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Monte Carlo simulation studies of optical coherence tomography (OCT)
and optical Doppler tomography (ODT)

Tore Lindmo®®, Derek J. Smithies’, Zhongping Chen®, J. Stuart Nelson®, and Thomas E. Milner®

“Dept. of Physics, Norwegian University of Science and Technology, N-7034 Trondheim, Norway'
*Beckman Laser Institute and Medical Clinic, University of California, Irvine, CA 92612

ABSTRACT

A Monte Carlo simulation model has been developed to study how OCT and ODT imaging results are influenced by
multiple scattering effects.

For shallow optical depths (< 3 mean free path (mfp) units) in intralipid (g=0.7), the number of detected backscattered
photons was found to follow the extinction-single-backscatter model, and accurate mean values and small standard
deviations for axial and lateral point spread functions were observed. For deeper depths, the positional accuracy and
precision of backscatter was rapidly lost, and the number of detected photons no longer decreased with increasing focus
depth in the nonabsorbing medium.

For strongly forward-directed scattering in blood (g=0.99), depth profiles of the number of detected backscattered photons
only approached the extinction-single-backscatter model for very shallow depths (optical depth < 2 mfp units, metric depth
< 13 pm). However, quite accurate and precise point spread functions were observed even for large optical depths (40 mfp
units).

Doppler detection of blood flow was studied by simulating a 100 pm diameter horizontal blood vessel placed 200 um
below the surface in 2 % intralipid. Simulated depth profiles of average Doppler frequency demonstrated good accuracy in
absolute velocity values and localization of flow boundaries (3-4 % deviation). Doppler frequency noise was observed in
backscattering from regions underneath the vessel.

Keywords: Low coherence reflectometry, Doppler velocimetry, biomedical imaging, blood, intralipid

1. INTRODUCTION

Signal attenuation and loss of resolution due to multiple scattering severely limit the depth penetration of OCT, and make it
difficult to image deep into strongly scattering biological tissues. Mathematical models have been developed in an attempt
to increase the understanding of the OCT imaging process and thereby possibly enable development of better imaging
instrumentation and data processing procedures. The extinction-single-backscatter model represents the OCT imaging
process as an incoming beam which is continuously attenuated according to the total extinction coefficient of the
propagation medium'-. After a single backscattering event, light is backpropagated with continuous attenuation towards the
detector. Attempts have been made to include multiple scattering effects into such analytical models®, but meaningful

'Further author information:
T.L. (correspondence): Email: tore.lindmo@phys.ntnu.no; Telephone +47 7359 3432; Telefax: +47 7359 8684

SPIE Vol. 3251 e 0277-786X/98/$10.00



comparison with experiment remains difficult since only simple geometries can be considered. For modeling of more
realistic geometries, Monte Carlo simulation represents the only feasible alternative.

Monte Carlo modeling is also a suitable approach for studying the effects of multiple scattering on Doppler flow
measurements implemented in low coherence reflectometry. This experimental technique is known as optical Doppler
tomography and has yielded surprisingly good results™'?, considering that multiple scattering effects are bound to influence
the measurement even from the smallest blood vessels, since the scattering mean free path in blood is only about 7 um. It is
not difficult to construct examples from nonuniform velocity fields such as the parabolic velocity field for laminar flow in
cylindrical vessels, where the total Doppler shift reported by a photon that undergoes two scattering events, will be very
different from the exact value reported from a single backscattering event. Furthermore, the apparent backscatter location
which will be ascribed to the detected photon, will be different from either of the two scattering locations.

In the present report we show some of the results obtained by a Monte Carlo model developed to study both OCT and
ODT'™ . Full 3D stochastic simulation was implemented in the medium. The OCT detector was modeled with low
coherence interferometric path length gating and confocal selectivity determined by the antenna theorem for a heterodyne
receiver, which limits the effective size of the OCT detector to twice the diameter of an ideal confocal detector™ '*. This
represents nearly full confocality, and OCT has been said to perform as a confocal microscope with an additional narrow
time gate (~50 fs) to further increase the selectivity of photon detection®. Output data from the Monte Carlo simulation were
the number of detected photons, as well as their accumulated path lengths and Doppler shifts. Also included were complete
records of spatial locations for all scattering interactions which allow calculation of point spread functions for
backscattering localization relative to the nominal focus position of the probe. With this model we can study how
instrumentation parameters and properties of the flowing medium and its surroundings might influence the positional
accuracy of OCT and ODT measurements and the accuracy of Doppler velocity determinations.

2. MATERIALS AND METHODS

2.1 Probe geometry

A geometric model of the combined emission and detection probe of a
fiberoptic OCT/ODT instrument is shown in Figure 1. The probe is
pointed at an incidence angle of a (typically 15°) since we want to
simulate Doppler measurements of blood flow in a horizontal tube
immersed at an axial depth of zg in a scattering medium. The probe is
aimed in the direction of point P on the z-axis, but due to refraction at the
surface of the medium, the focus point is shifted to point P’ at depth z*
where z=kz. The constant k is determined by using Snell’s law for the
refraction of light propagating into a medium of relative index of
refraction n (=1.37). The probe has a numerical aperture NA=sin6,
defined by the divergence of the light from the fiber core F and the
focusing lens L. The surfaces S; and S> define the spherical wavefronts of
the beam diverging from the fiber tip and being focused by the lens L to
converge towards point P (in air). Simulated photons are launched from
the probe in such a way that the numerical aperture is filled with a
Gaussian intensity profile. The probe acts as a confocal detector, since the
antenna theorem for a heterodyne receiver limits the effective size of an
interferometric receiver to twice the diameter of a confocal detector™ 'S, Figure 1. Geometry of probe and medium.

This feature is implemented through the confocality angle 6. Photons that

are backscattered from the medium therefore have to meet three criteria to be detected: (1) intersect the surface S defined
by the numerical aperture and distance from point P, (2) deviate from normal incidence on S> by less than the confocality
angle &, and (3) have a total optical path length that deviates by less than the source coherence length L., from the nominal
pathlength for a photon launched from S, and scattered from P’ back to S in a single (back)scattering event.
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2.2 Optical parameters of media studied

Intralipid was chosen as a model medium that could easily be used experimentally to verify predictions resulting from the
Monte Carlo study. Both intralipid and blood were modeled as homogeneous media, each characterised by three optical
parameters, i.e. the absorption coefficient 4, the scattering coefficient 4, and the anisotropy parameter g. Based on limited
available literature data for /=850 nm, the following values were chosen' ' for 1 % intralipid: 1,=0, 14=2.0 mm™, g=0.7;
and for blood: £;=0.75 mm™ , =150 mm™, g=0.99.

2.3 Generating photon histories

Based on a chosen orientation and numerical aperture of the input probe (usually N4=0.2), a set of photon histories was
simulated for each focus position of the probe. Each photon launched from the probe was propagated into and within the
medium while keeping account of its accumulating pathlength in medium-equivalent physical distance units. Within the
medium, the length of each path segment was determined by stochastically sampling the path-length distribution according
to the method of Buslenko et al'® as described previously'’. At each scattering interaction with the medium, the scattering
angle was determined by stochastically sampling the Henyey-Greenstein phase function'® '°. For each scattering interaction,
the position of the scattering event was recorded, and the accumulated path-length was incremented by the length of the
latest path segment. At each scattering interaction with the moving medium in the vessel the resulting Doppler shift was
determined as:

A=(ES—E,-)'V (1)

where k; and k_ are the incoming and scattered wave vectors for this particular interaction, respectively, and V is the
velocity of the medium at the position of the interaction.

For the generation of photon histories, maximum values for detection parameters such as numerical aperture (NA), source
coherence length (L.) and confocality angle () were pre-set by the user. This made it possible to define for each depth

position a minimum and maximum path length for backscattered photons that may be detected. Propagation of any photon
was terminated and its history discarded as soon as it could not make it back to the surface S without exceeding the
maximum path-length for the depth in question.

Backscattered photons that emerged through the surface of the medium were refracted and propagated to see if they hit the
surface S, defined by the maximum numerical aperture of the detector. The incidence angle of the photon at S, was tested

to see if it was within the maximum confocality angle J,,,,. Path histories were written to disk file for each photon that
satisfied the set of maximum values set for the detection parameters N4, L. and J. Each history included (x,y,z’)-positions

and possible Doppler shift for all scattering events, spatial and angular coordinates of the photon's intersection with the
detector surface S, , and the accumulated Doppler shift as well as the accumulated path length. The accumulated Doppler

shift from all #; scattering interactions in the medium was defined as the Doppler frequency, wp, of the detected photon:
n
a)Dstj=ZAk @
k=1

2.4 Analyzing photon histories

The data processing program was implemented with the AVS image analysis software (Advanced Visualisation System,
Waltham, MA) in the form of a number of specially-developed AVS modules that integrate into the total AVS software
package and utilise standard AVS modules for data processing and graphic presentation.



Special-purpose modules were written to:

— read photon histories from disk file for a specified subset, or all, of the focus positions simulated in a specified run of the
photon histories generator.

— determine which of the read photons satisfy the present detection criteria, based on interactively specified values for the
detection parameters N4, L, and &.

— count the number of photons detected for each (x,z") position in a scan series.

— generate a histogram of the number of scattering events for photons detected for the specified focus position (x,z").

— display graphically the ensemble of individual path segments for the detected photons from one (x,z") focus position of
the probe. This module utilises other standard AVS graphics modules that allow scaling and rotation of the 3D output
graph.

— display for all detected photons from a certain focus position (x,z"), all the interaction points that the photons have had in
the medium. Alternatively, the module displays only the interaction point at maximum depth for each individual photon.
These are the points of backscattering, and this output is defined as the point spread function. The geometry can be viewed
as an xz-image with the data collapsed along the y-axis, or as a yz"-image with the data collapsed along the x-axis. For each
of these two images, a collapsed one-dimensional distribution corresponding to the axial (zPSF ) or lateral point spread
function (xPSF or yPSF, respectively) can be generated.

— generate the Doppler frequency distribution, which for a specified position (x,z" ), shows a histogram of the Doppler
frequencies wy, for the photons detected at that position.

— calculate the average Doppler frequency for photons detected at various (x,z' )-positions in a z*-scan. The average is
computed as:

1]

@, =0y = wp,

)j 3)

1 n;
R j=1
where #; is the number of photons detected for each position (x,z").

3. RESULTS
3.1. Signal attenuation and localization

Attenuation and localization of signal was studied by aiming the probe into the homogeneous intralipid or blood medium,
i.e. with the blood vessel shown in Figure 1 removed. The probe was aimed at an incidence angle of 15° in order to
correspond to situations where Doppler shifts also would be determined.

Figure 2 shows intensity profiles as a function of focus depth in intralipid and blood. Also shown are curves determined by
the extinction-single-backscatter model, i.e. according to the equation: exp(-2uz 7cos15 9 (broken lines) wherep=pa+ s is
the total attenuation coefficient. For intralipid the simulated data are well represented by the extinction-single-backscatter
model down to an optical depth of about 3 mean free path (mfp) units (i.e. zz’=3), but for greater depths, the number of
detected photons levels off and shows essentially no further decrease with increasing depth in the nonabsorbing medium.

The transition between the region where the data are well represented by the extinction model and the region of constant
backscatter intensity for greater depths, was found to depend strongly on the confocality angle 6. As 6 was decreased, the
data followed the extinction model to increasingly larger depths (results not shown). A smaller value of ¢ represents a
higher selectivity in photon detection, in that photons in order to be detected must have a direction that deviates less than
the limiting value § from the ideal normal to the spherical wavefronts S, and S; at the lens of the probe (Fig. 1). Setting a
smaller confocality angle & therefore causes only minimally scattered photons to be detected. Such photons have followed
tracks that deviate only minimally from the track of a photon experiencing only a single (back)scattering event at the
nominal focus depth. Thus, minimally scattered photons have suffered only small changes of direction and/or have only

short path segments that deviate significantly from the straight track represented by a single (back)scattering event at the
nominal focus depth.
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Figure 2. Relative number of photons detected from intralipid and blood as a function of optical depth (ugz’) in mfp units.
Detection parameters were Lo=50 um, NA=0.4, &1° . The straight, broken lines represent the extinction model
exp(-2uz /cos15 9 for signal attenuation in intralipid and blood, respectively.

The increasingly more selective detection of only minimally scattered photons that was achieved by decreasing the
confocality angle &, caused a corresponding decrease in the number of diffuse photons detected from depths beyond the
valid range of the extinction model. Due to run time limitations, it was not possible to simulate a detector having the full
selectivity of an ideal heterodyne receiver, which would correspond to confocality of 26=0.05° for a NA=0.2 detector with a
3 mm working distance.

Other detection parameters such as the numerical aperture (NVA4) of the detector and the coherence length of the light source
(L) also influenced the number of detected photons, but only in a way that shifted curves like those in Figure 2 along the
ordinate axis, i.e. only changed the number of detected photons by the same factor for all optical depths. Data such as those
in Figure 2 were therefore generated using the maximum values of N4=0.4 and L.=50 pm in order to have the highest
possible number of detected photons.

The simulated data for blood show a decrease in detected photons with increasing depth that is not at all well represented by
the extinction-single-backscatter model, not even for very shallow depths. Decreasing the confocality angle & also in this
case increased the initial steepness of the curve (results not shown) but not to the extent that the initial slope came close to
that of the extinction model. Thus, for the very strongly forward-directed scattering in blood (g=0.99), the selectivity of
detection could not be increased by decreasing & to the extent that only minimally scattered photons were detected.
Consequently, it was not possible for blood to distinguish between detection of minimally scattered photons at low optical
depths and detection of diffusely scattered photons at greater optical depths.

Figure 3 shows individual tracks of detected backscattered photons from intralipid and blood for various optical depths. In
intralipid, panel A shows well-localised backscattering from the focus position at an optical depth of 3 mfp units (300 um in
5 % intralipid, corresponding to reduced optical depth of 0.9), even if a few of the detected photons reveal tracks that
deviate considerably from the path of single-(back)scattering events. As the depth in intralipid is increased to 7 mfp units
(panel C, 700 um in 5 % intralipid, corresponding to reduced optical depth of 2.1), all detected photons have very jagged



tracks. Backscattering events now take place at widely spread locations that in no way represent the localization of the
nominal focus position (which is at the lower end of the vertical axis shown in panel C).

Figure 3. Simulated photon tracks projected into the yz'-plane for photons detected from various depths in intralipid and
blood. Detection parameters were Lg=50 pm, NA=0.4, 5=0.5°: Optical depths in intralipid for panels A and C

were 3 and 7 mfp units, respectively, in blood for panels B and D, 22.5 and 105 mfp units, respectively. Where
visible (C, D), the lower end of the z-axis indicates the nominal focus position.

The highly forward-directed scattering in blood (g=0.99) preserves directionality of the photon beam through multiple
scattering events. Panel B represents an optical depth of 22.5 (150 pm depth in blood, corresponding to reduced optical
depth of 0.2) and shows localization of backscattering that is nearly as good as for an optical depth of 3 in intralipid (panel

A). At an optical depth of 105 (panel D), corresponding to a reduced optical depth of 1.0, localization of backscatter signal
is about to be completely lost.

For data such as those shown in Figure 3, point spread functions (PSFs) were generated that show the distribution of
backscattering positions for detected photons in either of the three coordinate directions. The graphs in Figure 4 represent
mean values of zPSF and yPSF as a function of optical depth in intralipid and blood. Also shown is the expected mean
value of zPSF (broken line) if backscattering always took place at the nominal focus point P (Fig. 1).
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In intralipid, localization of backscatter is only preserved down to an optical depth of about 3 mfp units, corresponding to
the detection of only minimally scattered photons, as explained for Figure 2. At deeper focus depths in intralipid photons
are backscattered from considerably more shallow depths than the nominal focus position. This is evidently because
multiple scattering results in very jagged tracks in intralipid. Since only photons with the nominally correct accumulated
path length are accepted, detected photons have not penetrated to the full focus depth.
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Figure 4. Mean position values for point spread functions zPSF (circles) and yPSF (triangles) for backscattering from
intralipid and blood. Detection parameters were L=50 um and Lc=14 pm for intralipid and blood, respectively,
with NA=0.4, 5=2° for both media. The broken straight line represents the nominal focus depth position for zPSF.
Error bars show + 1 standard deviation of the PSF-distributions. For clarity, error bars are indicated as one-sided
deviations for yPSF in intralipid.

Error bars in Figure 4 represent 1 standard deviation of the distributions of backscatter locations. The relative standard
deviation (i.e. precision) of the zPSF increases rapidly when diffusely scattered photons start to be detected at optical depths
exceeding 3 mfp units. For optical depths of 20 mfp units, the standard deviation of detected backscatter position has
increased to about 30% of the mean depth of actual backscatter positions. The mean backscatter position along the y-
direction (see Fig. 1) is zero as long as only minimally scattered photons are detected, but assumes a gradually more
positive value for greater depths. This is due to the oblique angle of incidence of the probe. Thus, photons interacting with
the medium in the region corresponding to positive y-coordinates, have a larger probability of being detected than photons
scattered into the half-space corresponding to negative y-coordinates. The standard deviations of the yPSF are about 50 %
larger than the corresponding standard deviation for zPSF. A reasonable explanation for this is that the gating on total
pathlength to be within +L./2 of the nominal path for the chosen focus depth, limits the range of z-positions of
backscattering events more efficiently than it limits the spread of lateral positions.

The mean of the xPSF remained at zero for all focus depths, as expected for symmetry reasons, and the standard deviations
of xPSF and yPSF were comparable (results not shown).

In contrast to intralipid, backscattering positions in blood were well localised to the nominal focus position even for optical
depths greater than 35 mfp units. The detected backscattering depth was only about 3 % shorter than the nominal depth and
had standard deviations of about 3 % at a depth of 35 mfp units.



3.2 Simulation of Doppler flow measurements

Doppler flow detection was modeled according to the geometry shown in Figure 1, i.e. a 100 um diameter horizontal,
cylindrical vessel was placed at an axial depth of 250 um in 2 % intralipid. This corresponds to an optical depth of 0.8 mfp
units at the top of the vessel, and an additional depth of 15 mfp units through the blood vessel.
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Figure 5. Average Doppler frequency for photons detected as a function of depth through and underneath the blood vessel
modeled as shown in Figure 1. Data are shown for probe incidence angles of 15° and 25°. The broken curve
shows the theoretically expected Doppler frequencies determined from the specified parabolic velocity profile.
Detection parameters were Lg=14 um, NA=0.4, 5=1°.

Figure 5 shows average Doppler frequencies according to eq. 3 for photons detected as the focus of the probe was moved
along the z-axis from a nominal depth of 190 um through 390 um. The velocity distribution in the vessel was taken to be
the parabolic profile for laminar flow in a cylindrical tube, with a maximum velocity of 2 mm/s. The broken curve in each
panel shows the Doppler frequency distribution expected from the specified parabolic velocity profile. According to eq. 1

the detected Doppler frequency for a backscattering event where Ak = ES - Ei = -—2E, is proportional to cos(90°-q),

and therefore increases as the incidence angle of the probe is increased. The average Doppler frequency profiles shown in
Figure 5 closely followed the expected parabolic profile and demonstrated the expected increase with increasing incidence
angle of the probe.

Photons backscattered from (static) intralipid underneath the vessel showed random noise Doppler frequencies. Both
positive and negative values were found, and the noise level seemed to be about the same for the two different incidence
angles.

Figure 6 shows standard deviations of Doppler frequency distributions determined for photons detected from various depths
through and under the vessel. Values are shown for two different numerical apertures of the detector. The noise level from
underneath the vessel is of the order of 400 to 600 Hz and seems to be essentially independent of incidence angle. The noise
values furthermore seem to be the same for the two different numerical apertures of the detector, even if values for the
lower numerical aperture show larger random fluctuations due to fewer photons detected.
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Standard deviations determined from the flow region seemed to follow the parabolic velocity profile and were significantly
larger for larger numerical apertures of the detector (circles versus triangles, Fig. 6). The latter finding can be explained by
reference to Figure 1, where it will be seen that the Doppler shift resulting from a backscattering event at the focus position
will vary between 2kv-cos(90°-a—6) and 2kv-cos(90°-a+6), i.e. show larger variation for the larger & corresponding to
higher numerical aperture. Interestingly, the standard deviation of Doppler noise from underneath the vessel is larger than
the standard deviation of Doppler frequencies detected from the flow region.
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Figure 6. Standard deviations of Doppler frequency distributions for photons detected as a function of depth through and
underneath the blood vessel for NA=0.2 (triangles) and NA=0.4 (circles). Other parameters as for Figure 5.

4. DISCUSSION

The present study was based on modeling of homogeneous media characterised only by absorption and scattering
coefficients in addition to the anisotropy parameter which defines the degree of forward-directed scattering. Monte Carlo
simulation of photon propagation and Doppler effects within the medium were implemented in a similar way as used for
studies of laser Doppler flowmetry?*?. This was combined with a geometrical optics model of the probe and interferometric
detection which takes into consideration the antenna theorem of a heterodyne receiver” '*. The interferometric gating on
path length and the high degree of confocality inherent in the heterodyne receiver constitute a highly selective detector in
terms of accepting only photons backscattered from the focus region of the probe.

Our simulation results (Fig. 2) show that for a moderately anisotropic medium such as intralipid (g=0.7), the highly
selective confocal-like detection inherent in OCT measurements causes only minimally scattered photons to be detected
from depths down to several scattering mean free paths. Within this region of minimal scattering, the detected intensity
follows the simple extinction model exp(-244z7cosa). Minimally scattered photons have fewer than average number of
scattering events for the optical depth in question, have more forward-directed scattering than average, and have only short
path segments that may deviate significantly from the nominal single backscattering paths. Minimally backscattered
photons represent signals well-localised to the nominal focus position of the probe, resulting in narrow point spread
functions with accurate mean position values. However, beyond the region of minimal scattering, detected photon intensity



no longer follows the extinction model, but rather represents a constant level of diffuse photons. In this region of stray
scattering the backscatter positions of detected photons no longer relate to the nominal focus position of the probe.

The highly forward-directed scattering in blood combined with the difficulty in studying very high confocality due to low
photon yield, make it difficult to identify a region of minimal scattering in blood where detected intensity is governed by
the extinction model. However, the highly forward-directed scattering in blood preserves localization of backscatter signal
to the nominal focus position even for great optical depths. Since directionality is preserved in spite of multiple scattering,
the depth resolution may be improved by a short source coherence length, and accurate position localization is obtained
down to considerable optical depth (Fig. 3, 4).

Loss of directionality in photon propagation is more related to the reduced optical depth x5z (1-g) than to the optical depth
per se. An arbitrarily chosen criterion of a 10 % relative standard deviation (CV) in the depth point spread function was
found to correspond to reduced optical depths of 0.9 and 0.6 units of reduced scattering mean free paths in intralipid and
blood, respectively (results not shown). This indicates that loss of depth resolution essentially occurs at a reduced optical
depth of 1 mfp unit. The optical depths corresponding to 1 unit reduced optical depth are, however, widely different for
intralipid and blood, i.e. 3.3 for intralipid corresponding to 0.8 mm depth in 2 % intralipid, and 100 in blood corresponding
to 0.7 mm depth.

Other groups have reported® that the initial slope of signal intensity depth profiles was determined by the extinction model,
and that for larger optical depths, multiple scattering effects would cause a depth dependence governed by the reduced
optical depth, rather than the optical depth. While the former result is in agreement with our finding, the nearly constant
intensity level for large optical depths in intralipid (Fig. 2, left panel) differs significantly from an exponential decay
governed by the reduced optical depth.

In accordance with the good localization of backscatter signal in blood even from large optical depths, estimation of
Doppler frequencies from the region of blood flow showed good localization to the actual position of the vessel (Fig. 5). A
significant finding of the present work is that the average Doppler frequency for photons detected from a particular focus
position was determined with an accuracy of only 3 to 4 % deviation from the mathematically expected Doppler frequency.
This is remarkable, considering the fact that spectra of observed Doppler frequencies were quite broad, with standard
deviations typically exceeding 300 Hz, compared to the nominal Doppler frequencies of 1210 and 1980 Hz on the flow axis
for 15 and 25°, respectively. Apparently, the averaging of Doppler frequencies over many photons for each focus position
represents such a robust estimation procedure that the resulting mean value quite accurately approximates the true
frequency.

The Doppler frequency noise detected from underneath the vessel (Fig. 5) is due to the series of random Doppler shifts
experienced as the photon passes through the blood flow region before and after being backscattered from static intralipid
underneath the vessel. The resulting accumulated Doppler frequency for each detected photon has an expected value of
zero, but a stochastic variation characterised by the standard deviation of the frequency distribution.

The Doppler noise level from underneath the vessel was found to be essentially independent of the incidence angle of the
probe (Fig. 6), even if a larger incidence angle corresponds to higher average Doppler frequencies detected from the flow
region. Furthermore, the standard deviations of Doppler noise spectra from underneath the vessel were generally greater
than the standard deviations of Doppler frequencies detected from the region of blood flow (Fig. 6). This may seem
surprising since the variance of the detected Doppler frequency may be expressed as a sum (over scattering locations) of
contributions from individual scattering events along the paths of individual photons. Furthermore, the difference between
photons backscattered from flowing blood and those backscattered from underneath the blood vessel is essentially that the
latter carry no contribution to the Doppler frequency variance from the backscattering event. The reason for the smaller
standard deviations of Doppler spectra from blood than from underneath the vessel must therefore be that the incoming and
outgoing photon paths are more closely correlated for backscattering from blood, leading to Doppler shifts from individual

scattering events that more exactly cancel each other and generate less variance when backscattering takes place within the
vessel.
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The conclusion from our investigations of Doppler noise is that the most precise detection of Doppler signal from a flow
region relative to Doppler noise from underneath the flow region, will be achieved by a low NA detector aimed at a
relatively large angle of incidence. Other effects, such as insufficient signal due to low numerical aperture, might, however,
compromise this conclusion.

The present study was based on very simple modeling of the scattering properties of turbid media and does not consider
inhomogeneities in refractive index or spatial correlations in the medium. Furthermore, due to computer run time
limitations, simulation of full confocality of the detector was not feasible. Nevertheless, our results demonstrate the
usefulness of Monte Carlo modeling for increasing the understanding of OCT and ODT, and indicate several effects from
varying instrumentation parameters or medium properties on observations made by OCT and ODT. These effects are
suitable for experimental verification.
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