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We investigate simultaneous effects of finite system size and global charge conservation on thermal fluctua-
tions in the vicinity of a critical point. For that we consider a finite interacting system, which exchanges particles
with a finite reservoir (thermostat), comprising a statistical ensemble that is distinct from the common canonical
and grand canonical ensembles. As a particular example the van der Waals model is used. The global charge
conservation effects strongly influence the cumulants of particle number distribution when the system size is
comparable to that of the reservoir. If the system size is large enough to capture all the physics associated with
the interactions, the global charge conservation effects can be accurately described and corrected for analytically,
within a recently developed subensemble acceptance method. The finite size effects start to play a significant role
when the correlation length grows large due to proximity of the critical point or when the system is small enough
to be comparable to an eigenvolume of an individual particle. We discuss our results in the context of fluctuation
measurements in heavy-ion collisions.

DOI: 10.1103/PhysRevC.102.024908

I. INTRODUCTION

The structure of the phase diagram of QCD matter is one
of the most interesting unsolved problems in physics. Within
phenomenological statistical models as well as in lattice QCD
simulations mainly the grand-canonical ensemble (GCE) is
used. The critical behavior is then probed by the statistical
fluctuations of conserved charges [1–6]. Useful measures of
these fluctuations are the scaled variance ω, as well as the
(normalized) skewness Sσ and kurtosis κσ 2. For example, for
the net baryon number B they are defined as the following:

ω = 〈(�B)2〉
〈B〉 , Sσ = 〈(�B)3〉

〈(�B)2〉 , (1)

κσ 2 = 〈(�B)4〉 − 3〈(�B)2〉2

〈(�B)2〉 , (2)

where 〈. . .〉 denotes the GCE averaging and �B ≡ B − 〈B〉.
These quantities can also be expressed through baryon num-
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ber cumulants κn:

〈B〉 = κ1, ω = κ2

κ1
, Sσ = κ3

κ2
, κσ 2 = κ4

κ2
. (3)

The GCE cumulants are calculated as the partial derivatives
of the system pressure p with respect to a corresponding
chemical potential μ:

κn = V T 3 ∂n(p/T 4)

∂ (μ/T )n
. (4)

Here V and T are the system volume and temperature, re-
spectively. The ratios of cumulants in Eq. (3) are intensive
(size-independent) measures in the GCE.

The GCE cumulants evaluated in effective QCD models
can be directly compared with lattice QCD predictions, a
procedure often used for testing and constraining various
models and approaches [7–15]. On the other hand, a com-
parison of theoretical predictions with the event-by-event
fluctuation measurements in relativistic heavy-ion collisions
looks rather challenging. In the GCE the system of volume
V may exchange particles (and conserved charges) with a
reservoir (thermostat) of volume V0 − V . In the total volume
V0 the conserved charge is strictly fixed. Thus, volume V0

corresponds to a canonical ensemble (CE). To reach the GCE
conditions inside the volume V one has to require V/V0 � 1.
And while direct comparisons of the GCE cumulants with
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experimental data are commonplace in the literature [11,16–
18], it is clear that the global charge conservation will in-
fluence to some extent the conserved charge distribution
measured in experiment, making it different from the GCE
baseline. Studies based on the ideal hadron gas model in-
deed show that higher-order cumulants of baryon number are
strongly affected by the global conservation [19]. In addition,
the volume V should also be large enough to take into account
all relevant physical effects due to particle interactions. If
both V0 and V are large enough, one can derive analytically
modifications, which come from global conservation laws.
This has been shown in a recent paper [20] and will be
discussed later in the present study.

In high-energy nucleus-nucleus collision experiments not
all final particles are measured on an event-by-event basis.
Within a statistical approach the subset of measured particles
can be treated as a subsystem with finite volume V , whereas
nondetected particles play the role of the finite reservoir
(thermostat). In this situation, the effects of exact charge con-
servation on fluctuations are usually modeled by a binomial
acceptance correction procedure [19,21–24]. This procedure
assumes that the probability to be measured is the same for
each particle of a given type and it is independent of any
interparticle correlations. As will be seen below, the binomial
acceptance procedure can be justified only for a statistical
system of classical noninteracting particles.

Previously, the finite size effects (without conservation
law effects) for the first-order liquid-gas phase transition
were discussed in Refs. [25–28]. The effects of finite particle
number sampling on baryon number fluctuations were studied
in Ref. [29] within fluid dynamical simulations. A Monte
Carlo procedure allowing to sample particle multiplicities in
the presence of excluded volume effects was developed in
Ref. [30].

The size of the considered system becomes especially
important in the vicinity of the critical point (CP). The CP
as the end point of the first-order phase transition exists as
a universal feature of all molecular systems. At the CP the
intensive fluctuation measures become singular in the thermo-
dynamic limit V → ∞. These infinite values evidently cannot
appear in a finite V . Therefore, both the charge conservation
and finite size effects can be equally important in the vicinity
of the CP.

It was demonstrated [12] that the nuclear CP, i.e., the end
point of the liquid-gas transition in the system of interacting
nucleons at small T and large μB, affects the susceptibilities
of conserved charges even at μB = 0 and large T , and limits
the radius of convergence of Taylor expansion in μB/T at
μB = 0 [31]. The sought-after hypothetical chiral QCD CP is
expected to produce strong signals in high-order fluctuation
measures [2,4,32,33]. It is possible that conserved charge
susceptibilities are determined by a complex interplay of the
chiral and liquid-gas phase transitions in certain regions of the
phase diagram [34,35].

Our paper presents a first step to study both the finite
size and global charge conservation effects in the vicinity
of a CP. To give a specific example we consider a classical
statistical system of interacting nucleons described by the
van der Waals (vdW) model. This model was previously

applied to nuclear matter considered as a system of interacting
nucleons in Ref. [36]. The production of antibaryons will be
neglected. In this situation the number of nucleons becomes
a conserved charge. We will not consider the mixed phase
region at T < Tc in the present study, and will focus our
studies at (super)critical temperatures, T � Tc.

Our considerations will be based purely on equilibrium
statistical mechanics. The nonequilibrium effects in heavy-ion
collisions are certainly important, especially in the vicinity
of the CP, and the dynamical theory of critical fluctuations
is under development [37–41]. We plan to incorporate the
nonequilibrium effects in future works.

The paper is organized as follows. Section II presents the
main properties of the vdW model in the thermodynamic
limit. Section III describes the model results for the particle
number fluctuations in the finite systems. The summary in
Sec. IV closes the paper.

II. VAN DER WAALS MODEL

The CE partition function, Zce, for the vdW system of
classical particles can be written as [42]

Zce(N,V, T ) = [ϕ(T )]N

N!
(V − bN )Nθ (V − bN ) exp

(
aN2

V T

)
,

(5)

where N , V , and T are, respectively, the number of particles,
volume, and the temperature of the system, while a > 0 and
b > 0 are the vdW interaction parameters. The a parameter
regulates the attraction, while b corresponds to a repulsion be-
tween particles via the excluded volume effects. The function
ϕ is given as

ϕ(T ; g, m) ≡ g

π2
T m2 K2(m/T ), (6)

where g and m are, respectively, the degeneracy factor and the
mass of the particles, and K2 is the modified Bessel function
of the second kind.

The system pressure in the CE is calculated as

p(N,V, T ) = T

(
∂ ln Z

∂V

)
N,T

= n T

1 − b n
− an2, (7)

where n ≡ N/V . The CP is defined by the conditions [42,43](
∂ p

∂n

)
T

= 0,

(
∂2 p

∂n2

)
T

= 0, (8)

which gives

Tc = 8a

27b
, nc = 1

3b
, pc = a

27b2
. (9)

Introducing the reduced variables T̃ = T/Tc, ñ = n/nc, and
p̃ = p/pc one can rewrite the vdW equation (7) in a universal
form

( p̃ + 3 ñ2)

(
3

ñ
− 1

)
= T̃ , (10)

which is independent of the specific numerical values of the
interaction parameters a and b. This is a particular case of the
principle of the corresponding states (see, e.g., Ref. [42]).
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To calculate the particle number fluctuation measures one
usually transforms the CE description into the GCE one. This
requires to introduce a reservoir and to take the thermody-
namic limit with V → ∞. For the vdW equation of state these
steps were done for the first time in Ref. [44]. In the vdW
model the particle number fluctuation measures

ω = 〈(�N )2〉
〈N〉 , Sσ = 〈(�N )3〉

〈(�N )2〉 , (11)

κσ 2 = 〈(�N )4〉 − 3〈(�N )2〉2

〈(�N )2〉 , (12)

with �N ≡ N − 〈N〉, were calculated analytically in the GCE
in the thermodynamic limit V → ∞ [6,44]:

ωgce = 1

9

[
1

(3 − ñ)2
− ñ

4T̃

]−1

, (13)

Sσgce = 1

3

[
1

(3 − ñ)2
− ñ

4T̃

]−2[ 1 − ñ

(3 − ñ)3

]
, (14)

κσ 2
gce = 3 (Sσ )2 − 2 ω Sσ − 54 ω3 ñ2

(3 − ñ)4
. (15)

The GCE fluctuation measures (13)–(15) are presented in
Fig. 1. All three of them exhibit singular behavior at the CP.
While the ωgce (13) tends to +∞ at the CP, the Sσgce (14)
and κσ 2

gce (15) have a richer structure in a vicinity of the CP.
They can tend to +∞, −∞, or 0 depending on the path of
the approach to the CP. Introducing quantities ρ = ñ − 1 and
τ = T̃ − 1 one finds at τ � 1 and ρ � 1:

ωgce
∼= 4

9

[
τ + 3

4ρ2 + τρ
]−1

, (16)

Sσgce
∼= − 2

3ρ
[
τ + 3

4ρ2 + τρ
]−2

, (17)

κσ 2
gce ∝ ρ−6 at τ = 0, κσ 2

gce ∝ −τ−3atρ = 0. (18)

While the CP signals of ω fade out as one moves away
from the CP in the phase diagram, they remain stronger in
the higher-order fluctuation measures, Sσ and κσ 2, even far
away from the CP [45]. Note that in the classical ideal gas
case, a = b = 0, all fluctuation measures in Eqs. (13)–(15)
are reduced to ωgce = Sσgce = κσ 2

gce = 1, which corresponds
to the Poisson N distribution. The general features of the
GCE fluctuations presented in this section, especially those
connected with the CP remain the same for all models from
the mean-field universality class, to which the vdW model
belongs (see, e.g., Ref. [46]).

III. FLUCTUATIONS IN A SUBENSEMBLE

Let us partition a finite system of volume V0 into a subsys-
tem of volume V < V0 and another subsystem—a reservoir—
of volume V0 − V . We assume that both subsystems can
exchange particles, but the total number of particles N0 in the
whole system is fixed. The corresponding statistical ensemble
will be referred as a subensemble, distinguishing it from
both the CE and GCE. We neglect all interactions at the
interface, i.e., between all particles from different subsystems.
The partition function of the system in volume V can then be

ω

σ

κσ2

FIG. 1. The GCE fluctuation measures (a) ωgce, (b) Sσgce, and
(c) κσ 2

gce given by Eqs. (13)–(15) in the (̃n, T̃ ) plane. The Poisson
limit with ωgce = Sσgce = κσ 2

gce = 1 corresponds to those regions
of the thermodynamic plane where the vdW interactions become
negligible. The two points on the phase diagram marked by crosses
are analyzed in detail in the present paper.

written as [20,42]:

Z (V, T ) =
Nmax∑

N=Nmin

Zce(V, N, T )Zce(V0 − V, N0 − N, T )

≡
Nmax∑

N=Nmin

Z (N ;V, T ). (19)
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The probability to find N particles in the volume V takes the
form

W (N ;V, T ) = Z (N ;V, T )

Z (V, T )
. (20)

The mean value 〈N〉 and the central moments 〈(�N )k〉 with
k = 2, 3, . . . in the subensemble are calculated with the prob-
ability distribution (20):

〈. . .〉 =
Nmax∑

N=Nmin

. . . W (N ;V, T ). (21)

In our example of the vdW model, the CE partition func-
tions Zce in Eq. (19) are given by Eq. (5). Introducing variables

n ≡ N0/V0 and x ≡ V/V0 (22)

the partition function (19) is written as

Z (V, T ) ≡
Nmax∑

N=Nmin

Z (N ;V, T )

= ηN0

Nmax∑
N=Nmin

1

N!(N0 − N )!

(
3

ñ
x − N

N0

)N

×
[

3

ñ
(1 − x) + N

N0
− 1

]N0−N

× exp

[
9

4

ñ

T̃

N

1 − x

(
1

2x

N

N0
− 1

)]
. (23)

Here

η = bN0ϕ(T ; g, m) exp

[
9 ñ

8 T̃ (1 − x)

]
, (24)

and it cancels out in the probability distribution (20).
The minimal and maximal numbers of particles in

the subensemble, Nmin = max{0, N0 − 
(V0 − V )/b�} and
Nmax = min{
V/b�, N0} result from the Heaviside θ functions
in Zce (5), which is due to the excluded volumes. Here 
. . .� is
a floor function. Nmin and Nmax can also be rewritten as:

Nmin = max{0, N0 − 
3(1 − x)N0/̃n�}, (25)

Nmax = min{
3xN0/̃n�, N0}. (26)

The moments (21) are independent of particles’ degener-
acy g and mass m, since they only enter Eq. (23) through the
common factor η.1 In the following we explore the behavior
of fluctuations in the subensemble for different values of x
and N0.

A. Charge conservation effects

As a first specific case, we consider the thermodynamic
limit, V0 → ∞, at 0 < x < 1. Thus, both V0 → ∞ and V →
∞, but the values of x = V/V0 remain finite.

1This would not be the case if the quantum statistics was not
neglected [44].

In this case we follow a recently developed subensemble
acceptance procedure [20]. It allows us to obtain the cumu-
lants of particle number distribution in the subensemble in
terms of the corresponding GCE cumulants and the volume
fraction x, quantifying the corrections to the GCE cumulants
because of the global conservation of particle number. One
obtains (see Ref. [20] for the derivation details):

κ1 = 〈N〉 = ξ1N0, (27a)

κ2 = ξ2κ
gce
2 , (27b)

κ3 = ξ3κ
gce
3 , (27c)

κ4 = ξ4κ
gce
4 + 3ξ 2

2

κ
gce
4 κ

gce
2 − [

κ
gce
3

]2

κ
gce
2

, (27d)

where κ
gce
n ∝ V0 is the nth cumulant in the GCE, and

ξ1 = x, (28a)

ξ2 = x(1 − x), (28b)

ξ3 = ξ2(1 − 2x), (28c)

ξ4 = ξ2(1 − 6ξ2). (28d)

Note that ξn(x) correspond to the nth cumulant of the
Bernoulli distribution, px(l ) = xl (1 − x)1−l for l = 0, 1.
Similarly, higher-order κn and ξn cumulants can be obtained.
Using Eqs. (27) and (28) one finds the scaled variance, skew-
ness, and kurtosis:

ω = (1 − x) ωgce, (29)

Sσ = (1 − 2x) Sσgce, (30)

κσ 2 = (1 − 6ξ2) κσ 2
gce + 3ξ2

[
κσ 2

gce − (Sσgce)2]. (31)

Equations (29)–(31) present the intensive measures of particle
number fluctuations in the subensemble in terms of the cor-
responding GCE cumulant ratios. This greatly simplifies the
consideration as the finite size effects are neglected. At finite
x values the fluctuation measures (29) and (31) are still influ-
enced by the global conservation of N0. These global conser-
vation effects, however, are expressed as universal functions
of x. The expressions (29) and (31) are model independent
[20]. Moreover, they are valid not only for particle number
fluctuations but also for fluctuations of a conserved charge,
e.g., for the fluctuation measures of the net baryon charge in
Eqs. (1) and (2).

The skewness and kurtosis are, respectively, antisymmetric
and symmetric functions around x = 1/2, i.e., Sσ [1 − x] =
−Sσ [x] and κσ 2[1 − x] = κσ 2[x]. The fluctuation measures
(29)–(31) reduce to the GCE ones (13)–(15) in the limit x →
0.2 On the other hand, at x → 1 the cumulant ratios approach

ω
x→1= 0, (32)

Sσ
x→1= −Sσgce, (33)

κσ 2 x→1= κσ 2
gce. (34)

2Note that we still assume here that the volume V is large enough
to neglect the finite size effects, no matter how small x is.
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0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
-1.2
-1.0
-0.8
-0.6
-0.4
-0.2
0.0
0.2
0.4
0.6
0.8
1.0
1.2

GCE

κσ2[N]

Sσ[N]Ideal gas

ω[N]

x=V/V0

FIG. 2. Scaled variance ωid, skewness Sσid, and kurtosis κσ 2
id of

particle number fluctuations for a classical ideal gas of particles in
a subvolume as a function of a fraction x of the total volume which
is occupied by the subvolume. The grand-canonical ensemble values
correspond to the red circle.

It is instructive to consider the limit of an ideal classical
gas. This limit is recovered for a = 0 and b = 0. In this case,
κ

gce
n = 〈N0〉 for all n = 1, 2, . . ., and Eqs. (27) reduce to κ id

n =
ξn〈N0〉. Therefore, one obtains the following for the classical
ideal gas:

ωid = 1 − x, (35)

Sσid = 1 − 2x, (36)

κσ 2
id = 1 − 6x(1 − x). (37)

The fluctuation measures (35)–(37) are presented in Fig. 2.
Equations (35)–(37) coincide with those obtained after the
binomial acceptance correction procedure (see Ref. [24] for
details). The binomial acceptance procedure is suitable for
describing the global charge conservation effects in noninter-
acting systems. The applicability of the binomial acceptance,
however, does not extend to interacting systems, the vdW
model in particular.

If the system is close to the thermodynamic limit,
Eqs. (29)–(31) can be used to account for global conservation
effects. The requirements for the system to be close to the
thermodynamic limit depend on the specific properties of the
system under consideration. Previously, it was demonstrated
that for the noninteracting hadron resonance gas the scaled
variance of particle number fluctuations is close to its ther-
modynamic limit values already for 〈N〉 ≈ 2 − 3, see, e.g.,
Ref. [47]. However, the size of the interacting system near
the CP must be larger for the thermodynamic limit to be
applicable. We will investigate the requirements for such a
system in Sec. III B by comparing the thermodynamic limit
results with the direct finite size calculations within the vdW
model for different system sizes.

B. General case of a finite reservoir

In this section we consider the general case when both the
system and reservoir are finite. Thus, both the finite size and

conservation law effects are present. Figure 3 shows examples
of the subensemble particle number fluctuations calculated
according to the general Eqs. (20)–(23) at finite N0. Different
black lines show different N0 values from N0 = 10 to N0 =
104. Two locations in the phase diagram, (̃n = 1, T̃ = 1.2)
[Figs. 3(a), 3(c) and 3(e)] and (̃n = 1.5, T̃ = 1.5) [Figs. 3(b),
3(d) and 3(f)] are considered. These two points are marked by
crosses in Fig. 1. The choice of these specific points for the
illustration is due to the following reasons. First, these two
locations correspond to rather different GCE values for the
fluctuation measures, which are shown by full red circles in
Fig. 3. The deviations from the ideal gas limit in both cases
are large. Second, these two points in the ñ-T̃ plane are in
different proximities to the CP at (̃n = 1, T̃ = 1).

The thermodynamic limit results given by Eqs. (29)–(31)
are represented by red lines in Fig. 3. The points x → 0 on
these red lines correspond to the GCE values (13)–(15). They
are shown in Fig. 3 by full red circles. The x dependence
according to Eqs. (29)–(31), shown by the red lines in Fig. 3,
reflects the global N0 conservation. The comparison of these
lines with those in Fig. 2 shows a strong sensitivity of the
skewness and kurtosis to the presence of interactions between
particles. At finite x values the effects of the N0 conservation
keep being significant even in the thermodynamic limit N0 →
∞. At finite N0 there are additional finite size effects. How
large N0 should be to approach the thermodynamic limit
shown by red lines in Fig. 3 with a certain accuracy? This
depends on both the proximity of the point (̃n, T̃ ) to the CP
on the phase diagram and the numerical value of x. The closer
the system is to the CP, the larger are the finite size effects.
This evidently reflects the growth of the correlation length
as one approaches the CP, which is known to become of a
macroscopic magnitude at the CP.

The magnitude of the finite size effects at a fixed N0 is
minimal at x = 1/2, as seen from Fig. 3. This is because both
volumes V = V0/2 and V0 − V = V0/2 are relatively large
in this case. Thus, to minimize the finite size effects in the
event-by-event fluctuation data it may be worthwhile to aim
for an acceptance, which encompasses close to 50% of all
final particles on average. The effects from the global charge
conservation are not small in this case. However, they can be
estimated (and then corrected for) using the formulas of the
subensemble acceptance procedure, Eqs. (29)–(31). It should
be noted, however, that the skewness goes to zero at x = 1/2,
as this quantity is an asymmetric function of x in the interval
[0,1]. It would therefore be necessary to consider acceptance
away from x = 1/2 for this quantity.

The thermodynamic limit can be reached also at smaller
x values. The smaller x values would, however, require the
larger N0 to reach the same level of accuracy with respect
to the finite size effects. Let us consider, for example, the
lines with N0 = 400, shown in Figs. 3(b), 3(d) and 3(f) for
the phase diagram point ñ = 1.5, T̃ = 1.5.3 To have ω, Sσ ,
and κσ 2 deviate from their thermodynamic limits by no more

3The value N0 = 400 corresponds approximately to the total num-
ber of nucleon participants in most central heavy-ion collisions.

024908-5



ROMAN V. POBEREZHNYUK et al. PHYSICAL REVIEW C 102, 024908 (2020)
ω ω

σ σ

κσ κσ

FIG. 3. (a), (b) Scaled variance ω, (c), (d) skewness Sσ , and (e), (f) kurtosis κσ 2 of particle number fluctuations in the subensemble with
volume V are presented as functions of x. Results for (̃n = 1, T̃ = 1.2) and (̃n = 1.5, T̃ = 1.5) are shown in the left [(a), (c), (e)] and right
[(b), (d), (f)] panel, respectively. Different values of N0 between 10 and 104 are presented. Red lines show the thermodynamic limit, N0 → ∞,
given by Eqs. (29)–(31) of the subensemble acceptance method of Ref. [20]. The GCE results (13)–(15) are depicted by the red circles.

than 10% one has to take, respectively, x � 0.05, x � 0.10,
and x � 0.15. This numerical example as well as the general
trend of the data presented in Fig. 3 demonstrate an important
conclusion: For the same (̃n, T̃ ) point, the proximity to the
thermodynamic limit behavior is different for different fluc-
tuation measures. To reach the same proximity for the higher

moments of particle number distribution one needs a larger
system (larger N0) and/or larger experimental acceptance
(larger x).

The finite size effects become stronger in the vicinity of the
CP. For example, the results at ñ = 1, T̃ = 1.2 are shown in
Figs. 3(a), 3(c) and 3(e). This ñ, T̃ point is closer to the CP.
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To reach the proximity to the thermodynamic limits shown by
red lines the values of N0 and/or x must be higher than those
in Figs. 3(b), 3(d) and 3(f).

In practice, i.e., in the scenario of a nucleus-nucleus col-
lision, it is not easy to exactly ascertain whether a system is
in the thermodynamic limit. However, the model-independent
Eqs. (29)–(31) provide a way to estimate to what extent the
thermodynamic limit is reached by studying the acceptance
dependence of cumulant ratios of a conserved charge. Namely,
if at a given system size in some x interval ω and Sσ exhibit a
linear decrease with x and κσ 2 exhibits a parabolic x depen-
dence, the system may be close to the thermodynamic limit.
Then, one can use Eqs. (29)–(31) to extract the corresponding
GCE values, ωgce, Sσgce, and κσ 2

gce. Also, as larger systems
are closer to the thermodynamic limit, it is preferable to study
the most central collisions of heavy ions.

When x is close to 0 or 1 some oscillations in the x
dependence are visible for moderate values of N0. This is
connected to the excluded volume restrictions when only few
finite sized particles can fit in the volume V . We explore the
finite size effects specifically in Sec. III C.

C. Finite size effects

In this section we discuss the thermodynamic limit, V0 →
∞, for finite values of volume V . This corresponds to x =
V/V0 → 0 as V0 → ∞ simultaneously. In this case, the free
energy, F = − T ln Zce, of the reservoir with N0 − N particles
in the volume V0 − V can be written as

F (V0 − V, N0 − N, T ) ∼= F (V0 − V, N0, T ) −
(

∂F

∂N0

)
V0,T

N.

(38)

The partition function (19) can then be expressed as

Z (V, T ) =
Nmax∑
N=0

Z (N ;V, T ) = Zce(V0 − V, N0, T )

×
Nmax∑
N=0

exp

(
μ0N

T

)
Zce(V, N, T ), (39)

where (∂F/∂N0)V0,T = μ0, is the chemical potential of the
reservoir and Nmax = 
V/b�. Equation (39) includes the finite
size effects because of the finite value of Nmax. This finite size
restriction is not very important at the regions of the phase
diagram located far away from the CP. It is, however, crucial
at the CP when the intensive fluctuation measures become
divergent. In the thermodynamic limit V → ∞, Eq. (39)
leads to Nmax → ∞ and the N-fluctuation measures in the
subensemble approach their GCE values. Their behavior was
discussed in Sec. II.

In the vdW model, μ0 is calculated as [44]:

μ0 = −T ln
(V0 − bN0)φ(T )

N0
+ b N0T

V0 − bN0
− 2a

N0

V0
. (40)

The probability distribution (20) is then calculated as

W (N ;V, T ) = A(N ;V, T )∑Nmax
N=0 A(N ;V, T )

, (41)

0 100 200 300 400 500
0.5

1

2

3
4
5
6

10

20 Subensemble (infinite reservoir)
ω[N] = 0.52 (V/b)1/2

GCE limit

T = 1.2; n = 1

T = 1.5; n = 1.5

T = 1; n = 1

ω
[N
]

Nmax= [V/b]

FIG. 4. The scaled variance ω at different (̃n, T̃ ) points in the
phase diagram as a function of Nmax = V/b calculated within the
subensemble for the infinite reservoir case, V0 → ∞. The three
vertical ticks at each of the lines correspond to values of 〈N〉 being
10, 50, and 100. The scaled variance exhibits a scaling ω ∼ V 1/2 at
the critical point, ñ = 1 and T̃ = 1, depicted by the dashed yellow
line.

where

A = (Nmax − N )N

N!

(
3 − ñ

ñ

)−N

× exp

[
1

3 − ñ
− 9

4

1

T̃

(
1 − 3N2

2Nmax

)]
. (42)

This agrees with the result of Ref. [27] where particle
number distributions for finite vdW system were calculated
in the (T, μ) plane. The results for the scaled variance ω

in the subensemble with the probability distribution (42) are
presented in Fig. 4. The finite size effects disappear with
increasing Nmax = V/b. To approach the GCE limit with the
same accuracy larger V values are needed the closer ñ and T̃
are to their critical values. At the CP point ñ = 1 and T̃ = 1
the scaled variance in the subensemble behaves as ω ∼ √

V
and is divergent at V → ∞.

The oscillatory behavior of the fluctuations in the
subensemble at small volumes V is observed in Fig. 3 at x ≈ 0
and x ≈ 1. This will be illustrated now on example of the
scaled variance ω. When the volume V is so small that only
one particle can fit in, b < V < 2b, the partition function (19)
of the subensemble is a sum of only two terms with N = 0
and N = 1. In this case, one obtains 〈Nk〉 = 〈N〉 for k = 1, 2
and, thus,

ω[N] = 1 − 〈N〉 < 1. (43)

At V/b → 1 + 0 one finds 〈N〉 → 0. Thus, ω[N] → 1, which
is in agreement with the Poisson distribution.

We demonstrate the excluded volume threshold effects by
depicting in Fig. 5 the scaled variance ω as a function of V/b
in the region of small V/b. The vertical dashed lines show the
thresholds of the system volume V/b at 1,2,3, and 4 particle
level. One sees that the excluded volume threshold effects
for ω[N] are substantial at V/b � 5, which corresponds to
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ω
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FIG. 5. The scaled variance ω in the subensemble as a function
of V/b. Vertical lines show the threshold values of V/b. Black line
corresponds to N0 = 10 while blue line represents thermodynamic
limit V0 → ∞. Cases with N0 � 50 are well approximated by the
blue line. The oscillatory behavior of scaled variance is due to the
excluded volume threshold effects, see also Figs. 3(a)– 3(b).

x � 5(bn)/N0. The same oscillatory behavior of ω due to the
excluded volume threshold effects is also seen in Figs. 3(a)–
3(b) where ω is presented as a function of x.

IV. SUMMARY

We investigated particle number fluctuations in an interact-
ing thermal subsystem, taking into account effects associated
with the global conservation of particle number (conserved
charge) and finite system size. The total number of particles
N0 (total conserved charge) in the whole volume is fixed, in
analogy to the final state (net) baryons in heavy-ion collisions,
and treated in the canonical ensemble. The fluctuations of
particle number N in a subvolume (acceptance) V < V0 are
described by a statistical ensemble, which is distinct from both
the canonical and grand-canonical ensembles.

The specific calculations have been performed for the van
der Waals (vdW) equation of state, which contains a first-
order phase transition and a critical point. The supercritical
temperatures have been considered. Due to the universality of
the critical behavior, we expect our results to reflect generic
features of fluctuations near a critical point of a first-order
phase transition in the presence of global charge conservation
effects.

The global charge conservation influences the fluctuations
at any finite value of the subvolume fraction x ≡ V/V0. In the
thermodynamic limit, N0 → ∞, these effects are in agreement
with the recently developed subensemble acceptance proce-
dure [20] and thus can be corrected for analytically.

In a more general case of a finite N0 and finite x, both
the finite size and global charge conservation effects simul-
taneously influence the fluctuation measures. The finite size
effects at a fixed value of N0 are the smallest at x = 1/2, where
the two subsystems are both large. The magnitude of the finite
size effects depends on the proximity of the critical point: the
closer the system is to the critical point, the larger are the

finite size effects. This can be understood due to the growth
of the correlation length and, correspondingly, fluctuations in
the vicinity of the critical point, which become comparable to
the total system size.

Threshold effects are observed for very small volumes,
V � b, when only few finite sized particles fit into the vol-
ume. An oscillatory behavior is observed, associated with the
opening of new channels at the thresholds.

The following strategy may be adopted for extracting the
GCE values of the cumulant ratios in relativistic heavy-ion
collisions.

(i) The behavior of ω and Sσ of the fluctuations of a
conserved charge should be analyzed within several different
acceptances (which corresponds to different x values). If the
linear x dependence of ω and Sσ is established, it can be
considered as a signal of approaching the thermodynamic
limit (see Fig. 3). Linear fits can then be performed to extract
ωgce and Sσgce.

(ii) The finite size effects have a stronger influence on the
kurtosis κσ 2 compared to ω and Sσ . As the finite size effects
are the smallest at x = 1/2, it is advisable to measure κσ 2

in an acceptance as close to x = 1/2 as possible. One can
then extract κσ 2

gce from experimentally measured κσ 2 and the
previously reconstructed Sσgce using Eq. (31).

It should be noted that our analysis is based on an idealized
picture of a homogeneous system in statistical equilibrium. It
does not incorporate the various dynamical effects present in
relativistic heavy-ion collision experiments, detector limita-
tions, as well as system volume, V0, fluctuations. Moreover,
measurements in heavy-ion experiments are performed in
the momentum space rather than in the coordinate space.
The degree of correlation between momenta and coordinates
of particles at freeze out depends on the collective flow,
for example, the longitudinal flow. To reduce the effects of
V0 fluctuations the so-called strongly intensive fluctuation
measures [48,49] may be used. In future works we plan to
include the influence of dynamical effects, the analysis of
strongly intensive fluctuation measures, as well as to address
the connection between the system’s separation in coordinate
space with the corresponding separation in the momentum
space. We also plan to extend our approach to fully relativistic
systems with multiple conserved charges [50], as is appropri-
ate for relativistic heavy-ion collisions.
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