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Abstract

The field of Judgement and Decision Making has for some
time been dominated by normative theories which attempt to
explain behaviour in mathematical terms. We argue that such
approaches provide little insight into the cognitive processes
which govern human decision making. The dominance of nor-
mative theories cannot be accounted for by the intractability
of processing models. In support of this view, we present a
processing account of performance on a simulated medical di-
agnosis task. The performance of the model, which includes
learning, is compared with that of a normative (Bayesian)
model, and with subject performance on the task. Although
there are some caveats, the processing model is found to pro-
vide a more adequate account of subject performance than the
Bayesian model.

Introduction

A tension arises in many areas of cognitive psychology be-
tween mathematical accounts and processing accounts of be-
haviour. Mathematical accounts attempt to develop equations
with which behaviour can be described or predicted. This
typically results in normative theories. Interest then focusses
on systematic departures from normative behaviour. Process-
ing accounts are less concerned with numerical relationships
between stimuli and responses. Instead, these accounts fo-
cus on the underlying sequence of informational states that a
cognitive agent progresses through in the processing of stim-
uli leading up to the generation of a response. The tension
is exemplified by the field of Judgement and Decision Mak-
ing (JDM), where the dominant approach has, for several
decades, been a normative (i.e. mathematical) one.
According to the normative view, human decision mak-
ing under uncertainty can be described in probabilistic terms.
Given a set of options, each with several possible outcomes,
the option chosen is that which maximises expected utility,
where the expected utility of an option is the sum of the sub-
jective value of each possible outcome multiplied by the sub-
jective probability of each outcome given that the option is
chosen. The cost of each option may also be included in
this calculation. (See, for example, Lindley, 1985.) Atten-
tion within the normative JDM community has focussed on
the investigation of heuristics which influence the relationship

between objective and subjective probability and between ob-
jective and subjective value. (See, for example, Tversky &
Kahneman, 1974.)

Despite the arguable successes of the normative approach
to JDM, such approaches say little about the cognitive pro-
cesses underlying decision making. There is now, however,
a growing body of research which addresses these processes.
Fox (1980), for example, studied a simplified medical diag-
nosis task, in which each subject played the role of a doc-
tor attempting to diagnose a series of patients. Within the
task (described in more detail below) symptoms were prob-
abilistically associated with diseases, such that, for example,
headache occured in 75% of cases of meningitis. Subjects
were given several blocks of trials in which to learn the task.
On a final block of trials three dependent measures — diag-
nostic accuracy, number of symptoms queried, and the order
in which symptoms were queried — were collected.

The relevant normative model in the case of diagnosis tasks
is based on the application of Bayes' theorem. In Fox’s task
this allows, for each disease, the probability that a patient
has that disease given the patient’s symptoms and the prob-
ability of each symptom given each disease, to be calculated.
Fox (1980) developed mathematical (i.e. Bayesian) and pro-
cessing accounts of subjects’ performance in the task. The
Bayesian model yielded a reasonable fit to all three measures
of subject performance, but this fit was at least matched by
the symbolic model. Fox & Cooper (1997) replicated these
results with a first-order, domain independent, version of the
symbolic model.

In further work, Cooper & Fox (1997) reported learning
data for the task. This data is derived from subjects’ perfor-
mance over a series of blocks of trials. Subjects begin the
task in a naive state, performing at chance levels (which, with
five possible diseases, corresponds to a diagnostic accuracy of
20%). After three blocks many subjects achieve a diagnostic
accuracy of over 80%. Two conditions, differing in the aver-
age number of symptoms associated with each disease, were
explored in the learning task. Cooper & Fox (1997) also ex-
tended the first order symbolic model of Fox & Cooper (1997)
to provide an account of learning. Only two dependent mea-
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Table 1: Conditional probabilities of symptoms given diseases in each matrix condition.

| Matrix | Mesiopathy | Ritengitis | Katalgia | Bonanoma
Diarrhoea 1.00 0.50 1.00 0.00
Fever 0.00 1.00 1.00 1.00
Dense | Headache 0.75 0.00 1.00 0.75
Paralysis 0.75 0.00 0.75 1.00
Vomiting 1.00 0.50 0.00 1.00
Diarrhoea 0.00 0.50 0.00 1.00
Fever 1.00 0.00 0.00 0.00
Sparse | Headache 0.25 1.00 0.00 0.25
Paralysis 0.25 1.00 0.25 0.00
Vomiting 0.00 0.50 1.00 0.00

sures were collected in the learning task (diagnostic accuracy
and number of symptoms queried), but the extended model
exhibited the observed qualitative differences in these mea-
sures, both within and between the conditions.

This paper continues the research programme by 1) re-
porting new data replicating and extending that reported by
Cooper & Fox (1997); and 2) extending the Bayesian model
of the task to include learning and question ordering strate-
gies. The replication reported here includes the third depen-
dent measure, the order in which symptoms were queried,
not previously recorded for the learning version of the task.
These data, for the final block of trials, are used in a one-
ply analysis, where we compare subjects’ initial behaviour
given a presenting symptom — whether they question any of
the remaining symptoms or offer a diagnosis — with predic-
tions derived from both models’ initial behaviour. Our results
again support the view that the symbolic model captures hu-
man performance at least as well as the Bayesian model.

The rest of the paper begins by introducing the task in some
detail. We then describe the relevant features of each of the
computational models, before reporting empirical findings.
We conclude by evaluating each of the models in the light
of our empirical findings.

The Task

Within the simulated medical diagnosis task subjects are re-
quired to diagnose a number of “patients”. There is a fixed
set of symptoms and diseases from which each patient might
be suffering. Five symptoms and four diseases are used in the
experiments reported here. Each patient is suffering from one
and only one disease. This disease manifests itself in the pa-
tient’s symptoms. Each patient has at least one symptom, the
presenting symptom. In addition patients may have any or all
of the four remaining symptoms.

Each trial begins with the subject being told the current pa-
tient’s presenting symptom. The subject may then query the
presence or absence of any of the remaining symptoms, and
can offer a diagnosis at any point. When a diagnosis is given,
the subject is informed of its correctness, and, if incorrect, of
the disease the patient was actually suffering from. It is this

feedback that allows subjects to learn the task.

The task was designed to be relatively naturalistic, whilst
maintaining a high level of experimental control. Of partic-
ular importance are the number and variety of measures of
performance which the task makes available. At a purely nu-
meric level, each block of trials provides measures of diag-
nostic accuracy and mean number of questions asked before
diagnosis. Importantly, the task also provides information
concerning sequential processing by subjects in the form of
question ordering preferences.

The task is also open to a variety of manipulations. As
noted above, Cooper & Fox (1997) reported data from two
conditions differing in the average number of symptoms as-
sociated with each disease. These are further explored here.
In the “sparse” condition, each disease is characterised by rel-
atively few symptoms. In the “dense” condition each disease
has the reverse symptom pattern to that of the sparse condi-
tion, so each disease has relatively many symptoms.

The presence of symptoms is probabilistic, with symptom
patterns being generated from tables of conditional probabil-
ities of symptoms given diseases, and presenting symptoms
are selected according to a function weighted by the symp-
toms’ conditional probabilities given diseases. Table 1 shows
the conditional probabilities of symptoms given each disease
in each condition. In one sense, the dense and sparse condi-
tions are informationally identical: given that symptoms are
either present or absent, presence of a symptom in one con-
dition is informationally equivalent to absence in the other
condition and vice versa. In another sense the conditions
differ significantly: patients always present with a symptom
(rather than without a symptom). In the dense condition more
diseases are associated, on average, with each positive symp-
tom than in the sparse condition. Hence, the initial presenting
symptom carries less information in the dense condition than
in the sparse condition.

Computational Models

Two models of performance of the task — one Bayesian
and one Symbolic — have been developed within the Co-
GENT modelling environment (Cooper & Fox, in press). CO-
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GENT provides a number of facilities which simplify the de-
velopment and specification of cognitive models, including a
graphical interface to a rule based modelling language, and
tools for Monte Carlo simulation of multiple subjects.

The Basic Model

Figure 1 shows the functional modules (as they appear in the
COGENT specification) of both the Bayesian and Symbolic
diagnosis models with learning.
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Figure 1: Box/Arrow diagram of the model with learning,
from Fox & Cooper (1997).

The function of each of the boxes is as follows. Task En-
vironment (which is not shown in detail) generates subject
data, presents it to the rest of the model, answers queries con-
cerning the presence/absence of symptoms, and records all
protocols. It is not part of the cognitive model but is imple-
mented within COGENT so0 as to automate the data presenta-
tion and analysis. Input/Output models the subject’s percep-
tual/articulatory processes. Messages from Task Environment
trigger additions to Working Memory (e.g., adding informa-
tion about the presence of a symptom), and the existence of
appropriate elements in Working Memory trigger generation
of articulatory output (e.g., a query about a symptom). Work-
ing Memory 1s a passive data store in which information about
the current case is stored and manipulated. There is no limit
on, or decay of, the information stored here, and in both mod-
els information is retrieved in the same order as it is added,
that is, access is First-In/First-Out.

Decision Procedure is a set of inference rules which mod-
ify Working Memory, implementing the basic diagnostic strat-
egy, which differs for the Bayesian and Symbolic models.
The details of the Symbolic model have already been pub-

lished in Cooper & Fox (1997), but to summarise briefly, re-
ceipt of a told (Symptom, Value) message in Working
Memory triggers a rule in Decision Procedure which aug-
ments Working Memory with the set of diseases which are
suggested by the presenting symptom. The presence of sus-
pected diseases in Working Memory then prompts recall of
their associated symptoms (through a second Decision Pro-
cedure rule). One of these symptoms is then selected as a
query, and sent to Input/Output. Diagnosis depends on a De-
cision Procedure rule which matches the symptom pattern
with characteristic symptom patterns stored in Knowledge
Base; symptoms are queried sequentially until the diagnosis
rule succeeds in matching a stored pattern.

In the Bayesian model, by contrast, receipt of a
told(Symptom, Value) message in Working Memory
triggers a rule in Decision Procedure which calculates the
conditional probabilities of all the possible diseases given the
symptom information currently available, and adds these to
Working Memory. The presence of these conditional prob-
abilities is used in the next processing cycle to either make
a diagnosis, in the case that one of the diseases already has
a conditional probability greater than the threshold value, or
otherwise, to select another symptom to query. This is ac-
complished by a rule in Decision Procedure which calcu-
lates the overall informativeness of each remaining symp-
tom query, adding these to Working Memory. The symptom
with the greatest informativeness value is then selected as the
next symptom query, and an appropriate message is sent to
Input/Output. The Bayesian model therefore uses expected
utility theory (where utility corresponds to informativeness)
supplemented with Bayes’ theorem to select each question.

In both models, the rules in Decision Procedure use task
knowledge stored in Knowledge Base. Both models learn this
knowledge as the task progresses.

Learning

As detailed in Cooper & Fox (1997), the Symbolic model
learns by storing a variety of types of information in Know!l-
edge Base; the three types of information stored are:

1. clauses detailing which diseases are suggested by which
symptoms;

2. clauses specifying whether symptoms and diseases are pos-
itively or negatively associated; and

3. clauses specifying typical patterns of symptoms for each
discase.

The Bayesian learning model is even simpler: its learning
procedure just counts frequencies, both of symptoms and of
symptoms given diseases. These are used by the diagnosis
procedure to estimate conditional probabilities.

In both models, the Knowledge Base has Last-In/First-Out
access, resulting in an overall recency effect. This does not
affect the operation of the Bayesian model, but does affect the
Symbolic model’s questioning strategy.
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Table 2: Mean % diagnostic accuracy (Symbolic model).

Matrix | Blk1 | Blk2 | Blk3 | Blk4 | Mean
dense | 57.50 | 89.00 | 94.50 | 99.50 | 85.13
sparse | 63.00 | 79.00 | 78.00 | 75.00 | 73.75
Mean | 60.25 | 84.00 | 86.25 | 87.25 | 79.44

Table 3: Mean symptoms queried (Symbolic model).

Matrix | Blk 1 | Blk2 | Blk3 | Blk4 | Mean

dense 396 | 388 | 3.83 | 3.87 | 3.89

sparse | 2.47 | 0.56 | 042 | 053 | 1.00

Mean 322 [ 222 | 213 | 220 | 244 |
Modelling Experiments

Each learning model was run 10 times in each matrix con-
dition for 4 blocks of 20 trials each, and percentage accu-
racy and mean number of symptoms queried in each block
were recorded. Also, the first question asked in each trial of
the final block (or diagnosis if no questions were asked) was
recorded. Parameter settings for all runs were identical, so the
only source of variation in their behaviour was the particular
stimulus set used on each run.

For the Bayesian model, a diagnosis threshold value of
0.60 was chosen. This gives broadly similar diagnostic ac-
curacy in both models.

Symbolic model Table 2 shows the mean percentage diag-
nostic accuracy scores in each block and matrix condition for
the Symbolic model. There is a highly significant effect of
block (F(3,54) = 38.31, p < 0.001), such that overall di-
agnostic accuracy increases across the blocks, and there is a
significant effect of matrix (F(1,18) = 42.61, p < 0.001),
such that performance is higher in the dense than in the sparse
condition. Also, they interact (F(3,54) = 9.36, p < 0.001);
whereas the dense learning curve continues to rise across the
blocks, the sparse one flattens off at a lower level.

Table 3 shows mean numbers of symptoms queried by
the Symbolic model, in each block and matrix condition.
There are highly significant effects of both block (F(3, 54)
94.85, p < 0.001) and matrix (F(1,18) = 1161.34, p
0.001), and an interaction between them (F'(3,54)
76.03, p < 0.001). In the dense condition, the number of
symptom queries remains close to four in each block, whereas
in the sparse condition the number of queries drops to an av-
erage of less than one from the second block onwards.

Al

Bayesian model Table 4 shows the mean percentage diag-
nostic accuracy scores in each block and matrix condition for
the Bayesian model. There is a highly significant effect of
block (F(3,54) = 29.14, p < 0.001), with accuracy in-
creasing from block 1 to 4, and a significant effect of matrix

Table 4: Mean % diagnostic accuracy (Bayesian model).

Matrix | Blk1 | Blk2 | Blk3 | Blk4 | Mean
dense | 60.50 | 77.50 | 82.00 | 82.00 | 75.50
sparse | 71.50 | 83.50 | 85.50 | 90.50 | 82.75
Mean | 66.00 | 80.50 | 83.75 | 86.25 | 79.13

Table 5: Mean symptoms queried (Bayesian model).

Matrix | Blk1 | Blk2 | Blk3 | Blk4 | Mean
dense 1.71 | 1.33 | 1.46 | 1.39 | 147
sparse | 1.21 | 0.90 [ 0.99 | 1.15 | 1.06
Mean 146 | 1.12 | 1.23 | 1.27 | 1.27

(F'(1,18) = 8.55, p < 0.01), such that diagnostic accuracy
is higher in the sparse condition, unlike the Symbolic model.
This time there is no interaction (F(3,54) = 0.92).

Table 5 shows mean numbers of symptoms queried by the
Bayesian model, in each block and matrix condition. There is
a significant effect of Block (F(3,54) = 18.00, p < 0.001),
such that the number of symptoms drops from block 1 to 2,
but then gently rises again, There is also a significant effect
of matrix (F(1,18) = 40.13, p < 0.001), such that more
symptoms are queried in the dense condition, and a barely
significant interaction (F(3,54) = 2.94, p < 0.05).

One-ply Predictions

The one-ply predictions of each model were generated by
aggregating initial selection behaviour, on each trial in the
fourth block, across all simulated subjects in each matrix con-
dition. This resulted in a set of tables of percentages of oc-
casions when each symptom, or a diagnosis, was selected,
for each presenting symptom. For each model, the two cells
with the highest values in each row were then selected as
the predictions. When there was a second-place tie, all three
cells were included as predictions; this occurred once for each
model. These predictions are annotated on Table 8 below.

Experiment

Method

Subjects 38 second year psychology students from Birkbeck
College took part, 18 in the dense condition and 20 in the sparse
condition,

Design Each S was assigned to either the Dense or Sparse ma-
trix condition, and performed four blocks of 20 trials, each of which
comprised 5 trials with each disease, in random sequence. All diag-
noses and symptom queries were recorded.

Software The task was computer-based, mouse driven and ad-
ministered by a client-server system on the departmental intranet,
using a network of 486 PCs. The client portion, written in JavaScript
for Netscape Navigator 4, randomised trials within blocks, presented
stimuli and collected responses. The server assigned subjects to
dense and sparse matrix conditions, and collated data.
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Figure 2: Graphs of diagnostic accuracy (left) and number of symptom queries (right) for human subjects and both models.

Table 6: Mean % diagnostic accuracy (Human data).

Matrix | N | Blk1 | Blk2 | Blk3 | Blk4 | Mean
dense 18 | 3470 | 46.95 | 46.95 | 46.10 | 43.68
sparse | 20 | 53.00 | 62.25 | 67.00 | 75.25 | 64.38
Mean | 38 | 44.34 | 55.00 | 57.50 | 61.44 | 54.57

The client system® was launched by clicking on a button at the
foot of a web page of instructions, which opened a new window.
On each trial the program displayed a series of boxes labelled with
symptom names, running across the top half of the window, and a se-
ries of boxes labelled with disease names running across the bottom.
The order in which both symptom and disease boxes were presented
onscreen was randomised on each trial.

The symptom boxes could be clicked by the subject, when they
would change to reveal whether the symptom was present or absent
in the imaginary patient. At the beginning of each tral, one of the
symptom boxes was already in this changed state, giving the sub-
ject information about the patient’s presenting symptom. When the
disease boxes were clicked, a new box appeared in the centre of the
screen stating whether the diagnosis was correct or not. If the di-
agnosis was incorrect, this box also gave feedback about the correct
disease, allowing the subject to learn. Clicking on this box started
the next trial.

At the end of each block, the program presented a score giving the
number of correct diagnoses out of 20, saved the accumulated data
to the server, and gave the subject the opportunity to rest briefly.

Instructions The launch page of the experimental client system
described the screen layout and the block structure of the experi-
ment. Subjects were also verbally instructed to attempt to diagnose
efficiently, that is, to minimise the number of symptom queries they
made, provided this did not compromise their diagnostic accuracy.

Results

Learning results Table 6 and Figure 2 (left) show mean
percentage diagnostic accuracy for human subjects. Human
diagnostic accuracy is substantially lower throughout than
that achieved by either model. However, there are highly
significant effects of both block (F'(3,108) = 16.27, p <
0.0001) and matrix (F'(1,36) = 12.42, p < 0.0012), such

'For a demonstration of the client system, see
http://www.psyc.bbk.ac.uk/staff/pgy/experiments/jdm2a/demo/

Table 7: Mean symptoms queried (Human data).

Matrix | N | Blk1 | Blk2 | Blk3 | Blk 4 | Mean
dense | 18 | 3.29 | 3.35 | 3.52 | 3.41 | 3.39
sparse | 20 [ 2.83 | 2.53 | 2.36 | 2.36 | 2.52
Mean |38 | 3.05 [ 292 | 291 | 286 | 293

that subjects in the sparse condition performed substantially
better than those in the dense condition, like the Bayesian but
unlike the Symbolic model. Also, there is a barely signifi-
cant interaction (F'(3,108) = 2.77, p < 0.0452), due to the
flattening of the learning curve in the dense condition.

Table 7 and Figure 2 (right) show mean numbers of symp-
toms queried by human subjects in each block and matrix
condition. Human subjects query substantially more symp-
toms than do either of the models. There is a modestly sig-
nificant effect of matrix (F(1,36) = 4.83, p < 0.0345),
such that more symptoms are queried in dense than in sparse,
but no overall effect of block (F(3,108) = 1.17). How-
ever, there is a highly significant interaction (F'(3,108) =
5.23, Greenhouse-Geisser p < 0.0045), due to the reduc-
tion in symptom queries across blocks in the sparse but not
in the dense condition; instead the number of queries in the
dense condition rises from block 1 to block 3. Aside from
this increase, this pattern of results is more similar to the
Symbolic model than the Bayesian model, as the number of
queries in the dense condition remains effectively at ceiling
whereas that in the sparse condition drops across the blocks.

One-ply analysis Table 8 shows the human one-ply results,
the percentages of each possible initial selection behaviour
given each presenting symptom, aggregated across subjects,
for both dense and sparse matrix conditions. The predictions
of Symbolic and Bayesian models are indicated by super-
script B and S respectively.

We evaluate the relative performance of the models by
scoring how often each model predicts the top two values in
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Table 8: One-ply analysis for Block 4 (Human data). Superscript B and S indicate the respective model predictions.

Presenting First query

Matrix | symptom N | diagnosis | diarthoea | fever headache | paralysis | vomiting
diarthoea | 54 1.5% 20.0%°8| 262%°P| 23.1% | 292%
fever 123 | 6.4% 16.7%> 20.6%° | 262%° | 302%°F

dense | headache | 64 | 42% 479% | 18.8%° - 125% | 16.7%>B
paralysis | 48 | 14.0% 263%° | 123%° | 123% 35.1%°0
vomiting | 71 | 3.1% 26.6%5 | 203%°B| 359%°P| 14.1% .
diarthoea | 107 | 34.7%5B 149%B | 19.8%°5 | 158% | 14.9%
fever 90 | 39.3%°B| 56% 28.1% 146% | 12.4%

sparse | headache | 46 | 143%°P| 30.4%> | 25.0%P : 89% | 21.4%
paralysis | 58 | 30.4% 196% | 44%° | 15.2%°P 30.4%°
vomiting | 99 | 259%° | 148% | 19.4%° | 204%° | 19.4%° |

each row; each model gets one point for each predicted cell
containing one of the two highest values in the row. Accord-
ing to this criterion, the Bayesian model scores 6 points in the
dense condition and 4 points in the sparse condition, totalling
10/20, whereas the Symbolic model scores 7 in the dense con-
dition and 6 in the sparse condition, a total of 13/20. So the
Symbolic model performs better on this measure than does
the Bayesian model.

Discussion

We have presented subject data and two computational mod-
els of performance (including learning) on a simulated med-
ical diagnosis task. Each model captures some aspects of
the subject data, but although the Bayesian model predicts
the greater diagnostic accuracy observed in the sparse con-
dition, the symbolic model arguably gives a better fit with
the number of symptom queries, and clearly outperforms the
Bayesian model in fitting the one-ply data, so we consider it
a better fit overall.

Although the increase in diagnostic accuracy across the
blocks by subjects was similar to that predicted by both mod-
els, overall diagnostic accuracy performance was poorer than
that reported by Fox (1980) and Cooper & Fox (1997), and
that predicted by both models, despite the fact that the task
was easier than that used by Cooper & Fox. This may be at-
tributable to differences between the populations tested: the
experiments were separated by almost twenty years, with
medical students in the first case and psychology students in
the present case.

Subjects achieved higher levels of diagnostic accuracy in
the sparse condition, unlike the Symbolic model. This could
be due to the greater memory load in the dense condition,
by which the models, being without capacity limitations or
decay, are unaffected. We plan to investigate the effects of
imposing memory limitations on the models in future.

The fact that the Symbolic model, with a FIFO Knowl-
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edge base and LIFO Working Memory, accounted reasonably
well for the one-ply data, corroborates the view that recency
in the accessibility of symptom information is a major deter-
minant of subjects’ questioning behaviour (Fox, 1980; Fox
& Cooper, 1997). The present finding extends Fox's earlier
results to the case of a learning model, and to a new materi-
als set including the dense/sparse manipulation. In this model
the recency effect operates in the long term, that is for periods
longer than a single trial, and so recently learned information
in the Knowledge Base is the first to be retrieved, and to ap-
pear in symptom queries, provided it is relevant. Other, un-
reported attempts to fit the present data with different buffer
access settings were less successful, as expected. We aim to
explore this issue further, and to develop other variants of the
Symbolic learning model with alternative questioning strate-
gies, in the hope of accounting more fully for the subject data.
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