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ABSTRACT OF THE DISSERTATION

Computational Tools for Chemical Reactions: Simulation & Prediction

By

David Fooshee

Doctor of Philosophy in Computer Science

University of California, Irvine, 2017

Professor Pierre Baldi, Chair

Achieving human-level performance at predicting chemical reactions remains an open prob-

lem with broad potential applications. Here we describe a deep learning-based tool for

chemical reaction prediction and product identification. Significant efforts were made to

curate and refine a new, high-quality data set of hand-selected chemical reactions written

at the level of elementary electron movements. Using deep artificial neural networks trained

on this data, we demonstrate a high degree of accuracy at predicting real-world reactions.

Because predictions are made at the elementary step level, they can be chained together to

form multi-step reaction pathway searches, to help identify unknown side products.

We also present a computational brewing application, COBRA, capable of simulating com-

plex chemical mixtures. We demonstrate its efficacy at modeling both the photooxidation

of isoprene, and the oxidation of squalene in the presence of ozone, by comparing predicted

results with results obtained from high-resolution mass spectrometry.

In addition, we address the problem of atom-mapping for chemical reactions, by designing a

new atom-mapping algorithm that can be used to annotate unmapped reactions.

x



Chapter 1

Introduction

Predicting, modeling, and understanding chemical reactions are tasks that present many

interesting challenges – and opportunities – for computational approaches. Presented in

this dissertation are several computational tools and algorithms designed to address these

challenges.

1.1 Dissertation Outline and Contributions

1.1.1 Atom-Mapping for Chemical Reactions

The purpose of this work is to take a significant step towards solving the atom-mapping

problem. Plainly stated, in a balanced chemical reaction where all the atoms are accounted

for, the atom-mapping problem is the problem of constructing a one-to-one map between all

atoms on the left-hand (reactants) side and the right-hand (products) side. Our approach

uses a combination of maximum common chemical subgraph search, and minimization of

an assignment cost function derived empirically from training data. On large test sets

1



with thousands of reactions randomly sampled from the SPRESI commercial database, we

demonstrate up to 36% greater accuracy compared to existing methods.

1.1.2 Computational Chemical Reaction Simulation

Atmospheric organic aerosols (OA) represent a significant fraction of airborne particulate

matter and can impact climate, visibility, and human health. These mixtures are diffi-

cult to characterize experimentally due to the enormous complexity and dynamic nature

of their chemical composition. We introduce a novel Computational Brewing Application

(COBRA) and apply it to modeling oligomerization chemistry stemming from condensation

and addition reactions of monomers pertinent to secondary organic aerosol (SOA) formed

by photooxidation of isoprene.

1.1.3 COBRA Modeling of Atmopheric Squalene Oxidation

We apply our Computational Brewing Application (COBRA) to simulate the oxidation of

squalene in the presence of ozone, and compare predicted results with those observed by

high-resolution mass spectrometry experiments. COBRA predicts over one billion molecular

structures between 0-1450 Da, which correspond to about 27,000 distinct elemental formulas.

Over 83% of the squalene oxidation products inferred from the mass spectrometry data

are matched by the simulation. Simulation indicates a prevalence of peroxy groups, with

hydroxyl and ether groups being the second-most important O-containing functional groups

formed during squalene oxidation.

2



1.1.4 Deep Learning for Chemical Reaction Prediction

In this work, we apply deep learning to the prediction and ranking of elementary chemical

reactions. By chaining sequences of elementary reactions, we can further predict multi-step

reaction transformations. Furthermore, given a set of reactants, and a set of unknown mass

targets, we can search for sequences of elementary reactions, i.e. reaction pathways, leading

to the formation of those targets. We demonstrate significantly greater prediction accuracy

on a benchmark data set, when compared with shallow neural network architectures. Finally,

we demonstrate a new approach to predicting reactive sites using recurrent neural networks,

specifically long short-term memory (LSTM) architectures.[57, 50]

3



Chapter 2

Atom-Mapping for Chemical

Reactions

Large databases of chemical reactions provide new data-mining opportunities and challenges.

Key challenges result from the imperfect quality of the data, and the fact that many of these

reactions are not properly balanced or atom-mapped. Here we describe ReactionMap, an

efficient atom mapping algorithm. Our approach uses a combination of maximum common

chemical subgraph search, and minimization of an assignment cost function derived empir-

ically from training data. We use a set of over 259,000 balanced, atom-mapped reactions

from the SPRESI commercial database to train the system, and we validate it on random

sets of 1,000 and 17,996 reactions sampled from this pool. These large test sets represent a

broad range of chemical reaction types, and ReactionMap correctly maps about 99% of the

atoms, and about 96% of the reactions, with a mean time per mapping of two seconds. Most

correctly mapped reactions are mapped with high confidence. Mapping accuracy compares

favorably with ChemAxon’s AutoMapper versions 5 and 6.1, and the DREAM web tool.

These approaches correctly map 60.7%, 86.5%, and 90.3% of the reactions, respectively,

on the same data set. A ReactionMap server is available on the ChemDB web portal at

4



http://cdb.ics.uci.edu.

2.1 Introduction

Large databases of chemical reactions, such as Beilstein (Reaxys/Elsevier) and SPRESI (In-

foChem), create several new data-mining opportunities and challenges. One major oppor-

tunity is that by mining these databases, properly configured machine learning algorithms

should be able to learn a theory of chemistry and chemical reactivity, and be capable of

generalizing it to predict the outcome of arbitrary reactions, with a host of possible applica-

tions.

Before such a formidable task can be attempted, several other problems must first be solved.

One fundamental problem, not addressed here, is that these databases are inherently com-

mercial and not readily available to the academic research community for mining purposes.

A second problem has to do with the inconsistent quality of the data entered into these

databases over the years. Most of the reactions are not balanced and not atom-mapped.

This alone creates significant problems for automated machine understanding of chemical

reactions and reactivity.

The purpose of this work is to take a significant step towards solving the atom mapping

problem. Plainly stated, in a balanced chemical reaction where all the atoms are accounted

for, the atom mapping problem is the problem of constructing a one-to-one map between all

atoms on the left-hand (reactants) side and the right-hand (products) side. When a reaction

is unbalanced, it is still possible to consider a partial atom mapping by trying to identify a

maximal subset of atoms that can be mapped in one-to-one fashion between the left- and

right-hand sides. Most of the time there is a unique solution. In cases involving symmetries,

there may be several symmetrically equivalent mappings.

5



Balancing reactions is likely to require a fairly deep understanding of chemical reactivity. It

is possible that a complete solution for the atom mapping problem may also require a fairly

deep understanding of chemical reactivity. Our intuition, however, is that this is not the case,

for the majority of situations. Accordingly, the goal here is to develop an algorithm that

can address the atom mapping problem on the broadest possible scale without requiring any

deep knowledge of chemistry, resorting primarily to topological properties and correlations

between the molecular graphs of the reactants and products.

The atom mapping problem can be formulated in several ways. Since molecules are typi-

cally represented by graphs, the atom mapping problem is, at its core, a question of graph

matching. A reaction’s reactants, R, and products, P , represent two undirected, poten-

tially disconnected graphs. Nodes in R are labeled, while nodes in P are not. We seek a

mapping from R to P such that each node in R is assigned to the correct node in P ; that

is, the assignment must reflect the underlying chemical rearrangement that occurs in the

reaction. Although less natural, the atom mapping problem can obviously be defined also

in the reverse direction, from products to reactants.

Graph matching is a common task in computer vision and automated object recognition.

Prior work addressing the problem includes that of Rangarajan and Mjolsness, who described

a Lagrangian relaxation network approach [110]. They define a distance measure between

adjacency matrices for two graphs, then search for a permutation matrix under constraints

defined in the framework of deterministic annealing such that the distance between graphs

is minimized. Another approach, described by Taskar et al.[126], is a convex optimization

problem formulation wherein the loss function is a Hamming distance between the target

mapping and a candidate mapping, which simply counts the number of differing variables

between the target and candidate solution. Yet another approach involves the use of spectral

methods for the permutation group [59].

Prior work on the atom mapping problem generally falls under two categories: common

6



substructure-based methods, and optimization-based methods [30]. Common substructure

methods generate an atom mapping by correlating matching subgraphs between reactants

and products, followed by additional computation to correlate any remaining atoms which

were not part of the common substructure [93, 11]. Optimization-based methods attempt

to minimize the number of bonds broken and formed during a reaction, or to minimize some

other cost function over the possible atom mappings for a given reaction [5, 33, 55, 82, 42].

Here we combine elements of both approaches. First we identify maximum common sub-

graphs between the left and right sides of a reaction. Then we search for an assignment

of the remaining atoms that minimizes a cost function derived empirically from chemical

reaction data.

2.2 Data

To obtain training and testing data, we first removed from the 2005 version of the SPRESI

database all reactions that were not balanced and/or not fully atom-mapped. This resulted

in a set of 259,595 reactions (SP05 set). From this set we extracted two subsets: SP05 test

and SP05 training. SP05 test contained 1,000 reactions randomly extracted from SP05 set,

whereas SP05 training contained the remaining 258,595 reactions. Finally, we also extracted

a set, SP09 test, containing 17,996 new balanced and atom-mapped reactions. These reac-

tions were present in the 2009 version of SPRESI but not in the 2005 version. Figure 1 shows

the distribution of the number of reactants per reaction in SP05 set.

We used SP05 training to extract first and second neighbors reaction rules as described

below. This resulted in 87,371 first neighbors, and 668,684 second neighbors reaction rules.

Finally, we tested our approach on both SP05 test and SP09 test.

7
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Figure 2.1: Histogram, using a logarithmic scale on the y-axis, of the number of reactants
per reaction computed on the 259,595 reactions from SP05 set. Most reactions have at most
two reactants.

2.2.1 Database of reaction rules

The database of reaction rules is built using the SP05 training data as follows. For each

reaction, we extract the lists of atom ”state keys” k(1)(ui) and k(2)(ui) for reactants, k(1)(vj)

and k(2)(vj) for products. These are SMILES strings representing the atom ui with its

first neighbor (k(1)(ui)), and first and second neighbors (k(2)(ui)). We then compare the

two lists k(1)(u) and k(1)(v), and define the first neighbors reaction rules by looking at the

differences between the two. Second neighbors reaction rules are similarly defined, using

k(2)(u) and k(2)(v). For example, the simple addition reaction [CH2:2]=[CH2:1].[BrH:3] >>

[CH3:2][CH2:1][Br:3], shown in Figure 2A, results in the following first neighbors reaction

rules:

8



• C=C >> C[CH2]; rule for the carbon atom with map index 2.

• C=C >> CCBr; rule for the carbon atom with map index 1.

• Br >> [CH2]Br; rule for the bromine atom.

2.3 Atom mapping algorithm

Although the algorithm we describe here is not dependent on the particular way a reaction

is represented in a computer program, we will use SMILES strings [137, 139, 138]. SMILES

is a widely used language for representing molecules and reactions as simple text strings.

It also provides the foundation for SMARTS and SMIRKS [1], which allow the efficient

representation of molecular patterns (SMARTS) and reaction mechanisms (SMIRKS).

Following the SMILES convention, we will assume that hydrogen atoms not involved in the

reaction are implicitly represented, i.e. they are not found in the SMILES string representing

the reaction. Moreover, for now we will only consider balanced reactions – that is, the

reactants side will contain the same number and same type of atoms as the products side.

With this in mind, the method we use to construct a one-to-one mapping between reactant

and product atoms can be broken down into three steps:

1. Perform maximum common substructure (MCS) search and map the atoms belonging

to the common substructures that are found.

2. For all atoms that were not mapped in the previous step, apply a bipartite matching

with cost function.

3. Return the predicted mapping, and any equivalent mappings if requested.

9



2.3.1 Maximum common substructure (MCS) search (Phase 1)

The reactants and the products of a reaction can be considered as graphs where the atoms

and bonds represent vertices and edges, respectively. An MCS algorithm can be used to find

all the maximal common subgraphs between reactants and products. Corresponding atoms

in the common subgraphs are then assigned equal map indices, the assumption being that

these portions of the molecules remain unchanged during the reaction.

The maximum common subgraph problem is NP-hard in general and thus the application

of exact MCS algorithms can be problematic when the molecular graphs contain many

nodes. Moreover, not all the atoms in a reaction can be mapped in this way, as the product

molecules are the result of structural changes that occur during the reaction (bonds formed

and broken). Therefore an MCS algorithm should be supported by other strategies in order

to map any remaining atoms. An example of this approach can be found in the article by

Leber et al.[83].

In our case, the “exact” MCS algorithm provided by the OEChem library [2] (OpenEye

Scientific Software) is attempted for a limited time interval (five seconds). This algorithm

attempts to find the global maximum common substructure between left- and right-hand

sides. If the MCS algorithm returns a match, we continue with phase 2 of the ReactionMap

algorithm. Alternatively, if the time interval has elapsed before the exact MCS algorithm

completes, it is interrupted, and a second attempt at MCS detection is made using the

“approximate” MCS search function. During either of these steps, we may iterate several

times in order to recursively find smaller and smaller common substructures in order to

match as much of the left- and right-hand sides as possible. Additionally, it is often helpful

to relax the specificity of the graph matching employed by the MCS algorithm. That is,

we often want to ignore differences in bond order or formal charge in favor of having better

total graph coverage from the MCS algorithm. Thus we configure the MCS algorithm to

10



discern atoms solely based on atomic number (ignoring ring membership, aromaticity, formal

charge, and so on), and we configure it to ignore bond order. Once we have a result from

the MCS step, we continue with the second phase of the algorithm, in which the remaining

atoms must be mapped.

2.3.2 Bipartite matching (Phase 2)

Ideally, the MCS search will return the largest common substructure between reactants and

products. The atoms and bonds for which no match is found generally represent “what

happened” during the reaction, i.e. the bond rearrangements and consequent atom displace-

ments specific to that particular reaction. On average, after the MCS step, we are left with

about 5% of atoms that remain to be atom-mapped.

The approach we use for assigning these atoms is a bipartite matching with cost function.

If ui (vj) is an atom in the reactants (products) side, we assign a cost ci,j to each of the

pairs (ui, vj). The problem is then to find the matching that minimizes the total cost of

the mapping. In other words, each ui is assigned to a vi such that the global cost of the

mapping M , c(M) =
∑

(i,j) ci,j, is the minimum possible. This is the well known “assignment

problem” or “stable marriage problem”, and can be efficiently solved with combinatorial

optimization techniques. Specifically, we employ the Munkres algorithm [96], sometimes

called the Hungarian method. For this algorithm, the number of operations scales as O(n3)

(n being the number of vertices of the bipartite graph), which results in a polynomial running

time. To further increase the speed of the matching, instead of assigning an infinite cost to

mapping different atom types (e.g. mapping a carbon atom to a nitrogen), we apply the

Munkres algorithm for each atom type separately.
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Figure 2.2: Example of symmetric ambiguity in atom mapping. In A, carbon 1 and 2 are
symmetrically equivalent. In B, a homogenization step gives them the same map index,
indicating they are interchangeable in the final mapping.

2.3.3 Assignment of mapping costs

Mapping costs ci,j are assigned as follows, based on the database of reaction rules described

above.

For each reactant atom ui, we create two state keys k(1)(ui) and k(2)(ui). This procedure is

repeated for the product atoms vj to produce k(1)(vj) and k(2)(vj). For each pair of atoms

(ui, vj) we then create the reaction keys (SMILES strings) r(m)(ui, vj) = k(m)(ui) >> k(m)(vj)

for m = 1, 2. Finally, we assign the following mapping costs:

1. If r(2)(ui, vj) is in our database of reaction rules, then ci,j = 1.

2. If r(2)(ui, vj) is not in our database of reaction rules, but r(1)(ui, vj) is in it, then ci,j = 5.

3. If neither r(2)(ui, vj) nor r(1)(ui, vj) is found in the database, but k(1)(ui) = k(1)(vj),

then ci,j = 10.

4. If none of the above conditions applies, then ci,j = 100.

In other words, if during training we observed the atom ui mapped to atom vj with a

corresponding reaction key r(2)(ui, vj), then we assign the lowest possible cost (=1). We
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Figure 2.3: Example of a highly symmetric reaction and its homogenized map indices.

assign a slightly higher cost (=5) if r(1)(ui, vj) was observed but r(2)(ui, vj) was not. A

moderate cost (=10) is assigned if neither r(2)(ui, vj) nor r(1)(ui, vj) was observed but ui and

vj are the same atom and have the same first neighbors. The highest cost (=100) is assigned

for all other cases. Many different cost values were tested (data not shown) and these were

found to work best. In this way, we account for the chemical knowledge extracted during

the training phase, while allowing a certain degree of freedom for assigning mappings that

were never observed.

2.3.4 Symmetrically equivalent mappings

Instead of enumerating and reporting numerous symmetrically equivalent mappings for a

given reaction, our approach is to “homogenize” the map indices for symmetrically equiv-

alent atoms. That is, reactant atoms which are symmetrically equivalent are assigned the

same map index to indicate their equivalence (Fig. 2). After this homogenization step, the
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Table 2.1: Percentage of correctly mapped reactions when using different algorithm compo-
nents.

Algorithm SP05 test (1,000 reactions) SP09 test (17,996 reactions)
MCS only 78.2% 89.7%
Bipartite matching only 6.2% 2.0%
Combined 96.2% 95.7%

atom mapping proceeds normally. In the final proposed mapping one can see, by locating the

homogenized atom map indices, each possible location where members of a symmetrically

equivalent group of atoms could be mapped. Thus our simple example from above would be

reported as [CH2:1]=[CH2:1].[BrH:3] >> [CH3:1][CH2:1][Br:3]. Map index 2 is omitted, as

it was homogenized by assigning an index of 1 to equivalent atoms. This transformation is

illustrated in Figure 2, which shows both the original mapping (Fig. 2A), and the homoge-

nized version (Fig. 2B). We show a more complex example of symmetric mapping in Figure

3, which illustrates an actual mapping from our test set.

If multiple mappings are requested, we can enumerate the symmetrically equivalent outcomes

of an atom mapping. Considering our example again, we would in this case return both:

[CH2:1]=[CH2:2].[BrH:3] >> [CH3:1][CH2:2][Br:3]

and

[CH2:1]=[CH2:2].[BrH:3] >> [CH3:2][CH2:1][Br:3],

which are the two equivalent mappings for this reaction.

2.4 Results

In the previous sections we outlined the ReactionMap algorithm, and the data used to train

and test that algorithm. Here we describe the results obtained from our methods.
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Table 2.2: Percentage of correctly mapped atoms when using different algorithm components.

Algorithm SP05 test (1,000 reactions) SP09 test (17,996 reactions)
MCS only 86.3% 93.7%
Bipartite matching only 49.8% 44.9%
Combined 99.4% 98.8%

Figure 2.4: Correctly mapped reaction illustrating both maximum common substructure
(MCS) search and bipartite matching steps. The grey region indicates atoms that were not
mapped during the MCS step, but were correctly mapped during the bipartite matching
step.

2.4.1 Accuracy

Mapping results are summarized in Tables 1 and 2. The full algorithm is able to correctly

map all the atoms for 96.2% of the reactions in the test SP05 test set, and 95.7% of the

reactions in the SP09 test with a mean time per mapping of two seconds. For the remaining

reactions, a subset of the atoms is still mapped correctly, on average about 80%. Thus the

percentage of correctly mapped atoms across all the reactions is 99.4% for the SP05 test

set and 98.8% for the SP09 test set. These percentages are probably a slight underestimate

of what can be achieved by our methods since there are probably some errors in SPRESI

affecting both the training and testing procedures.

15



Figure 2.5: Correctly mapped reaction that requires only the MCS step to map all atoms.
The dotted line indicates the new bond formed between the two reactant molecules.

The tables also show the effect of each component of the algorithm on overall performance,

and why each step is necessary. MCS alone, for instance, can only map about 78.2% of

the reactions in the SP05 test set, and the bipartite matching alone can only map 6.2% of

the reactions in the same set. Within each component, we also observe a greater variability

across datasets. For instance, MCS alone can map 89.7% of the reactions contained in the

SP09 test set. The origin of this variability may be in part explained by fluctuations in the

composition of these two datasets. For example, the percentages of reactions with exactly

one reactant and exactly two reactants are 42% and 54% respectively in the SP05 test set,

whereas these percentages are equal to 50% and 45.5% respectively in the SP09 test set.

In any case, the MCS component is responsible for most of the accuracy, with a small but

significant additional improvement from the bipartite matching component.

ReactionMap succeeds at mapping a wide variety of reactions, including many involving

large, complex molecules and structural rearrangements. Figure 4 illustrates a successful

mapping which requires both the MCS step and the bipartite matching of the remaining

atoms. While many reaction mappings require a combination of MCS and bipartite matching,
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Table 2.3: Percentage of reactions correctly mapped in reverse.

SP05 test (1,000 reactions) SP09 test (17,996 reactions)
94.4% 95.0%

Table 2.4: Percentage of atoms in agreement between forward and reverse mapped reactions.

Result SP05 test (1,000 reactions) SP09 test (17,996 reactions)
Correct mapping 99.6% 99.7%
Incorrect mapping 83% 76.2%

some can be performed using MCS alone. Figure 5 illustrates one such situation. Here

the two reactants bond together to form a single product. Since there is no structural

rearrangement of either reactant, this is an ideal situation for MCS to map the full reaction.

Additionally, we can perform the mapping in the reverse direction, matching products to

reactants. For this we use first and second neighbor rules extracted as described above, but

in the reverse direction. Table 3 summarizes the percentage of reactions mapped correctly

in reverse. We tried many different ways of combining the additional information from the

reverse mappings to complement forward mappings, but none led to a robust performance

improvement. Nonetheless, performing the reverse mappings is still useful, as we can check

the agreement between the two mappings and gain an idea of our confidence in the final

mapping. Table 4 summarizes the average percentage of atoms in agreement for correct

and incorrect mappings. Specifically, incorrect mappings have, on average, 83% of atoms

matching between the suggested forward and reverse mappings. For correct mappings, this

agreement averages 99.6%. Figure 6 shows the average mapping success rate versus the

percent agreement between forward and reverse mappings for SP09 test. We find that 99%

of mappings are correct when agreement is above 95%. For lower levels of agreement, the

likelihood of a correct mapping declines rapidly. Additionally, of the 96.2% (SP05 test) and

95.7% (SP09 test) of reactions mapped correctly, 98.1% and 98.9% of these, respectively,

have greater than 95% forward-reverse agreement. Thus the majority of correctly mapped

reactions are mapped with high confidence.
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Figure 2.6: Histogram showing the percentage of correct mappings for various degrees of
forward-reverse agreement. For agreement greater than 95%, 99% of mappings are correct,
while lower levels of agreement have significantly fewer correct mappings on average.

2.4.2 Comparison with other predictors

We compared our results on SP05 test with the performance of three publicly available atom

mapping tools on that same test set (Table 5). The software tested included ChemAxon’s

AutoMapper [3], versions 5 and 6.1, and the DREAM web tool described by First et al.[42].

AutoMapper uses an MCS approach, while DREAM takes an optimization-based approach,

using linear programming to minimize bonds broken and formed. AutoMapper versions 5

and 6.1 mapped 60.7% and 86.5% of reactions correctly, respectively, while DREAM mapped

90.3% of the reactions correctly. ReactionMap correctly mapped 96.2% of the reactions.

ReactionMap’s average mapping speed on SP05 test was two seconds per reaction. Au-
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Figure 2.7: Example of an incorrectly mapped reaction due to an error during the MCS step.
The correct mapping involves breaking the bond between carbons 1 and 2, followed by bond
formation between carbons 1 and 3. Instead, the MCS step returned a mapping that broke
bond 2-4 and joined carbons 3 and 4.

Table 2.5: Comparison with other predictors.

Algorithm Time per mapping SP05 test (1,000 reactions)
ReactionMap 2s 96.2%
AutoMapper 5 0.03s 60.7%
AutoMapper 6.1 0.02s 86.5%
DREAM < 2s 90.3%

toMapper appears to sacrifice mapping accuracy for speed, with average mapping times of

0.02-0.03s per reaction. Since we could only interact with DREAM through a web interface,

rather than running tests locally, a direct speed comparison is not available. However, we

estimate the mapping time to be slightly less than two seconds per reaction on this data set,

based on turnaround time from the DREAM web service.

2.4.3 Error types

Errors made by the algorithm are a function of two factors: how many atoms the MCS

search maps between reactants and products, and how well the bipartite matching performs

on the remaining unmapped atoms. Errors can occur during either step. Figure 7 shows

the case where an error occurs during the MCS step. Here, bond 1-2 breaks, and a new

bond forms between carbons 1 and 3. The MCS step is able to find a common substructure
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Figure 2.8: Example of an incorrectly mapped reaction due to an error during the bipartite
matching step. The grey region indicates atoms that were not mapped during the MCS step.
Bipartite matching of these atoms returned the incorrect (flipped) mapping order.

which includes all atoms and all bonds except bond 2-4. Thus it returns a mapping that

breaks bond 2-4, and joins carbons 3 and 4. The second possibility – an error during the

bipartite matching step – is shown in Figure 8. In this example, a rearranged propene group

is mapped with its indices flipped. Figures 9 and 10 show examples of reactions that can

be problematic because of interdependent or sequential bond breaking and formation. In

Figure 9, the bond between carbons 5 and 6 must be broken to allow formation of bonds 1-3,

8-5, and 4-6. Figure 10 shows a similar situation – the bond between sulfur 1 and carbon

2 must be broken, with the cyclopentadiene rejoining the two intermediates. When given

the three reactants present after bond 1-2 is broken (Figure 11), ReactionMap produces the

correct mapping.

Though a handful of errors do occur as outlined above, ReactionMap’s mapping success rate

of about 96% at the reaction level and 99% at the atom level is encouraging considering

the huge variety and complexity of reactions tested, and possible directions for future im-

provements, such as using larger training sets. In future work, mapping accuracy could be

improved by developing additional heuristics, or by harnessing additional empirical chemical
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Figure 2.9: Example of a problematic reaction that was mapped incorrectly. The challenge
stems from interdependent or sequential bond breaking and formation. Here, bond 5-6 must
first be broken to allow formation of bonds 1-3, 8-5, and 4-6.

Figure 2.10: Example of another problematic reaction that was mapped incorrectly. Bond
1-2 is broken, yielding two fragments, which are rejoined by the cyclopentadiene. If the
algorithm is asked to map the three reactants after bond 1-2 is broken, the result is correct.

data, to address error cases like those described above. The algorithm could also be further

optimized for unbalanced reactions and thus should become useful in time as a tool for fil-

tering and cleaning large reaction databases, although these remain largely unavailable for

mining purposes. In any case, ReactionMap represents a strong tool for solving the atom

mapping problem and opening the door for using more completely atom-mapped chemical

datasets for future machine learning and other chemoinformatics endeavors. A ReactionMap

server is available on the ChemDB web portal at http://cdb.ics.uci.edu.
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Figure 2.11: Reaction after breaking bond 1-2 in Figure 10. From this point, the reaction
is mapped correctly, illustrating the challenge of interdependent bond breaking and bond
formation.
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Chapter 3

Computational Chemical Reaction

Simulation

Atmospheric organic aerosols (OA) represent a significant fraction of airborne particulate

matter and can impact climate, visibility, and human health. These mixtures are difficult

to characterize experimentally due to their complex and dynamic chemical composition. We

introduce a novel Computational Brewing Application (COBRA) and apply it to model-

ing oligomerization chemistry stemming from condensation and addition reactions in OA

formed by photooxidation of isoprene. COBRA uses two lists as input: a list of chemi-

cal structures comprising the molecular starting pool and a list of rules defining potential

reactions between molecules. Reactions are performed iteratively, with products of all pre-

vious iterations serving as reactants for the next. The simulation generated thousands of

structures in the mass range of 120500 Da and correctly predicted ˜70% of the individual

OA constituents observed by high-resolution mass spectrometry. Select predicted structures

were confirmed with tandem mass spectrometry. Esterification was shown to play the most

significant role in oligomer formation, with hemiacetal formation less important, and al-

dol condensation insignificant. COBRA is not limited to atmospheric aerosol chemistry; it
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should be applicable to the prediction of reaction products in other complex mixtures for

which reasonable reaction mechanisms and seed molecules can be supplied by experimental

or theoretical methods.

3.1 Introduction

Atmospheric organic aerosols (OA), airborne particles comprised primarily of organic ma-

terial, are estimated to contribute up to 50% of the total particulate matter mass at conti-

nental midlatitudes and up to 90% at forested areas[65]. OA impact climate and visibility

by interacting with solar radiation, atmospheric oxidants, and water vapor[118] and are

associated with adverse effects on human health as discussed in Mauderly and Chow[92]

and references therein. The climate, visibility, and health effects of OA are dependent

on their chemical composition[109, 37, 9]. However, the diversity of OA formation and

growth mechanisms makes detailed molecular chemical composition of OA difficult to pre-

dict by traditional modeling or characterize by experimental methods. During their resi-

dence time in the atmosphere, OA undergo chemical aging processes[113, 64] that further

enhance molecular complexity through, for example, the formation of nitrogen-containing

organic compounds (NOC)[81, 23, 35]. Recent advances in high-resolution mass spectrom-

etry (HR-MS) have enabled simultaneous detection of hundreds of individual molecules in

OA[81, 99, 80, 117, 15]. HR-MS tools are useful in providing the molecular formulas for

OA constituents. Ion fragmentation patterns observed in tandem mass spectrometry (MSn)

experiments provide additional information about the structures. However, interpretation

of MSn data is complicated by the presence of multiple structural isomers and lack of suffi-

ciently diagnostic fragmentation patterns. In previous work, reliable structural information

could only be extracted for the low molecular weight (MW) species[66, 6] and homologous

oligomers[121, 26, 98] present in OA, leaving the structures of the majority of complex
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oligomers uncharacterized. HR-MS experiments suggest that in many cases, oligomeric

compounds in atmospheric OA are produced from repetitive reactions between the OA

constituents[6, 98, 111, 97]. There is strong evidence that condensation reactions such as

esterification and aldol condensation[121, 98, 127, 16, 17, 52, 27, 148] and addition reactions

such as hemiacetal formation[46, 62, 63] are quite common in both organic aerosols and in

aqueous solutions of OA. Advanced computational approaches are needed for predicting the

OA composition using a bottom-up approach, in which the starting low-molecular weight

compounds are known from experiments, and reaction rules for combining these compounds

into oligomers can be unambiguously defined. This work describes the first application of

a Computational Brewing Application (COBRA) to modeling oligomerization products ob-

served in the detailed composition of OA. Figure 3.1 shows a diagrammatic representation

of COBRA, which is a customizable simulation engine for chemical reactions. Prior work

from our group related to predicting the mechanisms of organic chemical reactions has fo-

cused on a rule-based approach with broad knowledge of general organic chemistry[28] or

a machine learning approach to reaction prediction based on ranking mechanistic steps by

productivity[67]. COBRA differs from these approaches in that it is optimized to simulate

the evolution of a complex mixture by combinatorial computation of many thousands of

chemical reactions between mixture constituents, based on a chosen pool of starting (seed)

compounds and specific reaction mechanisms. For the case study presented in this work,

the formation of a large set of experimentally observed high-MW oligomeric products in

OA derived from the photooxidation of isoprene[98, 97] is modeled by considering chemical

transformations of a basic set of monomers through the following oligomerization reactions:

esterification, aldol condensation, and hemiacetal formation. We demonstrate that COBRA

succeeds at modeling relevant oligomerization chemistry, predicting and visualizing high-

MW compound structures, and predicting unique reaction products in OA. More broadly,

the COBRA approach is applicable to studying the evolution of a wide range of organic

mixtures as long as the starting components and reaction mechanisms can be suggested.
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Figure 3.1: A schematic representation of COBRA. COBRA converts a set of seed molecules
into a set of predicted products using predefined chemical reaction rules. This process is
repeated for several iterations, with predicted products going back into the pool of reacting
molecules after each step. The four reactions used in this work are shown in the center panel,
and the full list of 27 seed molecules is shown in Table 2.1.

3.2 Materials & methods

3.2.1 COBRA

Chemical structures are input into COBRA using the widely used chemical string represen-

tation SMILES[136]. Reaction transforms are defined using the reaction transform language

SMIRKS. The SMIRKS language is a superset of SMILES and can be used to define reac-

tion transforms to an arbitrary degree of specificity. We leverage the programming language

Python in conjunction with OpenEyes OEChem library[2] to process the input SMILES and

SMIRKS into predicted products. Standard valence rules are explicitly programmed into

the reaction transforms in order to predict chemically meaningful structures. Specifically,

R-groups in the reactions shown in Figure 1 were allowed to be alkyl or acyl groups but not

hydrogen alone. Filters can be imposed to prevent compounds with certain properties from

participating in reactions or from being included in the pool of final products. The simula-

tion includes the following iterative steps. 1) For each molecule and each pair of molecules
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Table 3.1: Seed molecules used for the COBRA simulations described in this work.

in the reactant pool, all unimolecular reaction transforms and all bimolecular transforms,

respectively, are applied. Identical reactions already performed in the previous iterations

are recognized and skipped. 2) The product molecules are filtered. For this simulation, we

automatically filter out any molecule with greater than 40 heavy (C, O, N) atoms. This

filter restricts the molecular weights of the products below approximately 500 Da, the limit

at which molecular assignments made with 0.1 mDa accuracy can be uniquely determined

for CcHhOoNnSs species[72]. This restriction significantly decreased the model run time

while still capturing the chemistry of the most abundant compounds in isoprene high-NOx

SOA[97]. 3) Molecules that were not filtered out during the previous step are added back

into the reactant pool, and the system returns to step one. The simulation is complete either

after the requested number of iterations has passed or after a specified number of unique

reactions has been simulated (30,000 reactions for the full simulation and the exclusion sim-

ulations, in this study). Results can then be conveniently visualized and searched for specific

chemical structures matching any specified structural criteria. Additionally, we can compute

the sequence of reactions that led to a given products formation.
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3.2.2 Experimental Methods

Isoprene OA was photochemically generated in a 5 m3 Teflon chamber, as described previously[98].

Samples were generated in dry air, under high-NOx (VOC:NOx <1) conditions and in the

absence of inorganic seed particles. H2O2 was used as an OH precursor. The initial mixing

ratio of isoprene was 250 ppbv (parts per billion by volume). Blank samples were produced

in an identical manner as OA samples, without UV radiation. Samples were collected on

Teflon filters (0.2 m pore size, Millipore), vacuum sealed, and frozen prior to analysis. Neg-

ative ion mode direct injection ESI (tip voltage 4 kV) was used as an ionization method for

solvent-extracted OA samples. The solvents used for analysis were water and acetonitrile

(both HPLC grade, Fluka) at a 1:1 volume ratio. Mass analysis was done with a high-

resolution linear ion trap (LTQ-) Orbitrap (Thermo Corp.) at Pacific Northwest National

Lab (PNNL) Environmental Molecular Science Laboratory facility (EMSL), with a mass

resolution of 60,000 m/m at m/z 400. MSn studies were performed in the LTQ, with mass

selection in the 0.5 m/z range and collision-induced-dissociation energies of 2040 energy

units. Product ions of MSn were analyzed in the Orbitrap.

3.3 Results & discussion

Table 3.1 lists the seed molecules for the simulation. These low-MW species have been

identified as important building blocks in the formation of isoprene photooxidation OA[97].

The majority of these molecules have been detected in isoprene OA[25] and are primarily

multifunctional carbonyl, alcohol, and carboxyl compounds derived from the oxidation of

isoprene with the hydroxyl radical (OH)[121, 97, 40, 51, 120, 74, 32, 103, 123, 124]. Some of

these molecules have sufficiently high vapor pressure to exist primarily in the gas phase. For

example, glycolaldehyde has a room temperature vapor pressure of 0.028 Torr[105] and may

participate in aerosol mass-growth reactions initiated in the gas- or heterogeneous phase.
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Note that glyoxal is not included among the seed molecules used in these simulations be-

cause it was not found among the monomer units inferred from mass spectrometry of iso-

prene oxidation products as described in ref 22. The 3-nitrate ester of 2-methylglyceric acid

(2MGA)[121, 98, 27, 123] represents the sole NOC in the list of seed molecules. Available

information about NOC monomers is limited due to the small number of studies of NOC

composition in the literature[97].

COBRA was used to simulate the evolution of a virtual OA mixture by applying the four

reaction transforms shown in Figure 1 to the set of 27 starting molecules in Table 3.1. The

resulting product pool contained 135,107 predicted structures after performing 30,000 unique

reactions, representing a total of 758 unique elemental formulas of the type CcHhOoNn with

MW <500 Da. The 2 orders of magnitude difference between the number of structures and

elemental formulas reflects a large number of predicted structural isomers. The experimental

HR-MS data contains 464 neutral elemental formulas, and 323 of these formulas (70%)

were predicted by COBRA. Figure 3.2 shows the experimental HR-MS spectrum separated

into two panels. The first panel shows all HR-MS peaks in the experimental spectrum

that were predicted by COBRA (Figure 2A), and the second one shows peaks that did not

appear in the COBRA output (Figure 2B). As Figure 2 demonstrates, the 70% fraction

of the experimentally observed peaks predicted by COBRA represents the most abundant

compounds with MW <500 Da. The remaining 30% fraction has average peak intensities

that are more than an order of magnitude smaller compared to the average peak intensities

associated with the successfully predicted compounds, suggesting that COBRA captures the

essential chemistry producing oligomers in isoprene high-NOx OA. The high degree of overlap

between the predicted and observed formulas confirms that the oxygenated hydrocarbon seed

molecules proposed in our previous work are the relevant oligomer building blocks in this

type of OA[97]. The fact that a relatively small set of modeled reactions was sufficient to

account for roughly 70% of the HR-MS peaks suggests that the oligomerization chemistry in

isoprene OA is well constrained.
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The fraction of the experimentally observed compounds that are correctly predicted by

the simulation can be a misleading metric of success in some cases. For example, if the

simulation were significantly overdefined, and generated every possible CcHhOoNn formula

(˜105) allowed by the valence rules, this fraction would become 100%. Therefore the reverse

comparison of the fraction of predicted peaks that show up in the experiment is just as

important. In the present case, 43% of predicted formulas correspond to compounds detected

by HR-MS, and the remaining 57% are not observed. This level of agreement can be viewed

as good, considering that the simulation does not use any kinetics restrictions and predicts

the formation of compounds that may be below the limit of detection of HR-MS.

It is remarkable that a total of 62 NOC molecular formulas were predicted stemming from

2MGA-3-nitrate alone, representing 41% of the total NOC observed in the isoprene OA

sample in the m/z 120500 range (Figure 2A). Note that this particular simulations ability

to predict NOC compounds is limited because only a single NOC seed molecule is included.

Nonetheless, the data confirm that 2MGA-3-nitrate is a prolific oligomer building block in

isoprene OA that produces a variety of products through oligomerization in the condensed

phase[121, 98, 27, 123].

Since structural complexity increases with molecular size, the number of structural and

stereo isomers that can be produced by oligomerization reactions also grows exponentially

with increasing mass of the individual products (Figure 2C). For the 323 experimentally

observed molecular formulas, COBRA predicts 102,650 unique structures, with the number

of isomers ranging from 1 to nearly 3,000. The apparent decrease in the number of hits as MW

approaches 500 Da is a result of filtering; we artificially limit structures in the product pool

to those with less than 40 heavy atoms and do not consider structures with molecular weights

in excess of 500 Da. Despite the large number of predicted isomers, the simulation results

help constrain possible structures, especially for lower-MW compounds. For example, over

1,000 unique molecular structures associated with a molecular mass of 142.063 Da, assigned
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to C7H10O3, can be retrieved from Internet-based chemical inventories (e.g., SciFinder). In

contrast, COBRA predicts only two structures of C7H10O3, thereby dramatically reducing

the complexity (Table 2). This represents more than a one hundred-fold increase in the

level of confidence in assigning molecular structures to a given formula obtained by HR-MS.

Even at high masses, COBRA predictions remain useful because the structural information

for high-MW compounds is not readily available from chemical databases, and this type of

modeling is a practical step toward understanding the possible structures of large oligomers.

A few published studies used MSn fragmentation data to determine structures of the oligomers

in isoprene high-NOx SOA[121, 26, 97]. All molecular structures described in the previous

studies match structures predicted by COBRA. To further test the validity of the COBRA

predictions, we made a comparison to MSn studies previously performed by our group of NOC

oligomers observed in SOA generated from isoprene photooxidation[97]. Figure 3.3 shows

the predicted structures of two NOC oligomers, C8H13NO9 (267.059 Da) and C14H20NO13

(411.101 Da), that are most consistent with MSn experiments. The MSn experiments were

performed using the negative ion mode; therefore, the molecular masses of the detected com-

pounds are those of deprotonated molecules. Oligomer fragmentation is often characteristic

of the functional groups and monomer units present within the compound. For example,

HNO3 and CH3NO3 are characteristic MSn losses from organic nitrates, and C4H6O3 is a

characteristic loss from the carbonyl ester unit of 2MGA[121, 97].

For a given molecular formula, the proposed structures based on MSn experiments described

in Nguyen et al. match at least one of the structures predicted by COBRA. We note that

structural isomers may not have distinct fragmentation patterns, and therefore it is possible

that the experimental MSn data represents several structural isomers predicted by COBRA.

COBRA predicted four isomeric structures for C8H13NO9, and at least one predicted struc-

ture is consistent with the fragmentation pattern produced by MSn studies. For C14H21NO13,

at least one out of 44 predicted structures is consistent with the MSn fragmentation pattern.
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Therefore, it is reasonable to hypothesize that other structures predicted by COBRA may

be present in the OA, perhaps but not necessarily, in lower quantity than the most abundant

isomer.

To elucidate which seed molecules were the most important as oligomer building blocks for

isoprene OA, we performed 27 exclusion simulations, each with a different seed molecule

omitted. Each exclusion simulation was limited to the same number of reactions (30,000).

The total number of experimental molecular formulas recovered in each case was compared

against a simulation in which no seed molecules were omitted. The exclusion percent was

calculated as a percent reduction in the number of predicted formulas matching experimental

formulas. The highest exclusion percent (19%) was for the 3-nitrate ester of 2-methylglyceric

acid, consistent with its special role of being the sole NOC precursor. Specifically, the removal

of 2MGA-3-nitrate eliminated all NOC oligomers from the product pool. Removal of other

seed molecules resulted in smaller variation in the number of predicted formulas, ranging

from 6 to 6%. Note that because of the fixed number of reactions in these simulations, an

exclusion of a less significant contributor to chemistry can actually lead to a slight increase

in the total number of predicted formulas, yielding a negative exclusion percent. None of the

nitrogen-free compounds appeared to stand out from the rest, suggesting some redundancy

in the pool of seed molecules. The redundancy in seed molecules lowered the percent overlap

between simulation and experiment. These results highlight the need for future work in

determining missing precursors and reaction mechanisms. In general, this type of exclusion

analysis is useful for assessing the contribution of a single molecule to the total product pool,

e.g. the importance of glyoxal in heterogeneous reaction with various OA constituents,[54,

88, 89, 150] or the contribution of first vs second generation VOC oxidation products to

producing condensable organic compounds.

We performed additional exclusion simulations, in which one of the four reactions shown

in Figure 3.1 was disabled. The results of the simulations based on the three remaining
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Table 3.2: Results from an exclusion analysis, in which one of the four reactions shown in
Figure 3.1 is disabled.

reactions were compared to the results of the full simulation. Table 3.2 lists the percent

reduction in the number of experimentally observed molecular formulas recovered by the

simulation, the percent reduction in the number of theoretically predicted molecular formu-

las, and the percent reduction in the number of theoretically predicted structures generated

by the simulation. The esterification reaction (Reaction 1) played the most significant role

in recovering experimentally observed formulas, with an exclusion percent of 40.9%, followed

by the hemiacetal formation reaction (Reaction 4) with an exclusion percent of 10.2%. The

esterification and hemiacetal formation reactions also made the largest contributions to the

total number of theoretically predicted structures. Exclusion of esterification from the sim-

ulation reduced the number of structures in the COBRA output by 37.8%, while exclusion

of hemiacetal formation resulted in a 46.7% decrease. Although hemiacetal formation is

prolific at generating theoretical structures, the results demonstrate that esterification is

the most important reaction in promoting oligomerization in isoprene OA, while hemiacetal

formation is of secondary importance. These results are consistent with a previous study,

wherein reducing aerosol liquid water content changed the composition of isoprene high-NOx

SOA most drastically by hindering the esterification reaction[98]. They are also consistent

with the fast and efficient reactions of OA compounds containing carboxylic acid groups

and carbonyls with alcohols observed in Bateman et al.[18]. In contrast, aldol condensation

(Reactions 2 and 3) does not appear to play a significant role in forming the oligomers.

Removal of either Reaction 2 or Reaction 3 resulted in a small reduction in the number of
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theoretically produced structures and recovered HR-MS formulas.

Once a pool of COBRA-generated simulation products is available, it can easily be mined for

desired products or classes of products. For example, we are interested in the potential for

isoprene photooxidation to generate ,-unsaturated aldehydes, a class of genotoxic compounds

found in cigarette smoke and air pollution[146, 147, 21, 128, 79, 8]. The most common at-

mospheric ,-unsaturated aldehydes with adverse health effects are gas-phase species such as

acrolein (C3H4O)[70]. However, adverse health effects are also strongly linked to inhalation

of particulate matter[92, 112, 36, 38, 108, 116], which contains more complex and poorly

characterized organics. COBRA predicted 6,131 structures corresponding to ,-unsaturated

aldehydes in the isoprene photooxidation SOA data set. This large set of structures can

be filtered further, by mass, O/C ratio, or any other property required to yield a focused

set of predicted structures. Applying a computational tool like COBRA along with the

molecular-level experimental characterization of products is a powerful first step to identify-

ing condensed-phase atmospheric toxins.

One limitation of COBRA is that it does not currently include kinetics information and

therefore cannot model the relative abundances of individual products. This limitation may

be important in cases where the product branching ratios from a particular reaction are

dissimilar or dependent on atmospheric conditions, in which case the results from COBRA

will artificially enhance the importance of noncompetitive products. For example, in the

absence of nitrogen oxides (NOx) the same OH-initiated oxidation chemistry produces more

hydroperoxides and fewer carbonyl products[12]. However, a scaling factor can be incorpo-

rated in the transformation rules if the branching ratios are known or can be estimated with

ab initio methods. For the comparison with the ESI-based MS data, this is not a major

limitation because there are no simple relationships between the detection efficiency in ESI

and the concentration of the analyte species[125].

Applying COBRA to the simulation of oligomerization in isoprene OA is a good example of
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the utility of computational tools for understanding complex natural mixtures and verifying

experimental data. An important strength of COBRA is its ability to handle a complex

simulation and generate a large number of predicted compounds. While the combinatorial

explosion of generated structures means computation time is currently on the order of several

days, this time can be significantly reduced in future work by using parallel computing

algorithms. If pertinent experimental data are available, direct comparison between the

observed and predicted compounds can be made to better constrain chemistry and chemical

structures. Furthermore, as COBRA reduces the number of possible structures available for

a given chemical formula, the predicted structures may be useful for discriminating isobaric

species in a mass spectrum. Applying a small set of transformation rules to predict an

experimentally determined high-resolution mass spectrum may become a powerful tool for

better understanding the chemistry of complex systems comprised of hundreds or thousands

of individual compounds.

35



Figure 3.2: Comparison between the HR-MS experiment and COBRA predictions. Panel
(a) shows the HR-MS peaks that are predicted by COBRA (70%). Panel (b) shows the
remaining 30% of HR-MS peaks that are not predicted by our simulation. In both panels,
NOC peaks are colored green. Panel (c) indicates the number of isomeric structures predicted
at each observed molecular mass.
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Figure 3.3: Experimental MS2 fragmentation spectra for precursor (I) ions (a) C8H12NO9 and
(b) C14H20NO13. Two structures predicted by COBRA that are consistent with the fragmen-
tation patterns are overlaid on the spectra. Product ions are obtained from fragmentation
at the dashed bonds (after losses of neutral molecules). Product ions for (a) are as follows:
II. m/z 203.056 (I-HNO3); III. m/z 189.040 (I-CH3NO3); IV. m/z 164.020 (I-C4H6O3); V.
m/z 119.035 (I-C4H5NO5). Product ions for (b) are as follows: II. m/z 347.098 (I-HNO3);
III. m/z 333.082 (I-CH3NO3); IV. m/z 308.062 (I-C4H6O3); V. m/z 307.082 (I-C3H5NO3).
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Chapter 4

COBRA Modeling of Atmopheric

Squalene Oxidation

Squalene is a major component of skin and plant surface lipids and is known to be present at

high concentrations in indoor dust. Its high reactivity toward ozone makes it an important

ozone sink and a natural protectant against atmospheric oxidizing agents. While the volatile

products of squalene ozonolysis are known, the condensed-phase products have not been

characterized. We present an analysis of condensed-phase products resulting from an exten-

sive oxidation of squalene by ozone probed by electrospray ionization (ESI) high-resolution

mass spectrometry (HR-MS). A complex distribution of nearly 1300 peaks assignable to

molecular formulas is observed in direct infusion positive ion mode ESI mass spectra. The

distribution of peaks in the mass spectra suggests that there are extensive cross-coupling re-

actions between hydroxy-carbonyl products of squalene ozonolysis. To get additional insights

into the mechanism, we apply a Computational Brewing Application (COBRA) to simulate

the oxidation of squalene in the presence of ozone, and compare predicted results with those

observed by the HR-MS experiments. The system predicts over one billion molecular struc-

tures between 0 and 1450 Da, which correspond to about 27000 distinct elemental formulas.
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Over 83% of the squalene oxidation products inferred from the mass spectrometry data are

matched by the simulation. The simulation indicates a prevalence of peroxy groups, with

hydroxyl and ether groups being the second-most important O-containing functional groups

formed during squalene oxidation. These highly oxidized products of squalene ozonolysis

may accumulate on indoor dust and surfaces and contribute to their redox capacity.

4.1 Introduction

Squalene (see Figure 4.1 is a naturally occurring product found in human and plant lipids[44].

This unsaturated, nonvolatile triterpene reacts readily with ozone, and is the most abundant

ozone-reactive constituent of human sebum[133, 141]. Squalene accounts for 10-12% of adult

skin lipids, making it one of the major lipids found on the surface of the human skin[143].

This contributes to squalenes presence in human skin flakes, which are a major component of

indoor dust. Lipids in skin and plant oils, such as squalene, are a natural form of protection

against oxidizing agents found in air, with squalene shown to account for about 40% of ozone

removal by human skin and hair[143, 144].

Squalene is highly reactive toward ozone due to its six unconjugated carbon-carbon double

bonds[44, 140]. It reacts with ozone based on the Criegee mechanism, whereby ozone attacks

a double bond to form a primary ozonide (POZ), which then decomposes into a carbonyl

and a carbonyl oxide, also known as a Criegee intermediate[144, 34]. Carbonyls, carboxyls,

and -hydroxy ketones are the main functional groups in squalene ozonolysis products, largely

arising from the isomerization and decomposition reactions of its carbonyl oxides, RCHOO

and RC(CH3)OO[144].

In view of its importance as an ozone sink in human occupied environments, the reaction

between squalene and ozone has been increasingly studied in recent years[133, 141, 143, 144,
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Figure 4.1: Structures of squalene, one of the six possible primary ozonides (POZ) squa-
lene can form upon reaction with ozone, and selected volatile products resulting from the
decomposition of the unstable POZ.

140, 106, 45, 134, 142, 145]. Human skin lipids reacting with ozone have been examined in

real and simulated environments, and results indicate that humans are a significant sink for

ozone present in such environments, accounting for up to half of ozone removal[133, 144, 142,

145]. For example, simulated office and aircraft cabin studies have examined the products

of squalene ozonolysis due to human presence[144, 142, 145]. In one simulated aircraft

cabin study, it was found that ozone reacting with squalene on human skin and clothes was

responsible for a 40-60 ppb increase in the concentration of certain acids, aldehydes, and

ketones and >55% ozone removal[142].

The reaction of squalene with ozone forms several primary products, including acetone, hy-

droxyacetone, 6-methyl-5-hepten-2-one (6-MHO), 1-hydroxy-6-methyl-5-hepten-1-one, and

geranyl acetone, as well as a number of secondary products, including 4-oxopentanal (4-

OPA), 5-hydroxy-4-oxopentanal (5-OH-4-OPA), 1,4-butanedial (succinic dialdehyde), 4-methyl-

8-oxo-4-nonenal (4-MON), 4-methyl-4-octene-1,8-dial (4-MOD), 4-oxopentanoic acid, and
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4-oxobutanoic acid[44, 143, 144, 90, 91]. In studies where squalene directly from human

skin was scrubbed onto glass wool and exposed to 100 ppb ozone, acetone (˜17 ppb) and 6-

MHO (˜14 ppb) represented the most abundant first-generation products, while 4-MON (˜4

ppb) and 4-OPA (˜3.5 ppb) represented the most abundant second-generation products[144].

Some of these products are represented in Figure 4.1.

Many of these products have also been detected in forest air and are believed to result

from reactions of ozone with plant surfaces containing squalene and related terpenes[90, 91].

Squalenes high degree of unsaturation allows for the formation of tertiary and higher-order

reaction products, such as ethanedial (glyoxal)[144, 140]. The volatility of these poorly

characterized oxidation products is low, and they may be present on surfaces of indoor dust

particles contributing to their redox activity and potential for irritancy[7].

In this study, squalene is exposed to relatively high levels of ozone to simulate its prolonged

oxidation, yielding a highly complex mixture of condensed-phase oxidized products. We

utilize high-resolution mass spectrometry (HR-MS) to examine these oxidation products in

detail and discuss the underlying mechanism. To further aid in understanding this complex

system, we use a Computational Brewing Application (COBRA) to model the products of

squalene oxidation by ozone[43]. COBRA is optimized to model the evolution of a complex

chemical mixture by simulating millions of reactions between compounds in the mixture,

after sets of starting products and chemical reaction mechanisms are specified. By studying

these computationally predicted products and comparing them with the experimental data,

we can better understand the molecular and structural characteristics of squalene oxidation

products present on aged indoor surfaces and dust.
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4.2 Materials & methods

4.2.1 Experimental Methods

Approximately 50 L of pure squalene (Sigma-Aldrich, >98% purity) was uniformly dis-

tributed over the surface of a 47 mm polyvinylidene fluoride (PVDF) filter (Millipore HVLP04700,

0.45 m pore size). The filter was sealed inside a stainless steel filter holder (Millipore

XX4404700) and exposed to a 2 SLM (standard liters per minute) flow of oxygen containing

50 ppm ozone for a period of time, typically 1 h. Such a high concentration was chosen to

simulate the effects of long-term exposure of squalene to ambient levels of ozone. In terms

of integrated exposure, it is roughly equivalent to 1000 h of exposure to 0.050 ppm ozone;

however, we cannot exclude the possibility of nonlinear effects on the mechanism associated

with the very high ozone mixing ratio used in this study. In the first set of control exper-

iments, a blank filter was exposed to the same flow of ozone. In the second set of control

experiments, squalene was applied to the filter but not exposed to ozone. All experiments

were done under dry conditions and in the absence of other copollutants, such as NOx. In

actual indoor environments, water and NOx could potentially affect the reaction mechanism

and product distribution. Therefore, comparisons of the observed and predicted products of

oxidation of squalene with compounds found indoors should be done with care.

The reaction products were extracted from the filter with 5 mL acetonitrile containing 50

M NaCl to help improve ionization efficiency in the positive ion mode. The resulting solu-

tions were analyzed with a high-resolution (m/m = 105 at m/z 450) linear-ion-trap (LTQ)

Orbitrap mass spectrometer (Thermo Corp.) using an electrospray ionization (ESI) source

in the positive ion mode. The compounds were detected as sodiated [M + Na]+ and/or

protonated [M + H]+ species, with the strong predominance of the former. The result-

ing mass spectra were calibrated with respect to peaks in an Ultramark LTQ ESI positive

ion calibration solution (Thermo Scientific) and with respect to the observed prominent
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peaks in the oxidized squalene mass spectra, such as [C30H50OnNa]+ with n = 0-6, and

[C20H34O12(C5H8O3)nNa]+ with n = 0-7. The data analysis was carried out as discussed

in Nizkorodov et al.[100]. Specifically, peaks corresponding to 13C isotopes were removed;

peaks that appeared in the oxidized filter control sample were discarded; formula assign-

ments were limited to C1-80H2-140O0-50Na0-1+ with 0.0012 m/z tolerance; the H/C and

O/C ratios were constrained to 0.5-2.2 and 0-1.2; and only closed-shell ions (no ion-radicals)

were considered. Multiple formula assignments were sometimes possible for peaks with high

m/z values; in these cases, preference was given to formulas that continued prominent CH2

Kendrick series of unambiguously assigned peaks. All formulas discussed in the remainder

of this paper correspond to the neutral compounds for the convenience of comparison with

the COBRA simulation.

4.2.2 Computational Methods (COBRA)

COBRA is a computational brewing application that can be customized to simulate highly

complex chemical systems[43]. It uses a bottom-up approach to simulation, wherein the

starting compounds are selected and reaction rules describing the chemical transformations

allowed within the system are defined based on experiments or prior chemical knowledge.

Starting compounds are input using the commonly used SMILES language, and reaction

rules are written using the related SMIRKS language[60, 1, 2]. SMIRKS is a reaction trans-

form language used to define chemical reactions to an arbitrary degree of specificity. Each

SMIRKS reaction rule represents one possible chemical transformation. Once the set of

starting molecules and list of reaction rules is defined, COBRA simulates the evolution of

the chemical system by exhaustively applying reaction rules to the starting pool of reactants,

thereby generating a set of first-iteration products, which is mixed back into the pool of re-

actants for future iterations. The simulation continues in this way for an arbitrary number

of iterations, resulting in a comprehensive list of all possible products of reactions.
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In this study, COBRA was applied to modeling the oxidation of squalene in the presence of

ozone. Two starting compounds were used for the simulation: squalene and ozone. Twelve

chemical rules based on the current understanding of the mechanism of ozonolysis of alkenes

were written to model the chemistry of the system (Table 4.1)[41]. Some of the rules produce

Criegee intermediates (CIs) or other free radicals, which react further to form more stable

products. To avoid modeling these unstable intermediates explicitly within the product pool,

we combined CI- and radical-forming rules with later rules which consume CIs and radicals

to form the final set of 12 SMIRKS-encoded rules used by the COBRA simulation.

Specifically, Rule 1 describes the formation of a Criegee intermediate (CI) and carbonyl from

an alkene, as shown in Figure 4.1. Rule 2 corresponds to the formation of a secondary ozonide

(SOZ) from the CI and a carbonyl, which is known to be efficient in condensed phases[13].

Rules 3-5 correspond to possible decomposition pathways of CI into stable products[41].

Rule 6 encompasses a series of reactions starting from an OH loss from CI, followed by the

addition of OH to a double bond in a neighboring molecule, and an addition of molecular

oxygen to all the alkyl radical sites to form peroxyl radicals, RO2[131]. The extent of OH

loss from the CI in the condensed phase is uncertain, and may be low based on pressure-

dependence studies, but we include it since it is one of the most important reactions of CIs

in the gas phase[77, 39]. The RO2 radicals are relatively stable, and are expected to decay

by cross-reactions resulting in carbonyl, alcohol, and peroxide products (Rules 7-9). Our

first set of simulations included only rules 1-9 in Table 4.1, but they could not reproduce

some of the major peaks in the experimental mass spectrum. Thus, the rules were amended

to include three additional pertinent rules: hemiacetal formation (Rule 10), which appeared

to occur in the products based on the experimental data; peroxyhemiacetal formation (Rule

11); and autoxidation of double bonds to carbonyls (Rule 12), which appeared to occur

readily in squalene exposed to air (see Figure S1)[45].

We applied a filter such that the maximum mass of the generated structures was limited
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to 100 heavy atoms (C and O), or approximately 1450 Da, because this was expected to

cover the range of peaks detected by mass spectrometry. No other filters were applied.

The simulation was allowed to proceed for four iterations, producing over 1 billion unique

molecular structures after running for one month on an AMD Opteron 6274 2.2 GHz system.

Ideally, the simulations would have run for six iterations to allow all six of squalenes double

bonds to be oxidized, but extending the simulation was prohibitively expensive in terms of

computer resources.

4.3 Results & discussion

4.3.1 Experimental Mass Spectrum

The background-corrected ESI mass spectrum of oxidized squalene contained more than

1500 peaks, and nearly 1300 of them could be unambiguously assigned to elemental formulas

within the constraints described above. The reconstructed spectrum of the assigned neutral

compounds is shown in Figure 4.2. ESI is regarded as a soft ionization technique, so it is

assumed that each neutral compound should produce just one peak in the mass spectrum.

In practice, some amount of ion fragmentation or cluster formation may occur even under

soft ESI conditions. But even considering this complication, it is clear that ozonolysis of

squalene generates a complex mixture of products. This can be contrasted with ozonolysis of

lipids that have just one double bond, such as oleic acid or undecylenic acid, which produce

a simpler product distribution[132, 149, 49]. For example, the undecylenic acid ozonolysis

in Gomez et al.[49] produced a factor of 20 fewer peaks compared to the number of assigned

peaks in the squalene system in this work.

In direct-infusion ESI-MS of complex mixtures, the relative intensities of different peaks are

not necessarily indicative of the corresponding concentrations because of the selectivity in
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Figure 4.2: HR-MS experimental data and COBRA predictions of squalene ozonolysis prod-
ucts. HR-MS spectrum peaks that were predicted by the simulation are shown in blue. The
remaining experimental peaks that were not predicted are shown in red. Within the simula-
tion mass range of 0-1450 Da, over 83% of HR-MS peaks were predicted, including all major
peaks as shown. Also noted is the series of strong peaks with m = C5H8O3.

the ionization process. For example, the spectrum of unoxidized squalene, in addition to

the major C30H50 squalene peak, contains peaks of C30H50On with n = 1-6 corresponding

to the products of squalene oxidation (all of them detected as Na adducts). These species

are likely present at small levels in squalene, but they are enhanced in the mass spectrum

because sodium ion affinity increases with the polarity of the analyte. Despite the selectivity

in ionization, we can reasonably expect that all highly oxidized products should show up in

the mass spectrum. Therefore, we can draw qualitative conclusions from the occurrence and

relative intensity distribution of structurally related peaks.

One series of formulas that especially stands out in the experimental spectrum is a progres-

sion of C20H34O12(C5H8O3)n with n = 0-7 (Figure 4.2). The oligomer building block C5H8O3

could represent a combination of isoprene (C5H8), from which squalene is built, and ozone

(O3). However, it is also possible that C5H8O3 corresponds to an actual product of squa-

lene ozonolysis, such as 5-hydroxy-4-oxopentanal (5-OH-4-OPA) shown in Figure 4.1. The

molecules possessing both hydroxyl and carbonyl groups can cross-couple by means of hemi-
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acetal formation reactions, and 5-OH-4-OPA should be especially active in such a process

because aldehydes are more reactive than ketones. In fact, the COBRA simulations described

below did not predict some members of the C20H34O12(C5H8O3)n series when the hemiacetal

formation rule (Rule 10) was disabled, further supporting that reactions importance.

To help identify other series of related compounds in the mass spectrum, we carried out an

analysis of the frequency of occurrence of mass differences between the peaks, similar to the

one described in Kunenkov et al.[78]. According to the results, the most common mass dif-

ferences correspond to C5H8O3 (possibly 5-OH-4-OPA), C3H6O2 (possibly hydroxyacetone),

C5H8 (isoprene), O3 (ozone), oxygen atom, and various combinations of these species. It is

significant that all of these differences are chemically meaningful. For example, hydroxyace-

tone is a known product of squalene oxidation and an easily oligomerizable molecule[144].

Isoprene is a basic building block of squalene, so it is a naturally repeating unit for the

squalene oxidation products. The reaction of ozone with alkenes produces SOZ compounds

in high yields (Rule 2 in Table 4.1), with the formula of SOZ derived from the formula of the

initial alkene with the addition of 3 oxygen atoms. Finally, the oxygen atom can be added

to the molecule via the autoxidation reaction (Rule 12).

4.3.2 COBRA Simulations

COBRA simulations generated over 1 billion unique structures representing 26899 elemental

formulas after four iterations of computational brewing (where the first iteration is the initial

reaction of ozone with one of the double bonds in squalene). Overlap with experimental HR-

MS results was good, with the majority of high-intensity peaks being predicted (Figure 4.2).

Specifically, when considering HR-MS observed peaks within the COBRA simulation range,

which was limited to a maximum of 100 heavy atoms, or roughly 1450 Da, we predicted

1045 of the 1258 experimentally observed peaks (83.1%). As Figure 4.2 demonstrates, the
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peaks predicted by COBRA represent the most abundant compounds detected within this

mass range. This suggests that the reaction rules defined in Table 4.1 and used by COBRA

to generate predicted products reasonably capture the essential chemistry of the squalene

ozone oxidation system.

Figure 4.3: (a) Kendrick plot and (b) Van Krevelen diagram comparing the COBRA results
(small green dots) with experimental results (blue circles with diameters proportional to the
log of the peak abundance). Red circles are those for which simulated and experimental
data overlap. The COBRA simulation produces products that are more oxidized on average
(have higher O/C ratios).

Despite the good overlap between the observed and predicted formulas, the fact that 17%

of the observed formulas were not reproduced by the simulation suggests that some reaction
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mechanisms are still missing. Specifically, the simulation appears to miss experimentally

observed compounds with low H/C and low O/C ratios, which tend to be outliers on the Van

Krevelen diagram in Figure 4.3b. To further compare the group of observed compounds that

is predicted and the group that is not predicted, we computed the average molecular formula

and average double bond equivalent (DBE) for the two groups. For observed compounds that

are predicted, the average formula is C37.3H61.4O15.2 (DBE 7.6), while the average formula

for observed compounds that are not predicted is C32.6H49.3O8.3 (DBE 9.0). These formulas

indicate that the simulation predicts observed compounds that are, on average, larger and

more oxidized compared to the ones it does not predict. Interestingly, observed compounds

that are not predicted tend to be less saturated on average (have a higher DBE).

We should note that the overlap of the predicted formulas and observed ones is not a definite

proof that the chemistry rules we have chosen are correct and comprehensive. We tested the

overlap between the formulas predicted for squalene ozonolysis in this work, and formulas

observed in ozonolysis of limonene by Bateman et al.[19], and found a high degree of overlap

between them (90% of the observed formulas appeared in the simulation output). Limonene

is a monoterpene, which, like squalene, is built from isoprene units. Therefore, limonene

undergoes ozonolysis by a similar mechanism, so the overlap in this case is not too surprising.

We also tested the overlap between formulas predicted in this work and those observed in two

other experiments: an isoprene photooxidation SOA[43], and a naphthalene photooxidation

SOA[85]. Overlap between our squalene simulation from this work and the observed formulas

in isoprene and naphthalene SOA was 62% and 23%, respectively. The lower degree of

overlap with these two systems is consistent with the mechanistic differences between OH-

driven oxidation for isoprene and naphthalene cases, and O3-driven oxidation in the squalene

and limonene cases.

To provide further context for the aforementioned comparisons, we also tested the overlap

between experimental results from this work and experimental results from the other works.
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When comparing experimentally observed formulas for squalene ozonolysis in this work and

formulas observed in the other works, the overlap (the percentage of formulas from the other

studies that were also observed experimentally in this work) was as follows: 22% for the

limonene ozonolysis system[19], 10% for the isoprene photooxidation system[43], and 7% for

the naphthalene photooxidation system[85]. All of these comparison results are summarized

in Table 4.2.

Figure 4.3 offers another perspective on the overlap between HR-MS and COBRA results.

The top panel shows a CH2 Kendrick plot for the experimentally observed and simulated

peaks. The predicted structures have similar values of the Kendrick mass defects compared

to the experimental ones. The Kendrick mass defect is calculated as the difference between

the nominal mass and Kendrick mass with respect to the 12CH2 group[100]. The second

panel shows a Van Krevelen diagram, wherein the H/C and O/C ratios for all the com-

pounds are plotted against each other[71]. This diagram has a wide range on the O/C axis,

which is expected since the chemistry strongly favors oxygen atom addition to the molecules.

The simulated compounds are on average more oxidized than the experimentally observed

ones. This is not surprising, as the simulation can proceed without kinetic constraints,

which is of course not true in reality. First of all, as the products build up, the product

mixture likely becomes more viscous, constraining access of ozone and oxygen to the mix-

ture components[130]. Second, it has been shown for the OH-driven oxidation of lipids that

oxidation reactions adding oxygen atoms to the products are efficient at the early stages of

oxidation, but at later stages they are replaced by fragmentation reactions, which our simu-

lation does not take into account. For OH oxidation of squalane (the fully saturated version

of squalene) the fragmentation processes took over when O/C ratio reached about 0.4.(34)

On the basis of Figure 4.3b, the fragmentation may become significant in the ozone-squalene

system once the O/C ratio reaches ˜0.7 since not many products are observed with O/C in

excess of this value, while there is clearly a potential for accommodating larger amounts of

oxygen according to the simulation.
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We performed 13 exclusion simulations to examine which reaction rules were contributing

most to the prediction of experimentally observed products. For each exclusion simulation,

a single reaction rule was omitted, and the simulation was run until 500000 reactions were

computed. Then the number of experimental molecular formulas recovered was compared

against an analogous control simulation in which all rules were included. The exclusion

percent is the percent reduction in the number of correctly predicted formulas when a given

rule is omitted. That is, a higher exclusion percent indicates a more important rule in terms

of contribution to the product distribution. With an exclusion percent of 16.3%, the most

important rule in recovering experimentally observed formulas was the sequence of reactions

1 + 6 + 7 from Table 4.1, which involved OH loss from a Criegee intermediate (CI) with

subsequent addition of O2 to the resulting radical, followed by carbonyl formation from the

resulting RO2 group. The second most important rule, with an exclusion percent of 15%,

was the sequence of reactions 1 + 6 + 9, analogous to the previous rule, but with peroxide

formation from RO2 as the last step. The third most important, at 12.2%, appeared to be

reaction 2 from Table 4.1, the formation of a trioxolane ring (SOZ) from CI and a carbonyl.

Finally, formation of hemiacetals and peroxyhemiacetals (reactions 10 and 11 from Table

4.1) had an exclusion percent of 5.8% and appeared to be required to reproduce the most

abundant peaks in the experimental spectrum. Some rules had an exclusion percent of 0%,

implying that they either produce strictly a subset of products generated by other rules, or

that they do not produce experimentally observed structures within the number of reactions

computed in an exclusion simulation.

We also compared the table of major primary and secondary products of squalene ozonolysis

listed in Weschler[141]. to both our experimental HR-MS data, and the simulated data.

All of these products were predicted by the simulation, while half of them were detected in

the HR-MS data. We note that experiments in Weschler[141] predominantly detected early

products of oxidation generated at low ozone exposures, most of which are volatile species,

whereas the experiments reported here focused on later-generation products remaining in
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the condensed phase. It is therefore expected that some of the readily oxidizable compounds

observed under the milder oxidation conditions in Weschler[141] were not observed here

under stronger oxidation conditions. The simulation captures both early- and late-generation

products of oxidation, regardless of whether they are volatile or not, hence it agrees with

both sets of experiments.

Figure 4.4: Examples of predicted structures from the two most abundant HR-MS peaks.
Parts (a) and (b) are from the most abundant peak, with the formula C25H42O15. Parts (c)
and (d) are from the second most abundant peak, with the formula C30H50O18. COBRA
generated 9804 and 32527 structures for these two peaks, respectively, and the examples
above were randomly selected from those sets.

One of the benefits of the simulation is that it has information on molecular structures of

every product produced by the simulation. Figure 4.4 shows examples of COBRA-predicted

structures with masses corresponding to the two most abundant HR-MS peaks. The struc-
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tures in Figure 4.4A and 4.4B correspond to the highest intensity peak, C25H42O15, and

Figure 4.4C and 4.4D are structures selected from the second highest peak, C30H50O18. We

should emphasize that these structures are just randomly selected structural isomers out of

thousands of possibilities. For example, there were as many as 9804 structures generated

for the aforementioned C25 peak, and 32527 structures generated for the C30 peak. These

numbers indicate the broad range of structural isomers generated by the system for a given

molecular mass. For some molecular formulas, particularly at higher masses, there were hun-

dreds of thousands of structures predicted. Of course, in reality, not all of these isomers will

be accessible because of various kinetic and energetic constraints, which are not included in

the simulation. Nevertheless, the implication of these results for the interpretation of the ex-

perimental mass spectrum (which cannot resolve isobaric compounds) is that the mixture of

products is likely even more complex than the number of distinct peaks in the direct-infusion

ESI mass spectrum would suggest.

Another advantage of the simulation is that it can provide statistical information on the

distribution of important functional groups in the products (once again, we are neglecting

possible kinetic and energetic constraints in the actual reaction). Therefore, we calculated

the percentage of oxygen atoms in simulated products by functional group, to better un-

derstand the chemical composition of the complete set of predicted structures (Table 4.3).

On the basis of the simulation results, peroxy groups are the most prevalent functional

group containing oxygen atoms, accounting for 42.5% of oxygen atoms in the products. The

next most prevalent oxygen-containing functional groups were hydroxyl, ether, and ketone

groups, representing 20.9%, 18.0%, and 9.7% of all oxygen atoms in the simulated formulas,

respectively. Figure 4.5 shows examples of predicted structures containing a high fraction

of O atoms in peroxy groups. The two structures were selected from the pool of predicted

products for the two most abundant HR-MS peaks, as in Figure 4.4. They represent the

maximum fraction of oxygen atoms in peroxy groups among structures predicted at these

masses and are shown for illustrative purposes. We note that while the simulation does not
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consider possible kinetic and energetic constraints, these statistics and examples are still of

use for understanding the composition and characteristics of the simulated product pool.

Figure 4.5: Examples of structures with a high number of peroxy functional groups. Peroxy
groups were the most common functional group for O atoms in the predicted products
(Table 4.3). The structures above were predicted for experimental peaks C25H42O15 (a) and
C30H50O18 (b). These structures represent the highest fraction of O atoms in peroxy groups
for structures predicted with these molecular formulas.

Simulating the oxidation of squalene in the presence of ozone using COBRA is a good ex-

ample of the utility of computational tools for modeling and understanding complex natural

systems. COBRA can aid in validating experimental data, generating proposed structures

for compounds observed in mass spectrometry experiments when combined with electronic

structure calculations, and generating possible structures for other experimentally observed

chemical formulas. By defining a relatively simple system of chemical transformation rules

and starting compounds, this computational approach can be a powerful tool for better un-

derstanding the complexity of a natural chemical system composed of tens or hundreds of

thousands of compounds. These results are atmospherically relevant because they may help

understand the nature of compounds found in highly aged indoor dust resulting from skin

flakes and highly soiled indoor surfaces, such as airplane cabins and heavily populated office

spaces.
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Table 4.1: List of chemical rules used to define the squalene oxidation system.
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Table 4.2: Comparison of experimental and simulated results from this work with experi-
mental results from several prior studies.

Table 4.3: Percentage of O atoms by functional group for all predicted products.
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Chapter 5

Deep Learning for Chemical Reaction

Prediction

Reaction Predictor is an application for predicting chemical reactions and reaction pathways.

It uses deep learning to predict and rank elementary reactions by first predicting electron

sources and sinks, pairing those sources and sinks to generate proposed reactions, and fi-

nally ranking the reactions by favorability. We demonstrate significantly improved accuracy

and speed while predicting advanced organic chemistry. We describe multi-target pathway

search functionality than can aid the identification of unknown masses observed by mass

spectrometry. Finally, we discuss an alternative approach to predicting electron sources and

sinks using recurrent neural networks, specifically long short-term memory (LSTM) architec-

tures, operating directly on reactant SMILES strings. This approach has shown promising

preliminary results.
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5.1 Introduction

Achieving human-level performance at predicting chemical reactions remains an open prob-

lem with broad potential applications. Historically there have been three major categories

of approaches to reaction prediction: rule-based expert systems, quantum-mechanical simu-

lations, and machine learning-based systems.

Rule-based approaches to reaction prediction[47, 22, 29] are fast, but the requisite systems

of manually-implemented rules and exceptions require painstaking maintenance. While they

may provide good results within a limited chemical domain, rule-based systems are con-

strained by the extent to which a human expert has defined the underlying rules. Such sys-

tems do not scale well over the long term as new areas of chemistry are added. Furthermore,

these systems typically make predictions at the level of overall chemical transformations.

Multi-step reactions are condensed into a single transformation, and information about the

elementary arrow-pushing steps comprising the multi-step reaction is not available. Yet these

elementary steps are the building blocks for predicting novel multi-step global reactions and

identifying side products.

Quantum-mechanical (QM) approaches may theoretically yield accurate results based on

physical first principles, but in practice are highly sensitive to operator set-up, and are

computationally expensive. Many recent studies involving QM-based prediction of reaction

pathways are narrowly limited to a single chemical system[86, 107, 4, 10, 119]. A clear

benefit of these methods, when successful, is their ability to quantitatively predict important

reaction parameters such as free energies, energy barriers, transition states, and reaction

rates. Still, they require considerable human intervention and are not suitable for making

high-throughput predictions.

Machine learning (ML) approaches[69, 68, 135] are fast and scalable, but ideally require large

data sets from which to learn. Obtaining such chemical data sets is a significant challenge, as
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many are proprietary and not readily available for academic use. Furthermore, reactions may

be unbalanced or not atom-mapped, complicating attempts at statistical learning. Nonethe-

less, the ML approach to reaction prediction remains promising, and recent advances in deep

learning have opened the door to further performance gains.

We also note that these three approaches can be complementary to one another. Rule-based

systems have been used to provide training examples for ML-based systems[69]. Similarly,

ML-based systems can benefit from the implementation of a small number of carefully se-

lected rules. In the case of Reaction Predictor, such rules are designed to address corner

cases or express strong priors about specific products or resonance structures that may be

problematic or redundant. Other work has explored using ML-based approaches to pre-

dict traditional QM observables like molecular atomization energies and electronic structure

properties[114, 53, 61]. Recent work in our group demonstrated synergies between the QM-

and ML-based approaches[115]. We showed that results derived by QM modeling can be

used to derive new training examples for ML algorithms, creating a closed and automated

positive feedback loop. In this loop, the ML system helps prioritize QM computations on

elementary reaction steps, and the QM-computed Hartree-Fock activation energy is used to

generate additional training examples to directly improve the ML system.

Reaction Predictor is a deep learning-based approach to reaction prediction that operates

at the level of elementary reactions. Each predicted reaction involves the movement of

electrons from an electron source to an electron sink. Chemical inputs are represented using

SMILES and SMIRKS strings, and the OEChem toolkit[2, 60] enables additional chemical

computation. In brief, the Reaction Predictor pipeline operates in the following multi-step

fashion, given a set of input reactants:

1. Enumerate all possible electron sources and electron sinks within the input reactant

molecules
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2. Filter the list of candidate sources and sinks, predicting a smaller list containing only

the most reactive sources and sinks

3. Propose reactions by enumerating all combinations of source-sink pairings

4. Rank the proposed reactions by favorability

Reaction Predictor features an offline pathway search tool that can help identify unknown

products by searching for experimentally observed masses. The user submits a search job

by entering a set of reactants and one or more mass targets, and the system performs the

search in the background, emailing results when complete. If matches were found, the

system provides not only proposed structures for the search targets, but also includes the

full reaction pathway that yielded the products.

Here we describe the ML design and methodology underpinning Reaction Predictor’s ML-

based predictions. We test its performance on a benchmark data set of challenging real-world

reactions, and demonstrate that it notably surpasses the performance of an early prototype in

both accuracy and speed. We also demonstrate that an alternative approach to predicting

electron sources and sinks simply by examining SMILES strings, using a long short-term

memory (LSTM) architecture[57, 50], shows promising results.

5.2 Materials & methods

5.2.1 Data

The unit of our data set is an ”elementary reaction”. Each elementary reaction represents an

energetically favorable elementary mechanistic step, with a single labeled electron source and

a single labeled electron sink. The early prototype used a data set that was a combination of
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undergraduate organic reactions extracted from Reaction Explorer rules[29], plus a set of 368

hand-selected reactions from graduate-level organic chemistry texts[58, 87]. In total, there

were 5,551 elementary reactions in the original data set. We note that, internally, Reaction

Predictor has three distinct chemical prediction modes: one for polar, one for radical, and

one for pericyclic reactions. Each of these uses its own separate underlying data set and

trained predictive models. Here we will discuss the polar data set and models, as they

represent the most developed prediction mode for Reaction Predictor.

We used a benchmark data set of 289 single-step reactions taken from challenging multi-step

transformations to test the performance of our system. These reactions were hand-curated

to cover a broad range of advanced organic chemistry intended to test the system’s ability

to generalize on real-world reactions. They are not a subset of the training data.

5.2.2 Data set improvement

One significant limitation of using Reaction Explorer rules to generate the bulk of the pro-

totype’s original training reactions is the inherent bias towards undergraduate chemistry.

Undergraduate texts often make simplifying assumptions or omit complicating details in

order to more clearly present fundamental concepts. A more accurate understanding of the

chemical reality is left to be clarified during advanced study. This presents a problem for

learning algorithms, which can only learn and generalize based on what they are shown

during training. To address this, we reviewed the existing data set in its entirety. Man-

ual inspection of all elementary reactions led to the removal of 884 problematic reactions.

Reactions were removed for any of several reasons. First, inspection showed that the SN2

mechanism was overemphasized, and a number of redundant SN2 reactions were removed.

Second, some reactions were removed as they were unfavorable or less favorable than an

alternative elementary mechanism. Third, some of the reactions simply contained errors.
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(a)

(b)

Figure 5.1: Examples of problematic reactions. In (a), the problematic mechanism was an
SN2 attack of carbon ”1” by ethanol. The correct mechanism should use an oxygen ”2” lone
pair to push out O+, followed by ethanol attack. In (b), this Grignard reaction erroneously
contained Mg+ instead of MgBr.

Figure 5.1 shows examples of problematic reactions identified in the original data set. After

removing these problematic reactions, we were left with a cleaned data set of 4667 polar

elementary reactions.

Using this cleaned data set as our starting point, we have since added 6,361 high quality

hand-curated reactions. These were selected by our coauthors Van Vranken, Gutman, and

Mood, and cover a broad range of advanced organic chemistry that was not represented in

the original data set. Some examples of notable new reaction types added to the data set

are shown in Figure 5.2. In Figure 5.2a, a 12-step synthesis reported by Tu et al. involves

an MPV reduction. Figure 5.2b represents a seven-step synthesis reported by Mulzer et al.,

which involves a Mitsunobu reaction. Figure 5.2c shows an eight-step synthesis by Baumann

et al. that depends upon a Stetter reaction. For each of these examples, critical steps in the

reaction mechanism required elementary reactions that were not represented in the original

data set, but have since been added.

At time of writing, the total number of elementary reactions in our data set is 11,028 – more

than double the original data set.
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(a)

(b)

(c)

Figure 5.2: Examples of multi-step syntheses requiring chemistry that is now represented in
the data set. Hand-curated elementary reactions were added to the training data to enable
these reaction types, and many more, greatly improving predictive capability. Reaction (a) is
a 12-step synthesis requiring an MPV reduction[129]; (b) is a seven-step synthesis involving
a Mitsunobu reaction[95]; and (c) is an eight-step synthesis involving a Stetter reaction[20].
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5.2.3 Combinatorial reaction generation

We experimented with using software to automatically generate thousands of additional el-

ementary reactions for our training data set, using the following methodology. First, for a

given reaction mechanism, we identified the core molecular template and the appropriate

electron movement. We then systematically varied the substituents of the template reaction

within realistic chemical constraints to generate all combinations of substitutions. In this

way we generated tens of thousands of elementary reactions covering a range of fundamental

reaction classes. In order to not overwhelm the existing data with biases towards the com-

binatorial reactions, we randomly sampled subsets on the order of a thousand reactions for

each mechanism. Figure 5.3 illustrates this process.

Figure 5.3: Illustration of combinatorial reaction generation, including reaction template
(top) and substitution constraints (bottom). Thousands of reactions are produced by gen-
erating all combinations of allowed substitutions for C1, C2, C3, and C4.

5.2.4 Applying deep learning

Predicting reactive electron sources and sinks is a crucial step in the Reaction Predictor

pipeline. If the best source or best sink is rejected during the source/sink filtering step, the

desired reaction cannot be reproduced. The early prototype of Reaction Predictor placed

great emphasis on recall, with little consideration for precision. That is, the system was

biased towards predicting many potential sources and sinks, to avoid missing any, even
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if most were false positives. Yet false positives have negative performance implications:

they significantly increase computation time, which quickly adds up for pathway searches,

wherein multiple single-step predictions are chained together to predict products of multi-

step reactions. We developed source/sink filtering models focused on both precision and

recall, as described below.

For source/sink filtering, we use a single 380,000 parameter, fully-connected feedforward neu-

ral network (also called a multilayer perceptron, or MLP) with 1,500 inputs, three hidden

layers of 200 rectified linear units, and two independent sigmoid output units corresponding

to a source prediction and a sink prediction. To reduce overfitting, 50% dropout was applied

to each hidden layer[56, 14]. To train the model, weights were initialized as described in

Glorot and Bengio, and updated using the Adam optimizer[73] on mini-batches of 64 exam-

ples. An exponentially decaying learning rate, and early stopping based on a validation set

of 10% of the training set were used. Training was performed on an NVIDIA Titan X GPU.

We built the training data for our source/sink filtering network as follows. For each elemen-

tary reaction in the database, we extracted four training examples: (1) the labeled source,

(2) the labeled sink, and (3) two randomly sampled non-source, non-sink examples. There

are two advantages to this method compared with the original method of extracting two pos-

itively labeled examples (true source and true sink), plus all remaining negative examples.

First, we avoid the significant imbalance inherent in the data, as we observe approximately

22-times more negative examples than positive examples. Previously this was addressed by

oversampling the positive examples. The second advantage is we avoid adding potentially

misleading examples to our training data. Specifically, we avoid negatively-labeled examples

that should actually be considered secondary sources or sinks. For a given elementary reac-

tion, the set of atoms not explicitly labeled source or sink contains mostly poor sources and

poor sinks. However, some could be considered ”second-tier” sources/sinks, either on their

own or within a different molecular context. By randomly selecting from these atoms to
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generate our negative examples, we gain a representative sample of the non-source, non-sink

examples in our data, while also avoiding labeling all potential second-tier sources/sinks as

negative examples. Extracting the data as described above, our training set for source/sink

filtering consisted of 23,850 examples, half of which were positive examples.

After identifying sources and sinks, and pairing them together, we must rank the resulting set

of proposed reactions. To do so, we train a deep Siamese architecture neural network[101, 24]

to compute a reaction favorability score. Figure 5.4 illustrates this architecture. Training

examples consist of ordered reaction pairs (Rfavorable, Runfavorable), where the favorable reaction

is always presented to the left instance of the shared-weight neural network. Fixed weights

of +1 and -1 for left and right outputs are connected to a final sigmoid unit. Thus the

final output y approaches 1 if the left reaction was scored higher than the right reaction,

and 0 otherwise. After model training, we use one instance of the shared-weight network to

compute favorability scores for all reactions, and rank them based on those scores.

For the shared-weight network, we used two hidden layers of 300 tanh units, and a sigmoid

output. Initialization and training proceeded as described above for the source/sink mod-

els. We generated training examples (Rfavorable, Runfavorable) as follows. For each elementary

reaction in the data set, we have one reaction, Rfavorable, formed by pairing the labeled elec-

tron source with the labeled electron sink. We can propose many additional unfavorable

reactions, by pairing the labeled source with all non-sinks, and all non-sources with the

labeled sink, within the constraints of chemical feasibility. We use this set of unfavorable

reactions to create additional training pairs (Rfavorable, Runfavorable), yielding 387,744 total

training examples.
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Figure 5.4: Siamese architecture for reaction ranking. Outputs from the left and right
instances of the neural network NN have fixed weights of +1 and -1 into a final sigmoid
unit. Thus the final output y approaches 1 if Reaction 1 scores higher than Reaction 2, and
0 otherwise. We can think of NN as computing a reaction favorability score that is learned
by training on many examples of (Rfavorable, Runfavorable) reaction pairs.

5.2.5 Feature representation & selection

To make accurate source/sink predictions, we must extract relevant chemical information

about each potential source/sink site within a reactant molecule. The features we use to

capture this information fall into two categories: physicochemical, and graph-topological.

Physicochemical properties are extracted at the atom level. Examples include partial and

formal charge, presence and type of filled/unfilled orbitals, presence of lone pairs, and a steric

coefficient. Graph-topological features capture properties about the atom and bond connec-

tivity of the molecular graph. These are based on a variation of chemical fingerprints[122]

and are extracted by enumerating paths and trees over a small neighborhood around a par-

ticular atom. Specifically, we allow paths up to depth 6 if the atoms along that path are

heteroatoms or are part of a conjugated pi system, otherwise the maximum depth is 3.
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Reaction-level features include (1) a combination of concatenated source and sink atom-level

features, (2) features describing the type of orbitals involved, and (3) net change features,

which are created by computing molecular fingerprints for both the reactants and products,

then subtracting the former from the latter to capture ”what changed” during the reaction.

Extracting the features described above for all examples in our data set yields 293,046 atom-

level features, and 62,560 reaction-level features. We select the top 1,500 atom-level and top

2,000 reaction-level features with the highest mutual information and use those features as

the input representations for our source/sink filtering and ranking models[76, 104].

5.2.6 Spectator molecules

A spectator molecule is present on both the reactant and product sides of an elementary

reaction, but does not participate in the reaction mechanism. There is information to be

gleaned, however, from a spectator molecule’s inaction. Each spectator molecule can provide

negative source/sink training examples for the filtering model, and unproductive elementary

reaction examples for the ranking model. We added the ability to capture and consider these

spectator molecules in our training data.

5.2.7 Offline pathway search

Reaction Predictor’s Pathway Search feature allows the user to input starting materials and

a target molecule to search for multi-step reaction pathways that yield the target. The

prototype version had several limitations. First, it required a specific molecular structure for

the target. Often a chemist may have only a molecular mass, not a structure, for a target

of interest. Another limitation was that the searches had to be run ”online”, while the user

waited for a result to be returned to the web application. For large, complicated pathway
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searches, this often led to the web browser timing out while waiting for a server response.

Another limitation was that the pathway searches were all running on a single machine.

Multiple searches executing in parallel had to compete with each other for resources, slowing

down the whole machine, including single-step Reaction Predictor queries.

To address the issues described above, we implemented new Pathway Search functionality.

Most importantly, there is an offline search mode that allows the user to enter an email

address in addition to the search parameters, and receive match results by email when they

are ready. Search jobs are intelligently distributed across our compute cluster with hundreds

of available CPU cores, so they do not slow down the main Reaction Predictor website or each

other. Another important feature is multi-target search. Targets can be specific molecules,

masses, or a mixture of both. Users can enter as many search targets as desired for a given set

of reactants. This makes Pathway Search a powerful tool for suggesting alternative reaction

pathways and identifying unknown products observed in mass spectrometry data.

5.2.8 Additional features

While implementing the major features described above, many other improvements were

made, including new features and improved chemical capabilities. Here we describe a non-

exhaustive selection of these additions.

Intramolecular reactions Reaction Predictor considers intramolecular reactions in cases

where more than a single reactant molecule is present. In the earlier prototype, if two or

more reactants were present, only intermolecular reactions were considered. This change

is especially important for Pathway Search, where multiple reactants will either be directly

entered or inevitably formed during the course of the search, and to prevent intramolecular

reactions at all subsequent steps is to omit a broad swath of potential reactions. Multi-step
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reaction mechanisms frequently have steps involving intramolecular reactions, and they must

be considered, even in the presence of many reactant molecules, in order to achieve high-

quality multi-step predictions. Some examples of intramolecular reactions, including a Grob

fragmentation, a Neber rearrangement, and an intramolecular Prins reaction, are shown in

Figure 5.5[102, 31, 75].

(a)

(b)

(c)

Figure 5.5: Examples of intramolecular reactions that can be predicted by the system. A
Grob fragmentation (a), Neber rearrangement (b), and intramolecular Prins reaction (c)
are shown. Enabling the prediction of intramolecular reactions when multiple reactants are
present significantly increases the number of proposed reactions, but is necessary for the
prediction of many reaction pathways including these.

”Continue reacting” button for single-step predictions Users can manually explore

a multi-step reaction pathway in a guided stepwise fashion. After submitting reactants and

generating a list of predicted products, users can click a button next to any of the results to

use those products as the reactants for a new single-step prediction.

Improved modeling of alkali metals The alkali metals Li, Na, and K, are now modeled

with a more sophisticated understanding of their bonding potential. Originally, these metals
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were only allowed to form a single bond, while in reality they can form up to six. This is

now reflected in reaction predictions involving these atoms.

Additional atom types Reactants containing Sc, Ti, Zn, As, or Se atoms were not

accepted in the early prototype. We have improved the underlying chemical model to be

capable of handling these elements.

Multiple equivalents for reaction pathways Multi-step reaction pathways often rely

upon the availability of multiple equivalents of a starting material. Users can now specify

that arbitrarily many equivalents of a given reactant should be present for a reaction pathway

search. Reaction Predictor will then keep track of how many times the reactant has been

consumed, and add the reactant back into the reactant pool as many times as the user-

specified number of equivalents allows.

ML features We carefully evaluated the physicochemical and graph-topological features

used by our ML algorithms. Some were identified that were either irrelevant or counter-

productive for making source/sink predictions. For example, we observed instances where

increasing the molecular mass of a molecule, by adding a side-chain to a distant part of the

molecule, would cause a source or sink that had at first been predicted correctly, to suddenly

be misclassified. We removed this feature, as the reactivity of a candidate source or sink

should not be a function of the mass of its parent molecule. We also removed a feature

designed to capture whether a source/sink was located centrally or peripherally within the

molecular graph, as it too was chemically irrelevant for determining the quality of a source

or sink.
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5.3 Results & discussion

5.3.1 Single-step performance

We assessed single-step reaction prediction performance using the benchmark data set of

289 reactions described above. Table 5.1 shows the results achieved by Reaction Predictor,

compared with results from the early prototype.

Table 5.1: Single-step reaction prediction performance for Reaction Predictor (RP), com-
pared with the early prototype, using a benchmark data set of 289 reactions.

RP prototype
Products recovered 83.0% 58.1%
Products ranked in top-5 79.2% 76.8%
Mean time per reaction (sec) 8.5 91.8
Total reactions proposed 22,283 92,158

First we note that the early prototype failed while attempting to run the benchmark data

set, due to its inability to handle certain atom types, as described above. We incorporated

the necessary updated library into that version, so that it could complete the test.

We observe that Reaction Predictor significantly outperforms the early prototype, recovering

83.0% of the expected products, vs. 58.1% for the prototype. This difference is particularly

striking when we consider that the prototype version is biased towards predicting more false

positive sources/sinks, in exchange for, ideally, improved recall. We see this reflected in the

total number of reactions proposed by each version, with the prototype proposing 92,158

reactions, while our current version proposes 22,283. Yet, even though the prototype pre-

dicted so many more reactions, it still only recovered 58.1% of the expected products. That

Reaction Predictor can predict nearly 70,000 fewer reactions while recovering significantly

more of the products (83.0%) indicates a dramatic improvement in source/sink filtering ca-

pability. We believe this is a result of two factors: the improved breadth and quality of the

expanded training data, and the application of deep learning to better learn from that data.
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Reaction Predictor also outperforms the early prototype in terms of how many correct prod-

ucts are ranked within the top-5 of the ordered reaction list, but the margin is less pro-

nounced. This result is not wholly unexpected, as the ranker has historically been the

strongest ML component in the system. Being able to generate hundreds of thousands of

training examples for the ranking model, even with only several thousand elementary re-

actions in the training set, seems to convey enough information to yield a highly accurate

trained ranking model. Our observation that doubling the number of elementary reactions in

the training set led to a dramatic improvement in source/sink identification, but a relatively

minor improvement in ranking performance, seems to imply that the task of source/sink

prediction is more difficult than the ranking task. How much of this apparent imbalance is a

reflection of chemical reality, versus how much may be an artifact of our particular compu-

tational approach and ML design, is unclear. From the perspective of a human chemist, it

seems surprising that the source/sink prediction task should be significantly more challeng-

ing. We suspect that ultimately the problem is the scarcity of available training data. As

more data becomes available, we expect the source/sink predictions to become increasingly

accurate.

We also note the dramatic difference in average runtime per reaction. For the early prototype,

each prediction took 91.8 seconds on average, while the current version took less than one

tenth as long, at 8.5 seconds per reaction. This performance improvement is a major boon

for offline pathway searches, which benefit greatly from faster prediction speed.

5.3.2 Combinatorial data

We tested the effect of including combinatorially-generated reactions in our training set by

running a direct comparison between a version trained on the standard training set and

a version trained on a combinatorially-augmented training set. For this test, the standard
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training set contained 10,052 elementary reactions, while the combinatorial version contained

36,902 elementary reactions. Decision thresholds were tuned to achieve an equivalent false

positive rate for each version, and performance was measured on our benchmark data set

of 289 reactions. The results indicated decreased accuracy for the version trained with

combinatorial data. Specifically, only 70.2% of the correct products were recovered, and

only 70.9% of those recovered were ranked in the top-5, compared with 80.3% and 77.6%,

respectively, for the non-combinatorial version. Thus we did not include combinatorial data

in the latest Reaction Predictor training set.

We hypothesize that the homogeneity of the combinatorially-generated reactions introduced

biases that degraded predictive performance. We attempted to counteract this by randomly

sampling a small fraction of the total reactions generated from each of our combinatorial

reaction templates and including only those in the training set. Nonetheless, we observed

degraded performance even when the smaller samples of reactions were used in the training

set. We believe there is likely value in using combinatorial reaction generation, if done in such

a way as to closely mimic the molecular variety observed in real-world reactions. However,

the time required to carefully design and validate the necessary templates and constraints,

while also aiming to simulate a realistic variety of molecular contexts, is by our estimation

better spent simply writing high-quality elementary reactions by hand. For now, we leave

combinatorial reaction generation aside for potential future work.

5.3.3 Pathway search results

Offline pathway search allows chemists to submit many jobs at once, each one searching

for arbitrarily many targets, and have them run in parallel in the background, until results

are found and returned via email. The improved performance of our single-step predictions,

both in terms of accuracy and speed, make pathway search a powerful tool for understanding
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unknown masses observed by mass spectrometry, proposing alternative synthesis pathways,

or identifying side products.

Figure 5.6: A fluoride deprotection afforded an unexpected product with m/z 231. Pathway
search found 23 product pathways for the de-sodiated mass, including the highly plausible
imidazolidine-2,4-dione shown here.

We submitted a number of pathway search jobs based on actual mass spectrometry data

to test the feature’s ability to identify unknown peaks. Figures 5.6 and 5.7 illustrate typi-

cal instances where pathway search suggested plausible product pathways or structures for

unidentified target masses. In Figure 5.6, an unexpected product was found after fluoride

deprotection[94]. Pathway search suggested 23 pathways to generate this mass beginning

from the actual starting materials used, including the highly plausible imidazolidine-2,4-

dione shown. Figure 5.7 illustrates a malonate alkylation that generated the desired product

in low yield. Pathway search identified plausible structures corresponding to over-alkylation

of the reactant, in effect ”troubleshooting” the reaction by suggesting an explanation for the

low yield observed.

Other times, pathway search may not find a match for a target of interest, or it may find

matches that are implausible or were arrived at via implausible mechanisms. These failure

modes can be alleviated, to some extent, by adjusting the parameters of the pathway search,
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Figure 5.7: A malonate alkylation generated the desired product in low yield. Pathway
search generated plausible structures corresponding to over-alkylation.

which are fully customizable. Users can control the branching factor – how many of the top-

ranked reactions are pursued at each search step – as well as the maximum search depth.

Even implausible structures matching a target mass may spark ideas or suggest paths to

identifying plausible alternatives. Continued improvements to source/sink prediction and

ranking accuracy are ultimately the most important factors contributing to pathway search

efficacy.

5.4 LSTMs for source and sink prediction

Our MLP-based source and sink predictor has some inherent limitations. The input features

only cover a limited amount of context for any given molecule, e.g. neighborhoods of atoms

within six bonds. Furthermore, these features do not contain any information about other

reactants in a given reaction, which could render the prediction task virtually impossible in
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some cases, where a part of a molecule could act as a sink or a source depending on which

other reactants are present.

We therefore explore a fundamentally different model to overcome these limitations. On a

high level, this model is based on recurrent neural networks that operate on the canonicalized

SMILES strings of all reactants. It is able to learn and use features that encode the context

of the entire reaction when making predictions for locations of sinks or sources. This model

is able to operate on an arbitrary number of reactants of arbitrary size/length1 and is invari-

ant to the ordering of reactants as presented. We achieve this invariance by operating on

reactants in parallel, and extracting fixed-length feature vectors for all reactants, which are

merged into groups of reaction-level features by averaging. A different part of our network

uses these reaction-level, and order-invariant, features as context when it predicts sources

and sinks for a given molecule.

A more technical description of the model and operating procedure is as follows: SMILES

representations of reactants are canonicalized using an implicit representation of hydrogen

atoms. We then remove all information that could trivialize the source/sink prediction

task. For example, in our data set all potential hydrogen sinks (or sources) appear as the

first element in the SMILES string. Thus we remove these and add a ’start-of-sequence’

character to every SMILES string. The training objective of our model is to predict, for

every character in the input SMILES strings of all reactants, whether it corresponds to an

atom (or bond) that will act as a sink, source, or both. We further replace multi-letter atoms

(e.g. ’Cu’, ’Al’) with new unique single characters.

The neural network model conceptually consists of eight elements, shown in Figure 5.8. The

layers of this model operate on all reactants in parallel, and receive information about the

operations on other reactants of the reaction only at the reaction-level-feature merging step

(see step 4). The input consists of a variable number ( number of reactants) of character

1However, we expect that the accuracy of predictions will degrade for reactions with very large molecules.
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strings of variable length ( length of individual reactant smiles). We therefore use zero-

padding for mini-batches to speed up training.

1. The first layer of the neural network maps the input characters into a learned set of

vectors (also called embedding), where the number of vectors equals the number of

unique characters in all smiles.

2. This layer is followed by a one-dimensional convolutional neural network (CNN)[84],

and then further by a recurrent bi-directional LSTM[57, 50].

3. The layers of the bi-directional LSTM traverse the sequences that correspond to a

processed version of the original smiles strings in the forwards and backwards directions.

By doing so they accumulate and compute a fixed-length vector representation of the

individual reactants, i.e. learned fingerprint vectors for reactions.

4. These representation vectors are then redistributed across all processing streams of all

reactants: a given stream receives the fingerprint of its own molecule and the average

of fingerprints of the other molecules/reactants. This way we achieve commutativity

of reactants while not mixing contexts of ”this” and ”other” reactants.

5. These two context vectors are concatenated and replicated across the output of the

convolutional layer (2). We thereby re-use the character-level representations that are

produced by the convolutional network (for efficiency and to promote weight sharing),

while also augmenting them with reaction-level information about all reactants.

6. A bi-directional LSTM, separate from and unrelated to (3), then operates on this

augmented stream of vectors and produces one output for each vector. These vectors

have a one-to-one correspondence to characters in the input smiles.

7. The LSTM outputs are then (optionally) processed by a CNN that can refine and

sharpen predictions on a local level.
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8. A final sequence-distributed MLP then computes the class-probability predictions

for each element of a given reactant. These are the character-level predictions of

sources/sinks for every atom (or non-atom symbol) in the input smiles strings, com-

puted for all reactants in parallel.

Figure 5.8: Schematic of the LSTM architecture used for source/sink prediction. This ap-
proach operates directly on SMILES strings representing all reactant molecules, and is able
to make source/sink predictions using context from the entire set of reactants.

This model can predict multiple sources/sinks for one reaction or even reactant. We therefore

post-process the model’s predictions for all reactions by ranking the predicted probabilities,

and only using the single most confident source and sink prediction for any given reaction.

The LSTM architecture uses rectified linear units for its hidden layers, and sigmoid outputs.

It was trained for 60 epochs on a set of 10,052 labeled SMILES strings. Weights were

initialized according to Glorot and Bengio, and updated using the Adam optimizer, with an

exponentially decaying learning rate. Training was performed on an NVIDIA Titan X GPU.

To gauge the performance of the LSTM on challenging reactions, we checked its source/sink

prediction accuracy on the benchmark data set of 289 reactions, and compared those results
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with the MLP-based predictor’s performance. Table 5.2 summarizes these results. When we

considered only the top-1 highest-scored source and sink, the MLP recovered both correctly

in 31.5% of the reactions, while the LSTM recovered both correctly for 47.0% of the reactions.

If we consider the top-5 predictions, the MLP recovers both the correct source and the correct

sink for 90.0% of the reactions, and the LSTM for 81.4% of them. Similarly, top-10 accuracy

for the MLP was 96.9%, and 89.6% for the LSTM. Finally, top-20 accuracy for the MLP was

99.0%, versus 95.7% for the LSTM.

Table 5.2: MLP and LSTM source/sink prediction accuracy on the benchmark data set of
289 reactions. Predictions were considered correct only if both the true source and the true
sink were identified within the top-ranking 1, 5, 10, or 20 source/sink predictions.

Top-N accuracy (both source & sink recovered) MLP LSTM
Top-1 31.5% 47.0%
Top-5 90.0% 81.4%
Top-10 96.9% 89.6%
Top-20 99.0% 95.7%

The top-1 score of 47.0% for the LSTM is a very promising result, and is particularly im-

pressive as it outperforms the MLP’s top-1 performance. But this result is tempered by the

LSTM’s lower performance at recovering the labeled sources/sinks within top-5 and top-10

constraints. The crucial job of the source/sink filtering model is to recover all reactive elec-

tron sources and sinks, while minimizing the prediction of false positives. Table 5.2 shows

that while the MLP is less accurate at predicting a single best source and sink, it is still

able to recover more of the correct sources/sinks, with fewer false positives, when multiple

source/sink predictions are allowed. In reality, we expect that a complex chemical reactant

will have multiple potentially-reactive sources and sinks, and the MLP recovers those more

efficiently than the LSTM. In fact, even if we allow the LSTM to pick its top-20 proposed

sources and sinks, its reaction-level accuracy of 95.7% is still slightly lower than the top-10

MLP result of 96.9%. Nonetheless, these results are very promising and indicate potential

for using an LSTM architecture for effective source/sink prediction. We emphasize that one

advantage of our LSTM approach is its ability to consider the entire context of the reactants
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when making its source/sink predictions. This capability fundamentally shifts our expec-

tations of what a good source/sink filter should do. Whereas the MLP predicts a set of

potentially many reactive sources and sinks, but is necessarily less accurate in choosing the

single best ones because it lacks contextual information, the LSTM can see the entire reac-

tion context, and, at least in theory, predict the best source/sink pair given that complete

information.

5.5 Conclusion

Reaction Predictor is a unique and powerful tool for predicting chemical reactions at the

level of elementary mechanistic steps. Deep learning coupled with a curated and expanded

set of training data has yielded significant advances in both speed and predictive accuracy.

Pathway Search takes advantage of these performance gains to aid in the identification of

unknown products by searching in the background and emailing results to the user. Finally,

we demonstrate a promising LSTM-based approach to predicting reactive sites based solely

on SMILES strings. This could be used in future work to complement and improve the ex-

isting MLP-based source/sink filters. Ultimately we expect Reaction Predictor will continue

to improve over time as new opportunities for refinement are identified, and as more training

data becomes available.
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