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EQUIVALENT-POTENTTIAL METHOD FOR RELATIVISTIC SCATTERING
Jerome Finkelstein
Lawrence Radiation Laboratory

University of California
Berkeley, California

Janvary 26, 1967

ABSTRACT

The equlivalent-potential method is generalized so as to permit
calculation both of multichannel scattering and of certain scattering
amplitudes of particles of nonzero spin. It is pointed out that
amplitudes calculated'by this method have correct dépendence upon
momenbum transfer; it is argued that this feature mayrmake‘the
equivalent-potential method a better approximation to the unitarity
iteration than is the N/b method. As exampies, the = xn, n X, and
t N amplitudes are cbnsidered. For the first two of these cases it
is found that the force due to vector meson exchange 1s far too small
(it is suggested that inelastic effects may be quité important ), but
that if the input couplings are increaséd so as to reproduce the
vector mesons, then o* mesons are also produced, ét roughly the
masses of the £°(1250), £° (1500), and K**(1405). In the = N case, -
with the potential given by nucleon and N (1238) . exchange, there are
no free parameters in the calculation. The N* is then "predicted"

at a mass of 1100 MeV. The nonresonant phase shifts also agree in
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a general way with the results of phase-shift analysis; in particular,
the Sll scattering length has the correct sign, while N/b calcula-
tions produce the wrong sign. It is argued that this result indicates

that the force due to iteration of the potential, included in this

method but not in N/D, can be important.

e

;/
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I. INTRODUCTION

An important problem in strong interaction physiecs has been
the calculation of‘scattering amplitudes from input "forces" which
are assumed known. One common way of calculating two-ﬁarticle
amplitudes is the N/D approximation.l In this paper I discuss and
generalize an alternative procedure suggested several years ago by
Charap and Fubini.2 With this procedure I am able to calculate simply
and without the introduction of adjustable parameters the scattering
amplitude implied by a given choice of input "force." Also, I can
investigate whether certain discrepancies between N/b calculations
and experiment are due to a failure of ﬁhe N/b approximation or of
more basic assumptions.

The analysis of the séattering problem into -"forces'" and
their "effects" is of course based on a classical analogue. Even in
the classical case, difficulties arise if this distinction is taken
too seriously,'5 since forces are always accompanied by their effects,
it is not surprising that sooﬁ;r"or later one must get into trouble if
one insists on discussing them separately. Nevertheless, thils way of

| thinking about problems is certainly extremely useful in classical
physics. In strong interaction physics it may also be useful, but
the difficulties will appear much sooner. Loosely speaking, since
’the "effect" in one channel can be the "force" for another, this

distinection can be expected to be useful only in the approximetion of

neglecting exact crossing symmetry.
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I the framework of the Mandelstam representation, which shall
be assumed throughout this paper, the notion of force caﬂ be defined as
follows: Let A(s;t) be the (matrix) scattering amplitude connecting
a.specified, finite number of two-body channels, where s and t are v
the usual kinematic variables. Let At(s,t) be the +t discontinuity
of A(s,t). (All amplitudes in this paper have definite exchange
parity). Then the elastic double spectral function is defined by the

usual unitarity formula

(1-1)

e

Py (8st) = T T
- mQs? 7 K2(s,t,t",t")

0]

1 © A (s,t') A (s,t")
f at' at" o L

to is the position of the lowest singularity in t . The generalized

potential V , which corresponds to the "force," is then defined by the

relation
- p (S')t) '
a(s,8) = V(s,t) + 3 fds' Tl (1-2)
s'= s

where, if neceséary,.a cutoff is to be understood on thié last integral.
Clearly this definition of the force depends on which channels are
explicitly included in the metrix A, If V is real, the amplitude
satisfies "elastic" uniﬁarity,'by which we mean that the S matrix of
the channels explicitly included is unitary. -
These definitions permit the scattering problem to be attacked
i in two stages. The first stage is the construction of V , the second

.the calculation of the amplitude in terms of V . For the examples
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which I shali discuss I will take V to be real, and approximate it
by the most obvioﬁs single particle gxchange terms. I shall not discuss
here the possible Jjustifications or limitations of these approximations;

and in fact shall have essentially nothing new to say about the first

-stage, except that my numerical results might be thought to provide

some measure of the reliability of these approximationé; The probleml
that T will discuss 1is, given an approximation to V , to find the .
corrgsponding amplitude A .

A popular approach to this problem consists in_approximating
the left-~hand cuts of partial ﬁave amplitudes by the projections of V,

and then unitarizing the amplitude by means of the N/D equations

'(In the following, whenever I refer to the N/b method this approxima-

tion to the left-hand cuts should be understood). Such a procedure

assures that the nearest part of the left-hand cut is treated correctly;

one hopes that this feature, together with the correct treatment of the
elastic cut, assures an adequate approximatibn at low energles. Since
Egs. (I-1) and (I-2) can be solved for A, by iteration, in principle
the entlre left-hand cut could be obtained,.in the approximation that
we somehow khow V,. However, since at best we can only know the long
range parts éf V , it might be thought that if the problem can be
handled at all, only the nearby left-hand cut 1s important, and hence
it 1s legitimate.to neglect effects due to iterations of V.

A hint that this argument may not be correct can be seen in

the fact that, for large #4 , amplitudes calculated with the N/b

5
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approximation can not have both their asymptotic and their threshold
behavior correct. Thus iteration of long-range components in the
potential is not dynamically equivalent to the effect of short-range
componercs. I will suggest below, furthermore, that there are examples
for low £ , such as scattering in the =« N Sll state, in which
including the iterations of the parts of the potential that we do
know gives a significantly better answer than does the N/b approxima-
tion. The equivalent;potential>method suggested by the work of
Charap and Fubini,2 which shares with N/b the feature of treating
the nearby singularities correctly, but which does not neglect the
force due to iterations of the potential, can be used to provide a
basis for comparison with N/D results, as well as to produce
amplitudes which are interesting for more general purposes;

Briefly, this méthod is as follows: We imagine.that we know
V(s,t) and will settle for an amplitude A which fulf;lls these
requirements:

a) A(s,t) satisfies elastic unitarity. (of the channels explicitly
cohsidered).

b) For small %, At(s,t) = V(s,t). (1-3)
These requirements demand that we include the nearest singularities
correctly. If we define

o
Vir,s) = A(s) f at v(s,t) e‘rﬁ/r , | (1-1)

%y

5!
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. two preliminary reports of these calculations.

L ~5a
and if‘the normalization A(s) is judicioﬁsly chosen, the scattering
amplitude implied by the Schr&dinger equation of which V(r,s) is the
potential can be showﬁ to fulfill requirements (I-3). It is the common
hope of this method and of N/b that these requirements will ensure a
reasonable approximation at low energiles; at high energies the short-
range part of V are surely important.

The equivalent-potenfial mefhod is presented in more detail and
generality In Section II below. It is applied to examples of scattering
problems in the next two sections: Section IIT contains calculations
of nnx and =x K scattering, and Section'IV a calculation of =x N
scattering. The results of these calculations are summarized and

discussed in Section V.

Some of the material presented in thils paper is contained in

6,7
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II. THE EQUIVALENT-POTENTIAL METHOD .

The eguivalent~-potential method was first suggested by Charap »
and Fubini2 for the special case of spinless external particles and
zero kinetic énergy. They were able to argue that the energy-independent
Schr§dinger equation potential they obtained would be a good approximation
when the kinetic energy was small compared to the rest mass. A few years
later Balézs8 generalized this method by letting the potential be
energy-dependent, and suggested its application to =x x scattering.
Requirements (I-f) determine the normalization A(s) appearing
in (I-4), and this completely determines the method. Before discussing
this, I will, essentially follow the outline of Baiézs, exhibit a
potential. U(r,s) which in principle would produce an amplitude
satisfying (I-1) and (I-2) exactly. We will then be able to see in

vhat sense our V(r,s) is an approximation to this U .

A. Construction of Exact Potential

Let us assﬁme that we have solved (I-1) aﬁd (1~2) by iteration,
and that we now know At(s,t) exactly., TFor application to a two
channel calculation, I will for a ﬁime‘display the matrix indices of
At , although a single channel would have been sufficient to illustrate

this construction. Xnowing At(s,t), define matrices aij(S*E’t) and

a -(S:Eyt) =
1J T 2Py Ky 2 (B5,875") ' ]

= , (f (-,E,t')]; (£ *(s,E,t")], .
- ¥ 2 fdt' R Al 23, 5o (1) 0w



£, (5,5 8)]y, = AuMEF +i—f ar' oy, (s,8t) [ grig - g -
(11-2)

Here i,J,k refer to the channels; P 1s the same function of E

that the center-of-mass momentunm 'qk is of s, and K 1is the standard

unitafity kernel, which is a function of the three angle cosines, |

Equations (II-1) and (ITI-2) can be solved for o and f, by itera-

tion. Having obtained « , define U(s,t) by

1 ' 1 (@ ozij(s,E',t)'
Uij(s,‘b) = 25 2 [A_t<s,'t)]ij - ';f 4aE'. ——E—,—:—;——- . (11-3)

By combining (II-2) and (II-3), we see : _ [

© 4g' ozij(s,E’,t)

'[ft(s,E,t)]ij = Uij(s,t) +%f S . (11-1)

Now Eqs.‘(II-l) and (II-4) can be solved very simply. Cénsider the

set of coupled Schrddinger equations, parameterized by s :

2 -
(7 + 2,5 ¥, (=) = >? U, (e8) ¥, () | (11-5)
where .
Uij(r,s) = - % f dt Uij(s,t) e-r,\/’{/r . (11-6)
+ o
0
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With certain-restrictions on U(s,t), to be discussed below, we know
that the amplitude implied by these Schrodinger equations, call it
fij(s,E,t), will have its t discontinuity equal to [ft(s,E,t)]ij ,
thus justifying the notation. This is so because the t discontinuity
of f will satisfy Egs. (II-1) and (II-h),9 and the solution to these
veqpations 1s unique.

The restrictions are, first, that Uij(r,s) be less singular
than r 2 at the origin, which from (II~6) means Uij(s;t) goes to
zero faster than t-% at large t . This will have to be checked in
individual cases, and in fact will give us trouble when we'try to
generalize to include scattering of particles with non-zero spin. The

second restriction is that Uij(s’t) be real. From (II-3),

-

Im Uij(s,t) = 2s AIm [At(s,t)]ij -'oaj(s,s,t) , (1T-7)

and then using (II-1) and (II-2),

Im Uij(s,t)

——— = Im [A _(s,t)]
' 1 * " .
- Z l fdt' dt” [At<s}tl)]ik[At (S;t )]kj .
k. ﬂpks—é - K_2—<s,t,t',t")

That this is zero follows from the assumeiunitarity of 'At ; That is

from the matrix analogue of (I<l) and (I-2) and the fact that the input

V(s,t) is real.
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Let me now suppress the channel Indices. So far we have seen
that the + discontinuity of £(s,E,t) is indeed ft(s,E,t). If

we define

Ry
Al(s;t) = %Sz‘lf(s)sﬂﬁ ' (II"9)

we see from (II-2) that the + discontinuity of A(s,t) is just
At(s,t), which by assumption satisfies (I-1) and (I-2). Having started
with V(s,t),'we have constrﬁcted an amplitude whose t discontinuilty
does satisfy (I-1) and (I-2). Of course there are many functions with
the same t discontinuity, but by using the Schrddinger equation we
have picked out that unique one which is analytic in angular momentum.
This will be another assumption we shall have to make: that:.the low
partial waves of the dmplitude we are seeking are the continuation of
the high partial wa#es. A similar assumption is made in N/b calcula~
tions in ignoring the possibility of CDD poles. |

While it might be tempting to try to interprete r as some
" kind éf position coordinate, and f(s,Et) as an off-mass-shell
' amplitude, this is not necessary, and will not be done here. It is
sufficient for our.purposes to regard the introduction of these new
variables as a purely formal device to generate a mass-shell amplitude

A(s,t) which satisfies the mass-shell conditions (I-1) and (I-2).
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B, The Approximation

The potential U(s,t) defined by (II-3) would in principle be
obtained from V(s,t) by iterating (I-1) and (I-2) an infinite number
of times, and then iterating (II-1) and (II-2) an infinite number of
times. If we were to iterate each of these eqpations n  times
(kxeeping only the first n powers of V), and call the resulting
potential U(s,t), then it could be seen that U> is real, and that
:Un(s,t)
U(x, s)

would still be unitary, and would have 1ts t discontinuity correct

"

U(s,t) for +t < {(n + 1)2t0 . If we put

H

- At
-(1/x) d/-dt U (s,t) e™* /t/% , the resulting amplitude
5
for t < (n + l)gto . Comparing with Eq. (I-l), if we set the normaliza-
' Y
tion A(s) = - 2/(x s2), then V(r,s) = Ul(r,s); once again with

channel indices, that is

Vij(r,s) - .:21 | at Vij(s,t) TV, (1II-10)
T s2. :
0

Equation (II-10) is the basis for the equivalent-potential
calcwlation for spinless external particles. We have just seen in
what sense this V(r,s) is an approximation to the U(x,s) defined
above. However, the properties of the amplitude implied 5y; V(r,s)
can be deduced from (II-10) directly. Clearly f(s,E,t) will satisfy
vthe non-relativistically normalized unitarity relation, and for
t < hto its t discontinuity will be 25-% V(s,t). Hence A(s,t)

defined in (II-9) will fulfill requirements (I-3).  Moreover, since
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the amplitude does come from a Schrodinger equation, its full t

discontinuity will have the structure implied by the (non-relativistic)

. Mandelstam unitarity iteration. Thus the contribution to the force

coming from higher terms of the iteration, while not included correctly,

are not ignored either. This is the advantage that the equivalent-

potential method has over the N/D method. One way to appreciate the
advantage of getting the strucfure in_ t correctly is to observe that
the amplitudes that I will calculate have correct threshold behavior,
while N/b amplitudes, Jjust because the higher terms of the iteration
are neglected, do not automatically have correct threshold behavior.
Blankenbecler and'Sugarlo have recently proposed a method of
making dynamical calculations which shares with the equivalent-potential
the feature of including the for;e due to iterated exchange, but which

requires the off-shell generalized potential.

C. Behavior in s

So far we have examined our amplitude at a fixed value of s,
and found that as a function of t it has the structure we expect; we
have speculated that this feature might make it a better approximation

than is the N/b amplitude. When we look at our amplitude as a function

of s, things do not look quite so good. In the first place, at large

energies the short-range parts of the force are important, and even if
we were to know V(s,t) exactly, our approximate treatment.of the short-
range contributions of the ilterations would not be justified. The N/b

method also suffers from this defect, perhaps even more severely. Also, .
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the ahalytic structuré in the s plane is not correct. We started by
considering the unitarity expression in the physical region, but having
defined the potential in (II-10), we can continue it anywhere we like,
and in particular notice that V{r,s) will become infinite as s ~ O,
since in general V(s,t) will bé finite there. It will still be true
as s —~ 0 that the ¢ discontinuity of our amplitude will be correct

for t < Lt but for t > hto it will become more and more incorrect as

O 2
s - 0. Moreover, this is & defect not shared by N/b; it was 'introduced
when we accepted for the higher unitarity iterations expressions which
differ from the correct ones in not always carefully distinguishing

-1 -%
between m and 2s 2,

This defect would be fatal if we ever had to write a diépersion
" relation in s. But we do not; Eq. (II-10) can be justified, and the
Schrodinger equation solved, at fixed s . It is entirely possible for
an amplitude to be a good approximation in the scaftering region and
to have bad analytic structure somewhere else. We will certainly not
be able to continue our solution far out of the scattering region.

Be;ow I will want to suggest that closed coupled channels may
be important constituents of the p wmeson. If this be so, then in a
one~channel calculétion, requirements (I-3) are not sufficient to assure
a good épproximation. In N/b language we would explain this by saying
that there is an important singularity, the inelastic  threshold, which
must be taken into account.  In our language we say that the

discontinuity for t > hto 1s affected by the closed channel. It will .
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perhaps seem strange that we can discuss the neglect of a closed
channel (or the introduction of a spurious singularity at s = 0) in
terms'of the +* discontinuity at fixed s , when the more uswal way to

think about this is in terms of a dispersion relation in s . That we

‘can so discuss this»can‘be seen from the following observation: If our

amplitude had the correct +t discontinuity for a particular s, then
(under the assumption of analyticity in angular momentum) it would

be correct5 for that value of s .

D. Modification for =z N

If the_extefnal particlés do have spin, there may be several
coﬁpledvamplitudes, in which case‘the unitarity equations beéome more
complicated. It is possible, ﬁowever; to generalize the results of
the preceding sections to some amplitudes‘involving particles with
spin. TFor the case of n N scattering, I have been able to calculate

an amplitude for the states with J = £ + %~, but not for those with

J = L -3%.

.The kinematics of w N scattering have been summarized by,
for.example, Frautschi and Walecka,ll whose notation I shall use.
The invariant amplitudes A and B are not unitary in the sense of
Eq. (I-l), and so cquld not possibly be reproduced by a Schrﬁdinger
equation. Balfzs had tried to write a SchrBdinger equation for the |
N ampiitude which is a matrix in spin spé.ce.12 He found that the
attractive potentiél corresponding to nucleon exchange behaved like

r-3 at the origin, which he proposed to handle with a cutoff. By
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using amplitudes which obey simple unitarity relations, we shall be
able partially to overcome this difficulty.
Consider the partial-wave amplitudes f :-(s) for orbital
‘z - .

angular momentum £ and J = £ % % , Which are normalized to

e16 -~ sin S/q under the assumption of elastic unitarity. Then

let F+ be defined by
- ‘ 2 '
F (s,t) = > (22 + 1) fz_,_(s) P,(1 + t/2q7) (IT-11)

in'the physical region, and by analytic continuation wherever the sum

in (II-11) does not converge. The sum defining F+ begins at £ =0,
the sum for F_ at £ =1 ., Since the f£+ satisfy the unitarity
of spinless particles, so will F+ and F_ . That is, we have the

familiar relations
In F,(s,t) = (¢/br) [ ag F (s,t') F,"(s,t") 5 (I1-12)

F+ and F_ are not coupled by unitarity.
Since F+, and. F_ are each unitary, we could carry out.the
derivations of the preceding sections in terms of them. That is, if
we could find the potentials V;(s,t), we could hope to put them into
Eq. (II-lO) (dropping the 25-%; since (II-12) shows that F, satisfy
& nonrelativistically-normalized unitarity) énd solve the Schrodinger
equation for amplitudes F+ which a) were correctly unitary, and

b) had their +t discontinuity correct, for small t . The potentials
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will, as is customary, be constructed from the single-particle poles
in the crossed channels, which in the spinless casevwill mean that
V(s,t) will be a delta function in t . However, the price we pay
for eliminating spin from the R N unitarity equations is that the
crossing reiations become complicated. In the appendix, the following
points are established: the exchange of a particle contributes to
Fi(s,t) not only a pole, but also a cut extending from the pole
position to t = + co. Thus. V; corresponding to a single-particle

exchange force can be written
v (s,8) = g,(s) 8(t - %)) +n(s)o(st), . (11-13)

where g, and h+ are kinematic factors, tp is the position of the

pole in F, , end ’@t is zero if t < t, . Also at large t,
|¢+(s,t)l < const. X t-B/é and ¢ _(s,t) > const. > 0.
From (II-10), this means that the potential corresponding to

VY behaves like r2 at the origin. Thus we can not use a (nonsingular)

Schr¥dinger equation to satlsfy requirements (I-3) applied to F_ .

Actually, this could already have been seen from the fact that F_ has

no s wave, and is essentially the same trouble that Balfzs found.12

For this reason the equivalent-potential method does not enable us to

calculate scattering in those n N states with J = /4 - 3 . On the

other hand, the potential corresponding to V; behaves like r-l at
the origin, and so we are able to produce an amplitude éatisfying'

(1-3) by this method. In fact, it will turn out that for the range of
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energies considered, the effect on the amplitude of @+ is véry small
and might as well have been neglected; this is consistent with the hope
that for moderate energies we need only consider the long-range parts
of forces. |

It might be thought that, since we will have an expression for
f G should make a continuation in the energy, and by virtue of the

)/
MacDowell symmetry arrive at an expression for f . However,

because of the cohsiderations of the preceding seéﬁzﬁg, this continuvation
can nqﬁ be done.

The equivalent-potential method may be expected to apply to any
amplitude which satisfies abunitarity equation such.as (I1-12), and
which has all of its partial.waves. Anothér example of such an
amplitude is the spin-singlet NN amblitude. In this paper I am
especially interested in calculating amplitudes for which a simple
approximation to the potential can be written with few if any parameters.
‘This is not the case with the NN problem,since the"coﬁplings of the
vector mesons are not very well known, and especially since the =n =
13

s-wave exchange seems to be very important, and so I have not

included a calculation of NN scattering.

E. Calculational Methods and Conventions

For the one-channel problem, the partial wave Schrddinger

equation is

(L v @+ 1) 4y - vie) ) (11-11)
r
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A sufficiently simple way to obtain the scattering amplitude is to
solve (II—lh) numerically (one Schrddinger equation takes about

30 p sec on the CDC 6600 computer) and get the phﬁse shift 5, from
the asymptotic form of ¥ . If R is so large that V(r,s) is
negligible for r >R, then

| ¥(R) [3,(aR] + ar 33" (aR)]) - ¥'(R) Ry, (aR)
ten 8,(8) = R TE (@) T R ()] - VT (R) fa(aR)

(11-155

where jz and n, are spherical Bessel functions and primes denote
differentiation with respect to r . It is convenient té use Bessel
functions rather than sines and cosines to avoid having to integrate
(II-lh) up toan R so 1argé that the centrifugal term is also
negligible.

For the two-channel calculations, the partial wave Schrddinger

R 1
equations are

, :
<:_g_ v+ &ﬁi_%;}).> vle) = LV, (ms) v(e) (11-16)
r J .

1
below the threshold of the kth channel, q = + 1 ]qk2lE . We will
need two independent regular solutions of (II-16), which I will label
yith a second subscript; thus .Wij(r) is the Jth solution for the
ith channel; If we were lucky enough to pick our two solutions so

that the incoming waves were dlagonal, that 1s, if for R large enough,-

(Wij)lucky = R<§i3 hze(qiR) * Sfij hzl(qiR2) } (1T-17)
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then we could read off the S matrix, which is given by

. . -1 . . . _ 8
_siJ. = q sij, | (11-18)
the h, in (II-17) are spherical Hankel functions:
1. . 2 . . , .
hz = J,+1n,, hz = Jp-1mn,. In general, the asymptotic
form of V¥ 1is given by
2 1 '
Gy = R(Aij n,"(4R) + By, by (a,R)- (IT-19)

Comparing (II-17) and (II-19), we see

— -l [l — -l .
(w):Lucky = VAT, endso s' = BAT . (II-\20)
The matrices A and B can be obbained from the asymptotic form of
“’13 , by differentiating and inverting (II-19). Finally, in the two-
channel case the eigenphase shifts are obtained from
A t. 1 o 2 23]
2i 8‘2.(5) = log 87 ; 87 = 3 [311 + Sy + ((sll - 5,5)" + b5, )21
(11-21)
The "resonant energies" that I will list are the energies at

which & passes through =/2. The output reduced widths are defined by

1

s? as
r = {8 S2+1 <<’1‘E> ] ’ (11-22)
: q

=8
resonance
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2-24
)

and have the dimensions of (GeV . In the narrow-width approxima-~

tion, (d&/ﬁs)—l is the imaginary coordinate of the pole in the s
plane.

Since the above discussion is not limited to integral values
of 4 , Regge trajectories afs) = aR(S) + i 07 (s) can be obtained
through the approkimation that Qﬁ(s) is that value of £ for which
6z(s) = n/2, and Oi(s) = (doh/as) (dS/as)-l. As one of several
checks on the numerical acéuracy of_these computations, some of the
one~channel equatidns were also analyzed with a computer program
written by Burke and 'I‘ate,15 which directly finds the pole in the

S matrix for complex £ ; the agreement was excellént.

F. Summary of Fguivalent-Potential Method

The calculations to be described in the next two sections
proceed as follows: first we preﬁend that we know the generalized
potentials; we shall in fact take them to be the simplest single-
particle exchange terms. For the case of spinless external particles
V(s,t) will thus Be a delta function: for the = N case V+(s,t)
will be more complicated. We will then construct the Schrddinger
equation potential V(z,s) from Eq. (I1-10), or in the = N case

from its analogue,

[0.0] .
Jr at v, (s,t) e'r'V%)% . (11-10'")

s

A [H

V+(r, s) = =
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The Schrodinger equation can then be solved numerically to give the
'scattering amplitude of which V(s,t) is the generalized potential.
Our amplitude will satisfy unitarity and have the correct
disgontinuity for small- t . In addition, the structure in t will be
that dictated by the Mandelstam unitarity iterétion, and so the partial
waves of our amplitude will have correct threshold behavior. There are
no free parameters in the calculation that aré not contained in the
potential itself; in particular there is no cutoff,'even though the
exchanged particles will have non-zero spin. This means that when
the generalized potential is known unambiguously, the scattering is

predicted unambiguously.
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III, EXAMPLES: =z n AND = K SCATTERING

To be valuable in helping us to judge the validity of the
équivalent-potential method, an example should have the following
three properties: First, the equivalent-potential method must be
applicable té it; this eliminates most but not all examples of particles
with non-zero spin. Second, we should know how to construct with a
minimum of free parameters a generalized potential which has some chance
of being a good approximation in the resonance region. Third, there
should be relatively unambiguous experimental results with which to
compafe the qalculations. The examples I have chosen to discuss are
tx, XK and = N scattering. in this section I pfesent two calcula-
tions of the = n amplitude, the first assuming elastic unitariﬁy and
the second including one other ghannel, and then a calculation of = K
scattering. In thé following section I present a calculation of = N

scattering in the states with J = £ + % .

A. Single Channel x 5 Calculation

In the =n n calcuwlation I will let the generalized potential:
be given by the p meson exchange term. For a resonance pole in the

t channel, the amplitude will have the form

WA(t,s) - (24 + 1) Pz(l + s/2q_t2) Az(t) s - (r11-1)

where Az(t) is the t channel partial wave in which the resonance

occurs., Near the resonance,
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N 7/ 0

. : —l- .
The phase-space factor p equals tht-z, by the normalization which

1
has been established in (I-1). From Eq. (II-22), T, = 2 Z/(8qt2£+l),
and so

| b thE Pin ' ' '
Ag(t) = ———m « (111-3)
t - o= 1y

In the narrow-width approximation, by coubining (III-3) and (III-1)
we see

_ 2y 24
Im A(t,s) = beT, (22 +1) P,(1+ s/éqR\). g

8(t - ty) (TTI-L)
Ap being the value of . -when t = tR .

To cross into the s channel, we have only to multiply by an
isotopic spin crossing matrix element £ , so the contribution to the

generalized potential of the pole in the t channel is
V(s,t) = e p T, (22 + 1) P (1 + s/2q 2)1 q 24 5(t - t,) . (I1I-5)
’ in y R.” ™R "R

For p exchange, £ = 1 and tR = mea. There is an
ldentical contribution from exchange in the u>channel; the two contribu=-
_ tlons cancel for those states in which scattering is forbidden by Bose

statistics and add in the allowed states, so if we remember to compute

only allowed states, we can write
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V(s,t) = 12 n B rin(s + 2 % . ‘ (111-6)
The parameters appearing in (III-6) are all reasonably well
known. If we take the physical p +to have a mass of 750 MeV and a
width of 120 MeV, then Pin ~ 0.20.. There are thus no free parametérs,
and we can get an unambiguoué prediction of the = x amplitude, which
can be compared with experiment; in particular, we can see how well the .
o 1s reproduced in the output.
Not surprisingly, this prediction fails miserably. The op
dogs not appear in the output, and the £ = 1 phase shift is only
10° at the mass at which the p showld be. This is consistent with

&
the feeling that one gets from N/D calculationslé’l7’l

that the force
due to the p is Just not strong enough to produce the p . Having
failled to reproducerthe‘ o with the physical input, supposé Wwe now
treat the input width ‘Pin as a parameter, and vary it until the

2 = 1 phase shift does equal x/2 at the p mass. This results in
T = 0.46 (corresponding to a width of 270 MeV); the output width

in
turns out to be Pout = 0.50, and so this calculation is very nearly

self consistent.

In fact, it is a common approach in' n % calculations to
18,1
determine the p parameters by requiring approximate self-consistency.” ’ 9

In the present case this would not work, as there are many self consistent

solutions; even with T, = fixed at 0.46, the input and output are
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consistent to within 10% as the input mass varies from 600 MeV to
1 GeV. To require exact self consistency in an approximate calcula- \
tion does not seem very meaningful; among other reasons, this would
depend on the way in which the output width was defined. Therefore
all that I can contribute to discussions of self-consistency is %o
report that it is possible to achleve self-consistency using the
physical o mass.

We have, within the limitations of the equivalent-potential
approximation, confirmed that the force due to the p 1is not strong

enough, that other forces (including perhaps the effects of closed

e b e

coupled channels) must be included. Below I will try to deal with
the problem of closed coupled channels more or less directly; for the
time being, let me hope that all of these other effects can in some

sense be approximated by increasing the input p width, so that the

potential will indeed be given by Eq. (III-6), with the physical p

mass but with Fin- = 0.4 . Having thus adjusted the potential td‘
give the output p mass correctly, I can now see how closely the other
parameters of the =« n amplitude agree with experiment.

With this potential, for I = O there are two Regge trajectories
above £ = 0 at threshold, both of which pass through £ =2 .and thus
produce resonances, For I = 1 there is one trajectory, which pasées
through the p ; for I =2 the force is repulsive. The real parts of .
the trajectories continue to rise as the energy is increased, and in

fact do eventually go through higher physical values of £ , but well .
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above s = 300 mﬂz. Ho&éver, the approximations we have made can be
Justified, if at all, only at low'enefgy, and so 1t would be entirely'
unjustified to attach any significance to these recurrences.

The two I = O, 2+ resonances occur at 1070 and 1900 MeV;

I will identify them with the £°(1250) and the f°’(15oo). These
and other parameters are summarized in Table I.

The calculation ofvs-wave scattering by the equivalent potential
method is less reliable than thé calculation of higher partial waves,
for the usual reason that the s wave depends more strongly on the
shorter-range parts of the potential. In this case where Qe know
that our potential is wrong, where we are representing unknown forces
by an increase in'the input width, it would perhaps be asking too much
to expect an accurate calculation of the s-wave phase shift. On the
other hand, as at the présent time there is no firm évidence on this
phase shift,.any reéult we might calculate seems safe from immediate
experimenﬁal refutation. For completeness, the s-wave scattering length
is included in Table I; the negative sign corresponds to a decreasing
phaée shift. This is the sign that would be expected from the existencé
of traﬁectories abové £ = 0 at threshold, even though the forces
are attractive.

As explained above, the- calculated amplitude can not be
continued to s = 0. However, for some distance above threshold the
trajectories afe very nearly linear; these linéar trajéctories have

been extrapolated to s = 0, and the intercepts obtained in this way
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entered into Table I. Since crossing symmetry is not imposed on this
calculation, there is no constraint forcing Regge intercepts To lie
below 1. At one time it was supposed that the fo lay on the
P trajectory and the fo1 on the P';go this 1s the basis for the
"experimental" intercepts appearing in Table I. If the £°  should
lie on the P' trajectory, the agfeement between experimént and
calculation in this respect would of course be worse.

B. Coupled xn 7w - K K Scattering

It is often suggested}6’for-example

that ciosed coupled
channels are important constituents of the p, and therefore must
" be included in any dynamical calculation of it. Three of the more
~ likely channels are =n o, N'fi and K X . Since I am preventéd from
treating the first two of these because of spin complications (the
o couples to the spin-triplet states of the N I system), I will
attempt to caleculate the coupled = nw -~ K K system, ignoring'the other
channels. This approximation will mean that I can not hope to get the
K K scattering at all correct, buf perhaps the inclusion of even one
additional qhannel will improve the results for the =x n elastic
amplitide.

in analogy to the single channel calcwlation, I will take the
generalized potential to be given by vector meson exchangé. The
appropriate force diagrams are preseﬁted in Fig. 1. The p X K
coupling is not directly accessible to experimeht, but is determined

, 21
1f we assume that the reduced VPP couplings are related by SU3.
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Using these relations, and assuming for simplicity that the ¢ is
the member of the octet_(although any other w - @ mixing angle could

have been assumed ), the 2 x 2 matrix potential can be éxpressed in

terms of the reduced px n coupling Fin :

v%“:““(s’t) = lemp I‘:i.n(s * 2qR ) 8<t - M ) (I1-7a)
5 2 o
Vym,m_&(s’t) = VKK,:r:rr(s’t) = (97{/-\/2) 8 Pin(s + 2 % Y 8(t - mK* )
(I1I-70)
2 2 ‘
VKK,KK(S’t) = 9aB T (s+2q7) 8t - m, )

+3x8 rin(s + 2 qRe) 5(t - mpg) . , (IIT-Tc)

Here 9 1s the value of qt at the position of the exchanged

resonance: in (III-Ta), q_R2 = (mp2 - hmﬂe)/h; in (III-To),

2R2 = QEK¥2'.(mK - mﬂ)2> GEK*E- (mK * mﬂ)2> / (th%Q) s ete.

With the physical value Fin = 0.20, the nnxw £ =1 phase
shift is again 10° at the mass at which the o should be, just as it
was in the single~channel calculation. A resonance in this ampliftude

does appear, at about 16QO MeV. Adjusting Pin to force this resonance

down to 750 MeV, we find T, = 0.38, which is a somewhat smaller

~value than was necessary in the single channel calculation. The output

width 1is impro#ed even more than the input, and is brought down to
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0.32; the calculation 1is still nearly self consistent.

"

out
With Ty = = 0.38, the rest of the amplitude was calculated,

and the results entered in Table I. The widths of the fo and the

fo are both substantially reduced from what they were in the one-

s . o' o .
channel calculation; unfortunately, the T as well as the f  is

cQupled primarily to the = nt channel, in defiance of experimental
reéults.

One resonance appears in this calculation which did not appear
at all in the single-channel calculation: a I = £ = 0 fesonance at
685 Meﬁ; with a full width of 20 MeV. It is amusing to note that,
because of the asymmetrylin the decay of the po, a resonance with
these quantum numbers has been conjectured to lie underneath the p .22
However, it is possible to follow the trajeétory on which our new
resonance lies, and see that above the K K threshold it couples
primarily to the K‘K channel; soat £ =0 it is primarily a bound
state éf KX » which explains its small wildth. But this means that
its existence dependé largely on the dynamics in the X X channel, and
that is just the paft of thé problem which we knew we had no chance
of getting correctly. Thus the appearance of this resonance so near
to the o mass must be regarded as fortultous. For the same reasons,

o _ 5
the failure of the f£°  to couple strongly to “K K is not serious.

C. m K Scattering

For the calculation of .m K scattering, let us again take the
forces to be given by vector meson exchange, the p in the +t channel

and the X* 4in the u channel. We again need the p X K coupling,
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and we can again relate all of the reduced couplings by SUB.21 This

time let us say that the bne independent input'parameter is the X*
reduced width F'in , since this is what can be compared with the
output.

For I = 5/?' the total force is repulsive,lso we need only
consider the I = % states. Because of the unequal n and KX masses,
the potential looks slightly different than (111-6);25 the.potential

appropriate to angular momentum £ is given by

if<s,t) = vp<s;t'> + (1) VK*(s,t) (171-8a)
Vp(s,t) =.16 =« F'in(s + a)ls(t - mp2) | (111-8b)
Va(st) = b NG R SO R ICRE W 1)) (11I-8c)

il

In (III-8), o mK*e-/h - (mﬂg + mk2)/é , and in (ITI-8¢),

2 . . o
B(x) = (mK2 - mﬁe) /x . In a preliminery report of this calcula-
. tion,6 the approximation B = 0 was made; the numerical differences

in the results were completely hegligible.

P'in can be determined by requiring the output mass of the
"K* to be 890 MeV; this requiremenﬁ gives F'in = 0.57 (the observed
width of 50 Mevzu implies TI' = 0.22). The output width Fout = 0.55

1s very nearly the same as the input. There is one other resonance,
at £ =2 at 1265 MeV; I identify this with the X " (1405). Parameters

- for these two resonances are presented in Table II.
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IV. EXAMPLE: = N SCATTERING

For the =n N example, I will construct the generalized potential
from nucleon and N*(1238) exchange. The couplings of the p are some-
what uncertain; and in any case the p contribution is expected to be
small.25 Since in the rest of the potential there are no free para-
meters, I simply neglect the p force. |

The contributions of N and N* exchange in the wu channel
to the invariant amplitudes A and *B have been given by Ball and

WOng.26 For the amplitudes of isotopic spin (l/é, 5/?) these contribu-

.tions are
Ae50) = (45, 1/5) g, (0) - aye)/6°- u) (17-12)
B(s,50) = - (b5, 1/3) 5 (0 - 0y8)/ 0% w)
v (1,-2) gNg/(M‘2 - u) | » (Iv-1b)
where in units in which mjr = ¢ = Hf = 1, the N* mass A is
8.9, a, = 8ho, 8, = 23,4, b, = -157, b, = 1.5, and the values
of the couplings are gN*2/8ﬁ = 0.06, gNE/hn = 1b.4. Projecting

the partial waves of definite exchange parity from (IV-1), we have

Af(S) = (43, 1/3) gN*e[(al - aes)/q_e] Q (1 + tN*/qu)i (IV-2a)



-31~

1

+1

5,%(s) (45, 1/3) 8, (o - Bys)/d°) Q{1 + ¢ /267

1+

(1, -2) 6200/ )1 + ¢ /2a?) (1v-20)

where, because of the unequal-mass kinematics, tN* and tN s the

positions of the poles in'the amplitudes of definite exchange parity,

depend on s ;
T I A
ta = £ 0f )/ ©(Tv-3)

compare the quantity pA(s) in (III-8c).

Equations (IV-2) and the crossing relations derived in the
appendix enable us to compute the contributions to V;(s,t) of N
and N exchange, each of which will have tﬁe form (II-12). With a
superseript * +to indicate exchange parity, so that V;+ is physical
for J - % even, énd V;- for J - % odd, we see from Egs. (IV-Q)
and (A-13).

2

1w =t {,2) gl - /ey 2 ote - vy)

- (cég/qe) T S(z,1 + tN/qu) o(t - th)]

Equation (IV-L4) continued
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(35, 15) 6,7 [((ay - 23) (0 - Gp/Bp)
# (by = Dys) (= Cpp + Cpp/By)) 2 Bt - £ )

y (1/q2)(}(a1 - 8,8) Cyy + (b -.bgs)'022> Im 8(z, 1 + tN*/éq?)

X ot -t »)]} O (av-b)

%

1
where z = 1 + t/éq?, Bg = z + (22- 1)2, the C's are given by

 Eq. (A-3), and S is given by Eq. (A-12).

| Siﬂce only states with J = £ + % can be calculated, we can
not look for the nucleon pole; the only low energy resonance we expect
to find is the N(123%8) in the sz. state. With the physical values
of the input couplings this resonance appears at 1100 MeV, Jjust above
threéhold. Its full width is 1.5 MeV; this corresponds to a reduced
width T° of 0.8, to be compared with the experimental value of 1.7
(120 MeV). These resﬁlts have been entered into Table IIT.

It thus appears that there is no need to depart from the physical
values of the input parameters to obtain results which look reasonably
similar to experiment. The non-resonant phase shifts alsé agree in a
general way with the results of phase-shift analysis, even though there
were no parameters that were adjusted to make them agree. In Figs. 2
and 3 the non~-resonant phase shifts with £ < 2' are compared with the

0 to 700 MeV phase shift analysis by Roper.27
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At higher energies the results were not consistent with experi~

ment, Between 1500 and 2500 MeV, the only resonances to appear were

a second P at 1600, and an 8, at 2140, and this.is clearly

335
wrong. In parficular, the Regge recurrences of the N*(1238) never
appear; the trajectory rises only to £ = 2.1 at 1920 MeV. However,
the slope of the trajéctory at the resonant energy is 0.9 (GeV)-Q,
which is the same slope as that obtained from a straight-line fit to
the N*¥ and its observed recurrences28 (and so if we extrapolate back
to s = 0, our intercept would be about the same as in that fit). This
- result is not surprising if we believe that,'whilé at low energies the
A trajectory is primarily coupled to the = N channel, at higher
energies channels with higher thresholds (ahd probably higher external
spin) are important. | ‘

The reported results were all obtalned from the potential
given by (IV-L). If the cut contribution had been neglected (S set
equal to zero), none of the gqualitative features would have been
éhanged. 'In order to have another estimate of the degree of agreement
between the calculated results and‘experiment, the value of the input
n N N coupling necessary to give the N¥ 1in the right place was
determined. (The force due to the exchanged N* is very small in

this state.) The result was gNE/hx ‘= '11.0, to be compared with the

known value of 1Lk,
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V. DISCUSSION

The most important numerical resulis from the calculations
described in the preceding two sections appear in Tables I-ITII and
Figs. 2-3. In the = N calculation there were no free parameters,
and so these results are pure "predictions;” in each of the other
calculations there was one free parameter, as the input couplings
were allowed to vary from their physical values. The agreement between
these results and experiment compares favorably with that of other
dynamical calculations having comparably few free parameters.

There were several areas in which the calculated results were
not reasonable at all; One such area was at high energy; in the
n N calculation the results were not éood above 1600 MeV total
energy. However, at high energies we should not éxpect the method
used to be a good approximation, for at least threé reasons: at high
energy (i) the simple form of the generalized potential is not justified,
(11) the assumption of elastic unitarity is wrong, and (iii) the
differences between this method and the full Mandelstam unitarity
iteration become more acute. Indeed, it would be rather puzzling it
we were able to get good results by this method in a region where we
knewe7 that the amplitide was quite inelastic. And so while our
failures above 1600 MeV certainly do indicate a limitation on what
we may hope to do, they do not necessarily cast doubt on the better
results obtained at lower.energies.

A more serious failure was indicated by our inability to get

any sensible results at all in the s« x and =x KX calculations with
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the physical values of the input couplings. Thié failure seems to
confirm the idea that a simple force, single channel modél of the p

is not very readalistic. The fact that the Qutput widths were substantially
reduced (see Table I) when one additional channel was added indicates
that at least é large part of the discrepancy between this model and
reality arises in the negleét of the higher-threshold channels. That
the inclusion of coupled channels will increase the force (equivalently,
decrease thé-input width) is well known; that it will significantly
decrease the output widths has been suspected, but in N/b‘ calcuwlations
it has not always turned out that w::my.:l'7 Unfortwately, at the present
time the equivalent-potential method i§ not able to handle the other
channels which might be important constituents of the p . In any

case, if we accept the result that closed channels are very important.
in reducing the p width, it follows that no strictly single~channel
.calculation should be expected to produce the correct p width.

In order to understand the relationship between the calculations
reported here and ahalbgous N/b calculations, let us suppose for the
moment that the assumptions common to both methods, such as elastic
unitarity and the particular choice of the generalized potential, were
exactly correct. Under this suépééition, the approximation involved
in N/b is to neglect. contributions to the left-hand cut of all but
the lowest.term of the unitarity iteration. As was mentioned in
Section II, solving the Schrvdinger equation means: including all of

the terms of that iteration. Only the lowest term is included exactly
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(with relativistic kinematics) --to inclﬁde them all would reguire an
infinite iteration Jjust to conStruct the potehtial--but it seems
reasonable to hope that this is better than neglecting them altogether.
If this be correct, then a given (attractive) generalized potential
should produce larger scattering in equivalent-potential calculations
than in N/D, which neglects the attraction produced by itérations of
the potential. TFor a repulsive potential, the iterations alternate in
sign, and hence tend to cancel; taking only the lowest-order contribu-
tion to the left-hand cut means using too much repulsion. We would
expect, then, that in the.equivélent~potential method attractive forces
would appear stronger, and'repulsive fdrces weaker, than.in N/b
calculations.

Unfortunately, this comparison is made difficult by the fact
that with an adjustable cutoff, the force due to exchange of particles

of spin > 1 can be made as strong as one likes. We then have to push

the argument further: if N/b .neglects important attractive contributions

to the left-hand cut, then in order to obtain a resonance or a bognd
state at the correct mass, it is necessary to make the cutoff higher
than if the additional attraction were included. This means that the

D functioﬁ would change more slowly with energy; residues would thus be
greater, and trajectories flatter. We conclude that if the equivalent-
potential method is a reliable approximation to the unitarity iteration,

it should produce smaller residues and steeper trajectories than does

the N/D method.
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Indeéd, this 1s the case. The residue of fhe N*. reported
here is only one half of the physical Value, while N/b calculations
predicp it to be too large.26’29 ‘In the single channel X ﬁ calcﬁla;
tion, thevresidﬁe; although larger than the experimental value, camé
out smaller than in most N/b‘ calculatiohs; also the prajectories rose
shaxrply enoughvto make resonances at £ =2, . 1% isiinteresting to
compare this feéture of the = x results with thé'calculation done
by BaliBo and with the N/D calcﬁlation of Coiiins and Teplitz.18
The input coupling used By'Colliné and Teplitz was Similar to the
value used in this paper, however, thelr output p trajectory did
" not qplte make it to - z = l, and no trajectory rose above 4 = 1.5.
Bali, Qn-the other hand, by directly examining the relativistic
| unitarity iteration for the simple p ﬁodel, found trajeétpries that
did rise sharply, and could produce an Z 2 'resonance.

There is another way to compare the effectlve strengths of
forces in the equivalent-potential and in-the N/b methods. Consider
the case of’pwo forces, of opposite signs but comparable magnitudes.
If the forces aré of the same range, they will cancel within V(s,t).
It ﬁhey are ofvdifferent ranges thén the iteration wil; make the
attractive one stronger} and the repulsive one weaker, although changing
the cutoff mighf not affept the relative strengths of the two forces.

. An éxample of 'such & case can be fouhd_in the = N Sll state,
where N* exchange is_repulsive and N exchangé is attractive.

 Abers and Zemach.e5 estimate.thevmagnitude'of'the N* force to be 1.1
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times that of the X force; the point 1s that they are comparable.

Also the ranges are quite different: because of the unequal x and

N masses; the ratio of the ranges of -the two forcés is not M/A ~x 0.75,
but rather is tN/%N* which at threshold is about 0.4k, The facts.

that the energy dependence of the two forceg is different, and that the
dispersion relation in W includes contributions from the singularities

of the amplitude, which although far away are strong, make

=]
"1l
difficult the application.of the above reasoning to the N/b calcula-

tion of the S Nevertheless, N/D calculations do produce a

1’
. 26,29 o . oaa

negative scattering length (which in this case indicates a net

repulsive fofce), although it is known that the scattering length is

27,31 ’

positive. Coulter and Shaw29 obtained a negative scattering
.length even when they took account of inelasti¢ity.

The potential that I used differed from that used in Refs; 26
and 29 in that I did not include the force due to p éxéhange. However,

since this force is attractive in the S state, including it would

11
not have decreased the attraction, and hence would not have altered the
fact that the equivalent-potential calculation predicts that the
scattering length 1s positive.

One might suspect that the failure of N/b calculations for
the Sll ‘state indicates a failure of the assumptions, in pérticular
that unknown short-range forces are very important, at least for the
s wave. The results presented here suggest the opposite: that when
iterations of the potential are taken into account, simple N and N*

exchange is adeguate to obtain a reasonable‘fit to low-energy =« N

scattering.
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APPENDIX

We need to know the contribution %o V; of a parficle pole
in the crossed reaction. The invariant amplitudes A and B satisfy
simple crossing relations, so this contribution to A and B is a

pole in € or wu.. The partial waves will then be given by expressions

of the form

x (s) Q,(z,)

fo =3
x>
—
-0
~
I

(A-1)

o
IS
Py
[6)]
~
|

K, (s) Q,(z,) -

Comparison with Egs. (IV-2) shows, for example, for nucleon exchange,
2,2 ' 2 .
K (s) =0, XK,(s) = % (L,-2) g /a5, 25 = 1+ty(s)/2q” . In

this appendix we determine V; when Az .and Bﬂ are given by (A-1).

From Ref. 11,
fzt(s) = 0 Az(s) + Cpp Bﬁ(s) + Chy Azfl(s) + Cop thl(s) , (Afe)
the matrix C being given by

n)? - E, [anf - W) - M]\
.1 '
327

C =

B Y ST B RV RN, B vy (A-3)



-

with W = s and b = pion mass. Substituting (A-1) and (A-2)

into the definition

F_r(s,t) = ) (24 + 1.) P,(1 + t/qu) fzi_(s) , (A-k)

we get

Fi_(s,t) = (chll + K2C12) > (24 + 1) Pz(l + t/2q2) Qz(zo) + (.chel + KQCQE).

X T(26+1) 200+ t/20?) 0 (z) . (a5)
The firs£ sum is easy:
3@ +2) B 4lag) = Miag - 2) (a-6)

The second sum 1ls not so easy. Define

8.(m 2p) = L (204 2) Ry(e) () - (A-T)

For s fixed in the physical rggion, Z, will be fixed and gfeater
_than 1. We shall need to evaluate the discontinuities and the
asymptotic behavior of S* in the 2z plane for fixedb zO . .The
sums in (A-T7) converge only in an eilipse passing through 2y s SO

it 1is necessary to do the sums where they converge, and then continue

in z [this continuation is implied in writing (A-6)].
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Let us first sun §_ for 1<z <z, . We can use Laplace's

integral representations for Pz and Qz :

PE(Z) = (/x) f ae [a(z,e)]z , o
oo > : ‘ (A-8)
Qz(zo) - ,[ ax (x2_ l)-l/é [B(zo)x)]-zfl; p = 2o * (Zo2' l)l/éx'.
1

z + (zg- l)l/é cos 8 ,

n

Although E} is an entire function, let us choose.to'stay on the

sheet of (z° - 1)1/2 in which (z2 - J.)l/2 -z at large |z| .

From (A;6) and (A-T),

a - 1 1 _ :
S(z,zo) = S+(z,zo) - B I > (24 + 1) Pz(z),Qz+l(zo)
(2-9)
1 i ey
"B L (28 +1) B,(2) Q,(z,) -
The choice B, = 2z + (22- :L')l/2 will mean that S has no pole.
Now substitute (A-8) into (A-9):
. oo} TC
A : 1 ¢« ax 1 1N\ £ -£-1
s(z,zO = = Y (22 + 1) J[ (XE- 1)12 f ¢e<§-§§>a BT
+ 9 (A-10)
The sum can be done inside the integrals,
Y(es +1)of g7t o A L B (A-11)

p-a & -a)f’
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since ]a/Bf < 1 throughout the region of double integration. We

can now do the integral over 6 to get

. oo 5
S(z,2,) = 5 v[- & S -
, =
0 Pr 9 (xe- 1)1/2 6(32— 2Bz + l)l/2 B -~z + (22_ l)l/2
, (A-12)
It is straightforward to show that this integral exists for all
z except for 2z =z, and ze[-l,+1], that IQI - const X z]'B/é

o)
Pas
at large |z|, and that S has a cut from -1 to +1 (which does

not appear in S+) and another from Zq to + . Combining

(A-5), (A-6), and (A-9), we have

Flspt) = [(50)) +K.Cpp) + (K0 + K0py)/Bp)/ (2 2)
(A-13)

(K G * KyChp) Q(Z’Z\o) ’

. N
with z =1 + t/éq? and BR = 2 + (22- l)l/é. S can be evaluated
numerically from (A-12). V, is the imaginary part of (A-13), which
is 0 1if =z < Zg

We can sum S_(z,zo) in a similar way, and obtain

B , 1
Z, % = L
s_(z,24) Zg - 2 + J( 1)1/2 | (6°- 2pz + 1)1/2 (A-1L)

7 =

(22 l):L/2<B -z - (22 l)l/2>

X [ pz - 1 -
2. 1)? B -z - (z°- l)l/2+ (52- 2Bz + l)Lﬂi

B -z + (27-1)

but the imaginary part of this integral is > n/b at large 2z .

J
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Table I. Parameters of the xn n Amplitude
One-Channel Two-Channel
Calcuwlation Calculation Experiment
Reduced p width: input ©.0.L46 0.38 0.20(120MeV)
output » 0.50 0.32 0.20
Intercept of p trajectory 0.7 0.7 0.54%
£° mass (MeV) 1070 1140 1250P
Reduced f° width | 0.50 0.35 0.25(100Mev)®
Intercept of £ trajectory ' 1.3 1.2 1€
' mass (MeV) 1900 1870 1500%
Reduced f£° width 0.55 0.39 ?
Intercept'of fO, frajectory - 0.7 0.5 0.69c
Other resonances below 2500 MeV none O+(685) none established
Scattering length (mﬁ-l) : ;0.8‘ -2.0 ?

a. This "experimental" number is from R. J. N. Paillips and W. Rarita,

Phys. Rev. 139, B1336 (1965).

c. That is, if the

!

,fo lies on thé P trajectory, and the % on

| the P'. The P' intercept is from J. J. G. Scanlo, New Determina-

tion of the P' Regge Trajectory Intercept, Phys. Rev. (to be

published ).

d. V. E. Barnes et al., Phys. Rev. Letters 15, 322 (1965).
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Table TI. Parameters of the x X Amplitude

Calculation Experiment | o

Reduced K* width: input 0.57 C0.22 (50 Mev)®

.output _ 0.55 0.22
‘Intercept of K* trajecﬁory 0.k 7
K mass (MeV) | : 1265 14052
Reduced X width ' ) 0.16 0.12 (95 Mev)® |
Intercept of K** trajectory ‘ 0;75 ?
Other resonances below 2500 MeV ' none none

established

a. See Ref. 2.4,



g

Table ITI. Parameters of the n N Amplitude

- : ' Calculation Experiment

N* mass (MeV) 1100 1238
Reduced N width 0.8 1.7 (120MeV)
Othe? resonances bglow 2500 MeV -~ I53(16OO), Sll(zlho) many
Noh-resonant phase shifts ! Sge Figs. 2 and 3

I = % scattering length (mﬂ-l) 0.29 0.17"

“a. See Ref., 3L.
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FIGURE LEGENDS

Fig. 1. The generalized potential for the coupled x n - K X calculation.
Fig. 2. a1 N I = % ‘phase shifts for £ <2 and J = £ + % . Solid |
lines are the phase shifts calculated in this paper; dashed
lines the results of Roper, Wright, and Feld (Ref. 27).
(a) S,; pPhase shift; (v) EEB phase shift; (c) D15 phase
shift. |
'Fig. 3. Same as Fig. 2 for nonresonant I = 3/2 phase shifts.

(a) ‘s51 phase shift; (b) D 5 phase shift.

3



© -51-

XBL671-404



-52-

~ «$

()

_

—

200
Pion laob energy

]

O O
< o\

O
|

O

To] O

600

400

O

(Bap) 1y1us asoud ''s (Bap) 1jiys asoyd €l (Bap) 11ys ssoyd Slg

( MeV)

MuB-12718



-53-

(deg)

| Sz, phose shift

1

D35 phase shift (deg)

L
200

Pion‘ lob energy

!
400

(MeV )

MuBi12718



-1

i

This report was prepared as an account of Government
sponsored work. Neither the United States, nor the Com-
mission, nor any person acting on behalf of the Commission:

A.

Makes any warranty or representation, expressed or
implied, with respect to the accuracy, completeness,
or usefulness of the information contained in this
report, or that the use of any information, appa-
ratus, method, or process disclosed in this report
may not infringe privately owned rights; or

Assumes any liabilities with respect to the use of,
or for damages resulting from the use of any infor-
mation, apparatus, method, or process disclosed in
this report. '

As used in the above, "person acting on behalf of the

Commission" includes any employee or contractor of the Com-

mission, or employee of such contractor, to the extent that
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