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ABSTRACT: Electric fields generated by protein scaffolds are crucial in enzymatic catalysis.
This review surveys theoretical approaches for detecting, analyzing, and comparing electric
fields, electrostatic potentials, and their effects on the charge density within enzyme active
sites. Pioneering methods like the empirical valence bond approach rely on evaluating ionic
and covalent resonance forms influenced by the field. Strategies employing polarizable force
fields also facilitate field detection. The vibrational Stark effect connects computational
simulations to experimental Stark spectroscopy, enabling direct comparisons. We highlight
how protein dynamics induce fluctuations in local fields, influencing enzyme activity. Recent
techniques assess electric fields throughout the active site volume rather than only at specific
bonds, and machine learning helps relate these global fields to reactivity. Quantum theory of
atoms in molecules captures the entire electron density landscape, providing a chemically
intuitive perspective on field-driven catalysis. Overall, these methodologies show protein-
generated fields are highly dynamic and heterogeneous, and understanding both aspects is
critical for elucidating enzyme mechanisms. This holistic view empowers rational enzyme engineering by tuning electric fields,
promising new avenues in drug design, biocatalysis, and industrial applications. Future directions include incorporating electric fields
as explicit design targets to enhance catalytic performance and biochemical functionalities.
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1. INTRODUCTION
The journey toward artificial enzyme design, while fraught with
challenges, unfolds through well-defined steps. Foremost
among these is the unraveling of natural enzymes’ operational
secrets, including the pivotal role of extended structure
surrounding the enzyme’s active site. Beyond merely insulating
the active site from the cellular environment, the size,
structural intricacy, and diversity of these regions hint at a
more profound purpose. One hypothesized function is the
generation of an electric field that modulates the reaction
environment and guides the charge redistribution critical to
catalysis. Thus, understanding how electric fields influence
enzyme structure and function is critical for advancing the field
of enzyme design.1−4

This understanding is particularly crucial in the context of de
novo enzyme design, a cutting-edge approach that starts
without a template, making it a more challenging but
potentially revolutionary approach. While natural enzymes
have evolved complex structural regions that contribute to
their catalytic efficiency, de novo design aims to engineer these
principles from scratch. This involves the strategic arrangement
of catalytically active residues and the precise tuning of charge
distributions to achieve optimal electrostatic preorganization�
an essential factor in determining the rate and selectivity of
enzymatic reactions. Advances in computational techniques,
including aspects of both quantum and molecular mechanics
worlds, are enabling more accurate predictions of electric field
effects, driving progress in de novo enzyme design.
Yet, a deeper comprehension of how electric fields influence

enzyme structures and properties remains a vital precursor to
fully realizing the potential of de novo enzyme design. This
review explores the current understanding of these electric field
effects, focusing predominantly on computational research
methods, and anticipates some of the developing investigative
approaches. This review is structured as follows: Initially, we
review the fundamental aspects of static electric fields, focusing
on their emergence and calculation within molecular systems.
We then explore both the theoretical predictions and
experimental evidence of electric fields’ critical influence on
enzyme catalysis. Following this, the review discusses the
seminal role of Empirical Valence Bond Theory in deepening
our understanding of enzyme electric fields. Attention then
shifts to cutting-edge advancements, including enhancements
in interatomic force fields (FFs), which promise more precise
enzyme structure predictions and, consequently, more accurate
insights into the electric fields they generate. Lastly, we explore
innovative methods designed to elucidate the interplay
between electric field effects and their overarching structure
within enzymes, employing Quantum Theory of Atoms in
Molecules (QTAIM) and techniques traditionally applied in
3D field analysis, such as fluid dynamics, yet novel in the
context of enzymatic electric field studies. This structure aims
to provide a comprehensive overview of the field, setting the
stage for future research in de novo enzyme design.
1.1. Electric Fields: An Overview
1.1.1. Electric Fields Due to Point Charges. The electric

field, E, is the negative of the gradient of the electrostatic
potential, V(r), i.e. E(r) = −∇V(r); it is the force felt by a
charged test particle as it moves through a varying V(r). The

force, F, felt by a point charge q1 at position r1 due to another
“source” point charge q2 at position r2 is given by Coulomb’s
law:5
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In the presence of several source point charges, say q1, q2, ...,
qn, at respective positions r1, r2, ..., rn, the total electric field at
an arbitrary point r is the vector sum of the fields due to each
charge:
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where ri now points from r to ri.
1.1.2. Electric Fields in Continuous Charge Densities.

The electric field due to a continuous charge density (i.e., a
conceptually infinite number of point charges), as for chemical
systems, can be calculated in a similar fashion, in terms of the
electron charge density ρ(r), nuclear charges Z, and any
externally applied fields rE ( )ext :
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Note that eqs 1−4 are derived under idealized vacuum
conditions and do not explicitly incorporate electronic
polarization. In standard nonpolarizable molecular dynamics
(MD) and many quantum mechanical (QM) approaches, the
protein and solvent environment are often simplified to fixed
charges and implicit dielectric backgrounds. Such an
approximation can introduce errors, as the electronic
redistribution in response to the local field is neglected.
Introducing a modest background dielectric constant (e.g., ε ≈
2) has been suggested as a strategy to partially compensate for
these limitations, reducing the need for fully polarizable force
fields.6

In larger chemical systems, such as proteins, calculating the
full ρ(r) can be computationally expensive. Here, the charges
of system subdomains, such as amino acids composing the
protein scaffolding, can be used with eq 3 to approximate the
electric field over large regions.
1.1.3. Polarization and Dipoles. For a neutral atom in an

electric field its positively charged nucleus and the negatively
charged electron cloud experience forces in opposing
directions. In a sufficiently strong field, the atom, will undergo
field-induced ionization, where an electron tunnels through the
coulomb barrier and leaves behind a positive ion. However, for
less intense fields an equilibrium is reached where the force of
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the field E pulling the electrons and nucleus apart is balanced
by the force of the nuclear-electron attraction, and an induced
dipole is formed with a dipole moment p that points in the
same direction as E and that is proportional to the field
strength according to the atom’s polarizability, α:

=p E (5)

Placing neutral systems, such as nonpolar molecules, within
an electric field can lead to more pronounced polarization
compared to individual atoms due to the increased mobility of
charges between atoms in chemical bonds. The extent of a
molecule’s polarizability is also influenced by its orientation
relative to the electric field. For instance, CO2 exhibits a
polarizability approximately 2.5 times greater when the field
aligns with the molecular axis than when the field is
perpendicular.7,8

For linear molecules this difference gives rise to two distinct
polarizability values, α∥ and α⊥. Consequently, when the field
aligns at an angle intermediate to these orientations, the
molecule’s polarizability is derived from both parallel and
perpendicular components, resulting in an induced dipole that
may not align with the field direction:

= +p E E (6)

For completely asymmetric molecules, a general form for the
x, y, and z components of p is calculated using a set of nine
constants αij that define its polarizability tensor:

= + +

= + +

= + +

p E E E

p E E E

p E E E

x xx x xy y xz z

y yx x yy y yz z

z zx x zy y zz z (7)

Numerous molecules have permanent dipoles, such as polar
molecules, with water serving as a prime example, where the
dipole moment extends from the oxygen atom to the midpoint
between the two hydrogen atoms. When subjected to an
electric field, such a molecule will align its dipole moment with
the field.
In enzyme electric field modeling, it is common to quantum

mechanically treat an active site model, with the enzyme’s
extended structure contributing to an electric field that affects
the energy of the quantum mechanical region. Usually, the
enzyme’s polar residues are modeled as point charges, and the
active site is treated in an electrostatic embedding scheme.
It is also crucial to note that accurately determining

protonation states of ionizable residues and internal groups is
essential. Incorrectly assigned protonation states can signifi-
cantly distort computed fields and energetics. Recent
simulations indicate that proteins may sample multiple
protonation microstates at equilibrium,9 underscoring the
importance of carefully validating protonation states, poten-
tially through pKa calculations or enhanced sampling methods.
eq 3 can be utilized to calculate the resultant electric field at

specific points, if this quantity is of interest, leading to a
heterogeneous field distribution across the active site. Occa-
sionally, for specific systems, it can be fruitful to approximate
the extended protein structure’s influence as a uniform field
over the active site, akin to situating the active site within an
infinite parallel plate capacitor. However, usually this latter
approach lacks chemical detail needed to understand the
enzyme function, and as such can be utilized for purely
theoretical investigations.

1.2. Electric Fields in Proteins
Warshel first introduced the concept of electrostatic catalysis as
a key driver of enzymatic evolution, in the last century,10−12

emphasizing the enzyme’s role in arranging the substrate to
align with beneficial electric fields for specific chemical
transformations. Recent advancements have highlighted
electric fields’ critical role in enzymatic catalysis,13−21 with
these insights increasingly incorporated into de novo computa-
tional enzyme design.22−30 Previously, the integration of such
considerations was limited by the capabilities of quantum
chemical calculations, which have now evolved to adequately
model these complex interactions.31 Current experimental
methods also allow for the direct measurement of electric fields
within enzyme active sites, showcasing their contribution to
catalytic rate enhancement.32−41

Beyond enzymology, other chemical processes are labile to
electrostatic interactions, for example, redox potentials and
chemical equilibrium. Warshel and co-workers provide a
slightly dated but informative review of electrostatic evaluation
methods as well as case studies for how electrostatics influence
catalysis, redox, and pKas in protein systems.42 It is important
to distinguish that Ems and pKas reflect equilibrium properties
associated with well-defined reactant and product states, while
reaction rates are governed by the stabilization of the transition
state�often a more elusive entity. Both equilibrium and
kinetic properties are influenced by the protein’s electrostatic
environment. While Ems and pKas are shifted by changes in
the electrostatic potential around stable states, reaction rates
mostly depend on how the local electric field stabilizes or
destabilizes the transition state. Thus, understanding and
accurately modeling electrostatic effects is paramount for
elucidating and predicting both equilibrium and kinetic aspects
of enzyme function. Experiments tying electrostatics to pKa
and redox potentials date back decades. For pKas, these
methods span a host of methods and include predictions on
surface and interior residues.43−50 Here, we will discuss a few
interesting examples.
Adam et al. studied conformational changes in Channelrho-

dopsins (ChR) to understand proton transfer dynamics and
comprehensively account for protein dynamics.51 They
leverage QM/MM and MM calculations to determine the
electrostatic effects of K132, a sequence present in many such
ChR sequences, is critical. This residue was found to greatly
influence proton transfer dynamics via changes in charges on
E162 and D292 residues. Another study weighted ensembles of
unfolded staphylococcal nuclease structures via electrostatic
energies.49 They computed energies via both Coulomb and
Poisson−Boltzmann (PB) formalisms across different pHs.
Interestingly, they found that electrostatic contributions to
pKas were weak but, at extreme pHs, still contribute
significantly to pKas. Yet, another study, compared isoform
differences in Monoamine Oxidases, including pKas of titrable
residues via linear response approximation version (PDLD/S-
LRA).48 They determined that the alignment in pKa values
between the different isoforms could be explained by similar
electrostatic environments.
Naturally, many studies aim to explain pKas as the

culminating value of a set of different factors.50−52 For
example, Lindman et al. use experimental NMR assays of
PGB1 fragments, coupled to Monte Carlo/Gaussian Chain
Models, to predict pKa values of the unfolded state of the
protein.52 Effectively, this Monte Carlo approach corrects for
whole protein electrostatics to create a complete prediction of
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residue pKas in the unfolded protein. They also integrate MD
simulations to provide rich insight into the interplay between
dynamics, electrostatics, and burial effects.
Recent advances in PB theory and methods have

significantly improved the accuracy and utility of pKa
predictions in enzymes and related proteins by integrating
enhanced conformational sampling, refined dielectric models,
and more rigorous validation protocols. Coskun recently
reviewed computational methods for pKa calculations, where
the conceptual simplicity of PB-based methods is offset by
potential issues regarding uncertainty of the optimal dielectric
constant, limitation to treating static protein structures, and
accurate representation of protein response to ionization,53

however these limitations are being addressed by recent
advances in the field. For instance, toward overcoming
dielectric constant uncertainty and treatment of dynamic
protein structures, machine learning methods can be used to
rapidly predict PB solutions for a range of dielectric constants,
accelerating their optimization for specific systems, and allow
rapid sampling of protein structures.54,55

Pivoting to redox potentials, studies using electrostatic
methods such as continuum models to quantify effects on
redox potentials date back over 4 decades.56−59 One such
study used a model for the disulfide active site in thioredoxin
and DsbA coupled to Poisson−Boltzmann electrostatic
calculations to justify experimentally observed redox potential
differences between the two systems.60 Another study, on
Heme systems across different cytochrome environments, uses
electrostatic calculations to break down energy contributions
from solvent, protein-heme residue interactions, and structural
changes between electrochemical states.61 The review by Chen
et al. on theoretical biomolecular methods for modeling redox
potentials provides more information on methods and
applications in this area.62

In 2010, Kuznetsov et al. found substantial differences in the
redox potentials of Rieske iron−sulfur proteins, as calculated
by semicontinuum methods, with and without the larger

protein scaffold. Notably, only calculations with the protein
electrostatic scaffold agreed well with experiment.63 More
recently, Kanda and Ishikita calculated redox potentials of two
Fe4S4 clusters (FA and FB) in photosystem I (PSI) and green
sulfur bacteria reaction centers by solving the linear Poisson−
Boltzmann equation using protein structure data.64 Their
calculations revealed that electron transfer from FA to FB is
energetically downhill in cyanobacterial PSI but isoenergetic in
plant PSI, with this difference attributed to varying electrostatic
influences from conserved residues like PsaC-Lys51 and PsaC-
Arg52. A comprehensive study by Gamiz-Hernandez et al.
analyzes rubredoxin redox potentials via continuum models.65

They analyze different structural parameters including hydro-
gen bonding, side chain conformations, dielectric environment
and charges residues and determine that electrostatic
contributions toward redox potentials are notable.
Finally, Gaughan et al. systematically probed the redox

effects of oriented electric fields by computing vertical
excitation energies (VSE).66 In this study, they selected a set
of biologically relevant iron−sulfur clusters and placed point
charges around the clusters. They rotated these point charges
along a sphere of rotation and demonstrated that external
electric fields of around 28.8 MV/cm could change relative
stability by as much as 35 kJ/mol depending on their exact
orientation. For more relevant studies involving computational
prediction of redox potentials in a biological context, interested
readers can see refs67−71.
In the realm of de novo enzyme design, electrostatic effects

have become a pivotal element, shifting the focus from seeking
an ideal enzyme structure to identifying an optimal charge
distribution or electric field that favors the transition state (TS)
over the reactant state.72,73 This approach involves arranging
catalytically active residues, known as theozymes,74 in a
manner that is geometrically integrated into the enzyme’s
scaffold, as illustrated in Figure 1.23,75 Through such design,
the enzyme’s electrostatics are tailored to boost catalysis by
lowering the free energy barrier. Building on this concept,

Figure 1. Theoretical search for a de novo enzyme of Kemp elimination reaction. (a) Theoretical approach toward an optimized enzyme: substrate
positioning between the catalytic residues, incorporating the theozyme inside the supporting enzyme scaffold, and optimization of the internal
enzyme electric field through mutagenesis. (b) Mechanism of the Kemp elimination reaction with carboxylate as a base initiating the C−H
deprotonation. (c) Optimal electric field surrounding the substrate for the Kemp elimination rate enhancement.
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Sokalski et al. and Hartke et al. advanced an inverse design
strategy, creating abstract optimal catalytic fields (OCFs)73,76

and globally optimal catalysts (GOCATs),77 marking a novel
starting point in the pursuit of ideal biocatalysts.
Computational enzyme design, leveraging charge comple-

mentarity and optimization of internal electric fields, has
successfully produced enzymes for novel and non-natural
reactions.78−81 A prime example is Kemp elimination, a
benchmark for proton transfer without a corresponding natural
enzyme, illustrated in Figure 1.82,83 This reaction, characterized
by substrate deprotonation and the opening of its heterocyclic
ring, leads to significant substrate charge accumulation.
Employing TS stabilization and Rosetta toolbox for protein
backbone design, Röthlisberger et al. developed eight Kemp
eliminases, notably KE07, KE59, and KE70, showcasing
activity.80 Note that the focus of the theoretical design at the
time was solely on the immediate environment of the substrate,
i.e. without considerations of the electric fields from the
remote parts of the protein.
This methodology was further applied to create enzymes

catalyzing complex reactions, such as multistep retro-aldol
reactions with five different protein scaffolds,79 and two
enzymes with stereoselective Diels−Alder reactivity.84 Modern
computational tools play a crucial role in mirroring
biochemical experiments, allowing for accurate predictions of
catalytic residue positions and internal electric fields within
active sites, aligning with X-ray structural data.85−89 The direct
correlation between internal electric fields and enzymatic
activity aids in identifying mutagenic targets for scaffold
improvement, enabling systematic enhancement of electro-
static catalysis by analyzing the contributions of individual
atoms.72,73,76,87,90,91

Despite significant advances in enzyme modeling protocols,
limitations persist in accurately capturing the complexities of
enzymatic catalysis.28,92,93 These limitations include the
omission of factors like configurational entropy changes,
second-shell or long-range interactions, and dynamical effects,
which are crucial for efficient catalysis and turnover.29,94−101

Computational constraints often lead to simplifications, such as
neglecting enzyme flexibility and using discrete ligand
placements, thereby missing the subangstrom precision vital
for aligning theoretical predictions with experimental re-
sults.102 Consequently, modeled enzymes frequently show
optimistic catalytic predictions, with actual activities signifi-
cantly lower than those observed in nature. For instance, of 59
computationally designed enzymes, only 8 showed activity in
Kemp eliminase experiments as per ref 80, and only 2 out of 84
designs demonstrated activity for Diels−Alder reactions in ref
84. Rational enhancements have focused on the active site and
chemically active residues, overlooking the broader protein
scaffold’s potential influences on function, dynamics, and
stability. Additionally, entropy’s role in stabilizing transition
states and destabilizing reactant states highlights the
importance of dynamics in catalytic efficiency.87,96,97,103−106

With computational methods struggling to account for
dynamical aspects, there’s a tendency to overdesign active sites.
This challenges further optimization efforts, suggesting
experimental directed evolution, as recognized by F. Arnold’s
2018 Nobel Prize,107 as a potential strategy. Here, de novo
designed enzymes emerge as valuable starting points for in vitro
evolution.78,108

Evolved variants have demonstrated significant improve-
ments in catalytic rates, nearing the efficiencies of natural

enzymes, although not yet reaching the diffusion
limit.80,81,102,109−111 In vitro evolution applied to the computa-
tionally designed Kemp eliminase KE07 led to an over 200-fold
increase in kcat/kM across seven rounds of random muta-
genesis.80,109 These enhancements often involved mutations at
the active site’s base, introducing polar or charged residues to
better position Lys222 (acting as an acid in the reaction) and
mitigate its adverse interaction with Glu101 (acting as the
base�see Figure 1). This adjustment is supported by the
shifted pKa values of Glu101 in evolved variants. However, the
exact mechanisms�whether improvements in electrostatic
stabilization of the TS, destabilization of the reactant state, or
reduction in overall reorganization energy�remain de-
bated.112−116 Directed evolution of KE70 yielded a greater
than 400-fold increase in catalytic efficiency, attributed to
enhanced substrate binding, electrostatic refinement, and
active site stabilization in conformations favorable for
catalysis.110 Yet, in KE70, electric field optimization was less
emphasized, with mutations enhancing substrate affinity
through adjustments in its hydrophobic cavity.115 This
underscores a limitation of laboratory directed evolution:
electric field optimization tends to be local, constrained by the
initial non-naturally optimized enzyme scaffold design. Thus,
the concept of electrostatic preorganization may be over-
looked, leading to an electrostatic mismatch between the active
site and scaffold, inadequately supporting the TS charge
distribution. Consequently, the potential for optimizing de novo
enzymes via in vitro evolution is estimated to be limited to
roughly 3 orders of magnitude.115 Future enzyme modeling
could benefit from initial computational scaffold optimization,
focusing on precise internal electric field adjustments.115

Achievements in enzyme optimization have been realized by
linking laboratory directed evolution with computational
approaches, notably through parallel or iterative combinations
of molecular dynamics (MD) simulations and structural
analysis of initial, enhanced, and inactive variants.117−119

This methodology involves integrating computationally iden-
tified mutations into experimental scaffolds for empirical
evaluation, while discarding mutations found to be ineffective
or detrimental. For instance, the evolved Kemp eliminase
KE70 variants were crafted using this strategy, with
approximately half of the mutations originating from computer
optimizations and the other half from random mutagenesis.110

Another example involves the iterative refinement of the
inactive Kemp eliminase scaffold HG-1, employing X-ray
crystallography and MD simulations.81 The initial analysis
revealed HG-1’s active site was overly solvent-exposed with
excessively flexible catalytic residues. These issues were
systematically addressed through iterative computational and
experimental evolution, culminating in the HG-3 scaffold,
which achieved a kcat/kM of 430 M−1 s−1. Subsequent
enhancements through 17 rounds of random mutagenesis
produced the HG-3.17 variant, boasting a kcat/kM of 230,000
M−1 s−1, nearing the efficiency of natural enzymes. The
efficiency gains were primarily linked to the stabilization of the
TS’s developing negative charge.102

De novo enzyme modeling has seen significant advances
through laboratory directed evolution, highlighting the need
for enhancing theoretical models to reduce dependence on
extensive experimental work. The optimization of electric field
stabilization for the TS of Kemp eliminase KE15 represents a
milestone, achieved entirely through computational methods
by Head-Gordon et al.26 By introducing just four targeted
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computational mutations, they developed an enzyme variant
that demonstrated a 43-fold increase in catalytic efficiency,
with an experimental kcat/kM reaching 403 M−1 s−1.
The field of artificial enzyme design stands to gain from

enhanced modeling of long-range electrostatic networks
among charged and polar residues, alongside the use of MD
simulations to evaluate residue couplings and fluctuations.
Traditional FFs with additive potentials often fall short in
capturing these complex interactions. Although more computa-
tionally intensive, the AMOEBA polarizable FF aligns more
closely with electric fields obtained from multiscale density
functional theory calculations.89

Furthermore, explicitly acknowledging the role of electro-
statics in guiding force field development can strengthen this
connection. Improved force fields�ranging from polarizable
models to machine learning-based potentials�are increasingly
designed to capture subtle electrostatic features, such as
polarization and environment-dependent dielectric responses.
By more faithfully reproducing the underlying electrostatic
environment, these advanced force fields promise better
predictions of both equilibrium properties (e.g., Ems and
pKas) and kinetic parameters (e.g., transition state stabiliza-
tion). This holistic electrostatic modeling is crucial for
achieving more accurate enzyme design and understanding
how electrostatic preorganization drives catalysis.
However, quantum mechanical descriptions offer even

higher precision by accounting for charge penetration and
transfer effects�elements not fully captured by polarizable
FFs.100,120,121 Employing an ab initioMD approach, Kulik et al.
showed the extent of charge distribution variability, noting
substantial charge accumulation or depletion around charged
or polar residues.100 Such dynamics challenge the capabilities
of fixed-charge additive FFs, underscoring the discovery of
strong correlations among residues, including significant long-
range couplings beyond adjacent residues.
Our group has employed QTAIM to devise a sensitive yet

straightforward quantum mechanical (QM) probe for assessing
electrostatic preorganization.120,122,123 We have demonstrated
that both the electrostatic potential and density at bond- and
ring-critical points linearly correlate with the applied electric
field.123 Given their correlation with reaction barriers, these
metrics serve as robust predictors of reactivity. It is crucial to
acknowledge that actual protein structures create complex,
nonuniform electric fields, significantly influencing reaction
pathways.124 The intricate link between changes in topological
electric fields and reactivity presents a considerable challenge,
underscoring the necessity for a holistic view of electric fields.
To address this, we have introduced a methodology to
associate electric field topologies with reactivity, utilizing a
global distribution of field streamlines to quantify reactivity in
chemically akin systems.125 We discuss these developments in
detail in subsequent sections.
The modulation of local electric fields (LEFs) over long

ranges is essential for protein functionality, potentially acting as
a mechanism to initiate or control chemical reactions.126−130

Such modulations can alter redox potentials and pKa values,
induce conformational changes, facilitate charge transfer
reactions, align substrates within active sites, or lower barriers
in the rate-limiting steps of enzyme catalysis. A notable
challenge confronting the simulation of these varying electric
fields arises from how the favorability of proton or charge
transfer, partial atomic charges, electrostatic density, and
electric fields depend on the chosen QM region’s size and

composition, whether employing cluster models or quantum
mechanics/molecular mechanics (QM/MM) strategies.122

Theoretical model enhancements can be achieved by
moving beyond rigid backbones to explore mutations that
trigger new conformations, improve TS entropic stabilization,
and fine-tune protein dynamics. Future efforts aim to refine the
HG3.17 Kemp eliminase enzyme by embracing backbone
flexibility, a strategy that previously facilitated the computa-
tional optimization of Kemp eliminase KE70,110 enhancing TS
stabilization. Assessing dynamic effects necessitates the
examination of extensive ensembles of reactant and TS
structures through detailed and accurate MD simulations.
Current MD simulations typically assume static protonation
states, overlooking how local charges and electric fields may
alter protonation states and affect protein properties, including
folding. Optimizing proteins in future studies could also
involve minimizing field fluctuations and investigating the
interplay between protein stability and functionality.29 Addi-
tionally, designing enzymes with metal cofactors introduces
further complexity, necessitating a quantum mechanical
approach to metal coordination, comprehensive protein
backbone sampling, and active site polarization consider-
ations.120

1.3. Stark Spectroscopy

Measuring electric fields at the molecular level presents
significant challenges due to the complexity and dynamic
nature of biological systems. Traditional methods such as
dielectric spectroscopy and electrochemical techniques often
lack the spatial resolution required to probe localized fields
within proteins. Stark spectroscopy, a technique derived from
the Stark effect, is a powerful analytical method to probe
electric fields in targeted regions of proteins and enzymes131

The Stark effect is observed when the energy levels of atoms or
molecules are perturbed by an external electric field, leading to
shifts in their spectral lines. This effect, discovered
simultaneously by Johannes Stark and Anthony Lo Surdo in
1913,132,133 provides critical insights into the electronic
structure of atoms and molecules, as well as the interaction
between electromagnetic radiation and matter.
Stark spectroscopy exploits this principle to measure the

electric field’s influence on molecular vibrations, offering a
window into the electrostatic environment within complex
systems such as proteins and enzymes. By observing how the
frequencies of specific vibrational modes shift in response to
changes in electric fields, the magnitude and direction of the
fields can be deduced at precise locations within a molecule.
This capability is particularly useful for understanding how
proteins harness electric fields for their function, as these fields
can significantly influence biochemical reactions and molecular
interactions. The application of vibrational stark effect (VSE)
spectroscopy, which focuses on vibrational transitions, has
been especially fruitful in dissecting the roles of electric fields
in biological systems, providing a quantitative measure of
electrostatic effects that are otherwise challenging to study.134

To quantify the electric fields using the VSE, a calibration step
is first performed in known environments. This involves
measuring the vibrational frequency shift ( obs generally
measured in units of cm−1) of a probe molecule in various
solvents with known electric field strengths (|Fenv|, in MV/cm).
The relationship between the frequency shift and the electric
field is characterized by the Stark tuning rate (|Δμprobe|, in
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cm−1/(MV/cm), which is determined through this calibration.
The fundamental equation governing this relationship is

= | |·| |Fobs probe probe env (8)

where probe represents the vibrational frequency in the absence
of any electric field, such as in a vacuum. This calibration
ensures that when VSE is applied to an unknown environment,
such as a protein active site, the measured frequency shift can
be accurately translated into the LEF using the previously
determined Stark tuning rate.
The experimental applications of Stark spectroscopy in

determining the electric fields of proteins and enzymes have
shed light on the complex ways in which molecular machinery
of life exploits electrostatic forces.135 For instance, studies
using VSE have revealed the presence of strong electric fields
within the active sites of enzymes such as ketosteroid
isomerase (KSI).39,136 Calculations based on crystallographic
structures indicate that the electrostatic environment in KSI’s
active site is preorganized to favor the TS geometry.
Specifically, electric fields in the range of −127.6 to −141.7
MV/cm have been measured, which drives the substrate-like
ligand to adopt a TS-like geometry upon binding. This
oriented electric field minimizes the need for dipole
reorientation during the reactive event, thereby stabilizing
the transition state and lowering the activation energy by
approximately 7 kcal/mol. Similarly, research on dihydrofolate
reductases has shown how ligand-electrostatic interactions
contribute to enzyme catalysis, offering insights into the
fundamental principles of molecular recognition and catalytic
efficiency.137 VSE has also been pivotal in understanding the
inhibition mechanisms of β-lactamases by avibactam.40,41

These studies have demonstrated that avibactam binding
significantly alters the LEFs within the enzyme’s active site,
transitioning from high-field environments that stabilize
charge-separated transition states to lower-field conditions
that reduce the hydrolysis rate of the covalent bond between
the inhibitor and the enzyme. Specifically, VSE measurements
revealed that while ancestral penicillin-binding proteins exhibit
smaller electric fields (−59 MV/cm) that render the ester
linkage resistant to hydrolysis, descendant TEM β-lactamases
experience larger electric fields (−140 MV/cm) that facilitate
bond hydrolysis by stabilizing the transition state. Avibactam
counteracts this evolutionary trend by inducing a low-field
environment, thereby preventing the rapid hydrolysis of its
covalent linkage and effectively inhibiting the enzyme’s activity.
These applications not only underscore the utility of VSE in
deciphering the electrostatic underpinnings of enzyme activity
but also in drug design, where manipulating electric fields

could lead to new therapeutic strategies. Finally, VSE has been
crucial in uncovering transitions of functionally relevant
protein conformations and detailing local interactions,37,138

as well as in measuring changes in enzyme electric fields due to
mutations,33 alterations in ligand coordination,87 and con-
formational shifts during the reaction cycle.139 Through these
diverse applications, VSE continues to be a cornerstone
technique for exploring the fundamental role of electric fields
in biochemical processes.
However, accurately interpreting VSE data is complicated by

factors such as solvent effects, probe orientation, and the
dynamic fluctuations of the molecular environment, necessitat-
ing rigorous calibration and computational support. MD
simulations play a vital role in validating key assumptions
behind VSE measurements and extending the technique’s
applicability to complex systems like proteins. By simulating
the solvation environment around a VSE probe molecule like a
carbonyl (C=O) or nitrile (C≡N) group, MD can provide a
detailed picture of the LEFs experienced by the probe within
different solvents or biological matrices. Accurately modeling
electric fields for VSE calculations using molecular dynamics
typically requires polarizable FFs,140 which enable the dynamic
adjustment of atomic charges in response to the local
electrostatic environment and accurately capture the fluctuat-
ing fields around the probe. These FFs provide a more realistic
representation of molecular interactions compared to non-
polarizable counterparts, thereby enhancing the reliability of
electric field calculations derived from MD simulations.
However, at least one study has demonstrated that when
combined with QM/MM methods, nonpolarizable FFs such as
Amber ff99SB can also produce results that align well with
experimental observations.88 These simulations account both
for the intricate interactions and dynamic fluctuations of the
surrounding molecules, enabling more accurate interpretations
of VSE spectral data. A common experimental approach called
the solvatochromic method is used to calibrate the relationship
between vibrational frequencies and electric field strengths for
a given VSE probe (Figure 2).139 This involves measuring the
IR spectra of the probe dissolved in a range of solvents, from
nonpolar hexanes to highly polar water. The vibrational
frequencies obtained from these measurements are then
correlated with electric field strengths calculated from MD
simulations of the probe in each solvent environment. A field-
frequency correlation plot is generated by plotting the
observed vibrational frequency shifts ( )obs against the known
electric field strengths (|Fenv|) from the calibration step. As
described in eq 8, this plot ideally exhibits a linear relationship,
as predicted by VSE theory, where the slope of the line
corresponds to the Stark tuning rate (|Δμprobe|). Confirming

Figure 2. Illustration of the solvatochromic method for deriving electric field-frequency calibrations using VSE. Reproduced with permission from
Kozuch et al., J Phys Chem B, 2021, 125 (17), 4415−4427. Copyright 2021 American Chemical Society.140
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this linearity validates a critical assumption�that the observed
frequency shifts predominantly arise from the Stark effect
rather than changes in covalent bond strengths.
Additionally, MD can model local field effects141,142 where

the field experienced by the probe differs from the bulk electric
field. For more complex protein systems where direct electric
field measurements are challenging, MD simulations of the
protein environment enable applying VSE spectroscopy by
computationally modeling how factors like mutations or ligand
binding perturb the LEFs around an embedded VSE probe
group.134,143 Finally, MD also allows prescreening of new VSE
probe molecules by simulating their behavior in well-
characterized environments before applying them to more
complex biological systems.144 This ensures frequency shifts
can be reliably mapped back to electric field changes in the
system of interest. Together, VSE spectroscopy with MD
simulations provides a powerful approach for precisely
measuring and interpreting electric fields in biological
environments ranging from solvents to enzymes to proteins.
A more accurate method to model electrostatic interactions,

obtain localized electric field strengths, and even predict
experimental shifts in frequencies is through hybrid quantum
mechanics/molecular mechanics (QM/MM) calculations. The
pivotal study by Wang and He on KSI exemplifies how QM/
MM calculations can unveil the profound influence of
electrostatic fields on enzymatic catalysis.88 Their work
demonstrates that the QM-derived electric fields based on
snapshots from QM/MM molecular dynamics simulations
provided better quantitative agreement with experimental
observations by using the nonpolarizable FF Amber ff99SB
as a comparison. The study also established a direct link
between the electric fields within the KSI active site and the
enzyme’s catalytic activity, highlighting the potential for
rationally designing enzymes with enhanced efficiency by
strategically manipulating these electrostatic fields. Further
showcasing the precision of QM/MM methods, Layfield and
Hammes-Schiffer’s study demonstrated that this methodology
can accurately reproduce the experimentally measured shifts in
vibrational frequencies upon binding of the intermediate
analogue equilinen to KSI, for two different nitrile probe
positions within the active site while also dissecting the
intricate influence of specific residues on the electrostatic
environment experienced by the probes.85 Additionally, the
comprehensive QM/MM approach developed by Sandberg,
Rudnitskaya, and Gascoń for predicting Stark shifts in proteins
achieves quantitative agreement with experimental findings.145

Noteworthy for integrating molecular dynamics with moving-
domain QM/MM techniques, their method accurately predicts
absorption frequency changes caused by electrostatic pertur-
bations in the protein environment. By modeling the interplay
between quantum mechanical and molecular mechanical
interactions, their approach precisely captures localized electric
fields and their effects on vibrational probes. Furthermore, it
addresses challenges in predicting electrostatic field changes
from protein site mutations and facilitates determining the
protonation states of nearby ionizable residues. Finally, Ringer
and MacKerell’s QM/MM analysis showed that QM/MM can
be used to validate traditional molecular mechanics FFs by
accurately replicating the electrostatic environments around
VSE probes within macromolecular systems.146

VSE spectroscopy, in conjunction with computational
methodologies, continues to serve as a cornerstone for
understanding the critical influence of electric fields in the

realm of biochemistry. This fusion of experimental and
computational techniques opens a window into the sophisti-
cated manipulation of electric fields across biological systems,
ranging from stabilizing catalytic transition states to covalent
inhibition to the nuanced control of ligand binding and
specificity. Such comprehensive insights not only validate the
foundational principles derived from Stark spectroscopy but
also lay the groundwork for the deliberate engineering of
biomolecules with tailored properties.
1.4. Empirical Valence Bond Theory
Empirical Valence Bond (EVB) theory, crafted by Warshel and
Weiss,147 offers a framework for comparing the energy
dynamics of chemical reactions inside enzymes with those in
solutions. At the heart of the theory is the idea that
environmental effects are mainly electrostatic, affecting the
energy of ionic states while keeping the covalent state
consistent across different settings. The EVB method offers
several advantages over other QM/MM approaches, partic-
ularly in its ability to provide conceptual clarity and intuitive
understanding of enzymatic reactions.
Indeed, Warshel and Weiss noted that chemical intuition is

often sufficient to simplify the reaction coordinate to a few key
valence bond states, highlighting the critical electrostatic
interactions that contribute to catalysis and allowing for direct
insights into electrostatic preorganization within enzymes. This
simplification enables the decomposition of activation energies
into distinct contributions�such as electrostatics and
solvation effects�enhancing interpretive power when analyz-
ing results. Furthermore, EVB is computationally efficient,
facilitating extensive sampling and the simulation of larger
systems over longer time scales, which is essential for capturing
dynamic enzyme behavior. Its flexibility and transferability,
owing to empirical parametrization, make it adaptable to
various reactions and systems. These advantages, especially the
interpretive benefits, make EVB an invaluable tool for
exploring electric fields in enzymes. A recent robust
implementation of EVB within GROMACS makes the method
widely accessible.148

The EVB theory utilizes a secular eq (eq 9) to calculate the
energies of resonance forms based on their spatial config-
urations and off-diagonal Hamiltonian matrix elements:
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Here, ΔF‡ is the activation free energy; ΔF0 represents the
standard free energy change of the reaction; and λ is the
solvent reorganization energy, which mainly reflects the
changes in the solvent−solvent interaction during the reaction.
The term H12 TS refers to the average electronic coupling (off-
diagonal Hamiltonian matrix element) between the reactant
and product states at the transition state, while H12 RS
represents the average electronic coupling between these states
at the reactant state (RS).
A pivotal aspect of the EVB method is calculating the free

energy changes associated with solvation and electrostatic
interactions, both in solution and within the enzyme’s active
site. Notably, the first term on the right side of eq 9
corresponds to the classical Marcus expression for the
activation free energy of electron-transfer reactions.149 This
term represents the reorganization free energy, accounting for
the energy required to reorganize the solvent and enzyme
environment during the reaction without considering elec-
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tronic coupling between the reactant and product states.
However, the EVB method extends beyond Marcus theory by
including the additional two terms on the right. As noted by
Villa and Warshel,150 these terms allow for the treatment of
regular chemical reactions, not just electron-transfer processes.
The second term on the right accounts for the stabilization of
the transition state due to electronic coupling between the
reactant and product states, while the final term corrects for
the mixing of electronic states at the reactant state. This
inclusion of electronic coupling effects enables the EVB
method to model reactions involving significant changes in
electronic structure, providing a more comprehensive frame-
work than Marcus theory alone. See ref 12 for a more complete
discussion.
In solutions, the model accounts for interactions with

solvent dipoles, drawing on empirical evidence to accurately
represent solvation effects. Within the enzyme, solvation of the
ionic form involves analyzing charge and dipolar interactions,
emphasizing the significance of electrostatic preorganization in
enzymatic catalysis. By incorporating these additional terms,
the EVB method effectively bridges the gap between electron-
transfer reactions and more complex chemical transformations,
justifying its application in studying enzymatic reactions and
electrostatic effects.
The EVB method’s flexibility allows for adaptation to various

reactions, although it may become more complex when
considering complicated metalloenzyme-catalyzed transforma-
tions. Nonetheless, its conceptual clarity and interpretive
advantages make EVB particularly valuable for exploring
electric fields in enzymes. In fact, the method has been used
quite widely for the assessment of the field’s role in enzymatic
catalysis, and in governing such properties as pKa and
reduction potentials.42 An extensive, albeit slightly dated,
compilation of these studies can be found in Table 2 of ref 12,
which emphasizes the electrostatic foundations of enzymatic
catalysis. Here, for the sake of completeness, we provide a

succinct summary and concentrate on the most current
research findings.
The EVB approach was first applied to the study of the

catalytic reaction mechanism of lysozyme.147 In this context, it
proved useful in elucidating the critical influence of electro-
static interactions between the enzyme’s active site and the
ionic resonance forms of the reactive state. This offered a
quantitative explanation for the enzyme’s rate enhancement.
This process notably involves the proton transfer from
glutamic acid 35 to the polysaccharide’s O4. It also involves
the cleavage of the protonated C−O4 bond. Finally, the
stabilization of the carbonium ion transition state by ionized
aspartic acid 52 is also a part of this process.
Further extending its application, EVB was utilized to

explore orotidine 5′-phosphate decarboxylase, aiming to
uncover the origins of its catalytic function.151 The findings
underscored the importance of electrostatic transition state
stabilization, alongside the structural induced fit of the protein,
in minimizing necessary reorganization for catalysis. EVB
simulations have also provided insights into the mutational
effects within purine nucleoside phosphorylase, where a
specific mutation from Asn243 to Asp significantly altered
substrate specificity by modifying the electrostatic preorganiza-
tion of the active site.17

Beyond these specific cases, EVB’s utility in elucidating the
role of electrostatics has been demonstrated across a diverse
array of enzymes, including monoamine oxidase A.152

Methyltransferases are another example.153 Enzymes depend-
ent on coenzyme B12 have also been studied.154,155 Candida
Antarctica Lipase A is another case.156 GTPases have been
examined as well.157 Such studies have consistently revealed
electrostatics as a key determinant in enzymatic function.
Notably, the methodology has been applied to deconstruct the
minimal influence of flexibility and dynamics in enzymatic
catalysis, as illustrated by studies on dihydrofolate reduc-
tase.158,159

Figure 3. (A) The dihydrofolate reductase protein. (B) The reacting system in the catalytic reaction of DHFR, where R indicates the benzoyl
glutamic acid moiety of DHF-H+, and R’ indicates the remaining adenine, phosphate, and ribose groups of NADPH. (C) Correlation between the
calculated and experimentally observed changes in activation energies for dihydrofolate reductase (DHFR) catalysis in the native enzyme (labeled
“Native” in the plot), the designated mutants (M42W, L54G, G121 V, and M42W-G121 V), the thermophilic TmDHFR (labeled “TmDHFR”),
and the reference solution reaction in water. The water-based references�Water (cage), Water (DHF-H+), and Water (DHF)�indicate (i) the
reaction carried out in a solvent cage, and (ii) dihydrofolate in its protonated or neutral forms, respectively.
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EVB has also proved applicable to metalloenzymes. This is
exemplified by the catalysis study of diethyl 7-hydroxycoumar-
inyl by a custom-designed zinc metalloenzyme,160 which serves
as an example system to illustrate the general workflow. Figure
3 depicts the protein, its mechanism, and reaction profiles
across various environments. Two ionic configurations were
selected for EVB, D-H A+ and D+ H-A, represented as
NADPH DHF-H+ and NADP+ HTF, respectively. The
potential energy surfaces (PES) of these states (H11 and
H22), along with the mixing term (H12, which is considered
constant in the gas phase, solution, and within the protein), are
defined by the elements of the Hamiltonian matrix:
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Here, the atomic coordinates of the reactants or products in
the diabatic states are given by R, and coordinates of the
surrounding water or protein by r. agas is the energy of a given
diabatic state in the gas phase, where all the fragments are at
infinite separation. RU ( )i

intra is the intramolecular potential of
the solute system (relative to its minimum) in this state.

R rU ( , )i
inter gives the interaction between the solute and the

surrounding solvent atoms. rU ( )i
solvent is the potential energy of

the solvent.
Solving the secular equation for this description yields the

adiabatic ground-state energy (Eg) and the corresponding
eigenvector (Cg). Using these EVB potential energy surfaces,
umbrella sampling MD trajectories and free energy perturba-
tion simulations allow for the calculation of reaction free
energies. The reaction barrier variations due to mutations
reveal distinct differences aligning with experimental data
(Figure 3c).
The KSI system was demonstrated to operate via electro-

static preorganization using EVB in 2010.14 This preceded the
notable experimental investigation in 2014.136 Kamerlin et al.
elucidated the impact of protein electrostatics on both the
substrate, equilenin, binding and the initial reaction barriers
within KSI.159 They leveraged the substrate’s pKa shift relative
to its value in aqueous solution as a metric for the electrostatic
influence upon binding. This shift, found to exceed 5.5 units,
closely correlates with binding affinity, underscoring the
predominance of electrostatic effects in binding. Moreover,
the protein’s electrostatics were revealed to furnish even more
substantial stabilization to the transition state, according to
EVB analysis. This research underscored the necessity of
incorporating the full substrate rather than reduced models to
ensure the substrate’s correct orientation within the binding
pocket, optimizing its alignment with the protein’s electric
field. Additionally, it cautioned against employing transition
state analogues (TSA) for evaluating electrostatic contribu-
tions to catalysis.161

Roca et al. undertook an analysis of chorismite mutase
(CM) proteins using the EVB method,162 aiming to capture
their experimentally observed catalytic performance. CMs are
notable for catalyzing the Claisen rearrangement (Figure 4), a
pericyclic reaction that does not straightforwardly benefit from
a uniform electric field that might activate a specific bond.
EVB, by not assuming nor requiring field directionality,
assesses the influence of the protein’s complete electric field

on the active site. Long-standing debates around CMs have
questioned the source of their catalytic proficiency, with one
theory suggesting the importance of bringing substrates into a
near-attack conformation (NAC). Yet, further studies have
demonstrated that the electrostatic stabilization of the
transition state is the more significant catalytic mechanism.
Nature presents several CM classes, alongside artificial CMs.
Figure 4B illustrates the structure of EcCM and its active site,
while Figure 4C highlights the electrostatic contributions of
various residues throughout the protein scaffold to CM
catalysis, noting that not all influential residues are charged,
thus presumably affecting electrostatics with their backbone
dipole.
Researchers have proposed EVB as a strategic tool for

enzyme design, focusing on the influence of the scaffold’s
electric field.163 They advocate EVB for evaluating the catalytic
efficiency of designed enzymes prior to experimental
validation.162 In computational design, initially predicted
proteins often show modest catalytic effects compared to
their natural counterparts. These nascently active proteins
undergo several rounds of directed evolution, incorporating

Figure 4. (A) Rearrangement of chorismate to prephenate. (B)
Structure of the dimeric EcCM protein and the active site. (C)
Electrostatic group contributions for the TS binding in the native
EcCM in kcal/mol; these data are derived from EVB simulations,
where the reference state for energies is the uncatalyzed reaction in
solution. The contributions are shown for the residues of both
subunits, which are close to the active site. Reproduced with
permission from Roca et al., Biochemistry, 2009, 48 (14), 3046−
3056. Copyright 2024 American Chemical Society.162
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targeted mutations throughout the scaffold to enhance
catalysis. This iterative evolution underscores missing elements
in the initial theoretical design, emphasizing the protein’s role
in catalysis. Many believe that directed evolution primarily
enhances mid- and long-range electrostatics, filling the gap in
electrostatic preorganization. To factor in reorganization
energy early in the design process, a linear response strategy
considering only the configurational space of reactants and
products has been introduced.
The groundbreaking endeavor of computationally designing

a series of enzymes unveiled Kemp elimination, transforming
5-nitrobenzisoxazole into cyanophenol, a reaction unfamiliar to
existing enzymes (Figure 5).15,80 Among these, KE59,
leveraging an α/β barrel structure (PDB ID 1A53),
significantly enhanced its catalytic efficacy by roughly 2,000
times following directed evolution.111 This evolution notably
fine-tuned the electrostatic interactions, achieving a remarkable
reduction in reorganization energy by 27.4 kcal mol−1 from the
wild type to its evolved R7 1/3H counterpart, illustrating the
potency of directed evolution in refining electrostatic
preorganization. Accordingly, the meticulous examination of

the Kemp variants underscored that in vitro evolution precisely
tailors reorganization energy.112,114

Further exploration led to the directed evolution of KE70, a
design based on a TIM-barrel, which saw a nearly 400-fold
boost in catalytic efficiency (kcat/kM).

110 Employing the EVB
method to dissect the evolutionary path revealed an impressive
enhancement in rate by a factor of 103.114 This version
capitalized on mutations that uniformly maintained or
enhanced reorganization energy, validated by experimental
congruence. Here, E101 functioned as the general base, K222
provided hydrogen bond support, and W50 engaged in a π-
stacking interaction directly with the substrate. Computational
findings, consistent with experimental observations, indicate
that mutations arising during in vitro evolution either had a
neutral impact or positively affected reorganization energy.
The evolution of Kemp eliminases, KE07 and HG3, presents

a compelling narrative of catalytic diversification as unveiled by
EVB calculations. Directed evolution of KE07 predominantly
destabilized the ground state, while HG3’s evolution stabilized
the TS.116 Further EVB investigations into KE07’s evolution
revealed a shift toward an alternative substrate binding
mechanism, ultimately dominating its evolutionary end-

Figure 5. Residues providing significant contributions to the catalytic effect. (A) Kemp eliminase residues with electrostatic contributions
exceeding 1 kcal/mol in magnitude in the KE07 design (light gray) and the R7 1/3H variant (dark gray). Residues with favorable (negative, blue)
and unfavorable contributions (positive, magenta) to catalysis in KE07 design (B; PDB ID 2RKX) and the evolved R7 1/3H variant (C; PDB ID
3IIV) are displayed in the corresponding transition state structures. EVB method was also applied to examine the designed and evolved kemp
eliminases by Frushicheva et al.112 The authors found that for this particular reaction it is not very easy to incorporate TS stabilization via
electrostatics, and that the evolution instead brings additional active site dissolvation. Reproduced from Biochimica et Biophysica Acta (BBA) -
Proteins and Proteomics, Vol 1834, Labas et al., Optimization of the reorganization energy of the Kemp eliminase KE07, 908−917, Copyright
(2013), with permission from Elsevier.114
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game.164 This nuanced development across different variants
demonstrates the transformative power of directed evolution,
guided by strategic considerations of reorganization energy
revealed by EVB methods.
The EVB literature frequently emphasizes the primacy of

electrostatic contributions from the protein scaffold to
enzymatic catalysis, as opposed to dynamics. It is essential to
recognize that conformational dynamics influence the protein’s
generated electric fields and electrostatics, which in turn alter
potential energy surfaces, affecting flexibility and dynamics.
Hence, completely separating dynamic and electrostatic effects
might not be entirely feasible, although possible under certain
conditions. Despite general views, protein movements are
likely disconnected from reaction processes, as convincingly
argued by Warshel.165 Yet, Schwartz identified specific protein
promoting vibrations (PPV) that do couple with reaction
dynamics.166,167 Warshel and colleagues argue that vibrations,
including PPVs, if adhering to a Boltzmann distribution, do not
modify reaction barriers. Nonetheless, proteins experiencing
thermal fluctuations generate varying electric fields.98 Our
observations revealed noticeable variances in the 3-D electric
field geometry within the active site, depending on molecular
dynamics trajectories. We discovered that certain field
configurations, encountered at varying degrees of catalytic
efficiency, could be significantly catalytic,168 with some
infrequent fields (manifesting briefly) exhibiting the most
catalytic activity. Crucially, diverse fields may facilitate different
TSs, i.e. altering the reaction mechanism. This implies that a
single enzyme might exhibit multiple catalytic mechanisms
induced by distinct electric fields produced by the protein,
without direct momentum exchange (or dynamic coupling)
between the protein and the reaction coordinate. In addition,
different TSs achieved by different fields will break down the
Boltzmann-based argument presented above. Consequently, it
is vital to examine electric fields within configurations most
pertinent to catalysis (those leading to the highest turnover
frequencies), possibly derived from the tail of the Boltzmann
distribution of protein movements. These configurations and
their associated fields should be the focus when analyzing their
impact on the catalyzed reaction’s transition state. In essence,
the predominant protein conformation and its typical electric
field best represent the reactant state, while the transition state
might be more accurately described by the infrequent yet
highly active protein conformations and their unique fields,
differing from those in the reactant state. Although EVB may
not capture this field variability, it remains a potent theoretical
framework for analyzing protein electrostatics.

2. DEVELOPING METHODS

2.1. Force Fields

2.1.1. Treatment of Electrostatics in Enzymes and
Force Field Parameterization. As QM/MM simulations
serve as the computational foundation for exploring electric
fields in enzymes, their quest for accuracy naturally drives the
development of more sophisticated FFs, crucial for precise
electrostatic representation. This pursuit highlights the para-
mount importance of electrostatic characterizations in
computational enzymology, a fact supported by extensive
research.169−173 The significance of this endeavor is 2-fold. On
one hand, electric fields within enzyme active sites are known
to accelerate rate-limiting reaction steps, and influence the
spatial arrangement of substrates and adjacent residues,

thereby potentially increasing field intensities.89 On the other
hand, while approximations such as fixed point charges for
atoms or amino acid residues might suffice for modeling the
protein scaffold’s long-range electrostatic effects, a detailed
portrayal of the protein’s larger structure demands a more
intricate electrostatic treatment. This becomes increasingly
crucial in long-term simulations accounting for protein thermal
fluctuations, where the precise modeling of the protein’s
expansive structure is vital for understanding how long-range
electrostatic fields affect the active site’s dynamics.
Our progress toward improved FFs may be categorized into

three areas: (i) electronic polarization models, (ii) para-
metrized polarization models, and (iii) machine-learned
interatomic potentials. This discussion will explore these
advancements, complemented by insights from several
comprehensive reviews on the breakthroughs of computational
electrostatics.169−171,174−178

2.1.2. Electric Field Polarization. At the foundation of
electrostatic modeling lies the concept of interactions between
fixed point charges, which may represent individual atoms or
groups of atoms, such as amino acid residues. This
fundamental approach, however, grapples with two significant
limitations. Initially, it falls short of depicting anisotropic
charge density distributions�an issue that plagues both atom-
centered and atom-group point charges. Moreover, it
inadequately captures charge penetration effects that emerge
when spherical charge density distributions intersect. These
challenges manifest in the polarization of charge density
around a point charge, necessitating direction-specific adjust-
ments.
In exploring electronic polarization within chemical systems,

two primary methodologies emerge: one attributes polarization
to charge redistribution within individual atoms, employing
either the induced dipole model179−182 or the Drude oscillator
model�alternatively known as the charge-on-spring or shell
model.183 The second methodology considers polarization as
stemming from charge redistribution among atoms, utilizing
frameworks like the fluctuating charge model, also referred to
as charge equilibrium or chemical potential equilibrium.184

Using the induced dipole model, each point charge has a
polarizability α in response to a field, resulting in a dipole with
some direction and magnitude. This approach also extends to
include atomic multipoles to obtain a more robust
representation of atomic polarizability. Because the total
energy is determined by the potential energy of the multipole
expansion in response to those of nearby atoms, and in
response to the field, the induced dipoles are solved in a self-
consistent fashion such that total energy is minimized for the
system.
In the Drude oscillator model, some amount of charge is

taken from each point charge and given to a so-called Drude
particle that is placed separate from the point charge, creating a
dipole in the direction between the two points, with a
magnitude proportional to their distance and relative charges.
The Drude particle is connected to the point charge by a
harmonic spring, and the positions of the Drude particles for
all point charges in the system are again determined self-
consistently (or approximated using an extended Lagrangian
technique) such that total energy is minimized. The fluctuating
charge model represents the charge for each point charge at
multiple sites at and around the point, and uses the
electronegativity equalization principle to minimize system
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energy by balancing the electronegativity, chemical potential,
and chemical hardness for each point charge.185,186

These three approaches differ in how they allow the charge
density to deviate from a radial distribution around each point
charge. The induced dipole and Drude oscillator models allow
a dipole to form, and in fact the two were recently shown to be
numerically equivalent,187 since the Drude particle displace-
ment is generally so slight that it approximates to a point
dipole. The fluctuating charge model allows charge to move
farther from an atomic site, from one atom to another, or even
from one molecule to another, recovering a representation of
polarization and charge transfer, and it can be expanded to
include out-of-plane polarization at increased computational
cost by including more virtual sites for each atom.188

Additionally, fluctuating charge and induced dipole can be
combined to achieve higher agreement with quantum-
mechanical calculations,189 again at a higher computational
cost. However, it has been shown that inclusion of higher order
(multipole) electrostatics produces results that more closely
agree with those of DFT methods.89

2.1.3. Parameterization and Assessment of Polar-
izable Force Fields. The polarization models discussed above
incorporate atom-specific parameters that account for changes
in atomic polarization based on the types and positions of
neighboring atoms. The derivation of these parameters,
contingent on the model’s nature, can be conducted through
local or global methodologies, aiming to minimize discrep-
ancies in energy or other attributes against high-fidelity
benchmarks, whether experimental or derived from quantum
mechanics. Local parametrization aligns parameters with
individual atomic characteristics�charges, electronegativities,
polarizabilities, and multipole moments, along with interatomic
distances�based on molecular polarizabilities. While concep-
tually direct, this approach risks overfitting and may
compromise transferability due to the selection and quality
of reference data employed. Conversely, global parametrization
seeks to refine parameters by minimizing deviations across
entire systems against experimental or QM benchmarks, across
broad chemical system sets. This method’s complexity varies
with the polarization model and the parameters it incorporates,
as well as the choice of reference data.
Notable polarizable FFs utilized in molecular dynamics

simulations of proteins and enzymes, such as CHARMM-
Drude,184,190−194 AMBER polarizable model195 (FF02pol,
FF02EP,196 FF02r1,197 ff12pol198) , AMOEBA,199

SIBFA,200 , 201 ReaxFF polar izable model ,202 and
LAMMPS203,204 (using QEQ,205−207 CORESHELL,208,209 or
DRUDE210 packages), among others,176 benefit from such
optimized parameter sets for enhanced accuracy and trans-
ferability. The CHARMM Drude FFs employ the Drude
oscillator model to represent anisotropic charge distributions
and cover a wide range of biomolecules, including proteins,
DNA, and lipids.183,211,212 AMBER ff02pol is one of the
earliest polarizable FFs, used in the study of proteins and
nucleic acids, employing an induced dipole method,196 while
the ff12pol model includes damping functions to improve the
treatment of long-range interactions.198 The AMOEBA
polarizable FFs use atomic induced dipoles for polarization
and atomic multipoles up to quadrupole for permanent
electrostatics,199 and have been applied to various biological
problems, demonstrating accurate structural predictions for
systems including DNA, RNA, and proteins.213,214 SIBFA is an
ab initio polarizable FF that includes electrostatic multipole,

short-range repulsion, polarization, charge transfer, and
dispersion contributions,200 initially developed for divalent-
cation metalloproteins and later extended to halogen
compounds and nucleic acids.215−217 It has been implemented
into Tinker-HP for parallel MD simulations, with recent
advancements incorporating GEM for a more accurate
representation of electron density, and combining with
SIBFA and AMOEBA. ReaxFF is a bond-order-dependent
FF parametrized using a large training set of QM data
including thermodynamic and kinetic information,202 useful for
studying reactions which may include multiple intermediates
along the reaction path,218 including those in biological
contexts.219 Like other popular FF codes, it benefits from
GPU-acceleration,220 and using the ReaxFF implementations
in LAMMPS,221 AMS/ReaxFF,222 or PureMD,223,224 simu-
lations of 10k+ atoms are feasible. LAMMPS is a versatile MD
code that supports a number of polarizable FFs, including
fluctuating charge, core−shell, Drude models, and a recently
added polarizable embedding scheme for QM/MM calcu-
lations,225 and is widely used for simulations of biomolecules
and materials.203,204

Enhancements by Lin and MacKerell improved the
CHARMM-Drude FF for halogenated molecules,226 while
refinements to the DNA model addressed issues like weak base
stacking and Z-DNA unwinding.211 QM energy profile fitting
has also been used to adjust ion and water models for better
compatibility with DNA models.183 The CHARMM Drude-
2013 polarizable protein FF was recently further optimized by
Lin et al. to address limitations observed in β-sheet stability
and structural fidelity over long molecular dynamics simu-
lations.227 The updated FF, termed Drude-2019, includes
reoptimization of backbone parameters targeting the (Ala)5
peptide’s conformational properties in solution and gas-phase
properties of the alanine dipeptide. Side-chain atomic polar-
izabilities and Thole screening factors for selected Cβ, Cγ, and
Cδ atoms were refined using QM dipole moments and
molecular polarizabilities. Side-chain χ1 and χ2 dihedral
parameters were optimized against QM data and PDB survey
data. Nonbonded interactions between charged residues were
also improved to better match QM interaction energies and
experimental osmotic pressures. Validation through MD
simulations of various peptides and proteins, including β-
sheet structures and transmembrane ion channels, demon-
strated that Drude-2019 offers smaller root-mean-square
deviations and better agreement with experimental NMR
data compared to CHARMM36m and Drude-2013, enhancing
the FF’s applicability for longer and more complex
biomolecular simulations.
Ongoing development of AMOEBA aims to enhance

accuracy and transferability by calibrating energy components
to high-level QM energy decomposition and by utilizing
automated optimization.228 Improvements include better
capturing electrostatic interactions with empirical damping
functions,229 refining the polarization model,230 and para-
metrizing van der Waals interactions with the buffered-14−7
potential.231

For more information on improvements to these FFs, a
recent review by Polet̂o and Lemkul discusses the advances in
developing protein FFs, focusing on polarizable FFs and the
limitations of additive FFs.232 The article covers the para-
metrization strategies for FFs such as CHARMM, AMBER,
OPLS, and GROMOS, which use experimental data, QM
calculations, and automated fitting methods like ForceBalance.
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The inclusion of experimental solution data and QM
calculations has improved the accuracy of FFs in capturing
structural, dynamic, and thermodynamic properties. Polar-
izable FFs like AMOEBA and Drude models are shown to offer
better representation of interaction energies in various
chemical environments compared to nonpolarizable FFs. The
authors highlight the need for more diverse experimental data,
including structural and thermodynamic properties, to further
refine FFs. Examples provided include the refinement of
torsional parameters and nonbonded interactions, such as the
development of the IPolQ model and the CHARMM22/
CMAP FF. The review emphasizes the potential of machine
learning and automated methods to enhance FF development,
reducing biases and improving parameter accuracy, which we
expand on below.
Assessment of the accuracy of FF-predicted electrostatics,

and the resulting electric fields, is a necessary and ongoing
process involving benchmarking of results against QM
calculations and experimental observations. Kirsh et al.
evaluated the accuracy of polarizable (AMOEBA) and
nonpolarizable (AMBER) FFs in modeling electric fields in
proteins using nitrile-containing photoactive yellow protein
(PYP) variants.233 Transition dipole moment (TDM)
measurements were used to overcome hydrogen bonding
issues in nitrile frequency measurements. Simulations showed
that AMOEBA, which includes higher-order multipole
parameters, more accurately reproduced experimentally
derived TDM electric fields than AMBER, especially in
hydrogen-bonding environments, thanks to AMOEBA’s better
modeling of negative charge density along the nitrile bond axis,
leading to more head-on hydrogen bonds. Low-temperature IR
spectra confirmed multiple nitrile populations, supporting the
reliability of AMOEBA for accurate protein electrostatics
modeling. This is particularly important as nitriles are
commonly found on drugs, and accurate modeling is essential
for understanding protein function and for computational
screening of nitrile-containing compounds, potentially improv-
ing drug design and efficacy.
Amin et al. benchmarked polarizable and nonpolarizable FFs

for Ca2+−peptide interactions against a QM data set.234 The
systems analyzed included dipeptides bound to Ca2+, with a
particular focus on interactions involving carboxylate groups
from Asp and Glu residues. The authors found that the Drude
polarizable FF, prior to any parametrization, better approxi-
mated QM interaction energies than nonpolarizable FFs but
suffered from polarization catastrophes at short Ca2+−
carboxylate distances. To mitigate this, the Drude FF was
optimized using Boltzmann-weighted fitting, which improved
its accuracy in MD simulations of calmodulin’s N-lobe.
Additionally, the CTPOL FF, which incorporates charge-
transfer and polarization effects,235,236 was evaluated. The
optimized Drude FF showed improved performance, reducing
discrepancies in ion-ligand interactions. This benchmark
process led to parameter optimization and resulted in specific
FF improvements for accurately capturing the structure and
dynamics of ion-protein interactions, which is crucial for
applications involving metalloproteins.
Proper treatment of classical electrostatics via polarizable

FFs is also important in QM/MM approaches. In a study on
the catalytic mechanism of reductive dehalogenase PceA,
Zhang et al. used MD simulations and QM/MM calculations
to explore the role of the proximal [4Fe−4S] cluster in proton-
coupled electron transfer (PCET).237 The QM/MM scheme

utilized ChemShell to integrate QM calculations with
Turbomole (B3LYP/Def2-SVP) for the QM region and
DL_POLY (AMBER ff14SB FF) for the MM region, using
an electronic embedding approach to account for the enzyme
environment’s polarizing effects on the QM region. The
authors found that the [4Fe−4S]1+ cluster facilitates the
reduction of organohalide compounds by mediating a PCET
process, with Arg305 acting as the proton donor, while the
deprotonated Tyr246 stabilizes Arg305’s conformation and
proton donation ability. This novel mechanism helps ration-
alize the selective dechlorination of trichloroethene to cis-1,2-
dichloroethylene. The QM/MM scheme revealed that the
[4Fe−4S]1+ cluster’s participation in PCET enhances both
exchange and superexchange interactions, overcoming previous
uncertainties related to electron and proton sources in the
dechlorination process. The findings have significant implica-
tions for the bioremediation of toxic chloroalkenes, commonly
found in industrial and agricultural pollutants, highlighting the
potential for engineering more efficient biocatalysts for
environmental detoxification.
Yan et al. used QM/MM to evaluate TS (de)stabilization

effects of electric fields generated by scaffold residues in
proteins, specifically focusing on the O−O heterolysis reaction
in tyrosine hydroxylase.238 The QM region included the heme
with the Fe−OOH moiety, ligand imidazole ring, and
substrate, while the MM region was represented using
AMBER ff14SB. The authors found that electric fields due to
residues far from the active site could be approximated as
uniform, while the heterogeneity of electric fields due to
residues near the active site necessitated a direct QM/MM
calculation for accurate assessment. The results demonstrated
that scaffold residues contribute to the preorganized electric
field, influencing the catalytic efficiency of enzymes.
Song and Wang combined state-averaged CASSCF with the

AMOEBA FF to study photoreactions in proteins.239 The
model incorporated a variational treatment of intramolecular
polarization and link atom schemes to handle QM/MM
boundaries through covalent bonds. Single-link and double-
link atom schemes were evaluated, with the double-link
scheme providing more accurate results for both ground and
excited states. The model was applied to the O−O bond
dissociation in NanoLuc, showing significant differences in
reaction pathways and conical intersections compared to gas
phase and polarizable continuum model (PCM) calculations.
This work demonstrates the combination of multireference
quantum chemistry with polarizable FFs in QM/MM models,
paving the way for more accurate studies of photoreactions in
complex biological systems.
Demonstrating the catalytic potential of designed LEFs,

Siddiqui et al. investigated the enzymatic degradation of
polyethylene terephthalate (PET) using engineered cyto-
chrome P450 (CYP450) enzymes. Combining MD simu-
lations, molecular docking, QM/MM, and binding free energy
calculations, the authors focused on three variants: CY-
P450GcoA, CYP450OleT, and CYP450BSβ, finding that
only CYP450GcoA, with a preorganized LEF favorably aligned
along the O−C1 bond, could efficiently catalyze PET
degradation. The comprehensive study demonstrated that
PET degradation occurs in two steps: C−H hydroxylation and
O-dealkylation, with the latter driven by the enzyme’s LEF,
engineered via delibrate mutation based on alignment with the
reaction axis. The significance of this investigation lies in
demonstrating that LEFs can be used to guide enzyme
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engineering, leading to new strategies for enzymatic catalysis of
non-native reactions, and in this case offering a greener
solution for plastic degradation.
More information on QM/MM methods for enzyme

modeling can be found in the tutorial review by Ahmadi et
al., which covers QM, QM/MM, and QM/MM/MD modeling
approaches to enzyme modeling.240 Also see the tutorial review
by de la Lande et al., which focuses on QM/MM methods
using the deMon2k software package.241

2.1.4. Coarse-Grained Force Fields. Coarse-grained
(CG) FFs have emerged as powerful tools in biomolecular
simulations, offering a balance between computational
efficiency and accuracy.242 Unlike atomistic FFs, which
model every atom explicitly, CG FFs simplify the system by
grouping atoms into larger units or “beads.” This reduction in
complexity significantly enhances computational performance,
enabling the simulation of larger systems and longer time
scales that would be prohibitive with atomistic approaches.
Some example CG FFs for biochemical systems are

SIRAH,243 MARTINI,244 ,245 UNRES,246 CABS,247

PRIMO,248 PRIME,249 and OPEP.250 CG FFs offer substantial
speed-ups while retaining essential physical properties, making
them ideal for studying phenomena such as protein folding,251

membrane fusion,252 and the self-assembly of complex
biomolecular structures, where capturing long-range inter-
actions and large conformational changes is crucial.
Due to the simplified nature of CG FFs, their application to

individual biological macromolecules can be more nuanced.
For instance, while they excel at capturing the general behavior
and dynamics of macromolecular assemblies, they may lack the
detailed resolution needed for investigating fine structural
features or specific atomic-level interactions within a single
protein or nucleic acid. This is because the coarse-graining
process inherently involves a loss of detailed atomic
information, which can be critical for understanding precise
mechanisms such as enzyme catalysis, ligand binding, or
allosteric regulation.
To address this shortcoming, researchers have developed

alternative CG approaches such as shape-based coarse-graining
(SBCG) allowing higher bead granularity, hybrid CG/
atomistic schemes in order to embed finer resolution atomistic
regions within surroundings represented with CG FFs, and
employ advanced parametrization and machine learning to
improve the ability of the CG beads to capture the behavior of
the groups of atoms they represent.
Bryer et al. presented advancements in the SBCG method,

termed SBCG2, with an improved topology representing
network, a charge density Fourier Shell Correlation method for
granularity selection, and an iterative refinement protocol for
bond and angle parameter optimization.253 The systems
investigated include the HIV-1 capsid and heteromultimeric
cofilin-2 bound actin filaments. The SBCG2 models maintain
assembly characteristics with subnanometer resolution and
achieve high simulation performance using the GPU-resident
NAMD3 engine, with the HIV-1 capsid simulations exceeding
1 μs per day without particle mesh ewald (PME) and nearly
300 ns per day with PME, and actin filaments achieving up to 4
μs per day. The SBCG2 methodology is implemented in VMD
and facilitates efficient simulation of large-scale macro-
molecular complexes.
Demonstrating an advancement in algorithmic CG FF

parametrization, Caceres-Delpiano et al. employed an auto-
mated approach using ForceBalance to optimize the SIRAH

CG FF by reproducing hydration free energy gradients derived
from atomistic molecular simulations.254 The method specif-
ically targeted uncharged side-chains and the protein back-
bone, with MD and QM calculations, incorporating multiple
sources of experimental or simulated reference data. The
optimized parameters significantly improved agreement with
experimental hydration free energies, achieving an R2 of 0.985,
compared to the original SIRAH 1.0 and 2.0 models which had
R2 values of 0.104 and 0.404 respectively. Despite challenges in
optimizing parameters for charged side-chains, the new
SIRAH-OBAFE FF showed enhanced protein stability in
MD simulations, with reduced RMSD values.
In the area of machine-learning-based improvements to CG

FFs, Kanada et al. presented an advanced coarse-grained
molecular dynamics (CGMD) simulation method that
combines a smoothed hybrid potential with a neural network
model to enhance the structural transition dynamics of
proteins.255 The hybrid potential integrates an AI-based
potential with minimal CG potentials, targeting bond lengths
and excluded volume interactions. The AI potential is trained
using a diverse structural ensemble from multicanonical MD
simulations, with energy profiles smoothed by energy
minimization. This methodology was applied to chignolin
and TrpCage, achieving a high correlation coefficient (R2 >
0.89) between predicted and true energies. CGMD simulations
using the hybrid potential showed significantly improved
transition dynamics between metastable states compared to
conventional CGMD and all-atom MD, while maintaining
protein properties.
Another recent machine-learning-based approach to im-

prove CG FFs was presented by Navarro et al.256 Using a top-
down approach via MD, neural network potentials (NNPs)
were trained via differentiable trajectory reweighting using only
the native conformations of proteins, eliminating the need for
extensive labeled data or memory-intensive simulations.
Validation was conducted using Markov state models to
predict native-like conformations from CG simulations. The
theoretical transferability of the method and its potential for
new protein force fields are highlighted in the study, where
trained NNPs are shown to generalize to new proteins and
accurately fold proteins outside the training set, achieving
results comparable to other CG methods and demonstrating
the efficiency and potential of this machine learning approach
in protein modeling.
Lastly, a cutting-edge investigation by Carrer et al.

introduces ∂-HylleraasMD (∂-HyMD), a fully end-to-end
differentiable molecular dynamics software based on the
Hamiltonian hybrid particle-field (HhPF) formalism.257

Leveraging the JAX autodiff framework for automatic differ-
entiation, the software performs automated optimization of
CG FF parameters. The optimization process employs a
trivially parallel algorithm where independent simulations are
run in parallel, and their trajectories are processed using
reverse mode automatic differentiation to calculate the
gradient of the loss function, used iteratively to optimize the
FF parameters, ensuring convergence and avoiding memory
and numerical stability issues. The authors demonstrate the
effectiveness of ∂-HyMD by optimizing FF parameters for
standard phospholipids, including those with zwitterionic or
anionic heads and saturated or unsaturated tails. The
optimized FF parameters yield improved density profiles
compared to those derived from gradient-free optimization
methods and accurately predict properties like lateral pressure
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profiles, and their transferability to other systems such as
triglycerides was demonstrated.
For more information on advancements in CG-based

biomolecular modeling, see recent reviews258,259 including
that of Roel-Touris and Bonvin,260 which covers the nuance of
the coarse-graining process, new parametrization strategies for
CG models including machine-learning-based parametrization,
extensions of multiscale hybrid methods, and use of
sophisticated sampling and scoring schemes to enable longer
simulation time scales. The review also covers the development
of integrative modeling, fusing experimental data with
computational models to generate more accurate and reliable
structural models. The Protein Data Bank (PDB) has since
2014 established a new integrative model database (PDB-Dev)
for archiving such models. Examples include structures
determined using CG/hybrid computational approaches with
various experimental techniques. Chemical cross-linking data
have been extensively used, leading to models of complexes
such as the heptameric module of NPC, exosome complex, and
Complement C3(H2O). Other examples involve combining
cross-linking with 2DEM/3DEM, SAS, mutagenesis, NMR,
and single molecule FRET data. Specific cases like the ATP
synthase membrane motor and ISWI ATPase complex
showcase the integration of CG modeling with experimental
data for detailed structural insights. The Nuclear Pore
Complex (NPC), modeled using the Integrative Modeling
Platform (IMP), represents a significant achievement, where
multiscale modeling combined with extensive experimental
data resulted in a subnanometer precision structure of a large
protein assembly.
2.1.5. Machine Learning Interatomic Potentials.

Harnessing artificial intelligence (AI) to develop machine
learning-based interatomic potentials represents a ground-
breaking stride toward crafting more accurate and compre-
hensive models of enzyme behaviors. These machine learning
potentials, trained on data sets of atomic configurations and
their quantum mechanically computed energies/forces, seek to
blend quantum accuracy with the computational speed of
traditional FFs.
Machine learning interatomic potentials (MLIPs) histor-

ically face challenges in scaling and accuracy when modeling
complex proteins. Despite this, advancements in charge
descriptors, high-performance algorithms, and the advent of
fourth-generation models promise significant breakthroughs.261

The pioneering work by Behler-Parrinello on atom-centered
potentials marked the beginning of this field.262 These early
models, however, were hampered by reliance on descriptors
that captured the local atomic environment in a generalized or
oversimplified manner and did not include sufficient detail to
capture all relevant physical and chemical interactions�such
as multicenter bonding. In addition, capturing long-range
electrostatic and dispersion forces proved challenging due to
computational cost and the fact that local descriptors
inherently neglect these forces.
Fourth-generation frameworks, such as CENT263 and

BpopNN,264 rely on more sophisticated descriptors that
capture the local atomic environment with greater detail and
accuracy. These descriptors are designed to encode, not only
the immediate surroundings of an atom, but the broader
context of its position within the molecule or material, allowing
the model to account for both short-range and long-range
interactions. Some fourth-generation models incorporate
global optimization techniques or charge equilibration

mechanisms that allow for a dynamic adjustment of charge
distribution based on the overall molecular or material
structure. This approach uses methods akin to those found
in DFTB265 and ReaxFF224 to mimic the way real charges
redistribute in response to electrostatic forces, improving the
accuracy of predictions related to electrostatic interactions.
Message-passing neural networks represent another innovative
approach to FF development. These networks update atom
representations iteratively, effectively “passing” information
between atoms across the molecule or material and allowing
the model to capture the influence of distant atoms,
overcoming the limitation of earlier models that struggled
with long-range interactions.266

These advancements have significantly improved the
efficiency and accuracy of computational methods. Recent
explorations into protein modeling with MLIPs have been
promising, including the Allegro algorithm’s application to
simulate the entire HIV Capsid,267 using Graph-Based
Embedding of Molecules (GEMS) which combined a
bottom-up and top-down methodology that improved the
modeling of short-range and long-range interactions in systems
of over 10,000 atoms (Figure 6).268 This latter study,

comparing ab initio calculations with AmberFF and a MLIP,
Spookynet, revealed that MLIPs provide more accurate
representations of protein dynamics over extended time scales,
uncovering new dynamics in crambin and poly alanine systems.
Despite these algorithmic advances, their application to

systems influenced by induced or intrinsic electric fields
remained limited until the advent of alternative MLIP
algorithms designed for electric field operations and electro-
static potential energy terms. Notably, Christensen et al.
introduced a kernel method utilizing fictitious effective charges,
coupled to electric fields as system energetic descriptors.269

Similarly, FieldSchNet treats solvent effects through an
effective scalar field sensitive to electrostatics,270 while Gao
and Remsing devised a dual approach for long-range and short-
range interactions, with the former incorporating a perturbative
correction to atomic descriptors influenced by electric fields.271

Jiang et al.’s method leverages Gaussian-type orbitals, informed

Figure 6. Biomolecular dynamics with machine-learned quantum-
mechanical FFs trained on diverse chemical fragments. Graph-Based
Embedding of Molecules (GEMS) uses both bottom-up and top-
down approaches by creating fragments from large and small
molecules which are used in training machine learning models to
predict molecular behavior or properties. Adapted from ref 268.
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by local chemical environments and virtual fields, to embed
atomic densities, offering direction-equivariant descriptors.272

These innovative techniques, promising for protein system
applications, have primarily been tested on smaller systems,
not yet extending to protein dynamics governed by (and
governing) electrostatics.
Shifting focus to protein studies involving charge-embedding

schemes, Zinovjev introduced an ML/MM embedding strategy
that updates atomic energies within a machine learning-treated
“quantum region” based on electrostatic interactions with the
surrounding MM region,273 adaptable to various MLIPs. This
approach demonstrated superior performance in embedding
the PF-00835231 inhibitor within the SARS-CoV-2 Mpro
Complex compared to semiempirical methods, all while
reducing computational demands. Another method applies a
deep potential range correction (DPRc) to adjust MM
potentials with a distance-dissipating interaction term near
the QM region, predicting RNA cleavage reactions’ free energy
barriers and kinetic isotope effects.274 Shao and colleagues
adopted Δ-learning to refine semiempirical energy estimates
through a bespoke machine-learned embedding scheme in CM
simulations,274 achieving DFT-comparable accuracy at a
fraction of the cost. An intriguing study combined hybrid
MLIP/AMOEBA MD approaches, integrating machine learn-
ing’s short-range precision with AMOEBA’s efficient long-
range, polarizable FF handling.275 The approach was tested
across various solvated proteins, such as DHFR, COX, and
SARS-CoV2Mpro, albeit with mixed accuracy results. These
advancements herald a new frontier in electrostatically
informed protein system studies.
2.2. Other Computational Methods for Biomolecular
Simulations

In addition to the discussed FFs and MLIPs, several other
methods have been developed to approximate electrostatic
interactions and other properties in biomolecular systems,
which we will briefly outline here.
Graph theory-based methods model molecules such as

proteins, nucleic acids, and their complexes as graphs, where
nodes correspond to atoms, residues, or functional groups, and
edges represent chemical bonds or interactions.276 This
abstraction facilitates the analysis of intricate networks of
interactions, enabling the identification of key structural motifs,
functional domains, and critical interaction pathways.277 Graph
theory-based methods are particularly useful for studying
protein folding, where the network of intramolecular
interactions can be analyzed to predict folding pathways and
identify stable intermediates. Additionally, these methods are
employed to explore protein−protein interaction networks,
elucidating the functional connectivity and signaling pathways
within cellular systems.278 By leveraging algorithms from graph
theory, such as shortest path, clustering, and centrality analysis,
researchers can gain insights into the robustness, modularity,
and dynamics of biomolecular networks. Graph theory-based
methods have also been integrated with other computational
techniques, such as MD and ML.279 Though not related to the
treatment of local fields directly, the structural information
derived from these methods can be used to inform FF
development and improve the accuracy of electrostatic models
in biomolecular simulations.
Monte Carlo (MC) methods are a class of computational

techniques that utilize random sampling to explore the
configurational space of biomolecular systems and calculate

their thermodynamic properties.280−283 In biomolecular
modeling, MC methods are continually employed to simulate
the behavior of proteins, nucleic acids, and other biological
molecules under various conditions.284,285 By generating
random configurations and using importance sampling
algorithms like Metropolis-Hastings, MC methods can
efficiently sample the most probable states of a system,
providing insights into equilibrium properties such as energy,
entropy, and free energy.286−289 Variants of MC methods, such
as Grand Canonical Monte Carlo (GCMC)290−296 and Replica
Exchange Monte Carlo (REMC),297−300 extend these
capabilities to systems with fluctuating particle numbers and
enhanced sampling of high-energy barriers, respectively. These
techniques help elucidate protein folding, ligand binding,
solvation effects, and other complex phenomena in biological
systems, offering a robust framework for enzyme and protein
research and design.301 Like graph theory-based methods, MC
methods do not directly related to the prediction of local fields
in enzymes and proteins, but they are essential tools for
exploring the conformational space and thermodynamic
properties of biomolecules, which can inform the development
of FFs and other computational models.
Continuum solvent models, including Poisson−Boltzmann

(discussed below) and Generalized Born methods,302−304 are
widely used to estimate the electrostatic solvation free energy
and binding affinities of biomolecules.305−307 Polarizable
Continuum Models (PCM) are commonly used in computa-
tional enzyme modeling to simulate the solvent environment
by treating it as a polarizable dielectric continuum, thereby
providing a more accurate representation of solvation effects
on the local electrostatics of proteins and enzymes.308−312

Conceptually adjacent to coarse-grained FFs, Fragment-
Based Quantum Chemistry (FBQC) methods similarly
decompose large systems into fragments but often incorporate
more detailed quantum mechanical calculations for each
fragment and their interactions.313−316 These methods
facilitate the study of large biomolecular assemblies, enabling
the exploration of their structural and functional properties
with high accuracy and reduced computational cost, providing
a bridge between detailed electronic structure methods and
large-scale biomolecular simulations. Discussed below is the
Effective Fragment Potential method, which is a type of FBQC
method.
2.2.1. Effective Fragment Potential Method. The

Effective Fragment Potential (EFP) method is designed to
simulate large molecular systems with high accuracy and
efficiency.317−319 Unlike traditional MD or FF methods, which
often rely on empirical parameters to describe atomic
interactions, the EFP method is rooted in QM principles,
treating the system as a collection of fragments, each
represented by a set of potentials derived from quantum
mechanical calculations. These fragments interact through
electrostatic, polarization, dispersion, and exchange-repulsion
forces, capturing the essential physics of molecular interactions
without the need for extensive QM calculations on the entire
system.
One of the primary advantages of the EFP method over

conventional MD simulations is its ability to accurately model
electronic polarization effects, including polarization explicitly
by allowing the fragments to polarize in response to the local
electrostatic field. This leads to a more realistic representation
of molecular interactions compared to that provided by many
MD approaches, particularly in systems where polarization
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plays a significant role, such as in solvated biomolecules or in
the presence of strong electric fields. Another key distinction
between the EFP and FF simulations is in the treatment of
dispersion and exchange-repulsion interactions.320 FFs often
use empirical van der Waals parameters to approximate these
interactions, while EFP derives these interactions from QM
calculations on the fragments, ensuring that they are more
physically accurate and system-specific. This quantum-derived
approach makes EFP method well-suited for large-scale
simulations where empirical parameters may fail. EFP can
also be used to parametrize other FFs, such as CG FFs.321

Since its introduction, EFP has been extended to include a
DFT-based parametrization,322 and a number of improvements
to the method have been implemented including a parallel
version of the method.323 Charge-transfer interactions have
become treatable in EFP through the use of perturbation
theory, canonical MOs, and Fock matrices from SCF
calculations.324 Short-range behavior of the Coulomb,
induction, and dispersion interactions have been improved
by incorporating damping functions,325 and work has been
done to improve the derivation of multipoles used in EFP.326

Improvements have also been made to its treatment of
polarizability327 and of dispersion328,329 and exchange-
repulsion interactions.320

Tazhigulov et al. employed a polarizable embedding scheme
to simulate the redox potentials of biomolecules, particularly
focusing on the FAD cofactor reduction in cryptochrome 1
from Arabidopsis thaliana.330 The investigation used DFT
(oB97X-D/6-31G(d)) with the BioEFP (the extension of the
effective fragment potential319,320,331 method to biological
macromolecules)318 representing the classical surroundings.
The study highlighted the critical role of environment
polarization and long-range electrostatic interactions, showing
that ignoring these factors can lead to significant errors in
computed redox potentials, with differences as large as 1.4 V.
The results demonstrate that accurate estimates of redox
potentials require proper treatment of polarization and long-
range interactions, which were essential in achieving good
agreement with experimental data. The study helps research-
ers’ understanding of redox processes in biological systems,
which are crucial in areas like energy storage, photovoltaics,
and medical applications such as DNA repair and circadian
rhythm regulation.
Recently, Slipchenko presented a hybrid QM/EFP approach

for analyzing solvatochromic shifts in electronically excited
states by decomposing these shifts into contributions from
individual solvent molecules using.331 Using two model
systems, a water pentamer and hydrated uracil, Slipchenko
demonstrated that the decomposition into individual solvent
contributions highlights significant nonadditivity in solute−
solvent interactions and emphasizes the importance of solute
polarization in determining the total solvatochromic shifts,
concluding that these insights can guide the design of materials
with targeted optical properties. The results underline the
necessity of considering many-body effects and long-range
interactions for accurately predicting solvatochromic shifts.
Merging fragment molecular orbital (FMO) and EFP, the

Effective Fragment Molecular Orbital (EFMO) method
extends EFP to include the simulation of reactive systems.
Unlike the traditional EFP method, which primarily computes
intermolecular interaction energies, EFMO handles both
covalently bonded systems and noncovalently bound molec-
ular clusters. Sattasathuchana et al. recently outlined improve-

ments to the EFMO method, including a new memory-based
implementation for solving the coupled perturbed Hartree−
Fock (CPHF) and time-dependent Hartree−Fock (TDHF)
equations.332 The improved EFMO method, parallelized using
hybrid MPI/OpenMP, achieves nearly ideal strong scaling,
enabling efficient calculations on massively parallel super-
computers. Demonstrating excellent accuracy (<1 kcal/mol
error per fragment), the authors show that EFMO can now
perform calculations that include long-range polarization and
dispersion interactions on systems as large as hydrated
mesoporous silica nanoparticles with explicit water solvent
molecules, showcasing its feasibility for exascale computing
architectures.
2.2.2. Poisson−Boltzmann Equation. Solving the

Poisson−Boltzmann (PB) equation is the standard approach
in situations where detailed and accurate modeling of
electrostatic interactions is crucial, particularly when these
interactions significantly influence the system’s behavior, such
as in pKa calculations of ionizable residues in proteins. The PB
equation has its roots in the fields of electrostatics and
statistical mechanics,333−335 and was originally formulated to
describe the electrostatic potential in a medium containing
mobile charge carriers. In contrast to more traditional force
field (FF) methods that rely on empirical parameters, the PB
equation provides a continuum approach that directly captures
the essential physics of electrostatics, making it especially
valuable for complex biological systems.
The underlying Poisson equation for the electrostatic

potential ϕ(r) takes the form

·[ ] =r r r( ) ( ) ( ) (11)

where ρ(r) is the charge density and ε(r) the spatially
dependent absolute permittivity. The ionic charge density
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where e is the elementary charge, kB the Boltzmann constant,
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which is nonlinear in ϕ.
It is not uncommon to separate the charge density into an

ionic contribution and a fixed contribution that does not obey
Boltzmann statistics, such as the contribution from a charged
surface.336 In such cases
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Where ϕ(r) ≪ kbT a linear approximation can be applied,
yielding:

·[ ] = +r r r r( ) ( ) ( ) ( )fixed
2

(14)

where κ, the Debye screening parameter, is defined in terms of
the ionic strength I of the solution:
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By employing a continuum description of solvent and ionic
species, the PB equation allows for efficient computation of
electrostatic potentials in systems where traditional FF-based
methods are either too costly or less straightforward. In the
context of proteins and enzymes, where electrostatic
interactions critically influence stability, substrate binding,
and catalysis, PB calculations can yield insights into pKa values,
solvation energies, and binding affinities. This capability
complements MD simulations and QM-based methods,
offering a balance of accuracy and computational efficiency
well-suited to large biomolecular assemblies. Within enzyme
and protein modeling, the PB equation has been used to
analyze the electrostatic environment of active sites, quantify
the influence of surface charges, and assess how mutations alter
protein stability and reaction mechanisms.
Recent work has leveraged PB-based approaches for more

accurate pKa predictions. Meyer and Knapp presented a
method that combines electrostatic energy computations with
MD simulations using different protonation patterns to predict
pKa by solving the PB equation.337 Their approach reduced
the root-mean-square deviation between computed and
measured pKa values from 1.17 to 0.96 pH units compared
to previous methods, with further improvement to 0.79 pH
units when conformations were energy-minimized with a
dielectric constant of ε = 4. More recently, Aleksandrov et al.
introduced a method that integrates Monte Carlo simulations,
a Drude polarizable FF, and an implicit PB solvation model.338

This approach achieved excellent convergence and accuracy in
pKa calculations for lysozyme and other proteins, out-
performing the additive CHARMM36 FF and demonstrating
reduced sensitivity to assumptions about the internal dielectric
constant.
Beyond pKa estimation, PB theory has been incorporated

into process modeling. Briskot et al.339 applied PB-based
considerations combined with a basic Stern model to predict
retentate and permeate compositions in ultrafiltration/
diafiltration (UF/DF) processes. Their model accurately
described low to moderate Donnan potentials and improved
predictions under high concentration conditions, providing a
valuable tool for understanding and controlling protein
processing steps in biotechnological applications. Similarly,
Gama et al.340 employed a modified PB equation (PBEm) to
investigate the binding of lysozyme onto a mesoporous silica
surface, demonstrating that both electrostatic and van der
Waals forces govern adsorption under varying pH and ionic
strength conditions.
Methodological assessments have further highlighted the

strengths and limitations of various PB-based approaches,
offering benchmark data and best practices for improved
predictions.341,342 Additionally, PB techniques have been
employed to analyze how pH and electrostatic environments
influence protein−protein and enzyme−substrate interactions,
thereby offering a window into complex pH-dependent

processes relevant to enzyme catalysis.343,344 Further improve-
ments in modeling the dielectric environment, including
spatially varying dielectric constants, have led to more precise
pKa estimates and a better understanding of the factors
governing enzyme activity.345,346 Tools like PypKa provide
advanced, optimized, parallel PB-based pKa predictions and
can be incorporated into existing computational research
workflows with ease.347

For a more in-depth exploration of PB-related methods,
advancements, and applications�ranging from fundamental
electrostatic principles to complex biomolecular and industrial
systems�readers are referred to comprehensive reviews
available in the literature.307,348−351

2.3. Representing Charge Density and Electric Field
Geometry

In any open chemical system, such as an enzyme active site, an
electric field, whether internally generated by the surrounding
chemical environment or an applied externally, will alter the
electron distribution, necessarily leading to changes in nuclear
positions. A comprehensive approach to studying electronic
structure involves analysis of the full quantum mechanically
mediated electron density.
According to Kohn’s theorem, this density determines all

ground state system properties, for example the anharmonicity
of the reaction coordinate mode, which in turn affects the
barrier height. The subtle shifts in active site charge density,
influenced by the long-range effects of electric fields, can
significantly alter reaction rates, sometimes by orders of
magnitude. These long-range effects stem from the enzyme’s
entire extended structure, underscoring the importance of
understanding the relationships between enzyme activity and
the global structure of the electron density. Once discovered
these relationships will serve as a foundational element of
enzyme design�allowing for the tailoring of electron density
to elicit preferred responses to electric fields. However, a
necessary step toward this end is to devise methods to describe
and quantify the global structure of electric fields and charge
densities. Thankfully, robust formalisms exist for detailing the
geometric structure of 3D scalar (electron density) and vector
(electric fields themselves) fields, offering a foundation for this
advanced exploration.
2.3.1. The Topological Character of Electric Fields

and the Electron Charge Density. Topological analysis
offers a significant method for examining how systems respond
to perturbations and is applicable to both scalar fields like
charge density, ρ(r), or the electrostatic potential, V(r), and
vector fields such as ∇ρ(r) and electric fields, i.e. −∇V(r). The
essence of a 3D scalar field’s topology is captured by its critical
points�locations where the gradient of the field vanishes.
Defined by the field’s three principal curvatures (the principal
components of the field’s Hessian matrix) at these points, there
are four primary types: maxima, where all curvatures are
negative, minima, with all curvatures positive, and two forms of
saddle points, distinguished by the sign of the two curvatures
being either positive or negative, with the third curvature of
opposite sign. A common notation is to distinguish critical
points with two indices corresponding to the rank and
signature of the Hessian matrix at the point in question. The
first number indication the spatial dimension and the second
indicates the signature (the sum of the signs of the eigenvalues,
with negative values for a maximum). Thus, a maximum is
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denoted (3,-3) a minimum as (3,3) and the two saddle points
(3,1) and (3,-1) (Figure 7A).

The distinction between a field’s topology and its geometry,
often not fully appreciated, plays a crucial role in the study of
scalar fields. Topology concerns itself with the types and
numbers of critical points present in the field, a foundational
aspect in defining the field’s basic structure. On the other hand,
geometry quantifies field attributes, not only those of critical
points�such as their locations, the scalar field’s intensity, and
principal curvatures at these points�but also including global
measures that capture the field’s overall shape and distribution.
These geometric properties, especially when observing their
variations due to perturbations, offer a comprehensive
framework for analyzing a molecule’s response to environ-
mental changes. The geometry of a scalar field extends beyond
the vicinity of critical points, incorporating both local and
global characteristics to provide a fuller understanding of the
field’s relationship to molecular behavior.
In a related way, the topology of a 3D vector field, including

gradients of charge density or the electric field is characterized
by specific equilibrium points where the vector magnitude
diminishes to zero. For electric fields, these points represent

locations where a charged “test particle” would experience no
net force. Within the broader categorization of equilibrium
points in general 3D vector fields, six types are recognized:
attracting nodes, repelling nodes, saddle points, attracting
focuses, repelling focuses, and centers. However, given the
electric field is also a gradient field, attention narrows to the
initial trio, as the latter types are not observed for gradient
fields (Figure 7B).
Attracting nodes, located at the local maxima of the

underlying scalar field, draw the gradient vector field inward
from all directions, suggesting a converging force landscape. In
contrast, repelling nodes, representing local minima, emit a
diverging vector field, indicating an outward force in all
directions. Saddle points, on the other hand, exist where the
scalar field exhibits a dichotomy�maximizing in one direction
while minimizing perpendicularly, creating a directional flux
that converges toward and diverges away from the equilibrium
point. This stability dichotomy, distinguishing between stable
and unstable equilibrium points, underscores the nuanced
force balance at these fixed points, dictating the potential for a
particle’s deviation from equilibrium upon perturbation.
Gradient vector fields are typically depicted through gradient

paths or streamlines, which start at minima of the core scalar
field and end at its maxima. An alternative but equivalent
depiction uses isosurfaces or level surfaces, such as
equipotential surfaces and charge density isosurfaces, to
represent the field variable (bottom row Figure 7B). Since a
streamline or gradient path is always perpendicular to its
corresponding set of isosurfaces, these two representations are
dual to each other, conveying the same information.
The topology of vector fields, akin to scalar fields, hinges on

the presence and types of fixed points. Yet, it is the geometric
attributes�details like the exact locations and strengths of
these fixed points, the dimensions and curvatures of stream-
lines or gradient paths, and the curvatures of isosurfaces�that
offer deeper insights into how molecules react to external
influences. This intertwined analysis of topology and geometry
is foundational to QTAIM, providing a model for uncovering
the complex links between molecular properties and the
structure of their charge density.
2.3.2. QTAIM. QTAIM’s core tenet rectifies the ambiguity

inherent in defining local kinetic energy. The two commonly
used kinetic energy operators�the gradient and the Laplacian
forms�give different results for the kinetic energy of
arbitrarily defined regions.352,353 Bader noted, however, that
for regions bounded by a surface through which the flux of the
gradient of the charge density is everywhere zero, these
differences vanish.352,354 Thus, these zero flux surfaces (ZFSs)
bounded regions possess definite kinetic and hence total
energies. Significantly, in a molecule, every nucleus is fully
contained in only one such region, delineating a Bader atom or
sometimes termed a topological atom or atomic basin. With
well-defined boundaries, each atom may be characterized not
only with a definite energy but also with a rigorous electron
count and volume. Qualitative chemical concepts such as
electron flow between atoms and their associated energy
change, become rigorous within the QTAIM formalism.
Each Bader atom is categorized based on the topology of its

charge density, which, as mentioned, is determined by the
number and kind of critical points (CPs). The QTAIM
framework uses specific nomenclature for the four types of
CPs, highlighting their chemical roles (Figure 7A). A local
maximum, a (3,-3) CP, aligns with an atomic nucleus and is

Figure 7. (A) Schematic showing the various critical points of a scalar
field and their associated designation in QTAIM formalism where the
scalar field is ρ(r). There are four types of critical points: maxima,
minima, and two kinds of saddle points. (B) Various topological
features present within a two-dimensional gradient field reflecting the
underlying shape of the scalar field about a critical point. A maximum
acts to attract the field, a minimum acts to repel the field and a saddle
point has mixed character. The field may be represented also by its
isosurfaces (contours) about a critical point, which is the dual
representation of the gradient vector field.
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termed a nuclear CP (nCP). Charge density minima, (3,3)
CPs, are identified as cage CPs (cCP) and typically reside at
the heart of cage-like structures. Saddle points, either (3,1) or
(3,-1) CPs, are referred to as ring CPs (rCP) and bond CPs
(bCP), respectively. Notably, bCPs are often found along
charge density ridges that extend from one nCP to another,
mirroring the atomic connections depicted in the Lewis
structure model and thus are called bond paths.
Given its association with chemical bonds, much research

has been directed toward establishing correlations between
geometric measures of the charge density about bCPs and the
properties of bonds such as their strength, stiffness, ionicity/
covalency, etc. Notably, the Laplacian of the density at a bCP
plays a central role in many of these correlations.
The Laplacian of the charge density at a bCP, ∇2ρb, is the

trace of the Hessian matrix evaluated at this point. In a
diagonal form, where the z-direction is taken as parallel to the
bond path and the x- and y-directions are those of principal
curvature perpendicular to the bond path, ∇2ρ = ρxx + ρyy + ρzz
and by definition, ρzz > 0 while ρxx and ρyy < 0. The sign and
magnitude of ∇2ρb has been used as an indicator of ionicity.
For ionic interactions the magnitude of curvature parallel to
the bond path is large, while in the perpendicular direction it is
small. For covalent bonds the opposite is found. Hence, ∇2ρb >
0 is often said to be indicative of ionic bonding, while ∇2ρb < 0
is consistent with covalent interactions. Metallic bonds are
intermediate with ∇2ρb ≈ 0.352

Another set of geometric features associated with the bCP is

its directionalities, which are defined as xx

zz
and yy

zz

.355−358 Geometrically these values give the tangents of the
characteristic angles θ and ϕ of Figure 8 and recover the shape
of the charge density isosurface passing through a bCP.
In addition to these purely geometric parameters there are

several calculated parameters at the bCP that have been used
to characterize bonding. Of these the local bCP kinetic (Gb)
and potential (Vb) energies figure prominently. For a stable
nuclear configuration via the virial theorem one can show:352

= +G V
1
4

2b b b
2

(15)

and naturally one can define a local total energy Hb = Gb + Vb.
As an aside, defining a local kinetic energy and hence total
energy at a single point e.g. the bCP is antithetical to the
QTAIM canons as a point is not bonded by a ZFS.
Nonetheless, various functional forms for Gb in terms of ρb
have been proposed.359 These quantities have been argued to
be indicative of the degree of covalency,360 particularly as
related to hydrogen bonds.361−366 When both ∇2ρb and Hb <
0, bonds are considered covalent, while when both are positive
the bond is noncovalent. The mixed case where ∇2ρb > 0 but
Hb < 0 is considered partially covalent. Thus, a negative value
of Hb has been implicated as an indicator covalency. However,
working with a more diverse set of calculation, this greater
covalency366 was argued to be the result of increased
electrostatic contribution to the interaction energy�in a
loose sense echoing the EVB paradigm.
It is worth mentioning that quantities such as ∇2ρb offer a

precise description of the local charge density geometry. Efforts
to link this exact measure with the more abstract concepts of
chemical bonding�such as covalency, ionicity, and metal-
licity�inevitably encounter ambiguity. Research grounded in

QTAIM benefits from identifying correlations between specific
charge density geometrical descriptors and quantifiable
molecular properties.
In addition to the properties inferred from bCPs are those

characterizing Bader atoms, particularly its electron count.
Taking Ωi to be the atomic basin (volume bounded by a ZFS)
of Bader atom i with atomic number Zi, then the number of
electrons in Ωi is given by the integral of the density over the
atomic basin, i.e.,

= r rN d( ) ( )i
i (16)

and the charge of the ith atomic basin is q(Ωi) = Zi − N(Ωi).
Other useful atomic properties are its localization and

delocalization indices, Λ(Ω) and δ(Ω, Ω′) respectively. A
discussion and derivation of these indices is given by Fradera et
al.367 Conceptually, δ(Ω, Ω′) gives the number of electrons
shared between atom Ω and Ω′, one-half this quantity summed
over all atoms sharing an interatomic (ZFS) surface with atom
Ω gives its number of shared electrons. The number of
unshared (localized) electrons is given by Λ(Ω). Obviously the
sum of these two quantities gives N(Ω).
Recent extensions to QTAIM have introduced a further

partitioning of Bader atoms into regions enclosed by zero-flux
surfaces (ZFSs), known as gradient bundles (GBs).370,371 Like
individual Bader atoms, each GB may be characterized by its
distinct electron count, energy, and related properties. Notably,
certain gradient bundles have been identified as the volumes
occupied by chemical bonds.371−373 Bond bundles can be
further decomposed into two bond wedges, which are the
volumes given by the intersection of the bond bundle and the
Bader atoms of the bound pair (Figure 9). Bond bundles and

Figure 8. Isosurfaces near a bCP. The isosurface passing through the
bCP will have the form of an elliptic cone, with the bond path
coincident with its axis. This cone is the asymptotic boundary
separating the exterior isosurfaces (a) from those interior to the cone
(b). (c) The cone is fully characterized by the characteristic angles θ
and ϕ. As the angle θ decreases, the hyperbolic region (orange)
becomes more curved, while the convex region contours (blue)
become less curved. Reproduced with permission from Wilson et al., J
Phys Chem A, 2021, 125 (50), 10622−10631. Copyright 2021
American Chemical Society.357
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bond wedges may be unambiguously described by their
electron count, energy, volume, and other properties. For every
Bader atom property there is a corresponding bond bundle/
bond wedge property. Bond bundle energies and electron
counts have been shown to be consistent with expectations
derived from intuitive chemical concepts.374 Thus, while
traditional QTAIM lays the groundwork for quantifying charge
and energy redistributions due to any perturbation, the
enhanced QTAIM framework provides a more detailed
account of this charge redistribution and its energy changes
between bonds.
2.3.3. Applications of QTAIM to Enzymes. A set of

papers reported the use of QTAIM to gauge the effect of fields
produced by an enzyme’s extended structure on active site
charge density and to correlate these effects with properties.
These studies serve to emphasize that QTAIM parameters
provide sensitive quantitative probes of electronic structure.
The first of these studies was conducted in the context of

computational metalloenzyme redesign with carboxypeptidase
A (CPA) and its several mutants serving as a test case.120

Specifically, a different sequence of the peptide was the target
substrate (terminal Phe was replaced with Asp), and the
pocket had to be redesigned to accommodate the change of
the peptide charge, which was achieved with the V243R
mutation of CPA (Figure 10). Valdez et al. used QM/DMD to

determine the structures and charge densities of native and
mutant CPA active sites with the bound substrates, and then
compared the QTAIM parameters of the resulting charge
densities and correlated their similarity to the transition state
charge density, which they argued should correlate with
enzyme efficiencies.
Bond paths, bond bundles, location and charges of CPs, and

Bader atom charges were calculated for the active site region of
both the native and the V243R_FpepD mutant enzyme. Some
of this detail is shown in Figure 11. The variation in several of
these parameters was deemed to be indicative of greater
efficiency of the native enzyme, while both the native CPA and
the mutant featured geometrically similar, reactive conforma-
tions with the respective bound substrates. For example: the
more negative Bader charge on the water oxygen was argued to
make the water molecule a better nucleophile in the native
enzyme compared to V243R_FpepD; and the increased charge
density at the Zn−O1 bond CP and the size of the Zn−O1
bond bundle of the native enzyme was argued to be indicative
of the greater stabilization of the carbonyl oxygen.
As part of this research Valdez et al. performed a mechanistic

study identifying the structure and charge density along the
reaction path, again for the native and a mutant enzyme. They
identified a topological change inherent to the reaction in
which a ring opens through the merging of a rCP with a bCP.
The charge difference between these two critical points serves
as a measure of the transition state energy, which was
substantially less for the native enzyme. Essentially this is an
appeal to the Hammond postulate,375 asserting that for the
native enzyme the charge density is closer to the transition
state than it is in the mutant. An important takeaway from this
study is that through QTAIM a quantitative measure can be
associated with the historically qualitative Hammond postulate.
The other two studies in this series focused on Histone

Deacetylase 8 (HDAC 8). Traditionally a Zn2+ ion was
thought to be essential to its activity. However, there is
experimental evidence suggesting HDAC8 is catalytically active
with a variety of divalent metal ions. In a theoretical study
intended to shed light on this possibility, Nechay et al.376 used
mixed quantum-classical QM/DMD methods to construct a
comparatively large cluster models of the active site with Fe2+,
Co2+, Mn2+, Ni2+, Mg2+, or Zn2+ as the divalent ion. The charge
density was determined as part of these calculations and
subsequently its evolution through the reaction was followed.

Figure 9. Bounding surfaces of the N−B bond bundle in borane-
ammonia; the union of one N bond wedge and one B bond wedge,
and containing the shared portion of the N−B interatomic
surface.354,368,369

Figure 10. (A) Native CPA and (B) the V243R mutant with their bound substrates. Outlines indicate the regions of the binding site defining the
specificity of the CPA to a given substrate. Reproduced from ref 120 with permission from the Royal Society of Chemistry.
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Calculated QTAIM parameters were then used to understand
the different binding affinities for each metal as well as their
abilities to bind and orient the substrate for deacetylation. And
once again, QTAIM made it possible to quantitatively assess
the nearness of the reactant and transition state charge
densities.
A crucial step in one of the investigated mechanisms

involves proton transfer between a water molecule and H143,
see Figure 12. For this mechanism the activation energy was

found to be smaller when the active site contained Zn2+
compared to Mn2+. A rationale can be found in the relative
topologies of the active site models depicted in Figure ME3.
Nechay et al. found that when Zn2+ is present, a bCP and
corresponding bond path forms between the water oxygen and
the carbon atom of the substrate carbonyl. This requires a
topologically necessary rCP. When Mn is present, there is no
water to substrate carbonyl bCP or necessary bond path and
rCP. Ni2+, Fe2+, and Co2+, give the same topology as Zn2+,
while Mg2+, has the same topology as Mn2+. As the reaction
involves proton transfer and accompanying formation of a
bond path, the Zn2+ charge density is closer to that of the
transition state than the Mn2+ charge density. Hence, one
would expect a lower activation energy for this reaction step.
To assess the effects of an enzyme’s extend structure on

active site LEFs Morgenstern et al. followed the convergence
of QTAIM parameters as the number of surrounding amino

acid residues was increased.122 They performed DFT
calculations of progressively larger active site models of
HDAC8 consisting of a central Zn2+ ion and successively
more of the surrounding environment as modeled with cluster
of approximately 3, 4, 5, 6, and 7 Å (Figure 13).

They found that the magnitude of the charge density at
critical points and Bader atom charges converged once the
immediately adjacent residues around the point or atom of
interest were included in the modeled environment. Further
including a dielectric constant or point charges to the
calculations had only a small effect on atomic charges but
did not change the converged value of the critical point charge
densities. In contrast, the locations of critical points were
affected by the extended environment of the protein at all
cluster sizes and converged only after virtually the full structure
of the protein and solvent were included in the model.
These findings indicate that the locations of critical points

are influenced by dipole moments from even distant residues.
Since critical point positions had been demonstrated to
correlate with reactivity and reaction barriers,120,376 the authors

Figure 11. Bond paths of interest in the native (A) and V243RFpepD mutant enzyme (B), in the reactant state. Contours in ρ(r) are drawn on a cut
plane on a logarithmic scale from 10−3 to 1e ·Bohr −3. Red lines indicate bond paths. The pictured portion of the Zn−O1 bond bundle is shaded
green with black lines showing approximate edges. The following coloring scheme is used: Zn-purple, O-red, C-black, H-white, N-blue, bond CP-
cyan, and ring CP-orange. Reproduced from ref 120 with permission from the Royal Society of Chemistry.

Figure 12. Critical points and bond paths of interest in the active site
of HDAC8 with Zn (left) and Mn (right). Sphere coloring is as
follows: C-black, N-blue, O-red, metal-gray, bond CP-cyan, ring CP-
green. Reproduced with permission from Nechay et al., J Phys Chem
B, 2016, 120 (26), 5884−5895. Copyright 2016 American Chemical
Society.376

Figure 13. Structure about the active site of HDAC8 as modeled with
clusters of 3−7 Å. The 3 Å system consists of the central Zn2+ ion
(white sphere), substrate (subs), water molecule (Ow), D178, H180,
and D267, all shown in ball and stick model. The 4 Å system adds
L179 and Y306, shown with stick model highlighted in red. Five Å
adds H142, H143, and G304, stick model highlighted in blue. Six Å
includes G303, highlighted in green. The largest 7 Å system includes a
K+ ion (purple sphere) and C153, H181, P209, G265, A266, T268,
M274, and G305, shown with nonhighlighted stick model.
Reproduced from ref 122 with permission from the Royal Society
of Chemistry.
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argued that it is the full, extended structure of an enzyme that
mediates its reactivity. Thus, the positions and curvatures of
the charge density at CPs could be used to optimize
computationally designed enzymes.
The work of Yang et al. provides a vivid example as to ways

in which QTAIM parameters can be useful in elucidating
enzymatic reaction mechanisms.377 The specific interest was to
assess the role of hydrogen bonding in Methyl transferases
(MTases) where enzymatic efficiency has been attributed to
electrostatic- and charge-transfer-driven stabilization of the
transition state or alternatively to hydrogen bonding induced
changes to the active site that enhance substrate binding and
catalysis. Using QM/MM steered-molecular dynamics (SMD)
simulations the authors investigated four distinct MTases: Cap
Methyltransferase 1 (CMTr1), Protein L-Isoaspartate (D-
Aspartate) O-Methyltransferase (PIMT), Plasmodium falcipa-
rum Phospho-ethanolamine Methyltransferase (PfPMT), and
C-Methyltransferase (HcgC). These four enzymes have diverse
regulatory and synthetic functions.
Making the questionable but nonetheless common assump-

tion that bCP values of local energy could be used to
determine bond energies, the energetic contributions from the
hydrogen bonds, CH ···X (X = N, O), along the reaction
coordinate were obtained by estimating the hydrogen bond
energy as one-half bCP potential energy density. While the
hydrogen bond contributions to the stabilization of the
transition state were not constant across the four MTases, in
some cases and at some points in the reaction path they were
significant, for individual hydrogen bonds over a narrow
reaction coordinate interval reaching values as large as 8 kcal/
mol. Summed hydrogen bond energies reached maximum
values as high at 18 kcal/mol, though the values obtained when
averaging over the reaction coordinate were less than 5 kcal/
mol.
Notably, this investigation did not reveal a universal

stabilizing effect of hydrogen bonds across all MTases. While
in N-type PfPMT and C-type HcgC hydrogen bonding was
assessed as stabilizing the transition state by 2−5 kcal/mol, no
or limited stabilization was found for CMTr1 and PIMT.
These findings motivated further calculations exploring the
role of charge transfer and electrostatics in mediating the
reactivity of the MTases investigated. The authors ultimately
concluded that the intrinsic reactivity of MTases was due to
these latter factors and not hydrogen bonding per se.
Sowlati-Hashjin et al. took a significant step in expanding the

number of QTAIM parameters that are useful in describing the
response of the charge density to an external electric field
(EEF) in a study of diatomic molecules under the influence of
an EEF.378 EEFs were found to stabilize homodiatomic
molecules, though heteronuclear diatomic molecules were
found to be stabilized or destabilized depending on the
direction of the field relative to the molecule’s dipole moment.

For both homonuclear and heteronuclear diatomic mole-
cules, EEF were found to alter the indicators of ionic/covalent
character at the bCP as well as the electron localization and
delocalization indices of the associated atomic basins. For
homonuclear diatomic molecules the EEF was observed to
decrease the electron density at the bCP, and, as expected,
induced polar character (indicated by changes to the
localization and delocalization indices) with accompanying
induced curvature of the interatomic surface and associated
changes to the atomic volumes, atomic energies, and atomic
populations. Field induced changes to ionic character seem to
be a general effect across molecular systems. Shaik et al. have
noted the same phenomenon in enzymes using measures of
ionic/covalent character that are distinct from those used in
QTAIM studies.379 These finding are consistent with the
induced ionic resonance forms of the EVB theory and serves to
emphasize the general applicability of QTAIM approaches.
Sowlati-Hashjin et al. also demonstrated that most atomic

properties, e.g. volumes, energies, and electron counts varied
linearly with field strength, while bCP and bond path
properties, such as electron density at the bCP and bond
length, varied nonlinearly. Delocalization index showed mixed
behavior, correlating linearly with the magnitude of the EEF
for homonuclear diatomic molecules and nonlinearly for
heteronuclear diatomic molecules.
The field effects found by Sowlati-Hashjin et al. for diatomic

molecules are applicable generally as a series of investigation of
KSI demonstrates. KSI is a well-studied enzyme that catalyzes
the repositioning of a double C=C bond in the steroid
substrate as shown in Scheme 1.
Freindorf et al. performed a comprehensive investigation of

steroid isomerization by KSI. Among the many questions of
interest was the role of hydrogen bonding in transition state
stabilization.380 As part of this investigation the energy density,
Hb, at crucial bCPs along the reaction coordinate was
calculated and compared with other methods of estimating
bond covalent character and bond strength. They found that
Hb did not provide a reliable measure of bond strength where
the environment, such as solvent effects, is significant. This
observation was based on poor correlations between Hb and
the calculated value of the stretching mode force constant, ka,
for O−H interactions. On the other hand, the correlation was
found to be quite good for the less environmentally sensitive
C−H interactions. The authors correctly point out that Hb is a
property evaluated at a single point along the bond path,
whereas the local mode force constant, as a second-order
property, sensitively captures the environment between the
two atoms forming the bond or interaction under consid-
eration.380

However, the assumption that Hb, if providing a reliable
measure of “bond strength,” would correlate with the
stretching mode force constant is questionable. At best, one
would expect Hb to correlate with bond energy, related to the

Scheme 1. KSI Catalyzed Reaction
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potential well depth, not with a force constant, related to the
potential well curvature. Others have shown that force
constants are related to the bond directionality (Figure 8).356

In another investigation of KSI, Fuller et al. determined that
geometric features of the enzyme active site charge density
served as quantum mechanically rigorous probes of LEFs.123

Field effects were calculated by subjecting a large, isolated
cluster representing KSI’s active site with the first coordination
sphere residues, to external electric fields of 10 MV/cm with
varying directions. These fields were assumed to, at least
locally, model the electric fields produced by the enzyme’s
structure beyond the active site. A field applied parallel to the

substrate carbonyl bond, pointing from O to C, was calculated
to lower the reaction barrier to deprotonation and raise the
barrier to protonation, while a field in the opposite direction
had the reverse effect.
A systematic search was conducted to find geometric

features of the charge density that correlated with the
calculated changes to the reaction barriers under the various
applied fields. It was noted that the strongest correlations were
not with the charge density geometry around the activated
carbonyl group but around Asp40, where the H-transfer part of
the reaction takes place, Figure 14. The authors noted that,
DFT calculations indicate that the charge density in the active

Figure 14. Geometric and QTAIM parameters found to exhibit the best correlations with the computed reaction barriers for the first step of the
reaction at varying external electric fields: (A) the Asp-40 O−H distance, (B) the distance between the Asp-40 CPO−H and the Asp-40 O atom,
(C) the charge density at the Asp-40 CPO−H, and (D) the Asp-103 O−H distance. Reproduced with permission from Fuller et al., J Chem Inf
Model 2019, 59 (5), 2367−2373. Copyright 2019 American Chemical Society.123
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site of KSI is highly responsive to minor changes in the
external electric field, and this responsiveness both reflects and
predicts the reaction barrier. This finding invited a series of
questions, importantly: How are distinct and sometimes
distant charge density critical points correlated? Building on
the results reported in ref 123, Wilson et al. embarked on a
more detailed analysis of the global response of the charge
density to external electric fields.357 Rather than focus on the
charge density’s critical points, the authors considered the
shape of the density, as reflected by its isosurfaces about critical
points.
Figure 8 illustrates that the shape of isosurfaces about a bCP

is controlled by its characteristic angles. To study EEF effects
on these angles, Wilson et al. initially used formaldehyde as a
surrogate system for the field induced carbonyl activation of
KSI. The intersection of formaldehyde’s isosurfaces with the
molecular plane are depicted in Figure 15, with and without an
EEF along the C=O internuclear axis.
The shape of the contours about the C−H and C=O bCPs

are as represented in Figure 8. However, it is important to keep
in mind that charge density contours are automatically closed
loops and their corresponding isosurfaces are closed as well. As
such, the integral of the contour (isosurface) curvature around
the loop (surface) must be 2π (4π). Thus, it is mathematically
required that perturbations altering the curvature of a contour
at one point must be offset by changes at other points along
the contour. The same principle holds for isosurfaces.
In the case of formaldehyde, the effect is visible in Figure 15.

The EEF alters the bCP isosurface curvatures�measured by
its characteristic angles. These changes are offset by
compensatory changes to contour and isosurface curvatures
along the distal segments of the contours.
Regions where a perturbation leads to an increase in contour

curvature correspond to the same regions where there is a
decrease in charge density, and the opposite is true for regions

where curvature decreases. This relationship suggests that areas
of curvature increase and decrease are interconnected both
mathematically and physically. Mathematically, they are linked
by the principle of conserved isosurface curvature, and
physically, they are connected through the conserved number
of electrons within a molecule.
Building on this concept, a novel parameter was introduced

to the QTAIM framework�the total isosurface curvature
enclosed within a region bounded by zero-flux surfaces (ZFSs).
This parameter is proportional to the region’s volume.
Specifically, a region will have a larger volume if it encompasses
isosurfaces that are more positively curved.
Field induced carbonyl activation of formaldehyde was

found to be associated with reduced negative isosurface
curvature and hence a reduction in volume of the C=O bond
bundle, which is offset, as required by geometric principles, by
an increase in positive isosurface curvature and thus larger
volumes available to the O lone pairs.
With these findings in hand, Wilson et al. calculated the

volume distributions around the carbonyl of KSI and found
that the complex geometry around the Tyr16 residue and the
substrate carbonyl O atom (See Scheme 1) to be responsible
for the curvature distribution activating the carbonyl.
Specifically, the hydrogen bond between the carbonyl O and
Tyr16 is part of a hexagonal ring as is evidenced by a rCP.
Isosurfaces above and below a ring are concave and necessarily
negatively curved. Thus, for KSI, allowing for a greater positive
curvature and greater volume for the carbonyl O to Tyr16
hydrogen bond bundle, in turn decreases the volume of the
C=O bond bundle. Crucial to this curvature distribution is the
position of the Tyr16 H atom. Changes on the order of few
hundredths of an angstrom to its location alter the curvature
distribution substantially. This study illustrates the complex,
interconnected structure of the charge density�changes in
one part of the molecule are propagated to other molecular

Figure 15. Contours of ρ(r) in the molecular plane of formaldehyde with and without a 100 MV/cm uniform electric field applied along the C=O
internuclear axis, pointing from O to C. The C−H and C=O bond saddle points (top and bottom right, respectively.) are shown in more detail with
bold lines designating the interatomic surface and the lighter line designating the internuclear axis (bond path). The unperturbed charge density is
shown with black contours, and the field-induced density is shown with dashed blue contours. Reproduced with permission from Wilson et al., J
Phys Chem A, 2021, 125 (50), 10622−10631. Copyright 2021 American Chemical Society.357
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regions. This fact is neither surprising nor new. What is novel,
is that this propagation is governed by mathematical principles
that may be quantified with an extended set of QTAIM
parameters.
The relationship between isosurface curvature (approxi-

mated by bond bundle volumes) and field/structure-produced
activation of carbonyl motivated a fuller bond bundle analysis
of five KSI enzymes of known and varying catalytic activity.
The five enzymes including two mutants and the native
enzyme were subjected to strategically directed external
electric fields.381

The volumes, total energies, electron counts, and a shape
parameter were calculated for the Bader atoms, bond bundles,
and bond wedges for each of the five active site models and
compared to the zero-field native enzyme. Graphical
representations of the perturbation produced changes proved
particularly informative. An example is reproduced in Figure
16.
This figure shows the electron redistribution due to an EEF

of 10 MV/cm oriented parallel to the O1−C1 internuclear axis.
The additional information afforded by bond bundle analysis
can be illustrated by considering, as an example, the change to
the electron density of C1. The EEF increases the electron
count of this atom. However, this total change results from a
large increase in the C1−C2 bond bundle and a smaller to
negligible decrease in the density contained in the O1−C1

bond bundle. In turn, the density increase in the C1−C2 bond
bundle is due to a redistribution within the C1 Bader atom, as
is clear from an inspection bond wedge resolved electron
redistribution. The changes within the Bader atoms, bond
bundles, bond wedges and the other shape parameters were
then correlated with catalytic activity.
The researchers discovered that catalytic enhancement

resulted from promoting both inter- and intra-atomic electron
density redistribution in the forward direction of the catalyzed
reaction. Though the redistribution applies to both types of
perturbed systems (mutants and EEFs) the authors observed
that bond properties (e.g., volume, energy, electron count) can
respond independently and disproportionately depending on
the type of perturbation. The findings suggest that catalytic
enhancement or inhibition occurs through distinct pathways,
with certain bond properties being more significantly affected
by one perturbation type over another.
The exploration of gradient bundle analysis has led to the

discovery of numerous geometric characteristics that could

potentially function as vectors for machine learning, with the
aim of predicting activation energies. This concept is bolstered
by the findings of Vargas et al.,392 who demonstrated that
QTAIM parameters�such as density, ellipticity, electrostatic
potential, and localization indices for various CPs and atomic
basins of the reactant state�could be leveraged in supervised
machine learning to forecast reaction barrier energies. These
QTAIM parameters, which are derived from the observable
total charge density, align with Bader’s original vision of being
both computationally and experimentally attainable.
In a practical application of this theory, Vargas et al.

conducted a study on the reaction barriers of a wide range of
Diels−Alder reactions, compiling a comprehensive data set of
electron density and related mathematical descriptors for the
reactants. This data set was then streamlined using feature
selection techniques to isolate a set of critical variables that
reflect underlying physical principles. Utilizing these variables,
the team successfully developed several regression models with
strong predictive capabilities based on physical descriptors.
Moreover, they were able to qualitatively forecast the activity
sequence for three Diels−Alderase enzymes, demonstrating
that, by focusing solely on the reactant state, there was no need
to identify the transition state geometry to estimate relative TS
energy. This suggests that the extensive array of QTAIM
parameters uncovered through gradient bundle analysis holds
promising potential for enhancing machine learning method-
ologies.
2.4. 3D Electric Fields

The aforementioned findings through multiple points of
analysis like QTAIM, bond/gradient bundles, and EVB all
suggest that different electric fields might promote or inhibit
catalysis through different mechanisms. Analysis of reactivity
through the lens of electrostatic preorganization necessitates a
shift beyond electric field analysis at a single point, emphasiz-
ing the need to compare the global structure of electric fields.
Previous analysis techniques with QTAIM have demonstrated
the importance of the electron density and its topology as a
descriptor of reactivity, and have emphasized the 3-dimen-
sional nature of the chemical bond.123,354,372,382 When looking
at chemistry that enzymes employ, methods must assess the
degree to which electrostatic preorganization influences the 3D
charge density that drives chemical reactivity. Prior studies
compute electric fields at individual points or even project
electric field components on points along interatomic
axes,115,130,383 but further evidence has shown that this metric

Figure 16. Atomic basins, bond bundles, and bond wedges of KSI (left, middle, and right, respectively) shaded according to the changes in their
electron count due to a 10 MV/cm EEF oriented parallel to the O1−C1 internuclear axis. The center image includes the electron-pushing arrows of
the deprotonation reaction step. Reproduced with permission from Wilson et al., J Phys Chem B 2022, 126 (46), 9443−9456. Copyright 2022
American Chemical Society.381
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may not be an adequate descriptor for the heterogeneous
effects that protein scaffolds can exert on their active sites. We
have demonstrated the utility of considering the 3-dimensional
geometry of electric fields when studying the reactivity of KSI,
diels-alderase, evolved protoglobin, and across natural heme
protein families.124,125,168,384,385

The heterogeneity of local 3D fields at enzyme active sites
necessitates the ability to compare vector fields and evaluate
their similarity. Methods to compare and analyze vector fields
can generally be categorized into those that use single or a set
of local descriptors, and those that use global descriptors for
vector fields. Local descriptors employ analysis of singularities.
Singularities can be readily generalized to three dimensions,
and allows for structures like spiral saddles and 3D orbits. The
direct classification of critical points has been explored by
analysis of Jacobian eigenvalues and eigenvectors, and employs
techniques like polynomial interpolation, vector field con-
volutions, and extending attachment/detachment nodes, to
name a few.386−389 Local descriptors and connections between
them, however, are not always sufficient to uniquely identify
and compare 3D vector fields, due to limitations in their
construction from and around singularities rather than
knowledge of the entire 3D field. Vector field flows within
the active site are, on the other hand, rich, complex structures
that include, but are not limited to, singularities. These
complex objects determine chemical reactivity, and thus, a
global descriptor that can take in an entire vector field as an
input is more desirable for analyzing enzyme electric fields.
The primary method we use for describing global

topological characteristics of 3D fields is a distribution of
streamlines method based on the work from H. Quynh Dinh
and Liefei Xu.390 The process starts by randomly selecting
points within these regions and generating the intersecting
streamlines. Next, two points along the same streamline are
chosen at random, and both the Euclidean distance and mean
curvature (eq 17) between them are calculated. Here, α(t) is a
parametric representation of a streamline, and the curvature κ
employs the first and second derivatives of this representation.
With a sufficiently thorough sampling, these measurements
provide insights into the curvature distribution of the vector
field. This distribution is statistically analyzed through a 2D
histogram plotting Euclidean distance against curvature, using
a bin width tailored to the data’s distribution. These 2D
histograms can be compared using a normalized χ2 distance
metric (eq 18). The χ2 distance metric D compares any two

histograms f and g, each with N bins, and if f and g are
normalized, D( f, g) ranges between [0,1]. D( f, g) = 0 indicates
perfectly matched histograms, and D( f, g) = 1 indicates
maximally dissimilar histograms (no overlapping bins).
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A benefit of this method over others for comparing fields is
its ability to differentiate between and within sets of simple and
complex fields. Dinh and Xu demonstrated this by showing this
for sets of fluid flow data.390 Although simpler methods were
able to differentiate between a set of simple and a set of
complex fields, within each set, there was no clear distinction.
Upon employing a distance-curvature distribution, they found
that each histogram was a more unique descriptor of the field.
This method was first employed to examine the effect of the

electric field’s global structure on the properties of KSI and its
variants.384 This technique entails sampling characteristics of
the electric field across regions of chemical interest, with an
initial focus on areas of KSI shown in Figure 17, the regions
denoted i and ii corresponding to a carbonyl moiety and a
hydrogen bonded region involving Asp40 O−H−C interaction
respectively. The choice of the volumes was motivated by the
fact that activation of the carbonyl is implicated in the
reactivity, and H-transfer to and from Asp40 is involved in the
two reaction steps. For the KSI analysis, the method involved
sampling 100,000 streamlines per region and binning these
points in a 200 × 200 histogram.
The measure’s effectiveness is demonstrated in Figure 18,

comparing the electric field characteristics of the wild type KSI
under six varied electric fields and two KSI variants across the
regions i and ii. The intensity of the gray shade corresponds to
the level of similarity: the darker it is, the higher the similarity.
For instance, wild type KSI shows different electric field
characteristics in region i, particularly around the carbonyl,
compared to its behavior under the g+ field, yet exhibits closer
similarity in region ii, around the Asp40 O−H−C interaction.
Additionally, Figure 18’s right side plots the reaction barrier
differences, ΔΔE‡, against the histogram distances, D( f, g),
revealing a notable correlation between the electric field
influence in region i and the reaction barrier sensitivity.

Figure 17. Regions (i) and (ii) within KSI that were analyzed via the global distribution of streamlines. Reproduced with permission from
Hennefarth and Alexandrova, ACS Catal, 2020, 10 (17), 9915−9924. Copyright 2020 American Chemical Society.384
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The streamline distribution method demonstrates resilience
against variations in the bounding box size for chemically
relevant areas in this case. Its versatility allows for sampling a
diverse set of vector field attributes, including but not limited
to streamline length, local field strength, torsion and curvature,
as well as their separation and convergence patterns. The
method’s effectiveness in capturing the global geometry of the
field is attributed to the extensive area covered during
sampling. This technique has been efficiently parallelized to
analyze the distributions of well over 10,000 streamlines,
facilitating detailed studies of vector field characteristics.
The generation of distance matrices as shown in Figure 18

makes this metric a starting point for clustering molecular
dynamics trajectories. This method was extended to molecular
dynamics trajectories for two systems. First, it was employed
for the directed evolution of protoglobin by Chaturvedi et
al.168 The 3D electric field dissimilarity matrices were used for
clustering and obtaining structures with representative fields
out of trajectories. Representative structures were treated with
QM/MM, to demonstrate the link between the active site
electric field and experimentally observed reactivity (Figure
19A). Here, the bounding box of the electric field calculation
was centered on the Fe−carbene bond. Vargas et al. used the
method similarly to obtain representative structures for QM/
MM spin density calculations and redox potential across heme
families.385 For the heme families, the field was centered
around the Fe. For both studies, the box sizes are parametrized
to provide distinguishable electric field clusters, and oriented
by the porphyrin nitrogen to have a stable electric field box
across the molecular dynamics simulations.
Dimensionality reduction methods, when used in tandem

with methods to obtain global features of the vector field, can

Figure 18. Dissimilarity measurement between systems with different
applied external electric fields. (i) analysis of the region around the
carbonyl and (ii) region around the Asp40 O−H−C region. In the
dissimilarity matrices lighter shades of gray indicate greater
dissimilarity. Graphs on the right compare the change in the reaction
barrier between two systems (ΔΔE‡) to the distance between their
histograms D(f, g). Exponential and linear fits are shown in blue and
black, respectively. R and p values are shown with each graph.
Reproduced with permission from Hennefarth and Alexandrova, ACS
Catal, 2020, 10 (17), 9915−9924. Copyright 2020 American
Chemical Society.384

Figure 19. (A) Improved reactivity observed from both reaction stabilization (bottom) and decrease in barrier over directed evolution path. QM/
MM calculations were done on frames obtained from electric field clustering. (B) PCA reveals an electric field present prominently in the final
variant (top) that corresponds to stabilization of the transition state (bottom).
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provide chemical intuition to the computed LEFs in proteins.
Principal component analysis (PCA) is a particularly promising
dimensionality reduction algorithm to understand active site
electric fields as it can decompose input features into a
manageable set of dimensions.391 In both studies of evolved
protoglobin and heme protein families,168,385 chemically
relevant components can be observed by applying PCA on
measured fields across dynamics and even for crystal structures.
For directly evolved protoglobin, the PCA component that
most differed between evolved variants aligned with carbene−
diazirine bond formation and breaking of Fe−carbon bond in
the transition state (Figure 19B). In applying machine learning
to hemes, the principal component breakdown of the vector
field provided a lower-dimensional input to predict function
entirely from the 3D field.385 Principal components from both
crystal structures and molecular dynamic simulation 3D fields
were shown to accurately assign heme reactivities (Figure
20A). Feature importance analysis showed that the most

important components for determining activity in this study
partially aligned with the Fe−oxyl bond or showed a
compressive field on the plane of oxygen binding (Figure
20B), the former being consistent with prior findings in Biḿ et
al.130

3. SUMMARY
Research on protein electrostatics in enzymology is rapidly
growing. While experimentally it is not easy to study this effect
in isolation from other factors that govern enzymatic catalysis,
theoretical methods and models can aid this research. In fact,
electrostatics as a driving force in enzymatic catalysis was first
noticed in theory, in pioneering works by Warshel. Nowadays,
theoretical tools for the analysis and characterization of
intramolecular fields in proteins grow in number and
sophistication. We review these developments. The methods
are complementary, and each has unique strengths and
shortcomings.
The EVB theory can rightfully be seen as pioneering in this

field, for it was the first tool used to detect fields in proteins. It
does so via decomposing the electronic structure of the
reactants into the resonance forms, assuming that the ionic
form will be affected the most by the field aligned with charge

relocation. Through this feature of the model, fields can be
detected, and reaction mechanisms can be simulated, as
influenced by the fields. Importantly, the method incorporates
the notion of dynamics in a sense of averaging over the protein
motion upon traversing reaction free energy barrier. The
assumption in the strategy is that the mechanism of reaction
remains unchanged, and only the height of the barrier may be
affected by the intramolecular field�a notion that was later
challenged.
Another model-based field detection is done via polarizable

FFs. In this case, the polarization of the electronic structure,
due to the environment, is reflected in the FF parameters.
While traditionally intended to increase the accuracy of
simulations (compared to unpolarizable versions), polarizable
FFs began to serve also as a measuring device for the field
direction and strength.
Vibrational Stark effect was used experimentally to

determine the strength of the electric fields experienced by
Stark probes placed in enzyme active sites. These experiments,
for the first time, confirmed that the fields attainable in
proteins can be of an incredible strength, on the order of 100
MV/cm. These studies, coupled with molecular dynamics
simulations, also view the fields as an averaged property over
the protein dynamics trajectory, and link fields and reactivity. A
shortcoming of the method is that it probes the field only at
the location of the probe, e.g. a carbonyl attached to an
inhibitor. The reason this can be problematic is 2-fold: first, the
inhibitor itself alters the field, differently form the native
substrate, and second, the more global portrait of the field in
the entirety of the active site was later shown to be much more
descriptive of the catalytic role of the field. It is unquestionable,
however, that experimental observations enabled by the Stark
spectroscopy propelled the research field forward, and led to its
incredible subsequent growth.
Indeed, field in enzyme active sites are strongly heteroge-

neous, because they are created by strongly heterogeneous
environments. The analysis of full electric fields in large
volumes of the active site enabled new insights. These fields are
incredibly complex and information-rich. Through AI
approaches, such as PCA and clustering algorithms, these
fields can be decomposed, analyzed, compared to fields in
related proteins, or to fields in the same protein across a
dynamics trajectory. The distribution of streamlines method,
developed for the analysis of such global fields, revealed that
field heterogeneity is meaningful, and the fields contain PCs
that align with the direction opposite to electron flow in the
reaction mechanisms of any complexity. Dynamics coupled to
field analysis revealed that distinct field geometries can be
visited by the protein, and each may facilitate a somewhat
specific mechanism and barrier. This challenged the notion of
averaging over all protein structures in the dynamics, and
offered a perspective on the protein dynamics from the point
of view of the dynamics of the field that it creates. Finally, the
field plotted on a grid has an appearance of an image
recognition problem. It was indeed demonstrated (albeit so far
on a single prototypical example) that fields can be used as
signatures of protein activity, i.e. for protein function
recognition, through ML.
The thus revealed complexity of heterogeneous and dynamic

electric fields is contextualized and explained in the clearest
way by the QTAIM analysis. QTAIM describes the geometry
of the full quantum mechanical electronic density in the active
site. Since the number of electrons is fixed, and the density

Figure 20. (A) Accuracy and F1 Scores of XGBoost and Random
Forest (RF) models on PCA components from point and 3D electric
fields. (B) Feature importance yields three principal components that
align to Fe−oxyl bond or compression on the plan of oxygen binding.
Adapted from ref 385
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(and molecular orbitals) is delocalized, pulling or pushing on
any part of it with an electric field unavoidably causes changes
in all other parts of the active site. Hence, it is obvious that
fields need to be viewed globally, and their effect can be
detected in a global way through changes in the global electron
density. Electron density in the reactant state reports
simultaneously on the global effect of the field experienced
by the system, and on the magnitude of the reaction barrier
that the system is about to cross. Thus, the density is a rigorous
and chemically meaningful proxy linking the fields and
reactivity in a chemically intuitive way.
Beyond fundamental analysis of electric fields in enzymes

with the purpose of understanding how enzyme operate, the
reviewed tools and insights open doors to new aspects of
enzyme design. Fields being evidently prominent players in
catalysis, have to be incorporated in enzyme design protocols,
and that indeed begins to happen. Including the fields in design
necessitates the focus on areas of the protein beyond the active
site, e.g. the second and further coordination spheres where
charged amino acids can be strategically placed. Such an
amendment to the theo-zyme based design strategies might let
computational enzyme design overcome the current limi-
tations, and bring the performance of artificial enzymes closer
to natural. Geometry of heterogeneous electric field in the
active site as one of the design targets should be envisioned.
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