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ABSTRACT OF THE DISSERTATION 
 
 
 

Exploring the Texture of Ocean-Atmosphere  
Redox Evolution on the Early Earth 

 
 

by 
 
 

Christopher Thomas Reinhard 
 
 

Doctor of Philosophy, Graduate Program in Geological Sciences 
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Dr. Timothy W. Lyons, Chairperson 
 
 
 

 The evolution of oxygenic photosynthesis has dramatically reshaped the 

chemistry of the surface Earth, and the presence of significant quantities of O2 in the 

atmosphere and ocean now drives the fundamental dynamics of nearly all quantitatively 

significant biogeochemocal cycles (C, S, P, N, Fe). Whether by direct consumption 

through the metabolic demands of large, complex organisms, or through the recycling of 

essential substrates within microbial ecosystems, biologically produced O2 provides 

nearly all of the compounds used in metabolic electron transfer on a global scale. 

Although it is widely accepted that the partial pressure of O2 in Earth’s atmosphere has 

increased through time (with attendant, although somewhat complex, changes in ocean 

ventilation), there is still much debate surrounding the timing of the emergence of 

oxygenic photosynthesis and little is known about the detailed tempo and mode with 

which this metabolic innovation came to shape early Earth surface chemistry. 
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 This dissertation explores the early oxygenation of Earth’s atmosphere and the 

relationship between atmospheric oxygen levels and ocean ventilation from a variety of 

perspectives. First, empirical data based on an integrated suite of paleoredox proxies is 

used to suggest that biological oxygen production emerged and began exerting significant 

effects on Earth surface chemistry at least 100 million years prior to the initial 

accumulation of large quantities of O2 in the atmosphere (often referred to as the “Great 

Oxidation Event”, approximately 2.4 billion years ago). The implications of this time lag 

between metabolic innovation and large-scale biogeochemical reorganization are 

explored through a series of quantitative models, focusing on the thermodynamics and 

kinetics of mineral reactions under various Earth surface conditions, regional 

oceanographic modeling of surface ocean O2 cycling, and a global sulfur isotope mass 

balance model that explicitly incorporates rare sulfur isotope systematics (33S, 36S) and 

the dynamics of sedimentary recycling on long timescales. Finally, the dynamics of ocean 

ventilation following the initial accumulation of oxygen in the atmosphere are explored 

by combining a large trace metal database with a spatially explicit mass balance model 

that exploits the differing redox behavior and surface cycling of molybdenum (Mo) and 

chromium (Cr). 
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CHAPTER 1 

INTRODUCTION 

 The evolution and ecological success of oxygenic photosynthesis on Earth 

represents a biological and geochemical singularity. This process, although certainly not 

the only variant on the theme of photosynthetic energy conservation (1), has come to 

utterly transform the surface chemistry of the Earth, providing most of the substrates 

involved in planetary metabolism and ultimately fostering the evolution and development 

of large, complex organisms. This process of co-evolution between biological oxygen 

production and the geochemical conditions that have resulted in its accumulation to 

significant levels in the atmosphere is perhaps the defining characteristic of the planet 

Earth, so much so that the spectroscopic observation of significant quantitities of oxygen 

or ozone in a planetary atmosphere is viewed as strong evidence for a surface biosphere 

and is considered a prerequisite for the development of complex life (2-4). 

 Oxygenic photosynthesis if often represented in condensed form as: 

 

! 

CO2 + H2O  "  
hv

{CH2O} + O2 , 
(1.1) 

where hv denotes ~10-12 quanta of photons and {CH2O} is a dramatically oversimplified 

representation of organic matter. It should be noted that the simplicity of the above 

stoichiometric representation belies the incredible biochemical complexity of the task (5-

7). In any case, the ability to perform this reaction has conferred a decided advantage on 

organisms that can manage it, as it releases a tremendous amount of energy and uses as 

its electron donor the ubiquitous water molecule. In contrast, photosynthetic organisms 

that derive their reducing power from other compounds (such as H2S or Fe2+) are of 
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necessity restricted to interface environments of active redox cycling where their electron 

donors are readily available. However, it is the waste product of this process, molecular 

oxygen (O2), that has ultimately given rise to the modern Earth surface. 

 

Figure 1.1. A schematic depiction of the global biogeochemical oxygen cycle. The 
photosynthesis-respiration subcycle is denoted by the grey curved arrows, and although this is 
localized within the ocean in the figure it also occurs extensively on the land surface of the 
modern Earth. The burial of organic matter and sedimentary pyrite results in a net release of O2 to 
the atmosphere (Fb), while the gradual escape of H2 to space results in the accumulation of 
oxidizing equivalents at Earth’s surface. Oxygen is consumed through respiration, oxidative 
weathering (Fw), and through reaction with volcanic (Fv) and metamorphic (Fm) reductants. See 
(8) for an excellent review. 
  

 In order for O2 to accumulate in the atmosphere, however, there must be some 

imbalance between the rate at which is it produced biologically and the rate(s) at which it 

is consumed by other processes (Fig. 1.1). Indeed, if some of the organic carbon 

produced during oxygenic photosynthesis is not removed from the surface system before 

CO2 + H2O              CH2O + O2
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it is respired (or is not channeled through microbial sulfate reduction with the reducing 

equivalents buried as a constituent of sedimentary pyrite), no O2 would persist at Earth’s 

surface regardless of its biological production. As a result, the accumulation of significant 

quantities of O2 in Earth’s atmosphere is reliant on a concert of both biological and 

geochemical processes. An important corollary of this observation is that there may have 

been periods of Earth’s history during which biological oxygen production was taking 

place but the Earth surface remained reducing. In other words, when constructing the 

narrative of biospheric oxygenation there are two primary tie points: (1) the evolution of 

oxygenic photosynthesis; and, (2) the accumulation of biologically produced O2 in the 

atmosphere. 

 

Figure 1.2. A schematic depiction of the evolution of atmosphere-ocean chemistry during Earth’s 
history. The top panel shows estimates of atmospheric O2 level relative to the Present 
Atmospheric Level (PAL). The blue dashed arrow denotes possible accumulation of O2 prior to 
the ‘Great Oxidation Event’ (G.O.E.) at ~2.4 billion years ago (Ga; 9-12). The dotted portion of 
the curve shows a possible drop in atmospheric O2 at ~1.8 Ga (13). The figure is after (14), but is 
a summary of many decades of work. See (15-17) (and references therein) for very elegant and 
much more detailed treatments of this evolutionary trajectory. 
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 It has been appreciated for some time (e.g., 18) that the Earth’s surface has 

become progressively more oxidizing with time, and although there are notable 

exceptions to this view (19, 20) it is now widely held that the oxygenation of the 

atmosphere took place during two geologically rapid periods at the beginning and end of 

the Proterozoic Eon (Fig. 1.2). However, when biological oxygen production emerged is 

much more obscure. Tenable estimates range over nearly a billion years, from the timing 

of the earliest sedimentary record (21) to arguments that oxygenic photosynthesis 

evolved coincident with the initial accumulation of O2 in the atmosphere (22, 23). 

Superimposed on this evolution in atmospheric chemistry are progressive changes in 

ocean chemistry – the evolution of oceanic redox structure and the eventual ventilation of 

the deep ocean (Fig. 1.2). 

 This dissertation explores these issues from a variety of perspectives. In Chapter 

2, empirical data on sedimentary iron (Fe) chemistry and multiple sulfur isotope 

systematics are used to suggest that evidence exists for the biological production and 

non-trivial accumulation of O2 in Earth surface environments significantly prior to the 

conventionally accepted initial accumulation of O2 in the atmosphere [often referred to as 

the ‘Great Oxidation Event’ (24)]. Chapter 3 explores the plausibility of oxygen 

accumulation in the surface ocean beneath a reducing atmosphere, and the notion that 

oxidative processing at Earth’s surface prior to the Paleoproterozoic rise in atmospheric 

O2 could have been localized within the shallow ocean. In Chapter 4, it is suggested on 

the basis of a simple isotope mass balance model that the isotopic signals used to 

establish the timing of atmospheric redox transitions in Earth’s early history, which 
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require an extremely reducing Earth surface, may be subject to a ‘crustal memory effect’ 

such that their long-term recycling would allow the maintenance of such isotopic signals 

despite potentially significant oscillations in atmospheric O2. Finally, Chapter 5 explores 

the evolution of ocean chemistry after the initial accumulation of O2 in the atmosphere, 

by combining an extensive trace metal database with a coupled mass balance approach. 
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CHAPTER 2 

A LATE ARCHEAN SULFIDIC SEA STIMULATED BY EARLY OXIDATIVE 

WEATHERING OF THE CONTINENTS 

 

Preface: 

The contents of this chapter have been published in modified form as: 

 Reinhard, C.T., Raiswell, R., Scott, C., Anbar, A.D., and Lyons, T.W. 2009. A 
 late Archean sulfidic sea stimulated by early oxidative weathering of the 
 continents. Science. 326: 713-716. 
 
 

Introduction: 

 Iron speciation data for the late Archean Mt. McRae Shale provide evidence for a 

euxinic (anoxic and sulfidic) water column 2.5 billion years ago (Ga). Sulfur isotope data 

compiled from the same stratigraphic section suggest that euxinic conditions could have 

been stimulated by an increase in oceanic sulfate concentrations attendant to oxidative 

weathering of sulfide minerals under an O2-poor atmosphere. Variability in local organic 

matter flux likely confined euxinic conditions to mid-portions of the water column on the 

basin margin. These findings challenge the notion that Earth’s deep oceans remained 

continuously and pervasively iron-rich until 1.8 Ga and indicate that euxinic conditions 

may have been common on a variety of spatial and temporal scales both prior to and 

immediately following the rise in atmospheric oxygen. 
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Main Article: 

 The first two billion years of Earth’s history were characterized by little to no free 

atmospheric oxygen (1, 2). A large body of evidence points to a sharp rise in the 

concentration of atmospheric O2 during the Paleoproterozoic between 2.45 and 2.32 Ga 

(1-3), but the history of deep ocean oxygenation is less well known. The deposition of 

banded iron formations (BIF) during the Archean and early Proterozoic (~3.8 – 1.8 Ga) 

has been taken to imply that deep ocean water masses were anoxic and rich in dissolved 

ferrous iron (Fe2+) derived from high temperature weathering of seafloor basalt under low 

oceanic sulfate (SO4
2-) concentrations (4, 5). Reducing and iron-rich (ferruginous) deep 

ocean conditions are thought to have persisted for most of Earth’s early history, although 

a relative paucity of BIF between 2.4 – 2.0 Ga (6) has rendered deep ocean chemistry 

during this period obscure. In any case, the cessation of BIF deposition at ~1.8 Ga is 

generally linked to the accumulation of oxygen in the atmosphere through the eventual 

removal of Fe2+ from the ocean either as ferric (hydr)oxides (7) or as pyrite in euxinic 

basins (8). A corollary of the latter model is that oxidative delivery of sulfate to the ocean 

was not sufficient to remove reactive iron, via microbial sulfide production, before ~1.8 

Ga. However, recent studies of the late Archean Mt. McRae Shale suggest that oxidative 

sulfur cycling may have preceded the Paleoproterozoic rise in atmospheric oxygen (9) 

and that conditions sufficient to authigenically enrich molybdenum (Mo) in marine 

sediments existed at ~2.5 Ga (10). On the modern Earth, significant enrichment of Mo 

into sediments occurs following the conversion of soluble molybdate (MoO4
2-) to 

particle-reactive thiomolybdates (MoO4-xSx
2-) in stable sulfidic environments (11), 
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indicating that the Mo enrichments seen in the Mt. McRae Shale may have resulted from 

the development of a euxinic water column in association with increased oxidative 

transport of crustal sulfur as SO4
2-. 

 In order to examine the possibility of euxinia during the late Archean, we 

analyzed iron mineral speciation in the Mt. McRae Shale (12). The distribution of iron 

among different biogeochemically labile mineral phases (‘highly reactive iron’) can 

reveal local redox conditions (13, 14). Highly reactive iron (FeHR) is defined as the sum 

of pyrite iron (FePY) and iron in phases that are reactive to hydrogen sulfide (H2S) on 

short diagenetic timescales, such as ferric oxides (Feox), magnetite (Femag), and iron 

present as carbonate (Fecarb). In modern sediments from oxic continental margins and the 

deep-sea, FeHR comprises 6-38% of the total sedimentary iron (i.e., FeHR/FeT = 0.06-

0.38); an average FeHR/FeT ratio of 0.26 ± 0.08 defines the modern siliciclastic baseline 

(13). Values for FeHR/FeT that are elevated above this siliciclastic background suggest 

reactive iron input that is decoupled from detrital sources, an indication of iron transport 

and scavenging within an anoxic water column (15). We also look toward total iron 

enrichments (expressed as FeT/Al ratios) as an indicator of water column anoxia (16, 17). 

 If FeHR/FeT and FeT/Al data provide evidence for anoxia, the ratio FePY/FeHR can 

be used to distinguish between anoxic but non-sulfidic conditions and anoxic water 

columns containing free H2S (euxinic). This approach is based on the simple premise that 

under anoxic conditions dissolved Fe2+ and dissolved H2S cannot coexist in abundance in 

solution because of the insolubility of iron sulfide phases, and therefore high values for 

FePY/FeHR indicate H2S-dominated water column chemistry. For confirmation, we also 
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measured degree of pyritization (DOP) as a conservative indicator of iron-limited pyrite 

formation and euxinia (12, 17). The distribution of highly reactive Fe species in the Mt. 

McRae Shale is shown in Figure 2.1, along with FeT/Al, bulk molybdenum (Mo), and 

organic carbon (TOC) concentrations from (10). We focus here on the pyritic and 

organic-rich lower shale interval (LSI) and upper shale interval (USI). Ferric oxides make 

up a small proportion of FeHR for the entire sequence analyzed here, indicating water 

column and/or pore fluid conditions that were reducing with respect to iron (Fig. 2.1). 

Values for FeHR/FeT and FeT/Al are elevated throughout, suggesting that the entire 

sequence was deposited beneath an anoxic water column. In a few instances, FePY/FeHR 

values in the LSI approach a threshold (FePY/FeHR " 0.8) interpreted to reflect euxinia 

when paired with evidence for anoxic deposition (14, 19); however, the average 

FePY/FeHR for this unit (0.55±0.20) suggests a predominance of ferruginous conditions. 

Variations in FeHR within the LSI are governed by differences in Fecarb rather than FePY 

(Fig. 2.S2). These data are consistent with sulfate reduction and pyrite formation within 

or beneath an anoxic water column, but with reactive Fe in excess of dissolved H2S such 

that H2S did not persist in the pore fluids or water column during LSI deposition. 

 The USI shows pronounced enrichment in FeHR, indicating extensive reactive Fe 

scavenging beneath an anoxic water column (Fig. 2.1). Values for FeT/Al, although lower 

than those seen in the LSI and the siderite-facies BIF underlying the upper shale, remain 

elevated. In contrast to the LSI, FePY/FeHR values are persistently high (0.85±0.17), as is 

DOP (0.78±0.23). A strong linear relation between FeHR and FePY for the USI (Fig. 2.S2) 

demonstrates that variations in the amount of FeHR are governed by differences in FePY 
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content and that FeHR is all but completely pyritized. This combination of parameters 

(elevated values for FeHR/FeT, FeT/Al, FePY/FeHR, and DOP) indicates that the water 

column was euxinic for a substantial portion of USI deposition.  

 
Figure 2.1. Stratigraphic profiles for iron speciation data from the ADBP-9 core. Filled 
symbols are the results of we chemical extractions, corrected according to the protocols 
presented in (34). Open symbols represent quantitative XRD results from (34). The dotted 
lines in (a) represent the range of FeHR/FeT values seen in modern oxic continental margin 
and deep-sea sediments (13). The solid green line in (a) represents the mean FeHR/FeT value 
(0.26) for normal (oxic) marine settings (13). The dotted lines in (d) represents FePY/FeHR 
values that are above 0.7 and 0.8. Euxinia is implied when both of these thresholds are 
exceeded and FeT/Al values exceed 0.5. The two dotted lines in (e) reflect average bulk Mo 
enrichments for the Archean (3 ppm; red) and Proterozoic (18 ppm; blue) (18). Data for (e) 
and (f) from (10). 
 

 To examine whether euxinia occurred in association with a transient or secular 

change in the oxidative transport of MoO4
2- and SO4

2- (20), we turn to the sulfur isotope 

composition of syngenetic and early diagenetic pyrite from deep-water facies (shales and 

BIF) of the Neoarchean-Paleoproterozoic (2.7-2.45 Ga) Hamersley Basin (Fig. 2.2). 
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Neoarchean samples below the USI, including those from the LSI and the siderite-facies 

BIF directly beneath the USI, show large "33S values and positive covariation between 

"33S and !34S (Fig. 2.2). This pattern has been hypothesized to reflect a primary 

atmospheric array in the isotopic composition of elemental sulfur aerosols (21). The 

corresponding linearity and large positive !33S anomalies of these data suggest a tight 

isotopic coupling between atmospherically derived reduced sulfur species and 

sedimentary pyrite formation and also indicate that the transfer and mixing mechanisms 

that contributed to the signal ultimately preserved in the sediments were similar on at 

least a basinal scale and through large periods of Archean time (9, 21). 

 The sulfur isotope composition of pyrite in the USI and the overlying Brockman 

BIF shows a different distribution (Fig. 2.2). Values for "33S are attenuated during 

euxinic deposition, with the largest positive "33S values in the USI found in intervals that 

are transitional with the siderite-facies BIF unit below or the overlying carbonate unit. 

The linear array that characterizes the data prior to deposition of the USI is no longer 

evident, and a linear regression through the USI/Brockman data is closely aligned with 

the mass-dependent fractionation array in !34S - !33S space. This shift is accompanied by 

predominantly small negative "33S values and relatively depleted !34S values within the 

USI followed by subdued variability in "33S and a wide spread in !34S values (from -5‰ 

to +35‰) in the overlying Brockman BIF. We interpret this isotopic shift to reflect 

increased SO4
2- availability during deposition of the USI and Brockman BIF 

accompanied by mixing of photolytically produced sulfur and isotopically normal crustal 

sulfur oxidatively mobilized under an atmosphere that remained O2-poor (12). A transient 



!

! %(!

or secular increase in the oxidative transport of MoO4
2- and SO4

2- during USI deposition 

is also supported by the contrasting strong non-mass-dependent (NMD) signal (21) and 

essential lack of Mo enrichment (18) preserved in pyritic shales of the Jeerinah Fm. 

underlying the Mt. McRae – analogous to the signals seen in the LSI and the siderite-

facies BIF beneath the USI. The persistence of distinct NMD anomalies, despite the 

overall shift in isotopic arrays, requires the formation and burial of sulfur with NMD 

isotope composition throughout this period. Ground-level atmospheric O2 concentrations 

of less than 2 ppmv (i.e., below 10-5 the present atmospheric level) are therefore implied 

(27), and concentrations throughout most of the troposphere may have been substantially 

lower than this (27, 28). This assertion is also supported by "33S/"36S relationships (9). 

 Combined, the high-resolution Fe speciation, Mo enrichment, and sulfur isotope 

data for the Mt. McRae Shale indicate the development of euxinia during deposition of 

the USI and that these conditions were contemporaneous with a change in sedimentary 

sulfur isotope systematics. However, the stratigraphic position of the USI, which is 

interbedded on a meter scale with the underlying siderite facies BIF near their contact and 

is conformably overlain by the Brockman BIF, coupled with FeT/Al ratios that are 

persistently and significantly elevated above crustal values (Fig. 2.1), suggest that 

hydrothermal iron fluxes to the deep basin were important at this time. Our interpretation 

therefore implies a water column structure that would allow for both the accumulation of 

dissolved H2S and the subsequent or coeval deposition of voluminous BIF.  
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Figure 2.2. Sulfur isotope data for deep water Hamersley Basin pyrite samples spanning 2.7 
to 2.46 Ga, displayed as !34S vs. !33S (a) and !34S vs. !33S (b). Pre-USI data are from the 
Jeerinah Formation and lower Mt. McRae Shale (21, 22); the LSI and siderite-facies BIF 
beneath the USI (9); and the Marra Mamba BIF (22), which was deposited between the 
Jeerinah Fm. and the Mt. McRae Shale. USI/Post-USI data are from the USI (9) and the 
overlying Brockman BIF (BrIF) (22, 23). The line labeled ‘MDF’ in (a) is the mass-
dependent fractionation line, defined as !33S = 0.515 * !34S (24). The grey box in (b) 
represents the range of !33S values attainable by mass-dependent processes (25, 26).  
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 To reconcile these observations, we postulate locally enhanced microbial H2S 

production, stimulated by organic matter (OM) delivery and facilitated by an increased 

flux of dissolved SO4
2- to the basin. Local loading of OM would have fueled vigorous 

sulfate reduction along the basin margin, resulting in an oxidant minimum zone in which 

dissolved H2S accumulated and quantitatively removed dissolved Fe2+ from the water 

column (Fig. 2.3). Euxinia would have expanded or contracted periodically as a function 

of the balance between reactive Fe input and OM flux, with the possibility of dissolved 

H2S transiently accumulating on a basin scale or receding beneath the sediment-water 

interface. This lateral redox structure is similar to the basin-scale lithofacies framework 

hypothesized for contemporaneous strata from the South African Transvaal basin (30), 

indicating that such conditions may have been common during this period.  

 Although OM delivery was the proximate cause of euxinia, we propose that it was 

the increased availability of SO4
2- attendant to oxidative weathering that ultimately 

allowed microbial H2S production to overwhelm reactive Fe, at least locally, during USI 

deposition. Elevated total sulfur concentrations in this interval, coincident with 

significant increases in TOC and high FeT values (9, 10), also point to increasing 

availability of water column SO4
2- such that microbial sulfate reduction was able to keep 

pace with substantial OM flux and relatively high reactive Fe availability. It is possible 

that mid-water column euxinia existed subsequent to USI deposition, with the 

stratigraphic transition to Brockman BIF recording a change in water depth rather than a 

temporal change in basin chemistry. 
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Figure 2.3. Schematic representation of the Hamersley Basin during the deposition of the 
upper Mt. McRae Shale (USI). Oxidative delivery of SO4

2- and MoO4
2-, combined with a 

high local organic matter flux, resulted in the accumulation of free H2S in the water column 
in excess of dissolved Fe2+ (euxinia), supporting authigenic Mo enrichment. Atmospheric O2 
concentrations below 2 ppmv could have driven the enhanced oxidative weathering 
recorded in the USI but would still have allowed for SO2 photolysis and the preservation of 
NMD sulfur isotope anomalies (12). Atmospheric photochemistry simplified from (29). 
  

 Our findings suggest that weak oxidative forcing could have stimulated the 

development of euxinia 50-100 million years before the Paleoproterozoic rise in 

atmospheric oxygen and that stable and persistent euxinia could have developed at least 

locally, and perhaps on a much larger scale, even within BIF-forming basins. Sulfur 

isotope data indicate that the weathering flux of SO4
2- to the ocean increased substantially 

following the rise in atmospheric oxygen between 2.45 and 2.32 Ga (8, 31). The lack of 

BIF between 2.4 and 2.0 Ga may therefore reflect the frequent or sustained development 

of euxinia within Paleoproterozoic basins (1), presaging the possibly widespread and 

protracted development of similar oceanographic conditions hypothesized previously for 



!

! %,!

the Mesoproterozoic (~1.8 – 1.0 Ga) (8). Constraints on deep ocean redox during this 

intervening period are sparse, but existing data intimate that euxinic deep basins were 

much more common than ferruginous ones between 2.4 and 2.0 Ga (18).  

 More generally, we argue that deposition of BIFs represented episodic pulses of 

reducing power from Earth’s interior (6) rather than persistent deepwater conditions. 

Significant spatial variability in water column chemistry is indicated for intervals of BIF 

deposition, with intervening periods throughout the Archean and Paleoproterozoic during 

which at least portions of the water column may have been euxinic. Vacillation between 

euxinic and ferruginous conditions would have favored the early evolution and ecological 

expansion of a variety of anoxygenic photosynthetic metabolisms in pelagic 

environments, presaging the evolution of oxygenic photosynthesis (32). Expressions of 

biological oxygen production (such as those seen in the upper Mt. McRae and Brockman 

BIF) would then have varied with the extent to which episodic or sustained pulses of 

reductants from the Earth’s interior would have buffered photosynthetic oxygen, 

contributing to the protracted nature of Earth surface oxygenation during the Archean and 

Proterozoic (33).  

 

Supplementary Information: 

Geological Setting: 

 Drill core ABDP-9 intersects a well-preserved, laminated interval of mixed 

lithologies that accumulated below wave base and experienced only mild regional 

metamorphism (prehnite-pumpellyite facies to <300ºC) (9, 10). The Mt. McRae Shale, 
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the focus of this study, is underlain stratigraphically by the Mt. Sylvia Formation and is 

overlain by the Dales Gorge Member of the Brockman Iron Formation (Fig. 2.S1). The 

uppermost portion of the ABDP-9 core consists of carbonate with gray/black shale 

interbeds, which grade down core into pyritic carbonaceous shale interbedded with 

organic-rich marl and ~20 m of pyritic black shale (the upper shale interval or USI). This 

carbonaceous shale interval contains, on average, 4.3 weight % (wt%) pyrite sulfur and 

9.1 wt% total organic carbon (TOC) (9, 10). The dominant lithology changes down core 

at ~155m, passing from black pyritic shale into siderite-facies banded iron formation 

(BIF). Below 173m, the lithology transitions again into black pyritic shale interbedded 

with carbonate/marl. This lower shale interval (LSI) is also rich in pyrite sulfur and TOC, 

averaging 2.5 wt% and 3.9 wt%, respectively (9, 10).  

 All three facies are consistent with reducing bottom waters during deposition 

(anoxic and iron-rich [ferruginous] or anoxic and sulfidic [euxinic]) and the pyritic shale 

units also suggest extensive sedimentary sulfate reduction and the potential for sulfidic 

pore fluids and/or bottom waters. We sampled at 0.2m to 2m intervals for high-resolution 

analysis of sulfur isotopes (9), trace-metal content (10), and Fe-speciation analysis (this 

study). The latter was undertaken to further explore the possibility of euxinic (anoxic and 

sulfidic) conditions. Sampling specifically avoided pyrite nodules and prominent pyrite 

laminae, as these are likely to skew Fe speciation results away from primary depositional 

chemistry. Such features are most abundant near the top of the USI transitioning into the 

overlying carbonate and are not present within the interval of extended euxinia discussed 

in the main text.  
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Figure 2.S1. Stratigraphic column highlighting the Mt. McRae Shale. Stratigraphic details 
for the Fortescue and Hamersley groups and available dates are from (40). The detailed 
stratigraphy of the Mt. McRae Shale is from (9). The upper Mt. McRae Shale yields a Re-
Os age of 2501.1±8.2 Mya (10), consistent with previous age estimates.     
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Analytical Methods: 

 The speciation of highly reactive iron (FeHR), which comprises pyrite iron and 

other iron phases that will react with sulfide to form pyrite in the water column or during 

early diagenesis, was obtained via a calibrated sequential extraction protocol (14, 35). 

Briefly, ~100 mg of sample powder was first treated with a buffered sodium acetate 

solution, which extracts carbonate-associated Fe (either siderite, ferroan calcite, and/or 

the dolomite-ankerite solid solution series). This fraction is here referred to as Fecarb. 

Samples were then treated with a sodium dithionite solution. Fe obtained from this 

extraction step, here referred to as Feox, consists of “reducible” iron oxide phases, or iron 

oxides such as goethite and hematite that are reactive to hydrogen sulfide (H2S) on early 

diagenetic timescales. Magnetite, a mixed-valence iron oxide that does not react with 

dithionite, was extracted with an ammonium oxalate solution. Sequential extracts were 

analyzed on an Agilent 7500ce ICP-MS after 100-fold dilution in trace-metal grade 2% 

HNO3. Pyrite iron was calculated (assuming a stoichiometry of FeS2) based on wt% 

sulfur extracted during a two hour hot chromous chloride distillation followed by 

iodometric titration (36).  

 The total amount of highly reactive iron, or FeHR, is defined as FeHR = Fecarb + 

Feox + Femag + FePY. Data are reported as the ratio of a particular reactive Fe phase to the 

total amount of highly reactive Fe (e.g., Fecarb / FeHR). Analytical data are detailed in 

Table S1. We note that a previous study of Fe speciation in the Mt. McRae Shale (14) did 

not find evidence for sulfidic conditions. However, this study was performed on different 

core material and was not performed at the same resolution and within the same detailed 
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context, and so it is probable that these data record a period of Mt. McRae deposition that 

was not euxinic (i.e., analogous to the LSI or the siderite-facies BIF beneath the USI of 

this study). Sulfur isotope analyses are described in detail elsewhere (9, 21-23). 

 As a complement to the sequential extraction data, we measured Degree of 

Pyritization (DOP), defined as: 

 

! 

DOP =
FePY

FeHCl + FePY
 ,

 
(2.1) 

where FeHCl is iron extracted by boiling ~100 mg of sample powder for one minute in 

concentrated HCl (37) and measured using conventional spectrophotometric techniques 

(38). FePY is determined as above. DOP provides a conservative estimate of the degree to 

which reactive Fe has been converted to pyrite because FeHCl includes some amount of 

poorly reactive silicate Fe that is unreactive with hydrogen sulfide even on very long 

timescales (39). In addition to detrital contributions, this fraction can include both 

authigenic iron-silicates formed during diagenesis and iron-silicates possibly formed at 

the expense of other highly reactive iron phases during metamorphism. Significantly 

elevated FeT/Al values within the LSI and the siderite-facies BIF, combined with 

relatively low (though diagnostically anoxic) values for FeHR/FeT, may indicate that the 

FeHR extraction methodology is not complete for samples with unusually high 

concentrations of crystalline siderite. This relationship could also result from authigenic 

and/or metamorphic formation of Fe silicates. Because the DOP methodology 

quantitatively mobilizes siderite in addition to all other reactive Fe phases, as well as 

authigenic Fe silicates and a portion of other poorly reactive silicate phases (39), it 
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ensures conservative assessment of euxinia. We note that, according to DOP values, the 

pattern that we observe does not change but becomes even more striking if there is indeed 

residual siderite missed by our Fecarb extraction step. 

 

 
 
Figure 2.S2. (a) Pyrite iron (FePY) and (b) carbonate iron (Fecarb) relative to concentrations 
of highly reactive iron (FeHR) in the USI and LSI of the Mt. McRae Shale. In the USI, 
variations in FeHR result from variations in pyrite Fe content, with the regression slope 
suggesting virtually complete pyritization of FeHR. In the LSI, variations in FeHR more 
closely track variations in carbonate Fe, indicating reactive Fe in excess of dissolved sulfide 
during deposition. 
 

Oxidative Mobilization of Crustal Sulfur Under Low Atmospheric pO2: 

 The reactions governing the oxidative dissolution of pyrite in low-temperature 

aqueous environments can be summarized as (40, 41):
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The importance of O2 in this process is thought to be tied more to the regeneration of Fe3+ 

(Eq. 2.3) than to direct oxidation of pyrite (Eq. 2.2). Indeed, this reaction is often thought 

of as the rate-limiting step in pyrite oxidation, particularly at low pH (41), and is 

necessary to sustain pyrite oxidation at circumneutral pH given the low solubility of Fe3+ 

under such conditions (42, 43). Despite this apparent dependence on O2, any process 

capable of catalyzing Fe3+ regeneration could, in principle, sustain oxidative dissolution 

of pyrite. One additional possibility, and importantly one that would not require 

environmental O2, is anoxygenic photosynthetic Fe2+ oxidation (44). However, the 

standard electrode potentials of both the Fe(OH)3/Fe2+ and Fe3+/Fe2+ couples increase 

sharply with decreasing pH and approach or exceed the midpoint potentials of known 

anoxygenic photosynthetic reaction centers below pH ~ 5 (45-47). Indeed, anoxygenic 

photosynthetic iron oxidizers studied to date tend to show optimum growth in a very 

narrow pH range of ~6.5-6.8 (46, 48, 48).  

 Although the buffering activity of silicates in terrestrial environments that support 

sulfide mineral oxidation is not very well understood (50), the timescales of sulfide 

oxidation and acidity generation are generally thought to be fast relative to the dissolution 

rates of crustal silicates (50-52), which should result in limited buffering capacity at the 

site of weathering. If we assume an Archean rainwater pH of ~ 4.7 [corresponding to a 

conservative estimate of atmospheric pCO2 ~ 0.03 bar (53, 54); but see (55)] and a crustal 

sulfide budget dominated by igneous granitic rocks, the local pH of the weathering 

environment would likely have been acidic, perhaps strongly so, rendering photosynthetic 

Fe2+ oxidation energetically unfavorable given available constraints. Although anaerobic 
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Fe2+ oxidation can also be coupled to reduction of nitrate (NO3
-) (56, 57) and Mn(IV)-

oxides (58), both processes should require environmental O2 to catalyze oxidant 

generation. We therefore conclude that the most parsimonious mechanism for 

regenerating Fe3+ and sustaining oxidative dissolution of pyrite is through reaction with 

environmental O2. 

 Building on the approach used in (10), we further explore the plausibility of 

oxidation of crustal sulfides under an atmosphere still sufficiently reducing to support the 

production and preservation of NMD-S isotope anomalies (pO2 < 10-5 PAL; 27). We use 

pyrite in the following calculations to represent igneous crustal sulfides owing to the 

availability of kinetic data (40, 59). We follow the rate law (40): 

 

! 

r =10"8.19(±0.10) mDO
0.5(±0.04 )

mH+
0.11(±0.01)  ,

 
(2.5) 

where r is the pyrite destruction rate (mol m-2 s-1). Dissolved oxygen (DO) concentrations 

in solution are estimated assuming equilibration of a weathering fluid with various values 

of atmospheric pO2 using a Henry’s Law constant (KH) at 25ºC of 1.26 x 10-3 mol L-1 bar-

1 (60). We assume that the meteoric environment where chemical weathering occurred 

was sufficiently dilute for Henry’s Law to apply. We also assume that Earth’s 

atmospheric pressure has remained constant. Although the oxidation kinetics are sensitive 

to changes in pH, doubling the temperature to 50ºC (i.e., KH = 9.32 x 10-4 mol L-1 bar-1) 

has a negligible effect. The calculations assume a cubic pyrite grain with a surface area of 

6 x 104 #m, typical for fine-grained igneous sulfides. 
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Figure 2.S3. Dissolution kinetics of a cubic pyrite crystal under various atmospheric oxygen 
concentrations and pH conditions. Systems supporting pyrite oxidation can have a wide 
range of pH values as a result of mineral buffering, but will likely be below neutral once 
sulfide oxidation has initiated (see text). The grey box encompasses one plausible range of 
atmospheric oxygen concentrations at ground level (~0.002 – 1ppmv) during deposition of 
the upper shale interval. 
  

 Figure 2.S3 shows the dissolution times of pyrite as a function of pO2 and pH. At 

hypothesized prebiotic concentrations of atmospheric O2 (pO2 < 10-13 PAL; 61) pyrite 

dissolution is extremely slow (on the order of ~100 million to 1 billion years or more) 

regardless of pH. However, even at atmospheric O2 concentrations below 10-5 PAL, a 

pyrite grain with a surface area of 6 x 104 #m will dissolve on timescales of tens of 

thousands of years. Given available constraints on the depositional time represented by 
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the USI (~10-15 million years; 10), it is plausible that igneous continental sulfides would 

dissolve oxidatively at atmospheric oxygen concentrations of ~10-5-10-8 PAL on 

timescales that are a small fraction of the shale’s total duration (Fig. 2.S3). As pointed out 

in (10), these are lower limits because they neglect crystal defects and microbial activity, 

both of which would accelerate dissolution. In any case, the oxidative mobilization and 

delivery of sulfate and molybdate to the ocean during deposition of the USI would 

require biological oxygen production but could have reasonably occurred beneath an 

atmosphere with pO2 still low enough to favor the production of preservation of NMD-S 

anomalies. 

 

Sulfur Isotope Compilation: 

 We conclude that the USI captured a coupled oxidative pulse of MoO4
2- and SO4

2- 

to the Hamersley Basin. However, authigenic Mo enrichments require the accumulation 

of free H2S as well as a source of dissolved Mo. It is therefore also possible that an 

oxidative source of MoO4
2- and SO4

2- existed prior to the deposition of the USI, and its 

geochemical expression was delayed by the persistence of ferruginous conditions and a 

lack of free H2S. In order distinguish between these two scenarios, we examined the 

sulfur isotope composition of Hamersley Basin sulfides above and below the euxinic 

interval recorded in the USI. We hypothesized that a transient or secular change in the 

flux of isotopically normal crustal SO4
2- as a result of oxidative weathering should result 

in the attenuation of non-mass-dependent (NMD) sulfur isotope anomalies still preserved 
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in authigenic sulfides and that this could be coupled to an increased variability in !34S as 

a result of increased SO4
2- availability.  

 Data for our sulfur isotope compilation derive from Hamersley Basin sulfides 

deposited between ~2700 and 2460 Ma in deep basinal sediments (shales and iron 

formations) (9, 21-23). Data from (21) include samples from the Mt. McRae Shale, but 

these are grouped here with the “Pre-USI” data following the correlation presented in (9). 

Similarly, data from the lower Mt. McRae Shale of (22) are grouped with “Pre-USI” data. 

As discussed in the text, our target is the temporal pattern at relatively high resolution 

through the Neoarchean period of Hamersley Basin deposition.  

 Comparison of sulfur isotope systematics between basinal facies and shallow 

carbonate facies can be problematic because of depth-related heterogeneities in the 

isotopic composition of different reservoirs, particularly if seawater sulfate 

concentrations remained very low, and because the complexities of water 

column/diagenetic Fe-S cycling are less well understood for carbonates. Neoarchean 

carbonate environments are likely to display significant differences in Fe-S systematics 

relative to coeval shale and iron formation facies deposited in deep basinal environments 

as a function of reactive Fe limitation, sediment accumulation rate, and perhaps localized 

biological oxygen release (62, 63). We therefore focus on deep basinal facies (laminated 

shales and iron formations) so that temporal isotopic changes are not obscured by 

differences in Fe-S systematics within markedly different depositional environments. 

 We note that some carbonate facies data overlying the USI display relatively large 

!33S values (approaching 4‰ for samples with SF6 constraints [9]) and occupy a space in 
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the !34S – !33S field that is unusual for Archean pyrites (9). These atypical samples have 

been interpreted previously to reflect multi-stage cycling of elemental sulfur during the 

initial widespread manifestation of the oxidative biological sulfur cycle within the surface 

ocean (9), and some of the larger !33S values may suggest temporal fluctuations in the 

intensity of oxidative sulfate delivery. However, the dominantly mass-dependent signal 

preserved in the Brockman Iron Formation, combined with the essential lack of large 

!33S values after ~2480 Ma, suggests that the sulfur isotope shift we observe was broadly 

unidirectional within the Hamersley Basin and perhaps globally. Again, because of such 

complications, we have focused our temporal comparison on like facies over a relatively 

narrow time interval. 

 Mesoarchean samples from the Hamersley Basin lying well below our intervals of 

interest have also been excluded because recent studies suggest that there is a significant 

change in sulfur isotope systematics related to variations in atmospheric transparency to 

UV (64), atmospheric oxidation state (65), or photochemical shielding of SO2 by an 

atmospheric organic haze (66), among other possibilities (67). The decline in !33S values 

during the Mesoarchean appears to be a robust empirical result but is not well 

understood. We therefore elected to focus on samples deposited in closer temporal 

association with the ABDP-9 material. Data from other Neoarchean basins were also not 

included because available age constraints do not allow for meaningful correlation at the 

stratigraphic resolution afforded by the ABDP-9 core and associated Hamersley Basin 

units. Their inclusion would also be peripheral to the primary purpose of the compilation 

– that is, to demonstrate increased and possibly sustained O2-dependent delivery of 
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continental sulfur during and following deposition of the USI relative to the subjacent 

strata. 

 

Alternative Hypotheses for the Observed Sulfur Isotope Pattern: 

 Atmospheric photochemical models indicate that the magnitude of NMD-S 

anomalies should also be influenced by atmospheric CH4 concentrations (28) and 

volcanic SO2 outgassing rates (21, 68). It is plausible, then, that the pattern we note for 

the late Archean Hamersley Basin resulted from either (1) a decrease in atmospheric CH4 

concentrations such that elemental sulfur aerosols could no longer be produced and 

exported efficiently from the troposphere or (2) a change in volcanic SO2 outgassing rates 

occurred, which caused an attenuation in !33S values. In the first case, the most obvious 

mechanism for a decrease in atmospheric CH4 would be an increase in available oxidants 

(in particular SO4
2-) that would either directly (through consumption; 69) or indirectly 

(through competition for organic substrate; 70) act as a negative feedback on biological 

CH4 production. However, distinct NMD-S anomalies persist during and subsequent to 

the deposition of the USI, suggesting that the requisite tropospheric CH4 concentrations 

for the generation of elemental sulfur aerosols were met and that atmospheric O2 

concentrations were still extremely low. Further, a decline in biogenic CH4 flux to the 

atmosphere as a result of increased oceanic SO4
2- concentrations would still be consistent 

with our overarching model (i.e., increased oxidative transport of crustal sulfur). In the 

second case, model predictions indicate that the magnitude of NMD-S anomalies 

generated in the atmosphere should vary directly with pSO2 as a function of varying rates 



!

! '%!

of volcanic SO2 outgassing (68). We can think of no reason to imagine a secular decrease 

in rates of volcanic SO2 outgassing during the deposition of the USI and the overlying 

Brockman Fm. Indeed, this period is thought to correspond to the emplacement of 

subaerial (33) and submarine (71) large igneous provinces and the associated deposition 

of voluminous BIF, indicating that volcanic SO2 outgassing rates, if variable, may have 

been elevated rather than attenuated. 
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CHAPTER 3 

OXIDATIVE WEATHERING ON THE EARLY EARTH 

 

Preface: 

The contents of this chapter represent a manuscript in preparation for submission to the 
journal Chemical Geology. This is reflected in the formatting, which includes numbered 
section headings throughout the article. 
 

Introduction: 

 Recently accumulating evidence suggests that the biological production of oxygen 

in Earth’s surface oceans preceded the initial accumulation of large amounts of oxygen in 

the atmosphere by 100 million years or more. However, the potential effects of oxygen 

production on surface ocean chemistry have remained little explored, and questions 

persist regarding both the potential role of oxidants other than molecular oxygen and the 

locus of oxidation of crustal material (i.e., subaerial and/or submarine settings). Here, we 

revisit the notion of transient and/or spatially restricted ‘oxygen oases’ in the Archean 

surface ocean by employing a simple steady-state box model of the surface ocean in a 

coastal upwelling system, and explore the plausibility that such a system could support 

the widespread oxidation of reduced crustal minerals. We find that although it is possible 

to establish strong air-sea gas exchange disequilibrium with respect to O2, there is an 

apparent timescale mismatch between the kinetics of oxidative dissolution and the rate at 

which reduced minerals delivered physically to shallow marine sediments will be buried 

below the zone of oxidant penetration. Estimated dissolution timescales compare more 

favorably with typical timescales of soil development, despite the much lower dissolved 



!

! '-!

oxygen concentrations inferred for a subaerial environment at gas exchange equilibrium 

with atmospheric pO2. We suggest that, although the production and accumulation of 

dissolved O2 in the Archean surface ocean is probable under certain conditions and 

should be explored as a biogeochemical agent, it is unlikely that extensive oxidative 

weathering of chalcophile elements such as Mo, Re, and S occurred within the marine 

realm. 

 

Main Article: 

1. INTRODUCTION 

 The evolution of oxygenic photosynthesis has dramatically reshaped the 

chemistry of the surface Earth, and the presence of significant quantities of O2 in the 

atmosphere and ocean now drives the fundamental dynamics of nearly all quantitatively 

significant biogeochemical cycles (C, S, P, N, Fe). Whether by direct consumption 

through the metabolic demands of large, complex organisms, or through the recycling of 

essential substrates within microbial ecosystems, biologically produced O2 provides 

nearly all of the substrates used in metabolic electron transfer on a global scale. Although 

it is widely accepted that the partial pressure of O2 in Earth’s atmosphere has increased 

through time (with attendant, although somewhat complex, changes in ocean ventilation), 

there is still much debate surrounding the timing of the emergence of oxygenic 

photosynthesis and little is known about the detailed tempo and mode with which this 

metabolic innovation came to shape early Earth surface chemistry. 
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 Despite arguments that have suggested the evolution of cyanobacterial oxygenic 

photosynthesis as early as ~3.8 Ga (1), perhaps the most compelling arguments emerged 

through the examination of solvent-extractable lipid biomarker records (2-4). Subsequent 

work has suggested that this early record resulted from later migration (5), calling the 

syngeneity of the biomarkers into question. This provided ‘negative’ support for the view 

that the earliest compelling evidence for oxygenic photosynthesis is the initial rise in 

atmospheric pO2 during the Paleoproterozoic (e.g., 6), presently constrained by the rare 

sulfur isotope record to be between ~2.45 – 2.32 Ga (7-9). In contrast, a number of recent 

studies have presented geochemical evidence suggesting non-trivial oxidative mobility of 

a number of different elements typically stored in the crust as reduced phases and most 

soluble as oxyanions (MoO4
2-, ReO4

-, CrO4
2-, SO4

2-, NO3
-), arguing for the presence of 

oxygenic photosynthesis on a reducing Earth surface significantly prior to the 

Paleoproterozoic rise in pO2 (10-17). Arguments have also been presented based on C-S-

Fe systematics without resort to geochemical evidence for oxidative mobilization (18). 

 Taken together, these results suggest the possibility that oxygenic photosynthesis 

may have evolved significantly prior to the first significant rise in pO2 recorded during 

the Paleoproterozoic, both with and without (e.g., 18) exerting geochemically significant 

effects on Earth’s surface. However, strictly speaking such patterns only require 

mobilization and transport under conditions that are oxidizing with respect to the element 

in question, with no a priori necessity for the presence of biologically produced O2. In 

addition, the aforementioned studies generally do not claim to distinguish between a 
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subaerial and submarine weathering system – in other words, is the mobilization process 

occurring in shallow ocean sediments or in the subaerial realm?  

 The latter distinction may seem somewhat esoteric, but has potentially important 

implications for our understanding of the detailed pattern of surface Earth oxygenation. If 

the process is dominated by accumulation of O2 (or other oxidants) in the surface ocean 

on a broad scale, this suggests a more nuanced Earth surface redox structure than most 

models provide (17), and raises questions about sea-air gas exchange and the magnitude 

of disequilibrium that can feasibly be sustained in communication with a strongly 

reducing atmosphere. On the other hand, a subaerial mechanism would have an entirely 

different set of implications. For example, most 1-D photochemical models suggest that 

when pO2 is below ~10-5 PAL it is not well mixed within the atmosphere (19), raising 

questions regarding the physicochemical and temporal dynamics necessary to sustain 

subaerial oxidative mobilization. Further, if the oxidant is not in the gas phase it would 

presumably need to be generated in-situ, which may provide information about the 

evolution of other chemosynthetic metabolisms or inorganic surface chemistry in 

terrestrial settings. 

 In what follows, we discuss the potential of oxidants other than O2 to drive the 

observed patterns in the late Archean record, and suggest that although it is difficult to 

rule out alternative oxidants in every case it is by far most parsimonious to hypothesize 

that the active oxidant is molecular oxygen. We then revisit the notion of spatially and/or 

temporally restricted accumulation of O2 in the surface ocean (‘oxygen oases’; 20), as a 

first-order basis for evaluating the plausibility of oxidative mobilization in shallow 
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marine sediments. This is followed by a comparison of what we can infer about the 

timescales of mobilization, transport and removal from the surface system in subaerial 

and submarine systems.  

 

2. ALTERNATIVE OXIDANTS 

 When considering the mobilization of Mo, Re, and S as oxyanions, one must 

consider the oxidative weathering of sulfide mineral phases in sedimentary and crustal 

rocks. The majority of empirical and laboratory data available are for pyrite (FeS2), the 

most abundant metal sulfide in Earth’s crust (21), and we use pyrite here and in the 

treatment to follow as a ‘proxy’ for metal sulfide phases. We emphasize that such an 

approach will be necessarily revised as more field and laboratory data for other metal 

sulfide phases become available. From a thermodynamic standpoint, several oxidants 

other than O2 could be invoked to promote oxidative dissolution of sulfides, including (in 

order of reducing oxidation potential) nitrate (NO3
-), manganese oxide phases (denoted 

here as MnO2), and ferric iron (Fe3+), either in dissolved or mineral form. These are each 

discussed in turn. 

 

2.1. Nitrate (NO3
-) 

 Microbially catalyzed oxidation of FeS2 using NO3
- has been suggested for 

aquifer systems and anoxic groundwater sediments (22-24) and can be depicted as: 

 

! 

5FeS2 +14NO3
" + 4H+ #7N2 +10SO4

2" + 5Fe2+ + 2H2O .
 

(3.1) 
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There are two principal problems with invoking such a mechanism as the driving force 

for Archean sulfide oxidation. The first is empirical – field studies in modern bioturbated 

sediments monitoring the dissolution of tracer-marked 55FeS2 strongly suggest that 

although both FeS and FeS2 can be efficiently oxidized by MnO2, FeS2 is not oxidized 

with NO3
- or amorphous ferric oxides (25,26). We return to MnO2 and ferric oxides 

below. The second is a priori – the generation of significant quantities of NO3
- would 

appear to require, either directly or indirectly, the presence of molecular oxygen in the 

environment. Luther et al. (27) suggested the possibility of anaerobic NH4
+ oxidation 

using MnO2 as an electron acceptor, with one variant of this process yielding NO3
-: 

 

! 

NH4
+ + 4MnO2 + 6H+ "4Mn2+ + NO3

# + 5H2O .
 

(3.2) 

We note that other possible stoichiometries would yield N2 rather than NO3
-. However, 

observational evidence to support such a mechanism is, at present, controversial. Aller et 

al. (28) invoke it to explain certain features of pore water chemistry from the Panama 

Basin, and Hulth et al. (29) suggest this process is occurring in sediments from Long 

Island Sound but is masked by rapid NO3
- consumption through denitrification. However, 

a 15N-tracer study of anoxic NH4
+-rich coastal marine sediments containing ~3 wt% 

MnO2 and reactive oxidized Mn to depths of greater than 10cm failed to provide any 

evidence of the process occurring (30). In short, although this mechanism is 

thermodynamically feasible, it awaits concrete demonstration of quantitative 

environmental significance and has not been shown to operate in modern environments in 

which it should be most favorable. Further, it would still suffer from the problem that 
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significant MnO2 production would itself seem to require the presence of O2 in the 

environment (discussed below). 

 

2.2 Manganese oxides (MnO2) 

 The oxidative dissolution of FeS2 by manganese oxide phases is well known (25, 

26, 31). This can be shown as: 

 

! 

FeS2 + 7.5MnO2 +11H+ "  Fe(OH)3 +2SO4
2# + 7.5Mn2+ + 4H2O .

 
(3.3) 

Alternative stoichiometries may yield elemental sulfur (S0) rather than sulfate (25). The 

generation of manganese oxides is conventionally assumed to require O2. A typical 

mechanism (ignoring Mn3+ production and/or disproportionation for simplicity) is: 

 

! 

2Mn2+ +O2 +2H2O "  2MnO2 + 4H+ .
 

(3.4) 

In modern environments, this process is microbially catalyzed, and the abiotic oxidation 

of Mn2+ by O2 is extremely slow (32). While it is thermodynamically plausible for NO3
- 

to serve as an oxidant for Mn2+, we are aware of no experimental or field evidence for 

this process. In any case, this mechanism would be no more satisfactory than oxidation 

using NO3
- – in other words, both mechanisms are mutually dependent on each other in 

order to generate the necessary electron acceptor, and the only oxidant plausibly available 

at Earth’s surface in sufficient quantities that can short-circuit this dependence is O2. 

 

2.3 Ferric iron (Fe3+) 

 In marine sediments, there is sound evidence from field studies suggesting that 

Fe3+ phases will not serve as an oxidant for FeS2 (25, 26, 31). In low-temperature 
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subaerial weathering environments the oxidative dissolution of FeS2 can be summarized 

as (33, 34): 

 

! 

FeS2 +
7
2

O2 + H2O "Fe2+ + 2SO4
2# + 2H+ ,

Fe2+ +
1
4

O2 + H+ "Fe3+ +
1
2

H2O ,

FeS2 +14Fe3+ + 8H2O "15Fe2+ + 2SO4
2# +16H+ .

 

(3.5) 

(3.6) 

(3.7) 

 
The primary role of O2 in environments supporting sulfide oxidation is conventionally 

thought to be the regeneration of Fe3+ from Fe2+, with Fe3+ serving as the ‘primary’ 

oxidant. Iron provides an interesting contrast to other potential oxidants, because any 

process that can regenerate Fe3+ with sufficient speed and efficiency should in principle 

be able to sustain sulfide mineral oxidation in subaerial systems. 

 The sustained regeneration of Fe3+ could proceed in an anoxic system at the 

expense of NO3
- (35, 36), MnO2 (37), through UV photooxidation (38, 39), and through 

anoxygenic photosynthesis with Fe2+ as an electron donor (40). The first two possibilities 

require the production and accumulation of NO3
- and MnO2, which is discussed above 

and will not be considered further here. Photooxidation of Fe2+, during which dissolved 

Fe2+ species absorb short-wave solar radiation (200-400 nm) and are oxidized to 

dissolved Fe3+ species that are subsequently hydrolyzed and precipitated as amorphous 

Fe oxides, has been shown to occur under acidic conditions and at circum-neutral pH 

(39). This mechanism has been discussed by many authors as a possible anoxic pathway 

to the formation of banded iron formations (BIFs) during the Archean (39, 41-43). 
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Anoxygenic photosynthesis could also promote the regeneration of Fe3+, and has been 

presented as alternative catalyst for the deposition of BIFs (44, 45) 

 Although it now seems unlikely that a photooxidation mechanism would be 

quantitatively important against other Fe2+ loss processes in marine settings (e.g., 46), we 

should consider whether this process could drive the oxidative dissolution of sulfide 

minerals in subaerial environments. This is difficult to evaluate with any certainty, but 

this mechanism should be operative at any period of Earth’s history during which ozone 

column depth was insufficient to prevent short-wave radiation from reaching ground 

level. Even at the highest estimated pO2 values for the Archean atmosphere, O3 

production should be minimal (19, 47, 48), indicating that, if operative and quantitatively 

significant, regeneration of Fe3+ through photooxidation in subaerial settings should have 

been ubiquitous. However, sulfidic black shales of the ~2.7 Ga Jeerinah Formation show 

no authigenic enrichment of Mo (18), which suggests that there is some temporal texture 

to the mobilization of redox-sensitive trace elements through the mid- and late-Archean 

and would seem to provide evidence against a presumably ubiquitous photochemical 

mechanism. 

 The photosynthetic oxidation of Fe2+ provides another possible mechanism, but 

we emphasize again that this provides little leverage in the marine realm given the 

combined observations that hydrolysis lifetimes of dissolved Fe3+ species are orders of 

magnitude shorter than dissolution timescales of sulfide mineral phases (33, 49) and 

amorphous Fe oxides will not dissolve FeS2 (discussed above). In subaerial 

environments, the plausibility of this mechanism is less clear. However, the standard 
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electrode potentials of the Fe(OH)3/Fe2+ and Fe3+/Fe2+ couples approach or exceed the 

midpoint potentials of well studied anoxygenic photosynthetic reaction centers below pH 

values of ~5 (50-52). This is consistent with the observation that photosynthetic iron 

oxidizers at present appear to show a very narrow pH range for optimum growth that is 

slightly below neutral (51, 53, 54). 

 In summary, we suggest that although there are many other potential oxidants that 

may be appealed to in order to explain the observation of increased mobilization and 

transport of oxyanions during the late Archean, most of these either indirectly require the 

presence of O2 in the environment or are less plausible on other grounds. We conclude 

that the most parsimonious explanation at present is that biological O2 production indeed 

evolved significantly prior to the Paleoproterozoic rise in atmospheric oxygen. 

 

3. Accumulation of O2 in the surface ocean 

3.1 A simple model 

 Given the possibility of oxygenic photosynthesis in the Archean surface ocean, it 

would be reasonable to suggest that evidence for oxidative mobilization of a suite of 

different elements preserved in the late Archean record perhaps reflects oxidation in 

shallow marine sediments (10, 11, 15). To explore this possibility further, it would be 

useful to have some sense as to the O2 concentrations that a reduced mineral phase might 

encounter after physical weathering and transport to the ocean. Kasting (20) first 

suggested the possibility of localized accumulation of dissolved O2 in the Archean 

surface ocean, a concept often referred to as ‘oxygen oases’. If such environments existed 
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during the Archean, it would be plausible to support aerobic respiration and a variety of 

inorganic redox processes while maintaining a broadly reducing atmosphere. This 

concept has been the subject of debate (e.g., 55, 56), and questions have been raised 

regarding how stable such a system would be against physical mixing, gas exchange, and 

reductant input from the deep ocean. 

 We revisit the ‘oxygen oasis’ concept by utilizing a simple box model of the 

surface ocean, meant to represent a coastal upwelling system (57, 58; Fig. 3.1). Although 

we acknowledge that very little is known about meridional or zonal ocean circulation on 

a global scale during the Archean, we consider it likely that the type of environment 

depicted by our model represents the most plausible set of conditions for supporting 

elevated rates of carbon fixation (and, thus, export production), and is therefore a natural 

starting point for examining the degree to which O2 might be expected to accumulate 

within localized regions of the surface ocean.  

 The model is divided into three boxes, with the surface ocean represented by a 

proximal “active” box (S2) and a distal “inactive” box (S1), combined with a third 

“inactive” box representing intermediate depths beneath the zone of upwelling (I). The 

active surface box responds to forcing according to the boundary conditions supplied by 

the inactive boxes and air-sea gas exchange. Physical mixing is described by computing a 

vertical upwelling velocity based on average surface wind speed. We neglect vertical 

(diapycnal) and horizontal (isopycnal) mixing due to turbulent diffusivity, as these terms 

are typically small relative to the advective velocities associated with coastal upwelling 

(e.g., 59). In addition, the boundary conditions of the model (discussed below) are such 
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that the incorporation of physical mixing terms associated with eddy processes will only 

serve to dampen accumulation of biological O2 in the surface ocean. The upwelling flux 

is sourced from intermediate water column depths, consistent with modern eastern 

boundary current systems.  

 

Figure 3.1. Schematic depiction of the surface ocean model used in the text (a), and the model 
parameterization of total vertical transport (wavg)as a function of annually averaged surface wind 
speed (uavg) (b). Parameter definitions and values are shown in Table 1. The blue shaded box in 
(a) is the active box in the model, with the other two providing the necessary boundary 
conditions. In (b), the blue curve shows the relationship between uavg and wavg expressed in the 
model, while the grey shaded box shows the range of values for modern eastern boundary current 
systems (60, 61, and references therein). 
 

 The upwelling velocity can be described physically as the quotient of offshore 

Ekman transport (UE) and a characteristic length scale over which this transport decays 

(Lu). Offshore Ekman transport is in turn a function of wind stress (#), seawater density 

($sw) and the Coriolis parameter (f): 

 

! 

UE = "
#sw f

 .
 

(3.8) 
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The wind stress is related to the surface wind speed (u), air density ($air) and a drag 

coefficient (CD) as: 

 

! 

" = #airCDu
2 .

 
(3.9) 

We calculate the drag coefficient based on surface wind speed according to the empirical 

function of Smith (62) (see also 63): 

 

! 

CD = [0.61*0.063u]*10"3  .
 

 (3.10) 

The characteristic length scale (Lu) can be thought of as the width of active Ekman 

divergence – vertical velocity distal to this zone is driven by the cyclonic curl of the wind 

stress, and is typically of a much smaller magnitude (64). This length scale is 

conventionally taken to be the latitude-dependent local Rossby radius of deformation 

(65), but it also depends to some extent on the local Ekman layer depth and shelf 

geometry [see, for example, 66]. The relationship between surface wind speed and 

vertical velocity thus depends, in principle, on the latitudinal distribution of the upwelling 

zone (which influences both f and the local Rossby radius) and shelf geometry.  

 For simplicity, we assume a constant value for f (4.99 x 10-5 s-1, equivalent to an 

assumed latitude of 20ºN/S), and an off-shore length scale Lu of 125 km. The latter is 

meant to represent the broad zone of enhanced vertical transport within an eastern 

boundary current system (60), where rates of primary production and carbon export flux 

are highest. The relationship between annually averaged surface wind speeds and total 

vertical transport within the zone of active upwelling for our simple parameterization is 

shown in Figure 3.1b. We feel that imposing constant values for f and Lu is a reasonable 

simplification given the first-order nature of the questions explored here and considering 
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that any latitude or shelf geometry that we might assume for the Archean coastal ocean is 

somewhat arbitrary. A more detailed study incorporating three-dimensional transport and 

realistic bathymetry would be worthwhile, but is beyond our scope here. 

 The final physical term important for regulating the steady-state O2 concentration 

of the surface ocean in the model is the air-sea gas exchange flux (

! 

FO2 ) given by: 

 

! 

FO2
= kO2

*"[O2] ,
 (3.11) 

where 

! 

kO2  denotes a gas exchange velocity and ![O2] represents the ‘saturation 

anomaly’, or the departure of a water mass from saturation equilibrium with ambient 

atmospheric pO2 ([O2]sat – [O2]S2). Values for [O2]sat are calculated for a temperature of 

20ºC and a salinity of 35‰ using the equations of (67) and assuming an atmospheric pO2 

of 10-5 PAL. Our results are very weakly sensitive to the latter assumption provided 

atmospheric pO2 is presumed to be at or below this value. We parameterize the 

dependence of gas exchange velocity on wind speed following the conventional 

formulation of (68): 

 

! 

kO2
= 0.31u2[Sc /660]"0.5  ,

 
(3.12) 

where u is the surface wind speed and Sc is the Schmidt number for oxygen, a 

dimensionless parameter describing the relationship between the kinematic viscosity of 

seawater (!) and the molecular diffusivity (Dx) of a given gas (Sc = !/Dx) . Input 

parameters and sources are listed in Table 3.1. 

 When considering the potential for accumulation of O2 in the surface ocean, it is 

most meaningful to examine export fluxes of carbon from the photic zone (Fe) rather than 
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overall rates of carbon fixation. The export flux must, by definition, be balanced by a net 

accumulation of O2 in the region of production, subject to the constraints imposed by 

physical mixing, gas exchange, and biogeochemical sink terms. We have elected to use 

export fluxes of carbon as an “independent variable”, decoupled from the transport terms. 

Strictly speaking this is not physically realistic, as export flux can be expected to respond 

to rates of primary production, which will in turn respond to the recharge of nutrients to 

the photic zone and therefore changes in upwelling flux. The primary reason for 

decoupling export fluxes from the physical circulation is that in order to explicitly couple 

them we would need to implement another suite of assumptions regarding deep ocean 

nutrient status and the strength/efficiency of the biological pump, a non-trivial task given 

our poor understanding of Archean ocean chemistry and surface ocean ecology. As an 

alternative, we vary surface wind speed to yield a range of annually integrated upwelling 

velocities typical of modern coastal systems (Fig. 3.1b) and explore a range of export 

fluxes characteristic of environments that show a similar annually integrated upwelling 

rates. 

 The concentration of dissolved oxygen in the surface box of the model evolves as: 

 

! 

d
dt

[O2]S2 = "mix + FO2
+ Jbio , 

(3.13) 

where the terms on the right-hand side represent, respectively, sources minus sinks due to 

physical mixing (!mix), the gas exchange flux (

! 

FO2 ) and sources minus sinks due to 

biogeochemical processing (Jbio): 
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! 

"mix = wu[O2]I # wu[O2]S2  ,

FO2
= kO2

([O2]sat # [O2]S2) ,

Jbio = rO:CFe # wurO:Fe[Fe2+]I # wurO:CH4
[CH4 ]I # kCH4

[CH4 ]sat  .
 

(3.14) 

(3.15) 

(3.16) 

In Eq. 3.16, Fe is the export flux of carbon from the photic zone, rO:C is the stoichiometric 

ratio between carbon export and O2 production, and [Fe2+]I and 

! 

[CH4 ]I  represent the 

concentrations of dissolved iron and methane in intermediate waters. The terms rO:Fe and

! 

rO:CH4 represent the stoichiometry of O2 consumption through Fe2+ and CH4 oxidation, 

respectively. The last term in Eq. 3.16 follows from our assumption that CH4 introduced 

to the surface ocean through air-sea gas exchange is quantitatively oxidized.  

 At steady state, inputs and outputs of O2 to the active surface box due to physical 

mixing and biogeochemical processes are balanced. If we further assume that both the 

deep ocean and areas distal to nutrient recharge are reducing (i.e., [O2]I ~ [O2]S1 ~ 0), and 

combine the Fe2+ and CH4 consumption terms into a single reductant flux (Jred), we can 

obtain a solution for the O2 concentration in the active surface box: 

 

! 

[O2]S2 =
1

wukO2

(kO2
[O2]sat + rO:CFe " Jred " kCH4

[CH4 ]sat ) . (3.17) 

 We examine a range of values for parameters that are rather poorly constrained, in 

particular the reducing capacity of deeper waters being upwelled to the surface box. 

Calculations assuming calcite-siderite co-equilibrium provide estimates of deep water 

[Fe2+] on the order of ~40-120 #mol kg-1 (80, 81), and we explore here an order of 

magnitude range in [Fe2+]I, from 10 – 200 #mol kg-1 (Table 3.1). We note, however, that 
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some estimates of deep water [Fe2+] during the Archean are substantially higher than this 

(e.g., 82), so this flux term in our model should probably be viewed as a lower estimate.  

 

Table 3.1. Parameters used in the surface ocean model. 

Parameter Description Value/Range Units Source 

! kinematic viscosity of seawater 9.23 x 10-7 m2 s-1 69 

DO2 molecular diffusivity of O2 2.13 x 10-9 m2 s-1 70 

ScO2 Schmidt number for O2 433 - (see text) 

DCH4 molecular diffusivity of CH4 1.56 x 10-9 m2 s-1 70 

ScCH4 Schmidt number for CH4 592 - (see text) 

$sw seawater density 1027 kg m-3 71 

$air air density 1.2 kg m-3 72 

f Coriolis parameter 4.98 x 10-5 - (see text) 

Lu length scale of upwelling zone 125 km 60, 61 

rO:C stoichiometry of O2 production 1.45 - 73, 74 

rO:Fe stoichiometry of Fe2+ oxidation 0.25 - 75 

! 

rO:CH4  stoichiometry of CH4 oxidation 2.00 - 76 

pO2 
atmospheric partial pressure of 

O2 
2.09 ppmv 77 

pCH4 
atmospheric partial pressure of 

CH4 
1000 ppmv 78, 79 

Fe carbon export flux  0 – 500 gC m-2 y-1 - 

u surface wind speed (ann. avg.) 4 – 10 m s-1 - 

[Fe2+] Fe2+ concentration in I box 10 – 200 #mol kg-1 80, 81 
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 Concentrations of CH4 are almost totally unconstrained, but in a reducing ocean 

with any labile carbon flux it is very likely that some reservoir of dissolved CH4 would 

exist in the deep ocean. We impose a constant and relatively low dissolved [CH4] value 

of 10 #mol kg-1. This can be viewed mechanistically as representative of reducing 

systems in which dissolved [CH4] is buffered by SO4
2- at levels that are conventionally 

taken to be thermodynamically controlled (83, 84). This is likely conservative for our 

purposes, given that oceanic SO4
2- levels were quite low during the Archean (85, 86) and 

that modern systems characterized by reducing, sulfate-deficient deep waters typically 

accumulate extremely high levels of dissolved CH4 (e.g., 87). Furthermore, we do not 

include other possible sources of reducing power, such as dissolved Mn2+ or NH4
+. In 

essence, we seek to place upper limits on the ability of our model system to accumulate 

O2, for the purposes of establishing plausible boundaries for our subsequent examination 

of sulfide mineral oxidation in Archean shallow marine sediments. 

 

3.2 Model results 

 Results of the simple model are shown in Figure 3.2. Our results are consistent 

with Kasting (20) at low reductant levels and relatively low vertical transport rates (Fig. 

3.2a), in that dissolved [O2] values in excess of ~10 #mol kg-1 can be attained when rates 

of advection and reducing capacity of deep waters are relatively low. At higher reductant 

concentrations there is a significant region of parameter space that is undersaturated with 

respect to pO2 = 10-5 PAL (Fig. 3.2b). However, it is also clear that reasonable changes 

within the approximate modern ranges of vertical transport and carbon export flux, such 
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as may occur on seasonal timescales, are sufficient to traverse from [O2] values below 

saturation to values greatly in excess of saturation equilibrium. It is important to stress 

the magnitude of this disequilibrium – a dissolved [O2] concentration of 1 #mol kg-1 is 

equivalent to a roughly 300-fold oversaturation with respect to an atmospheric pO2 of 

~10-5 PAL. Thus, as argued by Kasting (20), it is reasonable to imagine severe ocean-

atmosphere disequilibrium with respect to O2 on a reducing Earth surface within 

biologically productive regions of the ocean. 

Figure 3.2. Concentrations of dissolved O2 in the coastal surface ocean as a function of export 
flux of carbon from the simple box model. Calculations are shown for intermediate-water [Fe2+] 
values of 10 #mol kg-1 (a) and 100 #mol kg-1 (b). Contours are steady-state [O2] values (in #mol 
kg-1), with a contour interval of 5 #mol kg-1. The dashed red contours represent the saturation line 
at atmospheric pO2 = 10-5 PAL. Black boxes denote an approximate range of typical average 
wind speeds (u) and carbon export fluxes (Fe) for modern eastern boundary current systems. 
 

 That said, we consider dissolved [O2] values significantly above ~10 #mol kg-1 

unlikely, unless Archean coastal regions were significantly more productive than 

equivalent modern systems for a given rate of vertical transport. Our calculations may 

underestimate the reducing power of deep waters, particularly if large concentrations of 
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CH4 develop in an oxidant-lean ocean. In addition, our exclusion of vertical and 

horizontal eddy diffusivity artificially enhances gradients in both dissolved O2 and deep 

ocean reductants. Although this effect is likely to be small, it is probably non-trivial. It is 

also possible that carbon export flux for a given rate of primary production was 

significantly below modern analog systems prior to the introduction of large, recalcitrant 

cells, widespread mineral ballasting, and metazoan fecal pellet production. It may be that 

stable, elevated values of dissolved [O2] may somewhat paradoxically be more easily 

achieved in offshore regions, despite attenuated biological productivity, due to less 

vigorous physical transport and reductant flux. In any case, we suggest that reduced 

detrital minerals physically transported to the coastal marine realm are unlikely to have 

been exposed to dissolved [O2] values greater than ~10 #mol kg-1, and likely much less 

than this once deposited on the shallow seafloor (i.e., our calculations specify average 

values and do not allow for a gradient within the local water column). 

 

4. Oxidative processing on the late Archean Earth 

 In what follows, we explore the possibility that oxidative mobilization of 

chalcophile elements in late Archean environments occurred in shallow marine 

sediments, and compare this with the plausibility of subaerial oxidation. The basic 

approach is a timescale comparison – after obtaining a first-order estimate of the 

timescale needed to oxidatively dissolve a sulfide mineral, we compare this timescale 

with the timescale available for oxidation in a given environment. In a marine setting, this 

will depend on the timescale at which a sulfide mineral that has been physically 
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weathered and transported under purely anoxic conditions and delivered to shallow 

marine sediments becomes buried beneath the zone of the sediment column into which 

oxidants penetrate. In a subaerial setting, the applicable comparison is between the 

dissolution timescale and a characteristic ‘weathering timescale’, a range which is 

approximated here by typical soil formation timescales on the modern Earth. 

 

4.1. Oxidative dissolution 

 Because of the vast literature that exists on the oxidative dissolution kinetics of 

pyrite (FeS2; 33, 88-91), and because this mineral is the most abundant crustal sulfide, we 

use it as a proxy for crustal sulfide minerals. We acknowledge, however, that different 

sulfide minerals can be expected to show very different kinetic behavior, and that a 

similar approach should be applied to other sulfide mineralogies as more robust rate laws 

become available. We employ the following rate law for dissolution as a function of 

ambient oxygen (33): 

 

! 

r =10"8.19(±0.10) mDO
0.5(±0.04 )

mH+
0.11(±0.01)  ,

 
(3.18) 

where r is the pyrite destruction rate (mol m-2 s-1). Dissolved oxygen concentrations (DO) 

in solution at the site of weathering are estimated either by assuming equilibration of a 

weathering fluid with various pO2 values using a Henry’s Law constant (KH) at 25ºC of 

1.26 x 10-3 mol L-1 bar-1 (92), or by using assumed bottom water oxygen concentrations 

as input values. In the case of a meteoric fluid, we assume sufficient dilution that the 

Henry’s Law constant need not be corrected for ionic strength. We also assume that total 
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atmospheric pressure has remained constant. Calculations for the submarine case are 

performed at a pH range of 7-9 and a temperature of 10ºC, while calculations for the 

subaerial case are performed at pH = 5 and a temperature of 25ºC. Although examination 

of Eq. (3.18) implies a pH effect on dissolution rates, this effect is slight compared to that 

of dissolved O2. The effect of temperature, mediated through gas exchange equilibrium, 

is negligible at the scale considered here. The calculations assume a cubic pyrite grain 

(the results are not noticeably different if a spherical geometry is assumed) with a given 

surface area, ranging between 6 x 102 #m (side length l = 10 #m) and 6 x 104 #m (side 

length l = 100 #m), meant to represent fine-grained igneous sulfides (93, 94). The lower 

end of this range is characteristic of framboidal pyrite forming syngenetically in modern 

sulfidic settings (e.g., 95).  

 

4.2 Oxygen penetration depth 

 A first-order approximation for sediment oxygen penetration depth (

! 

LO2 ) can be 

given by (96): 

 

! 

LO2 " #Ds
w[O2]bw
$kiFGi

0  
(3.19) 

where % is sediment porosity, Ds is the sediment diffusion coefficient for O2 (corrected 

for temperature and tortuosity), w is the sedimentation rate, [O2]bw is the bottom water O2 

concentration, and ki and 

! 

FGi

0  represent the first-order decay constant and flux to the 

sediment-water interface, respectively, of two labile organic matter fractions. We employ 

a simple ‘multi-G’ model (e.g., 97) with two active organic matter pools and a third that 
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is considered unreactive (and which will subsequently be ignored). While this is clearly 

an idealized description of organic matter decomposition in marine sediments (98, 99), 

such an approach has been used successfully to describe early diagenesis in a wide range 

of modern environments (97, 100-111). The total flux of metabolizable carbon to the 

sediment is partitioned into two fractions of different intrinsic lability (

! 

fG1 and

! 

fG2 ), such 

that 60% of the overall flux is considered “labile” and 20% of the overall flux is 

considered “semilabile”, with the remaining 20% considered “unreactive” and 

metabolically unavailable. Rate constants (k1 and k2) are chosen to vary over two orders 

of magnitude, consistent with observations in modern coastal sediments (85, 112). 

 There is a well-established empirical relationship between overall sediment 

accumulation rates and fluxes of carbon to the benthic system (113, 114), and it is 

essential to take this into account in order to avoid underestimation of O2 penetration 

depths at low sedimentation rates. Several empirical relationships between sedimentation 

rate and carbon flux to the sediment-water interface have been proposed for use in global 

diagenetic models, and these are summarized in Fig. 3.3a. We choose to employ the 

algorithm of Middelburg et al. (113, 114), as this relationship gives the lowest fluxes of 

metabolizable carbon for a given sedimentation rate. We have taken care in all parameter 

choices to avoid underestimating first-order O2 penetration depths. For example, even the 

largest carbon flux used in the present exercise (~1.2 mmolC cm2 y-1) is still rather 

modest for biologically active continental margin sediments (113, 115), and the intrinsic 

rate constants utilized are on the low end of empirically determined values for 

metabolizable organic matter in sediments, particularly for the most labile fraction (52, 
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104, 116, 117). We examine an order of magnitude range of sedimentation rates (0.1 – 

1.0 cm yr-1), meant to represent comprehensively represent sediments deposited along 

inner-outer shelf environments (113, 118), as we expect that physically transported 

detrital mineral grains would be deposited close to shore. 

 Parameters are listed in Table 3.2, and 

! 

LO2  values as a function of [O2]bw are 

shown in Fig. 3.3b. Calculated values for sediment oxygen penetration depth are well in 

accord with data from modern biologically active coastal sediments (119-130), and in 

fact probably over-estimate penetration depths somewhat. We can see that O2 penetration 

depths are larger for higher sedimentation rates. The physical reason for this is that in a 

system in which benthic respiration is not limited by fluxes of metabolizable carbon, a 

relatively larger fraction of the more labile carbon pool is metabolized closer to the 

sediment-water interface at lower sedimentation rates.  

 

Table 3.2. Parameters used for estimating sediment O2 penetration. 

Parameter Description Value/Range Units 
w sedimentation rate 0.1 – 1.0 cm y-1 
D0 free diffusion coefficient 1.46 x 10-9 m2 s-1 
% porosity 0.8 - 
&2 squared tortuosity 1 - ln%2 - 
Ds sediment diffusion coefficient D0 / &2 m2 s-1 

! 

fG1 , 

! 

fG2  organic carbon fractions 0.6 , 0.2 - 
k1 , k2 remineralization rate constants 0.1 , 0.001 y-1 
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Figure 3.3. The left panel (a) depicts functions used to describe the relationship between 
sediment accumulation rate (w) and carbon flux to the sediment-water interface (FC

0). Shown are 
the algorithms proposed by Henrichs & Reeburgh (131; HR87), Tromp et al. (118; T95), and 
Middelburg et al. (113; M96). The right panel (b) shows sediment O2 penetration depths as a 
function of bottom water oxygen concentration according to the model discussed in the text, 
using the algorithm from Middelburg et al. (113). Each contour represents a different sediment 
accumulation rate (and thus carbon flux). The contour interval is 0.025 cm y-1. 
 

4.3 Timescale comparison 

 As can be seen from Fig. 3.4a, the sulfide dissolution timescales are generally 

orders of magnitude less rapid than the timescales at which a detrital reduced mineral can 

be expected to be buried below the zone of oxygen penetration. Even under conditions of 

very small sulfide crystal size (10 #m), low sediment accumulation rates (0.1 cm y-1), and 

relatively high bottom water O2, rates of dissolution are nearly an order of magnitude 

longer than the rates at which detrital sulfides will be buried below the zone of O2 

penetration. This is in spite of assuming relatively low first-order decay constants for 

organic matter of 0.1 and 0.001 y-1 and imposing a conservative algorithm for carbon flux 

to the sediment-water interface. In addition, we implicitly assume that there is essentially 
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no dissolved O2 gradient within the surface ocean in our model(s), i.e. that the average 

steady state O2 concentration calculated above can be extrapolated to the shallow 

seafloor. While dissolved NO3
- or solid Mn-oxides will, in principal, penetrate more 

deeply into sediments than O2, it is not likely that this can alleviate an order of magnitude 

difference in the relative timescales. This problem will be particularly acute in a world in 

which sediments are not bioturbated by benthic organisms, a process that dramatically 

enhances the role of Mn-oxides in redox cycling during early diagenesis (e.g., 132). 

Higher sedimentation rates and larger crystal sizes, even within a modest range, 

exacerbate the mismatch in timescales (Fig. 3.4a). We conclude, therefore, that the 

localization of oxidative weathering of sulfide mineral phases within shallow marine 

sediments beneath an oxygenated water column is extremely unlikely.  

 However, dissolution timescales compare much more favorably with typical 

timescales of soil formation on the modern Earth (Fig. 3.4b). This is so despite: (1) the 

assumption that sulfide oxidation proceeds exclusively through chemical oxidation by O2, 

which is an extremely slow process relative to oxidation via Fe3+; (2) the assumption of 

essentially abiotic dissolution, which does not consider the effects of crystal defects or 

microbial activity, both of which can be expected to accelerate dissolution (in some cases 

dramatically); and, (3) the assumption that local O2 levels are set by gas exchange 

equilibrium with a reducing atmosphere. In the first case, local activity of 

microorganisms that derive chemical energy from the microaerophilic oxidation of Fe2+ 

will dramatically accelerate dissolution rates, and indeed represent perhaps the most 

crucial component of modern environments that support extensive sulfide mineral 
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oxidation (e.g., 139). Although the lower O2 limit for growth of such organisms is not 

known with precision, it is likely to be very low (140). It is crucial to point out that this 

potential mechanism of enhanced sulfide dissolution rates cannot apply to submarine 

settings, a simple consequence of the hydrolysis and precipitation half-lives of Fe3+ 

species at circumneutral pH. In the second case, rates of microbially enhanced sulfide 

dissolution are significantly more rapid than typical soil formation timescales (Fig. 3.4b), 

even at the lowest O2 levels measured in the laboratory (on the order of a dilute fluid in 

equilibrium with pO2 ~ 10-5 PAL; 138). In the third case, in situ biological O2 production, 

or production proximal to the site of weathering, could increase ambient O2 levels above 

that depicted in Figure 3.4b. We return to this below. 

 

5. DISCUSSION  

 Our results indicate that significant gas exchange disequilibrium could have 

existed in productive regions of the Archean surface ocean after the evolution of 

oxygenic photosynthesis, consistent with previous theoretical (20, 56) and empirical (11, 

17) work. However, with reasonable assumptions regarding deep ocean reducing capacity 

it is still possible to drive the surface ocean below saturation with an atmospheric pO2 

level on the order of 10-5 PAL, consistent with existing evidence for a surface ocean that 

was, at times, reducing with respect to Mn and Ce (141). A shift between the two states 

can be easily driven by relatively small changes in rates of vertical transport and carbon 

export production, such as may be envisioned to occur on seasonal timescales. We 

suggest an approximate upper limit on dissolved O2 in productive coastal regions of the 
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Archean surface ocean on the order of ~10 #mol kg-1, provided that such systems during 

the Archean were not characterized by greater productivity and/or carbon export 

efficiency than modern analog systems at a given rate of vertical transport. Potentially 

large regions of the surface ocean could be characterized by such elevated O2 

concentrations, on a variety of timescales, while remaining fully consistent with 1-D 

photochemical models of Archean atmospheric chemistry (77, 142, 143). 

 
Figure 3.4. Comparison of sulfide mobilization timescales for submarine (a) and subaerial (b) 
environments. In (a), dissolution timescales of small detrital pyrite crystals are compared to burial 
timescales beneath the zone of oxidant penetration. The upper curves (black, dashed) show 
dissolution timescales for cubic pyrite grains between 10 #m and 100 #m in width, with the 
dashed lines denoting calculations for a pH range between 7 and 9. The lower grey curves show 
burial timescales beneath the zone of oxidant penetration, derived from a simple diagenetic 
model, for a range of sedimentation rates. Each contour represents a different sediment 
accumulation rate (and thus carbon flux), increasing downward with a contour interval of 0.05 cm 
y-1. In (b), dissolution timescales are calculated assuming gas exchange equilibrium with various 
atmospheric pO2 values. The tan shaded box represents a range of modern soil formation 
timescales (133-137), while the black square denotes rates of biotic pyrite dissolution at low O2 
concentrations (138). Dashed arrows depict schematically processes that would act to enhance 
sulfide dissolution kinetics (microaerophilic Fe2+ oxidation, Fe2+ – ox) or elevate local O2 levels 
(in situ O2 production). 
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 However, we conclude that such an oxygenated surface layer of the ocean would 

have been inadequate to force large-scale oxidative mobilization of crustal sulfide 

minerals. This results from two fundamental constraints: (1) at any reasonable marine pH, 

the hydrolysis and precipitation timescales for Fe3+ will be fast enough to render it an 

essentially inaccessible source of oxidizing power in marine sediments; and, (2) the 

burial rates of detrital sulfide phases below the dissolution zone in shallow marine 

sediments are much more rapid than the timescales needed to chemically dissolved 

sulfides with O2. Subaerial settings provide a more attractive locus for oxidative sulfide 

weathering, as the timescales available are much longer than those that can be expected 

in the marine realm. In addition, subaerial systems will most often be poorly (rock) 

buffered, in contrast to the virtually limitless buffering capacity of the ocean, which 

allows a direct role for Fe3+ in supporting sulfide oxidation at low pH. 

 

6. CONCLUSIONS 

 Recently accumulating evidence suggests that the oxidation of Earth’s surface 

was perhaps a gradual and nuanced process, with redox cycling and chemistry that were 

spatially and temporally complex and highly textured. We have attempted to add a small 

piece to this puzzle by exploring the plausibility of a late Archean Earth on which 

oxidative weathering of reduced crustal minerals was localized within the marine realm. 

We suggest that surface ocean O2 concentrations were likely to be highly variable in time 

and space, but that they were unlikely to exceed ~10 #mol kg-1. It remains to be seen if 

conditions in offshore settings, such as the center of mid-ocean gyres, were more 



!

! *+!

favorable to the accumulation of higher O2 concentration. Although such settings will no 

doubt be characterized by lower rates of biological productivity (and carbon export), 

differences in physical mixing, which essentially acts to reduce concentration gradients 

and provides a potentially large flux of reductants to the surface ocean, may be able to 

compensate for lower O2 production rates. It is obvious that simple models such as those 

developed and explored here will be inadequate to exploring these more detailed 

dynamics of Archean biological O2 cycling in time and space, and in particular better 

models must be developed for representing circulation in three dimensions and for 

coupling the physical transport to rates of biological activity in the surface ocean. 

 We further conclude that coastal oceanic regions, even those supporting high O2 

fluxes, would not be likely to mobilize significant quantities of physically delivered 

crustal sulfides. This implies a subaerial mechanism, which in turn implies the 

accumulation of O2 to small but finite levels within the atmosphere itself. Given that O2 

in the Archean atmosphere likely behaved as the trace redox gas (19, 79; 142), it may 

have varied significantly on a regional and/or temporal basis (e.g., 145), and it is at 

present unclear exactly what constraints this poses for subaerial weathering processes. In 

addition, such subaerial processing of crustal sulfides implies that levels of atmospheric 

O2 can be buffered by the crust at very low pO2 values, consistent with theoretical 

predictions (145). We note, however, that the kinetics of sulfide dissolution for a range of 

other mineral phases and at the very low O2 levels characteristic of the Archean remain to 

be explored. Alternatively, biological O2 production may have occurred proximal to the 

subaerial weathering environment, perhaps even in situ, alleviating kinetic constraints. 
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The latter suggestion is meant to be more provocative than hypothetical, but we note that 

nearly all preserved Archean soil horizons (paleosols) contain measurable quantities of 

organic matter (146). In addition, there are good reasons to think that oxygenic 

photosynthesis could persist in subaerial settings even at very low pH values (e.g., 147) 

and within a more deleterious light environment than that seen on the modern Earth 

(148). These issues can only be explored through more elaborate modeling of local 

weathering chemistry, variability in atmospheric and surface ocean chemistry, and more 

detailed empirical exploration of the possible role(s) of biology in subaerial weathering 

environments on the early Earth. 
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CHAPTER 4 

LONG-TERM SEDIMENTARY RECYCLING OF RARE SULFUR ISOTOPE 

ANOMALIES AND ITS SIGNIFICANCE FOR RECONSTRUCTING 

ATMOSPHERIC EVOLUTION 

 

Preface: 

The contents of this chapter represent a manuscript in preparation for submission to the 
journal Nature. This is reflected in the formatting. 
 

Introduction: 

 The accumulation of significant quantities of O2 in the atmosphere has come to 

control the chemistry and ecological structure of Earth’s surface, ultimately allowing for 

the evolution and expansion of complex life. Over the last decade, non-mass-dependent 

(NMD) sulphur isotope anomalies within the rock record (1) have been the central tool 

used to reconstruct the redox history of the early atmosphere. The generation and initial 

delivery of these anomalies to marine sediments requires low partial pressures of 

atmospheric O2 (pO2; 2, 3), and it is now widely assumed that atmospheric oxygen levels 

remained extremely low for the first ~2 billion years of Earth’s history. Here, we show 

with a model designed to capture the long-term surface recycling of crustal NMD 

anomalies that the record of this geochemical signal is likely to show a ‘crustal memory 

effect’ following increases in atmospheric pO2 above ~10-5 times the present atmospheric 

level (PAL). Once NMD anomalies have been buried into the upper crust they are 

extremely resistant to removal and can only be erased through successive cycles of 
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weathering, dilution, and burial in a mass-dependent, oxygenated world. This recycling 

results in the residual incorporation of NMD anomalies into the sedimentary record long 

after synchronous atmospheric generation of the isotopic signal has ceased, with 

measurable signals likely preserving for 50-100 million years subsequent to a rise of 

atmospheric oxygen beyond 10-5 PAL. Our results can reconcile geochemical evidence 

for strong oxidative weathering despite the maintenance of NMD anomalies on the early 

Earth (4-6) and suggest that future work should be aimed at testing our assertion that the 

generation of new NMD sulphur isotope anomalies under vanishingly small O2 

concentrations in the atmosphere must have ceased long before their ultimate 

disappearance from the rock record. 

 

Main Article: 

 One of the most important recent advances in studies of Earth’s early atmospheric 

chemistry has been the demonstration that non-mass-dependent (NMD) sulphur isotope 

anomalies, often of very large magnitude, are preserved in sedimentary sulphide and 

sulphate minerals prior to ~2.32 billion years ago (1, 7). The generation of these 

anomalies requires (1) active and widespread tropospheric photochemistry involving SO2 

dissociation at short wavelengths, which in turn implies minimal ozone column depth (2); 

(2) a strongly reducing atmosphere, such that multiple exit channels for sulphur at 

different redox states can be maintained (3, 8); and, (3) minimal metabolic overprinting 

of atmospherically derived isotope anomalies within marine environments (9). The latter 

two conditions result from simple mass balance—even if NMD anomalies are generated 
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in the atmosphere, isotopically complementary sulphur pools must be removed from the 

atmosphere and transported to marine sediments with minimal homogenization by 

inorganic or biological processes. Under these conditions, photochemically derived 

sulphur with NMD isotope anomalies will be delivered to the hydrosphere and ultimately 

buried as a constituent of various sulphur-bearing mineral phases, such as pyrite (FeS2). 

The presence of these anomalies at varying magnitude between the earliest sedimentary 

record at ~3.8 Ga and ~2.32 Ga is interpreted to reflect a strongly reducing atmosphere 

over this entire interval, with the implication that atmospheric pO2 was extremely low for 

over half of Earth’s history (Fig. 4.1a). Implicit in this framework is the notion that the 

generation and transfer of these anomalies into the upper crust through the burial of 

authigenic marine minerals provides an effectively instantaneous record of ambient 

atmospheric chemistry, but this assumption ignores the potential importance of 

sedimentary recycling.  

 There is a striking asymmetry in the !33S record through Archean time (Fig. 4.1a, 

b), with the data skewed in favor of positive !33S values. Importantly, it is the 

preservation (and associated crustal recycling) of this NMD sulphur isotope asymmetry 

that allows for the possibility of a temporal lag between generation and ultimate removal 

of the signal from the oceanic sulphur reservoir. We emphasize that although there are 

likely several mechanistic explanations for this pattern (10-12), what matters foremost for 

our purposes is the veracity of this empirical observation, regardless of mechanism. This 

observed asymmetry would only be misleading if (1) a sedimentary sulphate reservoir 

with a complementary negative isotopic composition were deposited synchronous with 
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the generation of the record shown in Fig. 4.1 but has not been preserved through 

geologic time, or (2) seawater sulphate with the negative !33S complement was 

thermochemically or microbially reduced and buried into a weatherable sedimentary 

sulphide reservoir, but this reservoir has been strongly undersampled.  

 

Figure 4.1. The rare sulphur isotope record through time. a, Data are cast as !33S [where !33S = 
!33S – 0.515*!34S; reported in permil (‰)] versus time, in millions of years before the present 
(Ma). The shaded box denotes the average ±2SD of all post-2200 Ma data. b, The cumulative 
average !33S anomaly as a function of database age. Filled circles show the cumulative average 
!33S value for the database through time, with the blue boxes denoting the 95% confidence 
interval. See Supplementary Information for database details. 
 

 In the first case, analysis of the more abundant sulphur isotopes (34S and 32S) 

indicates that essentially all sulphur entering the Earth surface system was removed as a 

constituent of pyrite during the Archean (13, 14), leaving little scope for an isotopically 

complementary reservoir that has left no trace on the modern Earth. Consistent with this, 

extremely low seawater sulphate concentrations during the Archean (15) would likely 

have rendered large-scale evaporite formation and burial extremely difficult. In the 

second case, the cumulative average for published !33S values has continued to point to a 

predominance of positive values as the Archean rare sulphur isotope database increases in 
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size, while the confidence interval around the mean has continually decreased (Fig. 4.1b). 

This relationship strongly suggests that the asymmetry towards positive values does not 

reflect a sampling bias.  

 To explore the implications of this for long-term recycling of NMD sulphur 

isotope anomalies we utilize a well-established numerical modeling approach to quantify 

the importance of recycling !33S signals between the ocean and upper crust (Fig. 4.2). 

The model begins with a variation on a class of simple box models used to describe the 

surface cycling of carbon and sulphur during Phanerozoic time, termed “rapid recycling” 

models (16-19). This group of models and our specific approach are variants on models 

for global C-S-O cycling that have been used for decades to explore the dynamics of 

these biogeochemical cycles at Earth’s surface (20, 21). Such models have been used 

extensively to derive atmospheric O2 and CO2 predictions that compare well with 

independent proxy reconstructions of atmospheric composition during the Phanerozoic 

(22, 23).  

 Our model, which tracks only sulphur, partitions sulphur into three reservoirs—

the oceanic sulphate pool and two crustal reservoirs of sedimentary pyrite (Fig. 4.2). The 

two crustal reservoirs are referred to as ‘young’ and ‘old’, and the primary difference 

between them other than their overall mass is the speed at which they are recycled. The 

models build from geologically reasonable premise that the most recently deposited 

sediments are more likely to be recycled on a short time scale, but that the overall size of 

this sedimentary reservoir is relatively small. Fluxes between reservoirs are 

predominantly first-order; their magnitude depends on the size of the reservoir from 
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which the flux is derived. Two notable exceptions are volcanic inputs, imposed as a 

constant flux and meant to encompass all processes introducing isotopically normal (non-

NMD) sulphur to the ocean, and the flux between the two crustal pyrite reservoirs, which 

is set equal to the weathering flux from the old pyrite reservoir such that the mass of this 

reservoir does not change (16).  

 

Figure 4.2. Schematic of the sulphur isotope mass balance model used in this study. Arrows 
denote flux terms (labeled “Fi”), while boxes denote various oceanic and crustal sulphur 
reservoirs (labeled “Mi”). 
 

 Our main interest here is tracking the !33S of seawater sulphate, as this signal will 

be directly incorporated into sedimentary sulphide minerals under the logical assumption 

that all subsequent isotope fractionations are mass-dependent. We note, however, that 

there may have been spatial isotopic heterogeneity within the ocean if marine sulphate 

concentrations were low. In effect, the NMD sulphur isotope signal behaves as a 

conservative tracer when cycled through a purely mass-dependent Earth surface sulphur 
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cycle. In our model, the isotopic composition of seawater sulphate will evolve through 

time according to (see Supplementary Information): 
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(4.1) 

where Msw is the oceanic mass of seawater sulphate, i refers to input fluxes to the ocean 

(volcanic and weathering fluxes), Fb,py refers to the pyrite burial flux, ! refers to the 

isotopic fractionation between seawater sulphate and sedimentary pyrite, and x = 3, 4, 6. 

 The model tracks all four stable sulphur isotopes and includes a parameterization 

of biologically induced isotope fractionation, but we restrict our attention here to the !33S 

composition of sedimentary pyrite formed from chemical or microbial reduction of 

seawater sulphate, which is derived primarily from the weathering of pyrite. To most 

clearly illustrate the importance of sedimentary recycling of !33S signals, it is assumed at 

the beginning of each model run that atmospheric pO2 increases instantaneously above 

values that allow for the generation/preservation of NMD sulphur anomalies. All isotope 

fractionations imposed thereafter are mass-dependent and are controlled by metabolic 

fractionation during microbial sulphate reduction described as a function of ambient 

seawater sulphate concentration (see Supplementary Information). For the purposes of 

illustration, our simulations are initialized with a conventional Archean seawater sulphate 

concentration of 200 #M (15), a !33S value for seawater sulphate of -1.0‰ [consistent 

with expectations from photochemical experiments2 and analyses of Archean sulphates 

(1, 24, 25) and seafloor sulphide minerals (8, 24)], and various values for the initial !33S 

of rapidly weathering sedimentary pyrite. We stress, however, that these starting values 
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are only meant to be illustrative.  Our goal is to explore the time scales at which crustal 

recycling of NMD isotope anomalies can be expected to leave an imprint on the isotopic 

composition of the oceanic sulphate reservoir rather than to simulate specific features of 

the sedimentary NMD sulphur record.  That latter goal lies with future research. 

 

 

Figure 4.3. Overview of modeling results for the sedimentary recycling of rare sulphur isotope 
anomalies. The black solid curve in all cases represents the reference model (see Supplementary 
Information). Dashed curves represent sensitivity analyses as follows – increasing and decreasing 
the !33S of the rapidly weathering pyrite reservoir by 2‰ (a); a range of mass-dependent sulphur 
fluxes between 2 x 1011 mol y-1 and 1 x 1012 mol y-1 (b); increasing and decreasing, by factors of 
2 and 5, respectively, the initial size of the rapidly weathering pyrite reservoir (c); increasing and 
decreasing, by factors of 2 and 5, respectively, the size of the slowly weathering pyrite reservoir 
(d). The shaded box denotes the average ±2SD of all post-2200 Ma data. Note the log-scale with 
respect to time. 
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 It is clear that there is a significant ‘memory effect’ associated with the 

sedimentary recycling of !33S anomalies (Fig. 4.3a-d), the texture of which can vary 

depending on the time scale allowed for relaxation. This texture is difficult to avoid given 

what we consider to be reasonable parameter space. For example, a significant drop in the 

magnitude of residual !33S values can be achieved by decreasing the size of the rapidly 

weathering pyrite reservoir from that in the reference model by a factor of 5 (Fig. 4.3c), 

but this results in geologically unreasonable fluxes and residence times relative to 

observed mass- and area-age distributions of weatherable sedimentary rocks (26-28) and 

time scales of cycling through the Earth surface sulphur reservoir (29). Rather ironically, 

once NMD isotope fractionations have been introduced into the system in an asymmetric 

fashion the best “taphonomic” conditions for their preservation involve a world in which 

all isotope fractionations are mass-dependent. This condition prevents homogenization, 

either locally or at a broad spatial scale, through mixing with isotopically complementary 

pools.  

 A residual NMD isotope signal that can be incorporated into sedimentary rocks 

can persist in our model on the order of ~100 million years or more beyond the cessation 

of its atmospheric production. However, it is difficult to extend the memory effect 

beyond ~200-250 million years (i.e., on the order of a single Wilson cycle; Fig. 4.3a-d). It 

can also decay on a time scale of ~20-50 million years, but the most plausible initial 

parameters (see Supplementary Information) yield our preferred estimate of 

approximately 50-100 million-years. In addition, the texture of the decay (regardless of 

the ultimate time scale of the memory effect) will depend strongly on the initial !33S 
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value of seawater sulphate and the initial size of the seawater sulphate reservoir—larger 

seawater sulphate concentrations will result in greater temporal inertia as the system 

moves towards the isotopic properties of the weathering input with positive !33S. An 

important outcome of this situation is that oscillations in atmospheric pO2 near the 

threshold for the generation and synchronous preservation of NMD isotope anomalies 

may be expected to produce a wide range of temporal responses depending on the speed 

and fabric of the oscillation. 

 It is commonly argued that biological oxygen production preceded the broad-scale 

and effectively permanent accumulation of oxygen in Earth’s atmosphere by perhaps 200 

million years or more (4-6, 30-33).  Consistent with oxygenation prior to the so-called 

Great Oxidation Event (GOE), some data imply oxidative weathering over this interval 

(4-6). Our model suggests the possibility of perhaps long-lived excursions in atmospheric 

O2 content above that required to generate and preserve NMD sulphur isotope anomalies 

in marine sediments long before the disappearance of these signals from the record, on 

time scales more than adequate to support extensive oxidative weathering of crustal 

minerals (4, 6, 34). The toggling of atmospheric generation of NMD isotope anomalies 

on a range of time scales (105 – 108 years) would not be immediately manifest in the 

removal of these signals from the rock record due to the recycling effect. It has been 

suggested that the behavior of O2 in a relatively reducing atmosphere prior to its 

accumulation to significant levels is likely to be characterized by strong hysteresis35—

such that excursions to ‘high’ O2 (above ~10-5 PAL) may not be readily undone. 

Nevertheless, with atmospheric pO2 values (and thus residence times) far below those 
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characteristic of the modern Earth we would naturally expect high-frequency oscillations 

in atmospheric pO2 in a world in which biological oxygen production was emergent and 

the interplay between this metabolism and inorganic buffering processes may have varied 

in ways that were periodic.  

 Importantly, our model implies that the ultimate disappearance of NMD sulphur 

isotope anomalies from the rock record should have been preceded by an irreversible rise 

in atmospheric O2 during the late Archean by at least ~50-100 million years. As 

discussed above, the model also permits oscillatory behavior for the oxygen cycle during 

earlier portions of Archean time (36), as NMD signals would persists even as pO2 rose 

and fell on timescales of millions of years. Combined, these results suggest that the 

texture of atmospheric redox evolution on the early Earth may have been highly dynamic 

and may call into question the notion of a Great Oxidation Event sensu stricto—in other 

words, that it is possible to pinpoint a moment in Earth history when oxygen rose 

permanently to levels above those required to support the production and preservation of 

NMD anomalies in the atmosphere. In this light, our model suggests that many of the 

climatological and geochemical upheavals witnessed by the Archean-Proterozoic 

transition, including the earliest recorded widespread glaciations (37) and the deposition 

of perhaps the largest iron and manganese deposits in all of Earth’s history (38), may 

have been tied more directly to excursions in atmospheric O2 content than current 

interpretations of the rare sulphur isotope record afford. The details of oscillatory redox 

behavior and the timing of oxygen’s irreversible rise, along with placing further 

constraints on the input parameters controlling the fabric and lags in the NMD record, are 
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fodder for future research. Nevertheless, recycling of crustal sulphur with relict NMD 

isotope anomalies must be considered in further attempts to quantitatively explore the 

paleoenvironmental and paleobiological implications of the Archean sulphur isotope 

record.    

 

Supplementary Information: 

Sulphur Isotope Database: 

 An extensive sulphur isotope database was used in the construction of Figure 4.1. 

These data were compiled from primary references (1, 7, 10, 30, 39-69), although in 

some cases age constraints for certain units were obtained from other sources (70-73) or 

estimated. For Figure 4.1b, we calculated the cumulative average !33S value for all 

samples up to each year of publication. The average values reported here thus include 

some contribution from sulphate minerals. However, the overwhelming majority of the 

data are sulphide mineral phases, and given that most sulphate data are characterized by 

negative !33S values their inclusion will largely attenuate the pattern emphasized here, 

rendering our argument conservative. The overall effect is quite small (Fig. 4.S1a,b). We 

also examined the effect of filtering data from analyses made via secondary ion mass 

spectrometry (SIMS) and analyses of macroscopic pyrite textures, which are not likely to 

be representative, but again note that the basic pattern remains unchanged (Fig. 4.S1a,b). 
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Figure 4.S1. Cumulative average !33S value (a) and database size (b) as a function of publication 
year. Filled symbols show the entire database with (circles) and without (triangles) the inclusion 
of sulphate minerals. Open symbols show the filtered database, with data obtained through 
secondary ion mass spectrometry (SIMS) analyses and data from macroscopic (often secondary) 
sulphide textures removed. Open symbols show the filtered database with (circles) and without 
(triangles) the inclusion of sulphate minerals. 
 

 

Model Setup: 

 Our model tracks the material transfer and isotopic composition of three Earth 

surface sulphur reservoirs (Figure 4.2): an oceanic sulphate reservoir (Msw) and two 

crustal sulphur reservoirs [referred to, following (16-19, 74) as “young” (My) and “old” 

(Mo)]. The distinction between two crustal reservoirs of varying cycling speeds was 

initially introduced to more directly couple the carbon and sulphur isotope composition of 

fluxes out of the ocean to that of input fluxes to the ocean, in an effort to alleviate 

physically unrealistic shifts in atmospheric composition due to changes in measured 

isotope ratios of sedimentary carbonate and sulphate minerals (16, 18). However, there is 

also ample geological justification for such a model configuration (16-19, 29, 74, 75), 
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and subsequent work has shown that this assumption results in a good agreement between 

proxy-based reconstructions of Phanerozoic atmospheric composition and those derived 

from mass balance models (19, 22, 23, 76, 77). 

 The dynamics of the seawater sulphate reservoir (Msw) through time are governed 

by the input fluxes of sulphur associated with weathering of sulphides from both of the 

modeled crustal reservoirs (Fw,y and Fw,o) and volcanic sulphur emissions (Fv), balanced 

against the removal of sulphur from the ocean in association with the burial of 

sedimentary pyrite (Fb,py). The mass of the rapidly weathering pyrite reservoir (My) is 

similarly controlled by the balance between inputs associated with pyrite burial (Fb,py) 

and outputs due to both weathering at the surface (Fw,y) and gradual removal into the old 

sulphur reservoir (16-19, 74) (Fy-o). The mass of the slowly weathering pyrite reservoir 

(Mo) is regulated by the balance between inputs from the young reservoir and outputs due 

to weathering. These relationships can be summarized as: 

 

! 

dMsw

dt
= Fw,y + Fw,o + Fv " Fb,py ,

dMy

dt
= Fb,py " Fw,y " Fy"o ,

dMo

dt
= Fy"o " Fw,o .

 

(4.2) 

(4.3) 

(4.4) 

We assume that the deep ocean is Fe2+-buffered (78-82). Conceptually, this means that 

hydrothermal sulphide introduced to the ocean through seawater-basalt interaction is 

negligible due to near vent iron sulphide precipitation, and is thus assumed not to 

participate in the isotope mass balance of oceanic sulphur.  

 Isotope mass balance equations can be similarly obtained for each reservoir: 
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d
dt

(Msw"sw
3x ) = Fw,y"y

3x + Fw,o"o
3x + Fv"v

3x # Fb,py" py
3x ,

d
dt

(My"y
3x ) = Fb,py" py

3x # Fw,y"y
3x # Fy#o"y

3x ,

d
dt

(Mo"o
3x ) = Fy#o"y

3x # Fw,o"o
3x ,

 

(4.5) 

(4.6) 

(4.7) 

where “!” values refer to the isotopic composition of each reservoir, defined according to 

traditional delta notation in “permil” (‰), and x = 3, 4, or 6. All flux terms, with the 

exception of the volcanic flux (Fv), which is imposed as a constant, are first-order and of 

the form: 

 

! 

Fi = kiMi ,  
(4.8) 

where the subscripts “i” refer to a given flux, and “ki” refers to the rate constant 

associated with each flux parameterization. The magnitude of a given flux thus depends 

largely on the size of the reservoir from which the flux is derived. 

 The equations for material and isotope mass balance can be combined and 

simplified to yield equations describing how the isotopic composition of a given reservoir 

evolves with time as a function of the fluxes into and out of the reservoir and their 

isotopic composition: 

 

! 

Msw
d"sw

3x

dt
= Fi("i

3x # "sw
3x ) # Fb,py$ py

3x

i
%  ,

My

d"y
3x

dt
= Fb,py (" py

3x # "y
3x ) ,

Mo
d"o

3x

dt
= Fy#o("y

3x # "o
3x ) .

 

(4.9) 

(4.10) 

(4.11) 
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where i in Eq. 8 refers to a given component of the overall input flux to the ocean. Note 

that the isotopic fractionation between seawater sulphate and sedimentary pyrite (

! 

" py
34 ) is 

expressed as a negative number in the above equations. This parameter is defined, with 

reference to 34S, using a Monod-type limiting function: 

 

! 

" py
34 = "MAX

34 [SO4
2#]sw

Km
" + [SO4

2#]sw
 ,

 
(4.12) 

where 

! 

"MAX
34  refers to the maximum metabolic fractionation associated with microbial 

sulphate reduction, 

! 

[SO4
2"]sw  is the ambient seawater sulphate concentration (calculated 

from Msw assuming an ocean volume of 1.37 x 1021 L), and 

! 

Km
"  represents a “pseudo-

half-saturation” constant derived empirically from chemostat experiments with A. 

fulgidus (83). Our reference model uses 

! 

"MAX
34  = 30‰ and 

! 

Km
"  = 0.363 mM, but these 

values have no effect on the magnitude of the !33S signal through time and will only 

influence model trajectories in !34S – !33S space. Microbial fractionations are related to 

the other isotopes assuming mass-dependence: 

 

! 

" py
33=33#*" py

34

" py
36=36#*" py

34  

(4.13) 

(4.14) 

where 33' = 0.515 and 36' = 1.890 (e.g., 84). 

 Model parameters for our reference case (Fig. 4.3) are shown in Table 4.S1. 

Parameter values for the reference case were chosen to approximately satisfy known 

constraints on: (1) the overall size of the crustal sulphur reservoir (13, 16, 20, 85); (2) the 

residence time of sulphur as it cycles through the exogenic system (21, 29); (3) the 
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fraction of overall sulphur input derived from the rapidly recycling sulphur reservoir (19, 

26, 27, 86); (4) the residence time of sulphur in the rapidly recycling reservoir with 

respect to weathering (16, 17); and, (5) the residence time of sulphur in the rapidly 

recycling reservoir with respect to removal to the old reservoir (the “aging flux” of the 

young pyrite reservoir; 16, 19, 87). The range of Fv values was chosen to encompass 

estimates of the modern volcanic sulphur flux and values scaled up to reflect the 

possibility of greater crustal heat flow and volcanic activity during Earth’s early history. 

Estimates of the modern volcanic sulphur flux are typically on the order of ~2-3 x 1011 

mol y-1 (88-92), and we use an estimate of 2 x 1011 mol y-1 as our low volcanic flux. Heat 

flow through the crust has declined with time, and as a result it is typically assumed that 

Earth’s early history was characterized by increased rates of volcanism. Estimates vary, 

but it is unlikely that crustal heat flow during the Archean was more than 3-4 times that 

of the modern Earth (93-96). Thus, we use a volcanic sulphur input of 1 x 1012 mol y-1 as 

our high volcanic flux. We note, however, that the mass flux from subaerial volcanic 

activity need not scale directly with rates of heat flow through the crust. 
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Table 4.S1. Model parameters and values used in our reference model. See text for 
details. 

Parameter Description Reference Model 
Value 

   
Msw seawater sulphate mass 2.74 x 1017 mol 

   
My mass of rapidly weathering (young) pyrite reservoir 5 x 1019 mol 

   
Mo mass of slowly weathering (old) pyrite reservoir 3 x 1020 mol 

   
Mtot Earth surface sulphur reservoir mass 3.5 x 1020 mol 

   
ky young pyrite weathering rate constant 2 x 10-8 y/%!
   

ko old pyrite weathering rate constant 1 x 10-9 y-1 
   

kavg overall crustal sulphur weathering rate constant 3.7 x 10-9 y-1 
   

!weath residence time of rapidly weathering pyrite reservoir 
with respect to weathering 50 x 106 y 

   

!y-o 
residence time of rapidly weathering pyrite reservoir 
with respect to conversion to old reservoir (“aging 

flux”) 
170 x 106 y 

   
!mean mean residence time of surface crustal sulphur 270 x 106 y 

   

Fy / Ftot 
fraction of overall weathering flux derived from 

rapidly weathering sulphur reservoir 0.77 
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CHAPTER 5 

A COUPLED MASS BALANCE APPROACH FOR RECONSTRUCTING 

OCEANIC REDOX LANDSCAPES: PROTEROZOIC CASE STUDY 

 

Preface: 

The contents of this chapter represent a manuscript in preparation for submission to the 
journal Proceedings of the National Academy of Sciences USA. This is reflected in the 
formatting. 
 

Introduction: 

 The partial pressure of oxygen in Earth’s atmosphere has increased dramatically 

through time. However, the trajectory and mechanisms controlling Earth’s oxygenation 

are still poorly constrained, and even less is known regarding attendant changes in ocean 

ventilation and seafloor redox. We have a particularly poor understanding of ocean 

chemistry for a billion-year period during the mid-Proterozoic (from ~1.8 to 0.8 billion 

years ago), when the deep oceans are hypothesized to have been either oxic, anoxic and 

sulfidic (euxinic), or anoxic and Fe-rich (ferruginous). Given the coupling between 

redox-sensitive trace element cycles and planktonic ecosystem productivity, each of these 

models implies very different effects on the global biogeochemical cycling of major 

elements and trace nutrients, as well as potential ecological constraints on emerging 

eukaryotic life. Here, we exploit the differing redox behavior of molybdenum (Mo) and 

chromium (Cr) to provide new constraints on seafloor redox evolution by coupling a 

large database of sedimentary enrichments to a mass balance approach that includes a 

first-order description of spatially variant metal burial rates. We find that the Mo and Cr 
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record necessitates a Proterozoic ocean that was pervasively anoxic relative to the 

Phanerozoic (at a minimum of ~40-50% of modern seafloor area and potentially much 

more) but was characterized by a relatively small extent of euxinic seafloor (less than ~1-

10% of modern seafloor area). Our model also suggests that the oceanic Mo reservoir is 

extremely sensitive to very small perturbations in the extent of sulfidic seafloor and that 

the record of Mo and Cr enrichments through time is fully consistent with the possibility 

of a Mo co-limited marine biosphere during many periods of Earth’s history, including 

the mid-Proterozoic.  

 

Main Article: 

 The chemical composition of the oceans has changed dramatically with the 

oxidation of Earth’s surface (1), and this process has profoundly influenced and been 

influenced by the evolutionary and ecological history of life (2). The early Earth was 

characterized by a reducing ocean-atmosphere system, while the Phanerozoic Eon 

(<0.542 billion years ago) is known for a stably oxygenated biosphere conducive to the 

radiation of large, metabolically demanding animal body plans and the development of 

complex ecosystems (3). The redox characteristics of surface environments during 

Earth’s middle age (1.8 to 0.542 billion years ago [Ga]) are less well known. The ocean 

was historically envisaged to have become ventilated around 1.8 Ga, based on the 

disappearance of economic iron deposits (banded iron formations; 2). However, over the 

past decade it has been commonly assumed that the mid-Proterozoic Earth was home to a 
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globally euxinic ocean, a model derived from theory (4) and supported by evidence for at 

least local sulfidic conditions in Proterozoic marine systems (5-8).  

 More recently, it has been proposed that the deep ocean remained anoxic until the 

close of the Proterozoic, but that euxinia was limited to marginal settings with high 

organic matter loading (9-12). In anoxic settings with low dissolved sulfide levels, 

ferrous iron will accumulate—thus these anoxic but non-sulfidic settings have been 

termed ‘ferruginous’ (9). This model has also found support in at least local evidence for 

ferruginous marine conditions during the mid-Proterozoic (11, 12). However, it has been 

notoriously difficult to estimate the extent of this redox state on a global scale, even in 

the much more recent ocean—largely because most of the ancient deep seafloor has been 

subducted.  

 Independent of seafloor lost to subduction, trace metal enrichments in anoxic 

shales can record information about seafloor redox on a global scale. Following the 

establishment of pervasive oxidative weathering after the initial rise of atmospheric 

oxygen at ∼2.4 Ga (13), the concentration of redox-sensitive elements in the ocean has 

been primarily controlled by marine redox conditions. For example, in today’s well-

oxygenated oceans, Mo is the most abundant transition metal in seawater (∼107 nM; 14), 

despite its very low crustal abundance (∼1-2 ppm; 15). Under sulfidic marine conditions 

the burial fluxes of Mo exceed those in oxygenated settings by several orders of 

magnitude (16). Hence, it follows that when sulfidic conditions are more widespread than 

today, global seawater concentrations of Mo will be much lower. Because the enrichment 

of Mo in sulfidic shales scales with dissolved seawater Mo concentrations (17), Mo 
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enrichments in marine shales (independently elucidated as being deposited under euxinic 

conditions with a strong connection to the open ocean) can be used to track the global 

extent of sulfidic conditions (18). Substantial Mo enrichment in an ancient euxinic 

marine shale, such as occurs in modern euxinic marine sediments, implies that sulfidic 

bottom waters represent a very small extent of the global seafloor. In principle, a similar 

approach can be employed with other metals, such as Cr, which, importantly, will also be 

reduced and buried in sediments under anoxic conditions but without the requirement of 

free sulfide. In the case of Cr, it is readily immobilized as (Fe,Cr)(OH)3 under ferruginous 

conditions (19, 20), and will be reduced and rendered insoluble by reaction with a wide 

range of other reductants under sulfidic or even denitrifying conditions (21-24). Thus, 

comparing Mo enrichments in independently constrained euxinic shales and Cr 

enrichments in independently constrained anoxic shales can offer a unique and 

complementary perspective on the global redox landscape of the ocean. 

 A better understanding of the marine Mo cycle in Proterozoic oceans may also 

illuminate key controlling factors in biological evolution and ecosystem development 

during the emergence of eukaryotic life. The biogeochemical cycles of marine trace 

elements form a crucial link between the inorganic chemistry of seawater and the 

biological modulation of atmospheric composition. The availability of iron, for example, 

has been invoked as a primary control on local carbon export fluxes and atmospheric 

pCO2 on glacial-interglacial timescales (25, 26). However, the leverage exerted by Fe on 

recent oceanic carbon fixation is most fundamentally driven by the sparing solubility of 

Fe in an ocean that is well-ventilated by an oxygen-rich atmosphere. By analogy, on a 
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more reducing Earth surface Mo is likely to be a key co-limiting trace nutrient given its 

importance in biological nitrogen fixation, assimilatory/dissimilatory nitrate reduction, 

and a number of other metabolically significant electron transfer processes (27-29).  

 In order to move forward in our understanding of Proterozoic redox evolution, we 

present a novel view of Cr and Mo enrichments in anoxic shales and a complementary 

modeling approach to interpret these data. From this vantage, we present the first 

evidence that anoxic conditions must have been a globally important feature in the mid-

Proterozoic ocean. In our analysis, we take anoxic environments to include those that are 

euxinic (anoxic and H2S – rich), ferruginous (anoxic and Fe2+ – rich), and NO3
- – 

buffered (i.e., anoxic but with low concentrations of both H2S and Fe2+). We note, 

however, that the latter environments are likely to be spatially and temporally limited, 

given the relatively low concentration (and thus redox buffering capacity) of NO3
- in 

seawater.  

 In spite of evidence for pervasive marine anoxia, we highlight that euxinia 

covered only a small portion of the seafloor. On this basis, we present a new framework 

for linking Mo enrichments to seawater Mo concentrations, which points towards Mo co-

limitation in the Proterozoic ocean. Therefore, despite a more limited extent of euxinia 

than previously envisaged, life in the Proterozoic ocean was heavily influenced by 

extents of sulfide in the water column that far exceeded the small amounts of euxinia that 

characterize the modern ocean.  
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The Mid-Proterozoic Geochemical Record 

 We present a new record of Cr and Mo enrichments in anoxic and euxinic shales 

through time (Fig. 5.1). Samples for this study (n > 3,000) come from our analytical 

efforts and a literature survey (Appendix B). Our own data include new results from over 

300 Precambrian samples and modern anoxic systems. Samples were filtered for basic 

lithology (fine-grained siliciclastics) using a combination of basic sedimentary petrology 

and major-element thresholds. We relied on well-established paleoproxies rooted in Fe-S 

systematics to infer the redox state of the water column overlying the site of shale 

deposition. Importantly, these paleoredox proxies are calibrated to delineate anoxic 

settings (where Cr will be reduced and buried) and euxinic settings (where both Cr and 

Mo will be reduced/sulfidized and buried). The Fe-S paleo-proxies have recently been 

reviewed in detail (30, 31), and full information on sample filters is provided in the 

Supplementary Information. It is important to emphasize the non-circularity of our 

approach—specifically, we constrained paleoredox to have been anoxic or euxinic with 

no appeal to sedimentary metal enrichments as fingerprints of those conditions. This 

approach allows us to use the metal enrichments themselves as proxies for the global 

ocean redox state and its control on the ocean-wide inventories of those metals. 

 There are significant Mo enrichments in mid-Proterozoic euxinic shales (Fig. 

5.1b). However, these enrichments are significantly lower than those observed in late 

Proterozoic (0.8 – 0.54 Ga) and Phanerozoic euxinic equivalents (17). Proterozoic 

enrichments range from less than 10 to greater than 100 ppm, compared to concentrations 

on the order of ~1-2 ppm in average upper crust (15). The total mean for temporally 
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binned mid-Proterozoic shale data (2000-740 Ma) is 40.5 ppm (±22.5 at the 95% 

confidence level) compared to the Phanerozoic where the total mean is 170.2 ppm (±33.4 

ppm at the 95% confidence level).  

 

 
Figure 5.1. Sedimentary Cr (a) and Mo (b) enrichments in anoxic and euxinic black shales 
through time. Because of the relatively high Cr content of typical detrital material, Cr 
enrichments are expressed as Cr/Ti ratios. Grey diamonds represent all filtered data, while black 
circles represent temporally binned averages. Blue boxes show the total mean (±95% confidence 
interval) of temporally binned averages for the mid-Proterozoic and Phanerozoic (see SI 
Discussion). Insets show the cumulative frequency distribution of enrichments for the mid-
Proterozoic (grey curve) and the Phanerozoic (black curve). Green boxes show the composition 
of average post-Archean upper crust (31-33), used to approximate the detrital input. Note the log-
scale. 
 

 In strong contrast to the Mo record, there are no discernable Cr enrichments in 

mid-Proterozoic anoxic shales. We report Cr enrichments by normalizing to Ti content, 

as detrital inputs of Cr to marine sediments can be substantial and are greatly in excess of 

those for Mo. The total mean for Cr/Ti values for mid-Proterozoic anoxic shales is 1.69 x 

10-2 (ppm/ppm), and the 95% confidence interval (1.45 x 10-2 – 1.93 x 10-2) is 

indistinguishable from post-Archean average upper crust (32-34) (Fig. 5.1). There is a 

marked increase in Cr/Ti ratios after the late Proterozoic, with Phanerozoic shales 
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showing Cr/Ti values indicating enrichments of 10s to 100s of ppm. This pattern is 

mirrored in the sharp rise in Mo enrichments through the same interval.  

 We hypothesize that the enrichment trends for both metals reflect the progressive 

expansion of marine anoxia between 2.0 and 1.8 Ga, followed by widespread anoxia and 

oceanic Cr drawdown during the mid-Proterozoic. Because of the different conditions 

required for the reduction, immobilization, and accumulation in sediments for Cr (anoxic) 

and Mo (euxinic), we suggest that a relatively small proportion of oceanic anoxia was 

represented by euxinic conditions, which allowed a moderate though muted seawater Mo 

reservoir to coexist with a strongly depleted Cr reservoir. In contrast, the Phanerozoic 

record is generally characterized by elevated enrichments of both elements, suggesting 

that for most of the Phanerozoic both anoxic and euxinic conditions were less spatially 

and/or temporally widespread. Comparatively short-lived Phanerozoic oceanic anoxic 

events, such as those famously expressed in the Mesozoic, are a notable exception. We 

suggest that combining enrichment records for elements that respond to the presence of 

free HS- in anoxic marine environments (Mo, Zn, etc.) with elements that respond to 

anoxia more generally (Cr, Re, V, etc.) may allow us to place more rigorous constraints 

on the fabric of seafloor redox and bioinorganic feedbacks throughout Earth’s history. 

We can expand this approach in a quantitative direction when the data are interpreted 

within a framework of the global mass balance. 
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Interpreting the Enrichment Record: A Model for Global Mass Balance and Burial 

in Marine Sediments 

 Our quantitative model begins with a conventional mass balance formulation (35-

37), in which the ocean is treated as a single well-mixed reservoir (Fig. 5.2) — a 

reasonable assumption given the relatively long residence times of the elements of 

interest. The globally averaged concentration of a metal in the ocean evolves as:       

 

! 

d
dt

[Me]dv
v
" = Fin # Fout  , (5.1) 

where [Me] represents the seawater concentration of a given metal (Mo or Cr for our 

purposes), integrated over ocean volume v. The terms Fin and Fout represent input and 

output fluxes, respectively. In both cases, input fluxes associated with riverine delivery 

and/or seawater-basalt interaction are grouped into a single input term (Fin; see 

Supplementary Information), while output fluxes (Fout) are broken into burial terms 

specific to each metal cycle (Fig. 5.2). Riverine input dominates the overall input flux for 

both metals, and this flux is not likely to have varied significantly (relative to variations 

in the removal fluxes) after Earth’s initial oxygenation. Sink fluxes (burial in sediments) 

are a function of the characteristic burial rate and areal extent of a given sink 

environment (i): 
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Fout
i = k bi

inidA ,
Ai

"
 (5.2) 

where Ai represents the seafloor area of each sink environment (oxic, ferruginous, 

euxinic, etc.), and bi
ini represents the globally averaged initial burial rate characteristic of 

that environment. In this equation, k is a reaction coefficient that relates the burial flux to 
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the seawater concentration. For a strictly first-order model, k = [Me]t/[Me]M, where [Me]t 

is the mean oceanic concentration of a given metal at time t, and [Me]M is the modern 

seawater concentration. As previously noted (38), this kind of first-order mass balance 

approach to specifying removal fluxes is a specific variant of the more generalized case: 

 

! 

Fout
i = k" bi

inidA ,
Ai

#
 (5.3) 

where ( = 1.0.  

 Combining the above terms yields an expression for each removal flux: 

 

! 

Fout
i = Aibi

ini{[Me]t /[Me]M}"  .
 

(5.4) 

Following previous approaches, we first assume that ( = 1.0 (i.e., a first-order mass 

balance relationship). This approach is grounded in the notion that the burial rate of a 

metal in a given sink environment will scale in a roughly linear fashion with the ambient 

seawater reservoir size (17, 35-37). After substitution and rearrangement of the above 

equations, and by specifying: 
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(5.5) 

we arrive at a generalized mass balance equation for both metals: 
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d
dt

[Me]dv = Fin " #[Me]t
v
$  .

 
(5.6) 

Because we are mainly interested in broad (~106 year) shifts in deep ocean redox, we 

assume steady-state conditions for both metal systems. Assuming steady state (i.e., 
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d[Me]/dt = 0) yields an expression for the average oceanic concentration of a given 

metal: 

 

! 

[Me]t =
Fin
"

 .
 

(5.7) 

 
 
 

 
Figure 5.2. Schematic of the global Cr (a) and Mo (b) mass balance models, showing the modern 
balanced state. Dominant authigenic removal processes are depicted schematically for each sink. 
Terms with shown as S{x -- y} denote sorption processes. Hydrothermal fluxes are neglected in 
our treatment here (see Supplementary Information for further details). Fluxes are in 107 mol y-1. 
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 An important component of our model is the specification of spatially variant 

metal burial rates. Most past treatments of oceanic metal mass balance suffer from the 

physically unrealistic assumption that the metal burial rates characteristic of modern 

environments, typically encountered in restricted or marginal settings such as the Black 

Sea and Cariaco Basin where overall sediment and carbon fluxes are high, can be scaled 

to very large regions of the abyssal seafloor where bulk sediment delivery and TOC 

fluxes are typically much lower (39-41). We have attempted to avoid the same 

oversimplification by coupling an algorithm that addresses carbon flux to the seafloor as 

a function of depth (42) to a polynomial function fitted to bathymetric data (43), and by 

tuning an imposed burial ratio parameter (%Me/C) to reproduce the modern globally 

averaged burial rate for each metal (see Supplementary Information). 

 The essential assumption here is that a given region of the seafloor will have a 

characteristic “burial capacity” for Mo and Cr, regulated to first-order by carbon flux to 

the sediment, and that this capacity will only be realized if the environment is anoxic (in 

the case of Cr) or euxinic (in the case of Mo). From a mechanistic perspective, this 

approach builds from clear evidence that the burial in sediments of many redox sensitive 

metals in anoxic settings scales strongly with carbon flux to the sediments (17, 44-46). 

We hold that this approach allows for a more realistic depiction of perturbations to 

seawater metal inventories as a function of seafloor redox dynamics by smoothly 

decreasing globally averaged burial rates as larger regions of the seafloor become anoxic 

(Cr) or euxinic (Mo).  
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Interpreting the Enrichment Record: Model Results 

 Our approach assumes, by definition, that the burial rate of a given metal in an 

authigenically active environment (i.e., environments that remove Cr and/or Mo from 

seawater and sequester them within the sediment column) scales with the ambient 

concentration in seawater: 

 

! 

bi = bi
ini{[Me]t /[Me]M}

"

 
(5.8) 

The seawater reservoir is controlled largely by how this relationship is expressed on a 

global scale, but this relationship will also apply to individual settings or regions of the 

seafloor. As a result, we can envision a generalized authigenically active setting and 

estimate sedimentary metal enrichments as a function of seawater concentration, in turn 

controlled by the relative areas of different redox environments on a global scale.  

 The results of such an exercise are shown in Figure 5.3. Here, we have used as 

our starting point burial rates and overall sediment mass accumulation rates from one of 

the best characterized perennially euxinic basins on the modern Earth, the Cariaco Basin 

in Venezuela. Our purpose here is to depict a generalized setting accumulating Cr and 

Mo within sediments that has an open connection to the seawater metal reservoir(s), and 

for that reason we have chosen the Cariaco Basin over the highly restricted Black Sea, 

which shows clear local reservoir effects for Mo (17). In essence, we pose the question 

“how would an anoxic or euxinic continental margin environment, such as that 

represented in the marine black shale record, respond to a particular perturbation to 

seafloor redox state?” We can then scale this relationship to spatially varying Corg burial 

and bulk sedimentation to inform metal uptake away from the continental margin.  
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 A striking pattern emerges when we consider the magnitude of enrichment that 

can be achieved in an authigenically active environment under different oceanic redox 

conditions (Fig. 5.3). If our model is correct, the negligible sedimentary Cr enrichments 

characteristic of the entire mid-Proterozoic would require extremely pervasive anoxic 

conditions. Our approach (which is likely conservative; see Supplementary Information) 

suggests that at least ~40-50% of the seafloor must have underlain anoxic deep waters in 

order to drive Cr enrichments to crustal values for sustained periods. We stress that this is 

a minimum estimate, and that our results are fully consistent with virtually complete 

seafloor anoxia.  

 The Mo enrichment record, however, tells a very different story. Enrichments in 

euxinic environments during this period are muted relative to the Phanerozoic, a pattern 

that emerges as a consequence of more widespread sulfidic deposition relative to most of 

the Phanerozoic and is reinforced when Mo enrichments are normalized to total organic 

carbon (18). However, Mo enrichments in Proterozoic euxinic environments that are 

mostly well above crustal values are inconsistent with pervasive, ocean-scale euxinia 

(Fig. 5.3). Instead, our model results point to roughly ~1-10% of the seafloor as being 

euxinic during the mid-Proterozoic, although there is likely to have been dynamic 

expansion/contraction of the area of euxinic seafloor area within and occasionally beyond 

this range—as related, for example, to spatiotemporal patterns of primary production 

along ocean margins. A similar range of euxinic seafloor is implied for some brief 

periods of the Phanerozoic (47, 48), but the record of appreciable Cr enrichment during 
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this latter phase of Earth history indicates much more spatially and temporally restricted 

anoxia overall.  

 

 
Figure 5.3. Estimated sedimentary enrichments for Cr (a) and Mo (b) in a generalized anoxic 
and/or euxinic setting, respectively. Black curves represent a bulk mass accumulation rate of 1.0 
x 10-2 g cm-2 y-1, while grey dotted curves represent a factor of 1.5 above and below this value. 
The blue box in (a) represents an enrichment threshold of 5 #g g-1, a conservative value for our 
purposes given the negligible enrichments recorded by mid-Proterozoic anoxic shales. The red 
box in (b) shows the approximate euxinic seafloor area consistent with mid-Proterozoic Mo 
enrichments, and is scaled relative to the y-axis according to the 95% confidence interval of 
temporally binned averages shown in Fig. 5.1. Seafloor areas are shown as a percentage relative 
to modern seafloor area (%) and in terms of raw area (km2). 
 

A ‘Biologically Sulfidic’ Ocean 

 The record of Cr and Mo enrichment, when interpreted in light of our model 

results, necessitates that euxinia covered a relatively small fraction of overall seafloor 

area despite pervasive anoxic conditions on a global scale. Such a result adds to growing 

evidence that Proterozoic deep ocean chemistry was dominated by ferruginous conditions 

(9, 11, 12), in contrast to most modern anoxic marine settings that tend toward euxinia. 

Nevertheless, euxinia in the mid-Proterozoic ocean was likely orders of magnitude more 
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widespread than today’s estimate of ~0.1% of the seafloor, and the deleterious impacts on 

nutrient availability could have been enough to inhibit the early diversification of 

eukaryotic organisms. In effect, the sensitivity of the oceanic Mo reservoir to small 

perturbations in the extent of euxinia suggests that a distinction should be made between 

a geochemically sulfidic ocean, in which a large proportion of oceanic volume and basin- 

or global-scale areas of the seafloor (much more than our estimate of ~1-10%) are 

characterized by sulfidic waters, and a biologically sulfidic ocean, in which trace nutrient 

co-limitation of marine primary producers is strongly controlled by the extent of euxinic 

conditions. 

 To explore this possibility fully, we use the model to estimate globally averaged 

seawater [Mo] under variable scaling between the ambient seawater concentration and 

burial rate within sediments. The most common approach, as discussed above, is to 

assume strictly first-order (i.e., linear) scaling. Although data are somewhat limited and it 

is difficult to establish precisely what the form of this relationship should be, data from 

the most well-characterized perennially euxinic settings on the modern Earth suggest that 

this relationship may be non-linear (Fig. 5.4a). The effect of this parameter on steady-

state globally averaged seawater [Mo] is shown in Figure 5.4b. Because lowering the 

value for ( allows for a higher burial rate (and thus removal flux from the ocean) at a 

given value for seawater [Mo], the concentration is ultimately drawn down to much lower 

steady-state values for a given perturbation.  
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Figure 5.4. The effects of deviating from a strictly first-order model. Shown in (a) are Mo burial 
rates as a function of ambient dissolved Mo concentration (shown as a proportion of modern 
seawater, [Mo]/[Mo]SW) for a range of ( values between 1.0 (strict first-order) and 0.25. Curves 
are calculated assuming a modern globally averaged euxinic burial rate of 1.53 #g cm-2 y-1. Black 
circles represent values for well-characterized perennially euxinic marine basins on the modern 
Earth [Black Sea (BS), Framvaren Fjord (FF) and the Cariaco Trench (CT); see Supplementary 
Information]. Shown in (b) are steady-state globally averaged seawater Mo concentrations as a 
function of euxinic seafloor area for different values of (. The shaded box depicts values below 
10nM. 
 

 It is crucial to point out that although the term ( regulates the scaling between 

ambient [Mo] and Mo burial rate on a global scale in an integrated sense across diverse 

redox settings, it will also do so within individual authigenically active environments. 

Importantly, this means that the sedimentary enrichments predicted by the model for a 

given extent of euxinic seafloor do not vary as a function of (. Changes in this parameter 

are reflected by the steady-state concentration of Mo in seawater (the same applies for 

Cr). It is clear from this exercise (Fig. 5.4) that even relatively small areas of the seafloor 

overlain by euxinic water masses (a fraction of modern continental shelf area) are 

sufficient to draw the ocean’s average Mo concentration to ~10 nM (an order of 
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magnitude below that seen in the modern ocean), even with strictly linear scaling 

between ambient [Mo] and burial flux.  

 Further work is needed to better pinpoint the levels of seawater Mo that should be 

considered biologically limiting, but available evidence is consistent with bio-limiting 

concentration in mid-Proterozoic oceans. Culturing experiments with modern strains of 

diazotrophic (nitrogen-fixing) organisms generally indicate that rates of nitrogen fixation 

and overall growth become impacted by Mo availability once concentrations fall to 

within the ~1-10 nM range (49-53). Some strains seem to show resilience to Mo scarcity 

until concentrations fall below ~5 nM (52), but in general there seems to be a sharp 

change in overall growth rates, cell-specific nitrogen fixation rates, and stoichiometric 

growth status within the 1-10 nM range. It is also important to point out that even small 

changes in relative rates of diazotrophy, if expressed globally and on protracted 

timescales, can be expected to have large effects on carbon and oxygen cycling.   

 Although Mo enrichments during the mid-Proterozoic do not approach those 

characteristic of comparable Phanerozoic settings, enrichment levels are nonetheless 

maintained well above crustal values. Thus, Mo enrichments in mid-Proterozoic euxinic 

marine settings seem poised within a very sensitive region of parameter space. We 

propose that such a relationship implies some kind of stabilizing feedback controlled by 

Mo co-limitation. In this scenario, widespread euxinic conditions would deplete the Mo 

reservoir, thereby limiting primary productivity and carbon export flux. This would 

reduce the amount of biomass oxidized via microbial sulfate reduction (which produces 

HS-), limiting sulfide accumulation in marine settings. The ultimate result of this would 
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be for Mo concentrations to rebound (a negative feedback; 18). However, it would be 

difficult to transition from a Mo co-limited system to a more oxidizing, Mo replete ocean. 

Such a shift would need to be driven ultimately by a long-term increase in sedimentary 

burial of organic matter, but this would lead to a corresponding increase in Mo burial 

fluxes pushing the system back to Mo co-limitation. The link between primary 

production and Mo removal from the ocean would again be the microbial production of 

hydrogen sulfide needed for efficient Mo burial.  

 The response time of Mo in a Mo-depleted ocean should be short enough (relative 

to the residence time of oxygen in the ocean/atmosphere system) to induce a rapid and 

efficient stabilizing feedback on redox conditions. It is important to note that Fe will be 

orders of magnitude more soluble under any form of anoxia (euxinic or ferruginous) than 

it is in the modern ocean (54). In this light, in a reducing ocean, the coupled C-S-Fe-Mo 

biogeochemical cycles form an attractor—driving the marine system toward persistent 

trace metal-macronutrient co-limitation. This relationship is similar, in essence, to the 

control exerted by limited Fe solubility in an oxidizing and well-ventilated ocean, but we 

expect that the stabilizing feedbacks and sensitivity responses will be very different 

between the two systems. 

!

Conclusions 

 Exploration of the Cr and Mo enrichment record in anoxic marine shales during 

the last ~2.0 Ga within a mass balance framework reveals that the mid-Proterozoic ocean 

was characterized by pervasive anoxic conditions, as manifested by negligible Cr 
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enrichments in anoxic shales, but limited euxinia, as reflected in non-trivial Mo 

enrichments in euxinic shales that are nonetheless quite muted relative to most 

Phanerozoic equivalents. The Phanerozoic ocean appears to have been marked by more 

circumscribed anoxia on the whole, with anoxic shales typically showing substantial Cr 

enrichments. As a result, a potentially much larger relative fraction of this anoxia may 

have been represented by euxinic conditions, in particular during the Cretaceous oceanic 

anoxic events (OAEs) and periods of anomalously widespread anoxia during the 

Paleozoic (48). It remains to be explored if these episodes represent a fundamentally 

different mode of anoxic marine conditions or whether they can be viewed as temporary 

reversions to mid-Proterozoic conditions.  

 In addition, our model points toward a view in which the chemistry of small and 

dynamic regions of the seafloor exert fundamental control on biological carbon and 

oxygen cycling through bioinorganic feedbacks related to trace element availability (18, 

27), in much the same way that carbon cycling and export in large regions of the modern 

well-ventilated ocean is controlled by the availability of Fe. Moving forward, it will be 

important to explore in detail, and with a wide range of organisms, the thresholds at 

which diazotrophs are strongly impacted by Mo availability. It will also be important to 

develop explicit ecological models aimed at delineating the constraints and feedbacks 

associated with Mo-N co-limited planktonic ecosystems. For example, elevated growth 

rates and doubling times due to greater overall Fe availability (as the solubility of Fe in 

any anoxic state will be orders of magnitude above that seen in oxic systems) may be able 

to compensate for lower cell-specific rates of nitrogen fixation within the context of 
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ecosystem nitrogen supply. Further, little is known regarding the effects of Mo 

availability on assimilatory and/or dissimilatory nitrate reductase. Finally, it is clear that 

some diazotrophs show biochemical idiosyncrasies aimed at dealing with Mo scarcity 

(53), and recent work on the exquisite adaptation of some diazotrophic organisms to Fe 

limitation in the modern oceans (55) begs for a more thorough exploration of the 

biochemistry of Mo-limited diazotrophy.  

 In any case, our results provide strong independent evidence for an emerging 

first-order model of late Archean and Proterozoic ocean redox structure. In this model, 

the surface ocean is well-ventilated through air-sea gas exchange, but the deep ocean is 

anoxic as a result of initial equilibration of deep ocean water masses with atmospheric 

pO2 at least 1-2 orders of magnitude below the modern value (4). The increased mobility 

and transport of dissolved Fe(II) under reducing conditions, combined with spatially 

heterogenous carbon fluxes through marine systems (as constrained by the intensity of 

vertical exchange through upwelling and eddy diffusion), yielded an ocean that was 

pervasively anoxic (i.e., redox-buffered by Fe2+ or NO3
-) with localized regions of 

euxinia in marginal settings (11, 12). This emerging model provides a backdrop for the 

early evolution and ecological expansion of eukaryotic organisms (26, 56) and the 

biogeochemical feedbacks controlled by the progressive restructuring of primary 

producing communities (57). Finally, the sensitivity of the oceanic Mo reservoir to 

perturbation, combined with the existing Mo enrichment record in Proterozoic euxinic 

shales, implies that this redox structure may have been stable on long timescales as a 

function of Mo-co-limitation in the surface ocean. This hypothesis can be tested through 
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the generation of more Proterozoic shale data, while further modeling might constrain 

how robust such a feedback could be and what conditions would have been required to 

surmount it during the later Proterozoic ventilation of the deep ocean and subsequent 

evolution of macroscopic life. 

 
Supplementary Information: 

Metal Enrichment Database and Filtering Protocols 

 Through our own analytical efforts and a literature survey, we have assembled a 

database of molybdenum (Mo) and chromium (Cr) concentrations for over 3,000 

samples. Data sources are shown in Appendix B. Samples were initially filtered to 

represent solely fine-grained siliciclastic sediments, using basic petrographic observation 

and major element thresholds. Samples were required to contain weight percent (wt%) 

levels of iron (Fe) and aluminum (Al). Samples containing less than 1.0 wt% total 

organic carbon (TOC) were also removed. 

 The information contained within a particular degree of authigenic enrichment of 

Cr or Mo depends on local depositional redox. Thus, samples were further filtered such 

that Cr data was only analyzed from anoxic shales, and Mo data was only analyzed from 

euxinic shales. Anoxic shales were delineated as having FeT/Al > 0.5 (58) and/or 

FeHR/FeT > 0.38 (7, 31, 59), where FeHR designates “highly reactive” Fe (Fe that is 

reactive to dissolved H2S on syngenetic or diagenetic timescales; 60). Euxinic settings 

were delineated by combining the above thresholds for anoxia with either FePY/FeHR > 

0.7 (7, 61), or with elevated values for degree of pyritization (DOP > 0.6; 30), defined as 

(62): 
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! 

DOP =
FePY

FePY + FeHCl
 ,

 
(5.9) 

where FeHCl is Fe soluble in a 1-minute boiling concentrated HCl leach. Because elevated 

DOP has also been shown to require enhanced Fe mobility and transport (30, 58), and 

because it is an extremely robust analytical measurement, DOP > 0.8 supercedes all other 

redox filters in the designation of euxinia. In some cases, total sulfur content is used to 

calculate DOPT, according to: 

 

! 

DOPT =
FeS

FeS + FeT
 ,

 
(5.10) 

where FeS denotes the inferred amount of sulfur-bound Fe assuming that total sulfur 

represents pyrite sulfur (63). Modern systems (such as the Black Sea and Cariaco Basin) 

were additionally filtered by site location, for extreme siliclastic dilution, and the 

presence of bioturbation. 

 

Modern Molybdenum (Mo) Mass Balance 

 We begin by assuming steady state, wherein a single input flux (Fin) is balanced 

by removal via authigenic burial into three main sedimentary sinks: an oxic sink (Fox), a 

reducing sediment sink (Fred), and a sulfidic sink (Fsulf). Our balanced modern Mo budget 

is shown in Table 5.S1, and individual removal terms are discussed below. The 

weathering flux of Mo on the modern Earth is dominated by the mobilization of Mo from 

sulfide mineral phases in sedimentary and igneous rocks and transport as dissolved 

MoO4
2-, and we set as Fin a recently obtained modern riverine flux of dissolved MoO4

2- to 

the ocean (64). This flux is somewhat larger than those conventionally used, but is 
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derived from the most extensive riverine database generated to date, representing 38 

rivers across 5 continents and including 11 of 19 large-scale drainage areas. However, 

regardless of our choice of estimate for the riverine Mo flux, sensitivity analysis (Fig. 

5.S1) indicates that our conclusions are weakly sensitive to the assumed value of the 

input flux over a wide range. We neglect hydrothermal fluxes of Mo to/from the ocean, 

as these are either poorly established or likely to be quantitatively small (see below). 

 Oxic settings are defined as those in which Mn is permanently removed from the 

ocean as an oxide phase (with associated adsorbed Mo). In many oxic deep sea settings, 

dissolved O2 penetrates to the sediment-basalt interface (65, 66) and this Mn (and Mo) 

will effectively be buried permanently. In other settings, dissimilatory microbial Mn 

reduction deeper in the sediment column can remobilize Mn (and, presumably, associated 

Mo). However, when O2 penetration depths are large (multiple cm or more) upward-

diffusing Mn will be quantitatively oxidized at a steady state oxidation front (67-69), 

effectively removing Mn and Mo from the ocean on a timescale characteristic of tectonic 

recycling of seafloor sediments (on the order of ~108 years). Morford and Emerson (37) 

suggest that once O2 penetration falls below ~1 cm, Mn and Mo will be recycled and 

released from shallow sediments. We therefore characterize oxic seafloor as being the 

areal extent of sediments in which O2 penetration exceeds 1 cm. This is estimated using 

global diagenetic models (70, 71) to be ~3 x 108 km2, or roughly 84% of modern seafloor 

area. We stress that there are fairly large regions of the seafloor that are essentially Mo 

neutral (see below), such that the total seafloor area for the entire budget need not sum to 

100%. This area is then combined with a burial rate of 2.75 x 10-3 #g cm-2 y-1, estimated 
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by compiling Mo burial rates in oxic settings (72) and by combining Mn burial rates in 

oxic pelagic sediments (73) with a characteristic Mo/Mn ratio of 2 x 10-3 (74). The 

combined sink is shown in Table 5.S1.  

 

 Figure 5.S1. The effect of changes in the assumed input flux on model results. Panels a-c apply 
to the Cr model. Each curve shows the areal extent of seafloor anoxia at which authigenic Cr 
enrichments decrease below 5 #g g-1. Each panel represents a different bulk mass accumulation 
rate (increasing from left to right, with a range of a factor of 1.5 around 1.0 x 10-2 g cm-2 y-1, the 
approximate value for deep sediments of the modern Cariaco Basin), while the curves represent 
low (dashed grey; 0.5 #g cm-2 y-1), medium (black; 0.75 #g cm-2 y-1) and high (dashed grey; 1.0 
#g cm-2 y-1) authigenic Cr burial rates. Panels d-f apply to the Mo model, with each curve 
showing the areal extent of sulfidic (euxinic) seafloor at which authigenic Cr enrichments 
decrease below 40 #g g-1 (the mid-Proterozoic total mean). The range of bulk MAR values is the 
same as in a-c, with the various curves in each panel representing low (dashed grey; 1.0 #g cm-2 
y-1), medium (black; 1.5 #g cm-2 y-1) and high (dashed grey; 2.0 #g cm-2 y-1) authigenic Mo burial 
rates. 
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Table 5.S1. Modern Mo budget. 
Flux Term Area Areaa Burial Rate Fi  Fi / Fin 

- km2 % #g cm-2 y-1 mol y-1 % 
Fin - - - 3.00 x 108 - 
Fox 3.02 x 108 83.89 2.75 x 10-3 8.66 x 107 28.8 
Fred 6.90 x 106 1.92 0.27 1.94 x 108 64.7 
Fsulf 3.87 x 105 0.11 0.48b 1.94 x 107 6.5 

aAssuming a global seafloor area of 3.6 x 108 km2 

bNote that although this is the correct value for use in balancing the modern budget, it is 
biased towards the Black Sea (see text). 
  

 Sulfidic settings are defined as environments in which dissolved H2S accumulates 

at or above the sediment-water interface. This includes traditional euxinic settings (Black 

Sea, Cariaco Basin), but is also meant to include small areas of the seafloor below 

regions of intense upwelling (Peru margin, Namibian shelf), where dissolved H2S is 

present at high levels essentially at the sediment-water interface and occasionally 

breaches into the water column (75, 76). Our sulfidic sink is calculated by combining 

estimates of seafloor area, authigenic enrichment, and bulk mass accumulation rate for 

modern sulfidic settings (2, 17, 46, 77-87). The globally averaged sulfidic burial 

calculated through such an approach will be biased low – given that the modern extent of 

euxinic seafloor, on an areal basis, is dominated by the Black Sea, and this setting is 

characterized by low burial rates due to restricted exchange over the Bosporus sill and an 

evolved Mo reservoir (17). As a result, the global sulfidic burial rates implemented in the 

model are referenced to a modern globally averaged sulfidic burial rate that neglects the 

influence of the Black Sea. This is done in an effort to represent the burial capacity of 

marine settings with unfettered access to the seawater Mo reservoir (18). 
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 The final sink is reducing sediments. This sink represents environments that have 

been referred to by the rather ambiguous term “suboxic”. We follow Scott et al. (18) in 

designating these environments as those in which dissolved H2S accumulation is 

restricted to pore waters, but further point out that reducing sediments in which O2 

penetration is less than ~1 cm and H2S accumulation occurs more deeply in the sediments 

do not effectively bury Mo (37). From a mechanistic perspective, these reducing 

sediment environments are typically associated with relatively low bottom water O2, but 

the effectiveness of Mo sequestration in these settings is most likely a more complex 

function of Mn flux to sediments (and, thus, bottom water O2), sedimentation rate, and 

labile organic carbon flux to the sediment-water interface. In any case, we use a 

somewhat moderate burial rate for reducing sediments of 0.27 #g cm-2 y-1 (84, 87, 88-

90), and use the remaining parameters of the budget to solve for the seafloor area 

represented by this sink (Table 5.S1). Although we present a revised approach for 

estimating this burial flux, our result is similar to previous estimates based on 

consideration of bulk burial rates (18) and isotope mass balance (87).  

 

Modern chromium (Cr) mass balance 

 As for Mo, we begin by assuming steady state, with a single input flux (Fin) 

balanced by three authigenic burial fluxes: an oxic sink (Fin), a reducing sediment sink 

(Fred), and an anoxic sink (Fanox). In our modeling analysis, we take anoxic environments 

to include those that are euxinic (anoxic and H2S – rich), ferruginous (anoxic and Fe2+ – 

rich), and NO3
- – buffered (i.e., anoxic but with low concentrations of both H2S and 
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Fe2+). We note, however, that the latter environments are likely to be spatially and 

temporally limited, given the relatively low concentration (and thus redox buffering 

capacity) of NO3
- in seawater. Potential hydrothermal fluxes to/from the ocean are 

neglected in our treatment of the modern Cr cycle, as currently available data suggest that 

these fluxes are quantitatively insignificant (see below). Our balanced modern Cr budget 

is presented in Table S3. The Cr mass balance is rather poorly constrained — compared 

to that for Mo. However, we suggest that although our mass balance is likely to be 

revised as better estimates of fluxes and reservoirs become available, this is very unlikely 

to change our fundamental conclusions. 

 Our input flux is calculated by combining an average dissolved riverine Cr 

concentration of 16 nM (91) with a global discharge rate of 3.7 x 104 km3 y-1 (92). 

Combined with an average seawater concentration of 4 nM (93) and an ocean volume of 

1.37 x 1021 L, this yields a residence time for Cr in the modern ocean of ~9,000 years 

(i.e., approximately a factor of 9 greater than the characteristic timescale of ocean 

mixing). To our knowledge, estimates of this sort are few, but ours is well in line 

previous attempts (e.g., 94). As for Mo, sensitivity analysis (Fig. 5.S1) indicates that our 

conclusions are not likely to be fundamentally altered unless input fluxes to the ocean 

become extremely low. 

 Dissolved Cr(VI) species should become adsorbed onto the surface of metal- and 

Al-oxide phases (95-97). We therefore expect some non-trivial burial flux of Cr in oxic 

settings, although we note that sorption to Al-oxide phases decreases sharply when 

approaching circumneutral pH (98). The Cr content of pelagic red clays, although often 
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elevated above crustal values with respect to Cr/Ti ratios, is rather variable. We use in 

our budget a relatively low oxic Cr burial rate of 1.0 x 10-3 #g cm-2 y-1, of the same order 

as our much better constrained Mo burial flux. This corresponds to a sediment with a 

Cr/Ti ratio of 1.87 x 10-2, consistent with typical values from pelagic red clays (99-101), 

accumulating at a burial rate of 1.0 x 10-3 g cm-2 y-1. Because the burial of Cr in oxic 

settings should depend on the efficiency of metal oxide burial, this burial rate is then 

combined with the same areal extent of oxic seafloor (defined by sediment O2 penetration 

depth) discussed above. 

 The anoxic sink for Cr is defined in a similar manner to the sulfidic sink for Mo, a 

natural result of the fact that on the modern Earth the relative mobility and transport of S 

and Fe are such that anoxic settings tend to become euxinic (anoxic and sulfidic). We use 

Cr/Ti ratios from the Cariaco Basin (45, 81, 102, 103) to obtain a modern anoxic burial 

rate of ~0.5 #g cm-2 y-1, and scale this to the seafloor area of anoxic environments as 

discussed above for the modern Mo budget. This burial rate is roughly of the same order 

as that for Mo in euxinic settings, although we acknowledge that these estimates will 

improve with further generation and analysis of Cr data in anoxic marine systems. It is 

important to recognize, however, that Cr will be reduced and immobilized as Cr(III) via a 

wide range of reductants – dissolved H2S is not necessary (19, 20, 23). Indeed, Cr(VI) 

reduction to Cr(III) has been shown to take place in the open water column of the eastern 

tropical Pacific, coincident with the onset of microbial denitrification (24). This provides 

a crucial distinction with the behavior of Mo, and forms the centerpiece of our analysis. 

The reducing sediment sink is again solved for using the other parameters of the budget. 
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We assume an authigenic burial rate of 0.15 #g cm-2 y-1, derived from combining Cr/Ti 

ratios in the Gulf of California (104) with the requisite bulk mass accumulation rates 

(105). This aspect of the budget is not well constrained, but we consider it unlikely that 

such settings will authigenically bury Cr at rates much higher than this. In other words, 

we use what we consider to be a relatively high burial rate in order to avoid 

underestimating the magnitude of this sink relative to the anoxic sink. Parameters for our 

modern balanced Cr budget are shown in Table 5.S2. 

 

Table 5.S2. Modern Cr budget. 
Flux Term Area Areaa Burial Rate Fi  Fi / Fin 

- km2 % #g cm-2 y-1 mol y-1 % 
Fin - - - 6.06 x 108 - 
Fox 3.02 x 108 83.89 1.00 x 10-3 5.81 x 107 9.6 
Fred 1.77 x 107 4.92 0.15 5.11 x 108 84.3 
Fanox 3.87 x 105 0.11 0.50 1.94 x 107 6.1 

aAssuming a global seafloor area of 3.6 x 108 km 

 

Hydrothermal cycling of Mo and Cr 

 The systematics of Mo and Cr in hydrothermal systems and the effects of 

hydrothermal processes on the Earth surface cycles of Mo and Cr have note been 

explored in detail, but we can place some basic constraints on the possible effects of 

high- and low-temperature seawater-basalt interaction on the mass balances of Mo and Cr 

in the ocean. The water flux through a high-temperature hydrothermal system (F(ht); in kg 

y-1) can be estimated as (106): 

 

! 

F(ht ) =
Q(ht )

"T(ht )cp
 ,

 
(5.11) 
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where Q(ht) is the hydrothermal heat flux, !T(ht) is the seawater temperature anomaly, and 

cp is the specific heat of seawater (at seafloor pressure and vent fluid temperature). We 

can combine this with a concentration anomaly for a given metal (![Me] = [Me]SW – 

[Me]fluid) to estimate a high temperature hydrothermal flux to/from seawater (Fhyd) as: 

 

! 

Fhyd =
Q(ht )

"T(ht )cp
([Me]SW # [Me] fluid ) .

 
(5.12) 

 Results of this calculation for both Mo and Cr are shown in Table S4. These 

calculations suggest that high temperature seawater-basalt interaction represents a 

removal flux of both Mo and Cr that is quite small relative to the riverine flux of either 

element. We note that such estimates are inherently imprecise, given uncertainties in the 

magnitude of on-axis heat flow (106 and references therein) and analytical difficulties 

associated with obtaining unadulterated fluid chemistry. In the case of high-temperature 

fluids, it is most likely that these concentrations have been perturbed by mixing with 

seawater Cr and/or Mo, which would cause us to underestimate the magnitude of these 

sink terms. However, this should have a negligible effect on our result, given that 

reported concentration anomalies indicate near complete removal of both elements during 

high-temperature seawater-basalt interaction (Table 5.S3). Assuming complete removal 

of seawater Mo from the circulating fluid (i.e., ![Mo] = 107 nM) would increase our 

estimated high-temperature removal flux from 0.85% to 0.91% of the total input flux. 

Making the same assumption for Cr (i.e., ![Cr] = 4 nM) would have a trivial effect on the 

estimated high-temperature removal flux.  
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Table 5.S3. Estimated high-temperature hydrothermal Mo and Cr fluxes. 
 Mo  Cr  

F(ht)
a ![Me]b Fhyd / Friv ![Me]c Fhyd / Friv 

kg y-1 nM % nM % 
2.62 x 1013 100 0.85 3.88 0.02 

aAssuming: Q(ht) = 3.2 x 1012 W (106); !T(ht) = 350ºC (106, 107); cp = 5.8 J g-1 K-1 (106) 
b[Mo]SW from (14); [Mo]fluid from (108) 
c[Cr]SW from (93); [Cr]fluid from (109) 
  

 Low-temperature, off-axis hydrothermal systems are a much more difficult 

problem to address. Pristine vent fluid composition is not well constrained for many 

settings, but, more importantly, the global water flux through such systems is very poorly 

constrained. Given that the temperature anomaly is probably small, a much larger water 

flux could be necessary to dissipate the requisite heat flow. As a result, even a very small 

concentration anomaly may result in a significant flux to/from seawater on a global scale. 

Magnesium (Mg2+) substitutes readily for calcium (Ca2+) during seafloor basalt alteration 

(110), and is removed from seawater during hydrothermal fluid evolution at both high- 

and low-temperature (111-113). Using the above method of calculation, the high-

temperature removal flux of Mg2+ from seawater can be estimated as ~1.4 x 1012 mol y-1. 

By combining the global discharge rate used above with a global average riverine Mg2+ 

concentration of 128 #mol kg-1 (112), we derive a global riverine Mg2+ flux of 4.7 x 1012 

mol y-1. If we assume that the balance between the riverine flux and removal during high-

temperature seawater-basalt interaction is made up by low-temperature flow, we can use 

the Mg2+ concentration anomaly (![Mg2+] = [Mg2+]SW – [Mg2+]fluid) to calculate an 

approximate water flux through low-temperature systems of 6.25 x 1013 kg y-1 .  
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 Combining this estimated water flux with available chemical anomalies for Mo 

and Cr allows us to place rough limits on the magnitude of the low-temperature fluxes of 

these elements to seawater (Table 5.S4). These may be upper limits given available 

constraints, as the calculations assume no other removal fluxes of Mg2+ from seawater 

[i.e., uptake during carbonate burial or clay mineral alteration during “reverse 

weathering” reactions (116)]. We suggest that although low-temperature fluxes are likely 

to be somewhat larger than those that occur during on-axis fluid flow, they are still a 

relatively small fraction of the corresponding riverine fluxes. Given the framework 

outlined above, it is highly unlikely that the flux of either element will exceed ~10% of 

their respective riverine inputs. Furthermore, as stated above, sensitivity analysis 

indicates that our results are not strongly affected by reasonable changes in Cr and/or Mo 

input fluxes (Fig. 5.S1). 

 

Table 5.S4. Estimated low-temperature hydrothermal Mo and Cr fluxes. 
 Mo  Cr  

F(llt)
a ![Me]b Fhyd / Friv ![Me]c Fhyd / Friv 

kg y-1 nM % nM % 
6.25 x 1013 -190 4.07 -36 0.38 

aEstimated assuming a Mg2+ removal flux of 1.4 x 1012 mol y-1 (see text) 
b[Mo]SW from (14); [Mo]fluid from (113) 
c[Cr]SW from (93); [Cr]fluid from (115) 
 

Offshore scaling of metal burial rates in the model 

 Our modeling approach essentially involves balancing the modern steady state 

cycles of both Cr and Mo and applying a continuous range of perturbations to this 

balanced cycle to explore the new steady state attained under different oceanic redox 
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regimes. In doing so, we begin with a conventional first-order mass balance formulation. 

This class of model, often employed to explore the dynamics of various chemical tracers 

in the ocean and their isotope systems, makes the implicit assumption that the burial 

fluxes characteristic of some particular environment (typically organic-rich continental 

margin sediments or marginal restricted basins) can be universally applied to extremely 

large regions of the seafloor. In other words, it is assumed that a burial rate characteristic 

of, say, the Peru margin can be applied to the abyssal realm of the ocean.  

 This is almost certainly physically unrealistic, as open ocean settings are 

characterized by much lower bulk sediment fluxes, and, in particular, organic carbon 

fluxes (39, 40, 117, 118). As a result, if a particular region of the abyssal ocean becomes 

authigenically active for some chemical constituent of seawater, it can be expected that 

the removal rates of that constituent into the sediment column will be much lower than 

those seen in more marginal settings. The net result will be a system that is overly 

sensitive to perturbation, as burial fluxes in large regions of the deep sea will be 

overestimated. This dilemma, inherent in conventional first-order mass balance analysis, 

has been noted by some previous work (38, 119) but has not been explored in detail. This 

problem is particularly acute for redox sensitive transition metals, like Mo and Cr, given 

that the organic matter flux is typically thought to be directly involved in metal 

sequestration (e.g., 17). 

 We have attempted to alleviate this problem by adding a “pseudo-spatial” 

dimension to the conventional 1-box ocean mass balance approach. We take an algorithm 

employed in global diagenetic models (42) for organic carbon flux to the seafloor as a 
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function of depth, which is then coupled to a polynomial function fitted to bathymetric 

data for the modern ocean (43). We then use a burial flux ratio (%Me/C, where Me refers to 

Mo or Cr) for each element, a tuned parameter resulting in a relationship that encodes a 

decrease in local (and globally averaged) metal burial rates as larger regions of the 

seafloor become authigenically active. Values for %Me/C are tuned to reproduce the 

modern condition (i.e., the modern globally averaged burial rates at ~0.1% seafloor 

anoxia; Fig. 5.S2). The essential concept here is that a given region of the seafloor has a 

characteristic burial capacity for either Cr or Mo, regulated to first order by the relative 

carbon flux through the water column and to the sediments, and that this burial capacity 

will only be reached when a region of the ocean achieves the requisite redox 

characteristics for each metal. 

 We stress that because the metal burial rates are derived by using a tunable ratio, 

this pattern is not explicitly dependent on the absolute value of the carbon flux to the 

seafloor at a given depth – rather, it hinges on the observation that carbon fluxes to the 

seafloor will decrease as one moves out into the deep sea, with the first-order topology 

depicted in Figure 5.S2. This is important, as dramatically different redox structures 

within the ocean, extreme differences in the composition of primary producing 

communities, mineral ballasting, etc., might be expected to result in significant 

differences in the absolute value of the carbon flux to the seafloor within different regions 

of the ocean. However, we consider it unlikely that the basic pattern of an offshore 

decrease in carbon fluxes has changed much throughout Earth’s history on a global scale. 

In addition, although the basic bathymetry of the ocean has doubtless changed throughout 
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Earth’s history, we consider the modern depth-area curve to represent a reasonable first 

approximation.  

 
Figure 5.S2. Parameterization of offshore metal burial rate scaling in the model. Globally 
averaged authigenic Cr burial rates are shown in (a) as a function of anoxic seafloor area. The 
blue filled circle represents the modern state, with the blue dotted line depicting a constant burial 
rate decoupled from the extent of anoxic seafloor area. Globally averaged authigenic Mo burial 
rates are shown in (b) as a function of sulfidic (euxinic) seafloor area. The red filled circle 
represents the modern state, with the red dotted line depicting a constant burial rate decoupled 
from the extent of euxinic seafloor area (essentially the models employed in 18, 38, 119, 120) . 
 

 This approach must ultimately be refined if used in efforts to delineate more 

subtle changes in ocean redox, or if applied to periods during which continental 

configuration and/or bathymetry are better constrained, but we contend that it provides a 

much more realistic depiction of the sensitivity of Cr and Mo mass balance to 

perturbation than previous model treatments. Further work should focus on the 

development and implementation of more spatially explicit approaches for dealing with 

the effects of seafloor redox perturbation on biogeochemical cycling and isotope 

systematics, for example coupling efficient models of benthic diagenesis that can be 
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forced by gridded domains (121) to Earth system models of intermediate complexity 

(e.g., GENIE; 122). 

 

Prescribed perturbations in the model and the role of reducing sediments 

 As discussed above, our model analysis involves balancing the modern steady 

state cycles of Cr and Mo, applying a continuous range of perturbations to seafloor redox 

state, and establishing the ultimate steady state conditions and local burial rates attained 

by the model system. Because our model includes a representation of offshore decreases 

in authigenic burial rates, essentially a spatial component, we must make some explicit 

assumptions about the basic seafloor environments in which perturbations begin and 

expand. 

 We assume first that ~5% of the shallow seafloor remains essentially 

authigenically neutral unless it becomes absolutely necessary to encroach upon this area 

(i.e., above 95% seafloor anoxia or euxinia). This assumption is meant to encompass 

coastal sediments deposited within the well-oxygenated mixed layer of the ocean. 

Perturbations are then applied by expanding a given redox state (anoxic or euxinic) from 

the shallow shelf out into the deep sea. An important corollary of this approach is that 

during a given perturbation the first environments to become authigenically active are 

characterized by the highest metal burial rates. We view this as generally justifiable on 

mechanistic grounds, particularly in the case of expanding euxinia within the Mo model, 

as carbon fluxes through the water column and water column oxidant depletion are most 

commonly seen along ocean margins. 
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 However, it is important to entertain the possibility that the nature of 

perturbations to seafloor redox may not be the same for Cr and Mo. For example, given 

that deep-sea anoxia during the mid-Proterozoic was most likely caused by gas exchange 

constraints expressed in deep water formation regions (4), rather than local reductant (i.e., 

carbon) input, it may be argued that large regions of the deep sea would first become 

anoxic and authigenically active for Cr while euxinic environments driven by the 

combined effects of more reducing source waters and local carbon flux would be limited 

to marginal environments. In effect, this would result in less efficient Cr removal and 

similar Mo removal compared to the results presented here, which would in turn require a 

larger area of marine anoxia for a given Cr reservoir change. Thus, in order to remain 

conservative we prescribe that perturbations to both models begin and expand from 

settings where metal accumulation rates are highest. The reverse scenario, in which 

euxinia develops first in the abyssal realm of the ocean but anoxia is confined to the 

shelves, is difficult to imagine simply because of regional variability in carbon flux. 

 Another important assumption that is made in our modeling exercise is that the 

seafloor area of reducing sediments is fixed at a constant value (~1.9% for the Mo model 

and ~4.9% for the Cr model). However, it is reasonable to expect that if the ocean 

becomes less oxygenated on a global scale there should be a first-order expansion of 

reducing sediment environments. With respect to our basic conclusions, it is clear that 

this is a much larger concern for Cr than for Mo. Expanding the reducing sediment sink 

in the Mo model would only serve to decrease the extent of euxinic seafloor inferred for a 

given calculated enrichment. In other words, our interpretation that the mid-Proterozoic 
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Mo enrichment record in euxinic shales implies relatively limited euxinic seafloor is 

rendered conservative by neglecting the expansion of reducing sediments in the model, 

and our conclusion that euxinia represents a small relative fraction of overall anoxia will 

remain unchanged.  

 In the case of Cr, it might be argued that expansion of the reducing sediment sink 

together with expanding anoxia could result in our model significantly over-estimating 

the amount of anoxic seafloor necessary to drive shifts in the seawater Cr reservoir. We 

consider this unlikely for two reasons. First, in our model experiments we have 

artificially enhanced the impact of the reducing sediment sink, by choosing a relatively 

high Cr burial rate and by specifying that this burial rate applies to ~5% of the seafloor in 

addition to the expansion of anoxia in shelf environments. When we consider that the 

offshore scaling of metal burial rates (Fig. S2) should equally well apply to reducing 

sediment environments, this essentially amounts to “double counting” ~5% of the 

seafloor as being both reducing sediments and anoxic, with the highest metal burial rates 

specified for both. Alternatively, we can envision this as representing the exclusive 

expansion of anoxia in marginal settings while ~5% of the seafloor offshore is covered by 

reducing sediments with unrealistically high burial rates. In either case, alternative 

approaches would need to either expand the reducing sediment sink at the expense of 

anoxic environments on the shelf, or expand it within the deep sea where metal burial 

capacity decreases sharply (Fig. 5.S2). Both approaches would yield a comparable (and 

in some cases smaller) overall removal flux into reducing sediment environments. 
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 Lastly, it is unlikely for very large regions of the seafloor to be characterized by 

this type of chemical environment on long timescales. Environments on the modern Earth 

that fall into the reducing sediment category are generally marked by relatively low 

bottom water O2 (often below analytical detection). It is difficult to imagine this kind of 

system persisting on an extremely large scale, as it is poorly redox-buffered – small 

changes to circulation or carbon flux will result in the development of either true anoxia 

or increased bottom water O2 such that the environment becomes effectively oxic with 

respect to metal burial.  

 

Using the model to calculate authigenic metal enrichments 

 From a qualitative perspective, it is difficult to avoid the conclusion that the 

coupled enrichment records require much more pervasive anoxia than that implied by 

equivalent Phanerozoic settings, but also that the relative fraction of anoxia represented 

by sulfidic deposition was not large. Our attempt to place more quantitative constraints 

on this conceptual interpretation involves using the scaling between seawater reservoir 

size and metal burial rates (inherent in a first-order mass balance model) to estimate 

sedimentary enrichments by assuming a bulk mass accumulation rate (MAR) in a 

hypothetical siliciclastic-dominated continental margin setting. 

 It is important to realize that these two parameters (authigenic metal burial rate 

and bulk sediment mass accumulation rate) should not be arbitrarily decoupled. This is 

true arithmetically, as metal burial rates in modern settings are in fact derived from bulk 

MARs. It is also expected on mechanistic grounds, as higher bulk MARs result in more 
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rapid delivery of reactive mineral surfaces and organic carbon, and more rapid and 

efficient burial of authigenically sequestered elements. Indeed, there is good evidence 

from a range of modern (123) and ancient (124) settings that metal burial rates will scale 

in a general sense with bulk sediment MARs. This issue is similar to that discussed 

above, in that an arbitrary decoupling of metal burial rates from bulk MARs is akin to 

applying a metal burial rate from a continental margin setting to the abyssal realm of the 

ocean, an approach we consider physically unrealistic.  

 Because this scaling between metal burial rate and bulk MAR is a somewhat 

broad relationship, we use well-constrained recent Cariaco Basin sediment data as a 

guide. We separate the range of Cr and Mo burial rates and bulk MAR values constrained 

for the Cariaco Basin over the last ~20,000 years, and sequentially combine them to 

explore the effect of a slight decoupling between these two parameters (Fig. 5.S3). In an 

effort to render our estimates conservative, we choose combinations of metal burial rate 

and bulk MAR that result in relatively low enrichments for Cr and relatively high 

enrichments for Mo, and these are presented in the main text (Fig. 5.S3).  

 No single combination of parameters will be adequate to describe the entire shale 

record, but we view this broad range as sufficient to encompass the vast majority of 

environments represented in our database. It is apparent from this exercise that a very 

strong decoupling between metal burial rate and bulk MAR values, which we consider 

unrealistic, is necessary to invalidate our basic conclusions. Furthermore, this condition 

would need to pertain to every mid-Proterozoic anoxic shale in our database over ~1.5 
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billion years, while fortuitously being alleviated during the early Phanerozoic, a 

combination of circumstances that that would be improbable. 
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Figure 5.S3 (opposite). The range of metal burial rates and bulk sediment mass accumulation 
rates explored in the model. Panels a, c, and e depict estimated authigenic Cr enrichments as a 
function of anoxic seafloor area at a range of plausible metal burial rates and bulk sediment mass 
accumulation rates. The blue box represents our conservative threshold for Cr enrichment as 
constrained by the shale record. Panels b, d, and f depict estimated authigenic Mo enrichments as 
a function of sulfidic (euxinic) seafloor area at a range of plausible metal burial rates and bulk 
sediment mass accumulation rates. The red box represents the 95% confidence interval around the 
overall mean for the mid-Proterozoic shale enrichment record. Each panel represents a different 
bulk MAR (increasing from top to bottom, and depicting a range of a factor of 1.5 around 1.0 x 
10-2 g cm-2 y-1, the approximate value for deep sediments of the modern Cariaco Basin) and the 
contours are labeled by authigenic metal burial rate (in #g cm-2 y-1). The solid black curves are 
those depicted in the main text. 
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CHAPTER 6 

CONCLUSIONS 

 Through decades of important research, many of the first-order features of the 

chemical evolution of the atmosphere and oceans are relatively well established. For 

example, it is apparent that much of Earth’s early history (the Archean Eon) was marked 

by pervasively reducing conditions in the ocean and atmosphere. Although it is suggested 

here that the temporal fidelity of the rare sulfur isotope record in fingerprinting the 

presence of a continuous and uninterrupted reducing atmospheric condition should be 

revisited, it is nonetheless clear that there are stark difference in Earth surface chemistry 

between the Archean and Proterozoic. However, the richness of potential information 

embedded in the rare sulfur isotope record, and the relative infancy of our understanding, 

will drive formative research on Earth’s early chemical history for years to come. 

 Perhaps even less is understood about the mechanistic and temporal coupling 

between the accumulation of O2 in the atmosphere and the ventilation of deep (and 

intermediate) ocean waters. For example, the strength of the biological carbon pump 

within the ocean has almost certainly changed with time, due to secular and periodic 

changes in the structure and functionality of planktonic ecosystems and the evolution of 

biogenic mineral precipitation. Quantitative relationships between atmospheric O2 levels 

and the ventilation potential of the deep ocean remain to be elaborated, and the detailed 

evolution of oceanic redox structure as a function of atmospheric O2 levels, with its 

attendant effects on trace nutrient availability, biological evolution, and global element 

cycling, remain ripe avenues for theoretical and empirical exploration. 
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APPENDIX A: ANALYTICAL DATA FOR THE ABDP-9 CORE 

Table A1. Analytical data for the Mt. McRae Shale.             
                                                

Depth 
(m) 

FeT 
(wt%) 

Fecarb 
(wt%) 

FeOx 
(wt%) 

Femag 
(wt%) 

FePY 
(wt%) 

FeHR 
(wt%) FeHR/FeT FePY/FeHR 

126.15 3.0 0.22 0.04 0.15 0.24 0.65 0.22 0.37 
127.25 3.2 0.09 0.03 0.04 0.59 0.75 0.24 0.79 
128.17 3.1 0.00 0.02 0.04 0.75 0.81 0.26 0.93 
129.01 3.1 0.10 0.02 0.05 0.87 1.04 0.34 0.84 
130.06 2.5 0.04 0.02 0.05 0.43 0.54 0.22 0.80 
130.71 7.3 0.08 0.03 0.05 4.28 4.44 0.61 0.96 
130.76 2.4 0.04 0.03 0.33 0.33 0.73 0.30 0.45 
132.13 2.5 0.07 0.04 0.08 0.41 0.60 0.24 0.68 
133.97 4.2 0.06 0.03 0.17 0.42 0.68 0.16 0.62 
135.58 13.7 0.44 0.03 0.04 9.79 10.30 0.75 0.95 
136.15 4.4 0.00 0.01 0.08 2.97 3.06 0.70 0.97 
136.67 6.1 0.00 0.01 0.02 3.77 3.80 0.62 0.99 
136.94 9.3 0.08 0.02 0.01 6.75 6.86 0.74 0.98 
137.31 7.4 0.08 0.02 0.01 4.66 4.77 0.64 0.98 
137.68 9.8 0.06 0.02 0.01 7.63 7.72 0.79 0.99 
137.96 6.8 0.08 0.02 0.08 4.78 4.96 0.73 0.96 
138.38 6.8 0.12 0.05 0.01 4.79 4.97 0.73 0.96 
138.74 6.9 0.11 0.01 0.01 4.55 4.68 0.68 0.97 
139.01 11.9 0.15 0.01 0.09 9.38 9.63 0.81 0.97 
139.65 6.8 0.08 0.02 0.01 5.31 5.42 0.80 0.98 
139.97 4.7 0.08 0.46 0.09 3.61 4.24 0.90 0.85 
140.25 6.1 0.07 0.01 0.02 5.08 5.18 0.85 0.98 
140.50 4.5 0.36 0.02 0.01 3.75 4.14 0.92 0.91 
140.95 5.3 0.54 0.02 0.03 4.47 5.06 0.95 0.88 
141.17 5.8 0.07 0.01 0.01 4.81 4.90 0.84 0.98 
141.47 5.2 0.11 0.01 0.01 4.12 4.25 0.82 0.97 
141.72 4.9 0.05 0.01 0.01 4.01 4.08 0.83 0.98 
142.08 4.3 0.05 0.01 0.01 3.39 3.46 0.80 0.98 
142.60 3.4 0.05 0.44 0.00 2.03 2.52 0.74 0.81 
143.45 7.9 0.43 0.03 0.03 5.37 5.86 0.74 0.92 
144.36 5.4 0.09 0.02 0.08 1.78 1.97 0.36 0.90 
145.61 5.1 0.11 0.05 0.25 1.04 1.45 0.28 0.72 
146.45 7.1 0.13 0.05 0.06 4.07 4.31 0.61 0.94 
147.30 4.5 0.12 0.52 0.09 1.34 2.07 0.46 0.65 
148.27 3.8 0.07 0.03 0.10 1.12 1.32 0.35 0.85 
149.30 4.3 0.09 0.02 0.06 2.57 2.74 0.64 0.94 
150.24 4.6 0.09 0.04 0.11 1.65 1.89 0.41 0.87 
152.65 3.9 0.16 0.04 0.06 0.62 0.88 0.23 0.70 
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153.08 - 1.26 0.04 0.11 0.84 2.25 - 0.37 
153.18 2.7 0.00 0.03 0.10 0.38 0.51 0.19 0.74 
157.80 8.0 0.79 0.09 0.77 1.69 3.34 0.42 0.51 
158.91 5.9 1.16 0.09 0.22 1.06 2.53 0.43 0.42 
165.56 18.1 4.23 0.13 1.22 0.58 6.16 0.34 0.09 
167.76 15.0 2.83 0.15 1.18 0.41 4.57 0.30 0.09 
168.36 16.0 5.01 0.29 1.12 0.65 7.07 0.44 0.09 
168.90 19.7 4.72 0.41 1.28 1.82 8.23 0.42 0.22 
169.68 12.8 2.21 0.18 0.78 1.15 4.32 0.34 0.27 
169.94 21.2 4.61 0.46 1.47 2.46 9.00 0.42 0.27 
170.17 15.7 1.99 0.29 0.88 1.62 4.78 0.30 0.34 
170.39 18.5 3.86 0.47 1.67 2.31 8.31 0.45 0.28 
170.55 16.2 3.76 0.15 0.77 0.52 5.20 0.32 0.10 
170.86 13.7 3.09 0.15 0.85 1.41 5.50 0.40 0.26 
170.94 16.6 3.30 0.17 0.82 3.75 8.04 0.48 0.47 
171.22 13.8 2.14 0.15 1.26 2.87 6.42 0.47 0.45 
173.09 13.0 1.84 0.17 0.73 1.27 4.01 0.31 0.32 
173.50 13.9 0.84 0.09 0.53 2.80 4.26 0.31 0.66 
173.73 16.8 2.55 0.24 1.33 1.44 5.56 0.33 0.26 
174.67 4.8 1.55 0.12 0.72 2.44 4.83 1.01 0.50 
143.45 7.9 0.43 0.03 0.03 5.37 5.86 0.74 0.92 
144.36 5.4 0.09 0.02 0.08 1.78 1.97 0.36 0.90 
145.61 5.1 0.11 0.05 0.25 1.04 1.45 0.28 0.72 
146.45 7.1 0.13 0.05 0.06 4.07 4.31 0.61 0.94 
147.30 4.5 0.12 0.52 0.09 1.34 2.07 0.46 0.65 
148.27 3.8 0.07 0.03 0.10 1.12 1.32 0.35 0.85 
149.30 4.3 0.09 0.02 0.06 2.57 2.74 0.64 0.94 
150.24 4.6 0.09 0.04 0.11 1.65 1.89 0.41 0.87 
152.65 3.9 0.16 0.04 0.06 0.62 0.88 0.23 0.70 
153.08 - 1.26 0.04 0.11 0.84 2.25 - 0.37 
153.18 2.7 0.00 0.03 0.10 0.38 0.51 0.19 0.74 
157.80 8.0 0.79 0.09 0.77 1.69 3.34 0.42 0.51 
158.91 5.9 1.16 0.09 0.22 1.06 2.53 0.43 0.42 
165.56 18.1 4.23 0.13 1.22 0.58 6.16 0.34 0.09 
167.76 15.0 2.83 0.15 1.18 0.41 4.57 0.30 0.09 
168.36 16.0 5.01 0.29 1.12 0.65 7.07 0.44 0.09 
168.90 19.7 4.72 0.41 1.28 1.82 8.23 0.42 0.22 
169.68 12.8 2.21 0.18 0.78 1.15 4.32 0.34 0.27 
169.94 21.2 4.61 0.46 1.47 2.46 9.00 0.42 0.27 
170.17 15.7 1.99 0.29 0.88 1.62 4.78 0.30 0.34 
170.39 18.5 3.86 0.47 1.67 2.31 8.31 0.45 0.28 
170.55 16.2 3.76 0.15 0.77 0.52 5.20 0.32 0.10 
170.86 13.7 3.09 0.15 0.85 1.41 5.50 0.40 0.26 
170.94 16.6 3.30 0.17 0.82 3.75 8.04 0.48 0.47 
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171.22 13.8 2.14 0.15 1.26 2.87 6.42 0.47 0.45 
173.09 13.0 1.84 0.17 0.73 1.27 4.01 0.31 0.32 
173.50 13.9 0.84 0.09 0.53 2.80 4.26 0.31 0.66 
173.73 16.8 2.55 0.24 1.33 1.44 5.56 0.33 0.26 
174.67 4.8 1.55 0.12 0.72 2.44 4.83 1.01 0.50 
175.51 9.2 1.05 0.16 0.52 1.51 3.24 0.35 0.47 
177.10 8.8 0.40 0.08 0.80 1.95 3.23 0.37 0.60 
178.61 7.3 0.00 0.05 0.34 2.02 2.41 0.33 0.84 
179.05 7.6 0.00 0.06 0.45 2.04 2.55 0.34 0.80 
180.33 9.3 0.45 0.10 0.54 1.87 2.96 0.32 0.63 
181.20 10.1 0.98 0.12 0.71 1.71 3.52 0.35 0.49 
182.50 5.1 0.22 0.07 0.22 0.99 1.50 0.29 0.66 
183.65 8.0 0.53 0.08 1.16 1.49 3.26 0.41 0.46 
185.43 10.2 3.54 0.17 1.04 0.84 5.59 0.55 0.15 
188.01 6.7 0.16 0.11 0.19 2.03 2.49 0.37 0.81 
188.87 7.0 0.26 0.15 0.38 1.05 1.84 0.26 0.57 
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APPENDIX B: SOURCES FOR THE CHROMIUM AND MOLYBDENUM SHALE ENRICHMENT DATABASE 

Table B1. Age and geologic setting of units compiled for this study. 
Unit Location Age 

(Ma) 
Metamorphic 

Grade Basin Type Setting Ref.  

       

Cariaco Basin Venezuelan 
Borderlands mod N/A pull-apart basin shelfal marine 

(upwelling) (B1) 

       

Peru margin Offshore Peru 0.1-0 N/A active margin shelfal marine 
(upwelling) 

(B2, 
B3) 

       

Namibian margin Offshore namibia 0.1-0 N/A passive margin shelfal marine 
(upwelling) (B3) 

       
Black Sea Unit I, II Black Sea 0.1-0 N/A silled marine basin deep marine (B3) 

       

Gulf of California Baja Peninsula 0.1-0 N/A passive margin shallow marine 
(upwelling) (B3) 

       

Mediterranean sapropel 
Med. Sea 

(Pleistocene 
Tyrrhenian Sea) 

0.7-3.6 N/A silled marine basin deep marine (B4, 
B5) 

       

IODP Leg 302 Lomonosov Ridge, 
Arctic Ocean 55.8 N/A oceanic rift basin shallow marine (B6) 

       
Mugi/Ryujin shales, 

Shimanto Supergroup Japan 67 sub-greenschist forearc/accretionary 
complex 

pelagic to 
turbididic (B7) 

       
Pembina/Gammoan (Pierre 

Fm.) 
Cretaceous interior 
seaway, Manitoba 83 sub-greenschist foredeep/ 

epicontinental sea 
shallow to deep 

marine (B8) 
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Unit Location Age 
(Ma) 

Metamorphic 
Grade Basin Type Setting Ref.  

       

La Luna Fm. Maracaibo Basin, 
Venezuela 85-100 sub-greenschist passive margin shelfal marine (B9) 

       

Niobrara Fm. Cretaceous interior 
seaway, Manitoba 89 sub-greenschist foredeep/ 

epicontinental sea 
shallow to deep 

marine (B8) 

       
Demarara Rise Surinam, Guyana 91  sub-greenschist rift to passive margin shallow marine (B10) 

       
Assiniboine Mbr., Favel Fm., 

Morden Shale 
Cretaceous interior 
seaway, Manitoba 93  sub-greenschist foredeep/ 

epicontinental sea 
shallow to deep 

marine (B8) 

       

ODP Site 103-641A Galician Margin, 
N.W. Spain 93.6  sub-greenschist post-rift passive margin deep marine (B11) 

       

DSDP 530A Angola Basin, 
Namibia 89.3-99.6  sub-greenschist passive continental margin offshore pelagic 

(upwelling) (B12) 

       
Hatteras Fm. (ODP Site 

1276) 
Newfoundland Basin, 
proto-North Atlantic 99.6-112  sub-greenschist passive continental margin deep marine (B13) 

       

Machiques Mbr., Apon Fm. Maracaibo Basin, 
Venezuela 107.5 sub-greenschist passive margin shallow marine (B14) 

       

Julia Creek Shale 

Eromanga and 
Carpentania Basins, 

Queensland, 
Australia 

112  sub-greenschist epicontinental sea shallow marine (B15) 

       
Norwegian Shelf black 

shales 
Norwegian 

Shelf/Barents Sea 130-155  sub-greenschist epicontinental sea shallow to deep 
marine (B16) 

       

Paska Fm. Siberian Platform 145.5  sub-greenschist epicontinental sea shallow marine 
(upwelling (B17) 
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Unit Location Age 
(Ma) 

Metamorphic 
Grade Basin Type Setting Ref.  

       

Kimmeridge Clay Fm. Yorkshire, U.K. 155  sub-greenschist oceanic rift basin deep marine (B18, 
B19) 

       

Posidonia Shale N.W. Germany 183  sub-greenschist epicontinental sea shallow to deep 
marine (B20) 

       
Jet Rock, Whitby Mudstone 

Fm. Yorkshire, U.K. 183  sub-greenschist epicontinental sea deep marine (B21) 

       

Gordondale Mbr., Fernie Fm. 
Western Canadian 
Sedimentary Basin, 

Canada 
189.6  sub-greenschist silled epicontinental sea deep marine (B22) 

       
Kupferschiefer Shale 

(unmineralized) 
Zechstein Basin, 

Poland 247  greenschist foreland marine turbidite (B23) 

       
Meade Peak Mbr., 

Phosphoria Fm. S.E. Idaho 270.6 sub-greenschist epicratonic basin 
(Phosphoria Sea) shallow marine (B24) 

       
Stark Shale, Mecca Quary 

Shale Mbr. 
Midcontinent Basin, 

Central U.S. 300  sub-greenschist epicontinental sea shallow to deep 
marine (B25) 

       
Hushpuckney Shale Mbr., 

Coffeyville Fm. 
Midcontinent Basin, 

Central U.S. 300  sub-greenschist epicontinental sea offshore marine (B26) 

       

Excello Shale Midcontinent Basin, 
Central U.S. 305  sub-greenschist epicontinental sea deep marine (B27) 

       
Oakley, Unnamed, Anna, 

Little Osage Fms. 
Midcontinent Basin, 

Central U.S. 308  sub-greenschist epicontinental sea offshore (deep) 
marine (B28) 

       
Lost Branch Shale Kansas 308  sub-greenschist epicontinental sea shallow marine (B29) 
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Unit Location Age 
(Ma) 

Metamorphic 
Grade Basin Type Setting Ref.  

       

Golata Fm. 
Western Canadian 
Sedimentary Basin, 
British Columbia 

328.3  sub-greenschist epicontinental sea shallow to deep 
marine (B30) 

       

Rhinestreet Shale Appalachain Basin, 
N.Y. 345.3  sub-greenschist foreland deltaic (B31) 

       

Bakken Fm. Williston Basin, S.W. 
Manitoba 361  sub-greenschist epicontinental sea shallow to deep 

marine (B32) 

       

Exshaw Fm. Midcontinent Basin, 
Central U.S. 361  sub-greenschist epicontinental sea deep marine (B33) 

       

Sunbury Shale Midcontinent Basin, 
Central U.S. 361  sub-greenschist epicontinental sea deep marine  (B34) 

       

Henley Subunit, Borden Fm. Midcontinent Basin, 
Kentucky, U.S. 361  sub-greenschist epicontinental sea deltaic (B34) 

       

Big Valley and Exshaw Fms. Alberta Platform, 
Canada 365  sub-greenschist epicontinental sea distal shelf (B35) 

       

Chattanooga Shale Midcontinent Basin, 
Central U.S. 365  sub-greenschist epicontinental sea shallow marine (B36) 

       
Ohio Shale (Cleveland, 

Three Lick, Huron Mbrs.), 
upper Olentangy Fm. 

Central U.S. 365  sub-greenschist epicontinental sea marine turbidites (B34) 

       

Grassy Creek Shale Illinois Basin, 
Central U.S. 365  lower 

greenschist epicontinental sea deep marine (B37) 

       

Annulata Black Shales Holy Cross 
Mountains, Poland 374.5  sub-greenschist epicontinental sea shallow to deep 

marine  (B38) 
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Unit Location Age 
(Ma) 

Metamorphic 
Grade Basin Type Setting Ref.  

       
Upper Besa River, Fort 

Simpson, Muskwa, Lower 
Besa River Fms. 

Western Canadian 
Sedimentary Basin, 
British Columbia 

374.5-
391.8  sub-greenschist epicontinental sea shallow to deep 

marine (B30) 

       

Oatka Creek Fm. Appalachain Basin, 
N.Y. 387.5  sub-greenschist foreland basin shallow marine (B39) 

Zdanow Shales Bardzkie Mtns., 
Poland 416  sub-greenschist trench-volcanic arc accretionary 

prism (B40) 

       
Monograptus leptotheca 
band (Derwenlas Fm.) 

Welsh Basin, Wales, 
U.K. 443.7  sub-greenschist rift turbidite (B41) 

       

Unterer Graptolithenschiefer Graefenthal Horst, 
Bavaria, Germany 443.7  lower 

greenschist passive margin shallow marine (B42) 

       

Rastrites Shale Baltic Basin, Sweden 443.7  greenschist epicontinental sea to 
foreland 

shallow to deep 
marine 

(B43, 
B44) 

       

Dicellograptus Shale Baltic Basin, Sweden 460.9 greenschist epicontinental sea shallow to deep 
marine (B43) 

       

Winnipeg Fm. Williston Basin, S. 
Manitoba 460  sub-greenschist epicontinental sea shallow marine (B45) 

       

Bright Eye, Patrick Brook 
Fms. 

Miramichi 
Highlands, New 

Brunswick 
478.5  sub-greenschist oceanic back-arc deep marine (B46, 

B47) 

       

Toyen Shale Baltic Basin, Sweden 478.6  greenschist epicontinental sea shallow to deep 
marine (B43) 

       

Alum Shale Fennoscandian 
Shield, Sweden 499  greenschist epicontinental sea shallow to deep 

marine (B48) 
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Unit Location Age 
(Ma) 

Metamorphic 
Grade Basin Type Setting Ref.  

       

Yuanshan, Shiyantou Fms. Yangtze Platform, S. 
China 521-526.5  sub-greenschist passive margin deep marine (B49) 

       

Nuititang Fm. Yangtze Platform, S. 
China 536-542  sub-greenschist passive margin deep marine (B50) 

       
Yuertushi Fm. Tarim Basin, China 542  sub-greenschist passive margin shelfal marine (B51) 

       

Guojiaba, Jiumenchong Fms. S. China 542  sub-greenschist passive margin shallow to deep 
marine (B52) 

Nama Group Kalahari Craton, 
Namibia 548  greenschist foreland basin shallow to deep 

marine (B53) 

       

Doushantuo Fm. Yangtze Block, S. 
China 620-551  sub-greenschist passive margin deep marine (B54) 

       

Datangpo Fm. Yangtze Block, S. 
China 654  sub-greenschist passive margin shallow to deep 

marine (B55) 

       
Mineral Fork, Cottonwood 

Fms. Utah, U.S. 766  sub-greenschist epicontinental sea (?) distal shelf (B56-
B58) 

       

Wynniatt Fm., Shaler 
Supergroup 

Amundsen Basin, 
Victoria Island, N.W. 
Territories, Canada 

~850  greenschist epicontinental sea shallow (open) 
marine; deltaic 

(B56, 
B59) 

       

Kandyk, Ryaninovsk Fms. S.E. Russia ~1005-950  greenschist passive margin deltaic to slope-
fan (B60) 

       
Malosakhora, Ust-Kirba 

Fms. 
Yudoma-Maya 

depression, Russia 1005  greenschist passive margin shallow marine (B61) 
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Unit Location Age 
(Ma) 

Metamorphic 
Grade Basin Type Setting Ref.  

       

Kumakha Shale, Lakhanda 
Group 

Siberian Platform, 
Maya depression, 

Siberia 
1017  greenschist epicontinental sea shallow shelfal 

marine (B62) 

       

Rabanpalli Fm. 
Bhima Basin, 

Dharwar craton, 
India 

~1100  greenschist pull-apart basin deltaic (B63) 

       

Totta Fm., Kerpyl Group S.E. Russia ~1100  greenschist passive margin  tidal to shallow 
marine (B60) 

       

Bylot Supergroup 
Borden Basin, Bylot 
and Baffin Islands, 

Canada 

~1100-
1200  sub-greenschist rift or transtensional basin 

shallow marine 
shelf to subtidal-

basinal 

(B64, 
B65) 

       
Ft. Confidence Fm., Dismal 

Lakes Group Arctic Canada ~1300  sub-greenschist epicontinental sea marginal marine (B66) 

       
Talyn, Svelty Fms., Aimchan 

Group S.E. Russia ~1350  greenschist passive margin shallow marine (B60) 

       
Trekhgornaya, Dim Fms., 

Uchur Group S.E. Russia ~1400  greenschist passive margin open, shallow 
marine (B60) 

       

Velkerri Fm., Roper Group McArthur Basin, N. 
Australia 1400  lower 

greenschist epicratonic basin open-ocean 
ramp/shelf (B67) 

       

Fort Steele, Aldridge, 
Newland Fms. 

Purcell-Belt Basin, 
Montana, U.S.-

Canada 
1497-1470  greenschist epicratonic basin; pull-

apart(?) or back-arc 

deep water 
turbidite to 

shallow marine 
(B68) 

       
Lawn Hill Fm., McNamara 

Group 
Mt. Isa Inlier, 

Australia 1595  greenschist sag basin or strike-slip shallow marine 
(turbiditic) 

(B69, 
B70) 
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Unit Location Age 
(Ma) 

Metamorphic 
Grade Basin Type Setting Ref.  

       

Roraima Group 
Guayana Shield, 
Amazon Craton, 

Brazil 
~1600  greenschist foreland basin shallow(?) marine (B71) 

       
Lady Loretta Fm., 
McNamara Group 

Mt. Isa Basin, 
Australia 

~1670-
1570  sub-greenschist sag basin, or inboard 

continental arc deep marine (B72) 

       

Surprise Creek Fm. Mt. Isa Inlier, 
Australia 1688  greenschist sag basin or strike-slip distal marine (B69, 

B73) 
       

Wollogorang Fm., Tawallah 
Group 

McArthur Basin, 
Australia 1730  greenschist intracratonic basin open deep marine (B74) 

       
Cumbum Fm., Cuddapah 

Supergroup 
E. Dharwar Craton, 

India 1800  lower 
greenschist foreland turbidites (B75) 

       

Rove Fm., Animikie Group 
Animikie Basin, 

Superior Province, 
Canada 

1840  lower 
greenschist foreland turbidites (B76) 

       
Par, Morar Fms., Gwalior 

Group 
Bundelkhand Craton, 

C. India ~1900  sub-greenschist passive margin outer shelf marine (B77) 

       
Nullataktok Fm., Ramah 

Group Labrador, Canada ~1900  sub-greenschist foreland marine turbidites (B78) 

       

Pilguyarvi Fm., Pechenga 
Group 

Kola Peninsula, 
Russia 1990  sub-greenschist 

uncertain; continental rift, 
oceanic trench, or 
continental slope 

shallow to deep 
marine 

(B79, 
B80) 

       

Soutpansberg Shales Kaapvaal Craton, S. 
Africa 2021-1875  greenschist rift basin shallow marine (B81, 

B82) 
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