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Biomarkers of Alzheimer’s Disease among a Cognitively Healthy Population-Based
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Emma Casey,1 Zhenjiang Li,2 Donghai Liang,1,2 Stefanie Ebelt,1,2 Allan I. Levey,3 James J. Lah,3 Thomas S. Wingo,3,4 and
Anke Hüls1,2
1Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
2Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
3Department of Neurology, School of Medicine, Emory University, Atlanta, Georgia, USA
4Department of Human Genetics, School of Medicine, Emory University, Atlanta, Georgia, USA

BACKGROUND: Epidemiological evidence suggests air pollution adversely affects cognition and increases the risk of Alzheimer’s disease (AD), but lit-
tle is known about the biological effects of fine particulate matter (PM2:5, particulate matter with aerodynamic diameter ≤2:5 lm) on early predictors
of future disease risk.
OBJECTIVES:We investigated the association between 1-, 3-, and 5-y exposure to ambient and traffic-related PM2:5 and cerebrospinal fluid (CSF) bio-
markers of AD.
METHODS:We conducted a cross-sectional analysis using data from 1,113 cognitively healthy adults (45–75 y of age) from the Emory Healthy Brain
Study in Georgia in the United States. CSF biomarker concentrations of Ab42, tTau, and pTau, were collected at enrollment (2016–2020) and ana-
lyzed with the Roche Elecsys system. Annual ambient and traffic-related residential PM2:5 concentrations were estimated at a 1-km and 250-m resolu-
tion, respectively, and computed for each participant’s geocoded address, using three exposure time periods based on specimen collection date.
Associations between PM2:5 and CSF biomarker concentrations, considering continuous and dichotomous (dichotomized at clinical cutoffs) outcomes,
were estimated with multiple linear/logistic regression, respectively, controlling for potential confounders (age, gender, race, ethnicity, body mass
index, and neighborhood socioeconomic status).
RESULTS: Interquartile range (IQR; IQR=0:845) increases in 1-y [b:− 0:101; 95% confidence interval (CI): −0:18, −0:02] and 3-y (b:− 0:078; 95%
CI: −0:15, −0:00) ambient PM2:5 exposures were negatively associated with Ab42 CSF concentrations. Associations between ambient PM2:5 and
Ab42 were similar for 5-y estimates (b:− 0:076; 95% CI: −0:160, 0.005). Dichotomized CSF variables revealed similar associations between ambient
PM2:5 and Ab42. Associations with traffic-related PM2:5 were similar but not significant. Associations between PM2:5 exposures and tTau, pTau
tTau=Ab42, or pTau=Ab42 levels were mainly null.

CONCLUSION: In our study, consistent trends were found between 1-y PM2:5 exposure and decreased CSF Ab42, which suggests an accumulation of
amyloid plaques in the brain and an increased risk of developing AD. https://doi.org/10.1289/EHP13503

Introduction
As life expectancy rises and the US population pyramid continues
to age, we are seeing an increase in chronic noncommunicable age-
related conditions, including Alzheimer’s disease (AD). With
the multifactorial nature of AD pathogenesis, building evidence
around preventable environmental exposures may ultimately
reduce inequities and improve health outcomes. In this regard,
accumulating epidemiological evidence demonstrates an associa-
tion between exposure to air pollution and the prevalence of AD.
Most of the evidence to date has focused on links between fine par-
ticulate matter (PM2:5, fine particulate matter with aerodynamic di-
ameter ≤2:5 lm), a mixture of fine particles in the air, and
cognitive function, incident cognitive impairment, or dementia.1–4
Incident dementia is often studied using diagnostic codes on insur-
ance billing claims and medical records, facilitating studies with

large sample sizes; however, billing data are known to miss some
true dementia cases,1,5 and there are no diagnostic codes for the
preclinical stages of dementia. PM2:5 can pass through the lung
gas–blood barrier or through the gut–brain axis, or it can directly
enter brain tissue via the olfactory nerve to promote oxidative
stress and inflammation, processes directly related to AD pathoge-
nesis.6,7 Growing evidence also suggests that cerebrovascular
damage may contribute to dementia and PM2:5 exposure is associ-
ated with biomarkers of endothelial injury in blood and cerebrospi-
nal fluid (CSF), further implicating the adverse effect of PM2:5 on
CSF biomarkers.8 Because PM2:5 is a heterogeneous mixture, dif-
ferent sources of exposure often have varying degrees of toxicity,
andmost existing studies have focused on ambient exposure, rather
than those merely from traffic-related emissions. Understanding
the impact of PM2:5 from both ambient and traffic-related sources
on preclinical stages of dementia in older at-risk adults is crucial
from a public health perspective, because it will improve the esti-
mation of the burden of disease in association with air pollution by
identifyingmore affected individuals.

Recent systematic reviews highlight the need to expand the
scope of current studies on air pollution and dementia risk to include
neuropathologically relevant outcomes, such as early indicators of
dementia, including AD CSF and plasma-based biomarkers, which
can be assessed at the late stage of the preclinical phase.1,4,9 A recent
study found positive associations between PM2:5 and amyloid
b-protein (Ab)1–40 from plasma in longitudinal analyses, but no
associations were detected between PM2:5 and Ab1–42 or the ratio
of Ab1–42=Ab1–40.10 Blood-based biomarkers of protein pathol-
ogy are less predictive of brain pathology and have shown insignifi-
cant changes in Ab levels as in comparisonwith CSFAb biomarkers
in AD patients.11 So far, three clinically validated CSF biomarkers
[Ab42, total Tau (tTau), and phosphorylated Tau (pTau)] have been
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noted as valid proxies for neuropathological changes of AD,9,12 and
specifically, Ab42 has been linked to the abnormal pathological state
of cerebral Ab in both animal and human models. Lower levels of
Ab42 in CSF are observed in AD, reflecting the deposition of amy-
loid plaques in the brain—a defining feature of the disease. Elevated
levels of tTau in CSF reflect increased neuronal damage and degen-
eration, indicative of the neurofibrillary tangle formation—another
hallmark of AD pathology. Increased concentrations of pTau signify
the presence of abnormally phosphorylated Tau proteins, further
emphasizing the Tau pathology associated with AD. The interplay
between these biomarkers reflects the complex cascade of events in
AD, from Tau-related neurodegenerative processes (tTau and pTau)
to the accumulation of Ab. Because pathological changes related to
AD can begin decades before symptoms appear,13 quantifying the
relationship between both ambient and traffic-related PM2:5 pollu-
tion, andCSF biomarkers reflective of AD-positive changeswill elu-
cidate how exposure influences dementia risk.14

So far, two epidemiological studies have reported associations
between PM2:5 and CSF Ab42 in cognitively healthy individuals
whereas no relationships with tTau or pTau have been noted.15,16

However, there are several limitations with these prior studies,
including a) the exposure assessments in Alemany et al.16 and Li
et al.15 only focused on 1- or 2-y average PM2:5 prior to the bio-
marker assessment; b) the relatively small sample size (n=156)
in Alemany et al.,16 and c) the outcome assessment in Li et al.,15
which relied on the Innotest-AMYLOID(1-42) ELISA assay, an
unstandardized manual method, showing a high correlation with
the automated Elecsys method but higher intra- and interlabora-
tory variations.17,18

To address these limitations in prior studies and grow our
understanding of the impact of air pollution on preclinical demen-
tia risk, here we conducted a cross-sectional analysis to character-
ize the association between long-term ambient and traffic-related
PM2:5 exposure (1, 3, and 5 y prior to biomarker assessment) and
CSF biomarker composition (Ab42, tTau, and pTau, assessed
with Elecsys AD CSF assays) in a dementia-free, aging popula-
tion, as part of the Emory Healthy Brain Study (EHBS).
Increased levels of exposure to residential PM2:5 were hypothe-
sized to be associated with decreased Ab42 and increased Tau
levels. We also tested for effect modification by several well-
known risk factors for AD-related outcomes, including APOE-e4
status, the strongest genetic risk factor for AD.

Methods

Study Design and Population
The EHBS is a gerontology-based prospective research study fo-
cusing on the cognitive health of older adults. The EHBS is
nested within the Emory Healthy Aging Study (EHAS) and
includes participants from the Atlanta metropolitan region in the
state of Georgia in the United States. Our cross-sectional analysis
includes data from the baseline visits, which were conducted
between 2016 and 2020. The primary aim of the EHBS is to char-
acterize psychological and psychosocial factors associated with
normal and abnormal aging through assessment of the central
nervous system among adults 45–75 y of age who were free of
cognitive impairment in addition to several other chronic condi-
tions (e.g., congestive heart failure, multiple sclerosis, human im-
munodeficiency virus) at enrollment; more details on recruitment
and eligibility have been published elsewhere.19

Demographic characteristics were collected with the online
Health History Questionnaire (HHQ).19 Individual-level informa-
tion was self-reported for gender, age, race, Hispanic ethnicity,
educational attainment, and residential address. Participants could
choose one or more race(s) from a five-item list (White/Caucasian,

Black/African American, Asian, American Indian/Alaska Native,
Hawaiian/Other Pacific Islander). Hispanic ethnicity (Yes/No)
was addressed in a separate HHQ question. Data on education was
also self-reported with seven possible categories: Less than high
school; High school diploma/GED; Some college credit, but no
degree; associate’s degree (e.g., AA AS); bachelor’s degree (e.g.,
BA, BS); master’s degree (e.g., MA, MS, MBA); professional or
doctorate degree. EHBS biennial study visits include neuropsy-
chology tests, biospecimen collection (blood, CSF), cardiovascular
measures, and brain imaging. All measures, including anthropo-
metric, were collected by trained clinical research staff for use in
the diagnosis and prediction of chronic illness.19 All participants
completed an online consent process prior to enrollment and pro-
vided informed consent. The study was approved by the local
ethics committee and the Emory University institutional review
board (IRB).

PM2:5 Exposure Assessment
Because evidence suggests a relationship between both ambient
PM2:5 and traffic-related PM2:5 exposure and cognitive decline
and because traffic-related PM2:5 is a major exposure source in
urban environments like Atlanta,20 we used both measures of
PM2:5 in our analyses.

We obtained ambient PM2:5 exposure data from the publicly
available SocioeconomicData andApplication Center (SEDAC) air
quality dataset for health-related applications.21 The dataset consists
of yearly average ambient PM2:5 levels (in lg=m3) estimated at a
1-km spatial resolution, using a well-validated ensemble-based pre-
diction model for the contiguous United States (2000–2016), which
was reduced to annual PM2:5 estimates in the state of Georgia for
our analyses. As described byDi et al., threemachine-learning algo-
rithms: random forest, neural network, and gradient boosting were
used to predict ambient PM2:5 and included a variety of predictor
variables from satellite data, land use, meteorological variables, and
chemical transport model simulations.22 The ensemble model
then combined these PM2:5 predictions with a generalized additive
model that allowed for the contribution of each machine-learning
algorithm to vary by location.22 The ensemblemodel was trained on
PM2:5 levels measured at 2,156 US EPA monitors, was validated
with 10-fold cross-validation, and produced high-resolution annual
PM2:5 predictionswith an averageR2 of 0.89.22

As described previously,23 annual traffic-related PM2:5 exposure
concentrations at 200–250 m resolution (in lg=m3) for the Atlanta
metropolitan area for the period 2012–2019 were predicted via a
land-use random forest model built on training data comprising
the 2015 annual concentrations of traffic-related PM2:5 from
Atlanta Reginal Commission, road inventory and traffic monitoring
data based on measurements from the Georgia Department of
Transportation that considered road geometry and traffic volume,
land cover data from the National Land Cover Database, and ambi-
ent PM2:5 data from the Atmospheric Composition Analysis. The
random forest model was trainedwith the R package randomForest.
The resulting 200–250 m resolution annual traffic-related PM2:5
predictions had an average R2 of 0.80. Given that the traffic-related
PM2:5 exposure estimates covered only 20 of the 159 counties in
Georgia, the analytic sample for these models was reduced to
include only the participants located within this area (n=1,080) in
comparisonwith ambient PM2:5 exposures (n=1,113).

For both ambient and traffic-related PM2:5 exposures, we spa-
tially matched geocoded residential addresses to the closest cent-
roid of grids (based on 1-km2 or 200–250m2 grids) to assign
annual exposures. 1-y exposure predictions (1 year prior to speci-
men collection) were calculated by averaging the daily predic-
tions in each year for every grid cell.22 We further calculated
individual 3- and 5-y exposures by averaging yearly predictions
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prior to specimen collection. Participants’ geocoded addresses
were mapped using QGIS mapping software, and air pollution
exposures were assigned based on air pollution model grid cell of
residence.

AD CSF Biomarker Concentrations
CSF biospecimens were collected by EHBS research staff via lum-
bar puncture at enrollment; CSF collection protocol has been previ-
ously described.24 Ab42, tTau, and pTau CSF levels were quantified
using the ElectroChemiLuminescense Immunoassay (ECLIA)
Elecsys AD CSF portfolio on an automated Roche Diagnostics
instrument (F. Hoffman-La Roche Ltd.). The assays have measuring
ranges of 200–1,700 pg=mL (Ab42), 80–1,300 pg=mL (tTau), and
8–120 pg=mL (pTau). tTau and pTau levels were log10-transformed
for normality in linear models in the statistical analyses. We also
examined CSF biomarker ratio outcomes, namely, tTau=Ab42 and
pTau=Ab42, which are highly predictive of amyloid positivity based
on concordance with amyloid-PET, including for cognitively nor-
mal participants.25 All AD CSF biomarker outcomes were kept as
continuous variables for linear regression analyses in our main
analyses and dichotomized based on the Elecsys AD CSF portfo-
lio positive (+) cutoffs for logistic regression analyses in our
sensitivity analyses to evaluate the robustness of our main find-
ings (Ab42 ≤ 1,030 pg=mL; tTau >300 pg=mL; pTau >27 pg=mL;
tTau=Ab42 > 0:28 pg=mL; pTau=Ab42 > 0:023 pg=mL).9,26 The
cutoff values forAb42, tTau=Ab42, and pTau=Ab42 CSFwere estab-
lished and validated to demonstrate CSF biomarker concordance
with Ab PET visual read in the BioFINDER and ADNI studies,
respectively.27 Cutoff values for single Tau biomarkers, tTau and
pTau, were derived and validated in a separate study based on the
separation between mild cognitive impairment (MCI) patients with
a higher vs. lower risk of cognitive decline and optimized for identi-
fication ofADpatients vs. normal controls.28

Covariates
Sources of potential confounding were identified with a directed
acyclic graph (DAG; Figure S1). Individual-level confounders were
conceptualized as factors impacting both residential PM2:5 exposure
and the outcomemeasure. Potential confounding factors included in
the analysis were self-reported gender, age, neighborhood socioeco-
nomic status (N-SES), race/ethnicity, educational attainment, and
body mass index (BMI). Due to historic racism and discriminatory
land-use practices such as redlining, environmental exposures dis-
proportionately affect low-income and minority populations. For
this reason, neighborhood deprivation characteristics were also
included as potential confounding variables and effect modifiers as
done in our previous work.29 Race has also been noted as an impor-
tant factor when interpreting CSF biomarker results.30 In addition,
BMI influences biomarker concentrations and is also related to N-
SES through characteristics such as neighborhood walkability,
greenspace, and food access.31,32 Furthermore, we believe age and
self-reported gender can influence choice of neighborhood, which
in turnmay systematically affect air pollution exposure.

Because of the presence ofmultiancestral groups and small cate-
gories in self-reported race/ethnicity,weused a three-level race vari-
able in the analysis: White/Caucasian, Black/African American,
and Other, as well as a dichotomous ethnicity variable indicating
Hispanic origin. Similarly, educational attainment was included as a
three-level variable: master’s degree or higher, college degree, less
than a college degree. Height and weight measurements were used
to calculate BMI (weight in kilograms divided by height in square
meters), which was used as a continuous variable in all models. N-
SES for each participant was established in this study with census-
tract level American Community Survey (ACS)-defined principal

components of neighborhood deprivation (see Li et al.29 for details)
and the Area Deprivation Index (ADI). As described previously in
Li et al.,29 three principal components of neighborhood deprivation
were calculated based on estimates for 5-y ACS census tract–level
data, including 16 indicators of 6 socioeconomic domains (poverty/
income, racial composition, education, employment, occupation,
and housing properties) (Table S1; Figure S2).29 The ADI is pro-
vided in national percentile rankings at the block group level from 1
to 100, where 100 represents the most deprived neighborhood, and
was calculated using census block group–level indicators and factor
analysis to cluster indicators based on their ability to explain the var-
iance between block groups.33

Statistical Analyses
We implemented multiple linear regression models to estimate the
conditional relationship between residential PM2:5 exposure and
ADCSF biomarker levels at enrollment, including participants with
complete demographic and clinical data. In our main models, con-
tinuous biomarker concentrations (linear regression models) were
assigned as dependent variables and PM2:5 exposures alongwith the
selected covariates as independent variables (n=1,113). Because
the biomarkers had different ranges, we standardized all continuous
biomarkermeasures by converting them to z-scores prior to employ-
ing regression analysis to increase comparability of results across
different biomarkers. Z-scores were computed for each observation
by subtracting the sample mean from each individual value and sub-
sequently dividing by the sample standard deviation (SD). For ease
of comparison between estimates using different exposure time peri-
ods, we standardized the PM2:5 estimates to the 1-y PM2:5 exposure
distribution, by dividing all PM2:5 exposure estimates by the IQR of
1-y ambient or traffic-related PM2:5 exposure, respectively. The
general formof themodel for all analyses appears below:

AD CSF Biomarker Outcome= a0 + b1PM2:5 + c1Age+

c2Gender+ c3Education+ c4 Race+ c5 Hispanic ethnicity+

c6BMI + c7ADI + c8nSESPC1 + c9nSESPC2 + c10nSESPC3 + e,

where PM2:5 represents either ambient or traffic-related PM2:5
averages 1, 3, or 5 y prior to specimen collection, and e repre-
sents the random error term, with an assumed mean of zero and
constant variance ∼ n (0,r2).

Sensitivity Analyses
We conducted several sensitivity analyses to evaluate the robustness
of our findings. First, we used dichotomized AD CSF biomarker cut-
offs (± ) as dependent variables in logistic regression models instead
of the continuous biomarker measurements to estimate the associa-
tion between PM2:5 exposures and cutoff variables that are com-
monly used to evaluate AD risk. Further, we included models
estimating the relationship between residential ambient PM2:5 expo-
sures and AD CSF biomarker levels and positive cutoffs at enroll-
ment, including only individuals with traffic-related PM2:5 exposure
data (n=1,080). To account for the level of urbanicity across resi-
dences, we included models additionally controlling for the Rural
and Urban Community Area (RUCA) code, which consists of whole
number codes 1–10, to delineate metropolitan, micropolitan, small
town, and rural commuting areas based on the size and direction of
the primary (largest) commuting flows.34 Because the majority of
study participants resided within the Atlanta metropolitan area,
RUCA was incorporated as a dichotomous variable: “rural” if >1
and “urban” if equal to 1. Finally, we included models additionally
controlling for year of specimen collection to address potential con-
founding introduced by time trends of air pollution and dementia.
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Effect Modification Analyses
We tested for effect modification by several well-established risk
factors for AD, adding an interaction term between PM2:5 and each
risk factor in individual regression models. These risk factors
included whether a participant had at least one APOE-e4 allele,
family history of AD (indicated by parent or first sibling diagno-
sis), gender, age, and ADI. Despite a hypothesized additive genetic
effect of the e4 allele, statistical interaction was assessed dichoto-
mously due to the small number of homozygous e4 carriers (2.1%;
Table 1). Family history of AD (no/yes), gender (male/female),
and ADI (<50=≥ 50) were also added as dichotomous variables
whereas interaction with age was assessed continuously. Using the
models with interaction, we then tested for effect modificationwith
the interplotR package and n=100,000 simulations.

For all statistical analysis, we used R Statistical Software
(version 4.2.2; R Core Development Team) and the significance
level a=0:05.

Results

Study Population
After excluding EHBS participants with missing demographic
data (n=46), the analytic sample included 1,113 individuals
(Table 1). Participants lived primarily around the Atlanta metro-
politan area, spanning 489 census blocks in the state of Georgia
(detailed neighborhood characteristics are summarized in Table
S2). The average age of our sample participants was 61.7 y
(SD=6:73), 69.9% were females, 84.7% identified as White/
Caucasian, 10.9% identified as Black/African American, and
2.9% identified as Hispanic. The average BMI was 25:5 kg=m2

(SD=3:55). Our sample was highly educated with 86.7% having
received an associate’s degree or higher. The ADI was right

Table 1. Baseline descriptive characteristics for EHBS study participants
(≥45 y of age).

Characteristics
Overall

(n=1,113)

Traffic-related
PM2:5 subset
(n=1,080)

Age (y)
Mean (SD) 61.7 (6.73) 61.7 (6.75)
Median (min, max) 62.0 (45.0, 77.0) 62.0 (45.0, 77.0)
Gender
Female 775 (69.6%) 748 (69.3%)
Male 338 (30.4%) 332 (30.7%)
BMI (kg=m2)
Mean (SD) 25.5 (3.55) 25.5 (3.55)
Median (min, max) 25.3 (16.8, 38.4) 25.3 (16.8, 38.4)
Race
White/Caucasian 943 (84.7%) 910 (84.3%)
Black/African American 121 (10.9%) 121 (11.2%)
Asian 13 (1.2%) 13 (1.2%)
American Indian/Alaska Native,
White/Caucasian

10 (0.9%) 10 (0.9%)

American Indian/Alaska Native 7 (0.6%) 7 (0.6%)
Asian, White/Caucasian 6 (0.5%) 6 (0.6%)
American Indian/Alaska Native,
Black/African American, White/
Caucasian

4 (0.4%) 4 (0.4%)

Native Hawaiian/Other Pacific
Islander

3 (0.3%) 3 (0.3%)

Asian, Native Hawaiian/Other Pacific
Islander, White/Caucasian

2 (0.2%) 2 (0.2%)

Asian, Black/African American 1 (0.1%) 1 (0.1%)
Asian, Black/African American,
Native Hawaiian/Other Pacific
Islander, White/Caucasian

1 (0.1%) 1 (0.1%)

Asian, Native Hawaiian/Other Pacific
Islander

1 (0.1%) 1 (0.1%)

Black/African American, White/
Caucasian

1 (0.1%) 1 (0.1%)

Hispanic ethnicity
Yes 32 (2.9%) 32 (3.0%)
No 1,081 (97.1%) 1,048 (97.0%)
Education
Less than high school 1 (0.1%) 0 (0%)
High school diploma/GED 18 (1.6%) 18 (1.7%)
Some college credit, but no degree 128 (11.5%) 123 (11.4%)
Associate’s degree (e.g., AA, AS) 69 (6.2%) 68 (6.3%)
Bachelor’s degree (e.g., BA, BS) 409 (36.7%) 402 (37.2%)
Master’s degree (e.g., MA, MS,
MBA)

322 (28.9%) 309 (28.6%)

Professional or doctorate degree 166 (14.9%) 160 (14.8%)
Area Deprivation Index
Mean (SD) 29.4 (20.1) 28.8 (19.7)
Median (min, max) 25.0 (1.00, 93.0) 25.0 (1.00, 93.0)
Urbanicity
Urban 1,059 (95.1%) 1,051 (97.3%)
Rural 54 (4.9%) 29 (2.7%)
APOE-e4 allele carriership
No allele 591 (53.1%) 577 (53.4%)
1 allele 241 (21.7%) 231 (21.4%)
2 alleles 23 (2.1%) 21 (1.9%)
Missing 258 (23.2%) 251 (23.2%)
Air pollution concentration
1-y ambient PM2:5 (lg=m3)
Mean (SD) 9.52 (0.764) 9.56 (0.707)
Median (min, max) 9.52 (5.63, 13.2) 9.54 (7.38, 13.2)
IQR 0.845 0.825
3-y ambient PM2:5 (lg=m3)
Mean (SD) 9.85 (0.832) 9.90 (0.772)
Median (min, max) 9.96 (5.99, 12.0) 9.98 (7.16, 12.0)
IQR 1.10 1.07
5-y ambient PM2:5 (lg=m3)
Mean (SD) 9.96 (0.735) 10.0 (0.682)
Median (min, max) 10.1 (6.41, 12.0) 10.1 (7.60, 12.0)
IQR 0.945 0.936

Table 1. (Continued.)

Characteristics
Overall

(n=1,113)

Traffic-related
PM2:5 subset
(n=1,080)

1-y traffic PM2:5 (lg=m3)
Mean (SD) 1.15 (0.464) 1.15 (0.464)
Median (min, max) 1.10 (0.155, 5.06) 1.10 (0.155, 5.06)
IQR 0.523 0.523
Missing n (%) 33 (3.0%) —

3-y traffic PM2:5 (lg=m3)
Mean (SD) 1.26 (0.455) 1.26 (0.455)
Median (min, max) 1.23 (0.175, 5.56) 1.23 (0.175, 5.56)
IQR 0.479 0.479
Missing n (%) 33 (3.0%) —

5-y traffic PM2:5 (lg=m3)
Mean (SD) 1.25 (0.432) 1.25 (0.432)
Median (min, max) 1.21 (0.168, 5.38) 1.21 (0.168, 5.38)
IQR 0.447 0.447
Missing n (%) 33 (3.0%) —

Note: —, no data; APOE-e4, apolipoprotein E4; BMI, body mass index; EHBS, Emory
Healthy Brain Study; IQR, interquartile range; max, maximum; min, minimum; PM2:5,
fine particulate matter; SD, standard deviation.
aSelf-reported race was categorized into 13 groups, and participants were able to choose
one or more races from a five-item list: White/Caucasian, Black/African American,
Asian, American Indian/Alaska Native, Hawaiian/Other Pacific Islander. For statistical
analyses, race was grouped into three categories: White/Caucasian, Black/African
American, and Other. Ethnicity was categorized as a binary Hispanic origin variable.
bEducation was self-reported and included less than high school, high school/GED,
some college, associate’s degree, bachelor’s degree, master’s degree, and a professional
degree (e.g., PhD). For statistical analyses, education was grouped into three categories
representing educational attainment: master’s degree or higher, college degree, or less
than a college degree.
cArea Deprivation Indexwas derived from factor analysis and validated to the Census Block
Group neighborhood level with factors for the theoretical domains of income, education,
employment, and housing quality; higher scores indicate higher levels of “disadvantage.”
dUrbanicity was derived from the Rural and Urban Commuting Area (RUCA) code (1–
10) with Rural if >1 and Urban if equal to 1.

Environmental Health Perspectives 047001-4 132(4) April 2024



skewed with a median of 25, indicating half of the sample lived in
areas with 25 percentage points lower deprivation than the national
average. In addition, most of our participants lived in a major com-
muting area where 95% of residences were classified as urban.

Therewas spatial variability in ambient PM2:5 levels in our study
area, with the highest quintile of exposure (10:1–13:21lg=m3)
localized to the south of the city of Atlanta and lowest quintile of
exposure (5:63–8:98lg=m3) localized to communities north of
Atlanta, such as Marietta and Roswell (Figure 1; Table 1). Traffic-
related PM2:5 exposure levels (n=1,080) had lower concentrations
(because we only estimated the traffic-related component of PM2:5)
but higher variability with annual average exposures of 1:15lg=m3

(SD=0:46) in comparison with annual average ambient exposures
of 9:52lg=m3 (SD=0:76). Traffic-related PM2:5 estimates had a
maximum of 5:10lg=m3, and these levels were observed in the city
of Atlanta. Annual ambient and traffic-related PM2:5 exposure con-
centrations were weakly correlated (Pearson correlation= 0:36).
More details on the distribution of and relation between ambient and
traffic-related PM2:5 exposure concentrations are provided in the
supplemental material (Figures S3–S6). For context, National
Ambient Air Quality Standards (NAAQS) for PM2:5 defined by the
US Environmental Protection Agency (US EPA) include annual
averages of 12:0lg=m3.35

We observed a wide spread of concentrations for CSF Ab42 in
the study population (median Ab42 level= 1,210, IQR=692:3).
Ab42 concentrations did not show a major departure from normal-
ity, except for the highest level, which had a very high frequency,
indicating normal Ab42 concentrations in most participants, but
tTau and pTau distributions were skewed (Table 2; Figure S7–8).
After log transformation, tau concentrations were approximately
normally distributed (Table S3; Figure S9–10). Approximately
36% of participants had Ab42 concentrations less than or equal to
1,030 pg=mL, which corresponds, on average, to a positive reading
for AD as indicated by Elecsys AD CSF portfolio positive (+) cut-
offs. We observed AD positive readings for tTau and pTau cutoffs
in 6% of the study population. Based on the pTau=Ab42 ratio AD
(+) cutoff, we detected amyloid positivity in 10.6% of participants.
Details on the distributions of AD CSF biomarker concentrations
and the frequency of biomarker-positivity detected among partici-
pants are provided in Table 2.

PM2:5 and AD CSF Biomarkers
In linewith our hypothesis, higher levels of 1- and 3-y ambient PM2:5
exposures were associated with lower Ab42 CSF concentrations at

baseline after adjusting for potential confounding variables (Figure
2A). Specifically, an IQR (0:845lg=m3) increase in the 1- or 3-y am-
bient PM2:5 exposure was associated with a −0:09 (95% CI: −0:15,
−0:02) and −0:07 (95% CI: −0:13, −0:005) lower Ab42 CSF z-
score, respectively, after confounder adjustment. The associations of
5-y ambient PM2:5 (Figure 2A) and traffic-related PM2:5 (Figure 2F)
and Ab42 CSF were similar (Table S4). Inverse associations were
observed between ambient PM2:5 and tTau and pTau (Figure 2B and

Figure 1.Map of the geographic distribution of our study population and their residential PM2:5 exposure concentrations in the year prior to specimen collec-
tion. Each dot represents an EHBS participant. (A) Annual ambient residential PM2:5 (in lg=m3) exposure by quintile (n=1,113). (B) Annual traffic-related
residential PM2:5 exposure (in μg/m3) by quintile (n=1,080). Note: EHBS, Emory Healthy Brain Study; PM2:5, fine particulate matter.

Table 2. Baseline AD CSF biomarker outcomes at enrollment between 2016
and 2020 for EHBS participants.

AD CSF concentrations
and (+) cutoff

Total
(n=1,113)

Traffic-related
PM2:5 subset
(n=1,080)

Ab42 (pg/mL)
Mean (SD) 1,200 (382) 1,200 (382)
Median (min, max) 1,210 (200, 1,700) 1,210 (200, 1,700)
IQR 692.3 687.0

tTau (pg/mL)
Mean (SD) 187 (70.9) 186 (71.3)
Median (min, max) 174 (80.0, 799) 174 (80.0, 799)
IQR 79.6 79.7

pTau (pg/mL)
Mean (SD) 16.7 (7.16) 16.7 (7.19)
Median (min, max) 15.2 (8.00, 83.8) 15.2 (8.00, 83.8)
IQR 7.63 7.64

tTau=Ab42 (pg/mL)
Mean (SD) 0.171 (0.107) 0.170 (0.107)
Median (min, max) 0.141 (0.0818, 1.72) 0.141 (0.0818, 1.72)

pTau=Ab42 (pg/mL)
Mean (SD) 0.0154 (0.0116) 0.0154 (0.0116)
Median (min, max) 0.0123 (0.00692, 0.200) 0.0123 (0.00692, 0.200)

Ab42
(+) ≤1,030 pg=mL 402 (36.1%) 392 (36.3%)

tTau
(+) >300 pg=mL 68 (6.1%) 67 (6.2%)

pTau
(+) >27 pg=mL 65 (5.8%) 62 (5.7%)

tTau=Ab42
(+) >0:28 pg=mL 87 (7.8%) 82 (7.6%)

pTau=Ab42
(+) >0:023 pg=mL 118 (10.6%) 112 (10.4%)

Note: Ab42, beta-amyloid 42; AD, Alzheimer’s disease; CSF, cerebrospinal fluid;
EHBS, Emory Healthy Brain Study; IQR, interquartile range; max, maximum; min,
minimum; mL, milliliter; PET, positron emission tomography; pTau, phosphorylated
Tau; (+), positive; SD, standard deviation; tTau, total Tau.
aBiomarker measurements based on Elecsys AD CSF assays and clinically validated
cutoffs.
bRatios achieve 90% concordance with amyloid PET.
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2C), which contrasts with our hypothesis (only statistically signifi-
cant for 3-y ambient PM2:5 exposure and tTau concentrations).
However, associations with tTau and pTau were null for traffic-
related PM2:5 exposures (Figure 2G and 2H). Associations with
tTau=Ab42 and pTau=Ab42 were consistent with our hypothesis
(Figure 2I–2J) for ambient and traffic-related PM2:5 exposure.

Associations between ambient residential PM2:5 and each bio-
marker were consistent with our main models, even after restrict-
ing to participants with available traffic-related PM2:5 data (Table
S5; Figure S11A–E) and after additionally adjusting for the year
of specimen collection for each participant (Table S6; Figure S12)
or urbanicity (Table S7; Figure S13). After controlling for residen-
tial urbanicity, the negative associations between 3-y ambient
PM2:5 and tTau concentrations were no longer significant (Table
S7; Figure S13).

AD CSF Biomarker Positive Cutoff Outcomes
To evaluate the robustness of our finding, we also included bio-
marker positivity outcomes and found that higher residential am-
bient PM2:5 exposures were associated with increased prevalence
of an AD positive (+) Ab42 portfolio reading at baseline, with
associations observed for an IQR (0:845lg=m3) increase in 1-y

(OR=1:23; 95% CI: 1.07, 1.42), 3-y (OR=1:20; 95% CI: 1.04,
1.37), and 5-y (OR=1:21; 95% CI: 1.04, 1.40) average ambient
PM2:5 exposure (Table S8, Figure S14A). The associations
between traffic-related PM2:5 exposures and an AD positive (+)
Ab42 portfolio reading at enrollment were similar but weaker
(Table S8; Figure S14F) and significant for pTau/Aβ42 (3 y and
5 y average exposures; Table S8; Figure S14J). We observed null
associations between ambient (Table S8; Figure S14B–C) and
traffic-related (Table S8; Figure S14G–H) PM2:5 exposures and
AD positive (+) tTau or pTau cutoffs.

The associations between ambient PM2:5 and AD positive (+)
Ab42 portfolio reading remained, even after restricting our sam-
ple size to only those located in the Atlanta metropolitan area
(Table S9, Figure S11F–J), which is the subsample for which
traffic-related PM2:5 exposures estimates were available (sample
size reduced from nambient = 1,113 to ntraffic = 1,080).

Effect Modification by Other Common Risk Factors for AD
The association of annual average ambient PM2:5 exposure and
concentrations of Ab42 CSF was not significantly modified by
APOE-e4 carriership (p=0:59), AD family history (p=0:37),
ADI (p=0:62) or gender (p=0:67) (Table S10; Figure 3A–D).

Figure 2. Associations between residential PM2:5 exposure and AD CSF biomarker concentrations. Effect Estimate (± 95% CI) of 1, 3, and 5-y ambient (A–E)
(n=1,113) and traffic-related (F–J) (n=1,080) PM2:5 exposure on AD CSF biomarker concentrations (in pg/mL) (Ab42, tTau, pTau, tTau=Ab42, and pTau=Ab42).
All estimates are standardized and adjusted for gender, age, N-SES, race, ethnicity, educational attainment, and BMI. The dashed line indicates the significance
threshold: 0 for linear regression. Numeric data can be found in Table S4. Note: Ab42, beta-amyloid 42; AD, Alzheimer’s disease; BMI, body mass index; CI, confi-
dence interval; CSF, cerebrospinal fluid; N-SES, neighborhood socioeconomic status; PM2:5, fine particulate matter; pTau, phosphorylated Tau; tTau, total Tau.
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Similarly, the association of annual average ambient PM2:5 expo-
sure and AD positive (+) Ab42 portfolio reading was not signifi-
cantly modified by APOE-e4 carriership (p=0:80), AD family
history (p=0:27), ADI (p=0:12), or gender (p=0:72) (Table
S11; Figure S15A–D). Effect modification by age was also not
significant (p=0:17), but we observed an increasing negative
effect of PM2:5 on Ab42 CSF levels with increasing age, and we
observed statistically significant associations between PM2:5 and
Ab42 CSF levels starting around 60 y of age (Table S10; Figure
3E); a similar pattern was revealed when looking at the stratified
effects of PM2:5 on AD positive (+) Ab42 portfolio reading by
age (interaction p=0:34) (Table S11; Figure S15E).

Discussion
In the present study, we examined the impacts of both ambient
PM2:5 exposure and traffic-related PM2:5, a major source of ambi-
ent PM2:5 in urban environments, on CSF biomarkers of AD
in 1,113 cognitively healthy individuals. Our findings show asso-
ciations between long-term ambient PM2:5 concentrations and
decreased Ab42 AD CSF biomarker concentrations (significant
for 1- and 3-y average exposures), as well as increased likelihood
of an Ab42 AD (+) positive portfolio reading (significant for 1-,
3- and 5-y average exposures). Decreased Ab42 CSF reflect the
deposition of amyloid plaques in the brain, indicative of the dis-
ease phenotypes associated with AD. PM2:5 pTau=Ab42 (+)
PM2:5. We found mainly null associations between ambient or
traffic-related PM2:5 exposures and pTau or tTau continuous con-
centrations or their ratios with Ab42; however, the directions of
effect for pTau=Ab42 and tTau=Ab42 continuous ratio outcomes
were consistent with AD-related amyloid pathology. Further,
although not statistically significant, the strength of the associa-
tion between annual ambient PM2:5 exposure and Ab42 AD CSF

concentrations differed by age and was particularly pronounced
for individuals older than 60 y of age.

The observed associations between PM2:5 exposure and the
Ab42 AD CSF biomarker as well as pTau=Ab42 positive portfolio
readings, which are equally predictive of amyloid PET status (± ) as
Ab ratio outcomes,36 among cognitively healthy older adults is con-
sistent with evidence from existing literature. Signs of AD can be
detected in the early stages of the AD continuum,18 and decreases in
CSF concentrations ofAb42 (amarker of amyloidosis) and elevation
in Tau species (phosphorylated and total Tau) are well established
as pathogenic biomarkers in AD diagnosis.37 To date, there have
been few studies estimating the effects of PM2:5 exposure on certi-
fied biomarkers of AD in healthy, aging populations. One study
found a similar relationship between air pollution exposure and
Ab42, although they used a CSF Ab42=40 ratio to reflect Ab pathol-
ogy rather than the individual biomarker measurements.16 Their
estimates were similarly negative but did not reach significance,
likely owing to the relatively small sample size (n=147).16 Another
study15 found a statistically significant total effect of ambient PM2:5
on Ab42 CSF as well as pTau=Ab42 concentrations among
n=1,131 cognitively healthy older individuals, which was further
mediated by a CSF biomarker of neuroinflammation, sTREM2.15

We found null associations between 1-, 3-, and 5-y average
traffic-related PM2:5 exposures and tTau as well as pTau concentra-
tions at enrollment. Unexpectedly, however, associations between
ambient PM2:5 and tTau as well as pTau concentrations were neg-
ative, corresponding to less AD-related neurofibrillary tangle
formation and neuronal damage with higher ambient PM2:5 expo-
sure. The negative associations between ambient PM2:5 and Tau
biomarkers diminished when taking AD CSF cutoffs or urbanic-
ity into account, suggesting that the negative association with the
continuous tTau levels was potentially a false positive finding.
Other studies examining the associations between air pollution

Figure 3. Effect modification by other common risk factors for AD. Effect ( ± 95% CI) of yearly ambient PM2:5 exposure on Ab42 CSF concentrations (in pg/
mL) by (A) APOE-e4 allele carriership, (B) AD family history, (C) ADI, (D) gender, and (E) age. Presented as overall and stratified effects for dichotomous
variables and as continuous for age, with interaction p-values depicted on each graph. The dashed line indicates the significance threshold: 0 for linear regres-
sion. The overall effect in Figure 3A (n=855) differs slightly from Figure 3B–D (n=1,113) due to the decreased sample size after including only participants
with APOE genotype data. Numeric data can be found in Table S10. Note: Ab42, beta-amyloid 42; ADI, Area Deprivation Index APOE-e4, apolipoprotein E4;
CI, confidence interval; CSF, cerebrospinal fluid; PM2:5, fine particulate matter with aerodynamic diameter ≤2:5 lm.
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and CSF biomarkers of AD in cognitively healthy adults also
found null associations between PM2:5 and pTau as well as tTau
CSF concentrations.15,16

Stronger associations were detected between ambient PM2:5
and AD CSF biomarkers in comparison with traffic-related PM2:5
exposure. Ambient PM2:5 contains emissions from traffic, industry,
domestic fuel burning, and natural sources including soil dust and
sea salt, as well as unspecific sources of human origin.38 On the
other hand, traffic-related PM2:5 is a source of ambient PM2:5 that
includes emissions of organic and inorganic gaseous PM precur-
sors from the combustion of fuels and lubricants.38 Because both
sources contain organic and often toxic particles, we expected to
see relationships between both sources of PM2:5 and AD CSF bio-
markers, and the associations between traffic-related PM2:5 and
AD CSF biomarkers were similar to associations with ambient
PM2:5. In this study, the spatial resolution for the traffic exposure
assessment was 200-250 m, which may be too coarse to capture
the rapid decay of many primary pollutants from traffic. Primary
traffic-related air pollutants, including primary PM2:5 from traffic,
generally decrease to background levels within 150 m of road-
ways.39 As such, our traffic exposure assessmentmay not fully cap-
ture differences in primary traffic-related PM2:5 exposures among
participants. Given that exposure misclassification can bias effect
estimates toward the null, this could explain the inconsistency of
effect between models with traffic-related vs. ambient PM2:5 expo-
sure. In addition, more research needs to be done to determine
which PM2:5 mixtures are particularly harmful to the central nerv-
ous system.

Although we did not find effect modifications by APOE-e4
carriership or other common risk factors for AD, the association
between ambient PM2:5 exposure and Ab42 CSF became stronger
with increasing age. These results could suggest that AD CSF
biomarkers might not be sensitive enough to detect AD-related
changes in participants <60 y of age, but more research in the
population will clarify the most clinically relevant age for bio-
marker measurement. Previous research suggests that biomarker
patterns of Ab42 consistent with stage 1 AD (amyloid pathology
only) are first detectable during early middle age (45–54 y of
age), whereas increases in tTau and pTau are typically not appa-
rent until later (≥55 y of age).40 However, this previous study
used an unstandardized assay, the INNOTEST ELISA, which of-
ten yields systematic variability in comparison with the Elecsys
assay. Another potential explanation for the stronger associations
among participants older than 60 y of age could be the higher ac-
cumulative PM2:5 exposure over the lifetime among older indi-
viduals. In line with this hypothesis, one study examining the
relationship between PM2:5 exposure and AD prevalence found a
stronger effect of PM2:5 on AD prevalence among those at or
above 70 y of age.3 Similarly, the lack of a positive relationship
between ambient PM2:5 exposure and Tau biomarker concentra-
tions could be explained by our study population’s relatively
young age in comparison with when AD-related Tau pathology
begins to manifest, suggesting that AD-related Tau pathology is not
detectable with AD CSF biomarkers until late age (e.g., >75 y). In
support, Elecsys AD CSF portfolio cutoffs only classified 6% of
study participants as AD positive (+) based on pTau and tTau con-
centrations, whereas >35% of participants were AD positive (+),
based on Ab42 levels.

There are several strengths to be noted, such as the exposure
assessment, which included two sources of PM2:5, ambient and
traffic-related, which were estimated at a high spatial resolution
of up to 200 m; our outcome assessment, which relied on a rec-
ommended assay for AD CSF biomarker measurement17 and for
which we observed consistent associations using continuous bio-
marker concentrations as well as AD positivity cutoffs; our

inclusion of several well-known confounders and methods to
reduce confounding by neighborhood-level characteristics; and
our relatively large sample size (n=1,113) of CSF measurements
from cognitively healthy older adults free of chronic illness. The
level of depth in our outcome assessment, underscored by the
inclusion of a substantial sample size with CSF measurements, a
highly invasive and challenging-to-obtain biological fluid, pro-
vides a rare and valuable opportunity to understand potential
associations between fine PM and neurological biomarkers of
AD. The use of Elecsys AD CSF biomarkers not only presents
several notable strengths in AD diagnosis and research but also
offers the potential for early detection of AD pathology, enabling
interventions at earlier stages of the disease. Their specificity in
targeting AD-associated proteins ensures a focused and disease-
specific diagnostic approach. In addition, Elecsys AD CSF bio-
markers play a crucial role in advancing AD research by provid-
ing objective and quantitative measurements, facilitating a deeper
understanding of disease mechanisms and aiding in the evalua-
tion of treatment efficacy in clinical trials. However, collecting
CSF poses a challenge, because it is an invasive procedure with
associated risks and potential patient reluctance, but the EHBS
has enabled the analysis of AD CSF biomarker data from more
than 1,000 healthy aging adults, highlighting the novelty of this
study.

In addition to its strengths, our study has several limitations.
Given that AD progresses over the course of several years or deca-
des, we evaluated the associations with 3- and 5-y average PM2:5
concentrations prior to enrollment in addition to the 1-y averages.
It is expected to see long-term/cumulative exposures, e.g., up to a
decade or lifetime exposures, to have a stronger effect than shorter
periods of high exposure concentrations. However, given that ex-
posure was assigned based on the baseline residence, we were not
able to investigate longer exposure windows. Therefore, our
study might not cover the most relevant exposure window for AD
risk. Furthermore, some participants could have relocated in the
years prior to the study, and therefore, the 3- and 5-y estimates
may be affected by exposure misclassification due to the intro-
duction of measurement error. Such exposure misclassification is
a potential explanation for the weaker associations between the
3- and 5-y PM2:5 exposures and Ab42 CSF concentrations in com-
parison with the 1-y exposure concentrations. Furthermore, the
lagged exposures used in this study (3- and 5-y) may not evaluate
the proper windows in relation to the biomarker outcomes, mean-
ing the choice of time window did not capture the temporal rela-
tionship between the PM2:5 exposure and AD CSF biomarkers.
Our study only used cross-sectional CSF measurements; longitudi-
nal repeated measures analyses may provide a better understanding
of the long-term effect of air pollution onCSF biomarker trajectories
of AD. Further, our sample was not representative of the Atlanta
metropolitan area, the target population, because it was mainly high
SES andWhite, which limits both the generalizability and transport-
ability of our estimates. Finally, althoughwe looked at two different
sources of PM2:5, we did not examine the relationship between AD
pathology and specific components of PM2:5. Future studies should
consider the components of PM2:5 because they are dynamic
between ambient and traffic-related sources with different toxicity41

and could reveal important and undiscovered relationships between
exposure and disease pathogenesis.

In conclusion, our results suggest that, even at levels below
current primary and secondary standards defined by the US EPA
for PM2:5, exposure to ambient and traffic-related PM2:5 increases
the risk of future AD development. In addition, our results add to
the growing body of evidence that suggests that air pollution
directly contributes to neurodegeneration by accelerating Ab42
accumulation in the brain.2,42
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