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Abstract

Genetic sequences collected over time provide an exciting opportunity to study natural selection. In such studies, it is important to ac
count for linkage disequilibrium to accurately measure selection and to distinguish between selection and other effects that can cause 
changes in allele frequencies, such as genetic hitchhiking or clonal interference. However, most high-throughput sequencing methods 
cannot directly measure linkage due to short-read lengths. Here we develop a simple method to estimate linkage disequilibrium from 
time-series allele frequencies. This reconstructed linkage information can then be combined with other inference methods to infer the 
fitness effects of individual mutations. Simulations show that our approach reliably outperforms inference that ignores linkage disequi
librium and, with sufficient sampling, performs similarly to inference using the true linkage information. We also introduce two regular
ization methods derived from random matrix theory that help to preserve its performance under limited sampling effects. Overall, our 
method enables the use of linkage-aware inference methods even for data sets where only allele frequency time series are available.
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Introduction
Identifying molecular causes of population adaptation is a key 
problem in evolutionary biology. Examples include identifying 
cancer driver mutations that confer growth advantages to tumor 
cells (Bignell et al. 2010; Burrell et al. 2013; Landau et al. 2013), de
tecting mutations that help viruses like HIV-1 evade immune con
trol (Phillips et al. 1991; Rambaut et al. 2004; Allen et al. 2005), and 
characterizing mutations that enable drug resistance in patho
gens (Wu and Wilson 2017). A better understanding of such evolu
tionary processes can also aid in the development of new 
therapies to prevent or treat disease (McMichael et al. 2010; 
Neher et al. 2016; Łuksza et al. 2017; Lee et al. 2018). For example, 
understanding effects of adaptive mutations in the seasonal hu
man influenza virus helps predict the evolution of the viral popu
lation from one year to the next, which can improve vaccine 
selection (Luksza and Lässig 2014).

Recent advances in genetic sequencing technologies have pro
vided a wealth of new data for evolutionary studies. Genetic time- 
series data (i.e. sequences sampled over time from a population), 
in particular, directly interrogates evolutionary histories and offers 
a powerful window into the dynamics of evolution. Genetic time- 
series data can be collected from time-resolved global evolutionary 
records (Bao et al. 2008; Lee et al. 2022), sampled from naturally in
fected hosts (Zanini et al. 2015; Xue et al. 2017), or generated in the 
lab through evolve-and-resequence (E&R) experiments in which 
samples from a population are repeatedly sequenced over time un
der controlled conditions (Barrick et al. 2009; Long et al. 2015).

However, it is difficult to infer which specific alleles have the 
largest effects on fitness. Genetic linkage (i.e. the correlation be
tween alleles at different locations on the genome due to shared 
inheritance) makes it challenging to sort out the individual effects 
of alleles that are linked or correlated. Inferences that ignore link
age disequilibrium (LD) can be misleading because they do not ac
count for the effects of the genetic background. For example, 
when a neutral or deleterious allele occurs together with other 
strongly beneficial ones, their net effect can still be beneficial. In 
such cases, the neutral or deleterious allele can rise to a high fre
quency in the population, known as hitchhiking (Smith and Haigh 
1974). Genetic linkage can also result in clonal interference 
(Gerrish and Lenski 1998), where subpopulations with different 
beneficial genetic alleles compete, and background selection 
(Charlesworth 1994), where neutral alleles are purged by negative 
selection on other deleterious alleles on the same genetic back
ground. It is therefore important to account for LD in order to ac
curately quantify fitness contributions from individual alleles in 
complex evolving populations.

Inference methods that account for genetic linkage have been 
developed (Illingworth and Mustonen 2011; Illingworth et al. 
2014; Terhorst et al. 2015; Sohail et al. 2021). However, these meth
ods require the knowledge of how different alleles are linked, or 
even full haplotype frequencies, which may be unavailable due 
to sequencing constraints. To identify haplotypes present in the 
population, single cells would need to be sequenced individually, 
which would be of low throughput due to high costs. An alterna
tive high-throughput and cost-effective approach is to sequence 
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DNA/RNA from pools of individuals using next generation se
quencing (NGS) techniques (Anand et al. 2016). To achieve high 
throughput, NGS technology generally involves randomly break
ing genomes into smaller sizes (<1,000 bases) and sequencing a 
massive amount of these fragments in parallel (Metzker 2010). 
The generated short reads are then mapped to the genome, pro
viding estimates for all individual allele frequencies in a popula
tion. However, it is not generally possible to unambiguously 
identify full haplotypes or even complete maps of LD from short 
reads (Lynch et al. 2014).

Given that limited information in genetic data is common, ef
forts have been made to reconstruct linkage patterns or haplotype 
frequencies from the available data. Various methods have been 
developed to reconstruct haplotype sequences and estimate their 
relative frequencies from short-read sequence data generated by 
NGS techniques (Beerenwinkel et al. 2012). However, they typically 
rely on linkage preserved within each short read and overlaps 
among the reads to assemble them into haplotype sequences 
that span the entire genomic region of interest. For example, 
read graph-based methods for haplotype reconstruction involve 
aggregating the reads in a read graph and subsequently identify
ing haplotypes as paths in this graph (Bansal and Bafna 2008; 
Eriksson et al. 2008; Zagordi et al. 2011). The LDx method uses an 
approximate maximum likelihood approach to estimate the r2 

measure (Hill and Robertson 1968) of LD between pairs of single 
nucleotide polymorphisms (SNPs) that are observed within and 
among single reads with sufficient read depth (Feder et al. 2012).

Other methods do not rely on read data and take only allele fre
quencies as input. However, the linkage/haplotype reconstruction 
problem is impossible to solve with only allele frequencies taken 
from a single time point. Hence, they typically require time-series 
data which encode dynamics of the evolution. For example, haploSep 
uses time-series allele frequency data to infer haplotype information 
and is computationally faster than methods that rely on read data 
(Pelizzola et al. 2021). However, it is designed to infer stable haplotype 
structures that do not change much over time. The haploReconstruct 
method (Franssen et al. 2017; Barghi et al. 2019) targets haplotype re
construction problems in experimental evolution during which var
iants present in founder population are selected to rise in frequency. 
Another method, Evoracle, is a machine learning method that recon
structs full-length haplotype frequencies, trajectories, and fitness 
from time-series allele frequency data (Shen et al. 2021). However, it 
is designed for data generated from directed evolution campaigns, 
which feature strong selection and low haplotype diversity.

Here we present a simple, generic method to estimate time- 
varying LD statistics from time-series allele frequencies. By studying 
how allele frequencies change in time, we can detect correlations be
tween different alleles. Alleles that have correlated changes in fre
quency are likely to be on the same genetic background, while 
anticorrelated alleles are likely to compete with each other on differ
ent backgrounds. We use these relationships to estimate the allele 
frequency covariance matrix, commonly expressed as the LD matrix 
D (Hedrick 1987). Our reconstruction approach can then be combined 
with inference methods such as marginal path likelihood (MPL) 
(Sohail et al. 2021) to infer fitness effects of individual alleles. Our 
method thus fills the gap between the lack of covariance information 
from pool-sequenced data and inference methods that use covari
ance to accurately estimate the fitness effects of mutations.

Simulations show that our method successfully reconstructs 
patterns of LD from limited data. This reconstruction leads to ac
curate inferences that can nearly match the performance of esti
mators that use complete, true linkage information. 
Reconstruction is more difficult when data are sampled 

infrequently in time, but this difficulty can be overcome with no
vel regularization methods and by combining data from multiple 
replicates. Overall, our method provides a way to extend the ex
cellent performance of fitness estimation methods that rely on 
complete sequence data to short-read data, even in cases where 
no linkage information is preserved.

Methods
Estimating LD
Given time-series allele frequency data taken from an evolving 
population, we aim to reconstruct pairwise LD statistics among 
all alleles. Specifically, our goal is to estimate the allele frequency 
covariance matrix throughout the evolution.

To explore the connection between allele frequencies and co
variance in a quantitative manner, we consider the Wright– 
Fisher (WF) model with mutation, selection, and recombination 
for a population consisting of N individuals (Ewens 2012). The 
WF dynamics models an evolving population as a discrete-time 
Markov chain where haplotype frequencies, z(t + 1), in generation 
t + 1 are derived by sampling with replacement from haplotypes 
in generation t, i.e.

P(z(t + 1) | z(t)) = N!
􏽙

a

pa(z(t))Nza(t+1)(n)
(Nza(t + 1))!

, (1) 

where pa(z(t)) is the probability of observing haplotype a at gener
ation t, including the effects of selection, mutation, and recombin
ation. For clarity, we use i, j, . . . to refer to locus indices and 
a, b, . . . to refer to haplotype indices. For simplicity, we assume 
that alleles are binary, taking on values of either 0 (wild-type 
(WT)) or 1 (mutant) at a particular locus, and that selection is addi
tive. We further assume that the population size N is large, and 
that selection coefficients, mutation rates, and recombination 
rates (per site per generation) are small (O(1/N)). Expanding to 
leading order in 1/N, one can then show that the expected product 
of changes of two allele frequencies xi(t) and xj(t) at loci i and j at 

time t is proportional to the covariance of the allele frequencies 
and the population size N (Supplementary File):

〈Δxi(t)Δxj(t)〉 =
Cij(t)

N
, (2) 

where

Δxi(t) : = xi(t + 1) − xi(t), (3) 

Cij(x(t)) : =
xi(t)(1 − xi(t)), i = j,

xij(t) − xi(t)xj(t), i ≠ j.

􏼨

(4) 

Here xij(t) is the frequency of haplotypes in the population with mu

tant alleles at sites i and j at time t. Given the connection between 
covariances and changes in allele frequencies demonstrated in 
equation (2), we explored whether empirical changes in allele fre
quencies could be used to estimate the unknown covariance matrix 
Cij(x(t)). This is equivalent to the LD measure D (Hedrick 1987).

In a given data set, we only have one realization of Δxi(t)Δxj(t) 
for each time point and each pair of alleles. Therefore, it is not pos
sible to compute the expectation N〈Δxi(t)Δxj(t)〉 directly. However, 
if we assume that the covariance does not change dramatically in 
a short time, it is plausible to use the mean value of Δxi(t)Δxj(t) in a 
time window around time t as an estimate of its expectation at 
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time t. Multiplied by N, this gives an estimate of Cij(x(t)). This esti
mate Eij can be expressed as

Eij(x(t)) =
N

1 + 2δt

􏽘t+δt

τ=t−δt

Δxi(τ)Δxj(τ), (5) 

where the time window, denoted as [t − δt, t + δt], includes a total 
of 2δt + 1 time points. Intuitively, a trade-off is expected when tun
ing the time window. A larger window includes more values of 
ΔxiΔxj at neighboring time points, hence more reliably yields a 

mean closer to the expectation value. However, covariance can 
change on short time scales as recombination and/or mutation 
break down LD, or as selection drives alleles to fixation or extinc
tion. Past work has shown that covariances in allele frequency 
changes can decay over the course of tens of generations 
(Buffalo and Coop 2020). Therefore, by including time points far 
away from the time t currently considered, the expectation value 
will deviate from 〈Δxi(t)Δxj(t)〉.

In principle, variance terms could be estimated following equa
tion (5), but they can also be readily calculated from the observed 
allele frequencies. We use the difference between estimated and 
calculated variances to normalize the current estimate for im
proved accuracy. Specifically, we rescale the estimated covari
ance matrix E with an anisotropic scaling matrix S = [Cii/Eii]. 
After rescaling, estimates of variances are equal to calculated 
ones, and estimates of covariances are adjusted by

Ĉij(x(t)) = S1/2ES1/2 =
Cii, i = j,

Eij

�����
CiiC jj

EiiE jj

􏽱

, i ≠ j.

􏼨

(6) 

By normalizing the initial estimates with calculated variances, 
this step also makes it unnecessary to know the population size 
N, which may be difficult to obtain or estimate in real data.

MPL inference
MPL (Sohail et al. 2021) is a framework for statistical inference of 
selection from evolutionary histories. While originally developed 
in the context of population genetics, this framework has also 
been recently applied to study disease transmission in epidemio
logical models (Lee et al. 2022). The main idea of this approach is to 
estimate a set of selection coefficients for individual alleles that 
best explain an observed evolutionary history, in the sense that 
these selection coefficients maximize the posterior probability of 
the data. Even for the WF model, the complexity of the likelihood 
makes this a difficult problem to solve exactly. However, following 
the assumptions above (additive and weak selection, mutation, 
and recombination), under the diffusion approximation (Ewens 
2012), the probability of an evolutionary history or “path” is 
straightforward to write down. While this probability is a compli
cated function of the haplotype frequencies, it is a simple 
Gaussian function of the selection coefficients.

Applying Bayes’ theorem then leads to an analytical expression 
for the maximum a posteriori (MAP) estimate of selection coeffi
cients. For time-series genetic data sampled at times 
t1, t2, . . . , tK, the MAP solution provided by MPL is

ŝ =
􏽘K−1

k=0

ΔtkC(x(tk)) + γI

􏼢 􏼣−1

× x(tk) − x(t0) + μ
􏽘K−1

k=0

Δtk(2x(tk) − 1)

􏼢 􏼣

,

(7) 

where Δtk : eqqtk+1 − tk, μ is the mutation rate, x(tk) is the vector of 
mutant allele frequencies at time tk, C(x(tk)) is the mutant fre
quency covariance matrix at time tk, and γI is a multiple of the 
identity matrix serving as a regularization term. In a Bayesian 
sense, the regularization term γI can be interpreted as a 
Gaussian prior distribution over the selection coefficients with 
zero mean and 1/γN variance. A prior of strength γ = 1 is applied 
by default, which slightly constrains magnitudes of inferred selec
tion coefficients and helps to ensure that the matrix term is in
vertible. A more detailed introduction to MPL can be found in 
the Supplementary File.

Regularization
Ideally, C(x(tk)) in equation (7) should be the allele frequency co
variance matrix computed from all individuals in the population 
at time tk. However, in real data sets we only have the sample co
variance matrix, which is computed from a subsample of the 
whole population. Performance is therefore limited by finite sam
pling effects. Regularization is often used to alleviate the influence 
of noisy input in inference algorithms. Below, we examine meth
ods for covariance estimation originally developed for high- 
dimensional statistics.

Estimation of population covariance matrices is a fundamental 
problem in statistics (Ledoit and Wolf 2020). In classical statistical 
settings, with a limited number of variables p and a large sample 
size n, the sample covariance matrix is a good estimator of the 
population covariance matrix. However, it will be insufficient or 
misleading in the high-dimensional limit, when n is of the same 
order of magnitude as p. An extreme case is that if p > n, the sam
ple covariance matrix will be singular. Genetic data may often fall 
into this limit, because when data are limited, the number of se
quences observed can be of the same order of magnitude as the 
number of mutant alleles. Various “shrinkage estimators” (i.e. es
timators that reduce the effects of sampling noise) have been pro
posed aiming for better estimation of the population covariance 
matrix (Ledoit and Wolf 2020). Given the similarity of both con
texts, we applied two methods, linear shrinkage and nonlinear 
shrinkage, to regularize our estimate of the sample covariance 
matrix in order to improve inference results with finitely sampled 
data.

Linear shrinkage on the covariance matrix
Ledoit and Wolf proposed a shrinkage estimator for covariance es
timation which asymptotically minimizes the mean-squared er
ror between the inferred and true covariance in the 
high-dimensional limit (Ledoit and Wolf 2004). It has a simple 
form, a linear combination of the sample covariance matrix 
with the identity matrix, and behaves well with finite sampling 
as shown in simulations (Ledoit and Wolf 2004). We refer to this 
method as linear shrinkage hereafter. Linear shrinkage coincides 
with the regularization term γI in equation (7). As noted before, 
we use a value of γ = 1 by default. A stronger prior (i.e. larger γ) 
can help suppress improbably large magnitudes of inferred selec
tion coefficients caused by noise from finite sampling and our es
timation process.

Nonlinear shrinkage on the correlation matrix
A common model to analyze covariance in the high-dimensional 
limit is the spiked covariance model (Johnstone 2001), which as
sumes the population covariance has a fixed number, say l, of ei
genvalues larger than 1 (spikes) and all other eigenvalues equal to 
1. In the null case where l = 0, the population covariance matrix 
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becomes the identity matrix. However, the empirical distribution 
of the sample eigenvalues converges as n→∞ to a nondegenerate 
absolutely continuous distribution, the Marčenko–Pastur law 
(Marčenko and Pastur 1967). The distribution, or bulk, is sup
ported on a single interval, whose limiting bulk edges are given by

λ± = (1 ± ��η√ )2, (8) 

where η is the asymptotic ratio between number of variables and 
number of samples when they both go to infinity, i.e. p/n→ η as 
p→∞. Donoho et al. showed that in this model, the optimal esti
mation of the population covariance matrix Cp from a sample co

variance matrix Cs relies on the design of an optimal shrinker that 
acts elementwise on the sample eigenvalues (Donoho et al. 2018). 
The strength of each shrinker is tuned by the asymptotic ratio η. 
The shape of the optimal shrinker is determined by the choice of 
a loss function, which measures similarity between the popula
tion covariance and sample covariance. Optimal shrinkers have 
been derived for a number of loss functions, including the 
Frobenius norm and nuclear norm (defined in Supplementary 

Equation S4) of Cs − Cp, C−1
s − C−1

p , C−1
p Cs − I, C−1

s Cp − I, and 

C−1/2
s CpC−1/2

s − I (Donoho et al. 2018).
The integrated population covariance matrix (

􏽐
k ΔtkC(x(tk)) in 

equation (7)), in our case, does not directly resemble the spiked co
variance model. At the least, alleles do not share the same vari
ance, so that even if all sites evolved independently, the 
eigenvalues of our population covariance matrix would not all 
be equal. However, the corresponding correlation matrix could 
fit into this model. When data are limited, we assume that most 
correlation signals are indistinguishable from correlation induced 
by noise from random sampling and other sources, so that only a 
few prominent signals reflecting the spike eigenvalues of the 
population correlation matrix can be picked up on top of noise. 
We apply the optimal shrinkers proposed in Donoho et al. (2018)
to our correlation matrix, which we denote by R to distinguish it 
from the covariance matrix, then adjusting our estimate of the 
sample covariance matrix accordingly. In our context of shrinking 
eigenvalues of the estimated correlation matrix, neither the selec
tion of the optimal loss function nor the regularization strength η 
are obvious. We therefore tested a variety of possibilities.

In summary, we considered the following steps for nonlinear 
regularization: 

1) Compute our estimate of the mutant allele correlation ma

trix R̂ from the estimate of covariance matrix Ĉ. 

R̂ = V−(1/2)ĈV−(1/2), where V is a matrix with only sample var
iances on the diagonals, Vii = Cii(x), Vij = 0 for i ≠ j.

2) Choose a loss function and a regularization strength η, and 
apply the corresponding optimal shrinker as proposed in 
Donoho et al. (2018) on our estimate of the correlation matrix 

R̂, yielding a shrunk estimate R̂∗.

3) Transform the shrunk estimate R̂∗ back to an estimate of the 

covariance matrix, Ĉ∗ = V1/2R̂∗V1/2.

Results
We first describe the simulated data used to benchmark perform
ance of our method. We then present its performance with com
plete or finitely sampled data. We further test how two kinds of 
regularization methods can help preserve the method’s perform
ance when data are limited. We also show that inference can be 
greatly improved by combining observations from multiple 

replicates. Finally, we present an example application to a real ex
perimental evolution data set.

Evolutionary simulations
To benchmark the performance of our method, we generated arti
ficial time series sequence data by simulating evolution as a WF 
process. We considered an evolving population of 1000 sequences 
with 50 bi-allelic (WT or mutant) loci. We used 10 different sets of 
selection coefficients (see Supplementary Fig. S1) and simulate 20 
replicates of data for each set, totaling 200 simulations. In each 
simulation, the population started from a composition of four 
haplotypes and evolved for 700 generations. The mutation rate 
was set as 10−3 per locus per generation, which generated around 
3.5 × 104 mutation events for each simulation. Figure 1a shows an 
example of simulated mutant allele frequency trajectories. To 
test the effect of recombination, we performed another 200 simu
lations with the same setup as above with a recombination prob
ability of r = 10−5 per site per generation. More detailed settings of 
the simulations can be found in Supplementary File.

Recovery of linkage information
As shown in Fig. 1, our method is typically able to accurately re
construct linkage information from allele frequency trajectories. 
In general, we find that normalizing estimates of the covariance 
matrix (see equation (6)) is important to reduce errors (Fig. 2a). 
We also find that there exists a wide range of time windows 
(3 ≤ δt ≤ 20) over which the mean absolute error (MAE) in the esti
mated covariances is low, showing that estimation of linkage in
formation is not very sensitive to the choice of the window size 
(Fig. 2b).

Recovery of linkage information is more challenging with fi
nitely sampled data. Real data contain only reads from a small 
portion of all individuals in a population and are not typically 
sampled at every generation. With shallower sampling and larger 
time intervals between samples, noise becomes more dominant in 
the estimated covariance matrix. We use two regularization 
methods, linear shrinkage and nonlinear shrinkage, to alleviate 
the influence of noise. Supplementary Fig. S2a compares the 
true covariance matrix with the estimated covariance matrices 
with and without regularization for the simulation in Fig. 1a, using 
data sampled every 10 generations with 100 sequences per sam
ple. Although both regularization methods have minor effects 
on off-diagonal terms of the estimated covariance matrix, they 
greatly reduce the magnitudes of entries of the inverse of the es
timated covariance matrix (Supplementary Fig. S2b). In the MPL 
framework (equation (7)), the inverse of the covariance matrix is 
critical for the inference of the underlying selection coefficients. 
The noisy covariance matrices have larger entries when inverted, 
which leads to the inference of improbably large selection coeffi
cients. Regularization helps to control this issue. We explore fac
tors affecting successful inference of selection coefficients in the 
next section below.

Recovery of underlying selection coefficients
Here we investigate the degree to which the estimated linkage in
formation be used to improve the inference of selection. To test 
the inference of selection, we first infer allele frequency covari
ance matrices as described above. We then use the estimated al
lele frequency covariance matrices in equation (7) to infer 
selection coefficients.

http://academic.oup.com/genetics/article-lookup/doi/10.1093/genetics/iyac189#supplementary-data
http://academic.oup.com/genetics/article-lookup/doi/10.1093/genetics/iyac189#supplementary-data
http://academic.oup.com/genetics/article-lookup/doi/10.1093/genetics/iyac189#supplementary-data
http://academic.oup.com/genetics/article-lookup/doi/10.1093/genetics/iyac189#supplementary-data
http://academic.oup.com/genetics/article-lookup/doi/10.1093/genetics/iyac189#supplementary-data
http://academic.oup.com/genetics/article-lookup/doi/10.1093/genetics/iyac189#supplementary-data
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Normalization and choice of window size
As for the estimation of linkage, we find that normalization of the 
estimated covariance matrices leads to better inferred selection 
coefficients (Supplementary Fig. S3). We also found a wide range 
of window sizes δt that lead to good performance for inferred se
lection coefficients (Supplementary Fig. S4). Unsurprisingly, larger 
window sizes were more helpful when data were sparse. However, 
unlike the direct estimation of linkage information, we found that 
the accuracy of inferred selection coefficients did not decline for 
very large window sizes, up to the maximum value of δt = 160 
that we tested. Considering the effects of the window size on 
both estimating linkage and inferring selection coefficients, we 
chose δt = 20 as a default value of the window size with uniformly 
good performance.

Benchmarking against alternative models
To test our ability to use estimated covariance information to im
prove selection inferences, we compared our method against two 

extreme limits. All three methods use MPL’s inference framework, 
but with different covariance matrices in equation (7). Our (naive) 
method, referred to as Est, uses the normalized estimate of the co
variance matrix Ĉ with the time window set to δt = 20 and the 
regularization strength γ = 1. Later, we consider modified versions 
of this method using additional linear or nonlinear regularization. 
One comparison method, referred to as MPL, uses the true popu
lation matrix C, which is not available in real pool-sequenced 
data and can be viewed as an ideal limit for perfect performance. 
The other comparison method, referred to as single locus (SL), as
sumes no LD and uses a matrix V with only variance information, 
with Vii = Cii, Vij = 0 for i ≠ j. Performance of SL serves as a lower 
bound: when Est performs worse than SL, it is better to simply ig
nore LD than to try to estimate it with our approach.

We first applied the three methods to complete simulated data 
using all 1,000 sequences at each generation. Figure 3 shows the 
performance of these methods using evolutionary trajectories of 
different lengths. When all data are available, our method reliably 
outperforms SL, which demonstrates the potential benefit of 
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Fig. 1. Linkage information is accurately recovered from trajectories of mutant allele frequencies exhibiting complex dynamics in a WF simulation. (a) A 
population of 1,000 individuals was simulated to evolve for 700 generations under WF dynamics, starting from a mixed population of four haplotypes. 
The sequences have 50 sites where the loci were assumed to be bi-allelic (WT or mutant). Mutation rate was set as 10−3 per locus per generation. The 
simulation plotted here used the fifth set of selection coefficients, which are drawn from a trimodal distribution, a combination of three Gaussian 
distributions with standard deviation of 0.01, centered at −0.03, 0, and 0.03, respectively (see Supplementary Fig. S1). For this simulation, we show (b) the 
true covariance matrix, (c) our estimate of it, and (d) error of our estimation integrated over 700 generations throughout the simulation. Error of 
estimation is shown on a smaller scale in (e). The estimated covariance matrix was calculated following equation (5) using a window of δt = 20, and then 
normalized by equation (6). Terms of the error matrix have much smaller magnitude than those of true and estimated ones, indicating that the linkage 
information is accurately recovered.

http://academic.oup.com/genetics/article-lookup/doi/10.1093/genetics/iyac189#supplementary-data
http://academic.oup.com/genetics/article-lookup/doi/10.1093/genetics/iyac189#supplementary-data
http://academic.oup.com/genetics/article-lookup/doi/10.1093/genetics/iyac189#supplementary-data
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incorporating estimated covariance information to account for 
LD. In these tests, and throughout the paper, we do not assume 
that there is prior knowledge about which alleles are under selec
tion. All alleles are treated equivalently. Supplementary Fig. S5
compares inferred selection coefficients with the true values for 
the simulation example plotted in Fig. 1a, including those inferred 
by regularized methods (introduced in later sections).

Selection inference with finitely sampled data
To test its robustness against finite sampling effects, we applied 
our method on data with different sampling depths and sampling 
time intervals (Fig. 4). We find our method to be generally 
robust against sampling with small numbers of sequences. 
Performance remains robust even with only samples from 10 indi
viduals per generation. However, naive inference with estimated 
linkage information is quite sensitive to the time interval between 
samples. For the data sets considered here, performance of Est 
becomes worse than SL when samples are taken five or more 

generations apart. As we show below, this sensitivity to sampling 
times can be alleviated with different forms of regularization or by 
combining data from multiple replicates.

Regularization improves selection inference
Figure 5 shows that appropriately chosen linear regularization 
(also equivalent to a Gaussian prior on the selection coefficients) 
can lead to significantly better inferred selection coefficients. 
Even when the time between samples Δg becomes larger, regu
larization results in better recovery of inferred selection coeffi
cients than SL. In general, stronger regularization is needed 
when sampling is more limited, especially when Δg becomes 
large. We found that a regularization strength of γ = 10Δg yields 
consistently good performance across data sets and different le
vels of sampling.
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Fig. 2. Normalization and choosing a proper time window are important for the accurate estimation of linkage information. (a) Plots the distribution of 
error of estimated covariance with and without normalization (see equation (6)). (b) Shows MAE of normalized estimation with different time windows. 
The data used in these plots are collected from 10 simulations, each with a different set of selection coefficients.
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Fig. 3. Estimated covariance can improve inference of selection 
coefficients with ample data. (a) Spearman’s rank correlation coefficients 
and (b) MAE between inferred and true selection coefficients are shown, 
using different lengths of data, averaged over 200 simulations with same 
setup as shown in Fig. 1a. With ample data, the Est method performs 
reliably better than the SL method at all lengths, demonstrating that 
inference can be improved with estimated linkage information.
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Fig. 4. Performance is robust to sampling depth but sensitive to sampling 
time interval. (a) Spearman’s rank correlation coefficients between 
inferred and true selection coefficients averaged over 200 simulations 
with same setup as shown in Fig. 1a are compared with different sampling 
depths. The sampling time interval is 1 generation here. All three 
methods are robust against shallower sampling depths. (b) The same 
metrics (Spearman’s ρ) compared with different sampling time intervals. 
At each sampling time point all 1,000 samples in the population are used 
here. The Est method is more sensitive to larger sampling time intervals 
compared to the MPL and SL methods, and performs worse than the SL 
method as time interval increases to five generations and above.

http://academic.oup.com/genetics/article-lookup/doi/10.1093/genetics/iyac189#supplementary-data
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We also tested a wide range of nonlinear regularization meth
ods (i.e. those derived using loss functions for the Frobenius norm 
or nuclear norm of R̂ − R, R̂−1 − R−1, R−1R̂ − I, R̂−1R − I, and 
R̂−1/2RR̂−1/2 − I) as well as values of the regularization strength η, 
ranging from 1 × 10−5 to 1. Performance is compared in detail in 
Supplementary Fig. S6. While different choices for the loss func
tion tend to yield very similar results, we find that the loss func
tion of the Frobenius norm of R̂−1R − I combined with a small 
regularization strength η = 1 × 10−5 yields near-optimal results 
across all sampling variations. Like the linear case, nonlinear 
regularization also improves upon SL even with longer gaps be
tween samples.

Performance of the linear and nonlinear regularization meth
ods is compared in detail in Supplementary Figs. S7 and S8. 
While the naive Est method could suffer from limited sampling, 
the two regularization methods stably preserve performance in 
terms of Spearman’s ρ. Both SL and regularization methods 
have larger MAE for inferred coefficients. However, the causes 
are different. For methods that employ regularization, the regu
larization can systematically shrink selection coefficients toward 
zero, although the relative magnitudes of the inferred coefficients 
are roughly correct. Here we accept underestimation of magni
tudes of selection coefficients as a trade-off in order to alleviate fi
nite sampling effects that would otherwise make it difficult to 
correctly infer the relative order of selection coefficients. 
Supplementary Fig. S5 provides an example showing the typical 
extent to which inferred selection coefficients are shrunk toward 
zero. This depends on the strength of the regularization, with 
stronger regularization resulting in more shrinkage. For SL, large 
errors are typically due to noise, where the inferred coefficients 
may not be properly ranked.

On average, linear shrinkage tends to perform very slightly bet
ter than nonlinear methods when the time interval between sam
ples is small. However, the regularization strength for the linear 
method needs to be tuned for optimal performance. For large 
sampling intervals, the linear regularization strength needed to 
achieve optimal rank correlation between the true and inferred 
selection coefficients increases in proportion to Δg, which results 
in extremely small magnitudes for inferred selection coefficients, 
reflected in the large MAE at larger time intervals (Supplementary 

Fig. S8e). For these reasons, nonlinear regularization is likely the 
best choice for arbitrary inference problems. Here we found that 
one loss function and regularization strength η yields near- 
optimal performance for nonlinear regularization across all data 
sets and sampling variations.

Effect of recombination on inference
In the tests described above, we assumed no recombination. To 
test the potential influence of recombination, we performed an
other 200 simulations with recombination. In these simulations, 
we used a recombination probability of r = 10−5 per locus per gen
eration, while all other parameters remained the same. Thus, 
each simulation had around 3.5 × 104 mutation events and 
around 3.5 × 103 recombination events. More details are described 
in Supplementary File. Recombination acts to break up linkage, 
slightly improving performance for all approaches. However, the 
overall relative performance of various methods on selection in
ference is consistent with those evaluated on simulated data 
without recombination (Supplementary Figs. S9 and S10).

Combining multiple replicate data
We define replicates as multiple instances of time-series data of 
an evolving population driven by the same set of selection coeffi
cients. Here we perform 20 WF simulations for each set of selec
tion coefficients with the same initial distribution of four 
founder haplotypes, yielding 20 replicates. In real data, multiple 
replicates could represent, for example, data from evolutionary 
experiments performed under the same conditions, or the history 
of pathogen evolution during different isolated outbreaks. We find 
that our ability to recover selection coefficients can be greatly 
boosted by combining data from multiple replicates. Figure 6
compares the accuracy of inferred selection coefficients using ei
ther a single replicate or multiple ones. When 20 replicates are 
combined, our method achieves virtually the same performance 
as using true covariance information even without additional 
regularization. Figure 7 shows how performance improves as we 
gradually increase the number of combined replicates. We find 
that the performance of regularized methods (linear-cov and 
nonlinear-corr) generally converges with 5–10 replicates. More 
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Fig. 5. Linear shrinkage can improve performance under limited sampling. Spearman’s rank correlation coefficients between inferred and true selection 
coefficients, averaged over 200 simulations with the same setup as shown in Fig. 1a, are shown using different strengths of linear shrinkage, with (a) 
different sampling depths and (b) different sampling time intervals. Linear shrinkage of a proper strength improves inference results of our method. 
When the sampling time interval gets larger, the optimal strength increases as well, which is why we choose the y-axis to be γ/Δg, the linear shrinkage 
strength divided by the sampling time interval. We find that a strength of 10 times time interval, γ = 10Δg, yields the highest Spearman’s ρ consistently.
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replicates are needed when the length of data is shorter and when 
the sampling time interval Δg becomes larger.

We also tested effects of combining multiple replicate data 
with the same selection coefficients but different founder haplo
types, shown in Supplementary Fig. S11. For each set of selection 
coefficients, 20 replicate simulations are combined, each starting 
with four random founder haplotypes. Individuals in the initial 
population are randomly distributed across founder haplotypes. 
Consistently, we find that performance on selection inference is 
improved. In contrast to what we found in cases with the same ini
tial population, SL can also benefit substantially from combining 
multiple replicates. This is reasonable because variation in initial 
populations weakens the LD induced by a specific set of founder 
haplotypes and alleviates the need to disentangle the selective ef
fects of individual mutations.

Benchmarking against haplotype reconstruction 
methods on simulated data
Methods that reconstruct haplotypes and time-series haplotype 
frequencies from short-read data can also provide covariance in
formation that can be used for selection inference. For compari
son with our method, we tested two haplotype reconstruction 
methods that take allele frequency time series as input, haploSep 
(Pelizzola et al. 2021) and Evoracle (Shen et al. 2021), on the simu
lated data. Compared to these approaches, our method more ac
curately recovers true LD statistics (Supplementary Fig. S12). We 
also find that our approach yields more accurate inferred selec
tion coefficients from these data (using the inferred LD statistics 
in equation (7); Supplementary Fig. S12). These results may be 
due in part to the complexity of our simulation setup, which 
makes the haplotype reconstruction problem more challenging.
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Fig. 6. Performance can be greatly improved by combining data from multiple replicates. Spearman’s rank correlation coefficients and MAE between 
inferred and true selection coefficients, averaged over 200 simulations with same setup as shown in Fig. 1a, are shown (a,c) when using a single replicate, 
and (b,d) when combining 20 replicates. The inference using true covariance, and using our estimated covariance (with or without regularization), are 
dramatically improved when combining multiple replicates’ observations. In contrast, the performance of SL does substantially improve with additional 
replicates.
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Application to experimental directed evolution 
data
Badran et al. evolved the Cry1Ac gene for 528 hr using 
phage-assisted continuous evolution (PACE), a system that en
ables effective continuous directed evolution of gene-encoded 
molecules that can be linked to protein production in Escherichia 
coli (Esvelt et al. 2011; Badran et al. 2016). The Cry1Ac gene (2,138 
nt) encodes an insecticidal Bacillus thuringiensis δ-endotoxin (Bt 
toxin) that is widely used in agriculture for pest control (Badran 
et al. 2016). During PACE, samples were collected and sequenced 
with long-read (>2,138 nt) PacBio sequencing to an average depth 
of 500 reads every 12 hr or 24 hr for 528 hr, totaling 34 time points. 
Shen et al. developed and applied the haplotype reconstruction 
method, Evoracle, on 100-nt reads truncated from PacBio reads 
that incorporate 19 commonly evolved nonsynonymous amino 
acid mutations (Shen et al. 2021). Evoracle is shown to accurately 
reconstruct the 100-nt haplotype frequency trajectories (Shen 
et al. 2021).

We tested the ability of our method to improve selection infer
ence on this dataset. We obtained selection coefficients inferred 
with SL, and nonlinear-norm methods, and compared them 
with selection coefficients inferred with true covariance informa
tion computed from the full-length (100nt) sequences. We also 
compared our results with the selection coefficients inferred using 
the haplotypes inferred by Evoracle. Our method yields inferred 
selection coefficients that are substantially closer to those in
ferred using true covariance information than SL, and comparable 
to ones based on haplotypes inferred by Evoracle (Fig. 8). The same 
observation holds when we study the inferred fitness values for 
observed haplotypes. Here, the SL approach, which ignores LD, 
substantially overestimates selection because groups of beneficial 
alleles arise and sweep together during the experiment (Fig. 8a). SL 
treats each mutant independently, hence it infers all alleles that 
rise together to be highly beneficial. Our method accounts for 
the LD among these co-rising mutations and hence provides 
more accurate inference results.
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Fig. 7. Performance improves as the number of combined replicates increases. Spearman’s rank correlation coefficients between inferred and true 
selection coefficients averaged over 200 simulations with same setup as shown in Fig. 1a are shown as we increase the number of combined replicates 
under different limited sampling effects. The performance of regularized methods (linear-cov and nonlinear-corr) generally converges with 5–10 
replicates. More replicates are needed when the length of data is shorter and when the sampling time interval is larger.
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Discussion
Here we proposed a simple method to estimate genetic linkage from 

time-series allele frequencies, and we evaluated its performance 

when used together with MPL to infer the fitness effects of individual 

mutations. Our simulations showed that inference using properly 

regularized estimates of the allele frequency covariance matrix out

performs methods that ignore genetic linkages in most cases.
Our method is general and should be applicable to investigate 

selection in evolving populations when combined with inference 

methods that use covariance information. However, it is limited 

by the quantity and extent of data available. Our approach is espe

cially sensitive to the temporal sampling interval of data, though 

this sensitivity can be mitigated with regularization and by com
bining data from multiple replicates. Remarkably, when multiple 
replicates of evolutionary data are combined, selection can be es
timated using only allele frequencies just as accurately as if com
plete haplotype information were available. This benefit is further 
magnified when the starting populations for different replicates 
are distinct.

Methods that aim to recover haplotypes and their frequencies, 
such as those developed for viruses (Beerenwinkel et al. 2012), can 
also aid inference of selection from pool-sequenced data. 
Pelizzola et al. (2021) showed that reconstructed haplotype infor
mation could improve the accuracy of allele frequency estimation 
because haplotype frequency estimates combine information 

Fig. 8. Performance on Cry1Ac dataset. (a) Mutant allele frequency trajectories over directed evolution for 528 hr. Performance on selection and fitness 
inference are plotted for methods (b) Evoracle, (c) nonlinear, and (d) SL, against inference results using true covariance information computed from 
sequences. The Evoracle result denotes selection inferred with covariance matrix computed from haplotype frequencies reconstructed by Evoracle. 
Evoracle and nonlinear methods provide more accurate inference for both selection and fitness than SL.
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across many SNPs and are less noisy than allele frequencies from 
pool sequencing. Similarly reconstructed haplotype information 
could potentially improve covariance estimation. They can also 
be used to directly infer selection coefficients with inference 
methods taking haplotype frequencies as input. Higher order co
variance information (i.e. beyond pairwise allele frequency covar
iances) is also necessary to estimate epistatic interactions from 
data (Sohail et al. 2022), further emphasizing the importance of 
this reconstruction problem.

Prior work has also examined the time dependence of allele fre
quency changes and exploited them for inference. In a recent ser
ies of papers, Buffalo and Coop (2019, 2020) developed detailed 
analytical expressions for the temporal autocovariance of allele 
frequency changes for a neutral site, including the influence of 
factors such as linked selection, recombination, and genetic drift. 
As in our work, they use these expressions for inference by equat
ing theoretical expectations with measurements from data, which 
they used to estimate parameters including effective population 
sizes and time-varying selection (Buffalo and Coop 2019). Their 
approach also identifies the fraction of allele frequency change at
tributable to linked selection, which was estimated between 17 
and 37% in the analysis of three experimental evolve-and- 
resequence data sets (Buffalo and Coop 2020). In other work, 
Franssen et al. (2015) combined temporal changes in allele fre
quencies with haplotype data from initial populations to identify 
and follow selected regions (haplotype blocks). Subsequently, the 
haploReconstruct method was developed to automatically identify 
selected haplotype blocks from temporal allele frequency data 
(Franssen et al. 2017; Barghi et al. 2019). This approach works by 
normalizing frequency trajectories of selected alleles that start 
at low frequencies but rise in later generations, and then using 
the linear correlation coefficients between normalized trajector
ies as a measure of their linkage. Strongly linked alleles are then 
clustered into selected haplotypes.

Substantial effort in computational biology is dedicated to ex
tracting knowledge on selection from genetic data. However, pool- 
sequenced data lack crucial information needed to account for 
genetic linkage that frequently occurs in nature. Our method pro
vides a tool to augment pool-sequenced data by estimating covari
ance solely from allele frequencies. The estimated covariance can 
then be used with inference methods like MPL to resolve genetic 
linkage and infer selection coefficients. Our results demonstrate 
that such approaches yield substantially better performance 
than ignoring linkage.

Data availability
Data and code used in our analysis are available in the GitHub re
pository at https://github.com/bartonlab/paper-covariance- 
estimation. This repository also contains Jupyter notebooks that 
can be run to reproduce these results. Supplemental material is 
available at GENETICS online.
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