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ABSTRACT OF THE THESIS 

A Tissue- and Species-Specific Meta-Analysis of Transcriptomic Effects of Endocrine 

Disrupting Chemicals and Association with Cardiometabolic Disorders 

by 

Zacary Orrantia Zamora 

Master of Science in Physiological Science 

University of California, Los Angeles, 2021 

Professor Xia Yang, Chair 

Cardiometabolic disorders such as metabolic syndrome, obesity, diabetes, cardiovascular 

disease, and non-alcoholic fatty liver disease are growing public health problems across the 

world. Among known cardiometabolic risk factors are obesogens such as endocrine disrupting 

chemicals (EDCs), exogenous chemical compounds that induce endocrine and metabolic 

dysfunctions. To date, the species- and tissue-specific influence of EDCs on molecular programs 

and cardiometabolic risks has not been fully elucidated. We performed a comprehensive data-

driven transcriptome-wide analysis of 44 publicly available datasets for 4 EDCs, namely 

Bisphenol(BPA), Bis(2-ethylhexyl) phthalate (DEHP), Tributyltin (TBT), and Perfluorooctanoic 

acid (PFOA), to elucidate the perturbation in genes and pathways induced by these chemicals in 

a species- and tissue-specific manner. Our study identified various metabolic pathways including 

lipid metabolism, cholesterol biosynthesis and fatty acid metabolism to be up-regulated across all 

chemicals and species, whereas down-regulated pathways were largely species- and tissue-

specific, including immune response, cell cycle, and metabolism terms. Taken together, the 

genes and pathways identified highlight differential responses of the transcriptome between 
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tissue and species and help infer the mechanisms underlying the connections between EDCs and 

cardiometabolic diseases. 
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Introduction 

Cardiometabolic diseases (CMDs) such as metabolic syndrome, obesity, diabetes, cardiovascular 

disease, and non-alcoholic fatty liver disease, contribute to a fast-growing health epidemic 

worldwide, imposing high mortality and morbidity (Hurt et al., 2012). CMDs are characterized 

by a myriad of interrelated conditions such as hypertension, hyperlipidemia, high blood sugar 

levels, insulin resistance, increased adiposity, and elevated triglycerides (Merianos et al., 2020; 

Cannon, 2012). Since 2000, cardiovascular diseases and diabetes have been among the top 10 

leading causes of death worldwide and their prevalence continues to grow (World Health 

Organization, 2020). Cardiovascular disease, a blanket term for various heart-related diseases 

such as coronary heart disease, cerebrovascular disease, etc., have accounted for approximately 

18 million deaths in 2016, or about 31% of the global total for that year (Stewart et al., 2017). In 

addition, diabetes, a disease characterized by dysregulation of blood glucose levels, has more 

than doubled in prevalence around the world since the 1980’s and affects more than 8.5% of the 

global population (Xu et al., 2018). Consequently, current predictions show that diabetes will 

afflict 1 in 10 people globally by 2035 (Aguirre et al., 2013). In 2014, more than 2.1 billion 

people, nearly 30% of the global population, were overweight or obese and 5% of the deaths 

worldwide were attributable to obesity (Tremmel et al., 2017). At its current pace, obesity is 

estimated to affect almost half of the world’s adult population by 2030, with global health care 

costs surpassing 2 trillion USD annually (González-Muniesa and Mártinez-González, 2017). 

Therefore, a better understanding of the causes and mechanisms of cardiometabolic diseases is 

critical for the development of improved preventative and therapeutic strategies. 
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Both genetic and environmental factors, as well as the interactions between the two, contribute 

strongly to CMD predisposition and development. Numerous studies have been conducted to 

demonstrate the heritability of CMDs, yet environmental factors remain highly understudied. In 

particular, environmental risks such as industrial chemicals pose a major problem for public 

health, yet a comprehensive understanding of the cardiometabolic effects and biosignatures of 

chemicals that remain ubiquitous in the environment and in humans is currently lacking. 

Therefore, leveraging and comparing large-scale transcriptome datasets of chemical exposures 

may lead to greater understanding of cardiometabolic disturbances and allow for comparisons of 

implicated genes and biological pathways perturbed by environmental and industrial chemicals. 

 

Endocrine disrupting chemicals (EDCs) are a class of mostly man-made exogenous chemicals 

substances that are used in industrial products that have the potential to affect CMD 

susceptibility. EDCs affect the endocrine system and have been linked to abnormal development 

and increased susceptibility to disease in adulthood or even across multiple generations (Schug et 

al., 2011). As human exposure to EDCs is universal and the endocrine system is an important 

component of CMDs, it is vital to investigate the risks that EDCs impose on the cardiometabolic 

systems and CMD pathologies. 

 

Among the numerous EDCs identified to date, Bisphenol A (BPA), Di(2-ethylhexyl) phthalate 

(DEHP), Tributyltin (TBT), and Perfluorooctanoic acid (PFOA) are of particular interest. BPA is 

a pro-estrogenic chemical that is used in synthetic polymer goods and for lining of various food 

items (Shecter et al., 2012). BPA exposure is ubiquitous, such that biomonitoring studies found 

detectable levels of BPA in 93% of urine samples from people six years and older (Calafat et al., 
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2008). BPA has been linked with various cardiometabolic risks such as hypertension, 

dyslipidemia, and abdominal obesity (Plourde et al., 2002; Benmohhamed et al., 2011; Li et al., 

2015).  

 

Di(2-ethylhexyl) phthalate (DEHP) is an anti-androgenic chemical that is used in the production 

of flexible plastics and is found in building materials, toys, food containers and notably, is 

present in some medical devices (Jarfelt et al., 2005, Shea, 2003). Due to their widespread 

applications and usage, phthalates are known as “everywhere chemicals” and are pervasive in the 

environment (Huang et al., 2019). Similar to bisphenols, human DEHP exposure has been shown 

to increase body weight, increase levels of triglycerides, and elevate blood pressure (Mohammad 

et al., 2019).  

 

Marine biocides such as Tributyltin (TBT), are used for disinfection and anti-fouling properties 

in paints applied to ships and fishnets (Ximenes et al., 2017). Despite limited epidemiological 

studies in human exposure, organotins such as TBT are classified as EDCs because of their 

toxicity and ability to bioaccumulate in higher order organisms such as fish, large mammals, and 

humans (Ronconi et al., 2018; Cuenca et al., 2020). TBT as a ligand activates peroxisome 

proliferator activated receptor gamma (PPARγ), as such TBT and its metabolites have been 

linked to increased adipogenesis and lipid accumulation in mammals and have been found in the 

blood and liver of humans (Heindel, et al., 2019, Jia et al., 2016). Compared to traditional 

obesogenic EDCs such as BPA and DEHP, TBT is understudied in CMDs. 
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Perfluorooctanoic acid (PFOA) is a chemical used in commercial household products and other 

products that resist heat, oil, stains, and grease (Begley et al., 2005). Notably, PFOA does not 

readily break down in the environment, allowing for it to bioaccumulate easily (Steenland et al., 

2010). As one of the many chemicals in the per- and polyfluoroalkyl substances (PFAS) family, 

PFOA has risen to prominence as an EDC of public health interest and was observed in the blood 

of virtually all Americans (Street et al., 2018; Lau et al., 2006). Additionally, PFOA has been 

shown to be a PPARγ agonist like archetypal obesogenic EDCs (Yamamoto et al., 2015). 

Moreover, PFOA exposure in mouse and human studies have been linked to increased weight, 

waist circumference, cholesterol levels and prevalence of diabetes (Halldorsson et al., 2012; Fei 

et al., 2007; Hines et al., 2009; He et al., 2017). Due in part to it being a part of a larger known 

group of EDCs, PFOA-exposure remains poorly characterized among EDCs. 

 

Since the launch of programs to characterize the effects of EDCs, such as Toxicology in the 21st 

Century (Tox21) and Toxicity Forecaster (Toxcast), transcriptomics studies of EDCs have 

helped reveal molecular insights into the perturbed genes and pathways. However, EDCs have 

shown to exhibit species-, tissue-, and dose-dependent effects, but systematic investigation of 

these effects within and across EDCs has not been conducted (Vandenberg et al., 2012). In 

addition, despite the large volume of existing transcriptome data, harmonization of data from 

different study designs and technology platforms remains challenging. As such, processing these 

studies in a consistent manner will allow for greater translation potential, where uncovering the 

chemical-, species-, and tissue-specific effects may yield greater understanding of the underlying 

molecular perturbations, expression alterations, and regulation of biological pathways. 
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This study aims to systematically meta-analyze existing, publicly available transcriptomic 

datasets on EDCs deposited in Gene Expression Omnibus (GEO) to understand species- and 

tissue-specific effects of EDCs on transcriptome perturbances and cardiometabolic risks. To this 

end, we 1) streamline microarray and RNA sequencing data acquisition and processing from 

GEO, 2) extract differentially expressed genes (DEGs) as gene signatures of the four EDCs 

described above from individual studies varying in species, tissue, and dosage, and 3) link the 

genes and pathways to cardiometabolic risks. 

 

Materials and Methods 

Dataset Curation and Identification  

The National Center for Biotechnology Information’s (NCBI) Gene Expression Omnibus (GEO) 

is an open access international genomics repository. GEO archives various high-throughput data, 

including microarray, RNAseq and other omics datatypes (Edgar et al., 2002). GEO was queried 

with various chemical nomenclatures for the four EDCs of interest in order to capture all 

potential expression profiles. This search encompassed both in vitro and in vivo datasets to 

ensure data coverage. BPA terms queried included: “Bisphenol A”,“4,4’-propane-2,2-

diyldiphenol”, “BPA”; DEHP terms queried included: “Bis(2)ethylhexyl phthalate”, “Di-sec 

octyl phthalate”, “Octyl Phthalate” ,“DEHP”; TBT queried terms included: 

“bis(tributyltin)oxide”, “bis(tri)n-butyltinoxide”, “TBTO”, “Tributyltin”, “TBT”; PFOA queried 

terms included: “perfluorooctanoic acid”, “perfluorooctanoate”, “PFOA”. Each search was then 

filtered to the level “series”. The resulting datasets were curated to meet the following criteria for 

inclusion: 1. Publicly available in GEO; 2. Transcriptome data (both RNASeq and Microarray 

data types); 3. If microarray dataset, single channel arrays, 4. Appropriate sample sizing 
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(n>=3/group); 5. Direct exposure (excluding transgenerational studies); 6. Not a duplicate 

(subseries/superseries). Datasets identified for inclusion were then filtered to include studies 

most relevant to cardiometabolic disorders based on tissue annotations (adipose, cardiovascular 

system, liver, and pancreas) (Figure 1). Additionally, only datasets that were derived from 

humans, mice, and rats as model organisms were included, as other species lacked either 

sufficient numbers of expression profiles or were non-mammalian organisms with less biological 

translational capacity. Lastly, all GEO expression profiles accessible at the end of December, 

2020 were considered. 

 

Downloading and Processing Transcriptome Expression Profiles  

Microarray datasets were directly downloaded from GEO via the R package “GEOquery” (Davis 

and Meltzer, 2007; R Core Team, 2019). Expression profile meta-data containing descriptive 

information of the overall experiments and individual samples was processed, and organ 

systems/tissues were reannotated by Brenda Tissue Ontology to consolidate tissue terms. 

Datasets were then segregated by species/organism and organ system/tissue (Gremse et al., 

2011). Obtained expression matrices were then checked for log2 transformation and correct GEO 

sample accession annotation for downstream analysis (Figure 2).  

For RNAseq data, a different procedure was used to download data. Despite GEO’s capacity to 

store various types of high-throughput data, GEO relies on NCBI’s Sequence Read Archive 

(SRA), another genomics repository, to store raw RNAseq reads data and alignment information 

(Leinonen et al, 2011). We chose to use the raw sequencing reads from SRA instead of the 

processed data in GEO because different studies used different data processing pipelines and 

data harmonization across datasets was challenging using the processed data. The identified raw 
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RNAseq datasets were downloaded from SRA, quality checked, and processed using the 

following packages in the anaconda environment (Anaconda Software Distribution, 2020). As 

SRA’s native download package “SRA toolkit” was slow, we used the Parallel FastQ Dump 

wrapper to retrieve FASTQ files from SRA (Valieris, 2020). We then conducted quality checks 

on the FASTQ files and trimmed adapters with packages Trim_galore and Cutadapt (Krueger, 

2020; Marcel, 2011; Andrews, 2010). The sequence mapping and expression quantifier package 

Salmon was used to map the sequencing reads to the appropriate reference genomes (human 

genome build GRCh38.p13 , mouse genome build GRCm39, and rat genome build Rnor_6.0) 

and to quantify the mapped reads (version 1.3, Patro et al., 2017). The R package Tximport was 

then used to import and summarize Salmon quantification results for downstream differential 

expression analysis (Soneson et al., 2015). 

 

Differential Gene Expression Analysis  

Differential expression analysis was performed by high performing, gold-standard differential 

expression analysis tools appropriate for different data types (Schurch et al., 2015), namely 

Linear Models for Microarray Data (LIMMA) for microarrays and DESeq2 for RNAseq data to 

identify differentially expressed genes (DEGs)(Ritchie et al., 2015; Love et al., 2014). As 

multiple microarray datasets can be available for the same species and tissue type exposed to the 

same EDC, we further conducted meta-analysis to derive consensus DEGs of individual EDCs 

stratified by species and tissue. The Robust Rank Aggregation package in R (Kolde et al., 2012) 

was performed on DEGs identified by LIMMA and ordered by the effect size of differential 

expression, log fold change (logFC). The DEG lists from individual microarray datasets were 

segregated by organ system/tissue, then rank aggregation was used to identify differentially 
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expressed genes (DEGs) at a false discovery rate (FDR) < 0.05 across all studies of the same 

EDC in the same species and tissue. Rank aggregation was performed for both up-regulated and 

down-regulated genes. Due to limited numbers of RNAseq studies, up- and down-regulated gene 

sets from individual datasets identified with DESeq2 (FDR<0.05), and pathway annotations were 

directly compared to those identified by the microarray datasets.  

 

Pathway Enrichment Analysis of DEGs to Identify Over-represented Pathways 

To capture alterations to biological processes represented by the DEGs, pathway enrichment 

analysis of DEGs was performed. Both Kyoto Encyclopedia of Genes and Genomes Pathway 

(KEGG) and Gene Ontology Biological Processes (GO BP) were used to functionally annotate 

the DEGs (Kanehisa and Goto, 2000). First, to ensure consistency in pathway annotation across 

species, the gene symbols of the mouse and rat DEGs identified were converted to human 

symbols based on Ensemble homology using BiomaRt (Durinck et al., 2009, Howe et al., 2021). 

Then enrichment analysis was then performed on the significant up and down-regulated DEGs 

separately utilizing the “enrichR” package, with a FDR < 0.05 as the cutoff (Chen et al., 2013; 

Kuleshov et al., 2016; Xie et al., 2021). Significant pathway terms were then compared across 

species and tissues for overlap using Upset plots (Conway et al., 2017). 

 

Association of DEGs to Cardiometabolic Diseases 

To assess the association of the DEGs with various cardiometabolic diseases, we took the top 

100 up- and down-regulated DEGs for each EDC from each species and each tissue and 

overlapped them with various cardiometabolic disease candidate genes identified from human 

genome-wide association studies (GWAS). GWAS candidate genes were downloaded from the 
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National Human Genome Research Institute (NHGRI)-European Bioinformatics Institute (EBI) 

catalog of GWAS studies (Buniello et al., 2019). We then imported the catalog to R and applied 

the merge function to return DEGs overlapping with candidate genes for CMDs in GWAS 

catalog, including type II diabetes (993 genes), metabolic syndrome (200 genes), obesity (100 

genes), and coronary heart disease (726 genes). 

 

Results 

Tissue and Species Coverage of Endocrine Disrupting Chemicals 

The total number of transcriptome datasets that passed selection criteria (Figure 1) for inclusion 

and of cardiometabolic tissue types was 44 (Table 1), including 16 for BPA, 17 for DEHP, 6 for 

TBT, and 5 for PFOA. Liver tissue was examined across all four EDCs (n = 38), whereas 

pancreas (n = 1) and adipose (n = 3) coverage was observed only in BPA exposure studies, and 

cardiovascular system coverage was observed only in DEHP studies (n = 2). Both TBT and 

PFOA were composed solely of liver studies.  

 

Human, mouse, and rat species coverage was observed for both BPA and DEHP, albeit in mostly 

liver studies. BPA liver species coverage was composed of 2 human studies, 6 rat studies, and 4 

mouse studies. BPA adipose coverage consisted of only human and mouse studies (human = 2, 

mouse = 1) while BPA pancreas coverage was subjected to only a single mouse study. DEHP 

liver studies were composed of 1 human study, 5 rat studies, and 9 mouse studies, whereas 

DEHP cardiovascular system species coverage was comprised solely of rat datasets (n = 2). TBT 

species coverage consisted of human and mouse studies only (human = 2, mouse = 4), while 

PFOA was limited to rat and mouse studies (rat = 1, mouse = 4). 
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Overall, the species and tissue coverage for the EDCs examined was uneven, with better 

coverage for rodents and liver tissue. BPA exposure studies have the best coverage of species 

and tissues compared to DEHP, TBT, and PFOA, highlighting the need for additional data 

collection efforts for the understudied EDCs. 

 

Biosignatures of BPA-exposed Cardiometabolic Tissues Vary 

For BPA exposure , in total we identified 9,160 significant DEGs across 3 cardiometabolic 

tissues (liver, adipose, and pancreas) based on microarray datasets (n = 13) and 1,471 DEGs 

across liver and adipose tissues based on RNAseq datasets (n = 3). 

 

Across both microarray and RNAseq liver studies, we identified approximately 949 down- and 

870 up-regulated DEGs on average per species (min = 750, max = 1,099; n = 13 studies, Figure 

3). Overlap of total DEGs in all 3 species was 0.3% and overlap between any two species was 

2.1-4.6%. Shared down-regulated pathway terms between human and mouse studies consisted of 

cell cycle and apoptosis terms. Across all three species, shared up-regulated pathways consisted 

of metabolism-related terms, including regulation of cholesterol/steroid/alcohol biosynthetic 

processes (Figure 4).  

 

Adipose studies (n = 3 studies) revealed 1,110 down and 920 up-regulated DEGs. Two 

microarray data sets contributed 1,067 down-regulated DEGs, and 885 up-regulated DEGs in 

humans, whereas a single RNAseq mouse dataset yielded only 43 down- and 35 up-regulated 

DEGs, with 0.5% and 0.4% down and up-regulated genes overlapping between microarray and 
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RNAseq DEGs, respectively (Figure 5) . Given the difference in the transcriptome platform and 

large discrepancy in DEG number identified in human and mouse studies, functional annotation 

was performed separately for the two species. In humans, the top down-regulated biological 

pathways enriched among DEGs included immune and inflammatory response pathways; top up-

regulated pathways were related to metabolic processes (cholesterol/fatty acid biosynthesis), 

neuronal development, and cell organization (Figure 6). For the mouse RNAseq dataset, the top 

down-regulated pathways consisted mainly of various mitotic cell cycle terms, and up-regulated 

pathways contained several lipid/cholesterol transport terms (Figure 7). There was no direct 

overlap of biological pathway terms between human and mouse adipose studies, except that 

lipid/cholesterol related processes were up-regulated in both, with biosynthesis terms over-

represented in human and transport terms represented in mouse. 

 

Coverage of BPA pancreas exposure studies was relegated to a single mouse study, therefore no 

comparisons could be made across species. DEG analysis yielded a total of 1,730 (865 down- 

and 865 up-regulated ) significant DEGs. Enrichment analysis revealed up-regulation of 

transcriptional dysregulation in cancer, mineral absorption, and fat digestion (Figure 8); down-

regulated pathways highlighted terms involved in cytosolic transport, golgi to endosome 

transport, and cholesterol efflux.  

 

Across all BPA-exposed tissues, shared up-regulation of metabolism pathways is noted with 

lipid/cholesterol/fatty acid metabolism represented. However down-regulation pathways for each 

tissue diverged. In liver, pathways including metabolism pathways and cell cycle terms such as 

transition of mitotic cell cycle, apoptosis regulation, and regulation of programmed death were 
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highlighted. In adipose, downregulation pathways of immune response terms, cytokine signaling, 

inflammatory response, and leukocyte migration was noted. In pancreas, down-regulated terms 

contained mainly transport pathways. 

 

DEHP-Exposed Tissues Reveal Tissue-Specific Expression Profiles 

For DEHP exposure, in total we identified 7,355 significant DEGs for DEHP across 15 liver 

studies and two studies of the cardiovascular system. 

 

Based on the 15 liver studies, we identified 938 down- and 1001 up-regulated DEGs on average 

per species (min = 741, max = 1360; n = 15, Figure 9). In the single human study 823 down- and 

824 up-regulated genes were identified; from 9 mouse studies 1278 down- and 1360 up-

regulated genes were identified ; from 5 rat studies 795 down- and 741 up-regulated DEGs were 

found. The percentage of shared DEGs across all 3 species was 0.4% and overlap between any 

two species (in either up or down direction) ranged from 1.5-9.1%. Despite the minimal overlap 

in DEGs, functional annotation for shared down-regulated pathways across the three species 

retrieved acylglycerol metabolism as the only shared term. Between human and rat, regulation of 

lipoprotein was enriched in down-regulated genes, whereas down-regulated human-mouse 

overlap pathways were composed of metabolism terms (sterol, secondary alcohol and cholesterol 

biosynthesis). Between mouse and rat models, 29 down-regulated terms associated with 

metabolism and immune response were shared. Functional annotation for shared up-regulated 

pathways across the three species retrieved regulation of lipid and primary metabolic processes. 

Between mouse and human studies, 15 up-regulated terms associated with cell organization, 

apoptosis, and immune response were shared. Between mouse and rat studies, 32 up-regulated 
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terms associated with metabolism were revealed (fatty acid catabolism, cholesterol metabolism, 

lipid biosynthesis). There were no shared up-regulated pathways between human and rat studies 

(Figure 10). 

 

DEHP cardiovascular system exposure studies were composed of two rat datasets, revealing 715 

down- and 819 up-regulated DEGs respectively. The top down-regulated pathway terms are 

involved with immune responses, the cell cycle, and extracellular matrix organization, whereas 

the top up-regulated biological pathways centered around regulation of ion homeostasis 

(cadmium, iron, and zinc) (Figure 11). 

 

Between liver and cardiovascular system, tissue specific effects were observed. Liver response to 

DEHP exposure resulted in various metabolism terms being represented in both down- and up-

regulated pathways (lipid metabolism, fatty acid biosynthesis, acylglycerol homeostasis, sterol 

biosynthesis). Cardiovascular system yielded divergent terms, with none of the top down- and 

up-regulated terms being shared with liver, downregulated pathways pertained to cell 

proliferation and regulation of cell cycle, while upregulated pathways centered solely on cell ion 

homeostasis, including zinc, cadmium, copper regulation. 

 

TBT-Exposure in Liver Acts in a Species-Specific Manner  

TBT analysis was comprised entirely of liver datasets (5 microarray and one RNAseq). 

Microarray studies revealed 743 down-regulated DEGs in 2 human studies, 727 down-regulated 

DEGs in three mouse studies, and 46 shared between the two species. Similarly, there were 814 

human up-regulated genes, and 692 mouse up-regulated genes, of which 36 were shared (Figure 
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12). Compared to three mouse microarray datasets, the single mouse RNAseq study yielded very 

few significant DEGs, 27 down- and 12 up-regulated respectively. 

 

Functional annotation revealed 66 up-regulated pathways for humans and 50 pathways for the 

mice, none of which were shared between the two species. Human up-regulated pathways 

consisted of cell cycle and organization terms including DNA replication/metabolism and 

centromere assembly/mitotic spindle organization. Upregulated pathways in mouse studies 

consisted of various metabolism processes, such as regulation of cholesterol and alcohol 

biosynthetic processes. Despite a lack of shared up-regulated annotation terms between species, 

3 down-regulated pathways involved in cell proliferation and transcription regulation were 

shared between the 47 down-regulated pathways in human studies and 18 in mouse studies 

(Figure 13). 

 

PFOA Liver Studies Reveal Mixed Expression Profiles in Murine Models 

PFOA coverage consisted of 5 liver datasets only (4 mouse microarray datasets, 1 rat RNAseq). 

Mouse microarray liver studies yielded 1,133 down- and 1,118 up-regulated significant DEGs, 

and the single rat RNAseq liver study yielded 1,111 down- and 1,085 up-regulated DEGs (Figure 

14). Despite the high number of identified DEGs in the two different species, there were only 31 

shared down- and 24 shared up-regulated DEGs (1.3% overlap).  

 

Functional annotation overlaps revealed 32 common pathways in the down-regulated DEGs and 

28 shared terms for the up-regulated DEGs between species (Figure 15). Shared down-regulated 

pathways included fatty acid oxidation and regulation of lipid metabolism, while shared up-
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regulated pathways included immune system response and injury repair terms. Top mouse up-

regulated pathways were also involved with metabolism, including fatty acid metabolism, fatty 

acid oxidation, cholesterol regulation, and PPAR signaling, whereas down-regulated pathways 

consisted of electron transport chain and neutrophil degranulation. Rat responses indicated 

down-regulation of long chain fatty acid import, arachidonic metabolism and mitosis, while up-

regulated pathways centralized around endoplasmic reticulum distress (ER) stress, IRE1 protein 

response and golgi-related transport. 

 

Lack of Concordance between Microarray and RNAseq DEGs  

We further compared the identified DEGs between microarray and RNAseq datasets, revealing 

limited concordance. For example, the BPA liver studies showed overlaps between microarray 

and RNseq mouse studies at 2.9% for down-regulated DEGs and 2.0% concordance for up-

regulated DEGs. Across studies that contained same species and tissue expression profiles, 

overlap of the identified DEGs between microarray and RNAseq datasets revealed a low average 

concordance of 1.52% (range of 0.14%-4.62%; Table 2).  

 

DEGs of EDCs Show Association with CMDs based on Overlap between DEGs and Human 

GWAS Genes for CMDs 

We compared the DEGs with candidate genes identified for CMDs from human GWAS studies 

to assess the disease relevance of the DEGs. Across species and tissues for each EDC, the DEGs 

showed numerous overlaps with human risk genes for CMDs, providing molecular support for 

the risks of the EDCs pose on CMDs (Tables 3-6). For example, BPA signatures across species 

and tissues showed many overlapping genes with type 2 diabetes and coronary artery disease. 
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Discussion 

Overview of Key Findings 

Our current analysis across 44 publicly available transcriptome studies within GEO 

demonstrated the various alterations of EDC exposures across chemicals, species, and tissues, 

revealing species- and tissue-specific molecular signatures with CMD associations (Figure 16). 

For chemicals with less data coverage such as PFOA and TBT inference for species and tissue 

specificity was limited, whereas in the case of BPA, sufficient study numbers allowed for greater 

cross-species comparisons. Furthermore, differences between EDCs could only be directly 

compared in liver tissue studies. 

 

Across chemicals, our findings suggest that up-regulated pathways altered in liver-exposure 

studies react similarly, where lipid, fatty acid, and primary metabolic processes, were 

consistently identified. Despite these similarities, top downregulated terms across chemicals 

varied greatly. BPA downregulated terms included cell cycle, apoptosis, and DNA 

metabolism/replication; DEHP affected metabolism (acylglycerol homeostasis, sterol 

biosynthesis) and immune response terms. TBT downregulated terms included regulation of 

apoptosis, ERK1/2 cascade, and cell proliferation; PFOA down-regulated terms included 

steroid/lipid/fatty acid metabolism. These results indicate both shared and chemical-specific liver 

perturbations by EDCs. 

 

BPA Findings 

It is previously known that BPA can bind to estrogen receptors and influence bodily processes 

like cell proliferation and apoptosis due to its estrogen-like properties (Gao et al., 2015). In our 
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meta-analysis, liver exposure studies revealed down-regulated pathways that included cell cycle 

terms like apoptotic processes and DNA replication, thereby supporting previous literature (Can 

et al., 2005); up-regulated biological pathways largely remained uniform with lipid, cholesterol, 

and steroid biosynthesis being observed across all three species.  

 

Previous studies in our lab have demonstrated that the effects of BPA exposure in mice are 

highly variable according to tissue, sex, age, and dose level, and that the liver is most susceptible 

to disruption according to both transcriptome and DNA methylome analyses across liver, 

adipose, and hypothalamus (Shu et al., 2019). The relative importance of liver to adipose tissues 

is confirmed in the current study, as supported by larger number of liver DEGs than adipose 

DEGs. According to our disease association GWAS analysis, liver perturbances yielded more 

DEGS than adipose tissue. However, our current analysis that additionally included pancreas 

tissue demonstrated that pancreas is also highly perturbed by BPA exposure, and GWAS/DEG 

overlap analysis yielded more CMD associations for mouse pancreas DEGs than the mouse liver 

counterpart. Of interest, our analysis of the pancreas study did not yield any terms involving 

insulin production and/or resistance but identified up-regulation of pathways were involved with 

cholesterol and lipid transport which were shared with adipose tissue. 

 

Across species comparison showed that the species-specific effect is small in up-regulated liver 

pathways, capturing similar biosignatures across species, including regulation of 

alcohol/steroid/cholesterol biosynthesis processes. For BPA-exposed adipose studies, human and 

mouse studies shared no pathways within their top 10 down- and up-regulated pathways, with 

few or no pathways identified outside of these pathways. Among all EDCs, BPA contained the 
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greatest number of DEGs with CMD association across species (e.g., HMGCR, PPAR), 

indicating species-specific effects were least prominent in BPA-exposed tissues. 

 

DEHP Findings 

DEHP as a carcinogen has been well documented, in support of this we observed tissue-specific 

differences as alterations in cell cycling pathways such as MAPK cascade, cell proliferation, and 

mitosis regulation in cardiovascular system studies, supporting the cardiotoxic effects of DEHP 

as described in previous literature (Jaimes et al., 2017). However, our analysis of the DEHP-

exposed liver revealed several metabolism perturbance with few hepatoxicity terms yielded. In 

contrast to cell cycle terms, DEHP-exposed liver revealed immune system perturbations through 

terms such as cytokine signaling and neutrophil activation. Notably, liver studies showed that 

metabolic pathways, are enriched in both up-regulated and down-regulated DEGs, suggesting a 

complex regulation of metabolic sub-pathways. 

 

Cross-species comparison for DEHP exposure revealed limited (10.8%) shared biological 

pathways between any 2 species. However, some DEGs from CMD association were noted to be 

shared across species (e.g., APOA4, PFKF3B), suggesting some similarity across species 

compared to other EDCs. 

 

TBT Findings 

We were only able to investigate the liver tissue studies for TBT due to the lack of data for other 

tissues. The current study has implicated many biological pathways involved with the cell cycle 

and confirms the hepatotoxic capacity of TBT on various species, including cell death apoptotic 
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processes, and cell proliferation. However, TBT is a chemical of interest not only for its known 

carcinogenic properties, but also for its role as an agonist for classic lipogenic pathways such as 

PPAR and RXAR (Antizar-Ladislao, 2008). Our DEG and functional annotation analysis 

minimally supports previous literature, as only one PPARGC1B gene, a PPAR co-activator gene, 

and one annotation term, PPAR signaling pathway were revealed. Importantly, the GWAS 

catalog did not associate the identified PPAR co-activator DEG to select CMDs. 

 

Our study suggests that TBT effects on the liver are species-specific, as both pathway level and 

CMD disease association overlap yielded minimal overlaps between human and mouse studies. 

Interestingly, human exposure studies yielded more DEGs, biological pathway terms, and CMD 

association overlaps.  

 

PFOA Findings 

Similar to TBT, we were only able to assess the effects of PFOA on the liver due to data 

availability issues. Our study demonstrates that among the shared liver pathways between rat and 

mouse studies, metabolism alteration is common, with regulation of lipid and primary 

metabolism being represented in down-regulated pathways, and fatty acid/cholesterol 

biosynthesis observed in up-regulated pathways. Our study confirms previous human studies that 

have demonstrated PFOA’s ability to alter genes involved in cholesterol metabolism (Fletcher et 

al, 2013). Despite the shared metabolic pathways, the majority (90.2%) of the identified 

pathways are not shared between species, suggesting that PFOA effects were species specific. 

Mouse biological pathways consisted of electron transport chain and neutrophil degranulation 

responses, whereas rat pathways involved ER stress and transport responses. Additionally, in 
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support of disparate species effects, within DEGs that were identified to have CMD associations, 

none were shared between mouse and rat species. 

 

Cross-chemical Comparison and Discussion: Similarity and Differences Between EDCs 

Across all four chemicals, direct comparison could only be made in liver studies. Notably, top 

up-regulated pathways of each chemical, regardless of species and tissue-specific effects, 

involved metabolism processes, such as primary/lipid metabolic processes or fatty acid 

metabolism. Despite this similarity, down-regulated pathways demonstrated varied responses. 

BPA and TBT livers most closely resembled each other, with down-regulated pathways 

consisting of cell cycle terms such as apoptosis pathways, cell proliferation, replication or 

ERK1/2 cascade. Both DEHP and PFOA resulted in down-regulation of more metabolism 

pathways, for example, acylglycerol homeostasis, steroid/lipid metabolism, and cholesterol 

biosynthesis. DEHP differed from the other DEGs in that immune response pathways were 

affected, such as regulation of neutrophil activation and degranulation.  

 

Disease Association of DEGs to CMDs 

The DEGs of each EDC from each tissue and species showed numerous overlaps with four 

CMDs, supporting their relevance to disease risks. Due to the larger number of candidate genes 

collected for type 2 diabetes and coronary heart disease, more DEGs showed overlap with these 

diseases than with metabolic syndrome and obesity. Future analysis normalizing the number of 

disease genes is needed. It is worth noting that the DEGs overlapping with disease risks genes 

are seldom consistent across species/tissues likely, except that 5 BPA DEGs (HMGCR, PPAR, 

INHBB, APOE4, APOE), 4 DEHP DEGs (PFKFB3, JAG1, ABCA1, APOA4), and one PFOA 
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DEG (RRBP1) across species/tissues which overlapped with GWAS genes for CMDs. These 

genes are likely the robust gene targets of EDCs that confer CMD risks. Notably, HMGCR, 

PFKFB3, PPAR, APOA4 and APOE/APOE4 genes are involved in glucose/cholesterol/lipid 

metabolism; PPAR and PFKFB3 are also involved in inflammation; APOA4 is involved in 

appetite and satiety; ABCA1 is involved with cholesterol and phospholipid transport (Stelzer et 

al., 2016).  

 

Lessons Learned from Analyzing Publicly Available Datasets 

One of the goals of our study was to leverage publicly available transcriptome data and re-

process in a manner that allows for comprehensive interpretation of the various effects these 

chemicals confer. Previous studies reporting these individual datasets utilized different statistics 

and differential expression analysis tools, making it challenging to compare the results across 

studies. Our systematic curation and processing of data in a uniform manner help better compare 

the studies to infer the potential outcomes of these chemical perturbances. 

 

In the current study the divergence of DEGs represented in the Microarray and RNAseq 

concordance comparisons was extreme, with the maximum overlap being only 4.62%. Few 

studies have assessed RNAseq and microarray DEG concordance, largely owing to the fact that 

the technologies are completely different in how they measure expression (relative signal 

intensity vs read counts). The limited previous comparative studies revealed a concordance 

between 20-85% (Guo et al., 2006, Wang et al, 2014). Our study leveraged transcriptome data 

sets from different species, tissues, brand/type of microarrays, and thus, our Microarray-RNAseq 

concordance (1.52%) was much lower than previously reported. For this reason, we focused less 



 

 22

on overlaps in DEGs but their functional annotation to allow for more biologically relevant and 

direct comparisons.  

 

Strengths of the Study 

Current interpretations of transcriptome perturbance rely on single dataset analyses where a 

focus on a singular tissue or species is most common. Here we present a meta-analysis including 

a large number of studies, multiple EDCs, species, tissues, revealing unique insights into species 

and tissue-specific effects and the translational potential of rodent studies of environmental 

chemicals to human CMD risk. In addition, we established a computational pipeline to analyze 

and document molecular effects where uniformly processing raw data have been cumbersome 

and challenging, which will facilitate future systems toxicogenomic studies. 

 

Limitations of the Study 

In the current study, we did not stratify gene sets by exposure dose and exposure window to 

simplify analysis design and focus on tissue and species effects. However, both exposure dose 

and window have great impact on the magnitude of transcriptome alteration (Golestanzadeh et 

al., 2019). Indeed, various EDC studies have indicated exposure window to be the main predictor 

for health outcomes in addition to exposure dose (Belzunce et al., 2004). Many of the tissue and 

species differences could be a result of exposure differences between studies, which will be 

addressed in our future studies. In addition, due to technology and platform differences, novel 

methods to robustly compare concordance across RNAseq and microarray technologies are 

needed to fully identify overlapping perturbed genes and biological pathways.  
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Conclusion and Future Directions 

Through a meta-analysis of 44 transcriptomic studies across 4 EDCs in multiple cardiometabolic 

tissues in three mammalian species, our study offers unique insights into the species and tissues 

similarities and differences within and between EDCs and whether the genes and pathways are 

relevant to CMDs. Despite the differences in study designs across the datasets, metabolic genes 

pathways were found to be altered across tissues and species, supporting the CMD risks 

conferred by diverse types of EDCs. It is apparent after conducting a study reviewing the 

transcriptome changes of various chemicals, that more studies are needed to fill in the gaps 

between lesser characterized chemicals, particularly chemicals such as TBT and PFOA. Even for 

the best studied chemical, BPA, important tissues such as adipose and pancreas were poorly 

covered. Lastly, investigation of the effects of exposure dose and exposure window on 

transcriptome alterations is needed. 
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Figure 1. Study identification and filtering 

 
Created with BioRender.com 
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Figure 2. Data processing workflow for different data types 

 
               Created with BioRender.com 
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Figure 3. BPA: Number of identified differentially expressed genes A) Down-regulated DEGs B) 

Up-regulated DEGs. 
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Figure 4. BPA: Combined microarray and RNAseq comparison of pathways for differentially 

expressed genes. A) Down-regulated pathways. B) Up-regulated pathways. 

A. 

 
B. 
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Figure 5. BPA: Number of identified DEGs in human microarray compared to mouse RNAseq in 

adipose tissue A) Down-regulated DEGs B) Up-regulated DEGs. 

 

 
Figure 6. BPA: Functional annotation of human adipose studies A) Top 10 Down-regulated 

Pathways B) Top 10 Up-regulated Pathways. 
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Figure 7. BPA: Functional annotation of mouse adipose study A) Top 10 Down-regulated 

Pathways B) Top 10 Up-regulated Pathways. 

A.        B. 

                        
Figure 8. BPA: Functional annotation of mouse pancreas study A) Top 10 Down-regulated 

Pathways B) Top 10 Up-regulated Pathways. 
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Figure 9. DEHP: Number of identified differentially expressed genes in microarrays. A) Down-

regulated DEGs B) Up-regulated DEGs. 
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Figure 10. DEHP: Comparison of pathways for differentially expressed genes. A) Down-

regulated pathways. B) Up-regulated pathways. 

A. 

 
B. 
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Figure 11. DEHP: Functional annotation of rat cardiovascular system studies A) Top 10 Down-

regulated Pathways B) Top 10 Up-regulated Pathways. 

A.  B. 

 
 

Figure 12. TBT: Number of identified differentially expressed genes A) Down-regulated DEGs 

B) Up-regulated DEGs. 
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Figure 13. TBT: Comparison of pathways for differentially expressed genes. A)Down-regulated 

pathways. B) Up-regulated pathways. 
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Figure 14. PFOA: Number of identified differentially expressed genes in liver.  A) Down-

regulated DEGs B) Up-regulated DEGs. 

A.             B. 
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Figure 15. PFOA: Comparison of pathways for differentially expressed genes. A)Down-

regulated pathways. B) Up-regulated pathways. 

A. 
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Figure 16. Top pathways summary. Blue font identifies down-regulated DEGs, red font 

identifies up-regulated DEGs. 

 
Created with BioRender.com 
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Table 1. Datasets included in meta-analysis. Bold font identifies RNAseq datasets. 

 
 

 

 

 

 

 

GSE # Chemical Species Tissue Exposure Route Dosage Citation

98680 BPA Human Adipose Culture 10μM,10nM Verbank et al., 2018

58516 BPA Human Adipose Culture 10nM Menale et al., 2015

69844 BPA Human Liver Culture 1,10,100μM De Abrew et al., 2016

69850 BPA Human Liver Culture 1,10,100μM De Abrew et al., 2016

59923 BPA Rat Liver Oral Gavage 100,610mg N/A

8858 BPA Rat Liver Oral Gavage 100,610mg Natsoulis et al., 2008

8251 BPA Rat Liver Oral Gavage 610mg Fielden et al., 2007

57815 BPA Rat Liver Oral Gavage 100,610mg Gusenleitner et al., 2014

130434 BPA Rat Liver Chow 50µg Treviño et al., 2020

19662 BPA Rat Liver Culture 10ppm Deng et al., 2010

121603 BPA Mouse Adipose Oral Gavage 5mg Shu et al., 2019

43977 BPA Mouse Liver Chow 5,000 ppm N/A

26728 BPA Mouse Liver Chow 50,5000μg Marmugi et al., 2012

121603 BPA Mouse Liver Oral Gavage 5mg Shu et al., 2019

44088 BPA Mouse Liver Culture 10μM Schaap et al.,  2015

126297 BPA Mouse Pancreas Subcutaneous Injection 100μg Martinez-Pinna et al., 2019

28878 DEHP Human Liver Culture 10mM Magkoufopoulou et al., 2012

21641 DEHP Rat Cardiovascular System Culture 1,10,50μg Posnack et al., 2011

21640 DEHP Rat Cardiovascular System Culture 50 µg Posnack et al., 2011

2303 DEHP Rat Liver Oral Gavage 20g Jolly et al., 2005

8251 DEHP Rat Liver Oral Gavage 1000mg Fielden et al., 2007

57815 DEHP Rat Liver Oral Gavage 1000mg Gusenleitner et al., 2014

59923 DEHP Rat Liver Oral Gavage 100,1000mg N/A

40337 DEHP Rat Liver Culture 250,1000μM De Abrew et al., 2015

14629 DEHP Mouse Liver Oral Gavage 30,180,1100mg Eveillard et al., 2009

14920 DEHP Mouse Liver Oral Gavage 20,200mg Eveillard et al., 2009

43977 DEHP Mouse Liver Chow 6,000ppm N/A

121057 DEHP Mouse Liver Oral Gavage 2500mg N/A

64187 DEHP Mouse Liver Chow 750,1500,3000,6000ppm Lake et al., 2016

55733 DEHP Mouse Liver Oral Gavage 1150mg Currie et al., 2005

18564 DEHP Mouse Liver Oral Gavage 1150mg Ren et al., 2010

72081 DEHP Mouse Liver Culture 2000µM Rieswijk et al., 2016

53523 DEHP Mouse Liver Chow 139, 845,3147mg Wood et al., 2014

86259 TBT Human Liver Culture 2,6,10μM Tu et al., 2016

28878 TBT Human Liver Culture 0.02 nM Magkoufopoulou et al., 2012

43977 TBT Mouse Liver Chow 200ppm N/A

143304 TBT Mouse Liver Water 0.5mg Katz et al., 2020

44088 TBT Mouse Liver Culture 0.3 μM Schaap et al.,  2015

47345 TBT Mouse Liver Culture 250 nM Schaap et al.,  2015

147072 PFOA Rat Liver Oral Gavage .156,1.25,10mg Gwinn et al., 2020

13044 PFOA Mouse Liver Water 1,3,5,10mg Rosen et al., 2007

9796 PFOA Mouse Liver Oral Gavage 1,3mg Rosen et al., 2008

9786 PFOA Mouse Liver Oral Gavage 3mg Rosen et al., 2008

119441 PFOA Mouse Liver Oral Gavage 1mg Li et al., 2019
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Table 2. Microarray and RNAseq concordance. Blue font identifies down-regulated DEGs, red 

font identifies up-regulated DEGs 

  Microarray RNAseq Overlap % 

BPA Mouse Liver 716 420 34 2.91% 

BPA Rat Liver 973 188 27 2.27% 

DEHP Mouse Liver 1258 1459 20 0.73% 

TBT Mouse Liver 724 24 3 0.40% 

PFOA Mouse Liver 1093 1439 40 1.56% 

BPA Mouse Liver 723 468 24 1.98% 

BPA Rat Liver 743 187 45 4.62% 

DEHP Mouse Liver 1339 1077 21 0.86% 

TBT Mouse Liver 691 11 1 0.14% 

PFOA Mouse Liver 1091 1071 27 1.23% 

TOTAL 9351 6344 242 1.52% 

 

 

 

Table 3. BPA DEG disease association overlap (GWAS). Blue font identifies down-regulated 

DEGs, red font identifies up-regulated DEGs. 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

BPA Liver Human BPA Liver Mouse BPA Liver Rat BPA Adipose Human BPA Adipose Mouse BPA Pancreas Mouse

﻿CCND1, ﻿PROX1, ﻿TLE1 ﻿BACH2, ﻿BCL6, ﻿HMGA2 ﻿EML2, ﻿FCGR3A, ﻿PRC1 BDNF, DNER, FAM167A ﻿ATP2A1, ﻿KIF11, ﻿PNPLA3 ﻿IRS2, ﻿JMJD1C, ﻿KLF5

﻿C1QTNF6, ﻿CADM1 ﻿CCND2 ﻿RHOBTB1 ANKH, ﻿ARL4A PCSK1 ﻿PRC1 ﻿MEG3, ﻿ROBO2

HMGCR, RBM6 ﻿PNPLA3, ﻿PPARA, ﻿TPT1 ﻿CDH2, ﻿ CLEC14A, ﻿GCK FMO4, SGCG, ST6GAL1 ﻿APOE, ﻿TP53INP1 ﻿APOE, ﻿ARG1, ﻿CRYBA2

﻿HMGCR, ﻿KLF12, ﻿LPIN2 ZNF713 ﻿GP2, ﻿HP, ﻿SNF8

﻿PALD1, ﻿PIM3, ﻿PPARA, ﻿ST18

﻿APOA4, ﻿CADM1, ﻿MLXIPL ENDRA, ME1 BDNF APOA4, ﻿JMJD1C, ﻿PTPRT

﻿RBM6 ﻿SNX10 ﻿GCK ﻿APOE ﻿APOE, ﻿CD68

﻿INHBB, ﻿PROX1 ﻿CMKLR1, ﻿PRF1, ﻿RARB BDNF, PRL ﻿PNPLA3

﻿PNPLA3 INHBB ﻿ARG1

﻿RAB5C, ﻿SERPINH1 ﻿ABCG8, ﻿APOA4, ﻿ATXN2 ﻿CLOCK, ﻿CST3, ﻿EDNRA ﻿BDNF, CCDC68, CXCL8 ﻿APOA1, ﻿APOA4, ﻿ARL5B

﻿CNPY4, ﻿COL4A1, ﻿NRP1 ﻿SPC24, ﻿TBXAS1, ﻿TSPAN14 TCF21 ﻿GEM, ﻿SLC5A3

﻿C6orf48, ﻿HMGCR ﻿CYP17A1, ﻿RGS12 ﻿ATF3, ﻿GCK, ﻿HMGCR ﻿ARHGAP20, ﻿C8orf34 ﻿APOC3, ﻿APOE, ﻿FKBP5 ﻿APOE, FN1, HPR, PLA2G7

﻿TMEM106B ﻿TAT ﻿CASTOR1, ﻿FNDC1, ﻿ZNF32 ﻿IBTK, ﻿WBP1L SNF8

﻿GALNT13, ﻿SORBS2

Type 2 Diabetes

Metabolic Syndrome

Obesity

Coronary Heart Disease



 

 39

Table 4. DEHP DEG disease association overlap (GWAS). Blue font identifies down-regulated 

DEGs, red font identifies up-regulated DEGs. 

 

 
 

 

Table 5. TBT DEG disease association overlap (GWAS). Blue font identifies down-regulated 

DEGs, red font identifies up-regulated DEGs. 

 

 
 

 

 

 

 

 

 

 

DEHP Liver Human DEHP Liver Mouse DEHP Liver Rat DEHP Cardiovascular System Rat

﻿C11orf74, ﻿DLEU1, ﻿FAM13A ﻿MEG3, SLC2A2, TTC39C ﻿ABCA1, ﻿ALDH1B1, ﻿ATP8A1 ﻿ABCA1, ﻿ADARB1, ﻿JAG1

﻿AVPR1A, ﻿BCL6, ﻿FGFR4 ﻿MYH10

ARL4A, CEBPB, HMGB1 ﻿FMO1, ﻿NOTCH1, ﻿PTPRM

﻿AKAP12, ﻿COBLL1, JAG1 PCK1, PIM3, TCF4 ﻿ST6GAL1 CACNA2D3, ﻿SCD5 ﻿ACSL1, ﻿ATP1B2, ﻿OASL

PALLD, TRIB1 ﻿TP53INP1, ﻿TTC39C ﻿CPT1A, ﻿IMPA2, ﻿PNPLA3 ﻿SFRP2, ﻿TGFBR3

﻿BCDIN3D ﻿APOA4 ﻿ABCA1, ﻿APOA4 ﻿ABCA1

﻿ASPH, ﻿COBLL1 ﻿DYRK1A, ﻿PTPRT ﻿ANGPTL4, ﻿FADS2, ﻿ME1 ﻿EDNRA

﻿F2RL1, ﻿TRIB1 ﻿SNX10

﻿PFKFB3 ﻿RARB ﻿RAMP3

﻿ITPR3 ﻿PFKFB3, TCF4 ﻿PNPLA3

APOC3 ﻿APOA4, HGFAC, NCOA6 ﻿ABCA1, ﻿ABCG8, ﻿ABHD2 ﻿ABCA1, AGT, CNNM2

SMAD2 ﻿APOA4, ﻿C1S, ﻿CTSS, ﻿LOX EDN1, FNDC1, RAB23

AKAP12, CXCL8, MAP1B ﻿PROCR

NOS3, PALLD, RASD1 ﻿SLC5A3 ﻿ANGPTL4, ﻿CYP17A1 ﻿EDNRA, ﻿PLA2G7, ﻿SEMA5A

TRIB1 ﻿SLC22A4

Type 2 Diabetes

Obesity

Coronary Heart Disease

Metabolic Syndrome

TBT Liver Human TBT Liver Mouse

CCND1, F3, ITGA2, LRIG﻿ARID5B, BACH2, CCND2

PALM2, SACS, SH2B3

SLC22A3, STAT3 ﻿UBE2E2

﻿CCDC77, ﻿TTC39C

﻿ENG, SIPA1

﻿CCDC77, ﻿ PFKFB3 ﻿RARB

CDKN1A, RGS19, SEC2 ﻿BBS9, KLF4, SIPA1

SH2B3, SLC22A3, TSPAN14

KLF2, LOX, N4BP2L2 ﻿RND2

TTC32

Type 2 Diabetes

Metabolic Syndrome

Obesity

Coronary Heart Disease
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Table 6. PFOA DEG disease association overlap (GWAS). Blue font identifies down-regulated 

DEGs, red font identifies up-regulated DEGs. 

 

 
 

 

 

 

  

PFOA Liver Mouse PFOA Liver Rat

﻿AVPR1A ﻿HUNK, MTAP, ﻿PCDH17

﻿RNF6, ﻿SACS

﻿ARL4A, ﻿CEBPB, ﻿HMGB ﻿CAMK1D, HNF4A, SSR1

﻿LPIN2, ﻿PIM3, ﻿TCF4 TLE1

﻿DYRK1A, ﻿ME1, ﻿PTPRT ﻿ARNTL , HNF4A

﻿PFKFB3, TCF4 ﻿FARS2, NCAM2, PITPNB

PTER

﻿C1S, ﻿CYP17A1 ﻿MTAP

﻿FKBP5, ﻿PLTP, ﻿RRBP1 ﻿ARNTL, LDAH, MAD1L1

﻿SLC5A3 RRBP1

Type 2 Diabetes

Metabolic Syndrome

Obesity

Coronary Heart Disease
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