w) := −

∫

Ω

F · ∇v dΩ = −

∫

Ω

f(w) · ∇v dΩ +

∫

Ω

D(w)∇u · ∇v dΩ,

(10)

l(v) :=

∫

Ω

qv dΩ. (11)

The weak form of the linear problem given by (5)–(6) with boundary and

initial conditions (3)–(4) is to find u ∈ V for each fixed t ∈ (0, T ], such that

(∂tu, v) + a(u, v) = l(v) ∀v ∈ V . (12)

The only difference with respect to Equation (8) is that a(u, v) ≡ a(u, v;u) is

now a bilinear form.

2.3 Classical Galerkin method

With the notation above, it is straightforward to introduce the standard

Galerkin approximation. The method consists in seeking a solution uh in a

finite-dimensional subspace Vh of the original (infinite-dimensional) space V

such that, for each t:

(∂tuh, vh) + a(uh, vh;uh) = l(vh) ∀vh ∈ Vh, (13)

which constitutes a system of nonlinear ordinary differential equations. The

fully discrete system is obtained by further discretizing in time.

The important point is that the trial functions uh and the test func-

tions vh (usually piecewise polynomials) can only capture variability at a

scale larger than the mesh resolution. All subgrid variability, i.e., all fea-

tures at a scale smaller than the element size, is automatically neglected.

The well-known fact that the standard Galerkin method lacks stability for

advection-dominated problems can be understood in this context. If the sub-

scales are not captured adequately (or if they are completely ignored, as in

the classical Galerkin method), their effects can propagate to larger scales,

and deteriorate the coarse-scale calculations. In Section 3 we show examples

of this behavior.
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2.4 Multiscale approach

The fundamental principle of the multiscale approach is to acknowledge the

presence of fine scales, which cannot be captured by the mesh. This is partic-

ularly important for advection-dominated problems, where the solution de-

velops sharp features that would require an impractical grid resolution. The

formulation is based on a multiple-scale decomposition of any function v ∈ V

as [14]:

v = vh + ṽ, (14)

where vh is the part that can be resolved by the grid, and ṽ the unresolved

part. This decomposition is unique if we can express the original functional

space V as the direct sum of two spaces:

V = Vh ⊕ Ṽ , (15)

where Vh is the space of resolved scales and Ṽ is the space of subgrid scales.

The space Ṽ is an infinite-dimensional space that completes Vh in V . This

space is generally unknown, and it is the role of the subgrid model to provide

a successful approximation to it.

For the linear advection-diffusion problem, the multiscale decom-

position allows one to split the original problem into two. To this end, we

express u ≡ uh + ũ in (12), and exploit the linearity of all the terms with

respect to v. We obtain one equation for the grid scales,

(∂t(uh + ũ), vh) + a(uh + ũ, vh) = l(vh) ∀vh ∈ Vh, (16)

and one for the subscales,

(∂t(uh + ũ), ṽ) + a(uh + ũ, ṽ) = l(ṽ) ∀ṽ ∈ Ṽ . (17)

The former is a finite-dimensional problem, whereas the latter is infinite-

dimensional.

In this investigation, the subscale problem is modeled using an algebraic

subgrid-scale (ASGS) approximation (see [11,17] for the details):

ũ ≈ τRuh, (18)
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where Ruh := q− ∂tuh−Luh is the grid-scale residual, and the algebraic op-

erator τ is called intrinsic time (or relaxation time). The expression of τ

is one of the most difficult issues when devising stabilized methods. It

should depend on the parameters of the problem, and on the actual dis-

cretization. From a numerical standpoint, a proper formulation of the intrin-

sic time should enhanced stability of the coarse-scale calculations without

degrading the order of accuracy of the method. Here we use the follow-

ing expression, which has proven useful in the context of linear systems of

advection-diffusion-reaction equations [11]:

τ =

(

c1
‖D‖

h2
+ c2

|a|

h

)−1

, (19)

where h is a characteristic length of the element under consideration, and

c1 = 4, c2 = 2 for linear elements [10, 11]. This completes the description of

the subgrid scales.

After integration by parts on each element of the term a(ũ, vh) in Equa-

tion (16) and using a localization assumption [11], the equation for the grid

scales takes the form:

(∂tuh, vh) + a(uh, vh) +
∑

e

∫

Ωe
ũL∗vh dΩ = l(vh) ∀vh ∈ Vh, (20)

where L∗ is the adjoint of L, defined in Equation (6). When compared with

the standard Galerkin method, the multiscale approach involves additional

integrals evaluated element by element (compare Equation (20) with Equa-

tion (13)), which incorporate the effect of the subgrid scales ũ on the coarse

scales. The subscales ũ are modeled analytically and eliminated from the

global problem. With the algebraic approximation used here, they are pro-

portional to the grid scale residual (Equation (18)). The method is residual-

based and, therefore, automatically consistent.

The new term in the grid-scale equation (20) is very similar to that of

other stabilized formulations, the only difference being the form of the oper-
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ator multiplying the subscales [10]:

ASGS [14]:

∫

Ωe
ũL∗vh dΩ, L∗v := −a · ∇v −∇ · (D∇v), (21)

SUPG [5]:

∫

Ωe
ũ (−Ladvvh) dΩ, −Ladvv := −a · ∇v, (22)

GLS [16]:

∫

Ωe
ũ (−Lvh) dΩ, −Lv := −∇ · (av) +∇ · (D∇v). (23)

The multiscale approach has several advantages over other stabilized formu-

lations: (1) the stabilizing term arises naturally; (2) it is not restricted to

a particular subgrid model; and (3) the ASGS formulation is endowed with

better stability properties than SUPG and GLS [10,11].

Extension of the multiscale approach to the nonlinear problem given by

Equations (1)–(4) is not straightforward, mainly because the form a(u, v;w)

in Equation (8) is not linear in w. We propose an incremental formulation

and a multiple scale decomposition of the increment [17]:

u ≈ uh + δũ. (24)

The incremental subscale δũ may be understood as a perturbation. Since the

form a(u, v;w) is linear with respect to the second argument (test function),

the multiscale approach leads also to a grid-scale problem and a subscale

problem. Expanding the constitutive relations f(u) and D(u) to first order

about an approximate coarse-scale solution uh, we obtain equations which

are formally identical to those of the linear case (see [17] for the derivation),

except that now involve a linearized advection-diffusion operator:

Luhv := ∇ · [f
′(uh)−D′(uh)∇uh −D(uh)∇v] . (25)

In particular, the equation for the incremental subscales reads:

δũ ≈ τuhR(uh), (26)

where τuh (intrinsic time) is now a nonlinear function of the grid scale solu-

tion uh. The coarse-scale equation reads

(∂tuh, vh) + a(uh, vh;uh) +
∑

e

∫

Ωe
δũL∗

uh
vh dΩ = l(vh) ∀vh ∈ Vh, (27)
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where L∗
uh
is the adjoint of the linearized operator Luh , defined in Equa-

tion (25). Equations (26) and (27) describe the algebraic subgrid scale finite

element method for a nonlinear advection-diffusion equation, and are anal-

ogous to Equations (18) and (20) for the linear case. In the nonlinear case,

however, these equations need to be solved using an iterative procedure, such

as Newton’s method.

3 Representative numerical simulations

In this section we present some numerical simulations of miscible and im-

miscible flow. For simplicity, we shall concentrate on the one-dimensional

problem. Therefore, the flux vector and the diffusion tensor reduce to scalar

quantities. It is not the purpose of this paper to derive the equations for

miscible and immiscible flow (see [17] and the references therein for a deriva-

tion).

3.1 One-dimensional miscible flow

We consider one-dimensional flow of a tracer that is perfectly miscible with

water. Under certain assumptions, the governing equation of tracer transport

is a transient linear advection-diffusion-reaction equation:

∂tu+ vT∂xu−D∂xxu+ σu = q, x ∈ (0, L), t ∈ (0, T ] (28)

where u is the mass fraction of the tracer (tracer concentration), vT is the

total velocity of the mixture, D is the diffusion coefficient, σ is the decay

constant for a radioactive tracer, q is the distributed source term, and L is the

length of the 1D domain. The diffusion coefficient D is taken as a constant,

thus neglecting the effects of hydrodynamic dispersion. We intentionally

do not account for dispersion because it would smear out the fronts, thus

reducing considerably the numerical complexity of the problem.

We solve the problem with homogeneous Dirichlet boundary conditions:

u(0, t) = u(L, t) = 0, (29)
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Diffusion Advection Reaction

τd =
h2

4D
τa =

h

2vT
τr =

1

σ

Table 1. Expressions of the characteristic times for advection, diffusion and

reaction processes, taking as a reference length one-half of the

element size.

and the following parameters: L = 10, D = 10−3, q = 1. We investigate

two test cases, each one with different advective velocities vT and reaction

coefficients σ:

1. Dominant advection: vT = 1, σ = 0.

2. Advection and reaction: vT = 1, σ = 4.

In both cases we used a very coarse uniform grid of 40 linear elements (the

element size is h = 0.25), and a backward Euler time-stepping scheme with

constant time step δt = 0.1.

It is illustrative to compute the intrinsic times for each of the physical

processes involved, taking as a reference length one-half of the element size.

The expressions for the characteristic times are given in Table 1. From the

intrinsic times, the Courant, Peclet and Damkholer numbers can be calcu-

lated for each of the test cases (see Table 2). The Courant number indicates

whether the time discretization is fine enough to simulate the quickest pro-

cess. It is usually restricted to be less than 1.0 for stability or accuracy

requirements. The Peclet and Damkholer numbers measure, respectively,

the preeminence of advection and reaction with respect to diffusion. Values

of these dimensionless numbers much greater than 1.0 imply that the prob-

lem is not dominated by diffusion, suggesting that the solution might present

sharp features.

The expression of the intrinsic time used in the subgrid model (18) is the

harmonic mean of the characteristic time of each process [11], i.e.,

τ =
(

τ−1d + τ−1a + τ−1r

)−1
=

(

4
D

h2
+ 2

vT
h
+ σ

)−1

. (30)
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Courant # Peclet # Damkholer #

Co := δt/τmin Pe := τd/τa Da := τd/τr

1. Dominant advection 0.8 125 0

2. Advection-reaction 0.8 125 67.5

Table 2. Courant, Peclet, and Damkholer dimensionless numbers for each

test case of the linear advection-diffusion-reaction problem.

The expression above generalizes Equation (19) for cases when a reaction

term is present, and provides a physical interpretation of the intrinsic time

used in the multiscale approach.

3.1.1 Test Case 1: Dominant advection

The governing equation is (σ = 0 in Equation (28)):

∂tu+ vT∂xu−D∂xxu = q, (31)

and the concentration is initially zero everywhere. For early times, the

behavior of the solution is as follows:

1. Away from both boundaries. Because the initial concentration is uni-

form, and so is the source term, the concentration gradients will be zero

as long as the region is not affected by the boundaries. Since ∂xu ≈ 0,

the equation reduces to:

∂tu ≈ q. (32)

Therefore, the solution consists in a plateau, rising at a rate of q =

1 concentration units per unit time.

2. Near the left (inlet) boundary. Physically, what happens is that water

with zero concentration from the inlet boundary “washes” water with

tracer inside the domain. A steady tracer profile is established near the

inlet, accommodating the effects of advection and distributed source.

Since the concentration profile is steady (∂tu ≈ 0) and diffusion is neg-

ligible (D ≈ 0), the approximate governing equation for this conditions
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is:

vT∂xu ≈ q. (33)

The solution near the left boundary is, thus, a ramp of slope q/vT = 1.

3. Near the right (outlet) boundary. In the neighborhood of this boundary,

diffusion cannot be ignored. A boundary layer develops to connect the

solution far away from the boundary (given by the rising plateau) to

the Dirichlet boundary condition. The width of this layer is of the

order of D/vT = 10
−3.

For long simulation times, steady-state conditions are reached when

the effect of the inlet boundary is felt at the outlet. The solution then consists

of a ramp of slope q/vT = 1 and a sharp boundary layer of width ∼ D/vT =

10−3.

Solution by the Galerkin method and the algebraic subgrid scale (ASGS)

method are shown in Figure 1 at three different times (t = 2, t = 5, and

steady-state). At time t = 2, the standard Galerkin solution is wildly oscil-

latory. Oscillations are more pronounced near the outlet face, but significant

in more than half of the computational domain. For later times, the solution

is globally polluted with nonphysical oscillations. The oscillatory behavior

arises because the method lacks stability: the boundary layer cannot be re-

solved with the discretization used (the boundary layer width is two orders

of magnitude smaller than the element size), and this loss of accuracy at the

subgrid scale “propagates” to degrade the coarse-scale calculations.

On the other hand, the solution obtained by the ASGS method is perfectly

nonoscillatory. The calculated concentration profiles reproduce the transient

behavior described above: a ramp near the inlet boundary, a rising plateau

in the center region, and a sharp layer at the outlet boundary. The slope

of the ramp and the rate of increase of the plateau concentration agree with

the predicted values. Moreover, the boundary layer is reproduced in the best

possible way given the actual discretization: it is captured with just one

element, and without a single overshoot.
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Figure 1. Linear advection-diffusion-reaction with sources. Test case 1:

dominant advection. ASGS vs. Galerkin solutions at three dif-

ferent times.
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3.1.2 Test Case 2: Dominant advection and reaction

The governing equation is the full Equation (28), with zero initial and bound-

ary conditions. We can identify the following features in the solution:

1. Away from both boundaries. Using the same arguments as before, this

is a region of uniform concentration u∗, described by the initial value

problem:
du∗
dt
+ σu∗ = q, u∗(t = 0) = 0. (34)

The solution is:

u∗ =
q

σ

(

1− e−σt
)

, (35)

so the rising plateau tends asymptotically to a steady value of q/σ =

0.25.

2. Near the left (inlet) boundary. It is difficult to obtain an analytical

description of the solution during the transient phase. However, when

steady-state conditions are reached (∂tu = 0) and neglecting the effects

of diffusion, the governing equation reduces to:

vT
du

dx
+ σu = q, u(x = 0) = 0. (36)

The solution to the problem above is the concentration profile:

u =
q

σ

(

1− e
− σ
vT

x
)

, (37)

The width of this profile can be estimated by the value of x such that

u ≈ 0.95umax, which gives a width of ∼ 0.75.

3. Near the right (outlet) boundary. The solution consists of a boundary

layer with the same characteristics as that of Case 1.

In Figure 2 we show the results obtained with the classical Galerkin

method and the ASGS approach, at three different times (t = 0.2, t = 0.4,

and steady-state). The standard Galerkin solution reproduces the rising

plateau, and it captures the structure of the solution at the left boundary.

We recall that, for the parameters used in this simulation, the concentration
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Figure 2. Linear advection-diffusion-reaction with sources. Test case 2:

combination of advection and reaction. ASGS vs. Galerkin so-

lutions at three different times.

profile at the inlet has a width of the order of 2 or 3 elements. However, the

classical Galerkin method displays nonphysical oscillations at the right end,

which propagate well into the domain. This nonlocal oscillatory behavior

denotes the lack of stability of the method, and its inability to appropriately

“damp out” subgrid effects.

By contrast, the ASGS solution is accurate and stable: it captures sharply

all the features of the solution, and does not present spurious oscillations. It

is important to note that the ASGS formulation does not introduce additional

computational cost with respect to the classical Galerkin method.

3.2 One-dimensional immiscible flow

Flow of two incompressible immiscible fluids ignoring gravitational effects

is described, using the fractional-flow approach [8], by an elliptic “pressure”

equation and a parabolic “saturation” equation. In the one-dimensional case,

the pressure equation has a trivial solution, as the total velocity depends
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only on the boundary conditions (see [8, 17] for the details). The saturation

equation takes the form of a nonlinear advection-diffusion scalar conservation

law:

∂tu+ ∂x (f(u)−D(u)∂xu) = q, x ∈ (0, L), t ∈ (0, T ], (38)

where u is the water saturation, q is the distributed source term. Functions f

and D take the following expressions:

f(u) = vT
λw

λw + λo
, (39)

D(u) =
λwλo

λw + λo

k

φ
(−P ′

c) , (40)

where vT is the total velocity (assumed constant and known from the pressure

equation), λα is the mobility of the α-phase, k is the intrinsic permeability,

φ is the porosity, and P ′
c is the derivative of the capillary pressure with respect

to saturation. The fractional flow function f is typically S-shaped and, thus,

nonconvex. We shall consider the following model [12,18] (Figure 3):

f(u) = vT
u2

u2 + µ(1− u)2
, (41)

where µ is the viscosity ratio, taken here as 1. The diffusion coefficient D,

which arises from capillarity effects, is typically degenerate at the endpoint

saturations, i.e., it vanishes for u = 0 and u = 1, and is positive otherwise [8].

To mimic this behavior, we choose the following expression [12] (Figure 4):

D(u) = εu(1− u). (42)

We solve Equation (38) on the unit segment Ω = [0, 1] with Dirichlet

boundary conditions u(0, t) = 1, u(1, t) = 0, and zero initial conditions. The

total flux is vT = 1, the distributed source term is q = 0, and the constant in

the degenerate diffusion coefficient is ε = 10−4. We used a very small value

of ε to minimize the effects of capillary pressure and solve the near-hyperbolic

problem.

The diffusion-free problem, or Buckley-Leverett problem [6], admits a

straightforward analytical solution. During the transient phase (before

breakthrough), the solution consists of a rarefaction fan and a shock. Both
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Figure 3. Fractional flow function f used in the immiscible flow simula-

tions. The function is typically S-shaped and, thus, nonconvex.

0 1
0

0.25

u

D
(u

) /
 ε

Figure 4. Capillary diffusion function D used in the immiscible flow simu-

lations. The function typically vanishes at the endpoint satura-

tions, and is positive elsewhere.
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the shock speed and the post-shock value are constant, and easily computable

from the flux function [18]. As a result, the solution “stretches” with time

in a self-similar fashion. For long simulation times (after breakthrough),

the system reaches a quasi-steady state. Dirichlet boundary conditions are

particularly challenging, because they force a very fast initial transient at

the inlet, and a sharp boundary layer at the outlet after breakthrough.

This problem “exhibits several difficult features beyond the usual ones of

advection-dominated flow: degenerate diffusion, sharpening near-shock solu-

tions, and capillary outflow boundary layers” [12]. Numerical solutions to

the Buckley-Leverett problem include the early works of Todd et al. [20],

Aziz and Settari [2,19] and, more recently, Dahle et al. [12], and Binning and

Celia [3].

Since we use a very small value of the parameter ε, capillary diffusion

effects do not greatly influence the global structure of the solution. However,

capillarity is not negligible in the neighborhood of sharp features, because

of the extremely high saturation gradients. In particular, the width of the

traveling shock (before breakthrough) and the boundary layer at the outlet

face (after breakthrough) are of the order of ε/vt = 10
−4. Of course, resolving

the fine-scale structure of the solution would require elements smaller than

this length. This is not feasible in practical problems, and the goal is to

obtain an accurate numerical solution on a coarse grid, which preserves the

global structure of the exact solution.

Results for a very coarse grid (Ne = 20, δt = 0.01, Figure 5) and a finer

grid (Ne = 500, δt = 0.0005, Figure 6) are provided, which correspond to

element Peclet numbers of Pe ≈ 2, 500 and Pe ≈ 100, respectively.1 In all

cases we used a backward Euler time-stepping scheme. The expression of the

relaxation time used in the ASGS formulation is:

τuh =
(

τ−1d + τ−1a

)−1
=

(

4
D(uh)

h2
+ 2

a(uh)

h

)−1

, (43)

where the “advective velocity” a(uh) comes from the proposed linearization

1This range of Peclet numbers is to be compared with that of simulations using char-

acteristics methods [3, 12], where the highest Peclet number considered is about 2.
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Figure 5. One-dimensional immiscible flow. The classical Galerkin solution

and the ASGS solution on a very coarse grid (20 linear elements)

are compared with the Buckley-Leverett solution for transient

and quasi-steady conditions.

of the problem, and is given by:

a(uh) = f ′(uh) +D′(uh)∂xuh. (44)

In Figure 5, the numerical solutions obtained by the standard Galerkin

method and the ASGS method on the coarse grid are compared with the an-

alytical solution of the hyperbolic problem. The classical Galerkin method

produces a big overshoot and a nonphysical saturation plateau upstream

of the front during the transient state (shown is a snapshot of the solu-

tion at t = 0.4). More noticeably, it gives a completely oscillatory solu-

tion after breakthrough (the results are displayed at t = 1). On the other

hand, the ASGS solution is not globally polluted with oscillations, and pre-

serves a sharp definition of the saturation front and the boundary layer.

The ASGS solution is remarkably accurate wherever the actual solution is

smooth (i.e., along the rarefaction fan), even though an extremely coarse

mesh of just 20 linear elements was used. The oscillatory behavior of the
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Figure 6. One-dimensional immiscible flow. The ASGS solution on a finer

grid (500 linear elements) is compared with the Buckley-Leverett

solution for transient and quasi-steady conditions. The classical

Galerkin method did not converge for t = 1.

numerical solution is confined to a single undershoot at the downstream end

of the traveling shock, and a single overshoot at the boundary layer for the

long-time solution.

These observations are further confirmed by the simulations on a finer

grid (500 linear elements, Figure 6). In this case, the standard Galerkin

method did not converge at all for t = 1 and, thus, is not shown in the

figure. The most important feature of the ASGS solution is that the advanc-

ing front (before breakthrough) and the boundary layer (after breakthrough)

are captured sharply, avoiding the excessive smearing of traditional upwind

formulations. The localized wiggles that remain in the solution can be suc-

cessfully removed by using a shock-capturing technique [17], which introduces

numerical dissipation only in the neighborhood of discontinuities [9].

A Newton scheme was used in all cases to solve the system of nonlinear

algebraic equations. In Figure 7 we show the evolution of the L2-norm of
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Figure 7. One-dimensional immiscible flow. Evolution of the Newton iter-

ative scheme for the standard Galerkin and ASGS methods on

the coarse grid, for two typical time steps (t = 0.4 and t = 1).

Convergence is monotinic and quadratic in both cases.

the residual for two typical time steps (t = 0.4 for transient conditions, and

t = 1.0 for quasi-steady conditions) of the coarse grid simulations. The main

observation is that convergence is monotonic and asymptotically quadratic

for both methods (classical Galerkin and ASGS). The additional stabilizing

term of the ASGS formulation does not degrade convergence of the Newton

iterative scheme. On the contrary, convergence of the ASGS method on the

finer grid is also quadratic at all times, whereas the standard Galerkin method

fails to converge shortly after breakthrough, due to unbounded growth of

spurious oscillations.

4 Conclusions

We have presented a paradigm for the numerical solution of nonlinear conser-

vation laws, which is based on a multiscale decomposition of the variable of

interest, and applied it to the problems of miscible and immiscible two-phase

flow in porous media. The main idea is to acknowledge that the fine-scale
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structure of the solution cannot be captured by any grid, and to incorporate

the net effect of the subgrid scales onto the scales resolved by the mesh [14,15].

An algebraic approximation of the subscales [11] is used to model subgrid

variability. The key parameter of the formulation is the intrinsic time τ ,

which is calculated as the harmonic mean of the characteristic times of dif-

fusion, advection and reaction at the length scale of the element size. This

multiscale approach leads to stabilized finite element methods with excellent

properties. To the best of our knowledge, this approach is entirely new in

the context of flow in porous media.

The formalism of the multiscale approach is very general, and several

issues need to be investigated further. Of particular interest is the develop-

ment of alternative subscale models. In this paper, we focussed our attention

on the efficient numerical solution of standard mathematical formulations of

miscible and immiscible flow. The only link to the physical processes at the

micro-scale was through the expression we used for the intrinsic time. The

multiscale framework could be used, however, to incorporate physically-based

models of micro-scale processes in the field-scale equations.

From the standpoint of numerical methods, the multiscale approach con-

stitutes also a paradigm for a posteriori error estimation [1], shock-capturing

techniques [17], and temporal integration [4]. We are now extending this

methodology to multiphase compositional flows in several dimensions.

Nomenclature

Roman letters

a(·, ·, ·) = form in the weak formulation

a = advective velocity, L/t

c1, c2 = constants in the definition of τ , dimensionless

Co = Courant number, dimensionless

D = diffusion tensor, L2/t

Da = element Damkholer number, dimensionless

f = hyperbolic part of the flux F , L/t

F = total flux of u, L/t
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h = characteristic length of an element, L

k = absolute permeability tensor, L2

L = linear advection-diffusion operator, 1/t

L∗ = adjoint of L, 1/t

Luh = linearized advection-diffusion operator, 1/t

L∗
uh
= adjoint of Luh , 1/t

l(·) = linear form in the weak formulation

Ne = number of elements, dimensionless

Pc = capillary pressure, m/Lt2

Pe = element Peclet number, dimensionless

q = distributed source term of u, 1/t

R(uh) = grid-scale residual, 1/t

t = time, t

T = time interval, t

u = generic conserved quantity, dimensionless

uh = grid-scale part of u, dimensionless

ũ = subgrid-scale part of u, dimensionless

u0 = initial conditions of u, dimensionless

vT = total fluid velocity, L/t

V = space of trial and test functions

Vh = space of grid-scale functions

Ṽ = space of subgrid scales

x = space coordinate, L

Greek letters

δ = increment

λw, λo = relative mobility of water and oil, Lt/m

µ = viscosity ratio, dimensionless

τ = relaxation time, t

φ = porosity, dimensionless

Ω = spatial domain, L in 1D, L2 in 2D, L3 in 3D

∂Ω = boundary of the domain
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