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ABSTRACT OF THE DISSERTATION

Modeling Connectivity in Multi-trial Brain Signals

By

Lechuan Hu

Doctor of Philosophy in Statistics

University of California, Irvine, 2018

Professor Michele Guindani, Chair

The hippocampus is critical to memory consolidation. To study the underlying neuronal

mechanisms of hippocampus in sequential memory, we consider an experiment recording

multi-trial local field potentials (LFPs) from hippocampal region CA1 of rats that performed

a complex sequence of memory tasks in different experimental conditions. Our work aims

at (1.) modeling and measuring functional and effective (directional) connectivity in multi-

channel LFP data; (2.) quantifying and differentiating connectivity in rats hippocampus at

condition-level in order to study heterogeneous hippocampal functions. Our work addresses

multiple statistical and computational challenges for modeling and analyzing multi-channel

LFPs since the parameter space is usually high dimensional. Also, our contribution allows

to measure the effective connectivity between channels in frequency domain with inferring

directionality. Thirdly, we successfully incorporate within-conditions connectivity similarity

with between-conditions connectivity heterogeneity in modeling and provide a natural way

to conduct trial- and condition-level inference on effective connectivity.

To model multi-channel LFPs, we propose two approaches. The first one is to fit a vector au-

toregressive (VAR) model with potentially high lag order so that complex lead-lag temporal

dynamics between the channels can be captured. Estimates of the VAR model will be ob-

tained by our proposed hybrid LASSLE (LASSO+LSE) method which combines regulariza-

xiii



tion (to control for sparsity) and least squares estimation (to improve bias and mean-squared

error). One of the novelties of our approach is the use of a frequency-specific measure, partial

directed coherence (PDC), to characterize effective connectivity. More specifically, PDC al-

lows us to infer directionality and explain the extent to which the present oscillatory activity

at certain frequency in a sender channel influences the future oscillatory activity in a specific

receiver channel relative to all possible receivers in the brain network.

The second approach is using a Bayesian hierarchical vector autoregressive (BH-VAR) model

to characterize brain connectivity and make inference on the difference of connectivity across

experimental conditions. Within-conditions connectivity similarity and between-conditions

connectivity heterogeneity are accounted by the priors on trial-specific models. In addi-

tion to the fully Bayesian framework, we also propose an alternative two-stage computation

approach which still allows straightforward uncertainty quantification of between-trial con-

ditions via MCMC posterior sampling, but provides a fast approximate procedure for the

estimation of trial-specific VAR parameters.

Our proposed approaches provided key insights into both trial- and condition-level hip-

pocampal connectivity among simultaneously recorded sites during performance of rats in a

complex memory task. Specifically, this novel method was successful in quantifying pattern-

s of effective connectivity across electrode locations, and in capturing how these patterns

varied across trial epochs and trial types.

xiv



Chapter 1

Introduction

1.1 Scientific Background

The hippocampus is a critical component of brains for memory formation. It is involved in

certain kinds of memory – short-term memory, long-term memory and memory for sequence

of events. Attention to the hippocampal function was raised by a number of patients, who

suffered severe neurological and memory diseases such as Alzheimers disease, short-term

memory loss and disorientation. However, the neuronal mechanisms underlying hippocampal

function is still elusive. Connectivity between populations of neurons in the hippocampus

could be implicated in hippocampal function [37]. To address how the hippocampal activity

influences the memory for sequence of events, our collaborators in the Fortin Laboratory (UC

Irvine) conducted complex non-spatial sequence memory tasks of rats since there is strong

memory behavioral parallels in rats and humans [1]. In their experiments, rats were presented

with repeated sequences of odors in two different conditions - “in sequence” (InSeq) and

“out of sequence” (OutSeq), and were required to make a judgment whether each odor was

presented “in sequence” or “out of sequence”. Multi-trial neural activity signals (including

1



local field potentials) were recorded from tetrodes located in rat’s hippocampal region CA1.

Motivated by our collaborators, this dissertation will focus on studying the hippocampal

connectivity in a particular type of brain electrophysiological data: local field potentials

(LFPs). LFP signals are being widely used in learning and memory experiments of animals

along with electroencephalograms (EEGs) [6, 40, 51]. They both have excellent temporal

resolution (e.g., LFPs in this study are 1000 observations per second activity of the neurons).

However, LFPs are recorded invasively as these are obtained from electrodes that are chron-

ically implanted inside the brain. Consequently they have less non-neuronal physiological

activity (e.g., from muscle movement and eye movement artifacts) compared to scalp EEGs

and therefore possess a higher signal-to-physiological-noise ratio. One disadvantage of LFPs

is its limited utility in humans due to its invasive nature. However, this doesn’t affect the

consideration that LFPs continue to be a valuable tool for investigating brain function in

animals which can then provide useful information for modeling brain function in humans.

To characterize the underlying hippocampal connectivity, we will fit statistical models to the

LFPs. One of the major challenges is that the parameter space of models can be potentially

high dimensional. This is because the number of recording tetrodes (P ) in multi-channel

LFPs can range from 8-100, and the temporal order (d) of parametric models such as vector

autoregressive models needs to be sufficiently large in order to accurately capture the dy-

namics in these complex hippocampal processes. The number of parameters in this setting is

P 2d, which can be large and consequently leads to intensive computation. Another modeling

challenge comes from the need that the fitted statistical models must be able to character-

ize complex hippocampal connectivity both across trials and experimental conditions. This

is because heterogeneous temporal patterns in the hippocampus were observed in memory

consolidation for sequence of events (see Figure 1.1). Therefore we want to characterize

the heterogeneity in hippocampal connectivity both within-conditions (trials) and between-

conditions (InSeq and OutSeq). Besides these statistical and computational challenges, the

2



lack of universally-agreed measures for characterizing connectivity is also a problem. An ap-

propriate measure in this study should indicate both the functional connectivity and effective

(directional) connectivity in the hippocampus.
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Figure 1.1: Local field potential (LFP) recordings of 12 tetrodes during one epoch (1000
milliseconds; T = 1000) from InSeq and OutSeq condition respectively. Each time series
with color indicates the LFP recording of one tetrode. Different temporal patterns could be
indication of heterogeneous hippocampal connectivity in these tetrodes across experimental
conditions.
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1.2 Current statistical approaches and limitations

1.2.1 Characterizing connectivity in a single trial

Connectivity in brain signals is actually the causal relation among simultaneously measured

time series. One series is causal to the other one if better prediction of the second series can

be achieved when incorporating the knowledge of the first one [53]. This concept was later

developed and formalized in [21] with Granger-causality. We say brain signal from channel

v “Granger-causes” signal from channel u if the past observations of channel v help improve

predictions of channel u at future time points, compared with predictions based on the past

of channel u alone. Granger-causality recognizes the importance of temporal ordering in

the context of linear regression models of complex brain processes. A common approach

to characterize Granger-causal relation in a multichannel LFP signal of a single trial is the

vector autoregressive (VAR) model [46]. A P -dimensional brain signal Xt is said to follow a

VAR model of order d, denoted VAR(d), if it has the representation

Xt = Φ1Xt−1 + . . .+ ΦdXt−d + εt t = d+ 1, ..., T (1.2.1)

Φ`’s ∈ RP×P are the autoregressive coefficient matrices. εt
iid∼ NP (

−→
0 ,Σ) is Gaussian noise.

The interconnectivity between channels is determined by the autoregressive coefficient ma-

trices {Φ`}d`=1 and spatial covariance matrix Σ. The VAR model provides a broad framework

for capturing complex temporal and cross-sectional interrelationship among brain time series

signals (in particular, directionality of frequency-specific connectivity). Consequently it can

be applied to model the Granger-causal relation between channels [28].

An illustration of how VAR matrices capture the connectivity among brain channels can be

found in Figure 1.2. Denote the single trial LFP traces of hippocampal region to be u-th

and v-th channel. Then Φuv
` , which is the (u, v) entry of VAR matrix Φ`, shows the impact
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of input signal from v-th channel at past time point t − ` to brain activity at u-th channel

at current time point t. Φuv
` is not necessarily equal to Φvu

` , because impact of one channel

on the other channel could be different the other way around. Therefore the connectivity

characterized by VAR matrices is directional. If Φuv
` = 0 and Φvu

` = 0 for all lags ` then,

there is no causal relation between these two channels as determined by VAR model. A

positive value indicates that the signal of v-th channel at time t − `, conditional on LFP

values at other time points, has positive linear dependence with u-th channel at time t. That

is, a marginal increase in activity in v-th channel leads to an increased future activity in u-th

channel. Thus, the entries of {Φ`}d`=1 contain the information of brain effective connectivity

between channels.

Time in ms

Channel v
Channel u

0 200 400 600 800 1000

(a) LFP traces (b) Explicit connectivity in VAR

Figure 1.2: Illustration of VAR model. Φuv
` (` = 1, 2) captures the impact of the input from

v-th channel at time t− ` to brain activity at u-th channel at the current time t.

As noted above, to investigate the effective connectivity between channels actually requires

the knowledge of the VAR coefficient matrices. However, this is challenging as the parameter

space of a VAR model for brain signals could be potentially high. For example, a fitted

VAR(10) model to LFPs from 12 channels or tetrodes has 10 × 122 = 1440 parameters in

total to estimate, which subsequently require intensive computation. One may suggest fitting

a model with low temporal lag d in order to reduce the number of parameters. The problem

with this suggestion, unfortunately, is that a low temporal order might miss potentially
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important features of the LFP data such as multiple peaks in the spectra. One classic

estimation approach is via least squares which provides unbiased estimator for the elements

of the VAR coefficient matrices but at the cost of high demand of computing. The least

squares estimate (LSE) does not possess the specificity for coefficients with true value of

zero. Hence, LSE estimation cannot identify the causal relation between channels as well

as the functional connectivity structure in the hippocampus. Another common estimation

approach is the LASSO (least absolute shrinkage and selection operator) method which is

a particular representative of the penalized regression family [50, 16, 54, 23]. Compared

with LSE, the LASSO approach requires shorter computation time [34]. Most importantly,

LASSO has higher specificity of zero-coefficients. The main limitation of the LASSO (and

most regularization methods) is that the estimators of the non-zero coefficients are biased.

Thus, LASSO could lead to misleading results when investigating strength of brain effective

connectivity. Due to these unavoidable drawbacks, classic estimating approaches are not

ideal options to solve VAR modeling for high dimensional brain signals. Consequently a

more scalable approach is in intense need to estimate connectivity in multi-channel brain

signals.

1.2.2 Characterizing connectivity in multiple trials

Characterizing multi-trial LFPs is more complicated compared with single trial case. Fig-

ure 1.1 demonstrates an example of rat’s LFPs recorded in two trials (here an epoch is 1

second time block) from InSeq and OutSeq respectively. Very different temporal pattern of

LFPs can be observed from InSeq and OutSeq condition, which indicates potential variation

of brain connectivity in hippocampal region across conditions/trials. Our question of inter-

est, when characterizing multi-trial LFPs, is not only study the hippocampal connectivity at

trial level but investigate its evolution at condition level. That is to say, we want to charac-

terize the heterogeneity both within-conditions (trials) and between-conditions (InSeq and
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OutSeq). To analyze multi-trial LFPs at condition level, two-stage approaches have gener-

ally been employed, in which a VAR model is fit on each individual trial and characterize

trial-specific connectivity in the first stage, then condition-level connectivity and between-

conditions variation are obtained in the second stage [10, 25]. Despite their common usage,

there are several known drawbacks of two-stage approaches. First of all, the information

of connectivity similarity within-conditions is missing. Connectivity in trials from the same

condition should have common structure. However, this similarity is typically not taken

into account during the parameter estimation procedure in the first stage, since trials from

same experimental condition were modeled and estimated separately. Secondly, summariz-

ing and making inference on the condition-level effective connectivity was accomplished via

bootstrap analysis, where random variability at trail level was introduced but not accounted

for by re-sampling residuals. To overcome these issues, a mixed-effects generalization of the

usual VAR model was proposed in [20], which decomposes connectivity of multi-trial sig-

nals into condition-specific and trial-specific components. The problem of their approach is

that there will be an explosion of number of parameters in the conditional maximum likeli-

hood procedure, where complexity-penalized regression should have been introduced. In a

Bayesian extension, those deficiency was addressed by charactering via Bayesian hierarchical

vector autoregressive (BH-VAR) models, which allows for simultaneous inference on effective

connectivity at both trial- and condition-level [9]. In addition, sparsity in VAR parameter

space was induced at the condition level through “spike-and-spike” prior.

1.2.3 Measures of brain connectivity

There are different types of connectivity of interest in complex brain network study – struc-

tural connectivity, functional connectivity and effective connectivity. Structural connectivity,

the set of structural connections between neuronal units at a given time, typically correspond-

s to white matter tracts between pairs of brain regions [44]. It is relatively stable at short
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time scales (seconds to minutes), but can be dynamic in long time windows [48]. Graph

theory is a popular method used in the analysis of structural connection pattern, which

allows for the identification and classification of sub-networks of brain regions. The presence

of an edge between two nodes in the graph indicates the presence of connection between the

two corresponding channels. To measure structural connectivity, clustering coefficient and

the characteristic path length in graph theory are frequently used, where the former one

measures local structure and the latter one is global characteristic [49].

Functional connectivity, which captures patterns of deviations from statistical independence

between channels, corresponds to magnitudes of brain temporal correlations in activity. It is

time-dependent (hundreds of milliseconds) and usually measures statistical interdependence

(e.g., correlation/covariance, spectral coherence) between channels without explicit relation

to causal effects [48]. Estimates of functional connectivity don’t depend on statistical models,

but could differ across different methodologies for measuring brain activity [24]. A common

dependency measure of functional connectivity is coherency, which can be interpreted as the

cross-correlation between frequency oscillatory component in one channel and the frequency

oscillatory component in another channel [41]. Coherence, another functional connectivity

measure, is the squared value of coherency. When it is close to 1, both channels share a

common frequency oscillatory activity. A large coherence value between two channels could

be due to direct connectivity between these two channels or could be indirectly due to the

intervening effect of other channel(s). Therefore we shall use partial coherence to measure

the strength of functional connectivity between a pair of channels – with the effect of all

intervening channels removed. Partial coherence is a measure of direct influence between two

channels at frequency domain after the influence of all other channels has been controlled.

The third type of brain connectivity is effective connectivity, which refers to the causal influ-

ence of one neural unit over another [15]. It requires the specification of a causal model, for

example VAR models. Therefore effective connectivity is not model-free. Unlike functional
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connectivity, effective connectivity is a measure of directed information flow. That is to say,

the connectivity from channel v to channel u is not the same as that from channel u to

channel v. Particularly, we use partial directed coherence (PDC) to measure the effective

connectivity for VAR models. Partial directed coherence was developed in [4] and refined in

[5]. Consider a VAR(d) model given by Equation (1.2.1), partial directed coherence is the

transform of sequence {Φ`}d`=1 at frequency ω. It measures the direct influence from chan-

nel v to channel u conditional on all the outflow from channel v. PDC gives an indication

on the extent to which present frequency-specific oscillatory activity from a sender channel

explains future oscillatory activity in a specific receiver channel relative to all channels in

the network. In addition, PDC of a channel to itself indicates how much current oscillatory

activity of a channel can be explained by its own past at certain frequency. Compared with

measures of functional connectivity, the directionality of PDC is more specific and brings us

more insights about the dynamic of information flow.

1.3 Proposed modeling and estimating approaches

1.3.1 Estimating and inference approach for a single trial

A scalable estimating procedure of VAR coefficients is the key to characterize connectivity

in single trial LFPs, which requires both the specificity of zero/non-zero dependence and

the sensitivity to the non-zero dependence strength. Inspired by the capability of each of

the two classical estimating approaches (i.e., LSE and the LASSO), we propose to combine

these in a two-step estimation procedure for the VAR coefficient matrices. We first apply

LASSO to identify entries in VAR matrices whose estimates are not set 0, then we fit LSE

with the constraint that “zero” entries estimates from step 1 are fixed to 0. Our method

has inherited low bias for non-zero estimates and high specificity for zero-estimates from
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LSE and the LASSO separately. As a result, the proposed two-step method has substantial

higher specificity and significantly lower mean squared error (MSE) in the simulation study.

Note that though LASSO aims to shrink many of the VAR coefficients to zero but this does

not necessarily lead to a sparse connectivity structure. A pair of channels are functionally

disconnected only if all of the its corresponding VAR coefficients at all lags are estimated

to be zero. Thus, imposing sparsity on the VAR coefficient matrices helps to weed out the

less important parameters in the VAR model but does not oversimplify the connectivity

structure.

To make inference on effective connectivity of single trial, a natural idea is to derive the

asymptotic property of the estimated VAR coefficients as well as the estimated connectivity.

However, this is not trivial and in fact not solved yet given the regularization setting in

estimating high dimensional VAR parameters. A substitute approach is that we can develop

a bootstrap-based inference, which has been used in time series [42, 43, 29, 45, 31]. Af-

ter obtaining the estimates of the VAR coefficients, we use these estimates and re-sampled

residuals to generate new bootstrapped trials. The two-step method is re-applied to the

generated time series, then new estimates of VAR coefficients and partial directed coherence

are obtained. By repeating this procedure a sufficient large times, the empirical distribu-

tion of estimated connectivity is formed and consequently we can study the variation of

connectivity.

1.3.2 Modeling and inference approach for multiple trials

As mentioned before, two-stage modeling approach has been adopted as a common method

to characterize connectivity in multiple trials, which separates trail-specific connectivity in

the first stage and condition-level connectivity in the second stage. To address the deficien-

cies of this method, we extend the Bayesian hierarchical vector autoregressive models by [9]
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in this thesis and adapt some of its prior information to LFP data. We will characterize

both trial- and condition-level hippocampal connectivity simultaneously in the hierarchical

structure. By imposing condition-level priors on parameters in trial-specific models, we are

able to incorporate within-conditions correlation with between-conditions variation. These

information will help us better characterize trail- and condition-level connectivity by comput-

ing the posterior distribution. Moreover, inference on trial- and condition-level connectivity

are made simultaneously with the posterior distribution, without introducing any additional

uncertainty like two-stage approach.

Note the potential sparse structure in high dimensional parameter space of characterizing

brain signals, sparsity in parameters could be induced via imposing variable selection pri-

ors (e.g., “spike-and-slab” mixture priors) on condition-level connectivity. Then Bayesian

inference could be conducted on whether the parameters are truly sparse based on the knowl-

edge from MCMC samplers. Moreover, this Bayesian framework allows us to directly make

inference about the difference between hippocampal connectivity in different experimental

conditions, of which the mean level and variation can be achieved from MCMC sampling.

1.4 Rat’s non-spatial sequence memory study

To address the neuronal mechanisms underlying hippocampal function on sequence memory,

our collaborators in the Fortin Laboratory at UCI recorded neural activity in hippocampal

region CA1 of rats that performed a hippocampus-dependent sequence memory task. The

task is clinically meaningful as this form of sequence memory shows strong behavioral par-

allels in rats and humans [1], and depends on the hippocampus for both species [13, 8], and

is impaired in normal aging [2].
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1.4.1 Experiment design

In the experiment (see Figure 1.3), rats were presented with repeated sequences of five odors

in a single odor port. They were trained to identify whether each odor was presented “in

sequence” (by holding their nose poke until the signal) or “out of sequence” (by withdrawing

their nose poke before the signal) to receive a water reward. The LFP data included here

was recorded from CA1 electrodes during a session in which a well-trained rat performed the

task over 80% correctly across all training sessions before the experiment [3].

Figure 1.3: A non-spatial sequence memory experiment in rats. Rats were presented with
repeated sequences of five odors (A,B,C,D and E) in a single odor port. Each odor presen-
tation was initiated by a nose poke and rats were required to correctly identify the odor as
either InSeq (ABCDE) by holding their nose poke until the signal or OutSeq (e.g.,ABDDE)
by withdrawing their nose poke before the signal.

1.4.2 LFP data

Neural activity (including local field potentials) was recorded during each session. The full

dataset includes LFPs from 23 tetrodes located in the hippocampus and n = 247 epochs.

n = 219 epochs are “in sequence” and n = 28 epochs are “out of sequence”. Each epoch
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is recorded roughly 1 second with sampling frequency of 1000 Hz and thus has T = 1000

time points. Our analysis was specifically focused on LFPs from P = 12 tetrodes, a subset

of electrodes that also recorded clear single-cell spiking activity and were confirmed to be

located in the pyramidal layer of CA1 (see estimated tetrode locations in Figure 1.4). In

addition, LFPs of Epoch 10 can be found in Figure 1.5. We observe that time series of LFPs

from tetrode T13 to tetrode T23 have highly similar temporal pattern, while time series of

the remaining tetrodes are highly similar. This is because tetrodes near each other are likely

to behave more similarly than those that are far apart.

Figure 1.4: Estimated location within the hippocampus (dorsal CA1 region) of subset of 12
tetrodes included in the analyses.
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Figure 1.5: LFPs from 12 tetrodes studied in this paper during Epoch 10. These LFPs have
temporal patterns that can be separated into two clusters. The first consists of T7, T8, T9
and T2 which are all on the posterior (back) portion of the dorsal CA1 region. The second
consists of the remaining channels which are all on the anterior portion (front).

Figure 1.6 (left) displays the LFPs from tetrode T22 during the first 30 epochs; the boxplots

of its auto-correlation function (ACF) across all 247 epochs; and the boxplots of the partial

auto-correlation function (PACF) across all epochs. We observe that the boxplots of ACF

fail to drop to zero even after very long lags and there is a cyclical behavior in the pattern.

Both of these could be evidence of non-stationarity (or long-memory). These suggest pre-

processing the data by taking a first order difference. The results of LFPs after differencing

are shown on the right side of Figure 1.6. Compared to the previous plots, the ACF boxplots

eventually decay to zero with smaller interquartile range, which means that the pre-processed

data looks more stationary and the correlation drops to zero faster than the original LFPs.

Therefore we will conduct our data analyses on the first order differenced LFPs.
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Figure 1.6: Top: The LFPs time series plots of the first 30 epochs at tetrode T22 before
(left) and after (right) processing. Middle: The boxplots of auto-correlation function (ACF)
from tertrode T22 before (left) and after (right) processing across all epochs. Bottom: The
boxplots of partial auto-correlation function (PACF) from tetrode T22 before (left) and after
(right) processing across all epochs.

15



The remainder of this dissertation is arranged as follows. In Chapter 2, I present the proposed

methods for characterizing hippocampal connectivity in signal trial. Proposed methods for

multi-trial study is in Chapter 3, followed by Conclusion in Chapter 4.
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Chapter 2

Characterizing hippocampal

connectivity in single-trial LFPs

2.1 Introduction

Connectivity between populations of neurons is crucial to fully characterize brain processes

during cognition (e.g., memory and learning) and even during resting-state. Moreover, alter-

ations in brain connectivity is widely believed to be implicated in a number of neurological

and mental diseases such as obsessive compulsive disorder and Alzheimer’s disease. Howev-

er, the underlying mechanisms of brain connectivity remain elusive. First, there is no set of

universally-agreed measures for characterizing connectivity. Second, there are major statis-

tical and computational challenges for modeling and analyzing multichannel brain signals –

especially when the number of parameters is large which often happens when the number of

channels is large and/or the temporal lag for parametric models such as vector autoregressive

(VAR) is high. Our contribution in this paper is a scalable approach to estimate connectivity

in multichannel brain physiological signals modeled with high dimensional parameters.
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The work is motivated by our current collaborations with the Fortin Laboratory (UC Irvine)

whose research requires developing a systematic statistical framework to quantify functional

and effective connectivity among multi-site neural activity signals recorded in rats perform-

ing complex memory tasks. The electrophysiological data recorded from rats include local

field potentials (LFPs) and an example of a recording for one epoch (here an epoch is 1

second time block) is given in Figure 2.1. LFP signals have excellent temporal resolution

(here 1000 observations per second). It is comparable to electroencephalograms (EEGs) in

terms of temporal resolution and both capture electrical activity of the neurons. However,

LFPs are recorded invasively since these are obtained from electrodes that are chronically

implanted inside the brain. Because LFPs are obtained from implanted electrodes, they have

lower contamination compared to scalp EEGs. They contain less non-neuronal physiological

activity (e.g., muscular activity) and therefore possess a higher signal-to-physiological-noise

ratio. One disadvantage of LFPs, however, is its limited utility in humans due to its invasive

nature. However, these will continue to be a valuable tool for investigating brain function in

animals which can then provide useful information for modeling brain function in humans.

One of the challenges to fitting statistical models to LFPs is that the parameter space can be

high dimensional. The number of recording tetrodes (P ) in LFPs can range from 8-100; and

the temporal order (d) of parametric models such as vector autoregressive (VAR) models

needs to be sufficiently large in order to accurately capture the dynamics in these complex

processes. In this setting the number of parameters in a VAR model is P 2d, which can be

large.

In this thesis we will develop a computationally scalable method for fitting high dimensional

complex models that addresses two important goals in brain science: (1.) To identify the

connectivity structure between channels in a brain network and (2.) To quantify both the

strength and directionality of connectivity between these channels. Our approach is to fit a

VAR model with potentially high temporal lag in order to more accurately capture complex

lead-lag temporal dynamics between the channels or leads. Estimates of the VAR model
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Figure 2.1: Local field potential (LFP) recordings from 12 tetrodes during one epoch (1000
milliseconds; T = 1000). Each time series with color indicates the LFP recording from one
tetrode.

will be obtained by a combination of regularization to maintain high specificity and least

squares estimation to reduce bias and mean-squared error. The method will be applied to

LFPs obtained from a rat performing an odor sequence memory task, in which he is required

to identify each odor as being presented in the correct or incorrect sequence position.

To characterize connectivity in a multichannel LFP signal we shall use the vector autore-

gressive (VAR) model [46]. A P -dimensional brain signal Xt is said to follow a VAR model

of order d, denoted VAR(d), if it has the representation

Xt = Φ1Xt−1 + . . .+ ΦdXt−d + εt t = d+ 1, ..., T (2.1.1)

where Φ`’s ∈ RP×P are the autoregressive coefficient matrices and εt
iid∼ NP (

−→
0 ,Σ). The

interconnectivity between channels is determined by the autoregressive coefficient matrices

{Φ`}d`=1 and spatial covariance matrix Σ. Thus, the VAR model provides a broad framework

for capturing complex temporal and cross-sectional interrelationship among the time series
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(in particular, directionality of frequency-specific connectivity). Consequently it can be

applied to model the Granger-causal relation between channels [28].

To illustrate connectivity via the VAR matrix, consider Figure 2.1.1 and denote the LFP

traces of brain region to be u-th and v-th channel. Then the entry Φuv
` shows the impact of

the input from v-th channel at time t − ` to brain activity at u-th channel at the current

time t. If Φuv
` = 0 and Φvu

` = 0 for all lags ` then, there is no connectivity between these

two channels as determined by VAR model. A positive value indicates that the signal of

v-th channel at time t − `, conditional on LFP values at other times, has positive linear

dependence with u-th channel at time t. That is, a marginal increase in activity in v-th

channel leads to a increased future activity in u-th channel. Thus, the entries of {Φ`}d`=1

contain the information of brain connectivity between channels. In this paper, we shall

use partial directed coherence (PDC) [4, 5] to characterize effective (directed) connectivity.

This measure is more specific and provides more information, in particular frequency-specific

directionality, than simply the coefficients of the VAR matrices. PDC is frequency-specific:

it measures how an oscillatory activity (at a particular frequency band) at a present time in

one channel may impact oscillatory activity of the same frequency band at another channel

at a future time point.

(a) LFP traces (b) Explicit lagged cross-dependence in VAR

Figure 2.2: LFP traces and VAR. Φuv
` (` = 1, 2) captures the impact of the input from v-th

channel at time t− ` to brain activity at u-th channel at the current time t.
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As noted above effective connectivity between channels will be characterized by the VAR

coefficient matrices. This is challenging because the parameter space of a VAR model for

brain signals is usually high. For example, if we fit a VAR(10) model to 12 leads or channels,

there are 10 × 122 = 1440 parameters in total to estimate, which subsequently requires

intensive computation. One could suggest fitting a model with low temporal lag in order to

reduce the number of parameters. The problem with this suggestion, unfortunately, is that

a low temporal order might miss potentially important features of the data such as multiple

peaks in the spectra.

One classic estimation approach is via least squares which (as long as there are sufficient data

points) provides unbiased estimator for the elements of the VAR coefficient matrices but at

the cost of high demand of computing. The least squares estimate (LSE) does not possess

the specificity for coefficients with true value of zero. Hence it cannot provide an adequate

answer to the first question about identifying functionally connected regions in brain network.

Another common estimation approach is the LASSO (least absolute shrinkage and selection

operator) method which is a particular representative of the penalized regression family

[50, 16, 54, 23]. Compared with LSE, the LASSO approach requires smaller computation

time [34]. Most importantly, LASSO has higher specificity of zero-coefficients. The main

limitation of the LASSO (and most regularization methods) is that the estimators of the

non-zero coefficients are biased. Thus, it could lead to misleading results when investigating

strength of brain effective connectivity. Inspired by the strengths of each of the two classical

approaches (i.e., LSE and the LASSO), we propose to combine these in a two-step estimation

procedure which we call the LASSLE method. We demonstrate that LASSLE has inherited

low bias for non-zero estimates and high specificity for zero-estimates from LSE and the

LASSO separately. As a result, the proposed two-step method has higher specificity and

significantly lower mean squared error (MSE) in the simulation study. At this stage, the full

theoretical justification is being developed but the numerical experiments are encouraging.
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A natural question to ask is whether or not the LASSO method is appropriate for fitting

VAR models to brain signals. The answer lies in whether or not brain signals such as LFPs

and EEGs indeed exhibit sparse connectivity structure. Due to volume conduction for EEGs,

it is not likely that the connectivity structure between channels is sparse. However, though

LASSO aims to shrink many of the VAR coefficients to zero but this does not necessarily

lead to a sparse connectivity structure. Keep in mind that a pair of channels are functionally

disconnected only if all of the its corresponding VAR coefficients at all lags are estimated

to be zero. Thus, imposing sparsity on the VAR coefficient matrices helps to weed out the

less important parameters in the VAR model but does not oversimplify the connectivity

structure.

The remainder of this chapter is arranged as follows. In Section 2.2, we present the pro-

posed hybrid LASSLE (LASSO+LSE) method followed by finite sample simulation studies

in Section 2.3 and analysis of LFP signals in Section 2.4 and the Conclusion in Section 2.5.

2.2 A proposed two-step LASSO+LSE procedure for

fitting a VAR model

First, we note that the VAR(d) model can be alternatively written in a form


(XT )′

...

(Xd+1)′


︸ ︷︷ ︸

Y

=


(XT−1)′ · · · (XT−d)

′

...
. . .

...

(Xd)
′ · · · (X1)′


︸ ︷︷ ︸

X


(Φ1)′

...

(Φd)
′


︸ ︷︷ ︸

B

+


(εT )′

...

(εd+1)′


︸ ︷︷ ︸

E

. (2.2.1)
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Next, denote Y = [y1, y2, ..., yP ], B = [b1, b2, ..., bP ], E = [e1, e2, ..., eP ]. Denote the kth

column vector of the matrices Y , B and E (k = 1, 2, ..., P ) to be yk, bk, ek. Then we have

yk︸︷︷︸
m×1

= X bk︸︷︷︸
q×1

+ ek︸︷︷︸
m×1

, ek
indep∼ Nm(

−→
0 , σkkIm) (2.2.2)

where m = T −d, q = P ×d, and σkk is the kth diagonal element of the covariance matrix Σ.

Note that Equation (2.2.1) is finally decomposed into many sub-linear regression problems

of estimating {bk}Pk=1 in a parallel manner and all the entries of connectivity matrices are

included in {bk}Pk=1.

2.2.1 Least squares estimation (LSE)

To fit a linear regression model, the most common approach is via least squares estimation

so that the least squares estimator b̂k satisfies

b̂k = argmin
bk∈Rq

‖yk − Xbk‖2 (2.2.3)

which gives the unbiased estimator b̂k = (X′X)−1X′yk. Some papers [22] argue that in high

dimensional case the number of parameters q can be larger than the number of observations

m, thus this method has limitations due to the nonsingular matrix X′X. However, we do

not worry about this when analyzing the LFP data since normally we have replicated mea-

surements from multiple epochs. The biggest problem here is that LSE has poor specificity

for coefficients with true value of zero. It always produces estimates that are very close

to zero rather than exactly zero, which reflects non-connectivity between channels. Indeed

when LFP channels are not effectively connected with each other, then an excess non-zero

estimate could lead to incorrect characterizations of connectivity through partial directed

coherence. Moreover, even a trivial amount of bias for one coefficient, when added across
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thousands of coefficients, can produce large mean squared error (as demonstrated in the

simulation study).

2.2.2 LASSO family estimation

In order to overcome the problem of non-specificity by the LSE method, recent attention has

been focused on the family of penalized regression models as viable solutions to this problem.

One of the well known methods of this family is LASSO regression (with L1 penalty term).

The estimates given by LASSO are the solution to the minimization of the criterion

b̃k = argmin
bk∈Rq

‖yk − Xbk‖2 + λ‖bk‖1 (2.2.4)

The penalty term will force a lot of excess non-zero estimates to exact zero, which provides

good estimate for the sparsity of the VAR coefficient matrices {Φ`}d`=1 and could consequently

greatly simplify the calculation of connectivity measures (e.g., PDC) by focusing only on the

more important coefficients. In the implementation of the algorithms for LASSO, we take

advantage of the results demonstrated by [14] where estimation of generalized linear models

with convex penalties can be handled by cyclical coordinate descent and computed along a

regularization path. The price of LASSO is that the non-zero estimates are biased of true

values which leads to incorrect estimates of the strength of connectivity between channels

(PDC).

2.2.3 LASSLE: proposed two-step estimation method

Motivated by both the advantages and limitation of each of the previous approaches, we

propose a two-step procedure to estimate VAR model parameters. Our method consists of

these two steps:
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Step 1. Apply LASSO to identify entries in {Φ`}d`=1 whose estimates are not set to 0.

Ŝk = {j ∈ {1, ..., q} : b̂jk 6= 0} (2.2.5)

Step 2. Fit LSE with the constraint that “zero” entries estimates from Step 1 are fixed to 0

b̃kLAS = argmin
bk:bjk=0,j∈Ŝck

‖yk − Xbk‖2
2 (2.2.6)

Algorithm 1 LASSLE Algorithm

1: procedure Two-step Estimation
2: Step 1 :
3: Generate a sequence of (d, λ) and randomly divide data to K folds
4: For a possible choice of (d, λ), leave one fold as test data at each time

5: Train 2.2.2 with LASSO method on other folds and compute {Φ̂`}d`=1 for {Φ`}d`=1

6: Based on {Φ̂`}d`=1, calculate prediction error on test set and finally take average
7: Select (d, λ) with the lowest average prediction error

8: Obtain estimate {b̂k}Pk=1 for {bk}Pk=1 in Equation (2.2.2) of lag d using LASSO method
with λ

9: Step 2 :
10: if b̂jk = 0 then
11: Set bjk = 0.

12: if b̂jk 6= 0 then
13: Keep bjk.

14: Obtain estimate {b̃kLAS}Pk=1 for {bk}Pk=1 in Equation (2.2.2) with LSE under above
constriction

15: Obtain estimate {Φ̃`LAS}d`=1 for {Φ`}d`=1 by arranging {b̃kLAS}Pk=1

To obtain the optimal tuning parameter λ, we employ a K-fold cross-validation test in Step

1. A sequence of candidates of λ will be pre-specified and the optimal value is selected such

that the average of prediction error on test data is minimized.
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2.2.4 Theoretical consideration

For linear regression, under Irrepresentable Condition1, {b̂k}Pk=1 have sign consistency assured

by LASSO estimator [55], which means for sufficient large sample size T − d

Pr(sgn(̂bk) = sgn(bk))→ 1 (2.2.7)

where sgn(bk) is the sign function with value of 1, 0 or -1 corresponding to bk > 0, bk = 0 or

bk < 0 respectively. Therefore, P(Ŝk 6= Sk) → 0, which implies high specificity of true zero

VAR coefficients. Then our inaccurate non-zero estimate will be updated in Step 2. Since we

put a constraint for LSE in Step 2, the computing is much simplified compared with merely

LSE. Moreover, the bias and mean squared error of LASSLE estimator will be bounded [33]

||E(b̃kLAS)− bk||22 ≤ 2P(Ŝk 6= Sk){O(
1

m
) + ||bk||22 + τσkk} (2.2.8)

E||b̃kLAS − bk||22 ≤ 2
σkk
m
tr(Ψ−1

11 ) +

√
P(Ŝk 6= Sk){O(

1

m
) + ||bk||22 + τσkk} (2.2.9)

Thus, our non-zero estimates are almost unbiased, which is significantly improved from

LASSO. Final estimates given by LASSLE in simulation study have substantially lower

general mean squared error. Thus our approach is able to both indicate the most important

effective connectivity and give a more precise estimate of the strength of connectivity.

1Assume bk = (b1k, ..., b
J
k , b

J+1
k , ..., bqk)T , where bjk 6= 0 for j = 1, ..., J and bjk = 0 for j = J + 1, ..., q. Let

b
(1)
k = (b1k, ..., b

J
k )T and b

(2)
k = (bJ+1

k , ..., bqk)T . Denote Gram matrix Ψ = 1
nX
′X =

(
Ψ11 Ψ12

Ψ21 Ψ22

)
, then Irrepre-

sentable Condition is satisfied if there exists a positive constant vector η, such that |Ψ21(Ψ11)−1 sgn(b
(1)
k )| ≤

1− η.
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2.2.5 Measure of dependence

In this section, we enumerate the different measures of dependence between components of

a multivariate time series (or between different channels) using the VAR model. First, a

P -channel time series, denoted {Xt = (X1
t , ...,X

P
t )′, t = 1, 2, ...}, is weakly stationary if the

following are satisfied:

(a.) E(Xt) is constant over all time t, and

(b.) the autocovariance function matrix

cov(Xt, Xt+h) = Γ(h) =



γ11(h) γ12(h) . . . γ1P (h)

γ21(h) γ22(h) . . . γ2P (h)

...
...

. . .
...

γP1(h) γP2(h) . . . γPP (h)


depends only on the lag h, where γuv(h) = cov(Xu

t , X
v
t+h) for all pairs of channels

u, v = 1, ..., P .

Moreover, if the sequence of auto- and cross-covariance between any pair of channels u and

v is absolutely summable, i.e.,
∑∞

h=−∞ |γuv(h)| < ∞, then we define the spectral density

matrix of {Xt} to be

f(ω) =
∞∑

h=−∞

Γ(h)e−2πiωh, −1/2 ≤ ω ≤ 1/2. (2.2.10)

The spectral matrix has dimension P×P whose diagonal elements fuu(ω) are the auto-spectra

of the channels at frequency ω and the off-diagonal elements fuv(ω) are the cross-spectra of

channels u and v at frequency ω.
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The first dependency measure that we will consider is coherency. Coherency between the

u-th and v-th channels at frequency ω, is defined as

ρuv(ω) =
fuv(ω)√

fuu(ω)
√
fvv(ω)

. (2.2.11)

One can interpret coherency as the cross-correlation between the ω-oscillatory component in

channel u and the ω-oscillatory component in channel v [41].

The second dependency measure is coherence. Coherence between the u-th and v-th channels

at frequency ω, is defined as

ρ2
uv(ω) =

|fuv(ω)|2

fuu(ω)fvv(ω)
. (2.2.12)

When ρ2
uv(ω) is close to 1 then both channels u and v share a common ω-oscillatory activity.

Moreover, when the cross-correlation between the u and v channels is 0 at all time lags,

then the coherency (and coherence) between these channels at all frequencies is 0. A large

coherence value between channels u and v could be due to direct connectivity between these

two channels or could be indirectly due to the intervening effect of other channel(s). To

measure the strength of connectivity between a pair of channels – with the effect of all

intervening channels removed – we shall use partial coherence.

The third dependency measure is partial coherence. Define the matrix g(ω) = f−1(ω) and

denote the diagonal elements as gpp(ω). Let h(ω) be a diagonal matrix whose elements are

g
−1/2
pp (ω). Define the matrix C(ω) to be

C(ω) = −g(ω)h(ω)g(ω) (2.2.13)
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Then, the partial coherence between the u-th and v-th channels is the modulus squared of

the (u, v)-th element of C(ω) [12, 11]

ζ2
uv(ω) = |Cuv(ω)|2 (2.2.14)

We now present the fourth dependency measure which is partial directed coherence developed

in [4] and refined in [5]. Consider a VAR(d) model given by Equation (1.2.1), define

A(ω) = I −
d∑
`=1

Φ`exp(−i2πω`/Ω) (2.2.15)

be the transform of sequence {Φ`}d`=1 at frequency ω, where Ω is the sampling frequency.

The partial directed coherence from channel v to channel u at frequency ω is defined as

π2
uv(ω) =

|Auv(ω)|2∑P
m=1 |Amv(ω)|2

(2.2.16)

which measures the direct influence from channel v to channel u conditional on all the outflow

from channel v. PDC gives an indication on the extent to which present frequency-specific

oscillatory activity from a sender channel explains future oscillatory activity in a specific

receiver channel relative to all channels in the network.

2.2.6 Model selection

To determine the best order d̂ of VAR, we first use least squares estimation to obtain {Φ̂`}
dj
`=1

for each candidate order in the set {dj}Jj=1. We search among a class of reasonable temporal

lag orders. From our analysis of LFPs where there are usually less than 4 peaks in the

spectrum, it would be reasonable to use an upper bound of 12 as the temporal lag order.
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Then we calculate the sum of squared errors

SSE(dj) =
T∑

t=dj+1

(Xt −
dj∑
`=1

Φ̂`Xt−`)(Xt −
dj∑
`=1

Φ̂`Xt−`)
′ (2.2.17)

Consequently the conditional MLE of the error covariance matrix Σ for a candidate order

dj is

Σ̂(dj) = SSE(dj)/(T − dj) (2.2.18)

which is analogous to univariate regression case. To choose the optimal lag, we compute three

information criteria - the Akaike Information criterion (AIC), Bayesian Information criterion

(BIC) and Hannan-Quinn information criterion (HQC), respectively, for each candidate order

dj.

AIC(dj) = log |Σ̂(dj)|+ 2/T (P 2dj) (2.2.19)

BIC(dj) = log |Σ̂(dj)|+ log T/T (P 2dj) (2.2.20)

HQC(dj) = log |Σ̂(dj)|+ 2 log log T/T (P 2dj) (2.2.21)

The optimal order for each criterion, denoted d̂ is the minimizer of the cost functions and

thus gives the optimal balance between fit (as measured by SSE) and model complexity (as

expressed by the penalty terms). It has been noted that d̂BIC ≤ d̂HQC ≤ d̂AIC when T ≥ 16

[27]. In the analysis of LFPs, the difference between d̂BIC and d̂AIC is at most 1, therefore

we choose d̂AIC to capture more temporal correlation by fitting a VAR of slightly higher lag
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order.

2.2.7 Bootstrap-based inference

To conduct inference on the VAR parameters, a general idea is to derive the asymptotic

property of the estimated VAR coefficient matrices. However, this is not trivial and is

still under investigation given the high dimensionality of the VAR parameter space. An

alternative is to develop a bootstrap-based inference, which has been used in time series

[42, 43, 29, 45, 31]. After obtaining the estimates of the VAR(d) coefficient matrices, {Φ̃`}d`=1,

we use these estimates and corresponding residuals to generate new bootstrapped trials.

Denote

Rt = Xt − Φ̃1Xt−1 − ...− Φ̃dXt−d, t = d+ 1, ..., T. (2.2.22)

by residual at time t. Then, to generate a bootstrapped trial {X(b)
t }Tt=1, we shall use the

following bootstrap algorithm. Define the bootstrapped residuals to be {R(b)
t }Tt=d+1, which

are selected with replacement from {Rt}Tt=d+1. Let X
(b)
t = Xt when t = 1, ..., d, then X

(b)
t =∑d

`=1 Φ̃`X
(b)
t−` +R

(b)
t are bootstrapped data at time t when t = d+ 1, ..., T .

Algorithm 2 Bootstrap Algorithm

1: For b = 1, ..., B
2: Step 1 :
3: Let X

(b)
t = Xt for t = 1, 2, ..., d

4: Step 2 :
5: Randomly sample bootstrapped residuals {R(b)

t }Tt=d+1 from {Rt}Tt=d+1 with replacement
6: Step 3 :
7: Let X

(b)
t =

∑d
`=1 Φ̃`X

(b)
t−` +R

(b)
t be bootstrapped data at time t when t = d+ 1, ..., T

Given the b-th bootstrap time series {X(b)
t }Tt=1, we compute the VAR coefficient estimates

which we denote by {Φ̃(b)
` }d`=1 using the LASSLE method and then compute partial directed
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coherence estimate. We repeat this procedure a sufficient large number of times, then we

can find the empirical distribution and obtain the 95% bootstrap confidence interval of both

VAR parameters and PDCs.

2.3 Simulation study

2.3.1 Simulation design

To compare the performance of the proposed LASSLE approach with the classical methods

(i.e., LSE only and LASSO only), we conducted a simulation study of VAR(d) model for two

different brain network types. The first is “Cluster”, which is a type of network that has

high level local and global connectivity efficiency. In Figure 2.3, channels (red nodes) are

located in four brain regions, while the edge between two red nodes indicates connectivity

at channel level. Auto-connectivity inside each region makes channels from the same region

connect like a cluster, and cross-connectivity between brain regions determines whether these

clusters are connected with each other. For example, Cluster 2 is independent from other

regions, but Cluster 1 and Cluster 4 are connected due to the cross-connectivity at region

level.

In the second type “Scale-free”, shown in Figure 2.4, there is no significant auto-connectivity

or cross-connectivity at the region level, but all the brain channels are connected within

the network. Most of the channels have several connections with other channels, with the

exception that a few channels are heavily connected. The idea is that these channels play

a central role in the organization of entire brain network, as they are mostly responsible for

the connectivity efficiency.

For both network types, we use Equation (1.2.1) to generate time series data sets. The VAR
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Figure 2.3: 50 brain channels of “Cluster” type

Figure 2.4: 50 brain channels of “Scale-free” type

matrix Φ1 of setting {P = 50, d = 1} is visualized in Figure 2.5(a) and Figure 2.6(a). Each

small square represents the non-zero entry of Φ1 and different colors indicate different values

according to the color bar. The blank part of coefficient matrix are the zero entries. In

addition, εt follows a Gaussian distribution and the covariance matrix is not necessary to be
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diagonal. We run N = 1, 000 simulations for each VAR setting respectively and the time

series data of each channel contains T = 10, 000 time points. Then we apply LSE, LASSO

and our LASSLE method to estimate coefficient matrices, and compare their results with

two important criteria. The first one evaluates how successful the estimate identifies the

specific entries with true value of zero, as shown by the visualization of absolute difference

between true coefficient matrix and estimated one. The second criteria is their mean squared

error, defined as

MSE =

∑
n,`,i,j(Φ

ij
` − Φ̂ij

` )2

N
(2.3.1)

where {Φij
` }d`=1, {Φ̂ij

` }d`=1 represent entries of {Φ`}dl=1 and {Φ̂`}d`=1 respectively. Lower MSE

indicates better centering at true connectivity matrix.

2.3.2 Simulation results

Due to the display limit of high dimensional matrix, we only demonstrate visualized results

of VAR setting {P = 50, d = 1}.

Results from the “Cluster” setting

In this setting, 50 channels represent measurements in four brain regions and only region 1

and region 4 have cross-connectivity. In the coefficient matrix, all non-zero entries are first

randomly assigned either 0.1 or -0.1, then 0.5 is added to all diagonal entries (shown in Figure

2.5(a)). Figure 2.5(b),(c),(d) yield the absolute difference between true connectivity matrix

and estimated one by LSE, LASSO and LASSLE method. The color of small squares ranging

from white to red indicates the value of absolute difference of each entry. The blank part

of the matrix implies that the estimate has given correct zero-estimate for those true zero
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entries so that there is no need to distinguish the difference with color. Table 1 demonstrates

the MSE results of all three methods under different VAR parameter setting {P, d}.

(a) “Cluster” type VAR matrix (b) Absolute difference of LSE

(c) Absolute difference of LASSO (d) Absolute difference of LASSLE

Figure 2.5: Comparison of specificity of true zero on “Cluster” type data with Gaussian
noise. Figure 2.5(a) demonstrates the true VAR(1) coefficient matrix with P = 50. Figure
2.5(b),(c),(d) yield the absolute difference between true matrix and estimated matrix by
LSE, LASSO and LASSLE method respectively.
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VAR Parameter Setting MSE ×10−3

Number P d LSE LASSO LASSLE

100 10 1 8 93 4 *

500 10 5 58 326 36 *

1,000 10 10 134 412 82 *

2,500 50 1 176 464 24 *

5,000 50 2 457 739 93 *

10,000 100 1 697 1016 65 *

Table 2.1: Comparison of MSE between three methods on “Cluster” type data

Results from the “Scale-free” setting

To generate “Scale-free” type data, we assign 0.5 to all diagonal entries of connectivity

matrix, and 0.1 or -0.1 randomly to other non-diagonal entries with small probability (seen

in Figure 2.6(a)). Figure 2.6(b),(c),(d) give the visualized estimate results given by LSE,

LASSO and LASSLE method separately. MSE comparison can be found in Table 2.
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(a) “Scale-free” type VAR matrix (b) Absolute difference of LSE

(c) Absolute difference of LASSO (d) Absolute difference of LASSLE

Figure 2.6: Comparison of specificity of true zero on “Scale-free” type data with Gaussian
noise. Figure 2.6(a) demonstrates the true VAR(1) coefficient matrix with P = 50. Figure
2.6(b),(c),(d) yield the absolute difference between true matrix and estimated matrix by
LSE, LASSO and LASSLE method respectively.
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VAR Parameter Setting MSE ×10−3

Number P d LSE LASSO LASSLE

100 10 1 7 86 2 *

500 10 5 53 158 16 *

1,000 10 10 130 472 72 *

2,500 50 1 191 432 9 *

5,000 50 2 480 877 37 *

10,000 100 1 762 921 19 *

Table 2.2: Comparison of MSE between three methods on “Scale-free” type data

Discussion

From visualized results, we can find that LSE is unable to give specificity for true zero

coefficients, since its estimates do not contain blank squares. However, its estimate has

general lower bias across all the entries, which is implied by the light color of absolute

difference. LASSO is able to identify most true zero entries, but darker color of rectangles

indicate that this method has high bias for the estimate. Our method, constrained with

LASSO in Step 1, has inherited the specificity of true zero values from LASSO, consequently

can capture true zero values as well as LASSO. Thus in the sense of specificity of true zero,

the comparison result is: LASSLE = LASSO >> LSE.

For another important criteria MSE, the proposed LASSLE approach has substantial ad-

vantage over LSE and LASSO. In 50-channel “Cluster” setting, the MSE given by LSE and

LASSO are approximately 5 times and 10 times the MSE provided by our method. Also, in

50-channel “Scale-free” settlement, LSE and LASSO provide at least 10 times and 20 times

higher MSE compared with LASSLE. With the increase of dimensions, the advantage is

also increasing geometrically. Therefore, LASSLE performs better with respect to the MSE
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criterion compared to both LSE and LASSO.

2.3.3 Bootstrap-based inference

For each VAR setting and its simulation, we follow the bootstrap algorithm in Section 2.7

to generate 1,000 bootstrapped trials and re-estimate the VAR parameters with LASSLE

method. We (1.) investigated whether the 95% bootstrap confidence interval given by the

empirical distribution of each VAR parameter captured the true value and (2.) compared

the center of the bootstrap distribution to the true value of the quantities of interest (VAR

parameters and true PDC values). To answer (1.), we plot the empirical distribution of each

VAR parameter and compare its 95% empirical confidence interval with the true value. To

compare (2.), we obtain the median of bootstrapped estimates for each entry, then use these

medians to form a matrix and compare its absolute difference with the true connectivity

matrix.

Figure 2.7 and Figure 2.8 demonstrate examples of empirical distribution derived from 1,000

bootstrap estimates. The red dashed line indicates the true value of these example coeffi-

cients. The blue curve is the smoothed estimated density curve of each empirical distribution.

For some coefficients, e.g., Φ20
1 ,Φ

25
15 in Figure 2.7 and Φ40

15,Φ
25
30 in Figure 2.8, we are not able

to provide a density curve as the empirical distribution is a point-mass density at x = 0, in

other words, all 1,000 bootstrapped LASSLE estimates of these zero coefficients are exactly

zero. We can conclude that 95% confidence interval or set of the empirical distribution can

capture the true parameter value in the simulation study.
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Figure 2.7: Sample empirical distribution of “Cluster” type bootstrapped estimates. Red
dashed line indicates the true value of these example coefficients. Blue curve is the smoothed
estimated density curve of each empirical distribution. All 1,000 bootstrap estimates of
Φ1,20

1 ,Φ15,25
1 ,Φ15,40

1 ,Φ30,25
1 and Φ45,30

1 are zero, so we are not able to plot the point-mass density
for these coefficients.
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Figure 2.8: Sample empirical distribution of “Scale-free” type bootstrapped estimates. Red
dashed line indicates the true value of these example coefficients. Blue curve is the smoothed
estimated density curve of each empirical distribution. All 1,000 bootstrap estimates of
Φ15,40

1 ,Φ30,25
1 ,Φ30,35

1 and Φ45,10
1 are zero, so we are not able to plot the point-mass density for

these coefficients.

Figure 2.9(a),(b) demonstrate the median of 1,000 bootstrapped LASSLE estimates of “Clus-

ter” and “Scale-free” type data under previous setting {P = 50, d = 1} respectively. Figure

2.9(c),(d) yield their absolute difference with the true connectivity matrix. Given the color of

most nonzero median estimates of LASSLE is very light, we can conclude that the empirical

distributions generated by bootstrap are well centered around the true coefficient values.
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(a) Bootstrap median of “Cluster” type (b) Bootstrap median of “Scale-free” type

(c) Absolute difference of “Cluster” type (d) Absolute difference of “Scale-free” type

Figure 2.9: Bootstrap median of 1,000 bootstrapped LASSLE estimates. Figure 2.9(a),(b)
give the median of 1,000 bootstrapped LASSLE estimates for “Cluster” type and “Scale-
free” type data. Figure 2.9(c),(d) demonstrate the absolute difference between the median
estimated matrix and true coefficient matrix.

2.3.4 Robustness of LASSLE method

Previous simulation study are conducted under the assumption that εt, the noise of VAR(d)

at time t, follows a multivariate Gaussian distribution. In addition to Gaussian noise, we
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are interested to investigate whether the LASSLE method has better specificity, lower bias,

lower variance (and thus lower MSE) than the LSE and LASSO methods for other noise

distributions, e.g., student’s t-noise (with low degree of freedom) and shifted χ2 noise. To

explore this, we generated time series datasets using Equation (1.2.1) under different VAR

setting {P, d} with P independent t-noise and P independent χ2 noise respectively. Then

we apply all three methods to estimate the VAR coefficient matrices under each setting and

compare their performance in terms of both the specificity of true zero and the general mean

squared error.

Results from student’s t-noise

We use P independent
√

0.06∗ t(5), of which mean equals to 0 and variance equals to 0.1, to

generate the student’s t-noise at time t. Figure 2.10 and 2.11 demonstrate the performance

comparison of three methods on “Cluster” type and “Scale-free” type data regarding their

specificity of true zero under setting {P = 50, d = 1}. The visualization results imply that

LASSLE can capture the true zero coefficient substantially better than LSE. In addition,

LASSLE has much lower absolute difference on non-zero coefficients compared to LASSO.
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(a) “Cluster” type VAR matrix (b) Absolute difference of LSE

(c) Absolute difference of LASSO (d) Absolute difference of LASSLE

Figure 2.10: Comparison of specificity of true zero on “Cluster” type data with student’s t-
noise. Figure 2.10(a) demonstrates the true VAR(1) coefficient matrix with P = 50. Figure
2.10(b),(c),(d) give the absolute difference between true matrix and estimated matrix by
LSE, LASSO and LASSLE method respectively.
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(a) “Scale-free” type VAR matrix (b) Absolute difference of LSE

(c) Absolute difference of LASSO (d) Absolute difference of LASSLE

Figure 2.11: Comparison of specificity of true zero on “Scale-free” type data with student’s t-
noise. Figure 2.11(a) demonstrates the true VAR(1) coefficient matrix with P = 50. Figure
2.11(b),(c),(d) give the absolute difference between true matrix and estimated matrix by
LSE, LASSO and LASSLE method respectively.

Table 2.3 and 2.4 list the MSE results of all three methods on both “Cluster” type and

“Scale-free” type data with student’s t-noise under different VAR parameter setting 2. We

can see that LASSLE method still has overwhelming advantage over LSE and LASSO when

the number of parameter is large enough (≥ 2, 500). On the other hand, LSE has slightly

2“*” indicates the method which gives the lowest MSE.
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lower MSE than LASSLE under low-dimensional parameter setting.

VAR Parameter Setting MSE ×10−3

Number P d LSE LASSO LASSLE

100 10 1 7 * 184 28

500 10 5 57 * 603 73

1,000 10 10 147 * 741 216

2,500 50 1 175 836 37 *

5,000 50 2 455 1242 98 *

10,000 100 1 686 1726 88 *

Table 2.3: Comparison of MSE for “Cluster” type data with student’s t-noise

VAR Parameter Setting MSE ×10−3

Number P d LSE LASSO LASSLE

100 10 1 6 * 134 11

500 10 5 44 278 12 *

1,000 10 10 124 * 728 217

2,500 50 1 181 778 50 *

5,000 50 2 450 1056 24 *

10,000 100 1 747 1641 160 *

Table 2.4: Comparison of MSE for “Scale-free” type data with student’s t-noise

Results from shifted zero-mean χ2 noise

To generate P -dimensional shifted χ2 noise at time t, we employ P independent
√

0.0125 ∗

χ2
4 −
√

0.2, with mean of 0 and variance of 0.1. Figure 2.12 and 2.13 demonstrate the

comparison results of three methods on “Cluster” type and “Scale-free” type data in terms

of their specificity of true zero under setting {P = 50, d = 1}. Based on the visualization
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results, we can see that LASSLE estimate has very good specificity of true zero coefficients

regardless of χ2 noise.

(a) “Cluster” type VAR matrix (b) Absolute difference of LSE

(c) Absolute difference of LASSO (d) Absolute difference of LASSLE

Figure 2.12: Comparison of specificity of true zero on “Cluster” type data with shifted zero-
mean χ2 noise. Figure 2.12(a) demonstrates the true VAR(1) coefficient matrix with P = 50.
Figure 2.12(b),(c),(d) give the absolute difference between true matrix and estimated matrix
by LSE, LASSO and LASSLE method respectively.
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(a) “Scale-free” type VAR matrix (b) Absolute difference of LSE

(c) Absolute difference of LASSO (d) Absolute difference of LASSLE

Figure 2.13: Comparison of specificity of true zero on “Scale-free” type data with shifted zero-
mean χ2 noise. Figure 2.13(a) demonstrates the true VAR(1) coefficient matrix with P = 50.
Figure 2.13(b),(c),(d) give the absolute difference between true matrix and estimated matrix
by LSE, LASSO and LASSLE method respectively.

Table 2.5 and 2.6 list the MSE results of all three methods on both “Cluster” type and “Scale-

free” type data with shifted χ2 noise under different VAR parameter setting. It implies that

LASSLE method has significantly lower MSE under most high dimension parameter setting

than LSE and LASSO.
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VAR Parameter Setting MSE ×10−3

Number P d LSE LASSO LASSLE

100 10 1 7 * 159 14

500 10 5 56 465 41 *

1,000 10 10 139 561 136 *

2,500 50 1 182 666 31 *

5,000 50 2 453 1039 75 *

10,000 100 1 696 1572 87 *

Table 2.5: Comparison of MSE for “Cluster” type data with shifted zero-mean χ2 noise

VAR Parameter Setting MSE ×10−3

Number P d LSE LASSO LASSLE

100 10 1 8 143 3 *

500 10 5 55 224 16 *

1,000 10 10 129 * 654 153

2,500 50 1 194 663 22 *

5,000 50 2 451 967 23 *

10,000 100 1 747 1291 40 *

Table 2.6: Comparison of MSE for “Scale-free” type data with shifted zero-mean χ2 noise

2.4 Application to effective connectivity in multichan-

nel LFPs

In this section, we will fit a VAR model to LFP data recorded from multiple electrodes

as rats perform a non-spatial sequence memory task [3] and apply the LASSLE method to

estimate the VAR parameters and consequently partial directed coherence. Our objective
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is to examine and quantify potential connectivity (i,.e., effective) among electrodes located

in hippocampal region CA1. We specifically focused our analyses on LFPs from P = 12

tetrodes, a subset of electrodes that also recorded clear single-cell spiking activity and were

confirmed to be located in the pyramidal layer of CA1 (see estimated tetrode locations in

Figure 1.4).

2.4.1 Preliminary analysis of a single epoch

We first demonstrate fitting the VAR model to to a single epoch (Epoch 10 in this example).

To select the best lag order d̂, we fit a VAR(dj) model with candidate order dj ∈ {1, 2, ..., 12}

and use LSE to estimate the coefficient matrices. Then we apply Equation (2.2.17), (2.2.18),

and (2.2.19) to compute AIC for each candidate order dj. For epoch 10, the best order (or

the minimizer of AIC) was d̂ = 3. Consequently there were 3 coefficient matrices (each of

dimension 12 x 12) to estimate.

(a) Estimated Φ1 (b) Estimated Φ2 (c) Estimated Φ3

Figure 2.14: Estimated coefficient matrices Φ1, Φ2, Φ3 in Epoch 10 using the LASSLE
method.

Figure 2.14 shows the LASSLE estimates of Φ1, Φ2 and Φ3 for Epoch 10. Blanks are assigned

to entries whose value is zero, so non-dependence between tetrodes is easy to tell. For entries

whose value is not zero, we assign them with colors of red for positive value and blue for
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negative value, and the strength of dependence is implied by the color-key. As we can see,

most diagonal entries of Φ1 are either red or orange, which implies that signals have strong

positive auto-dependence. In addition, upper off-diagonal entries in column 9 to 12 of Φ1

are mostly blue, which could be evidence that signal of tetrode T7, T8, T9 and T2 at time

t − 1 has significant negative dependence with signals from other tetrodes location at time

t. Compared to Φ1, more than half entries in Φ2 are blank, suggesting there is no auto-

and cross-dependence between those tetrodes at time t − 2 and at time t. Column 1 to 8

in Φ2 are light blue, which implies weak negative dependence between signals from tetrode

T20, T19,..., T15 at time t− 2 and signals from these tetrodes location at time t. Also, we

believe there is positive dependence between signals from tetrode T7, T9, T2 at time t − 2

and signals from tetrode T20, T19, ..., T13 at time t as the color of column 9, 11 and 12

in Φ2 is orange. However, most entries of Φ3 are blank and limited non-zero estimates are

close to zero, which implies that the dependence between LFPs at time t − 3 and time t is

very weak.

Next we applied Equation (2.2.15) and (2.2.16) to the LASSLE estimates to calculate partial

directed coherence. PDC was computed at the following frequency bands in the study: δ

band (0-4 Hertz), θ band (4-8 Hertz), α band (8-12 Hertz), β band (12-32 Hertz) and γ band

(32-50 Hertz), which are standard in brain signals analysis. To estimate PDC at specific

frequency band, we calculate the average of estimates of PDC over all singleton frequencies in

that band. Figure 2.15 demonstrates the estimated PDC results of these frequency bands in

Epoch 10. Since there is only slight change on the estimated PDC across different frequency

bands, we use the results of the γ band (shown in Table 2.7) as representative to explain

the PDC. For tetrodes T16, T14, T13, T15, T7 and T9, over 75% of their information can

be explained by their own past while most of their information flowing to other tetrodes are

very close to 0. More specifically, tetrode T14 has 2.4% information that flows to tetrode

T13, and 6.1% information of tetrode T16 flows to tetrode T14. This implies that they tend

to have communication with specific tetrodes instead of the entirety. Unlike these tetrodes,

51



tetrodes T20, T19, T22, T23, T8 and T2 have significant amount of information flowing to

other tetrodes. For example, the proportion of current tetrode T8 that is explained by its

own past is only about 30.0%. This could be evidence that these tetrodes play an important

role of passing information to other tetrodes while the rat was engaged in a non-spatial

memory task. Estimated PDCs from tetrodes T20, T19, T22, T16, T23, T14, T13, T15

(sender) to tetrodes T7, T8, T9, T2 (receiver) are almost none (the blank on the bottom left

of PDC), which suggest that previous oscillatory activity at the γ band of first 8 tetrodes

can hardly explain future oscillatory activity at the γ band of last 4 tetrodes as they are far

apart in spatial distance.

Figure 2.15: Estimated PDC by LASSLE of Epoch 10

52



T
et

ro
d
e

(r
ec

ie
ve

r)
T

et
ro

d
e

(s
en

d
er

)
T

20
T

19
T

22
T

16
T

23
T

14
T

13
T

15
T

7
T

8
T

9
T

2
T

20
0.

54
8

0.
01

9
0.

00
5

0.
00

0
0.

04
1

0.
00

0
0.

00
2

0.
00

0
0.

01
8

0.
06

0
0.

00
4

0.
02

1
T

19
0.

12
6

0.
73

4
0.

05
4

0.
00

5
0.

00
3

0.
00

0
0.

00
1

0.
00

0
0.

01
1

0.
04

8
0.

00
2

0.
06

2
T

22
0.

02
6

0.
02

6
0.

59
3

0.
01

0
0.

09
1

0.
00

0
0.

00
1

0.
00

3
0.

01
7

0.
07

8
0.

00
6

0.
01

9
T

16
0.

00
0

0.
14

7
0.

20
0

0.
90

9
0.

01
0

0.
00

0
0.

00
0

0.
00

0
0.

07
3

0.
04

1
0.

00
9

0.
25

2
T

23
0.

05
6

0.
00

0
0.

08
5

0.
00

0
0.

51
3

0.
00

0
0.

00
7

0.
00

0
0.

08
2

0.
13

9
0.

00
7

0.
05

8
T

14
0.

01
0

0.
00

7
0.

04
3

0.
06

1
0.

06
8

0.
97

1
0.

00
6

0.
00

0
0.

00
1

0.
04

2
0.

00
4

0.
01

9
T

13
0.

23
2

0.
04

8
0.

00
8

0.
00

3
0.

25
8

0.
02

4
0.

97
9

0.
00

0
0.

00
9

0.
08

1
0.

00
4

0.
02

9
T

15
0.

00
0

0.
01

9
0.

00
0

0.
00

0
0.

01
6

0.
00

5
0.

00
0

0.
96

2
0.

00
2

0.
01

4
0.

00
4

0.
00

0
T

7
0.

00
0

0.
00

0
0.

00
0

0.
00

6
0.

00
0

0.
00

0
0.

00
1

0.
01

0
0.

78
6

0.
13

3
0.

00
2

0.
00

2
T

8
0.

00
1

0.
00

0
0.

00
0

0.
00

6
0.

00
0

0.
00

0
0.

00
1

0.
02

5
0.

00
1

0.
30

0
0.

01
2

0.
00

2
T

9
0.

00
0

0.
00

0
0.

00
0

0.
00

0
0.

00
0

0.
00

0
0.

00
2

0.
00

0
0.

00
0

0.
06

3
0.

94
6

0.
00

0
T

2
0.

00
0

0.
00

0
0.

01
2

0.
00

0
0.

00
0

0.
00

0
0.

00
0

0.
00

0
0.

00
0

0.
00

0
0.

00
0

0.
53

6

T
ab

le
2.

7:
E

st
im

at
ed

P
D

C
va

lu
e

at
th

e
γ

b
an

d
in

E
p

o
ch

10
.

T
h
e

es
ti

m
at

ed
P

D
C

fr
om

te
tr

o
d
e

T
16

to
te

tr
o
d
e

T
22

is
0.

01
0.

T
h
e

es
ti

m
at

ed
P

D
C

fr
om

te
tr

o
d
e

T
22

to
T

16
is

0.
20

0.

53



2.4.2 Change of brain connectivity across epochs

We repeat the same procedure for all epochs and select the best VAR order separately.

Figure 2.16 demonstrates the AIC curves of the first 15 epochs, from which we can see

some epochs reach the lowest AIC at d̂ = 3 and some of them are d̂ = 4. Table 2.8 shows

the distribution of d̂ across all 247 epochs. We fit VAR(d̂) to each epoch and estimate the

corresponding coefficient matrices by LASSLE method. Figure 2.17 shows the boxplots of

ACF and PACF of residuals fitted from tetrode T22 across all 247 epochs, which is strong

evidence that the residuals from tetrode T22 are white noise. The same phenomenon is

observed for residuals fitted from other tetrodes.

Figure 2.16: AIC of fitted VAR on first 15 epochs, lag order range: 1,2,...,12.

Selected lag order 2 3 4 5

Number of epochs 64 158 23 2

Proportion (%) 25.9 64.0 9.3 0.8

Table 2.8: Distribution of selected VAR lag order
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Figure 2.17: The boxplots of auto-correlation function (ACF) of residuals fitted from tetrode
T22 across all epochs (left). The boxplots of partial auto-correlation function (PACF) of
residuals fitted from tetrode T22 across all epochs (right).

After computing all the PDCs, we obtain the 95% confidence interval of PDC by summa-

rizing from the empirical distribution if we assume all epochs carry the same connectivity

information. However, this assumption may not be true and we are more interested in the

variation of PDCs across all epochs, which can help us understand the dynamics of rat’s

brain connectivity in this memory experiment. To visualize the evolution, we develop Fig-

ure 2.18 and Figure 2.19, where PDC matrix (12 × 12) is converted to a column vector of

12 × 12 = 144 elements at each epoch and x-axis indicates the index of epochs. We can

clearly see that estimated PDCs at the γ band are quite stable on some tetrode pairs, e.g.,

tetrode T13 to tetrode T13 (always red color), while PDC estimates of other tetrode pairs

are varying with epochs.
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Figure 2.18: PDC on γ band across all epochs. X-axis is the index of epochs. At each epoch,
PDC matrix (12 × 12) is converted to a column vector of 12 × 12 = 144 elements, where
every 12 elements are the PDC values of one tetrode to all 12 tetrodes.

Figure 2.19: Illustration of Figure 2.18. Every 12 rows in Figure 2.18 indicate the PDCs from
one tetrode to all 12 trodes across 247 epochs. For example, the first 12 rows demonstrate
the PDCs from T20 to T20, T19, ..., T2 at all epochs.
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To compare the variation of estimated PDCs at the γ band between InSeq epochs and OutSeq

epochs, the Kolmogorov-Smirnov (KS) test is used [30]. The null hypothesis of KS test is

that the empirical distribution of PDCs from InSeq epochs and that of OutSeq epochs are

identical. Here we use permutation to obtain the empirical distribution of KS test statistics.

Since it is necessary to preserve the inherent correlation across different epochs, the entire

247 epochs were partitioned into 50 groups where 5 consecutive epochs are within the same

group (for the last group, we replicate Epoch 246 and Epoch 247 to make 5 epochs). This idea

is inspired by the block bootstrap procedure for time series. Then, we randomly selected 5

groups (containing 25 epochs) from 50 groups as experimental OutSeq epochs, using the rest

as experimental InSeq epochs, and compute the KS-statistic for this new Inseq and OutSeq

grouping. This procedure is repeated 10,000 times to obtain the empirical distribution of

KS-statistics. Finally, the proportion of permuted KS-statistics with larger values than the

real KS-statistic is used as the p-value.

Figure 2.20 and Figure 2.21 demonstrate the empirical distributions of estimated PDCs for

all tetrodes given by Inseq epochs (blue curve) and Outseq epochs (red curve). Based on

the p-values of KS test, there is strong evidence showing that the variation of auto-PDC

of tetrode T19, T22, T23 and T13 are different between Inseq epochs and Outseq epochs

(Figure 2.20). For these tetrodes, the proportion of their current oscillatory activity that

can be explained by their own past activity is influenced by whether odors are presented

in the correct or incorrect sequence position (Inseq or Outseq, respectively). However, for

the remaining tetrodes the variation in their estimated auto-PDC is quite stable across

Inseq epochs and Outseq epochs. As shown in Figure 2.21, p-values also indicate that the

variation of estimated PDC from tetrode T19, T22 and T23 (sender) to some other tetrodes

(receiver) are significantly different between Inseq epochs and Outseq epochs, which suggests

that the information flowing from these tetrode locations to others is also influenced by the

Inseq/Outseq status of the presented odor.
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Figure 2.20: Density curves of auto-PDCs across all 247 epochs. Blue one is the density curve
of InSeq epochs only. Red one is the density curve of OutSeq epochs only. Kolmogorov-
Smirnov test is used, where the null hypothesis is that two empirical distributions are the
same. P-value is obtained from permutation and we reject the null hypothesis when p <=
0.05.
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Figure 2.21: Density curves of some cross-PDCs across all 247 epochs. Blue one is the density
curve of InSeq epochs only. Red one is the density curve of OutSeq epochs only. Kolmogorov-
Smirnov test is used, where the null hypothesis is that two empirical distributions are the
same. P-value is obtained from permutation and we reject the null hypothesis when p <=
0.05.

2.4.3 Comparison of three methods on PDC across all epochs

We also apply traditional methods (LSE only and LASSO only) to estimate VAR coefficients

and then compute the PDC for each epoch separately. Figure 2.22 and Figure 2.23 demon-

strate the density curve of auto-PDCs and some cross-PDCs estimated by three methods

across all epochs. The red curve is given by LASSLE method, the blue one is via LSE, and
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the green one is achieved by LASSO. As we can see, the red curve is close to the blue one

for most PDCs. This is because each estimated PDC is mostly influenced by some dominant

non-zero VAR coefficients, of which the estimates are close to each other by LASSLE and

LSE separately. Noted that LASSO method has shrinked many VAR coefficients to zero and

its non-zero estimates are very different from those by LSE. Cosequently the green curve is

dissimilar to the blue one for most PDCs.

Figure 2.22: Density curves of auto-PDCs across all 247 epochs given by three methods.
The red curve is LASSLE, the blue one is LSE, and the green one is LASSO.
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Figure 2.23: Density curves of some cross-PDCs across all 247 epochs given by three methods.
The red curve is LASSLE, the blue one is LSE, and the green one is LASSO.

2.5 Conclusion

In this chapter, we proposed a hybrid LASSLE (LASSO+LSE) method to estimate the

coefficients of vector auto-regressive models characterizing the effective and directional con-

nectivity for multichannel brain physiological signals. This method uses regularization to

control for sparsity on the first stage and then use least squares to improve bias and mean-

squared error of the estimator on the second stage. Compared to the separate LASSO and

LSE, the advantage of our method is that it is able to both indicate the most important
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effective connectivity and give a more accurate estimate of the connectivity strength. Note

that sparse VAR coefficient estimates can still capture complex dependency structures in a

multivariate time series. In addition, we employ partial directed coherence to measure the

directional connectivity between the channels. PDC is a directed frequency-specific mea-

sure that explains the extent to which the present oscillatory activity in a sender channel

influences the future oscillatory activity in a specific receiver channel relative to all possible

receivers in the network. The proposed modeling approach provided key insights into po-

tential functional relationships among simultaneously recorded sites during performance of a

complex memory task. Specifically, this novel method was successful in revealing patterns of

effective connectivity across tetrode locations, by quantifying how present oscillatory activity

in each tetrode is influenced by past oscillatory activity in other tetrodes. This approach

was also successful in capturing how this effective connectivity varied across trial epochs and

trial types (InSeq or OutSeq).
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Chapter 3

Characterizing hippocampal

connectivity in multi-trial LFPs

3.1 Introduction

To analyze multi-trial LFPs at condition level, we have proposed a two-stage modeling ap-

proach in Chapter 2 where vector auto-regressive (VAR) models are employed to characterize

each individual trial separately and estimate trial-specific connectivities in the first stage,

then estimate the between-conditions variation of the estimated connectivities in the second

stage. However, this approach has some drawbacks. First of all, the parameter estimation

procedure does not take into account the similarity of connectivity structure within same

condition, since trials from same experimental condition are modeled and estimated separate-

ly. Secondly, summarizing and making inference on the condition-level effective connectivity

is accomplished via bootstrap analysis, where random variability at trial level is introduced

but not accounted for by re-sampling residuals. In this chapter, we address those deficien-

cy by employing a Bayesian hierarchical vector autoregressive (BH-VAR) framework [9]. By
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imposing condition-level priors on the parameters in trial-specific models, the proposed mod-

eling approach allows to incorporate within-conditions correlation with between-conditions

variation. The prior information will help better characterize trial- and condition-level con-

nectivity through the posterior distribution. Moreover, inference on trial- and condition-level

connectivity can be made simultaneously in our single modeling framework, without the loss

of information implied by a two-stage estimation approach. We further take into account the

potential sparse structure in high dimensional parameter space of brain signals by inducing

sparsity in parameters via “spike-and-slab” mixture priors.

To describe condition-specific effective connectivities, we shall still use partial directed co-

herence, which is a connectivity measurement in frequency domain. Compared to the con-

nectivity simply characterized by coefficients of VAR matrices, PDC provides a perspective

to understand the connectivity at conditional level as to how an oscillatory activity (at a

particular frequency band) at a present time in one channel may impact oscillatory activity

of the same frequency band at another channel at a future time point. The remainder of this

chapter is arranged as follows. In Section 3.2, I present the details of proposed hierarchical

Bayesian models followed by simulation studies in Section 3.3. Analysis of LFP signals is in

Section 3.4 and Conclusion is in Section 3.5.
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3.2 A Bayesian hierarchical VAR model for differential

connectivity

3.2.1 Single stage modeling

A P -dimensional LFP signal from trial s under condition g is said to follow a Bayesian

hierarchical VAR model of order d, denoted as BH-VAR(d), if it can be expressed as

(X
(s)
t |ηs = g,Φ

(s)
`,g ,Σ) =

d∑
`=1

Φ
(s)
`,gX

(s)
t−` + ε

(s)
t t = d+ 1, .., T (3.2.1)

where ηs is a condition indicator, s = 1, ..., n, and g = 1, ..., G. The matrices Φ
(s)
`,g ’s ∈ RP×P

are the autoregressive coefficient matrices of trial s from condition g, which capture lagged

cross-dependence among signals from different channels in trial s. We assume ε
(s)
t

iid∼ N(0,Σ)

for the noise of trial s, where Σ = diag{σ1, ..., σP} is the VAR covariance matrix with

hyper priors σj ∼ IG(h1, h2) (j = 1, ..., P ) placed on σj’s. Priors p(Φ
(s)
`,g |Φ`,g) (` = 1, ..., d)

are imposed to account for the between-trials variation on VAR matrices under condition

g, where {Φ`,g}d`=1 indicate the condition-specific coefficient matrices. An illustration of

condition-specific connectivity via the BH-VAR model can be found in Figure 3.1. Denote

the LFP recording of neurons to be u-th and v-th tetrode. Then the entry Φuv
`,g (g = 1, 2)

shows the impact of the input from v-th tetrode at time t − ` to brain activity at u-th

tetrode at the current time t under condition g. If Φuv
`,g = 0 and Φvu

`,g = 0 for all lags ` then,

there is no connectivity between these two tetrodes as determined by the BH-VAR model

under condition g. Thus, the entries of {Φ`,g}d`=1 contain all the information about brain

connectivity between channels under condition g.
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Tetrode u
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(a) LFP traces of Epoch 10 (g = 1) (b) Lagged dependence in Φ`,1’s

Time in ms

Tetrode v
Tetrode u

0 200 400 600 800 1000

(c) LFP traces of Epoch 121 (g = 2) (d) Lagged dependence in Φ`,2’s

Figure 3.1: LFP traces and VAR. Φuv
`,g (` = 1, 2) captures the impact of the input from v-th

channel at time t− ` to brain activity at u-th channel at the current time t from condition
g.

Note that model (3.2.1) can be written in a standard multivariate linear regression form


(X

(s)
T )′

...

(X
(s)
d+1)′


︸ ︷︷ ︸
Y (s):(T−d)×P

=


(X

(s)
T−1)′ · · · (X

(s)
T−d)

′

...
. . .

...

(X
(s)
d )′ · · · (X

(s)
1 )′


︸ ︷︷ ︸

X(s):(T−d)×Pd


(Φ

(s)
1,g)
′

...

(Φ
(s)
d,g)
′


︸ ︷︷ ︸
B

(s)
g :Pd×P

+


(ε

(s)
T )′

...

(ε
(s)
d+1)′


︸ ︷︷ ︸
E(s):(T−d)×P

. (3.2.2)

Use the vec notation

y(s) = vec(Y (s))

β
(s)
g = vec(B

(s)
g )
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e(s) = vec(E(s))

where vec(Y (s)) stacks the columns of Y (s) on tops of one another. Then we must have

y(s)︸︷︷︸
(T−d)P×1

= ( I︸︷︷︸
P×P

⊗ X(s)︸︷︷︸
(T−d)×Pd

) β(s)
g︸︷︷︸

P 2d×1

+ e(s)︸︷︷︸
(T−d)P×1

(3.2.3)

where e(s) ∼ N(0,Σ⊗ I). Eventually we can write model (3.2.1) as

(y(s)|ηs = g, β(s)
g ,Σ) ∼ N((I ⊗ X(s))β(s)

g ,Σ⊗ I) (3.2.4)

with β
(s)
g capturing the trial-level connectivities.

Here we adopt the model in [9] and [19], and propose to model the condition-level connec-

tivities ϕg (vectorized VAR matrices at condition g). Multivariate normal priors are put on

β
(s)
g :

(β(s)
g |ϕg,Ξg) ∼ N(ϕg,Ξg) (3.2.5)

The trial-level connectivities under condition g are modeled as random derivations from the

baseline process of condition g, where Ξg = diag{ξg,1, ..., ξg,dP 2} is a diagonal covariance

matrix to account for the variation.

In particular, we enforce sparsity in the condition-level connectivity structure by imposing

“spike-and-slab” mixture priors [36, 17, 18] on elements of ϕg. By weeding out less important

parameters, we also aim at improving the accuracy of estimated effective connectivity. De-

note elements of ϕg by {ϕg,k}k=1,...,dP 2 , we introduce binary indicators {γg,k}k=1,...,dP 2 , which

satisfy γg,k = 1 if ϕg,k is non-zero and γg,k = 0 otherwise. Then our “spike-and-slab” priors
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are defined as following

(ϕg,k|γg,k) ∼ γg,kN(0, τ 2
0 ) + (1− γg,k)δ0(ϕg,k) (3.2.6)

where δ0(ϕg,k) is a point mass density at ϕg,k = 0, and τ 2
0 is constant. Taking into account

the potential difference in variation of zero and non-zero elements of trial-level parameters

β
(s)
g in Equation (3.2.5), we also put priors on the diagonal elements of Ξg to differentiate

the variances conditional on zero and non-zero elements of ϕg. If γg,k = 1, we set ξg,k =

c1
g ∼ IG(a1

g, b
1
g); if γg,k = 0, ξg,k = c0

g ∼ IG(a0
g, b

0
g), where (a1

g, b
1
g, a

0
g, b

0
g) are constants.

Furthermore, we impose Bernoulli priors on the variable selection indicator γg,k

(γg,k|pg) ∼ Bern(pg), k = 1, ..., dP 2 (3.2.7)

pg is the probability of non-zero VAR parameters at condition-level and follows pg ∼ Beta(α1
g, α

2
g).

The value of (α1
g, α

2
g) is informed via prior information on the proportion of non-zero depen-

dence of LFPs. The graphical structure of our proposed BH-VAR model can be found in

Figure 3.2. Nodes in circles denote parameters, while nodes in squares denote observables

based on LFPs.
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Figure 3.2: Graphical structure of the proposed probabilistic model in BH-VAR. Nodes in
circles denote parameters, and nodes in squares denote observables based on LFPs.

Algorithm 3 MCMC Algorithm

1: Update β
(s)
g : Gibbs step from a normal distribution β

(s)
g ∼ N(µ

(s)
β , v

(s)
β )

2: Jointly update (ϕg, γg) using a joint Metropolis-Hastings step

3: Update c1
g from c1

g ∼ IG(χ1
g, ψ

1
g), this is a Gibbs step

4: Update c0
g from c0

g ∼ IG(χ0
g, ψ

0
g), this is a Gibbs step

5: Update pg from pg ∼ Beta(nγg + α1
g, P

2d− nγg + α2
g)

6: Update σj’s from σj ∼ IG(d1, d2), j = 1, 2, ..., P

3.2.2 Fast two-stage computation in a quasi-Bayesian approach

Since the computation of the above fully Bayesian approach is very intensive, one contribu-

tion of this manuscript is an alternative two-stage computation approach which still allows

straightforward uncertainty quantification of between-trial conditions via a Bayesian hier-

archical model and MCMC posterior sampling, but provides a fast approximate procedure
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for the estimation of trial-specific VAR parameters. In the first stage, we use Lease square

estimation (LSE) to obtain estimated trail-specific VAR parameters β̂
(s)
g , which satisfy

β̂
(s)
g = argmin

β
(s)
g ∈RP2d

‖y(s) − (I ⊗ X(s))β(s)
g ‖

2
(3.2.8)

In the second stage, we consider the parameters estimated in the first stage, and apply

Step 2-6 of the above algorithm at each MCMC iteration to draw posterior samplers of

condition-level VAR parameters ϕg and their corresponding binary indicators γg.

Algorithm 4 Modified MCMC Algorithm

1: procedure LSE

2: Estimate β
(s)
g with LSE method

3: procedure MCMC

4: Jointly update (ϕg, γg) using a joint Metropolis-Hastings step

5: Update c1
g from c1

g ∼ IG(χ1
g, ψ

1
g), this is a Gibbs step

6: Update c0
g from c0

g ∼ IG(χ0
g, ψ

0
g), this is a Gibbs step

7: Update pg from pg ∼ Beta(nγg + α1
g, P

2d− nγg + α2
g)

8: Update σj’s from σj ∼ IG(d1, d2), j = 1, 2, ..., P

This computation and approximation avoids sampling β
(s)
g from high dimensional multivari-

ate normal distribution (for example, dimension is P×d2×n in this case) and computing their

high dimensional covariance matrix. As a result, it can save the computation of sampling

P × d2 × n parameters at each iteration. The cons of this approach is that the uncertainty

of trial-specific parameters in Step 1 is not properly assessed. However, we will show that

the estimation results of condition-level parameters are almost not affected in a simulation

study in Section 3.3.
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3.2.3 Inference on condition-level non-zero VAR parameters

In the Bayesian VAR model (3.2.1), we conclude there exists no connectivity from channel v

to channel u at condition g at lag ` if Φuv
`,g = 0, which is equivalent to γg,k = 0, where γg,k is

the corresponding binary indicator in “spike-and-slab” priors (3.2.6). Basically this requires

dP 2 null hypotheses Hk
0 : γg,k = 0 to be tested, which leads to a multiple hypotheses testing

problem. To conduct inference on this, we adopt a Bayesian decision theoretic perspective,

and compute marginal posterior probabilities (MPP) of p(γg,k = 1|y(s), s = 1, ..., n). The

MPP’s are estimated as the proportions of MCMC samples such that γg,k = 1 across all

iterations after burn-in. A threshold on the MPP’s leads to an optimal decision rule under

a loss function which is a weighted compounded linear function of false positives and false

negatives. We further choose the threshold κg to control the Bayesian false discovery rate

(BFDR) at a certain level 0.05, that is

BFDR(κg) =

∑dP 2

k=1(1−MPP
(g)
k )I

(MPP
(g)
k >κg)∑dP 2

k=1 I(MPP
(g)
k >κg)

(3.2.9)

κ∗g and κ∗∗g (κ∗g < κg < κ∗∗g ) are selected to ensure interval
(
BFDR(κ∗∗g ),BFDR(κ∗g)

)
contains

BFDR(κg) = 0.05. Hk
0 : γg,k = 0 is rejected if MPP

(g)
k ≥ κg. In other words, we can

conclude lag-specific directional connectivity between certain channels at condition level if

their corresponding MPP is within the threshold κg.

3.2.4 Measures of effective connectivity

In this section, we will review several frequency domain connectivity measures typically

employed in brain imaging when using the VAR model. We start by recalling that a P -

channel brain signal, denoted {Xt = (X1
t , ...,X

P
t )′, t = 1, 2, ...}, is said weakly stationary

if
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(a.) E(Xt) is constant over all time t, and

(b.) the auto-covariance function matrix

cov(Xt, Xt+h) = Γ(h) =



γ11(h) γ12(h) . . . γ1P (h)

γ21(h) γ22(h) . . . γ2P (h)

...
...

. . .
...

γP1(h) γP2(h) . . . γPP (h)


depends only on the lag h, where γuv(h) = cov(Xu

t , X
v
t+h) for all pairs of channels

u, v = 1, ..., P .

If the sequence of auto- and cross-covariance between any pair of channels u and v is abso-

lutely summable, i.e.,
∑∞

h=−∞ |γuv(h)| < ∞, the spectral density matrix of {Xt} is defined

as

f(ω) =
∞∑

h=−∞

Γ(h)e−2πiωh, −1/2 ≤ ω ≤ 1/2. (3.2.10)

which is a P ×P matrix with diagonal elements fuu(ω) are the auto-spectra of the channels

at frequency ω and the off-diagonal elements fuv(ω) are the cross-spectra of channels u and

v at frequency ω.

Then coherence between the u-th and v-th channels at frequency ω, is defined as

ρ2
uv(ω) =

|fuv(ω)|2

fuu(ω)fvv(ω)
. (3.2.11)

which can be interpreted as how much of ω-oscillatory component in common shared by

channel u and channel v. A large coherence value between channels u and v could be due to

direct connectivity between these two channels or could be indirectly due to the intervening

effect of other channel(s). To measure the strength of connectivity between a pair of channels

controlling for the effect of all other channels, we shall use partial coherence.
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Define g(ω) = f−1(ω) and gpp(ω) are the diagonal elements of g(ω). Let h(ω) be a diagonal

matrix whose elements are g
−1/2
pp (ω), and C(ω) = −g(ω)h(ω)g(ω). Then, the partial coher-

ence between the u-th and v-th channels is the modulus squared of the (u, v)-th element of

C(ω) ([12], [11])

ζ2
uv(ω) = |Cuv(ω)|2 (3.2.12)

Here we consider partial directed coherence instead [4, 5]. For a BH-VAR(d) model given by

Equation (3.2.1), define

Ag(ω) = I −
d∑
`=1

Φ`,gexp(−i2πω`/Ω) (3.2.13)

to be the transform of sequence {Φ`,g}d`=1 at frequency ω, where Ω is the sampling frequency.

The partial directed coherence from channel v to channel u at frequency ω under condition

g is defined as

π2
uv(ω) =

|Auvg (ω)|2∑P
m=1 |Amvg (ω)|2

(3.2.14)

which measures the direct influence from channel v to channel u conditional on all the outflow

from channel v. PDC gives an indication on the extent to which present frequency-specific

oscillatory activity from a sender channel explains future oscillatory activity in a specific

receiver channel relative to all channels in the network.
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(a) Coherence (b) Partial coherence (c) PDC

Figure 3.3: Example of connectivity characterized by three different measures. Originally
information flows from channel 1 to channel 2 and from channel 2 to channel 3 in (c).
Indirect connectivity between channel 1 and channel 3 is measured by coherence in (a),
while no directionality is specified by partial coherence in (b).

Figure 3.3 demonstrate an example of three brain channels connected in a network and

the three different measures. Channel 1 is connected to channel 2 with outflow from 1

to 2; channel 2 is connected to channel 3 with outflow from 2 to 3; channel 1 and 3 are

not directly connected. Their connectivity measured by coherence, partial coherence and

partial directed coherence are shown in Table 3.1. Coherence between channel 1 and 3 at

frequency ω is not zero even though they are not directly connected. Partial coherence

between channel 1 and 3 at frequency ω removes the intervention of channel 2, thus ζ2
31(ω) =

ζ2
13(ω) = 0. Partial directed coherence between channels only measures direct connectivity

and is direction sensitive, consequently π2
12(ω) = 0 and π2

21(ω) 6= 0.

Channels
Connectivity measures

Coherence Partial coherence Partial directed coherence

1 and 2 ρ2
12(ω) = ρ2

21(ω) 6= 0 ζ2
12(ω) = ζ2

21(ω) 6= 0
π2

12(ω) = 0
π2

21(ω) 6= 0

2 and 3 ρ2
23(ω) = ρ2

32(ω) 6= 0 ζ2
23(ω) = ζ2

32(ω) 6= 0
π2

23(ω) = 0
π2

32(ω) 6= 0

3 and 1 ρ2
31(ω) = ρ2

13(ω) 6= 0 ζ2
31(ω) = ζ2

13(ω) = 0
π2

31(ω) = 0
π2

13(ω) = 0

Table 3.1: Comparison of three connectivity measures in Figure 3.3.
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3.2.5 Model selection

In the previous two-stage approach, VAR models with optimal lag order selected by AIC

were fitted for each epoch separately. Therefore the selected lag orders were not the same

across epochs. For this Bayesian approach, we fit model (3.2.1) with lag order d ∈ {1, 2, 3}

to all epochs separately, then use the posterior mean of MCMC samples after burn-in to

calculate BIC for each model. The optimal lag order d̂ is chosen to return the lowest BIC.

3.3 Simulation study

A simulation study was conducted to investigate: (1) whether BH-VAR method can re-

cover the connectivity information of multi-trial brain signals from different experimental

conditions; and (2) whether the two-stage computation approach is able to recover the same

connectivity inference as the full Bayesian method. In terms of assessing connectivity re-

covery, the first criterion is sensitivity - how well the estimated results identify the zero and

non-zero structure of VAR matrices, which can be evaluated by the MPP results. The second

criterion is specificity - how close the method can estimate the partial directed coherence

compared to the truth, which is the comparison between the posterior mean PDCs and true

PDCs.

3.3.1 Simulation setting

In order to assess the operation characteristic of the proposed procedure, we generated

n = 50 trials of P = 12 channels from G = 2 conditions (25 trials for each) using VAR(1)

models. The location of zero and non-zero entries of the two condition-level VAR matrices

was determined by a Bern(0.4) prior. Furthermore, we generated values of non-zero entries
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from Unif(−0.2, 0.3), and random numbers from Unif(0.3, 0.5) were added to the diagonal

entries. Figure 3.4 demonstrates the true VAR matrices from two conditions, where the

blank cells indicate true zeros. Then random matrices with eigenvalues between (−0.2, 0.2)

were added to the condition-level matrices to construct 50 trail-specific VAR matrices. The

prior choice was informed by previous exploratory analyses of LFP datasets according to

the two-stage procedure in Chapter 2. Finally, we added a random noise from N(0, 1) to

each trial and 50 trials were simulated with T = 1000 from those VAR(1) matrices. Selected

trails from two conditions can be found in Figure 3.5 and Figure 3.6, where different temporal

patterns are observed between-conditions.

(a) True condition 1 (b) True condition 2

Figure 3.4: Condition-level VAR matrices.
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Simulated signals from 12 tetrodes during Trial 1 (Condition 1)
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Figure 3.5: Simulated signals from condition 1.
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0 200 400 600 800 1000

Simulated signals from 12 tetrodes during Trial 30 (Condition 2)

Time in milliseconds (ms)
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Figure 3.6: Simulated signals from condition 2.

The simulated trials were then estimated by full Bayesian method and two-stage approach

separately: 10,000 MCMC iterations were run for both approaches with 5,000 burn-in. Con-

sequently the posterior distributions of condition-level VAR parameters were formed by the

5,000 MCMC samples.

3.3.2 Inference on sparsity connectivity structures

To investigate whether our methods recover the sparse connectivity structure of the simulated

data, we examined the inference on the latent indicators γg,k (Figure 3.7). The subindex k

indicates the VAR parameter arranged by column. For example, γ1,20 corresponds to the

(8, 2) entry of Φ1,1. The threshold was then determined by Equation (3.2.9), and MPP

exceeding the threshold implies that γg,k should be non-zero (positive) while MPP within

the threshold implies γg,k is zero (negative). The black dots indicate true positives, red dots

indicate false negatives, and blue dots indicate false positives. Based on the results, the full

single-stage Bayesian approach successfully recovered most of the true non-zero connectivity,

with few false negatives, whose true values were actually very close to 0. It makes sense even

though there were a few false positives in the results, because of the randomness that we
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added to the trail-specific VAR parameters and the white noise in the simulation setting.

Compared to the inference of full Bayesian method, the two-stage approach tends to return

lower MPP’s values. This trend is possibly due to the loss of information and lack of

borrowing of strength in the two-step estimation process versus the full Bayesian method.

However, the BFDR thresholding identified a similar sparse connectivity structure than the

one recovered by the fully single-stage Bayesian approach.
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(a) MPP of condition 1 by full Bayesian (b) MPP of condition 1 by fast two-stage
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(c) MPP of condition 2 by full Bayesian (d) MPP of condition 2 by fast two-stage

Figure 3.7: MPP’s by full Bayesian method and two-stage approach. MPP exceeding the
threshold implies γg,k should be non-zero (positive) while MPP within the threshold implies
γg,k is zero (negative). The black dots indicate true positives, red dots indicate false negatives,
and blue dots indicate false positives.

As for the specificity of condition-level connectivities, Figure 3.8 shows the comparison be-

tween the truth and posterior mean estimate of Φ1,1 and Φ1,2 given by different methods,

where non-zero posterior mean estimate was forced to zero if the corresponding MPP was
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smaller than the threshold. The results imply that the estimate obtained by the full sin-

gle stage Bayesian method is very close to the truth, and the two-stage approach provided

similar estimation.

(a) True condition 1 (b) Full Bayesian (c) Two-stage

(d) True condition 2 (e) Full Bayesian (f) Two-stage

Figure 3.8: Posterior mean of estimated condition-level VAR matrices.

In addition to comparing estimated connectivity via VAR coefficients, comparisons on esti-

mated PDCs were conducted to evaluate the specificity of proposed methods to the connec-

tivity strength at frequency domain. Figure 3.9 and Figure 3.10 show the true PDCs and

estimated posterior means by two approaches at different condition levels. We can see that

both methods recovered the original PDCs.
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Figure 3.9: Posterior mean of estimated condition-level PDCs at condition 1.
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Figure 3.10: Posterior mean of estimated condition-level PDCs at condition 2.

3.4 Application to effective connectivity in multi-trial

LFPs

In this section, we fit a BH-VAR model to LFP data recorded from multiple trials under two

experimental conditions in a non-spatial sequence memory task [3]. We aim at estimating the

VAR parameters at condition level and the partial directed coherence at several frequency

bands of interest. Our objective is to examine and quantify potential connectivity (i,.e.,
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effective) among electrodes located in hippocampal region CA1. This region is clinically

meaningful as this form of sequence memory shows strong behavioral parallels in rats and

humans [1], and depends on the hippocampus for both species [13, 8], and is impaired in

normal aging [2].

3.4.1 Data analysis

LFPs of Epoch 10 and Epoch 121 can be found in Figure 3.12. We observe that the electrodes

can be categorized into 2 main groups based on their LFP waveforms: a lateral CA1 group

(T2, T9, T8, and T7) and a medial CA1 group (T14, T23, T16, T22, T19 and T20). Note

that, for clarity, the electrodes near the transition point (T15 and T13) are not included in

either group. Tetrodes within the same group have highly similar temporal pattern, because

tetrodes near each other are likely to behave more similarly than those that are far apart.

Note that this division along the mediolateral axis of CA1 is consistent with previous reports

of anatomical and functional gradients along the proximodistal extent of CA1 [26, 39].
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Figure 3.11: Estimated location within the hippocampus (dorsal CA1 region) of the subset
of 12 electrodes (tetrodes) included in the analyses.
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Figure 3.12: LFPs from 12 tetrodes studied in this paper during Epoch 10 and Epoch 121.
These LFPs have temporal patterns that can be separated into two main groups: a lateral
CA1 group (T2, T9, T8, and T7) and a medial CA1 group (T14, T23, T16, T22, T19 and
T20). For clarity, the electrodes near the transition point (T15 and T13) are not included in
either group. Note the difference in LFP waveforms between the two trial conditions (e.g.,
lower beta power on OutSeq trial than InSeq trial).

Preliminary analysis demonstrated that both auto-correlation function (ACF) and partial

auto-correlation function (PACF) of original LFPs across all 247 epochs failed to decay to

zero even after very long lags, which suggested evidence of non-stationarity (or long-memory).

Therefore, it’s necessary to pre-process the data by taking a first order difference. Compared

to the raw LFPs, the ACF of pre-processed data eventually decayed to zero, looking more
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stationary. Consequently a BH-VAR(2) model was fitted to the pre-processed LFP data in

this study, with n1 = 219 epochs in condition 1 and n2 = 28 epochs in condition 2. In

order to overcome the intensive computation issue, the two-stage approach was employed,

where on the first stage LSE was used to estimate the coefficients of VAR(2) for each epoch,

then MCMC was applied to these trial-specific estimates on the second stage to obtain the

posterior samples of condition-level VAR(2) coefficients and PDCs. The posterior mean of

condition-specific VAR(2) coefficients are demonstrated in Figure 3.13.

(a) Estimated Φ1 of “InSeq” condition (b) Estimated Φ2 of “InSeq” condition

(c) Estimated Φ1 of “OutSeq” condition (d) Estimated Φ2 of “OutSeq” condition

Figure 3.13: (a)-(d) demonstrate the posterior mean of estimated VAR matrices of “InSeq”
and “OutSeq” condition. The blank cells indicate estimated zero coefficient.
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Estimated Φ1 and Φ2 in “InSeq” and “OutSeq” condition look similar in terms of VAR

connectivity strength. In the estimated Φ1, the recorded LFPs generally have positive de-

pendence with the signal from themselves at 1 lag before (diagonal entries). Moreover, the

signals from T2, T9, T8 and T7, which belong to the lateral group, have negative lead-effect

on the current signals from medial tetrodes (T14, T23, T16, T22, T19 and T20). Different

lead-lag pattern are observed in estimated Φ2. LFPs generally have negative lead-effect on

the signal from the same tetrode at 2 lags behind, while the lateral group have positive lead-

ing effect on the medial group in the future. In addition, VAR coefficients under “OutSeq”

condition tend to have more zero values compared to “InSeq” condition.

Since we are more interested in the LFP connectivity in frequency domain, the condition-level

PDCs were computed at each MCMC iteration at the following frequency bands: δ band (0-4

Hertz), θ band (4-8 Hertz), α band (8-12 Hertz) and β band (12-32 Hertz). Consequently we

obtain the posterior distribution of PDCs. Figure 3.14 and 3.15 demonstrate the posterior

mean of PDC under “InSeq” and “OutSeq” condition respectively. As we can see, the

variability of PDCs across different frequency bands is very small, so we use the results of

the β band as representative to explain the PDC.

Figure 3.14: Estimated PDC of “InSeq” condition by posterior mean. The variation across
different frequency bands is very small.

In “InSeq” condition, tetrodes in the lateral group are functionally connected to each other,
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and so are tetrodes in the medial group. Over 80% information of tetrodes T9, T7, T15,

T13, T14, T16 and T19 can be explained by their own past while their information flowing to

other tetrodes is very close to 0. Tetrodes T2, T8, T23, T22 and T20 have significant amount

of information flowing to other tetrodes. Particularly, the proportion of current tetrode T23

that is explained by its own past is only about 47.0%, but information flowing to T22 and

T13 is 16.7% and 22.6% respectively. These suggest that T23 was positioned in a region of

CA1 (either in terms of the mediolateral axis or depth relative to the cell layer) in which

the LFP signature has considerable overlap with the rest of medial CA1. Estimated PDCs

from the medial tetrodes (e.g., T14, T23,...,T20) to the lateral tetrodes (T2, T9, T8, T7) are

almost zero (the blank on the upper right of PDC matrix), whereas several non-zero values

are observed in the lateral-to-medial direction (bottom-left quadrant). This suggests that, at

least at the time lags examined (1-3 ms), information flows primarily in a lateral-to-medial

direction in CA1 during InSeq trials.

Figure 3.15: Estimated PDC of “OutSeq” condition by posterior mean. The variation across
different frequency bands is very small.

As for “OutSeq” condition, over 80% information of tetrodes T9, T7, T15, T13, T14 and

T19 can be explained by their own past with little information flowing to other tetrodes.

Tetrodes T2, T8, T23, T16, T22 and T20 tend to pass information to other tetrodes as they

have large amount of information flowing out. For example, only 54.5% of current tetrode

T22 can be explained by its own past, while information flowing to T16 and T23 is 12.9%
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and 19.9% respectively. Notice that T2, T8, T23, T22 and T20 also have high information

outflow in the “InSeq” condition, indicating that the LFP features they capture are not

condition-specific. Similar to what we found in “InSeq” trials, medial-to-lateral estimated

PDCs are almost zero (upper right quadrant) whereas lateral-to-medial estimated PDCs

include several non-zero values (lower left quadrant). This suggests that information also

primarily flows from lateral CA1 to medial CA1 during “OutSeq” trial presentations, though

this effect is a bit stronger than on “InSeq” trials.

Figure 3.16: Estimated mean PDC difference between “InSeq” and “OutSeq” condition
(“InSeq” - “OutSeq”). Significant increase on the auto-PDC of T9, T7 and T22 as well
as decrease on the auto-PDC of T15, T23 and T19 are observed. The lower left quadrant
indicates that leading effect of the lateral tetrodes on the medial tetrodes is a bit stronger
on “OutSeq” trials than “InSeq” trials.
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Figure 3.17: MPP’s of γg,k at “InSeq” and “OutSeq” condition. The gray dash line indicates
threshold corresponding to BFDR=0.05.
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3.4.2 Testing the PDC difference between two conditions

To compare the difference between PDCs from “InSeq” and “OutSeq” conditions, we did

Bayesian inference on H0 : Diffi,j = 0 vs Ha : Diffi,j 6= 0, where Diffi,j = PDCInSeq
i,j −

PDCOutSeq
i,j is the difference of PDC from j-th channel to i-th channel between two conditions.

An estimate of the difference, Diff
(m)
i,j , can be computed at each MCMC iteration m. Thus,

it is possible to obtain the posterior distribution and 95% credible interval of Diffi,j after

burn-in. If the posterior probability of the difference is unimodal and regularly behaved, we

can use the 95% credible intervals as a guide for testing, i.e. we reject the null hypothesis

H0 if the 95% credible interval does not include 0 and conclude that the difference of PDC

from j-th channel to i-th channel between two conditions is significant during the memory

task. A more complete analysis could be conducted in a decision theoretic framework by

thresholding the posterior probabilities of the differences being positive or negative, but we

did not see any relevant difference between the two approaches in this setting. The posterior

mean, 95% credible interval and probability of Diffi,j > 0 are reported in Table 3.2 and

Table 3.3.
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Tetrode Posterior mean 95% Credible Interval Pr(Diffi,i > 0) (%)

T2 0.002 (-0.041,0.040) 46.2

T9 0.082 (0.045,0.123) 100

T8 -0.010 (-0.045,0.027) 29.3

T7 0.070 (0.033,0.101) 100

T15 -0.054 (-0.067,-0.042) 0

T13 0.040 (0.027,0.054) 100

T14 -0.034 (-0.046,-0.021) 0

T23 -0.187 (-0.218,-0.158) 0

T16 0.063 (0.021,0.107) 99.8

T22 0.151 (0.113,0.190) 100

T19 -0.051 (-0.068,-0.033) 0

T20 -0.004 (-0.049,0.043) 42.6

Table 3.2: Difference of auto-PDCs between “InSeq” and “OutSeq”.
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Tetrode → Tetrode Posterior mean 95% Credible Interval Pr(Diffi,j > 0) (%)

T2 → T13 0.010 (0.003,0.015) 99.4

T2 → T19 0.008 (-0.015,0.027) 77.5

T9 → T8 0.009 (-0.007,0.023) 86.8

T9 → T16 -0.016 (-0.027,-0.007) 0.1

T9 → T22 -0.016 (-0.027,-0.008) 0

T8 → T9 -0.028 (-0.046,-0.008) 1.1

T8 → T14 0.007 (0.000,0.012) 97.8

T23 → T13 0.102 (0.081,0.123) 100

T23 → T22 0.067 (0.049,0.085) 100

T16 → T19 -0.024 (-0.049,-0.003) 1.5

T22 → T23 -0.089 (-0.121,-0.058) 0

T20 → T15 -0.002 (-0.013,0.007) 35.5

Table 3.3: Difference of some cross-PDCs between “InSeq” and “OutSeq”.

Based on the results, we find that there is significant difference in auto-PDCs of tetrode T9,

T7, T15, T13, T14, T23, T16, T22 and T19 between two conditions. This suggests that the

proportion of current oscillatory activity of these tetrodes that can be explained by their

own past activity is influenced by trial conditions (i.e., whether odors were presented InSeq

or OutSeq). Interestingly, these tetrodes were primarily located in medial CA1, perhaps in-

dicating this distinction is linked to their stronger high-frequency oscillations. However, the

proportion of tetrodes showing stronger modulation to InSeq or OutSeq trials was compara-

ble (4/8 tetrodes in each case) and did not exhibit a clear relationship with tetrode position.

In addition, significant differences are detected in some cross-PDCs between “InSeq” and

“OutSeq” (e.g., T2 to T13, T23 to T13, T23 to T22), which are evidences that the informa-

tion flowing from these tetrode locations to others is also influenced by the InSeq/OutSeq

condition of the presented odor. Interestingly, the modulation was stronger on InSeq than
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OutSeq trials (4/5 tetrodes), primarily involved electrodes in medial CA1 (T22, T19, T23,

T14) or the transition zone (T13, T15), and included both directions along the mediolateral

axis. Figure 3.18 and Figure 3.19 demonstrate the posterior densities of all auto-PDC dif-

ferences and some cross-PDC differences, where red line indicates the posterior mean and

purple dashed lines indicate the bound of 95% credible interval.
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Figure 3.18: Posterior density of auto-PDC differences between “InSeq” and “OutSeq”.
Red line indicates the posterior mean, while purple dashed lines indicate the bound of 95%
credible interval. The gray dashed line is the reference at 0.
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Figure 3.19: Posterior density of some cross-PDC differences between “InSeq” and “OutSeq”.
Red line indicates the posterior mean, while purple dashed lines indicate the bound of 95%
credible interval. The gray dashed line is the reference at 0.

3.5 Conclusion

We extended traditional Bayesian hierarchical vector autoregressive models in this chapter

and applied it to LFP data. This framework incorporates within-conditions correlation with

between-conditions variation without introducing any additional uncertainty, which over-

comes the deficiency of commonly used two-stage approach. In addition, we successfully

characterized both trial- and condition-level hippocampal connectivity simultaneously with
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this approach and made natural inference on the difference of condition-level connectivity

across experimental conditions via MCMC samplers. Partial directed coherence was adopt-

ed to measure the directional connectivity between the channels at condition level. It gives

an indication on the extent to which present frequency-specific oscillatory activity from a

sender channel explains future oscillatory activity in a specific receiver channel relative to

all channels in the hippocampal region. The proposed modeling approach provided novel

insights into potential evolution of hippocampal connectivity during performance of a com-

plex sequence memory task. Specifically, these results allowed us to separate CA1 into two

functional units, a lateral and a medial segment, each showing stronger functional connec-

tivity to itself than to the other. This approach also revealed that information primarily

flowed in a lateral-to-medial direction across trials (within-condition), and suggested this ef-

fect was stronger on OutSeq than InSeq trials (between-conditions effect). Collectively, these

results indicate that the proposed model is a promising approach to quantify the evolution

of functional connectivity, both within- and between-conditions, and thus should have broad

applications in neuroscience research
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Chapter 4

Conclusion

4.1 Summary

Hippocampal connectivity in single-trial LFPs was characterized by vector autoregressive

models in Chapter 2. The proposed hybrid LASSLE (LASSO+LSE) method takes advan-

tage of both regularization (to control for sparsity) and least squares estimation (to improve

bias and mean-squared error). This novel estimating method successfully (1.) identified

the connectivity structure between channels in the hippocampus and (2.) quantified both

the strength and directionality of connectivity between these channels. Partial directed co-

herence, a frequency-specific measure, was employed to measure the effective hippocampal

connectivity. It explains the extent to which the present oscillatory activity in a sender hip-

pocampal channel influences the future oscillatory activity in a specific receiver hippocampal

channel relative to all possible receivers in the network. In addition, bootstrap-based infer-

ence approach was developed to obtain the variation of estimated trial-specific connectivity.

In Chapter 3, I further developed the modeling approach for single trial LFPs and extended

it to Bayesian hierarchical vector autoregressive models for multi-trial LFPs. The adjusted
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Bayesian framework allows us to incorporate within-conditions connectivity similarity with

between-conditions connectivity heterogeneity in modeling as well as provide a natural way

to conduct trial- and condition-level inference on effective connectivity simultaneously. This

proposed approach provided insights into the alteration of hippocampal connectivity across

different experimental conditions.

4.2 Limitations and future work

There are still some limitations with this study. First of all, like all other parametric ap-

proaches the robustness of fitted VAR models concerns us. Further simulation study should

be conducted when the true model is not VAR(d) but something else, like state-space models

or mixture of autoregressive models. Given that PDC is a measure of effective connectivity

specifically for vector autoregressive models, it is not valid to test the robustness here. There-

fore other model-free connectivity measures (e.g., coherence) should be involved to measure

the connectivity characterized by different models and make the performance comparison.

We will gain more confidence to apply VAR models in the future study of brain signals if its

robustness is confirmed in the simulation.

Another limitation is how to guarantee the stationarity of estimated VAR parameters to

satisfy the VAR model assumption. A VAR(d) model is stationary if

det(I − Φ1z − Φ2z
2 − ...− Φdz

d) 6= 0, for|z| ≤ 1 (4.2.1)

where {Φ`}d`=1 are VAR coefficient matrices in Equation (1.2.1) [32]. This result gives theo-

retical constraints on the parameters, however, it is not easy to implement for the estimates

in practice. A “single-unit-root” prior was suggested in [47] to ensure there is either at

least one explosive common unit root in the system or the VAR model is stationary [35].
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One future direction could be further developing this prior and applying it to ensure the

stationarity of BH-VAR model.

Lastly, the computation of full Bayesian approach in the study of multi-trial LFPs is very

heavy at this point: 16 hours for n = 50 trials with P = 12 channels. Most of the computation

burden comes from the realization of “spike-and-slab” priors. A possible solution to this could

be Variational Bayesian methods which use variational posteriors to approximate the true

posterior distribution analytically [38, 7, 52].
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Appendix A

MCMC Algorithm

1. Update β
(s)
g for all s such that ηs = g from β

(s)
g ∼ N(µ

(s)
β , v

(s)
β ), with

µ
(s)
β = [Σ−1 ⊗ (X′(s)X(s)) + Ξ−1

g ]−1[(Σ−1 ⊗ X′(s))y(s) + Ξ−1
g ϕg],

v
(s)
β = [Σ−1 ⊗ (X′(s)X(s)) + Ξ−1

g ]−1

2. Jointly update (γg, ϕg) using a joint Metropolis-Hastings step

min{1, p(γ
∗
g ,ϕ

∗
g |{β

(s)
g }s:ηs=g ,Ξg)

p(γg ,ϕg |{β(s)
g }s:ηs=g ,Ξg)

} = min{1,
∏
s:ηs=g

p(β
(s)
g |ϕ∗

g ,Ξg)
[∏dP2

k=1 p(ϕ
∗
g,k|γ

∗
g,k)
][∏dP2

k=1 p(γ
∗
g,k)
]

∏
s:ηs=g

p(β
(s)
g |ϕg ,Ξg)

[∏dP2

k=1 p(ϕg,k|γg,k
][∏dP2

k=1 p(γg,k)
] }

3. Update c1
g from c1

g ∼ IG(χ1
g, ψ

1
g), with

χ1
g = 1

2
ngn(γg) + a1

g

ψ1
g = 1

2

∑
s:ηs=g

(β
(s)
g(γg) − ϕg(γg))

T (β
(s)
g(γg) − ϕg(γg)) + b1

g

where ng is the number of trials in condition g, n(γg) is the number of non-zero values

of γg, β
(s)
g(γg) and ϕg(γg) are the values corresponding to non-zero values of γg.

4. Update c0
g from c0

g ∼ IG(χ0
g, ψ

0
g), with

χ0
g = 1

2
ngn(γCg ) + a0

g

ψ0
g = 1

2

∑
s:ηs=g

(β
(s)

g(γCg )
− ϕg(γCg ))

T (β
(s)

g(γCg )
− ϕg(γCg )) + b0

g

where n(γCg ) is the number of zero values of γg, β
(s)

g(γCg )
and ϕg(γCg ) are the values corre-

sponding to zero values of γg.
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5. Update pg from pg ∼ Beta(n(γg) + α1
g, dP

2 − n(γg) + α2
g)

6. Update ξj, j = 1, 2, ..., P from ξj ∼ IG(d1, d2)
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