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August 6, 2004

Abstract

In the mean field (or random link) model there are n points and
inter-point distances are independent random variables. For 0 < ℓ < ∞
and in the n → ∞ limit, let δ(ℓ) = 1/n× (maximum number of steps
in a path whose average step-length is ≤ ℓ). The function δ(ℓ) is
analogous to the percolation function in percolation theory: there is
a critical value ℓ∗ = e−1 at which δ(·) becomes non-zero, and (pre-
sumably) a scaling exponent β in the sense δ(ℓ) ≍ (ℓ − ℓ∗)β. Recently
developed probabilistic methodology (in some sense a rephrasing of
the cavity method developed in the 1980s by Mézard and Parisi) pro-
vides a simple albeit non-rigorous way of writing down such functions
in terms of solutions of fixed-point equations for probability distribu-
tions. Solving numerically gives convincing evidence that β = 3. A
parallel study with trees and connected edge-sets in place of paths gives
scaling exponent 2, while the analog for classical percolation has scal-
ing exponent 1. The new exponents coincide with those recently found
in a different context (comparing optimal and near-optimal solutions of
the mean-field TSP and MST problems), and reinforce the suggestion
that scaling exponents determine universality classes for optimization
problems on random points.

Key words and phrases. Combinatorial optimization, mean field model,
percolation, probabilistic analysis of algorithms, scaling exponent,
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1 Introduction

1.1 Paths

Consider n points with inter-point distances (d(v, w) = d(w, v), 1 ≤ v, w ≤
n). A path π = (v0, v1, . . . , vm) visits a set of points, distinct except that
maybe vm = v0. Associated with a path π is its length (number of steps)
len(π) and the average step-distance A(π):

len(π) = m

A(π) = m−1
m∑

i=1

d(vi−1, vi).

The celebrated Traveling Salesman Problem (TSP) concerns minimizing
A(π) subject to len(π) = n. One can also consider, for given m < n, the
question of the minimum value of A(π) subject to len(π) ≥ m. This has also
been studied as an algorithmic question [7, 8]; but instead we take a “statisti-
cal physics” viewpoint of studying the values minπ A(π) under a probability
model for random points. The most natural probability model is n indepen-
dent uniform random points in the unit square, and study of the TSP in this
model goes back 45 years to Beardwood et al [9]. See Steele [21] for a recent
survey of the general area. Unfortunately the kind of questions we study
seem far out of reach of analytic methods in this two-dimensional model.
Instead we use a more tractable model with several names (we say stochas-
tic mean-field (SMFn) but also called random link or complete graph with
random (exponentially distributed) edge-lengths) which we imagine roughly
as random points in infinite-dimensional space. Section 2 provides details
of the SMFn model. In the mid 1980s Mézard and Parisi [16] studied the
TSP (and other optimization problems [17, 19]) in the SMFn model, using
the non-rigorous cavity method from statistical physics: see [18] for a recent
survey of the cavity method. Recent work of the author [4, 1, 6] develops
a methodology based on (additive) renormalization within an infinite-point
random model of distance. This methodology, in some sense just a rephras-
ing of the cavity method, provides a consistent framework for a wide variety
of different calculations for different optimization problems in the context
of SMFn.

In this paper we study a deterministic function (ε(δ), 0 < δ ≤ 1) arising
as the limit

ε(δ) = lim
n

E min{A(π) : len(π) ≥ δn, π a path in SMFn}. (1)
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(Limits asserted here and later are presumed, but not rigorously proved,
to exist – see section 1.5.) The value ε(1) ≈ 2.04 (obtained by numerically
solving a fixed-point equation) goes back to Mézard and Parisi [16], while the
value ε(0+) = e−1 ≈ 0.368 is given in Aldous [3] Proposition 7 (other aspects
of paths are treated by Janson [13]). Our purpose is to show how the recent
methodology enables one to determine numerically the whole function ε(δ).
A plot of the whole function is given in Figure 1 (left side). Of particular
interest is the scaling behavior as δ ↓ 0. The numerical evidence (right side
of Figure 1, and Table 1) strongly suggests a scaling exponent

ε(δ) − ε(0+) ≍ δα with α = 1/3. (2)

This kind of scaling exponent is precisely analogous to scaling exponents
around the critical value in percolation theory, as explained in section 1.3.

1.2 Trees

There are parallel questions using trees in place of paths. Consider a com-
plete graph on n vertices whose edges e have lengths d(e). For any tree t in
the graph, with edges e1, . . . , em, write size(t) for the number of edges of t
and A(t) for the average edge-length:

size(t) = m

A(t) = m−1
∑

e∈t

d(e).

The Minimum Spanning Tree (MST) problem asks for the minimum of A(t)
subject to size(t) = n − 1. Take n random points in our stochastic mean
field model SMFn. Analogously to the results for paths, we anticipate a
deterministic function (ε∗(δ), 0 < δ ≤ 1) arising as the limit

ε∗(δ) = lim
n

E min{A(t) : size(t) ≥ δn, t a tree in SMFn}. (3)

A well known result of Frieze [11] for the MST says that ε∗(1) = ζ(3) ≈
1.202, whereas Aldous [3] argued ε∗(0+) ≈ 0.263 by numerics with fixed
point equations. Parallel to the study of paths, our methodology tells how
in principle to determine numerically the whole function ε∗(δ). In prac-
tice we have not be able to carry this through (see section 5) but instead
have analyzed the following related question. Instead of trees we consider
connected edge-sets e = (e1, . . . , em).
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Figure 1. The limit function for paths. On the left is the function
ε(δ) defined at (1). The horizontal axis is δ, the vertical axis is ε. The right side
gives a close-up of the behavior for small δ: the points + are the values estimated
numerically in Table 1, and the curve is ε − e−1 = 0.308 δ1/3.
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Figure 2. The limit function for connected edge-sets. On the left
is the function ε̃(δ) defined at (4). The right side gives a close-up of the behavior
for small δ: the points + are the values estimated numerically in Table 1, and the
curve is ε̃ − 0.265 = 0.360 δ1/2.
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Define size(e) and A(e) as above, and as at (3) we anticipate a deter-
ministic function (ε̃(δ), 0 < δ < ∞) arising as the limit

ε̃(δ) = lim
n

E min{A(e) : size(e) ≥ δn, e a connected edge-set in SMFn}.
(4)

A plot of the whole function is given in Figure 2 (left side). Again, scaling
as δ ↓ 0 is of interest. The numerical evidence (right side of Figure 2, and
Table 1) gives an estimate ε̃(0+) ≈ 0.265 and strongly suggests a scaling
exponent

ε̃(δ) − ε̃(0+) ≍ δα∗ with α∗ = 1/2. (5)

As explained in section 5, we must have the same δ ↓ 0 behavior for the
“tree” function ε∗(·) as for the “connected edge-set” function ε̃(·).

ε(δ) paths ε̃(δ) = ε∗(δ) trees
λ δ ε − e−1 ε−e−1

δ1/3 λ δ ε − 0.265 ε−0.265
δ1/2

0.53 .0386 .112 .332 0.34 .0211 .0502 .346 ±.001
0.51 .0293 .100 .324 0.33 .0156 .0436 .349 ±.001
0.49 .0209 .0872 .317 0.32 .0110 .0371 .355 ±.002
0.47 .0137 .0737 .308 0.31 .00714 .0307 .364 ±.003
0.45 .00773 .0610 .308 0.30 .00411 .0237 .370 ±.005
0.43 .00352 .0468 .308 0.29 .00198 .0160 .360 ±.010
0.41 .00108 .0321 .313 0.28 .000730 .0094 .348 ±.027

Table 1. Scaling behavior near the critical point, for ε(δ) (left side) and ε̃(δ)
(right side). In each case the function is defined implicitly via functions ε(λ) and
δ(λ), as explained below (7). See section 6.1 for discussion of the ± sampling error.

1.3 The analogy with percolation functions

Instead of the functions ε(δ) and ε̃(δ) at (1,4), we could equivalently study
their inverse functions δ(ℓ) and δ̃(ℓ) whose interpretations are

δ(ℓ) = lim
n

E max{n−1 len(π) : A(π) ≤ ℓ, π a path in SMFn}.

δ̃(ℓ) = lim
n

E max{n−1 #e : A(e) ≤ ℓ, e a connected edge-set in SMFn}.

Of course the scaling exponent for trees at (5) can be rewritten as

δ̃(ℓ) ≍ (ℓ − ℓ∗)β with βtree = 2
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for ℓ > ℓ∗ = ε̃(0+). Similarly the scaling exponent for paths at (2) can be
rewritten as

δ(ℓ) ≍ (ℓ − ℓ∗)β with βpath = 3

for ℓ > ℓ∗ = ε(0+) = e−1. To make the analogy with percolation, for
0 < t < ∞ consider the maximal size connected edge-subset percn(t) such
that

max
e∈percn(t)

d(e) ≤ t.

So percn(t) is the largest percolation cluster, that is the largest connected
component of the subgraph of SMFn consisting of edges of length ≤ t. Well
known theory concerning giant components in the random graph process
implies

lim
n

n−1E#percn(t) = p(t)

where p(t) has the properties

p(t) = 0, 0 ≤ t ≤ 1; p(t) ∼ 2(t − 1) as t ↓ 1.

Thus the scaling exponent for ordinary percolation in SMFn is βperc = 1.
Note we can rewrite p(·) as

p(ℓ) = lim
n

E max{n−1 #e : max
e∈e

d(e) ≤ ℓ, e a connected edge-set in SMFn}.

This differs from δ̃(ℓ) only in the use of maxe∈e d(e) in place of avee∈ed(e).
So we have a rather precise analogy between our function and the usual
percolation function.

1.4 The big picture

This paper provides some pieces of a big picture. Time is not yet ripe for
a complete survey, but let us provide some glimpses of other pieces. Our
main results here are the scaling exponents βtree = 2, βpath = 3 near the
“percolative critical values” ε∗(0+), ε(0+). In Aldous and Percus [1] we
study a different notion of “scaling exponent” dealing with behavior near
the “spanning constants”, i.e. near the MST and TSP constants ε∗(1), ε(1).
These exponents are based on comparing near-optimal solutions to the op-
timal solution, and turn out to take the values 2 and 3. These values hold
in the SMFn model by the methodology used here, and there is evidence
(from Monte Carlo simulations) they hold for random points in real d ≥ 2
dimensional space. That the “percolative” scaling exponents in this paper
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coincide with the “spanning” exponents of [1] is remarkable, and reinforces
the idea put forward in [1] that these scaling exponents provide a natural
way of defining “universality classes” of optimization problems on random
points. A natural next project is to study via Monte Carlo these percola-
tive scaling exponents for random points in d ≥ 2 dimensions, although
this seems algorithmically difficult. At the time of writing, the only one of
the four exponents we understand non-computationally is the tree/spanning
exponent “2”, which is easily explained [1] using the greedy algorithm for
finding the MST. See section 6.3 for further remarks.

1.5 Methodology

Here is our methodology, in brief.

• The stochastic mean field model for n points has a n → ∞ limit, the
PWIT (section 2).

• Introducing Lagrange multipliers turns the constrained maximization
problem into an unconstrained maximization problem. One can for-
mulate the corresponding maximization problem for the PWIT, and
define random variables (X, Y ) measuring the relative effect on the
maximized value of including or excluding a reference edge in the so-
lution.

• The recursive structure of the PWIT enables one to write down equa-
tions (11,12) satisfied by (X, Y ), which can be numerically solved.
The limit optimal values of length and A(·) are determined from the
definitions of (X, Y ).

The arguments are not mathematically rigorous, for two main reasons. First,
the central idea of identifying limits of solutions of finite-n optimization
problems with solutions of infinite-n optimization problems requires justifi-
cation, which has been given only in the case (related to but slightly different
from those considered here) of mean-field minimal matching [4] and the less
closely related case of some random graph problems [12]. Second, the scal-
ing exponents are found by numerically solving equations with a parameter
and examining numerical behavior as the parameter goes to a limit, and this
falls short of analyzing the parameter-limit behavior rigorously.
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2 The stochastic mean field model and its infinite-
point limit

For fixed n, the SMFn model is defined as follows. There are n points. For
each of the

(n
2

)
pairs of points, there is a “link” whose length is random

with exponential (mean n) distributions, these random lengths being inde-
pendent. The distance between two points is then the length of the shortest
path of links between them. The assumption of exponential distribution is
convenient but not essential; results are unchanged if the link lengths are
nL where L > 0 has a density with fL(0+) = 1.

The scaling of link lengths is set up so that, as n → ∞, the mean distance
from a typical point to its nearest neighbor converges to 1. But much more
is true, as we now outline briefly (see [6] for detailed survey). There is
an infinite-point model, the PWIT, defined as follows. There is a root ∅.
The root has an infinite number of links to points labeled (1, 2, 3, . . .), and
these link lengths 0 < ξ∅1 < ξ∅2 < . . . are the successive points of a Poisson
process of rate 1 on (0,∞). Recursively, each point i has an infinite number
of further links to points (i1, i2, i3, . . .) whose lengths 0 < ξi

1 < ξi
2 < . . .

are independent copies of the Poisson process. The PWIT is illustrated
in Figure 3, and the web site [10] enables one to explore its structure via
genuine simulations.

The PWIT is the n → ∞ limit of SMFn in a precise sense called local
weak convergence [6]. Choose a random point of SMFn to be a root. Then as
n → ∞, for any fixed “window size” r the configuration of points in SMFn

within a window of radius r centered at the root converges in distribution
to the configuration of points in the PWIT within a window of radius r
centered at the root.

Two properties of the PWIT enter into our calculations later.
(a). For each “child” i linked to the root, there is a subtree Ti consisting

of i and its descendants. The recursive structure of the PWIT, built into
the definition, says that the subtrees Ti are independent as i varies and are
distributed as the PWIT itself.

(b). The fact that we choose a (uniform) random vertex of SMFn to be
the root leads to a stationarity property of the PWIT. Roughly, this says
that the root is a “typical” vertex of the PWIT and therefore, by the er-
godic principle, we can compute averages over all vertices of the PWIT by
computing expectations at the root. As a more explicit instance, given a
random vertex subset An of SMFn, suppose we have joint local weak con-
vergence of (SMFn, An) to (PWIT, A∞) for a random vertex subset A∞ of
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the PWIT. Then n−1E#An → P (root ∈ A∞), where # denotes cardinality.
Note that here An is dependent on SMFn, but the root of SMFn is then
chosen independently of An.
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Figure 3. The PWIT. Illustration of the vertices of the PWIT within a
window of radius 3 centered on the root ∅. Lines indicate the links, but are drawn
only when both end-vertices are within the window. Thus the four links at ∅ shown
are at distances 0 < ξ∅1 < ξ∅2 < ξ∅3 < ξ∅4 < 3 from ∅, while there are an infinite
number of links at ∅ of lengths greater than 3. Orientation of lines in pictures is
arbitrary.

3 The recursive distributional equation: the path
case

By introducing a Lagrange multiplier λ > 0, the finite-n problem of mini-
mizing A(π) subject to len(π) can be reformulated as

maximize : λ len(π)
n − A(π)

subject to : π a path in SMFn.
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This has a random solution πn(λ). We expect that as n → ∞

n−1Elen(πn(λ)) → δ(λ) (6)
EA(πn(λ)) → ε(λ) (7)

and that the function ε(δ) at (1) is determined implicitly via the two func-
tions δ(λ), ε(λ).

To set up the analogous optimization problem on the PWIT, we first de-
fine what will be seen to be sets of feasible solutions. Write π = (π1, π2, . . .)
for a family of vertex-disjoint doubly-infinite paths in the PWIT. Define

• E0 is the set of such families for which no path goes through the root;

• E2 is the set of such families for which some path goes through the
root;

• E1 is the set of such families, where in addition to the doubly-infinite
paths there exists exactly one singly-infinite path, and this path starts
at the root.

Note the subscript indicates degree of root in the family. For π = (πu) ∈
E0 ∪ E1 ∪ E2 consider the objective function

b(π) = λ × #{v : v a vertex of some πu}−
∑

e:e edge of some πu

ξe

with the convention that, for π ∈ E1, the root vertex counts as 1/2. (Recall
that ξe is the length of edge e in the PWIT.) In the limit procedure which
takes SMFn to the PWIT, the limits of “paths of length order n” is exactly
the set E0 ∪ E2 of families of doubly-infinite paths. Thus the optimization
problem on the PWIT can be written symbolically as

maximize b(π) over π ∈ E0 ∪ E2. (8)

We seek to study the π that attains the maximum. But we can’t work di-
rectly with definition (8), because b(π) is the difference of two sums, each
sum having value +∞. Instead we can consider differences between max-
imized b(·) values. Specifically, given a realization of the PWIT we define
realizations of two random variables via

X = max
π∈E1

b(π) − max
π∈E0

b(π) (9)

Z = max
π∈E2

b(π) − max
π∈E0

b(π). (10)
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To see why such definitions are useful, note that the solution π to (8) will
have a path through the root if and only if

max
π∈E2

b(π) > max
π∈E0

b(π),

that is if and only if Z > 0.
We now set up the recursion that determines the joint distribution of

(X, Z). We remark that X is introduced only because it arises in the recur-
sion for Z – it would obviously be preferable to find a recursion involving
only a single quantity like Z, but that seems impossible to find. Figure 4
may be helpful in visualizing the argument below.

By the recursive structure of the PWIT, for each subtree (Ti, i =
1, 2, 3, . . .) defined by the children of the root, the random pairs (Xi, Zi)
defined as at (9,10) on Ti are distributed as (X, Z) and are independent as
i varies. We will first show

X = max
i

(λ − ξi + Xi − Z+
i ) (11)

where Z+ = max(0, Z) and where ξi are the edge-lengths at the root.
Consider the families π1 and π0 attaining the maxima over E1 and E0

in the definition (9) of X. So π1 contains an edge from the root to child
i, say. On the subtrees (Tj , j ̸= i) the maximal families must be identical,
so we only need compare π1 and π0 on the root-edges and the subtree Ti.
There is a contribution λ − ξi to b(·) from the edge (root, i). In the subtree
Ti, we have

Xi = max
π∈E1(i)

b(π) − max
π∈E0(i)

b(π)

Z+
i = max

π∈E2(i)∪E0(i)
b(π) − max

π∈E0(i)
b(π).

The family π1 contains the first-term maximizing family π ∈ E1(i) in this
definition of Xi, while the family π0 contains the first-term maximizing
family π ∈ E2(i) ∪ E0(i) in this definition of Z+

i . So the contribution to
b(π1) from Ti equals Xi − Z+

i . This establishes (11), since we can choose
the maximizing value of i to be the edge at the root.

A similar argument leads to a recursion for Z. A family π2 containing
a path through the root must contain two edges (root, i) and (root, j), say.
The contribution to b(·), relative to using no edges at the root, of using
(root, i) equals λ − ξi + Xi − Z+

i . Hence we get

Z = max
i

(λ − ξi + Xi − Z+
i ) + max

i

[2](λ − ξi + Xi − Z+
i ) (12)
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where max[2]
i denotes second maximum. Equations (11,12) together give a

formula for (X, Z) in terms of (Xi, Zi), i ≥ 1 and (ξi, i ≥ 1). By the recursive
structure of the PWIT, the (Xi, Zi), i ≥ 1 are independent copies of (X, Z).
Thus (11,12) constitute a recursive distributional equation (RDE) for the
“unknown” joint distribution (X, Z).
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Figure 4. On the realization of the PWIT from Figure 3, the left side illus-
trates the optimal π ∈ E2 which does pass through the root (which happens to use
the edges from the root to 1 and to 3), and the right side illustrates the optimal
π ∈ E0 which does not pass through the root. These path-families coincide on the
subtrees of children except {1, 3}. On the subtree T3, the optimal family on the
right side has a path through the root 3, whereas on the subtree T1 it does not.

We next show how the desired quantities δ(λ) and ε(λ) at (6,7) can be
obtained from the distribution of (X, Z). The quantity δ(λ) represents the
proportion of vertices in the optimal solution to (8). By the stationarity
property of the root of the PWIT, δ(λ) is just the probability that the
optimal family contains a path through the root. As observed above, this
happens if and only if Z > 0, so

δ(λ) = P (Z > 0). (13)

When Z > 0, the lengths of the two edges in the path at the root are ξI and
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ξJ , where in the notation of (12)

I = arg max
i

(λ − ξi + Xi − Z+
i )

J = arg max
i

[2](λ − ξi + Xi − Z+
i ).

Again by stationarity, the mean edge-lengths over all edges in the optimal
family equals the mean edge-length in the edges at the root in the optimal
family, conditioned on the root being used, and so

ε(λ) =
E

[
( ξI+ξJ

2 ) 1(Z>0)

]

δ(λ)
. (14)

As mentioned before, equations (11,12) together form a recursive distri-
butional equation (RDE) for the joint distribution of (X, Z). Such RDEs are
pervasive not only in problems within SMFn but also in many other areas of
applied probability: see [5] for a survey. They rarely allow explicit solutions,
but there is a standard bootstrap Monte Carlo method ([5] section 8.1) which
is very easy to implement and which gives, in principle, arbitrarily-accurate
approximate solutions of RDEs. This method was used to solve the RDE
for (X, Z) and then estimate δ(λ) and ε(λ) via (13,14). Numerical values
were shown in Table 1 and Figure 1.

4 The connected edge-set case

The conceptual ideas behind the analysis of ε̃(δ) at (4) are very similar to the
analysis of ε(δ) in the previous section, so we will only detail the differences.

Consider a forest f = (t1, t2, . . .) in the PWIT, each of whose tree-
components ti is infinite. Define
F is the set of such forests f ;
F0 is the set of such forests such that the root is not in any component;
F1 is the set of such forests such that the root is in some component;
F2 is the set of such forests, where in addition to the infinite tree-components
we allow the tree-component containing the root to be either empty, or finite,
or infinite.

In the limit procedure which takes SMFn to the PWIT, the limits of “con-
nected edge-sets of size order n” is exactly the set F of forests whose tree-
components are all infinite. For f = (ti) ∈ F2 ⊃ F = F0 ∪ F1, consider

b(f) = λ × #{e : e an edge of some ti}−
∑

e:e edge of some ti

ξe.
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The optimization problem on the PWIT is

maximize b(f) over f ∈ F . (15)

To study this we define

Y = max
f∈F

b(f) − max
f∈F 0

b(f) (16)

Z = max
f∈F 1

b(f) − max
f∈F 0

b(f) (17)

X = max
f∈F 2

b(f) − max
f∈F 0

b(f). (18)

Because F2 ⊃ F = F0 ∪ F1 we have

X ≥ Y = Z+.

The recursion for X, analogous to (11), is

X =
∑

i

(λ − ξi + Xi − Yi)+. (19)

The argument is the same as for (11): the contribution to b(·) by using edge
(root, i), as compared to not using it, equals (λ− ξi + Xi − Yi), and we may
use any number, or zero, such edges. The recursion for Z is

Z = max
I

⎛

⎝
∑

i∈I

(λ − ξi + Zi − Yi) +
∑

i̸∈I

(λ − ξi + Xi − Yi)+
⎞

⎠ (20)

where I denotes a non-empty subset of {1, 2, 3, . . .}. Here the first sum
represents the contribution from the set I of children i such that, in the
optimal f ∈ F1, in the subtree Ti the root i is in an infinite component.
The set I must be non-empty in order for f ∈ F1. Now the fact Xi ≥ Zi

implies
λ − ξi + Zi − Yi ≤ (λ − ξi + Xi − Yi)+

which implies there is an optimal I with only one element, and we can
rearrange (20) to become

Z = X + max
i

(
(λ − ξi + Zi − Yi) − (λ − ξi + Xi − Yi)+

)
.

Finally, since Yi = Z+
i we obtain the following RDE for the joint distribution

of (X, Z).

X =
∑

i

(λ − ξi + Xi − Z+
i )+ (21)

Z = X + max
i

(
(λ − ξi + Zi − Z+

i ) − (λ − ξi + Xi − Z+
i )+

)
. (22)
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We next show how the desired quantities δ̃(λ) and ε̃(λ) can be obtained
from (X, Z). Consider the optimal f in (15). This f contains the root if and
only if f ∈ F1, that is if and only if Z > 0, so

δ̃(λ) = P (Z > 0). (23)

When Z > 0, the set I of edges at the root used in f is the set of i for which
the contribution (λ− ξi + Xi −Z+

i ) is strictly positive, plus (if distinct) the
maximizing i in (22). This leads to

ε̃(λ) =
E

[
(1
2

∑
i∈I ξi) 1(Z>0)

]

δ̃(λ)
(24)

for I as above.

5 Trees

Studying trees t in order to study the limit function ε∗(δ) at (3) is a little
more subtle. What are the feasible solutions on the PWIT corresponding to
the limits of trees in SMFn? At first sight they are just the set F of forests
f = (ti) in section 4. But this is wrong; instead, by analogy with many other
examples of limits of infinite trees [2, 15] the relevant feasible solutions are
forests f = (ti) with the extra property that each of whose tree-components
ti have one end; that is, from each vertex of ti there is exactly one infinite
path in ti.

To mimic the analysis of the previous section with this family of forests,
it turns out we need, in place of F2 before, the family defined as

F2 is the set of such forests, modified so that the tree-component con-
taining the root may be either empty or finite, but not infinite.

But now the analog of X at (18) cannot be represented recursively, since
(roughly speaking) there is no recursive criterion for finiteness. Instead we
need to consider, separately for m = 0, 1, 2, . . ., a definition such as

F (m) is the set of such forests, modified so that the tree-component
containing the root has exactly m edges.

Defining Xm in terms of a maximum over F (m) leads to a RDE for the
infinite family (X0, X1, X2, . . . , Z). But we have not attempted to solve this
numerically.

Fortunately, this detailed analysis is unnecessary for investigating the
scaling exponent because

ε∗(δ) = ε̃(δ) when ε̃(δ) < e−1.
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To outline the argument, consider the minimizing edge-set e for ε̃(δ) in
this range. Suppose e contains a cycle of length order n. By the fact (for
paths) ε(0+) = e−1, this cycle has average edge-length > e−1 and hence has
some edge of length > e−1. Removing this edge would reduce A(e) without
essentially affecting the constraint on len(e), contradicting minimality. So
e can have no cycles of length order n. As for short cycles, fix a < e−1 and
consider a typical point v of SMFn. By the arguments of [3, 13] (comparison
with the Yule process),

P (v in any cycle c with A(c) < a) → 0 as n → ∞

and it follows that the contribution to A(e) from short cycles → 0 as n → ∞.

6 Final remarks

6.1 Sampling errors in Table 1

We treat the case of trees; the case of paths could be treated similarly.
To obtain the numerical values in Table 1, we represented the distribution
(X, Z) via 106 points and iterated the RDE 1000 times, truncating the
Poisson process (ξi, 1 ≤ i < ∞) at i = 20. This necessitated, for each value
of λ, a total of 2×1010 calls to the random number generator. We calculated
ε and δ using the final 200 generations, that is using 2 × 108 points. There
are various possible errors in this way of estimating scaling exponents, of
which the only one which can be quantified is “sampling error”. Clearly

s.d. (estimate of δ) ≈ δ1/2/
√

2 × 108 ≈ 0.7 × 10−4 δ1/2

which is negligible. But the error for ε is not negligible, since it is based on
only a proportion δ of the samples, giving

s.d. (estimate of ε) ≈ s.d.(ξ)√
2 × 108 δ

where s.d.(ξ) ≈ 0.3 is the s.d. of the ξ-values used to estimate ε via (24).
This leads to

s.d. (estimate of ε/δ1/2) ≈ 2 × 10−5 δ−1

which are the ± values shown in Table 1.
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6.2 Rigorous bounds on scaling exponents

Because the limit ε(0+) = e−1 in the paths setting is essentially just a first
moment calculation, a referee suggests that similar first moment methods
should establish rigorously some bound on ε(δ) and hence some bound of
the scaling exponent in the paths case. We concur, but have not attempted
a detailed calculation.

6.3 Scope of scaling exponents

It seems difficult to specify precise the range of settings in which a definition
of percolation-like scaling exponent makes sense and is interesting. Within
the stochastic mean field model there is a well studied minimum matching
problem (see [14, 20] for recent proofs of the Parisi conjecture) in which
context one could define

εmatch(δ) = lim
n

E
length min matching of some δn vertices

1
2δn

.

But here it is clear that

εmatch(δ) ∼ δ as δ ↓ 0

so that the critical value equals 0 and the scaling exponent equals 1. How-
ever, since the critical value equals zero we are inclined to regard this case
as “not percolation-like”. A referee suggests the example (again, within the
stochastic mean field model) of the path through δn points chosen greedily
by choosing the shortest available edge at each successive vertex, but this
also seems “not percolation-like”.

Acknowledgement. I thank two anonymous referees for helpful com-
ments.
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