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Abstract of the Dissertation

Essays on High-Frequency Asset Pricing

by

Hongxiang Xu

Doctor of Philosophy in Economics

University of California, Los Angeles, 2015

Professor Bryan C. Ellickson, Chair

This thesis uses high-frequency data to estimate the stochastic discount factor.

The high-frequency data used is sampled at one-second frequency. The fundamen-

tal equation of asset pricing is based on the continuous-time no-arbitrage theory.

For empirical estimation, I apply the general method of moments to estimate the

market price of risk for the risk factors, which consist of exchange-traded funds

(ETFs). In Chapter 1, I estimate a one-factor model using the ETF SPY (an

SPDR ETF that tracks S&P 500 index) as the risk factor. The estimated risk

prices are significant over 2/3 of the sample, and the time series shows plausible

patterns of the overall riskiness of the market. An additional factor using IWM

(the Russell 2000 ETF that tracks the performance of the small-cap equity mar-

ket) as the second factor is incorporated into the model in Chapter 2 to arrive

at a two-factor model. Adding IWM improves the performance of the model and

the estimation precision substantially: the risk price of SPY is almost always

significant and the risk price of IWM is significant for about 2/3 of the sample.

In Chapter 3 I extend the two-factor model by adding a third factor. Adding a

third factor improves the performance of the model to a modest extent, but the

large-cap factor SPY followed by the small-cap factor IWM are predominant.
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CHAPTER 1

One-Factor Model

Continuous-time asset pricing has a well-developed theoretical background dat-

ing back to the early 1900s when Bachelier first used Brownian motion to model

stock prices. Modern continuous-time finance started in the 1970s when Black,

Scholes and Merton developed a model of option prices for a call option whose un-

derlying asset price process follows a geometric Brownian motion. In the 1980s,

Harrison, Kreps and Pliska generalized the theory of arbitrage pricing to semi-

martingale processes, the most general class of continuous-time stochastic process

for which there exists a well-developed theory of stochastic integration. Delbaen

and Schachermayer (2006) completed this theory, proving a version of the funda-

mental theorem of asset pricing that states: If the stock price process follows a

semi-martingale and if there is no free lunch with vanishing risk (a strong form of

the no-arbitrage condition), then there exists an equivalent risk neutral measure.

On the other hand, there has been few empirical tests of arbitrage-pricing

theory at high frequency. The earliest use of high-frequency data dates back to

Epps (1979) who used 10-minute returns to examine the correlation of returns

between different stocks. In the late 1990s, as high-frequency data became widely

available, many financial econometricians began to examine such data. Most of

the attempts focused on using the realized variation to estimate the volatility of

geometric Brownian motion, inspired by Merton (1980) who showed that the ac-

curacy of estimating the second moment of the stock return process over a given

time period can be improved by subdividing the period into finer sub-intervals.
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However, finding that realized variation works poorly at high frequencies, they

concluded that observed stock price processes are not semimartingales, but rather

the sum of a latent semimartingale process plus a microstructure noise term. They

proposed filtering the high-frequency data using various econometric tools or sim-

ply avoiding using data with frequencies higher than 15 minutes. This conclusion

has been very influential. However, Ellickson et al. (2012) challenge this view.

They find that, while stock price volatility is not consistent with geometric Brow-

nian motion, realized variation is consistent with a Heston model of stochastic

volatility.

The main focus of this thesis is on asset pricing rather than volatility esti-

mation. This chapter estimates a one-factor model based on the continuous-time

no-arbitrage theory. Multi-factor models will be treated in Chapters 2 and 3.

1.1 Introduction

Cochrane (2005) is a good exposition of asset pricing theory. To be specific,

consider the following pricing formula, which Cochrane (2005) calls the funda-

mental equation of asset pricing1:

E
[
Mt+hS

i
t+h|Ft

]
= Si

t (1.1)

where [t, t+h] is an interval of time, Si
t and Si

t+h are the prices of asset i sampled

at times t and t+h, respectively. Mt+h is a stochastic discount factor (SDF) over

the interval [t, t + h] and E
[
Mt+hS

i
t+h|Ft

]
is the conditional expectation of the

random variable Mt+hS
i
t+h relative to the information Ft at time t. In the theory

of arbitrage pricing, equation (1.1) is replaced by

Ẽ
[
S̃i
t+h|Ft

]
= S̃i

t (1.2)

1p36, Cochrane (2005)
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where [t, t + h] ⊂ [0, 1], S̃i
t+h =

Si
t+h

S0
t+h

is the price of test asset i relative to a

numeraire asset S0
t+h and Ẽ denotes expectation using an equivalent martingale

measure P̃ such that S̃i is a P -martingale.

In our setting, [0, 1] will represent a trading day where t = 0 is the market

open and t = 1 is the market close. Equation (1.2) is, in turn, equivalent to

E
[
Mt+hS̃

i
t+h|Ft

]
= S̃i

t (1.3)

which I will call the fundamental equation of asset pricing. The key difference

of equation (1.3) from equation (1.1) is that equation (1.3) involves discounted

asset prices, where the asset prices are discounted by a numeraire asset. In the

theory of arbitrage pricing, any asset whose prices are positive almost surely can

serve as the numeraire asset.

This study incorporates exchange-traded funds (ETFs) into the specification

of the stochastic discount factor Mt+h, which has some advantages over the use of

indices such as the S&P 500 index or the Fama-French “SMB” or “HML” factors.

In particular, ETFs are tradable in the market and so their prices can be directly

measured. Furthermore, the fact that an ETF is heavily traded can be regarded

as evidence that the ETF is regarded by market participants as a measure of

systematic risks. The wide range of ETFs available allows us to test various

candidates for mimicking the SDF Mt+h. For instance, in a one-factor model, one

can choose SPY, the most heavily traded ETF, that tracks S&P 500 Index, or, in

the spirit of the popular Fama-French three-factor model, one could choose the

Russell 2000 small-cap index or choose among various value and growth ETFs.

The structure of this chapter is the following: Section 2 reviews the literature

on asset pricing models and empirical estimation techniques. Section 3 briefly

derives the model and the moment condition from various assumptions and ex-

plains the GMM estimation method. Section 4 explains the data source and the

3



cleaning process to obtain the data set used in this study. Section 5 covers the

estimation results and their interpretation, in particular their link to the market

riskiness and macro events. Section 6 concludes.

1.2 Literature

As emphasized by Cochrane (2005), asset pricing models are summarized by

the fundamental equation of asset pricing:

E [Mt+hSt+h|Ft] = St

where Ft is the “information set” at time t; St and St+h denote the asset prices at

time t and t + h, respectively; and Mt+h is the stochastic discount factor (SDF)

of the model at time t+ h.

The key for the asset pricing model is the specification of the SDF. Cochrane

(2005) provides a good summary of the consumption-based asset-pricing litera-

ture in discrete time. In consumption-based models, the SDF is considered to

be related to consumers’ utility. To be specific, the consumption-based model

specifies the SDF as the marginal rate of substitution of the representative con-

sumer who maximizes his or her utility on the consumption stream over time.

The parametric form of the SDF depends on the specification of the utility func-

tion. Since the original consumption based model does not work well in practice

(such as the equity premium puzzle found by Mehra and Prescott (1985)), many

economists start to look for different utility functions for the model (for instance,

the Epstein-Zin preferences proposed in Epstein and Zin (1989)). Some research

works with general equilibrium models by linking consumption to other macro

variables including income and production, etc.

Another approach to specify the SDF comes from arbitrage pricing theory.
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Delbaen and Schachermayer (2010) and Shreve (2004) have a good summary of

the development of the continuous-time arbitrage pricing. Assuming asset prices

are semimartingales, they derive the fundamental theorem of asset pricing that the

no-arbitrage opportunity condition is equivalent to the existence of the equivalent

martingale measure under which the discounted asset prices are martingales,

which in term implies that

E
[
Mt+hS̃t+h|Ft

]
= S̃t

where

Mt+h =
Zt+h

Zt

The random variables Zt and Zt+h are the Radon-Nikodym derivative of the equiv-

alent martingale measure P̃ restricted to the probability spaces
(

Ω, F̃t, Pt

)
and(

Ω, F̃t, Pt+h

)
, respectively. If the market is complete, then P̃ (and hence the

Radon-Nikodym process Z) is consequently determined, and Mt+h = Zt+h

Zt
is the

“return” on the process Z from t to t+ h. In this study I assume that this return

can be replicated by a portfolio of traded assets, in particular exchange traded

funds.

Singleton (2006) provides a good review of the empirical methods for the dy-

namic asset pricing model. According to Singleton (2006), the choice of “preference-

based” model or “no-arbitrage” model might also be due to the availability of

data, as macro data are usually sampled at lower frequencies such as monthly

or quarterly while finance data are sampled at daily frequency or intra-day high-

frequencies. Thus, different econometrics has to take into consideration of the

property of the underlying data set. In particular, if the data reveal the full

information of the distribution of variables in the asset pricing model, then the

Maximum Likelihood method can be used to estimate the SDF. On the other

hand, if no information of the distribution is known, then the linear projection

5



method is often applied. More often, partial information is known, such as the

moment restrictions of some variables. In this case, one can apply the General

Method of Moments (GMM) to estimate the model. In this study, I apply GMM

to estimate the SDF of the asset pricing model.

For the use of high-frequency data, most studies focus on volatility estimation,

as described in the beginning of this chapter. In terms of asset pricing, there are

several papers that study the price dynamics and their implication for algorithm

trading using high-frequency data. For instance, Cartea and Jaimungal (2011)

models the tick-by-tick dynamics of stock prices using the Hidden Markov Model

(HMM) to look for a profitable trading strategy. Bandi and Russell (2005) also

includes a discussion of high-frequency estimation of betas. None of them attempts

to test the validity of the fundamental equation of asset pricing.

1.3 Estimating the Asset-pricing Model

This section sets up the asset-pricing model used for the estimation and intro-

duces the estimation methodology.

1.3.1 Moment Condition

To start with, let [0, T ] denote the length of the “pool”, which is the basic unit

of time in our study. Let (Ft)t∈[0,1] be the filtration. Denote F0 to be the initial

σ-algebra and FT the terminal σ-algebra. In our basic model, T = 1, indicating

that the pool equals a day.

Assuming that stock prices are semimartingales, one can invoke the funda-

mental theorem of asset pricing:

Theorem 1.3.1 (Fundamental Theorem of Asset Pricing). If asset prices are
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semimartingales and if the market satisfies the no free lunch with vanishing risk2

condition, then there exists an equivalent martingale measure under which all dis-

counted asset prices are martingales. Furthermore, if the market is complete, then

the equivalent martingale measure is unique.

If the market is complete and there is no free lunch with vanishing risk, the

fact that S̃n is a martingale under the equivalent martingale measure implies that

S̃n
t = Ẽ

[
S̃n
t+h|Ft

]
(1.4)

for any time t, t + h in the interval [0, 1] where Ẽ [.] denotes the conditional

expectation under the equivalent martingale measure. To be more specific, we

can write (1.4) as the following:

ZtS̃
n
t = E

[
Zt+hS̃

n
t+h|Ft

]
(1.5)

where Z1 is the Radon-Nikodym derivative of the equivalent martingale measure

(EMM) P̃ with respect to P , Zt = E [Z1|Ft] for all t ∈ [0, 1] and E denotes

expectation under the true probability measure.

Calling Mt+h = Zt+h

Zt
and letting R̃n

t+h =
S̃n
t+h

S̃n
t

denote the return of the dis-

counted price of test asset n, equation (1.5) can be written as:

E
[
Mt+hR̃

n
t+h|Ft

]
= 1 (1.6)

Notice that if we let n = 0, i.e., the underlying asset is the numeraire, then we

have E [Zt+h|Ft] = Zt, i.e., Z = (Zt)t∈[0,1] is a P-martingale.

2Delbaen and Schachermayer (2006): For a semimartingale S, let K =
{(H · S)∞ : H admissible, (H · S)∞ = limt→∞ (H · S)t exists a.s} where a strategy is admissible
if it is permitted by the market, that is, the wealth is bounded below almost surely, which ex-
cludes strategies such as the doubling strategy. Then define C = {g ∈ L∞(P ) : g ≤ f ∀f ∈ K}.
S is said to satisfy no free lunch with vanishing risk if C̄ ∩ L∞

+ (P ) = {0} such that C̄ is the
closure of C in the norm topology of L∞

+ (P ).
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I assume that market is complete. Then Zt+h is replicable by some portfolio of

traded assets. I assume the replicating portfolio can be replicated by a collection

of ETFs: i.e., there exists a trading strategy Ht =
(
H1

t , H
2
t , ..., H

d
t

)
such that:

Zt =
d∑

k=0

Hk
t S

k
t (1.7)

where Ht is called the stochastic discount factor (SDF) mimicking strategy and

Sk
t ’s are the prices of some well-traded ETFs. If I further assume that this strategy

is simple, i.e., Ht is constant over [t, t+ h], then using (1.7), we get the following:

Mt+h =

∑d
k=0H

k
t+hS

k
t+h∑d

k=0H
k
t S

k
t

=

∑d
k=0H

k
t S

k
t+h

Zt

=
d∑

k=0

(
Hk

t S
k
t

Zt

)
Sk
t+h

Sk
t

=
d∑

k=0

θktR
k
t+h

(1.8)

where θkt =
Hk

t S
k
t

Zt
is the share of the kth security in the SDF replicating portfolio.

For example, in the case of the one-factor model, i.e., d = 1, and assuming θt

is constant over [0, 1], that is, over the whole day, then combine (1.6) and (1.8),

one can get:

E
[(
θ0R0

t+h + θ1R1
t+h

)
R̃i

t+h|Ft

]
= 1, (i = 1, 2, ..., N) (1.9)

Substituting θ0 = 1− θ1,

E
[(
R0

t+h + θ1R10
t+h

)
R̃i

t+h|F i
t

]
= 1 (1.10)

where R10
t+h = R1

t+h −R0
t+h.

1.3.2 Estimation Technique

Rearranging equation (1.10) and using the fact thatR0
t+hR̃

i
t+h =

S0
t+h

S0
t

Si
t+h/S

0
t+h

Si
t/S

0
t

=

Si
t+h

Si
t

= Ri
t+h and rit+h = Ri

t+h−1, the net return of asset i over the interval [t, t+h],

8



we get the following:

E
[
rit+h + θ1R10

t+hR̃
i
t+h|Ft

]
= 0 (1.11)

Applying the law of iterated expectations, we obtain the following unconditional

expectation:

E
[
εit+h

]
= E

[
rit+h + θ1R10

t+hR̃
i
t+h

]
= 0 (1.12)

where

εit+h = rit+h + θ1R10
t+hR̃

i
t+h. (1.13)

We turn to General Method of Moments (GMM) to estimate equation (1.12).

To be more specific, I subdivide each trading day into 2340 10-second intervals,

a sample size for each trading day equivalent to 10 years of daily data. For each

interval [t, t + h] the gross returns are computed using the prices at t and t + h.

Because we have 48 test assets and equation (1.12) applies to each of them, we

have 48 moment conditions. Since we have only one parameter to estimate and 48

moment conditions, I apply the multiple-equation GMM with common coefficients

for each trading day to estimate the risk price θ (See Hayashi (2000)).

Hayashi (2000) has a detailed discussion about the assumptions of the multi-

equation GMM model, and the notation here follows the one used in Chapter 4 of

Hayashi (2000). I assume the model satisfies the usual stationarity and ergodicity

conditions. Since there is only one parameter to estimate and 48 moment condi-

tions, the system is over-identified, and we do not require instrumental variables.

The orthogonality conditions are:

E
[
εi
]

= 0 (i = 1, 2, ..., N) (1.14)

We also require that {εit}t∈[0,1] for all i = 1, 2, ..., N is a martingale difference

sequences, that is,

E
[
εit+h

∣∣Ft] = 0 ∀i = 1, 2, ..., N (1.15)
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This is exactly the moment condition of equation (1.11).

Finally, let zit = R10
t R̃

i
t. For the system to be identified, the matrix

Σz =


E[z1t ]

...

E[zNt ]

 (1.16)

needs to have full column rank. Because we have one risk factor and 48 test

assets, the system is over-identified. Replace the population moments in (1.16)

with sample moments such that

Sz =


1
T

∑T
t=1 z

1
t

...

1
T

∑T
t=1 z

N
t

 (1.17)

Also, let

Sy =


1
T

∑T
t=1 r

1
t

...

1
T

∑T
t=1 r

N
t

 (1.18)

Then the sample moment condition can be written as

gT (θ̂) = Sy − Sz θ̂ (1.19)

The GMM method minimizes the following quadratic form

gT (θ̂)′ŴgT (θ̂) (1.20)

where Ŵ is any symmetric and positive definite weighting matrix.
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The GMM estimator is

θ̂T (Ŵ ) =
(
S ′zŴSz

)−1 (
S ′zŴSy

)
(1.21)

When all the assumptions mentioned above are satisfied, the GMM estimator is

consistent, and given {εit}t∈[0,1] ∀i = 1, 2, ..., N are martingale difference sequences,

the estimator is also asymptotically normal.

In the estimation, I utilize the two-step GMM where in the first step the

weighting matrix is chosen to be the identity matrix and in the second step, the

weighting matrix is the estimated variance-covariance matrix of the residuals from

the first step. To be specific, in first step estimation, I obtain

θ̂(1) = argmin gT (θ̂)′IgT (θ̂) (1.22)

where I is the identity matrix. In the second step, I take

Ŵ =

(
1

T

T∑
t=1

gT (θ̂(1))gT (θ̂(1))
′

)−1
(1.23)

The estimator obtained from the two-step estimation is efficient.

I estimate the GMM equation separately for each trading day using the gmm

package of R. The gmm package takes the data matrix as its input and returns

the estimation result. The key R codes for the GMM estimation are as following:

## GMM method

g = function ( theta , x .m){

gmat = x .m[ , 1 : 4 8 ] + theta * x .m[ , 4 9 : 9 6 ]

return ( gmat )

}

r e s sd f = gmm(g , x = x .m, t0 = c ( 0 ) , method = ‘ ‘ Brent ’ ’ ,
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lower = −100, upper = 100)

where x = x.m is the data matrix. The first 48 columns of data.m form an T ×N

matrix of rit and the last 48 columns form an T ×N matrix of Zi
t = R10

t R̃
i
t. In our

settings, over a single day there are T = 2340 ten-second intervals and N = 48

test assets.

In the GMM estimation, the parameter estimated is θ̂ (called “theta”), the

share of SPY in the SDF mimicking portfolio for the given trading day. To obtain

the estimation coefficients and statistics, one applies the following R code:

summary( r e s sd f )$ c o e f f i c i e n t

The J-test result is obtained using:

summary( r e s sd f )$ s t e s t

1.4 Data

In this section I discuss the dataset and the test assets used for the estimation

and the data-cleaning procedures to treat the raw high-frequency data.

1.4.1 Data

The high frequency data for this study is from the Trade and Quote (TaQ)

database on trades3. The test assets used in this paper are the component stocks

of the Dow Jones Industrial Average and several well-traded ETFs. In total,

there are 48 assets included in the study. In this chapter, a one-factor model is

estimated. I use SPY as a proxy for the market, which is a heavily traded ETF

3TaQ also has data on quotes for each stock, which gives for each stock the bid and ask prices
associated with each time stamp. We do not use this data for two reasons: first, the amount
of data to be handled is too large, and quotes are not necessarily prices at which there was a
trade.
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that tracks the S&P 500 index. The time frame is from January 1, 2007 to July

31, 2012.

I utilize the procedure developed by Whang (2012) for data downloading and

processing4. Since the focus of this study is on asset pricing, while Whang (2012)

focuses on estimating the volatility using the Heston model, there are some dif-

ference in processing the data. First, more ETFs are downloaded for this study

to serve as test assets and to construct the SDF mimicking portfolio. Second,

I create a data frame of gross returns over each 10-second interval for each test

asset. For each day the data frame has 48 columns for each test assets and 2340

rows corresponding to the 2340 ten-second intervals over the trading day. There

are 1405 separate data frames, one for each trading day in the sample period.

1.4.2 Data Cleaning

Data cleaning is a standard first-step procedure in the literature, and there

is no consensus on the best practice to be applied5. This study uses the data

cleaning process proposed by Whang (2012).

The original data on the WRDS database are stored in SAS format where

each file contains the information for one single trading day. Data sampled at

one-second frequency are downloaded from WRDS and are restructured into R

data frame format. The reason to use R is for its convenience as the underlying

data is irregular where some seconds have no associated transactions at all (called

inactive seconds), and many have more than one transaction. The purpose of

data reduction is to reduce the data set so that each second has only one price for

4The original database from WRDS (Wharton Research Data Services) is in SAS format.
Whang (2012) developed the Python program to download the Dow Jones stock data and stored
them as R data frames. Whang (2012) also designed the data cleaning process by first reducing
the data to get the raw median prices, and then filtering the prices to remove extreme outliers
to get the prices for the study.

5Page 33 of Hautsch (2012) introduces nine different methods for data cleaning that are used
in research.
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each stock or ETF. Whang (2012) computes the median share price of each active

second (defined to be those seconds with active trades). First, the stock prices for

each trading day are sorted in increasing order by time stamp. For each second,

prices are ranked from low to high, together with the volume associated with each

price. Then the median-share price is computed for the second. The advantage

of this method is two fold. First, there is usually a transaction that traded at the

median-share price, while other methods such as volume-weighted average usually

do not yield a price actually traded. Second, the median share price is a better

measure of the “typical” price of a share within a second when there are outliers.

Therefore, this method seems preferable to some other alternatives, such as the

share-weighted average prices suggested by Hansen and Lunde (2006). The data

reduction process significantly reduces the size of the data to store and use relative

to the data frame for every transaction.

After reducing the data to get a median prices for each second for which

there is a trade, they are further filtered to get the data used for our empirical

study. The reasons for filtering the data is because: (1) There are occasional data

errors in the data base6 that artificially inflate the volatility since mis-recorded

prices usually result in large price jumps and consequently consecutive jumps in

the realized variation process; (2) Sometimes there are extremely large trades

whose prices are so different from adjacent prices that, if included, would result in

large realized variation of the price process7 and would thus affect the estimation

significantly. Many filters are suggested by literature such as Brownlees and Gallo

(2006), Barndorff-Nielsen et al. (2008) and Hautsch et al. (2011). Here I apply

the method suggested by Whang (2012) that removes prices that increase the

realized variation (RV) the most. Whang (2012) detects jumps in the realized

6Page 33 of Hautsch (2012) documents one example of Apple trade prices.
7Page 24 of Whang (2012) provides an example of SPY trade prices.
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variation process and outlier prices using the following influence statistics:

Influencej := RV G
N

i −RV
GN\{Xj}
i

=


(Xj+1 −Xj)

2 + (Xj −Xj−1)
2 − (Xj+1 −Xj−1)

2 if t0 < tj < tN

(Xj −X0)
2 if tj = t0

(XN −XN−1)
2 if tj = tN

Here, Xj denotes the jth log price and RV G
N

i is the realized variation over the

block i of the grid GN . Therefore, RV G
N

i −RV
GN\{Xj}
i measures the marginal con-

tribution of the log price Xj to the realized variation of the block that contains Xj.

A median-share price is tagged if its influence exceeds 0.2 of the RV of a window of

201 observations centered on Xj, or if its influence exceeds 5% of the total RV for

the day. If the price is greater than both the immediately preceding median-share

price and the median-share price that immediately follows, I delete the maximum

reduced-price of that second (and recompute the median-share price). I also delete

the minimum reduced-price of a time stamp if the median price is less than the

two immediately adjacent prices. This process is iterated until one obtains a se-

ries of median-share prices that do not fail the test. According to Whang (2012),

the median number of prices removed per day is much less than 1% of the total

transactions.

The data frame obtained using Whang’s procedure provides many details of

the prices for each one-second time stamp, such as the size of the trade, the number

of prices, cumulative variations, and the time stamp of the inactive seconds, etc.

The focus of this study is the median share price. For each asset, the return over

each 10-second interval is computed using the median share prices and arranged

into R data frames for estimation. A separate data frame is computed for each

trading day with 2340 rows and 48 columns. Each column represents the (gross)

returns for one test asset, and each row records the return over one 10-second
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time block. Table 1.1 displays a sample of the data frame for the first 10 seconds

for one trading day over some of the test assets. It is worth mentioning that most

of the “1.000”’s in the table are due to the roundoff of the returns.

Table 1.1: Sample Data Frame of Gross One-second Returns

Date XLB XLE XLF XLI XLK XLP XLU XLV XLY
20080107 1.000 1.000 1.000 1.000 0.997 0.997 0.997 1.000 1.000
20080107 1.002 1.000 0.999 1.000 1.001 1.000 1.000 1.000 1.000
20080107 1.000 1.001 1.000 1.000 1.000 1.000 1.000 1.000 1.000
20080107 1.000 1.002 1.001 1.000 1.000 1.000 1.000 1.000 1.000
20080107 1.000 0.999 1.000 1.000 0.999 1.000 0.999 1.000 1.000
20080107 1.001 1.001 1.003 1.000 1.001 1.000 1.000 1.000 1.000
20080107 1.000 1.000 1.001 1.000 1.000 1.000 1.000 1.000 1.000
20080107 1.000 1.000 1.000 0.999 1.000 1.000 1.000 1.000 1.000
20080107 1.000 0.999 0.999 1.000 1.000 1.000 1.000 1.000 1.000
20080107 0.998 1.000 1.000 0.999 1.000 1.000 1.000 1.000 0.999

1.4.3 Test Assets

For liquidity considerations, the choice of test assets remains in large-cap stocks

and heavily-traded ETFs. Table 1.2 to Table 1.5 list the stocks and ETFs chosen

as test assets for the estimation of the one-factor model in this chapter.
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Table 1.2: Individual Stocks

Ticker Description Ticker Description

AA Alcoa AXP American Express
BA Boeing BAC Bank of America
C Citigroup CAT Caterpillar
CVX Chevron DD DuPont
DIS Walter Disney GE General Electricity
HD Home Depot HPQ Hewlett-Packard
IBM IBM INTC Intel
JNJ Johnson & Johnson JPM JP Morgan
KO Coca-Cola MCD McDonald’s
MMM 3M MRK Merck & Co.
MSFT Microsoft PFE Pfizer
PG Procter & Gamble T AT&T
UTX United Technologies Corporation VZ Verizon
WMT Walmart XOM Exxon Mobil

For this study, I choose the individual stocks that were components of the

Dow Jones Index at January 2007 and were traded during the whole period of our

study. In total there are 28 stocks selected.

Table 1.3: Market ETFs

Ticker Description Ticker Description

SPY S&P 500 DIA Dow Jones Industrial Average

I choose SPY and DIA as ETFs that track broad market indices: the S&P 500

and the Dow Jones Industrial Average respectively. SPY will also serve as the

risk factor.
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Table 1.4: Sector ETFs

Ticker Description Ticker Description

IYR US real estate XLB SPDR material
XLE SPDR energy XLF SPDR financial
XLI SPDR industrial XLK SPDR technology
XLP SPDR consumer staples XLU SPDR utility
XLV SPDR healthcare XLY SPDR consumer discretionary

I also include as test assets the nine SPDR sector ETFs, which are heavily

traded and represent the performance in different sectors of the economy. In

addition, since the period under our study covers the 2008 financial crisis and the

burst of the housing market bubble, I include IYR, an ETF that tracks the US

real estate market.

Table 1.5: Style ETFs

Ticker Description Ticker Description

IWS Russell mid-cap value IWM Russell 2000
IWO Russell 2000 growth IWN Russell 2000 value
IWB Russell 1000 IWF Russell 1000 growth
IWD Russell 1000 value IWR Russell mid-cap

Finally, I include eight ETFs that mimic different investment styles, such as

large and small-cap stocks and value and growth stocks. Those styles are popular

investment strategies employed by asset managers. In Chapter 2 and 3, they will

be used to construct an asset pricing model similar to the Fama-French three-

factor model.
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1.5 Results

For the main result, I include all the test assets and choose 10-seconds as

the frequency for the benchmark estimation. The decision to use 10-second data

is a judgment call. I want the frequency to be high to better approximate the

continuous-time process. Using 10-second data would lead to 2340 data points

for each trading day, approximately the same size as a sample of 10 years of

daily returns. On the other hand, I refrain from using one-second data, the

highest frequency data possible with this data set. For many test assets, there

are many inactive seconds during a day that do not have any transaction. For

the purpose of estimation, whenever there is one inactive second, the last price

of the previous active second is used, and therefore a return of “1” is recorded,

yet this “interpolated” interval is not informative for the purpose of our study. In

addition, for the GMM estimation, using one-second data requires about half an

hour to compute the result for one single day and over a week to get the results

for the full 1405 trading days under study, which is slow. Thus, 10-second data

seems appropriate for the purpose of this study.

1.5.1 Summary

The time period under study is from January 2007 to July 2012, a period of

1405 trading days. This time period includes many macroeconomic events, such

as the US financial crisis, Euro crisis and the Fed quantitative easing, etc.

For the one-factor model, I use SPY as the risk factor, a heavily traded ETF

that tracks the S&P 500 index. The S&P 500 Index has long been used as a

popular proxy for the market portfolio of the US stock market, and SPY is one

of the largest and the most actively traded ETFs, and thus is a natural candidate

to be used as the risk factor.

For the numeraire, I choose SHY, a bond ETF that tracks the performance
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of the US 1-3 year Treasury bond. Although any asset whose price is almost

surely positive can serve as the numeraire, SHY is chosen because it tracks the

returns of short-term Treasury bonds, which are default-free assets. Therefore,

the estimation results of θ̂ can be interpreted naturally as the proportion in the

risky asset, and 1− θ̂ in a risk-free asset.

After the estimation computed by the gmm package of R, the results are

extracted and re-organized into an R data frame for study and analysis using the

summary command of R, as shown previously. The first few days of the data

frame are shown in Table 1.6:

Table 1.6: First 6 Days of GMM Estimates

Date Theta S.E. p.value J.test

20070103 -0.6494696 0.3612026 7.216504e-02 0.9954959
20070104 -0.4072438 0.6964119 5.586994e-01 0.9994348
20070105 -0.8100496 0.3246761 1.259759e-02 0.9976119
20070108 -0.9506956 0.4825913 4.884055e-02 0.9999648
20070109 -0.8551870 0.7824328 2.744005e-01 0.9999765
20070110 -0.9091853 0.2098295 1.471104e-05 0.9796260

In Table 1.6, the column “Date” lists the trading dates under study. The

column “Theta” is the estimated proportion investing in the risky asset in the

SDF mimicking portfolio, or θ̂. The column “S.E.” stores the standard errors of

the estimates, and the “p.value” column records the p-value of the estimates. The

column “significance” marks the estimations with p-value less than 0.05, indicating

a 5% significance level. The “J.test” column summarizes the p-value of the J-test

of GMM (I call it “Jp-value” hereafter), which tests whether the estimated model

is mis-specified.

Table 1.7 summarizes the significance of the daily estimates of the risk price

of SPY and the J-test. About 66% of the trading days yield significant estimates

of θ at the 5% level. The J-test measures whether the model is mis-specified. The
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null hypothesis is that the model is correctly specified. I choose the critical J-test

p-value to be 0.1. Table 1.7 suggests that for the trading days with significant

estimates, none of them have any evidence of model mis-specification, i.e., with a

Jp-value lower than 0.1. Figure 1.1 plots the test results.

Table 1.7: Significance Test & J-test

Level of significance Number % significant % significant pass J-test

0.1 983 70.0% 100%
0.05 925 65.8% 100%
0.01 837 59.6% 100%

Figure 1.1: Test Results

In Figure 1.1, the x-axis represents the t-statistic of the estimate, and the y-axis

the J-test significance level. The horizontal and vertical lines divide the plot into

four boxes. The top-left box includes estimates that are significant (t-statistics

is less than -1.96, corresponding to 5% significance level) and with no evidence

of model mis-specification (Jp-value is greater than 0.1). The total number of
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estimates in this area is 925, or 65.8% of the whole sample. The top-right box

includes estimations that are not significant, though they pass the J-test. There

are 473 estimations, 33.7% of the total sample in this box. The single estimate in

the bottom-right corners does not pass the model mis-specification test and is not

significant, representing 0.07% of the sample. There are no estimates that fall in

the bottom-left box.

Focusing on the estimations in the top-left region of Figure 1.1, we observe that

most of the estimations yield a Jp-value greater than 0.8 (in fact, many Jp-values

are close to 1), strongly suggesting no evidence of model mis-specification. A high

proportion of estimates have their t-statistics less than -3. We can conclude the

GMM estimation works well on about 2/3 of the trading days.

Figure 1.2 plots the estimation of the θ’s in the top-left region. We notice

that on the left box, one estimate (March 13, 2009) is positive and very large

in magnitude (θ̂ = 49.78, a magnitude 10 times more than the rest), a clear

outlier. In the following discussion, I remove this estimate to study the remaining

significant estimates in the upper left box of Figure 1.1.
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Figure 1.2: Box Plot for θ̂

Figure 1.3 plots the time series of the significant estimations. Recall that the

estimation ends at July 31, 2012, leaving a five-month gap at the end of the year

2012.
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Figure 1.3: Time Series Plot of the Significant Estimations

A quick observation from Figure 1.3 shows that all of the estimated θ̂’s are

negative, and most are between -1.2 and -0.8 centering around -1. The estimates

are more dispersed with more negative results late in 2008, early in 2009 and

late in 2010, with occasionally large, negative estimates such as the one at the

beginning of 2012.

1.5.2 The Good Estimates

The rest of this chapter will focus on the study of the significant estimates of

the model, which constitute 2/3 of the total sample period.
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1.5.2.1 Summary Statistics and Distribution

Table 1.8 provides summary statistics for those days that have significant es-

timates of the risk price. It is worth mentioning that the year 2012 only includes

data from January to July. In Table 1.8, “Mean (-t)” is the mean of the t-statistics

of the estimates with the opposite sign. Since all of the good estimates are nega-

tive, a negative sign is taken to simplify the presentation. The “Mean precision”

is defined to be the mean of the reciprocal of the t-statistics (with sign changed)

to measure the error of the estimates.

Several observations can be made from Table 1.8. As discussed previously, θ

represents the share of SPY in the SDF mimicking portfolio, and 1−θ is the share

of the numeraire. We observe that θ̂’s, the estimations of the share of SPY in the

SDF, are negative. According to the theory, the SDF mimicking portfolio should

pay more when SPY has lower return, thus serving as a “hedging” portfolio for the

risk factor. Therefore, our estimation results are in accordance with the theory

since the negative share of SPY in the SDF mimicking portfolio suggests that the

mimicking portfolio actually shorts the SPY. The parameter θ can be viewed as

measuring the market riskiness, with a more negative θ̂ indicating a riskier market

condition.

Furthermore, the estimates are more negative in 2008, possibly due to the

Great Recession. The precision of the estimates improves since 2008, as well.
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Table 1.8: Summary Statistics

Year Statistics θ̂ Year Statistics θ̂

2007 Mean -0.948 2010 Mean -0.997
Median -0.930 Median -0.987
Mean (-t) 5.346 Mean (-t) 6.825
Mean precision 0.187 Mean precision 0.147
Min -1.385 Min -1.863
Max -0.497 Max -0.639

2008 Mean -0.979 2011 Mean -0.986
Median -0.961 Median -0.971
Mean (-t) 7.864 Mean (-t) 7.982
Mean precision 0.127 Mean precision 0.125
Min -1.601 Min -1.771
Max -0.517 Max -0.591

2009 Mean -1.073 2012 Mean -1.019
Median -1.029 Median -1.010
Mean (-t) 7.404 Mean (-t) 7.137
Mean precision 0.135 Mean precision 0.140
Min -2.710 Min -2.036
Max -0.580 Max -0.577

Figure 1.4 shows the distribution of θ̂. For most of the trading days, θ̂ is be-

tween -1.2 and -0.8 and is centered on -1. The distribution is negatively skewed as

shown from the histogram, the kernel density plot and the box plot, indicating the

existence of infrequent but large negative values of θ̂. However, it is worth men-

tioning that these plots only consider the static property of θ̂, and they implicitly

assume that the distribution of θ̂ does not change or shift during the period under

study. Given the pattern in Figure 1.3, we might suspect that the distribution

of θ̂ might shift according to market conditions, say during the Great Recession

and the Euro crisis. The Normal Q-Q plot shows that, except for the tails, the

distribution of θ̂ closely resembles a normal distribution.
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Figure 1.4: Histogram of θ̂

1.5.2.2 Time Series of the Estimation

To better make sense of the estimations, we study the behavior of θ̂ over time

by plotting the time series of the good estimations for each year under study, as

seen in Figure 1.5:
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(a) 2007-2012

(b) 2007 (c) 2008

(d) 2009 (e) 2010

(f) 2011 (g) 2012

Figure 1.5: Time Series of θ̂
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In Figure 1.5, each year is considered to be a unit of time of length 1. The

estimated risk prices are plotted year by year as time series with each dot cor-

responding to a daily risk price. The dashed line measures the median of the

estimates over the entire period, which serves as the reference line of the plots.

The median is chosen instead of the mean in order to eliminate the effect of out-

liers. The dotted lines plot the ±1 median standard error over the entire period.

For the analysis, I compute the central tendency of the data using the R

“lowess” procedure, which performs the locally-weighted polynomial regression

(hereafter, the “lowess” method) by fitting polynomials locally to smooth the

data. To be more specific, for a given point in a scatter plot (xi, yi), a fitted value

of (xfi , y
f
i ) is the value of a polynomial fit to the data using weighted least squares

with a neighborhood of points, called the smooth span. The weight is chosen such

that it is large when (xi, yi) is close to (xfi , y
f
i ) and small otherwise. Therefore,

the result is less affected by outliers and thus can represent the central tendency

of the underlying data. The curve is plotted as the solid line in Figure 1.5.

The “lowess” method requires the choice of smooth span f , which sets the f

fraction (thus, f × n data points, where n is the sample size) of nearest neigh-

borhood used for fitting a local polynomial. The smoother span of the “lowess”

function controls the proportion of points that are used to construct the polyno-

mial smoother, and thus a larger number leads to a higher degree of smoothness.

On the other hand, a small number would capture more variations of the un-

derlying data. According to Cleveland (1979), f = 0.5 is a good starting point,

and anywhere between 0.2 and 0.8 is usually chosen. In this study, I choose the

smooth span to be 20% of the number of data points in each year so that about

50 days (a little more than two months worth of data) are used to compute the

lowess estimates.

Several observations can be made. First, although θ̂ varies from day to day,

most of the estimates falls within the dotted lines. Occasionally, there are esti-
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mates that falls below the lower band. Most of these estimates are clustered at

the end of 2008 and the first half of 2009 (during the financial crisis) and the end

of 2011 (during the Euro crisis). Second, the central tendency curve is quite stable

as it stays within the band during the whole period. However, some patterns of

the central tendency can be observed as it declines during the early 2009. Then

it gradually rises until it declines again at the end of 2011.

Figure 1.6 plots the lowess curve and the location of several macroeconomic

events8 during the period.

Figure 1.6: Central Tendency and Macro Events

In sum, we are able to obtain reasonable estimation results for our one-factor

model of asset pricing. About 2/3 of the trading days have significant estimates

of θ̂, and the estimation results make sense as they match the macro events quite

well during the sample period. As market becomes more volatile and risky, θ̂

becomes more negative to reflect the need to short more SPY - the risk factor -

in order to hedge the risk.

8Source: http://www.policyuncertainty.com/, which is the study on the Economic Uncer-
tainty Indices of major economies by Scott Baker, Nick Bloom and Steven Davis.
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1.6 Conclusion

This chapter uses high frequency data to estimate a one-factor asset-pricing

model, assuming that asset prices are semimartingales and there are no arbitrage

opportunities in the market. By further assuming that the portfolio weights for

the mimicking portfolio are constant over 10 seconds, I obtain a linear specifica-

tion for the stochastic discount factor. The model performs rather well. I apply

the original data set to estimate the stochastic discount factor with minimal data

cleaning only, rather than going through the filtering procedure advocated by the

microstructure noise literature that claims observed asset prices are semimartin-

gales plus noises. About two thirds of the total sample yield significant estimates

of θ̂, the key parameter for our pricing kernel. Our estimates of θ̂ measure the

market risk, which seems to correspond to key macro events during the period

under study.

1.7 Appendix: Derivation of the Moment Condition

This section provides a rigorous derivation of the moment condition (1.10).

The notation is the same as in Section 1.3.1.

I first make the following two assumptions:

Assumption 1.7.1 (Semimartingale). Asset prices are semimartingales.

Assumption 1.7.2 (NFLVR). The market satisfies the no free lunch with van-

ishing risk condition (NFLVR).

The notion of semimartingales is a generalization of many familiar stochastic

processes, such as the Geometric Brownian Motion and the Ornstein-Uhlenbeck

process. When the underlying stochastic process is a semimartingale, the stronger

form of no arbitrage condition, the NFLVR, is used to prove the fundamental

theorem of asset pricing. These assumptions allow the most general form of the
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fundamental theorem of asset pricing without imposing any specific form on the

underlying processes under consideration.

To proceed, I introduce the definition of numeraire:

Definition 1.7.1 (Numeraire). A numeraire is any adapted price process that is

strictly positive almost surely.

Usually, a numeraire is chosen to be the bank account process or any risk-

free or, in mathematics, predictable process. However, any adapted process with

positive prices almost surely would work, and thus the choice is not unique. The

fundamental theorem of asset pricing asserts that discounted asset prices are mar-

tingales. For detailed discussion of the numeraire, refer to Section 2.1 of Delbaen

and Schachermayer (2005).

One more assumption is needed:

Assumption 1.7.3 (Complete Market). Market is complete.

I repeat here the fundamental theorem of asset pricing, which is key in the

derivation:

Theorem 1.7.1 (Fundamental Theorem of Asset Pricing). If asset prices are

semimartingales, and if the market satisfies the no free lunch with vanishing risk

condition, then there exists an equivalent martingale measure under which all dis-

counted asset prices are martingales. Furthermore, if market is complete, then the

equivalent martingale measure is unique.

Now, consider the N + 1 dimensional asset price processes
{
S0
t , S

1
t , ..., S

N
t

}T
t=0

where S0
t is the numeraire.

Equation (1.5) follows from the following proposition:

Proposition 1.7.1. Under assumption 1.7.1 and assumption 1.7.2, we have ZtS̃
n
t =

E
[
Zt+hS̃

n
t+h|Ft

]
where {Zt}Tt=0 is some martingale.
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Proof. Given
{
S̃n
t

}
t∈[0,T ]

is a semimartingale, apply the fundamental theorem of

asset pricing. There exists a risk neutral measure such that under this measure,{
S̃n
t

}
t∈[0,T ]

is a martingale.

Applying Radon-Nikodym theorem, for any t, t+ h ∈ [0, T ], we get

ZtS̃
n
t = E

[
Zt+hS̃

n
t+h|Ft

]
or

E
[
Mt+hR̃

n
t+h|Ft

]
= 1

where Mt+h = Zt+h

Zt
and R̃t+h = S̃t+h

S̃t
.
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CHAPTER 2

Multi-Factor Model: Two-Factor Case

In Chapter 1 I estimated a one-factor asset pricing model using high-frequency

data with SPY as the factor. The estimation works well: estimates are significant

for over two thirds of the days in our sample period (2007-2012), and the J-tests

indicate that the model is well specified. Moreover, all of the significant risk

price estimates are negative, which is consistent with our interpretation that the

portfolio of the numeraire asset and SPY can mimic the “return” of the Radon-

Nikodym derivative of the equivalent martingale measure. This chapter improves

the specification using instrumental variables that divide the market day into

sub-periods and using two risk factors.

2.1 Puzzles

Although the results of Chapter 1 are surprisingly good, there is clear room for

improvement. The risk price is significantly different from zero in only two thirds

of the days in our sample, and attempts to allow for factors other than SPY fail

decisively. I begin by discussing briefly a number of failed attempts to improve

the specification. These failures provide insight into what eventually works.

2.1.1 Pooling

The standard errors for the risk price estimates in Chapter 1 are quite high.

• For 1/3 of the days, the estimates are not significantly different from zero.
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• Although a graph of the “lowess” reveals a plausible pattern in the risk price

for SPY, the range is contained within two standard errors of the estimates.

• While the mean of the significant estimates is roughly -1, standard errors

are about 0.2, which are not as small as one would like.

One possibility is that the 2340 ten-second returns in a day is not a large enough

sample. To explore that possibility, I aggregated the date frame used for the

estimation over 5-day, 10-day, and 20-day periods. I assume that the estimator of

the price of risk, θ̂, is constant over the 5, 10 or 20 days respectively, corresponding

to the weekly, half-monthly and monthly estimations. The motivation for pooling

is the hypothesis that the large standard errors in the daily estimates reflect

sampling error rather than variation of the risk price from day to day.

The following table summarizes the pooled estimates to the daily estimates

(the benchmark). Significant estimates are defined to be those whose t-statistics

is less than -2, or equivalently, a p-value less than 0.05. (There are no days in which

t > 2: i.e., significant estimates always have the expected sign.) The significance

level for the J-test is chosen to be 10%. Statistics of mean, median, minimum

and maximum are computed only for those estimates that pass the J-test and are

significant.
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Table 2.1: Pooling Method Results

Statistics Benchmark 5-day 10-day 20-day

No. of estimates 1405 281 140 42
% significant 65.8% 64.8% 59.3% 60.0%
% passes J-test 99.9% 99.6% 100% 100%
Mean -0.998 -0.988 -1.011 -0.980
Median -0.976 -0.977 -0.966 -0.967
Mean (-t) - whole sample 4.895 4.647 4.212 4.599
Mean precision - whole sample 0.204 0.215 0.237 0.217
Mean (-t) - significant only 7.124 6.897 6.483 7.444
Mean precision - significant only 0.140 0.145 0.154 0.134
Min -2.710 -1.690 -1.897 -1.379
Max -0.497 -0.629 -0.692 -0.535

In Table 2.1, “Mean (-t)” is the mean of the t-statistic of the estimate with

the opposite sign. The negative sign is taken to simplify the presentation of the

result since all significant estimates are negative. The “Mean precision” is defined

to be the mean of the reciprocal of the t-statistics (with sign changed). As Table

2.1 shows, all four estimations yield a similar percentage of estimates that are

significant, and the mean, the median and the mean standard error of estimates

over 2007-2014 are almost indistinguishable. I conclude that pooling does not

help.

2.1.2 Adding Instrumental Variables

The estimates in Chapter 1 are based on the following moment condition:

E
[
rnt+h + θ1R10

t+hR̃
n
t+h|Ft

]
= 0 (2.1)
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where R10
t+h = R1

t+h − R0
t+h. I applied the law of iterated expectations to obtain

the unconditional expectation equation:

E
[
rnt+h + θ1R10

t+hR̃
n
t+h

]
= 0 (2.2)

Equation (2.2) is the moment condition used for the estimation. Since there is

one moment condition for each of the 48 test assets and only one parameter to

estimate, the system is well over-identified.

To improve the results from Chapter 1, I explored the possibility of adding

instrumental variables. As equation (2.1) indicates, valid instrumental variables

Xt must be measurable with respect to Ft, the information set at the beginning

of each 10-second interval. Let εnt+h = rnt+h + θ1R10
t+hR̃

n
t+h so that equation 2.1

becomes

E [εt+h|Ft] = 0 (2.3)

We have

E [Xtεt+h|Ft] = XtE [εt+h|Ft] = 0 (2.4)

and thus the orthogonality condition is met.

I estimated the model using two different instrumental variables. The first one

uses the lagged return of SPY as the instrumental variable, and the other one

uses the lagged return of the test asset. Table 2.2 repeats the summary statistics

where the significance level is chosen at 5% and the critical J-test p-value is 10%.
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Table 2.2: Estimation Using Instrumental Variables

Statistics Benchmark Lag SPY Lag test asset

No. of estimates 1405 1405 1405
% significant 65.8% 24.3% 66.2%
% passes J-test 99.9% 45.8% 99.9%
Mean -0.998 -1.172 -0.995
Median -0.976 -1.078 -0.975
Mean (-t) - whole sample 4.895 1.068 4.921
Mean precision - whole sample 0.204 0.936 0.203
Mean (-t) - significant only 7.124 6.453 7.124
Mean precision - significant only 0.140 0.155 0.140
Min -2.710 -6.166 -2.683
Max -0.497 -0.037 -0.517

When using the lagged return of SPY as the instrumental variable, the number

of significant estimates declines sharply, and less than half of the sample passes

the J-test. Using the lagged return of the test assets yields results similar to

the benchmark model. While the number of days with significant estimates in-

creases slightly, there is no improvement in the precision of the estimates. Adding

instrumental variables does not seem to help.

2.1.3 Choice of Test Assets

By eliminating individual assets and retaining only the ETFs, the estimates

can change a lot for some days1. Using only ETFs is the analog of using portfolios

of stocks to replace idiosyncratic risks, a standard practice in the finance litera-

ture. I have performed the estimation of the model using ETFs only as dropping

individual stocks can avoid the impact of idiosyncratic risks to the estimation.

Table 2.3 lists the ETFs used for the estimation.

1For instance, the estimate for the risk price of SPY on April 13, 2009 in the one-factor
model is -2.71 using all individual stocks and ETFs as test assets. However, when removing two
individual stocks, BAC and C, the estimate becomes -1.41.
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Table 2.3: ETFs as Test Assets

Ticker Description Ticker Description

SPY S&P 500 VWO Vanguard foreign stocks
IYR US real estate XLB SPDR material
XLE SPDR energy XLF SPDR financial
XLI SPDR industrial XLK SPDR technology
XLP SPDR consumer staples XLU SPDR utility
XLV SPDR healthcare XLY SPDR consumer discretionary
IWS Russell mid-cap value IWM Russell 2000
IWO Russell 2000 growth IWN Russell 2000 value
IWB Russell 1000 IWF Russell 1000 growth
IWD Russell 1000 value IWR Russell mid-cap

Retaining only ETFs leaves a total of 20 test assets, so the model is still over-

identified. Table 2.4 presents the summary statistics for estimation of the one-

factor model with SPY as the factor and SHY as the numeraire. The percentage

of days in which the estimation passes the J-test and the percentage of significant

estimates both decline slightly. Although using ETFs gets rid of some of the

outliers in the estimates, the summary statistics of the estimates are very close

to the results from the benchmark model with no improvement in the number of

significant days. Although switching to ETFs only does not improve the results of

Chapter 1, getting rid of the individual stocks to reduce idiosyncratic risks seems

like a good idea. From now one, estimates will use this more restrictive set of test

assets.
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Table 2.4: Estimation Using Only ETFs as Test Assets

Statistics Benchmark ETFs only

No. of estimates 1405 1405
% significant 65.8% 61.2%
% passes J-test 99.9% 96.8%
Mean -0.998 -0.998
Median -0.976 -0.984
Min -2.710 -2.243
Max -0.497 -0.591

2.1.4 Adding Factors

I also explored the possibility that adding factors would improve the perfor-

mance of the model. I used XLF, the ETF that tracks the performance of SPDR

financial sector, as a second factor.

The following is the moment condition for the GMM estimation of the two-

factor model:

E
[
rnt+h + θ1R10

t+hR̃
n
t+h + θ2R20

t+hR̃
n
t+h

]
= 0 (2.5)

where R20
t+h is the excess return of the second factor (here, XLF) relative to the

numeraire, and θ2 is the risk price of the second factor. For notational convenience,

write Equation (2.5) as

E
[
Y n
t+h + θ1Zn

1,t+h + θ2Zn
2,t+h

]
= 0 (2.6)

where Y n
t+h = rnt+h, Zn

1,t+h = R10
t+hR̃

n
t+h and Zn

2,t+h = R20
t+hR̃

n
t+h.

The gmm package of R is utilized for the estimation. Below is the core code

for the GMM estimation in R:

## GMM method

g = function ( theta , x = cbind (y , z 1 , z 2) ){
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gmat = y + theta [ 1 ] * z 1 + theta [ 2 ] * z 2

return ( gmat )

}

r e s sd f = gmm(g , x = cbind (y , z 1 , z 2 ) , t0 = c (0 , 0 ) )

In the code above, y = Y n
t+h, z 1 = Zn

1,t+h and z 2 = Zn
2,t+h. x is the data matrix

with 2340 rows and 3N columns, with the first N columns corresponding to Y n
t+h,

the middle N columns to Zn
1,t+h, and the last N columns to Zn

2,t+h, where N is the

number of test assets. t0 = c(0, 0) specifies the initial values for our estimation

of the parameter vector θ = (θ1, θ2).

In contrast to the one-factor model, the two-factor version of the model works

terribly. First, the estimates are very large in magnitude.We expect that the

coefficient of SPY to be affected only modestly by adding a second factor for “fi-

nancial” risk. Second, for almost every day, the standard errors of both parameter

estimates are huge, and the estimates are rarely statistically different from zero.

This specification completely fails to yield any useful estimates and information

about the risk prices with respect to the factors for the sample period under study.

To illustrate, for the first day in the sample January 3, 2007 (which is quite

typical), the estimates are θ̂1 = 11.90, and θ̂2 = −64.76, which are both large

in magnitude, and the standard errors are SE(θ̂1) = 55.10 and SE(θ̂2) = 82.01,

which are also large enough to render the estimates insignificant. As a comparison,

in the one-factor model, the estimate is θ̂1 = −0.66 and the standard error is

SE(θ̂1) = 0.36, which are much smaller in magnitude, and the estimate is nearly to

significant at the 5% level. I tried pooling over three to ten days and adding lagged

returns as instrumental variables, but neither method improved the estimation of

the two-factor model.
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2.2 Dividing Up the Day

Since pooling did not work, I conjectured that the problem is the reverse: we

might need to compute moments over intervals shorter than a single day in order

to increase the resolution of the model. By using sample moments over the entire

day, we may ignore important short-term dynamics within the day.

Let

εnt+h = rnt+h + θ1R10
t+hR̃

n
t+h + θ2R20

t+hR̃
n
t+h

The model implies that {εnt } is a martingale difference sequence, and this condition

has to be satisfied in any 10-second interval over the day.

In Chapter 1, we derived the moment condition that E [εt+h|Ft] = 0, and as

discussed previously, any instrumental variable Xt that is measurable at time t

is valid. To restrict the focus within some time interval within the day, we can

choose Xt to be an indicator function:

Xt =

 1 for some subset of {t = 1, . . . , 2340}

0 otherwise
(2.7)

where the 1’s indicate a subset of 10-second intervals. If the subsets are selected

non-randomly, Xt is measurable with respect to Ft for all t ∈ [0, 1], and hence is

a valid instrumental variable.

In what follows we will use Xt that divide the trading day into 12 non-

overlapping intervals.

2.2.1 Stacking

Since the model to be estimated satisfies the GMM model with common coef-

ficients2, we can estimate a “stacked” version of the model (see Hayashi (2000)).

2In two-factor case, the common coefficient is a two-tuple vector.
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To explain the stacking procedure, we introduce some notation. Let K denote the

number of factors in the model. Let the number of test assets be N . In Chapter

1, N = 48 with 28 individual stocks and 20 ETFs. In this chapter, the test assets

chosen are ETFs only, and thus N = 20.3 Let I equal the number of data points

we have during a day. Since we are using 10-second returns, I = 2340. Let J be

the number of sub-intervals of the trading day. In this study J = 12. I sub-divide

the trading day into 12 disjoint intervals, each covering 32.5 minutes, equivalent

to 195 ten-second intervals.

When generalized to K factors, the GMM estimation of the one-factor model

in Chapter 1 and the two-factor results described earlier in this chapter included

N moment conditions, one for each of the N test assets:

E
[
Y 1
t+h + θ1Z1

1,t+h + · · ·+ θkZ1
k,t+h + · · ·+ θKZ1

K,t+h

]
= 0

...

E
[
Y N
t+h + θ1ZN

1,t+h + · · ·+ θkZN
k,t+h + · · ·+ θKZN

K,t+h

]
= 0

(2.8)

where Y n
t+h = rnt+h, Zn

1,t+h = R10
t+hR̃

n
t+h and Zn

2,t+h = R20
t+hR̃

n
t+h for all test assets

n = 1, 2, . . . , N .

For the stacked model, the moment conditions become:

E [Y + ZΘ] = 0 (2.9)

where

Y =



Y 1

...

Y n

...

Y N


Θ =



θ1

...

θn

...

θN


Z =



Z1
1 . . . Z1

k . . . Z1
K

...
. . .

...
. . .

...

Zn
1 . . . Zn

k . . . Zn
K

...
. . .

...
. . .

...

ZN
1 . . . ZN

k . . . ZN
K


.

3The ETF “VWO” was not included in Chapter 1 but is included here
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Also,

Y n =



Y n
1

...

Y n
i

...

Y n
I


Zn

k =



Zn
k,1

...

Zn
i

...

Zn
k,I


for n = 1, 2, . . . , N since there are 2340 observations (I = 2340) of 10-second

returns for each test asset each day. Thus, Y is a 2340N × 1 matrix and Z is a

2340N ×K matrix.

Let g be the vector of moments. In Chapter 1, K = 1, and when stacking

the number of moment conditions will be one, so that the model is only exactly

identified. One way to make the one-factor model over identified is by adding N

instrumental variables Xm, where instrumental variable Xm “selects” the obser-

vations for test asset n = m. Let X be the matrix of instrumental variables for

the stacked model, then

X =



X1
1 . . . X1

m . . . X1
N

...
. . .

...
. . .

...

Xn
1 . . . Xn

m . . . Xn
N

...
. . .

...
. . .

...

XN
1 . . . XN

m . . . XN
N


which is a 2340N × 2340N matrix and each column represents one vector of

instrumental variables.

Xn
m =

 1 if n = m

0 otherwise

where 1 is a column vector of 1’s and 0 is a column vector of 0’s. If N > K, the

model is over-identified. Essentially, column n of the matrix X is just an indicator

of the observations associated with test asset n.
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in Chapter 1, I did not use stacking. Instead the 48 moment conditions (one

for each test asset) can be input to the gmm program as columns of a matrix(
g1 g2 . . . gN

)
where

gn =


gn1
...

gnI

 (n = 1, 2, . . . , N, I = 2340)

gives the observations used to compute the sample moment of the nth test asset4.

With N moment conditions and one parameter to estimate, the model is over-

identified and there is no need to specify additional instrumental variables.

However, stacking is very useful in applying over asset pricing models to dif-

ferent intervals within the trading day. The number of instrumental variables is

J = 12. Provided J > K, the model is still over-identified. Let equation (2.9) be

the moment condition, and define Y, Θ and Z as before. Let X be the matrix of

instrumental variables such that

X =
(
X1 . . . Xk . . . XK

)
=



X1
1 . . . X1

k . . . X1
K

...
. . .

...
. . .

...

Xn
1 . . . Xn

k . . . Xn
K

...
. . .

...
. . .

...

XN
1 . . . XN

k . . . XN
K


In this case, we have 12 time intervals over the day and thus 12 instrumental

variables. Therefore, X is a 2340N × 12 matrix and

Xn
k =


Xn

k,1

...

Xn
k,I


4See the example in Section 3.1 of Chausse (2010).
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where

Xn
k,i =

 1 if i ∈ {195 (k − 1) + 1, 195 (k − 1) + 2, . . . , 195k}

0 otherwise

For instance, for k = 1,

Xn
1,i =

 1 if i = 1, 2, . . . , 195

0 otherwise

and for k = 2,

Xn
2,i =

 1 if i = 196, 197, . . . , 390

0 otherwise

By choosing Xk as the instrumental variable, we have

E [εtXk] = 0

over interval k since the moment condition

E [εt] = 0

has to be satisfied at any interval. Although there are 2340N data points in each

sample moment, the kth moment in effect applies the moment condition only to

the kth interval of the day, resulting in an effective number of data points of

2340N
12

= 195N .

For the stacked model, the gmm package in R allows us to use the “formula”

specification instead of the “vector” specification for the estimation. The following

is the R code for the GMM estimation:

r e s sd f = gmm(Y ˜ Z − 1 , X)

where Y and Z are as defined above and serve as the sample moments and X is

the matrix of instrumental variables with 2340N rows and 12 columns as defined
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previously. The “-1” in the code imposes the requirement that there is no constant

term in the specification of the moment condition g = Y + ZΘ.

2.2.2 Estimating Two-factor Models

Now we can apply the methodology to estimate a two-factor model. I estimate

the two-factor model using only ETFs as test assets to avoid the idiosyncratic risk

and excess volatilities incorporated in the individual stocks. The ETFs used are

listed in the first section of this chapter. There are 20 test assets (ETFs). SHY

is chosen to be the numeraire. Below are the candidate ETFs I consider for the

multi-factor model:

• SPY : The SPDR ETF that tracks the S&P 500 index. SPY is the most

heavily traded ETF and was shown to play a significant role in explaining

the market risk in Chapter 1. SPY is always included as the first factor for

the model.

• XLF: The SPDR sector ETF that tracks the financial sector. Since the

period under study covers the financial crisis, XLF might be useful in ex-

plaining the risk prices during this period.

• XLE: The SPDR sector ETF that tracks the energy sector.

• VWO: The Vanguard ETF that focuses on foreign markets.

• IWM: The heavily-traded ETF that tracks Russell 2000 index to measure the

performance of small-cap equities. A two-factor world with SPY and IWM

can be regarded as equivalent to a model with SPY and the Fama-French

“SMB” (Small Minus Big) factor, where IWM serves as the “S” factor and

SPY the “B” factor.

• IWD: The Russell 1000 Value ETF that tracks the performance of large-cap

value stocks.
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• IWF: The Russell 1000 Growth ETF that tracks the performance of large-

cap growth stocks. Although IWD and IWF are not as heavily traded as

the previous candidate ETFs, they are good proxies for the sectors of value

and growth stocks to mimic the Fama-French “HML” (High Minus Low

Price-to-Book ratio) factor.

Table 2.5 lists the average daily volumes (for 20 days in 2015)5 for the factors

I am considering :

Table 2.5: Candidate Risk Factors

ETFs Average Daily Volumes (20 days)

SPY 93,768,938
IWM 24,915,324
XLF 24,113,355
XLE 13,528,330
VWO 11,056,910
IWF 1,959,920
IWD 1,595,860

SPY, IWM, XLF, XLE and VWO are usually among the top 30 most heavily

traded ETFs, with SPY always the most heavily traded. Note that IWF and IWD

are much less heavily traded than the other candidate risk factors.

The daily GMM estimation routine is embedded in a loop that works through

the 1405 trading days in our sample. After each daily estimation is completed, the

results are assembled into an R data frame6. To give a concrete sense of this data

frame, Table 2.6 reports the first 6 rows (days) of the data frame for a one-factor

model with SPY as the factor. This is the same model explored in Chapter 1 but

5Data Source: www.nasdaq.com; Date: April 30, 2015.
6Given the big dataset we have of high-frequency data, the GMM estimation takes over five

minutes to get the estimation results for each day. However, the estimation procedure is also
quite parallel since the estimation for one day is independent of that for other days. I break the
whole sample into seven separate parts and run parallel estimations using different R processes.
The whole estimation process takes about 1.5 days to finish.
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with the methodology and the 12 instrumental variables of this chapter. Table 2.7

reports the corresponding first 6 rows (days) of the data frame for a two-factor

model with SPY and IWM as the two factors. SHY is the numeraire asset for

both models.

Table 2.6: Estimation Results for the One-factor Model (first six days)

Date theta1 se1 t1 p1 jpval
20070103 -1.006 0.062 -16.342 4.931e-60 0.005
20070104 -1.067 0.083 -12.812 1.408e-37 0.235
20070105 -1.073 0.085 -12.654 1.062e-36 0.038
20070108 -0.988 0.080 -12.370 3.796e-35 0.810
20070109 -0.958 0.083 -11.542 8.147e-31 0.918
20070110 -0.887 0.109 -8.145 3.796e-16 0.481
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In Table 2.6 and 2.7, the “Date” column is the trading date. “theta1” and

“theta2” are the estimates θ̂1 and θ̂2 for the first and the second factor, respec-

tively. “se1” and “se2” are the standard errors of the estimates; “t1” and “t2”

are the t-statistics obtained from the GMM estimation; “p1” and “p2” are the p-

values computed from the t-statistics. Lastly, “jpval” is the p-value for the J-test.

In Table 2.6, there is only one factor, while in Table 2.7, there are two factors. As

in Chapter 1, I consider estimates that pass the J-test to be those whose Jp-value

is greater than 0.1. The significance level is chosen at 5% (i.e., the p-value has to

be smaller than 0.05).

The results for these first 6 days are fairly typical of the parameters over the

entire 1405-day sample period.

• The risk prices of SPY all have a negative sign, consistent with what the

theory suggests.

• θ̂1 is less negative in Table 2.7 than in Table 2.6.

• The risk price for the second factor is also often significantly different from

0.

• The Jp-value from the J-test is usually above the 0.1 threshold, and are

often far above. In sum, the estimation works fairly well.

There are only three days (July 3, 2007, July 3, 2008 and November 27, 2009)

that the GMM algorithm fails, complaining that the projection matrix is singular.

The first two days are the day before the Independence Day and the last one is the

day after the Thanksgiving, which are all market holidays and thus have the half-

day trading hours that end at 1:00 pm. For these three days, I use 6 instrumental

variables instead of 12 to cover the first half of the day.

The following set of tables summarize the results of the significance and the

specification tests for three different models. Table 2.8 summarizes the estimation
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results based on the same one-factor model in Chapter 1, re-estimated with the

“stacking” specification and the old instrumental variables, but using only ETFs

as the test assets. The returns are scaled by a multiplicative factor of 234000

so they can be interpreted as the daily equivalent percentage returns. Table 2.9

summarizes the result of the one-factor model using the new set of instrumental

variables. Table 2.10 summarizes the results of different versions of the two-factor

model. For the two-factor model, a trading day is defined to be significant if at

least one of the estimates of θ̂1 and θ̂2 is significant. A more detailed discussion

of the estimates will be delayed until the next section.

Table 2.8: One-factor Model using Stacking

Factors Number % significant % pass J-test

SPY 1405 64.9% 99.7%

Table 2.9: One-factor Model using Instrumental Variables

Factors Number % significant % pass J-test

SPY 1405 100% 76.4%

Table 2.10: Two-factor Models with Instrumental Variables

Factors Number % significant % pass J-test

SPY & IWM 1404 99.9% 97.5%
SPY & IWD 1205 85.8% 84.1%
SPY & IWF 1404 92.7% 82.1%
SPY & VWO 1405 100% 81.8%
SPY & XLF 1404 99.9% 79.5%
SPY & XLE 1405 100% 78.7%

Comparing Table 2.8 and Table 2.9, there are fewer days that pass the J-

test when using instrumental variables. This suggests some problems with the
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specification, perhaps due to a missing factor. Table 2.10 confirms this suspicion

as the percentage that passes the J-test goes up relative to Table 2.9 in all cases.

For IWM, the result is much better than Table 2.9 and is almost the same as Table

2.8! The number of trading days with significant estimates increases substantially

as compared to the one-factor model in Chapter 1 from 2/3 of the sample to the

whole sample in Table 2.10.

Table 2.11 summarizes the number of significant estimates of the risk prices

of the first and the second factors, respectively for different choices for the second

factor. The risk price of SPY is always significantly different from 0. IWM is

not far behind SPY, giving support for the Fama-French “SMB” factor with SPY

playing the role of “B” (big- cap stocks) and IWM of “S” (small-cap stocks).

Table 2.11: Number of Significant Estimates

Factors Significant θ̂1 % significant Significant θ̂2 % significant

SPY & IWM 1396 99.4% 928 66.0%
SPY & VWO 1404 99.9% 287 20.4%
SPY & IWD 1023 72.8% 280 19.9%
SPY & IWF 1192 84.8% 233 16.6%
SPY & XLF 1402 99.8% 165 11.7%
SPY & XLE 1405 100% 128 9.1%

It is also worth mentioning what happens on the day of the Flash Crash, which

occurred on May 6, 2010. In only a few minutes the Dow Jones Industrial Average

Index plunged by about 9% and recovered within a short period of time. Figure

2.1 shows the box plots of the risk prices of SPY for the two-factor model using

SPY and IWM as factors.
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(a) SPY & IWM (b) SPY & IWM

Figure 2.1: Box Plot with and without the Flash Crash

For the box plot, the thick line in the middle of the box represents the me-

dian, and the top and the bottom edges are the upper and the lower quantiles,

respectively. Those dots outside the upper and the lower bounds of the whiskers

are outliers. The impact of the Flash Crash on the scale of the graph on the left

compared to that on the right provides graphic evidence of the scale of this event.

I remove the estimates made on the day of the Flash Crash from the sample in

what follows. After removing this single day, the box plots become very symmetric

around the median. As the box plots indicate, including that day would change

the scale of our graphs dramatically, rendering the graphs useless.

2.3 The Preferred Two-Factor Model

In this section I focus on the two-factor model with IWM as the second factor.

From Table 2.11, it is clear that IWM is the best choice as the second factor:

around 2/3 of the days yield significant estimates of θ̂2, over three times of those

of VWO (the second best alternative).
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2.3.1 The Estimates

Table 2.12 presents the summary statistics of the estimates of this two-factor

model. We compute θ̂0 using θ̂0 = 1 − θ̂1 − θ̂2 (no standard errors or t-statistics

are provided for θ̂0). The statistics of θ̂1 and θ̂2 are for the significant estimates of

θ1 and θ2, respectively. There are only 8 days where the model yields a significant

estimate for θ2, but not θ1. The statistics of θ̂0 are computed over the entire

sample period (1405 days), regardless of whether θ̂1 and θ̂2 are significant or not.

Table 2.12: Summary Statistics for Two-Factor Model

Statistics θ̂1 θ̂2 θ̂0

Mean -0.751 -0.248 1.960
Median -0.750 -0.237 1.963
Mean (-t) 6.137 3.068
Mean precision 0.163 0.326
Min -1.474 -0.658 1.503
Max -0.215 0.241 2.334

We begin with the analysis of the risk prices for SPY. From Table 2.12, we

observe that the estimates of the risk price of SPY are always negative, and θ̂0 is

always positive. This is consistent with the interpretation of the SDF mimicking

portfolio, whose return, denoted by R∗, equals Zt+h

Zt
where Zt and Zt+h are the

Radon-Nikodym derivatives for the equivalent martingale measure restricted to

Ft and Ft+h, respectively. Since R∗t+h = (1− θ0 − θ1)R0
t+h + θ1R1

t+h + θ2R2
t+h in

our specification of the SDF, we can interpret the SDF mimicking portfolio as

“short SPY” and “long SHY” (the numeraire asset).
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(a) SPY & IWM (b) SPY & IWM

Figure 2.2: Distributions of Estimates of θ1

Figure 2.2 shows that the distribution of the estimates θ̂1 are symmetric. The

Normal Q-Q plot, ignoring a few outliers at the tails, indicates that the distribu-

tion is close to a normal distribution.

The precision (se(θ̂1)/|θ̂1|) of the estimates of θ1 improves from 20% (0.20) in

Chapter 1 to 16% (0.16) in the two-factor model. In Chapter 1, only 2/3 of the

days yielded significant estimates of the risk price of SPY. In the two-factor model

estimation, the risk price of SPY is almost always significant.

We now turn to the risk prices of IWM. Adding IWM as a second factor can

be regarded as a “perturbation” to the original model. Viewed as a “second-

order” correction to the one-factor model, the risk price θ̂2 of IWM could be

either positive or negative. The maximum estimate for θ2 is 0.241, the only case

of a positive risk price for the second factor that is statistically significant, which

occurred on August 31, 2007. Excluding that day, the maximum estimate is -

0.119. Apart from this day, the risk prices of IWM are negative, indicating that

the SDF mimicking portfolio is “short IWM” as well as SPY.

Table 2.13 presents the summary statistics of the remaining 1/3 of the insignif-

icant estimates of θ2. We observe that the mean t-statistic is slightly larger than

one, and about 30% of the estimates are within one standard error around zero.
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Table 2.13: Summary Statistics for Insignificant θ̂2

Statistics θ̂2

Mean -0.142
Median -0.143
Mean |t| 1.283
% within one SE 27.7%
Min -0.413
Max 0.141

2.3.2 Variation of Risk Prices Over Time

This section studies the behavior of risk prices over time.

Table 2.14 provides summary statistics for those estimates of θ̂1, the risk price

of SPY, by years. The means and medians for θ̂1 are quite similar across years.

The mean estimated risk prices become slightly more negative in 2009 and stay

lower than the means and medians in 2007 and 2008, but overall the risk prices

are quite stable over the entire period. The precision improves after 2007, is best

in the years 2010 and 2011, and decreases in 2012.
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Table 2.14: Summary Statistics for the Risk Price of SPY

Year Statistics θ̂1 Year Statistics θ̂1

2007 Mean -0.706 2010 Mean -0.768
Median -0.711 Median -0.772
Mean (-t) 4.839 Mean (-t) 6.838
Mean precision 0.207 Mean precision 0.146
Min -1.123 Min -1.138
Max -0.041 Max -0.318

2008 Mean -0.721 2011 Mean -0.760
Median -0.731 Median -0.759
Mean (-t) 6.121 Mean (-t) 6.948
Mean precision 0.163 Mean precision 0.144
Min -1.080 Min -1.474
Max -0.299 Max -0.471

2009 Mean -0.780 2012 Mean -0.758
Median -0.778 Median -0.751
Mean (-t) 5.752 Mean (-t) 6.259
Mean precision 0.174 Mean precision 0.160
Min -1.118 Min -1.042
Max -0.287 Max -0.366

Figure 2.3 displays a plot of the time series of the daily risk price of SPY (recall

the sample ends at July 31, 2012).
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(a) 2007-2012

(b) 2007 (c) 2008

(d) 2009 (e) 2010

(f) 2011 (g) 2012

Figure 2.3: Time Series of Estimates of θ1
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In Figure 2.3, each year is considered to be a unit of time of length 1. The

estimated risk prices are plotted year by year as time series with each dot cor-

responding to a daily risk price. The dashed line measures the median of the

estimates over the entire period (in this case equals -0.750), which serves as the

reference line of the plots. The median is chosen instead of the mean in order to

eliminate the effect of outliers. The dotted lines plot the median standard error

over the entire period. The solid lines are obtained from the “lowess” method,

which measures the central tendency of the data. Cleveland (1979) suggests that

the smooth span be between 0.2 and 0.5. In this study, I choose the smooth span

to be 0.2, or 20% of the number of data points in each year so that about 50 days

(a little more than two months worth of data) are used to compute the lowess es-

timates. Most of the estimates fall within -0.8 and -0.6, suggesting the risk price

is rather stable over the whole sample period. The lowess curve rises above the

upper band in early 2008, but then starts to decline until mid 2009 and remains

below the median until early 2010, which could be attributed to the impact of the

financial crisis and the Euro crisis.

We turn next to the risk price of IWM. Table 2.15 provides summary statistics

for the significant estimates of the risk price for IWM. Except for one day, the

risk prices for IWM are always negative. The mean risk prices are more negative

for the years 2007 to 2009, exhibiting more impact from the Great Recession than

does SPY.

60



Table 2.15: Summary Statistics for the Risk Price of IWM

Year Statistics θ̂2 Year Statistics θ̂2

2007 Mean -0.267 2010 Mean -0.236
Median -0.253 Median -0.227
Mean (-t) 2.817 Mean (-t) 3.234
Mean precision 0.355 Mean precision 0.309
Min -0.547 Min -0.658
Max 0.241 Max -0.133

2008 Mean -0.259 2011 Mean -0.225
Median -0.258 Median -0.220
Mean (-t) 3.031 Mean (-t) 3.157
Mean precision 0.330 Mean precision 0.317
Min -0.432 Min -0.464
Max -0.132 Max -0.119

2009 Mean -0.274 2012 Mean -0.231
Median -0.260 Median -0.222
Mean (-t) 2.943 Mean (-t) 3.145
Mean precision 0.340 Mean precision 0.318
Min -0.559 Min -0.398
Max -0.121 Max -0.120

Figure 2.4a gives the plot of the time series of the daily risk price of IWM. The

negative estimates for θ2 indicate that the SDF mimicking portfolio shorts IWM

as well. We notice that the risk prices are mostly below the median from 2007

to the end of 2009, and start to rise above the median since 2010. Most of the

the estimates are between -0.4 and -0.1 and are reasonably stable over the sample

period.

61



(a) 2007-2012

(b) 2007 (c) 2008

(d) 2009 (e) 2010

(f) 2011 (g) 2012

Figure 2.4: Time Series of Estimates of θ2
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Given the estimates θ̂1 and θ̂2, we can compute the estimate θ̂0 = 1− θ̂1 − θ̂2

for the numeraire, which is a measure of the overall risk in the market with more

“positive” θ̂0 being more risky. Figure 2.5 displays the time series plot of θ̂0 for

the whole sample period under study. The dashed line is the median of θ̂0 for the

whole period, and the solid curve shows the central tendency obtained from the

lowess method.

Figure 2.5: Estimates of θ0

θ0 represents the share of the numeraire asset in the SDF mimicking portfolio.

The SDF mimicking portfolio becomes longer in SHY in late 2008. The long

position reaches its peak at around March 2009, and then gradually declines. In

other words, the short positions in risky assets (here, SPY and IWM) start to

increase since late 2008 to hedge the increasing riskiness of the market caused by

the financial crisis, as we would expect.

I also examine the behavior of the SDF mimicking return. With a multi-factor

model, we can compute the SDF mimicking return R∗ using the estimated θ̂1 and

θ̂2. To be specific, given there are 2340 10-second intervals in a day, if θ0, θ1 and
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θ2 are constant over the day, then for each 10-second interval, we have

R∗t =
(
1− θ1 − θ2

)
R0

t + θ1R2
t + θ2R2

t , t = 1, 2, . . . , 2340

which implies

1

2340

2340∑
t=1

R∗t =
(
1− θ1 − θ2

) 1

2340

2340∑
1

R0
t + θ1

1

2340

2340∑
t=1

R1
t + θ2

1

2340

2340∑
t=1

R2
t

Let

R̄0 =
1

2340

2340∑
1

R0
t , R̄1 =

1

2340

2340∑
t=1

R1
t , R̄2 =

1

2340

2340∑
t=1

R2
t , R̄∗ =

1

2340

2340∑
t=1

R∗t

then we have

R̄∗ =
(

1− θ̂1 − θ̂2
)
R̄0 + θ̂1R̄1 + θ̂2R̄2

where R̄0, R̄1 and R̄2 are the average 10-second returns of SHY, SPY and IWM,

respectively, over a trading day.

Below is the time series of R̄∗ over the whole period. The dashed line is the

median of the data and the smooth span of the lowess curve is chosen to be 20%

of the number of data points in each year, as explained previously. The returns

are scaled by 2340 to get the equivalent daily returns.
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Figure 2.6: The SDF Mimicking Returns

From Figure 2.6, the time series of the SDF mimicking returns is symmetric

around the median. It is obviously that the variance of the mimicking returns

increases a lot during the financial crisis period (late 2008 to 2009). Also, during

the financial crisis in 2008 and 2009 and the Euro crisis in mid 2010, the central

tendency clearly deviates from the median. For the rest of the period, it is very

close to the median line.

2.4 Conclusion

This chapter improves the estimation of the one-factor model in Chapter 1.

Introducing instrumental variables that sub-divide the day into shorter time in-

tervals makes a big difference. The fraction of significant estimates increases from

about 2/3 of the sample to essentially every day, and the precision of the estimates

increases substantially. The estimation results reinforce the conclusion from Chap-

ter 1 that SPY is an important factor. The identification of IWM as the second
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most important factor indicates strongly that multiple risk factors are needed

and, in particular, provides support for including an index of small-capitalization

stocks as a complement to SPY.
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CHAPTER 3

Three-Factor Models

In Chapter 2 I estimated a two-factor model using 10-second returns and in-

strumental variables that sub-divide the day into 12 non-overlapping time in-

tervals. SPY is the first factor and IWM is the second. The estimation works

successfully and substantially improves the results of Chapter 1. SPY is the most

important risk factor: its risk price is significant almost every day, and the es-

timates are always negative, which is consistent with the theory. The second

factor, IWM, improves the performance of the model significantly as compared to

the one-factor model. The risk price estimates for IWM are significant for about

2/3 of the days, and all estimates are negative.

In this Chapter, I examine the possibility of a third factor to the two-factor

model of Chapter 2. The time period is expanded by two years from January

1, 2007 to July 31, 2014, covering a time period of 1886 days. The estimation

method is the same as that of Chapter 2 except for the addition of a third factor.

3.1 Estimating Three-Factor Models

Although the two-factor model with SPY and IWM as risk factors works quite

well, I want to examine whether adding another factor to the model can further

improve the specification of the model. For instance, it is interesting to explore

whether adding the Fama-French “HML” factor or a factor that tracks the per-

formance of the foreign market would affect the estimation result. Adding a third
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factor can be considered as a further perturbation to the model. Extending the

study to the middle of 2014 also provides an “out-of-sample” test of the two-factor

model.

3.1.1 Test Assets and the Third Factor

In this chapter I use the same set of test assets as in Chapter 2 to estimate

the three-factor model. Specifically I use exchange-traded index funds rather

than individual stocks to lessen the impact of idiosyncratic risks. Furthermore,

using the same test assets render the results obtained from the three-factor model

comparable to those from the two-factor model. Table 3.1 lists the ETFs used for

the estimation in this chapter. Twenty test assets are used for the estimation.

Table 3.1: ETFs as Test Assets

Ticker Description Ticker Description

SPY S&P 500 VWO Vanguard foreign stocks
IYR US real estate XLB SPDR material
XLE SPDR energy XLF SPDR financial
XLI SPDR industrial XLK SPDR technology
XLP SPDR consumer staples XLU SPDR utility
XLV SPDR healthcare XLY SPDR consumer discretionary
IWS Russell mid-cap value IWM Russell 2000
IWO Russell 2000 growth IWN Russell 2000 value
IWB Russell 1000 IWF Russell 1000 growth
IWD Russell 1000 value IWR Russell mid-cap

For the three-factor models in this chapter, I keep SHY as the numeraire and

retain SPY and IWM as factors. I consider the following ETFs as candidates for

the third factor:

• VWO: A Vanguard ETF that focuses on foreign markets.

• XLF: A SPDR sector ETF that tracks the financial sector.
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• IWD: The Russell 1000 Value ETF that tracks the performance of large-cap

value stocks.

• IWF: The Russell 1000 Growth ETF that tracks the performance of large-

cap growth stocks. IWD and IWF together resemble the “H” and “L”

component of the Fama-French “HML” (High Minus Low) factor, where

“High” and “Low” refer to the price-to-book ratio.

3.1.2 Model Setup

Recall the moment condition for our asset-pricing model derived from the no-

arbitrage theory in Chapter 1:

E
[
rnt+h + θ1R10

t+hR̃
n
t+h + · · ·+ θkRk0

t+hR̃
n
t+h + · · ·+ θKRK0

t+hR̃
n
t+h

]
= 0 (3.1)

where n = 1, 2, . . . , N is the index for the test assets, and k = 1, 2, . . . , K denotes

the index for the factors. In our estimation of the three-factor model, we will have

N = 20 and K = 3. Rn
t+h and rnt+h denote the gross and the net returns of the

asset n at time t + h, respectively. R̃n
t+h is the return of the asset n discounted

by the numeraire, and Rk0
t+h = Rk

t+h − R0
t+h, the excess return of the kth factor

relative to the numeraire. In Chapter 2, the moment condition for the two-factor

model took the form

E
[
rnt+h + θ1R10

t+hR̃
n
t+h + θ2R20

t+hR̃
n
t+h

]
= 0 (3.2)

where R1
t+h and R2

t+h are the gross returns of SPY and IWM, respectively. The

instrumental variables, the same as in Chapter 2, divide the day into 12 non-

overlapping time sub-intervals. The moment condition is applied to all the test

assets. The same stacking technique used in Chapter 2 is used for the estimation of

the three-factor models in this chapter. Because there are 12 moment conditions
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and 3 parameters to estimate, the model is still over-identified.

3.1.3 The Issue of Multicollinearity

For the three-factor model, one can extend equation (3.2) to the three-factor

case:

E
[
rnt+h + θ1R10

t+hR̃
n
t+h + θ2R20

t+hR̃
n
t+h + θ3R30

t+hR̃
n
t+h

]
= 0 (3.3)

and then the estimation can proceed similarly as in Chapter 2. Table 3.2 compares

the number of significant estimates of the risk prices of SPY and IWM in the two-

factor from Chapter 2 and a three-factor model using XLF (which tracks an index

of financial stocks) as the third factor. The estimation is over the original sample

in Chapter 2 (1405 days).

Table 3.2: Significant Estimates Across Models

Model θ̂1 θ̂2 θ̂3

Two-Factor Model 1396 928
99.4% 66.0%

Three-Factor Model 1327 858 56
94.4% 61.1% 4.0%

Adding XLF as the third factor to the model decreases the number of signif-

icant estimates of the risk price of SPY by 79 days, or 5% of the total sample.

The number of significant estimates of the risk price of IWM falls by 70. For the

two-factor model multicollinearity was not much an issue because SPY consists of

high-capitalization stocks and IWM of low-capitalization stocks. But XLF tracks

an index of a subset of the 500 stocks that forms the S&P 500 index, the financial

sector. Because it tracks a component of the S&P 500 index, we expect much

higher correlation with the ETF SPY that tracks the S&P 500 index. Therefore,

there is reason to suspect that multicollinearity is an issue in the estimation when
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the third factor is added to the model. The problem is worse with the other factors

we are considering as candidates for a third factor.

3.1.4 Using Excess Returns

In order to reduce the multicollinearity problem, I use excess returns of the

ETFs, rather than gross returns. To be specific, if XLF or VWO is chosen as the

third factor, the following moment condition is used for estimation:

E
[
rnt+h + θ1R10

t+hR̃
n
t+h + θ2R20

t+hR̃
n
t+h + θ3R31

t+hR̃
n
t+h

]
= 0 (3.4)

where R31
t+h = R3

t+h − R1
t+h is the excess return of SPY relative to the additional

ETF. If XLF is the additional ETF, it is the difference between the return of XLF

and the return of SPY, and in the case of VWO, it is the difference between the

returns of VWO and SPY.

One can derive the specification using excess returns in the following way. We

first consider the following moment condition:

E
[
rnt+h + θ̂1R10

t+hR̃
n
t+h + θ̂2R20

t+hR̃
n
t+h + θ̂3R30

t+hR̃
n
t+h

]
= 0 (3.5)

which is the moment condition for the general three-factor model. Equation (3.5)

can be written as:

E
[
rnt+h +

(
θ̂1 + θ̂3

)
R10

t+hR̃
n
t+h + θ̂2R20

t+hR̃
n
t+h + θ̂3

(
R30

t+h −R10
t+h

)
R̃n

t+h

]
= 0 (3.6)

Without loss of generality, by letting θ1 = θ̂1 + θ̂3, θ2 = θ̂2 and θ3 = θ̂3, we

arrive at equation (3.4). From equation (3.4), the SDF mimicking portfolio can

be seen as investing in the numeraire, SPY, IWM, and the excess return of XLF

(or VWO) with respect to SPY.

The same moment condition could be applied to IWD and IWF, ETFs that
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track the Russell 1000 value and the Russell 1000 growth indices. Instead, I follow

the specification of the Fama-French model by using excess return of IWD over

IWF as the third factor. We get the following moment condition:

E
[
rnt+h + θ1R10

t+hR̃
n
t+h + θ2R20

t+hR̃
n
t+h + θ3R34

t+hR̃
n
t+h

]
= 0 (3.7)

Equation (3.7) can be derived from the following moment condition of the

four-factor case:

E
[
rnt+h + θ1R10

t+hR̃
n
t+h + θ2R20

t+hR̃
n
t+h + θ3R30

t+hR̃
n
t+h + θ4R40

t+hR̃
n
t+h

]
= 0 (3.8)

with the restriction that θ4 = −θ3. From equation (3.7), the SDF mimicking

portfolio invests in the numeraire, SPY, IWM, and the excess return of IWD over

IWF (known as the “HML” factor in Fama-French model).

3.1.5 Estimating Three-Factor Models

As in the previous chapters, the estimation procedure is estimated day-by-day

in a loop over the 1886 days in the sample. The results are assembled into an R

data frame. Table 3.3 shows the estimation results for the first six days with the

difference of the returns of IWD and IWF as the third factor.
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In Table 3.3, “theta1”, “theta2” and “theta3” are the estimates of the risk

prices of the first, the second and the third factor, respectively. “se1”, “se2”

and “se3” are the corresponding standard errors; “t1”, “t2” and “t3” are the t-

statistics; “p1”, “p2” and “p3” are the p-values. “jpval” is the p-value for the

J-test. I consider estimates that pass the J-test to be those whose Jp-value is

greater than 0.1. The significance level for parameter estimates is chosen at 5%

(i.e., the p-value has to be smaller than 0.05).

The results for the first six days are fairly typical over the entire sample.

Similar findings as in Chapter 2 can be concluded for the first two factors:

• The risk prices for SPY and IWM are negative.

• The risk price for SPY is always significant; for most days, the risk price for

IWM is significant as well.

• For most days, the estimate passes the J-test with a J-test p-value greater

than 0.1.

For the third factor, almost all of the days yield insignificant estimates (for the

first six days here, none of the day has significant estimate) for its risk price. In

addition, the sign of the estimates can be either positive or negative, although

this is not inconsistent with the theory since the perturbation to the model from

the third factor incorporates the excess return of two ETFs.

Table 3.4 presents the number of days with significant estimates and the num-

ber that passes the J-test across different three-factor models and the two-factor

model in Chapter 2. For a trading day to have significant estimates, at least one

of the risk prices on that day has to be significant.
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Table 3.4: Significant Test and J-test Results

Model Number % significant % pass J-test

Two-Factor (1405 days) 1404 99.9% 97.5%
VWO-SPY 1883 99.8% 98.1%
(First 1405 days) 1402 99.8% 97.8%
IWD-IWF 1883 99.8% 97.6%
(First 1405 days) 1402 99.8% 97.4%
XLF-SPY 1881 99.7% 97.8%
(First 1405 days) 1400 99.6% 97.4%

From Table 3.4, the number and the percentage of significant estimates are

quite similar across different models. In particular, all three-factor models yield

almost the same number of significant estimates as the two-factor model. The

three-factor model with “VWO-SPY” as the third factor has slightly higher per-

centage of days than the two-factor model that pass the J-test, suggesting an

improvement in the model specification when adding the third factor. The other

two models has similar percentages as the two-factor model.

Table 3.5 summarizes the number of significant estimates for the three factors

separately.

Table 3.5: Number of Significant Estimates

Factors θ̂1 % significant θ̂2 % significant θ̂3 % significant

VWO-SPY 1869 99.1% 1161 61.6% 176 9.3%
IWD-IWF 1866 98.9% 1192 63.2% 69 3.7%
XLF-SPY 1863 98.8% 1168 61.9% 73 3.9%

From Table 3.5, we can see clearly that VWO-SPY is the dominant third

factor, accounting for about three times the number of significant estimates of θ3

than the two alternatives. The percentages of significant estimates of θ1 and θ2

are similar across different models, and they are only slightly lower when a third
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factor is added than those from the two-factor model of Chapter 2 where 99.4%

and 66.0% of the estimates of θ1 and θ2 are significant.

3.2 The Preferred Three-Factor Model

For the following analysis, I focus on the three-factor model with VWO-SPY

as the third factor. From now on, due to the large impact of the Flash Crash on

the scale of the estimates discovered in Chapter 2, I remove the day of the Flash

Crash (May 6, 2010) from the sample to further study the estimation results.

3.2.1 Comparison with the Two-Factor Model

Table 3.6 presents the summary statistics of the estimates and their comparison

with those from the two-factor model in Chapter 2. We compute θ̂0 using θ̂0 =

1 − θ̂1 − θ̂2 − θ̂3 (no standard errors or t-statistics are provided for θ̂0). Except

for θ̂0 whose summary statistics are over the whole sample period, the summary

statistics for the other parameters are for their individual significant estimates

only.

Table 3.6: Summary Statistics for Three-Factor Model

Statistics θ̂1 θ̂2 θ̂3 θ̂0

Mean -0.750 -0.243 -0.204 2.032
Median -0.750 -0.232 -0.199 2.029
Mean |t| 5.853 2.946 2.374
Mean precision 0.171 0.340 0.421
Min -1.380 -0.638 -0.487 1.303
Max -0.330 -0.110 0.457 2.545
Mean difference
with 2-factor model 0.038 0.026

In Table 3.6, “Mean |t|” is the mean of the absolute value of the t-statistics
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for each estimated parameter. “Mean precision” is defined as 1/Mean |t|., the

ratio of the standard error of the estimate to the estimate. “Mean difference with

2-factor model” is the mean of the absolute value of the difference between the

estimates from the two-factor model and the three-factor model during the first

1405 days (the sample period covered by the two-factor model).

To begin with, we analyze the risk prices of SPY and IWM in the three-factor

model. First, compared to the results from Chapter 2 (Table 2.12), the summary

statistics are quite similar for these two risk factors. The precisions of both θ̂1 and

θ̂2 degrade slightly, but not by much. Second, the risk prices of SPY and IWM are

always negative, indicating that, as with the two-factor model, the SDF mimicking

portfolio in the three-factor model is still “short” SPY and IWM. Third, the mean

differences of the two estimates with those from the two-factor model are small,

suggesting that adding the third factor perturbs the model slightly and does not

affect the estimates of the risk prices of SPY and IWM a lot.

We now turn to the risk price of the third factor, VWO-SPY. There are only

two cases where the estimates are positive and significant: on December 26, 2007

when θ̂3 = 0.204, and on April 15, 2011 when θ̂3 = 0.457. Without those two

estimates, the maximum estimate is -0.083, suggesting that the SDF mimicking

portfolio is also ”short” the excess return of VWO over SPY. The precision is

worse than those of the first and the second factor, and for 90% of the days when

θ̂3 is insignificant, the two-factor model would suffice.

For the overall performance of the model, first we notice that the precision of

the risk price of SPY is best, followed by that of IWM and then VWO-SPY. This

reinforces the conclusion that SPY is the most dominant factor, and IWM is the

second most important factor. VWO-SPY, on the other hand, serves as a modest

correction to the model. The long position in the “risk-free” asset θ̂0, is positive

over the entire period, indicating that the SDF mimicking portfolio is “long” SHY

all the time.
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3.2.2 The Variation of Risk Prices Over Time

To further the analysis, we now focus on the time series of the estimates of

risk prices.

3.2.2.1 The Risk Prices of SPY and IWM

Table 3.7 shows the summary statistics for the significant estimates of θ̂1 and

θ̂2 by year. The data set ends at July 31, 2014, leaving a five-month gap at the

end of the year 2014.

Table 3.7: Summary Statistics for the Risk Prices of SPY and IWM

Year Statistics θ̂1 θ̂2 Year Statistics θ̂1 θ̂2

2007 Mean -0.713 -0.257 2011 Mean -0.764 -0.226
Median -0.699 -0.246 Median -0.762 -0.219
Mean |t| 4.667 2.763 Mean |t| 6.624 3.005
Mean precision 0.214 0.362 Mean precision 0.151 0.333
Min -1.084 -0.458 Min -1.127 -0.389
Max -0.358 -0.119 Max -0.376 -0.120

2008 Mean -0.723 -0.258 2012 Mean -0.751 -0.225
Median -0.725 -0.254 Median -0.758 -0.227
Mean |t| 5.774 2.875 Mean |t| 6.237 3.041
Mean precision 0.173 0.348 Mean precision 0.160 0.329
Min -1.238 -0.456 Min -1.163 -0.368
Max -0.330 -0.136 Max -0.408 -0.127

2009 Mean -0.781 -0.272 2013 Mean -0.757 -0.237
Median -0.780 -0.259 Median -0.746 -0.233
Mean |t| 5.476 2.817 Mean |t| 6.067 2.895
Mean precision 0.183 0.355 Mean precision 0.165 0.345
Min -1.209 -0.563 Min -1.380 0.432
Max -0.397 -0.139 Max -0.427 -0.127

2010 Mean -0.773 -0.230 2014 Mean -0.724 -0.219
Median -0.776 -0.222 Median -0.729 -0.206
Mean |t| 6.431 3.081 Mean |t| 5.169 3.039
Mean precision 0.155 0.325 Mean precision 0.193 0.329
Min -1.133 -0.639 Min -1.004 -0.442
Max -0.358 -0.110 Max -0.378 -0.140
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We first focus on the mean and the median of the estimates for the whole

period. From Table 3.7, for both θ̂1 and θ̂2, their respective mean and median are

very close, suggesting the distribution of the estimates is quite symmetric. For

θ̂1, the largest difference is 0.14 (in year 2007). For θ̂2, the largest difference is

0.13 (in year 2009). Throughout the rest of the years, the difference is almost

always smaller than 0.1. The mean and the median estimates of θ̂1 become more

negative in year 2008 and even more negative in 2009. As the financial crisis

abated, they become less negative gradually. By 2014 the level is similar to 2008.

This pattern illustrates the impact of the financial recession, during which the risk

price increased. Overall the risk prices are quite stable over the years. For the

risk price of IWM, the overall mean and median estimates are quite similar across

the eight-year period except in 2009, which, affected by the financial recession, is

more negative.

The minimum and the maximum of the estimated risk prices measure the

overall spread of the estimates. For the risk price of SPY, the difference between

the minimum (around -1.15) and the maximum (around -0.35) is quite large,

amount to about 0.8 over the entire period, suggesting a large spread of the

estimates. Also, during the financial crisis both the minimum and the maximum

tend to become more negative, reinforcing the findings above about the mean and

the median. For the risk price of IWM, the difference between the minimum and

the maximum is much smaller, usually around 0.3. In addition, we also observe

that the minimum of the estimates becomes substantially more negative in 2009

and 2010 during the financial crisis and the Euro crisis. Correspondingly, the

spread also becomes larger during this period.

Third, the t-statistics of both θ̂1 and θ̂2 are quite high, suggesting the estimates

are highly significant. For the risk price of SPY, the mean |t| over the whole sample

period is around 5 to 6, corresponding to an average p-value of about 0.002, which

is significant even at the 1% level. For the risk price of IWM, the mean |t| over
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the whole sample period is about 3, corresponding to an average p-value of 0.011.

The estimated risk prices of IWM over the period are also highly significant at

5% level, although not significant at 1% level.

The precision measures the error of the estimates. For θ̂1, the average precision

over the period is about 16%, and for θ̂2, it is about 34%. For instance, in year

2012 (which is a typical year for the whole sample period), the precision for θ̂1 is

16%, and thus on average θ1 is expected to be between −0.751± (0.16× 0.751) =

[−0.871,−0.631] with a gap of about 0.25 or one and a half standard errors. The

precision for θ̂2 is 33%, and on average θ2 is between −0.225 ± (0.33× 0.225) =

[−0.299,−0.151] with a gap of 0.15. Over the whole sample period, the precision

for both θ̂1 and θ̂2 are quite stable, and the precision for θ̂1 is better than that for

θ̂2.

Figure 3.1 plots the time series of the daily risk price of SPY and IWM. Each

dot corresponds to a daily risk price. The dashed lines measure the median of the

estimates over the whole sample period to serve as a reference line of the plots.

The solid lines are computed by the “lowess” method with the same smooth span

as in Chapter 2 that uses 20% of the data points in each year to compute the

lowess estimates. The lowess lines serve as a measure of the central tendency of

the data. The dotted lines are computed as the “lowess” central tendency curve

plus/minus one median standard error of the whole period, which measures the

spread of the data.
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As shown in Figure 3.1, estimates of the risk prices θ1 and θ2 vary a lot from

day to day. The risk price of SPY starts to decline during the second half of 2008,

possibly due to the Great Recession, and becomes stable and close to the median

since then. The standard error band contains most of the data, although there

are also many data points above or below the band.

The risk price of IWM, on the other hand, starts to drop at mid 2008 and stays

below the median until the end of 2009 when it starts to rise above the median.

It then stays above the median until the mid 2013 when it slightly declines and

rises above the median again immediately. The standard error band also contains

most of the data, but occasionally there are data points that fall below the band,

in particular during mid 2007 and mid 2009. On the other hand, there are almost

no estimates that are above the band. This finding suggests that the distribution

of IWM has negative skewness.

3.2.2.2 The Risk Price of VWO-SPY

For around 90% of the days of the sample period, the estimates of the risk

price of VWO-SPY is not significant. In fact, for 1092 (57.9%) of the days the

estimates are within one standard error of zero, suggesting those estimates are

indistinguishable from zero. For the remaining 10% of the days with significant

estimates, it is worth mentioning that on those days the risk prices of SPY and

IWM are always also significant. This finding reinforces the previous hypothe-

sis that VWO-SPY as the third factor should only be treated as a “third-order

correction” to the two-factor model.

Since only about 10% of the days of the sample yield significant estimates of

θ3, I do not plot the time series of the estimates for the risk price of VWO-SPY,

the third factor. Instead, Table 3.8 presents the number of significant estimates

of θ3 and their summary statistics year by year:
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Table 3.8: Summary Statistics for the Risk Price of VWO-SPY

Year Statistics θ̂3 Year Statistics θ̂3

2007 Mean -0.187 2011 Mean -0.180
Median -0.196 Median -0.231
Mean |t| 2.502 Mean |t| 2.147
Mean precision 0.400 Mean precision 0.466
Min -0.414 Min -0.361
Max 0.204 Max 0.457
Number 36 (20.0%) Number 15 (8.3%)

2008 Mean -0.220 2012 Mean -0.180
Median -0.202 Median -0.181
Mean |t| 2.262 Mean |t| 2.305
Mean precision 0.442 Mean precision 0.439
Min -0.433 Min -0.333
Max -0.116 Max -0.107
Number 19 (10.6%) Number 16 (8.9%)

2009 Mean -0.266 2013 Mean -0.160
Median -0.243 Median -0.146
Mean |t| 2.417 Mean |t| 2.359
Mean precision 0.414 Mean precision 0.424
Min -0.487 Min -0.324
Max -0.163 Max -0.083
Number 26 (14.4%) Number 36 (20.0%)

2010 Mean -0.275 2014 Mean -0.178
Median -0.262 Median -0.183
Mean |t| 2.402 Mean |t| 2.471
Mean precision 0.416 Mean precision 0.405
Min -0.438 Min -0.266
Max -0.168 Max -0.096
Number 18 (10.0%) Number 9 (5.0%)

From Table 3.8, except for two days as mentioned previously, the risk price

of VWO-SPY is always negative. Although there are not enough data points to

characterize the distribution of θ̂3, several observations can be made. First, the

difference between the mean and the median of the risk price is usually around

0.1 to 0.2 and can be as high as almost 0.5 in year 2011, which is much larger

than the cases for SPY and IWM. Both the mean and the median become more
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negative during 2008 to 2010, possibly due to the impact of the Great Recession.

Then they starts to become less negative until 2013, when the risk price becomes

the least negative over the whole sample period. Correspondingly, the number

and the percentage of the significant estimates are higher at year 2009 and 2013,

reinforcing the connection of the risk price with macro events. The minimum and

the maximum of the estimates also follow the same trend.

Second, the mean t-statistic is much smaller than those of θ̂1 and θ̂2. The

mean |t| over the whole sample period is around 2.3 to 2.4, corresponding to

an average p-value of 0.023. Although significant at 5% level, the estimates are

clearly not significant at 1% level. The precision on average is over 40%, which

is also much worse than that of the risk prices of SPY and IWM. For instance,

in year 2012 (which is a typical year over the sample period), the average θ̂3 is

between −0.180 ± 0.439 × 0.180 = [−0.259,−0.101] with a gap of about 0.16. It

appears that the third factor is a minor perturbation of the two-factor model.

Table 3.9 summarizes the mean plus and minus one standard error for each

estimate each year to show the precision of the estimates. The estimate θ̂0 is

computed as θ̂0 = 1 − θ̂1 − θ̂2 − θ̂3. For θ0, no standard error is computed and

only the mean is provided.

Table 3.9: Confidence Bounds

Year θ̂0 θ̂1 θ̂2 θ̂3

2007 1.987 [−0.866,−0.560] [−0.350,−0.164] [−0.262,−0.112]
2008 2.008 [−0.848,−0.598] [−0.348,−0.168] [−0.317,−0.123]
2009 2.106 [−0.924,−0.638] [−0.369,−0.175] [−0.376,−0.156]
2010 2.060 [−0.893,−0.653] [−0.305,−0.155] [−0.389,−0.161]
2011 2.046 [−0.879,−0.649] [−0.301,−0.151] [−0.264,−0.096]
2012 2.017 [−0.871,−0.631] [−0.299,−0.151] [−0.259,−0.101]
2013 2.029 [−0.882,−0.632] [−0.319,−0.155] [−0.228,−0.092]
2014 1.973 [−0.864,−0.584] [−0.291,−0.147] [−0.250,−0.106]
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Table 3.9 shows the similar trend as discussed previously. First, θ̂0, being

the share of the numeraire asset in the SDF mimicking portfolio, can be seen as

measuring the overall riskiness of the market with more positive estimates of θ0

being more risky. We see from Table 3.9 that θ̂0 starts to become more positive

since 2008 and continue to rise until 2009, and then it gradually declines. Also,

the intervals of θ̂1, θ̂2 and θ̂3 all shift towards more negative during 2008 and 2009,

an evidence of the impact of the Great Recession.

Figure 3.2 plots the time series of θ̂0 for the whole period, with the solid line

being its central tendency obtained from the lowess method.
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From Figure 3.2, we can also observe that the daily estimate starts to become

more positive since 2008 until the early 2009, indicating an overall higher riskiness

in the market. It then declines gradually during the rest of the sample period as

the economy starts to recovery from the financial crisis.

3.2.2.3 The Mimicking Returns

As in Chapter 2, I compute the SDF mimicking return R∗ using

R∗ =
(

1− θ̂1 − θ̂2
)
R0 + θ̂1R1 + θ̂2R2 + θ̂3

(
R3 −R1

)
where R0, R1, R2 and R3 are the average 10-second returns of SHY, SPY, IWM

and VWO, respectively, over a trading day.

Figure 3.3 shows the time series of R∗ over the whole period. The dashed line

is the median of the data and the smooth span of the lowess curve is chosen to

be 20% of the number of data points in each year, as explained previously. The

returns are scaled by 2340 to get the equivalent daily returns.
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As the two-factor model of Chapter 2, the variance of the SDF mimicking

returns becomes much larger during the financial crisis from late 2008 to mid

2009. The central tendency follows close to the median without any obvious

trend.

3.3 Conclusion

This chapter extends the two-factor model obtained in Chapter 2 by adding

the third factor to the model. The best candidate for a third factor is the excess

return of VWO over SPY (VWO-SPY).

Several conclusions can be made from the results. First, the model continues

to work well in 2013 and 2014, and the results of Chapter 1 and 2 still hold

in this extended period. Second, SPY remains the most important factor, with

almost every day yielding a significant estimate of the risk price of SPY. IWM is

still the second most important factor with more than 60% of the days having a

significant estimate of its risk price. Third, adding VWO-SPY as the third factor

has only marginal contribution to the model as only about 10% of the sample yield

significant estimates of θ3. However, it improves the specification of the model

slightly as there are more days (and a higher percentage of the sample) that pass

the J-test.

Lastly, one can certainly add more factors, say estimate a four or five-factor

model, and the additional factors would be even higher order of corrections to the

current model. This will be left for future studies.
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