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Abstract [No more than 150 words please] 40 

Anthropogenic climate change threatens ecosystem functioning.  Soil biodiversity  is essential 41 

for maintaining the health of terrestrial systems, but how climate change affects the richness 42 

and abundance of soil microbial communities remains unresolved. We examined the effects 43 

of warming, altered precipitation and annual biomass removal on grassland soil bacterial, 44 

fungal and protistan communities over 7  years to determine how these representative 45 

climate changes impact microbial biodiversity and ecosystem functioning. We show that 46 

experimental warming and the concomitant reductions in soil moisture played the 47 

predominant role in shaping microbial biodiversity by decreasing the richness of bacteria 48 

(9.6%), fungi (14.5%), and protists (7.5%). Our results also show positive associations 49 

between microbial biodiversity and ecosystem functional processes such as gross primary 50 

productivity and microbial biomass. We conclude that  the detrimental effects of biodiversity 51 

loss might be more severe in a warmer world.  52 

 53 

MAIN 54 

Biodiversity, the variety of genes, species, and ecosystems which constitute life on our planet1, is 55 

dramatically affected by human alterations of global environment2. Biodiversity underscores 56 

healthy ecosystem functions and assures the production of essential goods, services, and benefits 57 

to society, such as climate regulation, landscape stability, fibers, and food production1. However, 58 

such benefits are threatened by the unprecedented biodiversity loss3,4 caused by anthropogenic 59 

global environmental changes like climate warming, altered precipitation patterns, and land use 60 

changes5. Studies demonstrate that biodiversity loss impairs the functioning of natural ecosystems 61 
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and diminishes the number and quality of services they provide6. Thus, it is imperative to 62 

understand how global environmental change affects biodiversity and the underlying mechanisms7.  63 

 64 

Anthropogenic climate changes are the greatest threats to biodiversity from local to global scales5,6. 65 

The effects of climate change on biodiversity include shifts in species’ geographical ranges4, 66 

extinction8-10, changes in abundance within species ranges11, loss of phylogenetic community 67 

diversity12, and increased genetic mutation and selection13. In contrast to plants and animals, our 68 

understanding of the climate change effects on microbial biodiversity are poorly understood. 69 

Previous studies demonstrated the effects of climate warming on soil microbial communities in 70 

terms of respiratory feedback responses14,15, decomposition16, microbial biomass17, community 71 

composition14,15,18,19, community succession18, temporal scaling19, and network complexity and 72 

stability20. However, there is a paucity of information on the effects of warming on below-ground 73 

microbial biodiversity (i.e., alpha diversity) due to the lack of well-replicated, long-term time-74 

series observations under realistic field settings that is necessary to discern clear warming impacts. 75 

Therefore, despite a longstanding interest in this topic, whether and how climate warming would 76 

result in net soil microbial biodiversity gain or loss, and their underlying mechanisms remain 77 

unresolved. 78 

 79 

Because different species differ greatly in their temperature-dependent metabolic rates, rising 80 

temperature would have dramatic effects on resource consumption, growth, reproduction and 81 

interactions between species (e.g., competition, predation, parasitism, and symbiosis)9. On one 82 

hand, certain species with higher fitness at elevated temperature are likely to have a competitive 83 

advantage over other species that are less fit21. Consequently, warming could trigger extinction 84 
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events at local scales and drive biodiversity loss, which may further cause extinction of other 85 

species through coextinction cascades8. Similarly, warming and associated environmental changes 86 

like decreased moisture would act as strong filtering factors against existing microbial species, 87 

which could also cause biodiversity loss. On the other hand, in general, warming promotes plant 88 

productivity14,15. Such potentially higher plant diversity and/or quantity of resources could support 89 

more microbial species by providing more niches with more ways that species can coexist21, and 90 

result in biodiversity gain. In addition, the effects of these factors could be intertwined, resulting 91 

in no change in biodiversity. 92 

 93 

 94 

To determine whether and how climate warming affects soil biodiversity, we examined the 95 

taxonomic and phylogenetic diversity (PD) of grassland soil bacteria, fungi and protists in a 96 

multifactor global change experiment19 over seven consecutive years from 2009 to 2016, which 97 

has warming (+3 oC), altered precipitation levels, i.e., -50% (half precipitation) and +100% (double 98 

precipitation) of ambient precipitation, as primary factors and clipping (annual removal of above-99 

ground biomass to simulate the land-use practice of mowing for hay22 or bioenergy23) as a 100 

secondary factor. We address the following major questions: whether and how experimental 101 

warming, altered precipitation, and clipping affect soil microbial biodiversity over time; whether 102 

such effects vary among different microbial lineages; and what are their underlying mechanisms. 103 

We hypothesize that warming would reduce the biodiversity of soil bacteria, fungi, and protists 104 

via alternation of both environmental filtering and biotic interactions.  105 

 106 

RESULTS 107 
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Effects of climate change factors on soil and plant variables  108 

Linear mixed-effects models for determining the sources of variations in hierarchical biological 109 

data were first employed to test the effects of treatments and their interactions on soil 110 

biogeochemistry and plant communities, in which the regression coefficients represent the 111 

directions and magnitudes of the treatment effects, namely effect sizes (β). By comparing the β 112 

values, our results revealed that experimental warming, compared to altered precipitation levels 113 

and clipping (Fig. 1a,  Extended Data Fig. 1), had predominant effects on soil microclimate by 114 

increasing temperature, but decreasing moisture (Extended Data Fig. 2a, b; Supplementary note 115 

A), and on geochemistry (e.g., decreasing soil pH, increasing NO3
-) (Extended Data Fig. 2c, d; 116 

Supplementary note A). For example, on average, warming decreased soil moisture by 1.5% 117 

(absolute) (β = -1.5, p < 0.0001; Extended Data Fig. 2b). In comparison, half precipitation only 118 

decreased soil moisture by 0.35% while double precipitation increased soil moisture by 0.7% (β = 119 

0.7, p < 0.0001; Extended Data Fig. 2b). As expected, clipping had significant negative effect on 120 

plant biomass, but positive on plant richness (Extended Data Fig. 2f, g; Supplementary note A).  121 

 122 

Impacts of warming on microbial biodiversity 123 

It is expected that the alterations in soil microclimate, geochemistry and plant communities would 124 

lead to changes in soil microbial biodiversity. Here we define biodiversity21 as taxonomic (i.e., 125 

species richness and their relative abundance), and phylogenetic19 diversity in a local community. 126 

To test this prediction, all samples were analyzed for bacteria (56,182±27,613 reads per sample), 127 

fungi (23,569 ± 16,323 reads per sample), and protists (11,146 ± 10,528 reads per sample) 128 

(Extended Data Fig. 3 and S4). Linear mixed-effects models revealed that warming had strong 129 

negative effects (β = -0.84 ~ -0.11, p < 0.007) on richness and other taxonomic diversity indices, 130 
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and Faith’s phylogenetic diversity (Fig. 1b-f; Table S1; Supplementary note B1). In general, 131 

although precipitation alteration or clipping could exert significant effects on richness (for example, 132 

precipitation alteration on bacterial richness; Fig. 1b), the effect sizes of warming on richness were 133 

3 ~ 41 times larger than those of other treatments (Fig. 1b; Table S1; Supplementary note B1). In 134 

addition, the effects of treatment interactions were rarely significant except for the positive 135 

interactive effects of warming and clipping on fungal and protistan diversity (β = 0.08 ~ 0.91, p < 136 

0.05) (Table S1), indicating that the warming effect was largely independent of altered 137 

precipitation and clipping. Collectively, these results suggest that the diversity of soil bacteria, 138 

fungi, and protists is predominantly shaped by experimental warming. A possible explanation is 139 

that the changes of microbial biodiversity are mainly driven by soil microclimate and geochemistry 140 

such as soil temperature, moisture, and pH24-26. As shown above, experimental warming had larger 141 

effects on these variables as compared to the effects of the half/double precipitation and clipping 142 

treatments. Therefore, we will primarily focus warming-induced treatment effects in subsequent 143 

sections.  144 

 145 

Overall, warming significantly reduced bacterial richness by 9.6% (β = -0.83, p < 0.0001), fungal 146 

richness by 14.5% (β = -0.84, p < 0.0001) and protistan richness by 7.5% (β = -0.99, p < 0.0001). 147 

Such negative effects varied yearly with significant impacts on bacteria (β = -1.72 ~ -0.68, p < 148 

0.05) after 2011, and fungi (β = -2.15 ~ -0.36, p < 0.05) after 2013, and protists in 2011, 2013 and 149 

2014 (β = -1.44 ~ -0.60, p < 0.05) (Extended Data Fig. 5, Supplementary note B2). Rarefaction 150 

analyses indicated that the observed richness for bacteria, fungi, and protists were always lower 151 

under warming than non-warming control except warming & double precipitation & clipping 152 

(WDC) versus double precipitation & clipping (DC) for fungi and warming & clipping (WC) 153 
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versus clipping (C) for protists (Paired t test, p <0.0001, Extended Data Fig. 4). Warming also 154 

significantly decreased the phylogenetic diversity of bacteria by 7.2% (β = -0.49, p < 0.0001), 155 

fungi by 9.3% (β = -0.47, p = 0.002), and protists by 4.5% (β = -0.80, p = 0.003) based on Faith’s 156 

PD, the phylogenetic analogue of taxon richness (Fig. 1f, Table S1). In addition, consistent to 157 

warming-induced biodiversity decrease, warming significantly reduced microbial biomass as 158 

determined by phospholipid fatty acid analysis (PLFA) (β = -0.83, p = 0.046), and DNA yields (β 159 

= - 0.72, p = 0.002; Fig. 1g and Table S2; Supplementary note B1). Collectively, all of these results 160 

indicate that experimental warming significantly reduced microbial biodiversity.  161 

 162 

The negative warming effects on microbial biodiversity varied considerably among different 163 

microbial lineages. Warming significantly decreased the richness of most microbial phyla (Fig. 164 

2a), as well as their phylogenetic diversity (Extended Data Fig. 6a; Supplementary note C1). 165 

Warming had the largest negative effects on the richness of Acidobacteria, Verrucomicrobia, and 166 

Planctomycetes (β = -1.21 to -1.19, p < 0. 01), but had a significant positive effect on the richness 167 

of Firmicutes (β = 1.52, p < 0. 01; Fig. 2a). Similar to species richness, warming significantly 168 

decreased the relative abundance of Acidobacteria, Verrucomicrobia and Planctomycetes (β = -169 

0.88 ~ -0.84, p < 0. 01). In contrast, warming increased the relative abundance of Actinobacteria, 170 

Firmicutes and Gemmatimonadetes (β = 0.52 ~ 1.05, p < 0.05; Extended Data Fig. 6b), which 171 

could be due to their preference for drier soils27-29. Notably, the increase of Firmicutes and 172 

Actinobacteria may be in part due to their spore-forming ability30, which makes them resistant to 173 

desiccation stress. In support of this, we examined the characteristics of spore-forming bacteria in 174 

more detail. Almost all the families of Firmicutes and Actinobacteria that were increased under 175 

warming are known spore-formers30 (Extended Data Fig. 7a, b). In addition, the relative 176 
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abundances of the major sporulation genes in Firmicutes (spo0A) and Actinobacteria (bldD), as 177 

identified from shotgun sequencing metagenome data, also significantly or marginally 178 

significantly increased under warming (p < 0.0001 for bldD; p = 0.08 for spo0A; Extended Data 179 

Fig. 7c). Similar patterns were also observed at individual ASV (amplicon sequence variant) level 180 

(Fig. 2b). For instance, most taxa in Verrucomicrobia (78.5% of ASVs of Verrucomicrobia, 91.8% 181 

of relative abundance) decreased under warming, while most taxa in Firmicutes (88.0% of ASVs, 182 

98.9% of relative abundance) increased (Fig. 2b; Supplementary note C2). In addition, warming 183 

effects varied among different fungal guilds as classified by FUNGuild31. Warming reduced the 184 

richness, phylogenetic diversity, and abundance of arbuscular mycorrhiza fungi (AMF) (β = -1.05 185 

~ -0.42, p < 0.01; Fig. 2a; Extended Data Fig. 6a, b; Supplementary note D1), which are beneficial 186 

microorganisms capable of forming mutualistic symbiosis with plants. The negative warming 187 

effect on AMF abundance was also supported by AMF biomass decreases as determined by PLFA 188 

(β = -0.54, p = 0.013; Fig. 1g). Interestingly, although warming decreased the richness of putative 189 

plant pathogenic fungi (Fig. 2a), it marginally increased their relative abundance (β = 0.43, p = 190 

0.055; Extended Data Fig. 6b), which could have negative effects on plant growth. Moreover, 191 

warming significantly reduced the richness, phylogenetic diversity and abundance of Cerozoa and 192 

Ochrophyta (β = -1.07 ~ -0.20, p < 0.002) but increased the richness and phylogenetic diversity of 193 

Conosa (β = 0.05 ~ 0.12, p < 0.02) (Fig. 2a; Extended Data Fig. 6a, b; Supplementary note C1). 194 

Similarly, warming significantly decreased the richness and phylogenetic diversity of various 195 

functional groups of protists (i.e., consumers, phototrophs, and parasites) (β = -0.98 ~ -0.39, p < 196 

0.04). Warming also reduced the relative abundance of phototrophic protists (β = - 0.17, p = 0.01) 197 

(Fig. 2a; Extended Data Fig. 6a, b). These results suggest that warming has differential impacts on 198 

various microbial lineages and/or functional guilds, which are consistent with our previous 199 
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observations that warming effects vary greatly among different microbial functional groups15. 200 

Warming-induced diversity decrease on most microbial categories could have significant impacts 201 

on ecosystem functioning, as suggested by previous reports in macroecology3,4,6 and microbial 202 

ecology32. Particularly, since warming decreased beneficial taxa such as AMF, the aboveground 203 

plant community could be negatively impacted. 204 

 205 

Mechanisms underlying reduced microbial biodiversity  206 

As we posited earlier, warming-induced biodiversity decrease could be due to changes in biotic 207 

interactions and abiotic environmental conditions caused by warming. Under warmer conditions, 208 

many microbes with adaptive traits (e.g., Firmicutes and Actinobacteria with spore-forming ability) 209 

would survive and outcompete other microbes (e.g., Acidobacteria, Verrucomicrobia, and 210 

Planctomycetes) (Fig. 2a, b). Consequently, species coexistence patterns would be substantially 211 

altered, as revealed by a network analysis showing that the occurrence network was more complex 212 

under warming than non-warming control20. The increased positive connections may indicate more 213 

microbial cooperations33, which could be important for their survival under warming. Also there 214 

were more negative connections under warming than control20, suggesting there might be more 215 

intense competition under warming. Eventually, the warming-induced changes in microbial 216 

activities and interactions could trigger various extinction events and ultimate biodiversity 217 

decrease due to cascading effects8. Alternatively, warming could just act as a deterministic filtering 218 

factor to impose significant positive selection on spore-forming microorganisms (e.g., 219 

Bacillaceae_2) and/or negative selection on nonspore-forming microorganisms (e.g. 220 

Acidothermaceae), which is consistent with the observation that warming enhanced homogeneous 221 

selection on Bacillales in Firmicutes34. All of these results suggest that both biotic interactions and 222 
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environmental filtering could play important roles in mediating warming-induced biodiversity 223 

decrease.  224 

 225 

It is anticipated that soil environmental conditions should also play important roles in driving 226 

microbial biodiversity decrease. As shown in Fig. 3a, bacterial, fungal, and protistan richness were 227 

highly correlated with soil moisture, temperature and NO3
--N content (LMM’s r = -0.25 ~ 0.24, p 228 

< 0.01). Bacterial richness also showed significant correlations with plant richness and biomass 229 

(LMM’s r = 0.11 ~ 0.19, p < 0.05; Supplementary note D1). However, obvious collinearity among 230 

these variables also occurred (Fig. 3a) (Supplementary note D1). Thus, to further disentangle the 231 

direct and indirect effects of the environmental drivers on microbial biodiversity, structural 232 

equation modeling (SEM) analyses were performed with the presumed relationships (Extended 233 

Data Fig. 8) among the selected subsets of plant and soil variables which were least-correlated (see 234 

Methods for details of model selection). Soil moisture, which was negatively affected by warming 235 

(standardized path coefficient, b = - 0.69) and half precipitation (b = -0.16), but positively by 236 

double precipitation (b = 0.45), played the strongest role in shaping bacterial richness directly (b 237 

= 0.43, p = 0.001; Fig. 3b; Supplementary note D2). Soil pH, plant richness and the biomass of C3 238 

plants were also significantly and positively (b = 0.23-0.31, p < 0.02) correlated to bacterial 239 

richness. Furthermore, bacterial richness directly and positively affected protistan richness (b = 240 

0.69, p < 0.001). In comparison, among the variables which directly contribute to fungal richness, 241 

only paths of soil moisture (b = 0.44, p = 0.001) and plant richness (b = 0.26, p = 0.015) were 242 

significant (Extended Data Fig. 9), suggesting that the environmental drivers appear different 243 

between bacteria and fungi. Overall, those variables can explain 61%, 51%, and 50% of the 244 

variations in bacterial, fungal and protistan richness (Fig. 3b, Extended Data Fig. 9), respectively. 245 
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In addition, SEM analysis revealed that warming played predominant roles in shaping microbial 246 

diversity (standardized total coefficient = -0.61 for bacteria, -0.56 for fungi and -0.51 for protists, 247 

Fig. 3c) as compared to precipitation or clipping treatments (standardized total coefficients = -0.05 248 

~ 0.31, Fig. 3c), which was consistent with linear mixed-effects model analysis (Fig. 1a). These 249 

results indicate that soil and plant variables, particularly soil moisture, are also important in 250 

mediating warming-induced soil microbial diversity decrease directly and indirectly. Since the 251 

SEMs could explain over half of the variations in microbial diversity, the environmental filtering 252 

effects, especially the induced desiccation stress, could be the main driver for microbial diversity 253 

decrease via affecting microbial activities and interactions. 254 

 255 

Links between microbial biodiversity and ecosystem functions  256 

A following important question is whether the warming-induced changes in microbial diversity 257 

affects ecosystem functional processes. Consistent with the reduced microbial biodiversity, 258 

warming also decreased the ecosystem functions of total microbial biomass, bacterial biomass, 259 

GPP, and ER (β = -0.17 ~ -0.84, Extended Data Fig. 10). In agreement with various reports in 260 

macroecology6, the  overall bacterial richness had significant positive correlations with total 261 

microbial biomass, bacterial biomass, gross primary productivity (GPP), and ecosystem 262 

respiration (ER) (r = 0.14 ~ 0.22, p < 0.002) (Fig. 3d; Supplementary note E). Similar positive 263 

correlation patterns were also observed for most bacterial groups (e.g., Proteobacteria, 264 

Bacteroidetes, Planctomycetes) (Fig. 3d; Supplementary note E) except for Firmicutes, which 265 

showed significant negative correlations with total microbial biomass, bacterial and fungal 266 

biomass, and ER (r = -0.26 ~ -0.10, p < 0.04). In addition, the overall richness of fungi and most 267 

fungal phyla/guilds showed significant positive correlations with GPP and ER (Fig. 3d; 268 
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Supplementary note E). The overall protistan richness, major protistan lineages and functional 269 

groups also had significant positive correlations with total microbial biomass, bacterial biomass, 270 

GPP and ER (r = 0.08 ~ 0.22, p < 0.04) (Fig. 3d; Supplementary note E). All of these results 271 

indicate that there are significant positive linkages between microbial community diversity and 272 

relevant ecosystem functional processes.  273 

 274 

DISCUSSION 275 

 276 

Understanding how climate change affects microbes and the underlying mechanisms is a critical 277 

issue in climate change and microbiology research35. By examining the dynamic changes of soil 278 

microbial biodiversity in a well replicated long-term climate change experiment, this study 279 

provides explicit evidence that climate warming consistently reduced the taxonomic and 280 

phylogenetic diversity of soil bacteria, fungi, and protists across different years. In addition, by 281 

examining the interactive effects of warming, precipitation level, and clipping on microbial 282 

diversity, this is also the first study to demonstrate that warming plays a predominant role in 283 

driving soil biodiversity decrease via altering biotic interactions and soil biogeochemical 284 

conditions, particularly soil moisture, which is in agreement with the fact that warming had 285 

prevalent effects on accelerating the temporal scaling rates of soil microbial biodiversity19. Finally, 286 

warming-induced diversity decrease could have significant impacts on ecosystem functioning, 287 

which augments previous reports in macroecology3,4,6. 288 

 289 

Our findings have important implications for predicting ecological consequences of climate 290 

change and for ecosystem management. Because warming as a deterministic filtering factor drives 291 
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microbial biodiversity decrease18, the  ecosystems under future climate change scenarios would be 292 

less diverse. Along with faster biodiversity turnover rates as previously demonstrated19, it is 293 

expected that the linked ecosystem functions and services could become more vulnerable in a 294 

warmer world6. Particularly, since warming has differential effects on different microbial lineages, 295 

such as decrease of beneficial taxa (e.g., AMF), the detrimental effects of biodiversity loss on 296 

future ecosystem functioning could be more severe. In addition, since warming-effects on 297 

biodiversity is primarily via reduced moisture, it is expected that warming-induced biodiversity 298 

decrease could be more severe in drylands (i.e., arid, semi-arid, and dry-subhumid ecosystems), 299 

covering 41% of Earth’s land36, as compared to wet regions. The future warming-induced 300 

precipitation changes could also be important in mediating warming-induced biodiversity decrease. 301 

However, further research is necessary to determine whether the warming-induced biodiversity 302 

decrease and associated mechanisms are applicable to other ecosystems. 303 

 304 

Methods 305 

Study site and sampling 306 

We conducted the warming experiment at the Kessler Atmospheric and Ecological Field Station 307 

(KAEFS) in the US Great Plains in McClain County, Oklahoma (34̊ 59ʹ N, 97̊ 31ʹ W)18-20,22. The 308 

acting director of the site is Meghan Bomgraars (mbomgaars@ou.edu). Detailed site description 309 

can be found in the Supplementary note F. In brief, KAEFS is an old-field tall-grass prairie with 310 

dominant plants of C3 forbs (Ambrosia trifida, Solanum carolinense and Euphorbia dentate) and 311 

C4 grasses (Sorghum halepense and Tridens flavus)22. Based on Oklahoma Climatological Survey 312 

data from 1948 to 1999, the air temperature ranges from 3.3 °C in January to 28.1 °C in July with 313 

mean annual temperature 16.3 °C, and the precipitation ranges from 82 mm in January and 314 
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February to 240 mm in May and June with mean annual precipitation 914 mm15. The soil type of 315 

this site is Port–Pulaski–Keokuk complex, and soil texture class is loam with 51% of sand, 35% 316 

of silt and 13% of clay37.  317 

 318 

The field site experiment was established on July in 2009 with a blocked split-plot design 319 

(Extended Data Fig. 1), in which warming (continuous heating at a target of +3 °C above ambient 320 

temperature) and precipitation alteration (targets of −50% and +100% ambient precipitation) were 321 

primary factors nested with clipping (annual removal of aboveground biomass in peak growth 322 

season) as the secondary factor18-20. The clipping treatment was used to mimic the land-use practice 323 

of hay harvest, which is widely practiced in the southern Great Plains of the US22, and biomass 324 

harvest for bioenergy23. In brief, the site has four experimental blocks, each including six plots. 325 

Each plot has the size of 2.5 × 3.5 m2, which was further divided into one 2.5 × 1.75 m2 clipped 326 

subplot and one 2.5 × 1.75 m2 unclipped subplot, resulting in a total of 48 subplots (Extended Data 327 

Fig. 1).  328 

 329 

From 2009 to 2016, surface (0–15 cm) soil samples were collected annually from subplots one day 330 

before annual clipping. Each sample was mixed from three soil cores (2.5 cm diameter × 15 cm 331 

depth) from a soil sampler tube. In the first year (2009), we collected 24 pre-warmed soil samples 332 

from the southern subplots. As for the following years, a total of 48 annual soil samples were 333 

collected from all subplots in each year. A total of 360 annual soil samples from 2009 to 2016 334 

were collected in this study and stored in a freezer at −80 °C.  335 

 336 

Field measurements and soil chemical analyses 337 
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Soil temperature was measured every 15 min at depth of 7.5, 20, 45 and 75 cm in the center of 338 

each plot using constantan-copper thermocouples wired to a Campbell Scientific CR10x data 339 

logger (Campbell Scientific)18-20. Annual average values of temperature at depth 7.5 cm were used 340 

to represent soil temperature across experimental years. Volumetric soil water content (%V) was 341 

measured using a portable time domain reflectometer (Soil Moisture Equipment Corp.) once or 342 

twice a month, and annual average values were used to represent soil moisture18-20. Ecosystem 343 

carbon (C) fluxes, including ecosystem respiration (ER), net ecosystem exchange (NEE), soil total 344 

respiration (Rs) and heterotrophic respiration (Rh) were measured once or twice a month between 345 

10:00 and 15:00 (local time)18-20. The gross primary productivity (GPP) was then estimated as the 346 

difference between net ecosystem exchange and ecosystem respiration. 347 

 348 

Above-ground plant community surveys were conducted at peak biomass (usually September) 349 

each year. All species within each plot were identified to estimate species richness. From 2009 to 350 

2015, the above-ground plant biomass, separated into C3 and C4 species, were estimated by a 351 

modified pin-touch method, as described by Sherry et al38. Since 2016, thorough plant survey was 352 

conducted, and linear regression models were used to estimate above-ground biomass based on 353 

plant height and abundance39. Every individual plant was surveyed in the whole plot, with their 354 

species identity and height recorded. For each species, we also measured the height across different 355 

individuals off‐plot, after which we harvested, dried, and weighed the vegetation for which we had 356 

recorded. We then constructed regression relationships between plant height and dry weight 357 

biomass for each species. The regression model for one species, Pseudognaphalium obtusifolium 358 

was insignificant (R2=0.07, p = 0.48), and we used the mean biomass across individuals collected 359 

off-plot as the biomass estimate for its individual in the plot. The average adjusted R2 for all other 360 
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regression models was 0.76 and the average p value was 0.0056. The total above-ground biomass 361 

was then calculated as the sum of estimated biomass for every individual. 362 

 363 

Visible stones and plant roots were removed from the soil by metal forceps before chemical and 364 

microbial analyses. The chemical properties of all soil samples were analyzed in the Soil, Water, 365 

and Forage Analytical Laboratory at Oklahoma State University (Stillwater, OK, USA). Briefly, 366 

the total C and total nitrogen (N) contents were determined using a dry combustion C and N 367 

analyzer (LECO). Soil nitrate (NO3
−) and ammonia (NH4

+) were analyzed using a Lachat 8000 368 

flow-injection analyzer (Lachat). Soil pH was determined using a pH meter with a calibrated 369 

combined glass electrode at a water-to-soil mass ratio of 2.5:140. 370 

 371 

Soil phospholipid fatty acids (PLFA)  372 

Lipids were extracted from the soil samples based on the modified Bligh-Dyer method as described 373 

by Buyer and Sasser41. In brief, soil samples were freeze-dried and sifted to remove any rocks or 374 

large debris. 2 g of each freeze-dried soil sample was then incubated in a 2:1:0.8 solution of 375 

methanol, chloroform, and K2HPO4 buffer. The chloroform phases were collected and the 376 

phospholipids were separated from neutral lipids and glycolipids through silicic acid 377 

chromatography, subsequently saponified and methylated to fatty-acid methyl esters. The resulting 378 

fatty acid methyl esters were separated and identified using gas chromatography (Agilent 6890N, 379 

Wilmington, DE). The peak responses were translated into molar responses using an internal 380 

standard, and were fitted with a MIDI Sherlock microbial identification system (Version 4.5, MIDI, 381 

Newark, NJ). Further, the peak responses were assigned to microbial groups including gram-382 

negative bacteria, gram-positive bacteria, Actinobacteria, anaerobic bacteria, common fungi, and 383 
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arbuscular mycorrhizal fungi (AMF) using the Agilent Chemstation software (Agilent 384 

Technologies). The total bacterial biomass of the soils was calculated as the total PLFA of all 385 

bacterial groups, i.e., the sum of the biomass of gram-negative bacteria, gram-positive bacteria, 386 

actinobacteria, and anaerobic bacteria. The total fungal biomass was calculated as the sum of the 387 

biomass of common fungi and AMF.  388 

 389 

DNA extraction 390 

It is well known that sequence quality is subjected to big variations from DNA extraction, PCR 391 

amplification and sequencing. It is critical to control each step to generate the high quality of 392 

experimental data. Thus, great cautions were taken in this study to ensure the highest quality of 393 

sequencing data with more tedious and laboratory experimental protocols. For DNA extraction, 394 

the experimental method with grinding, freeze-thawing and sodium dodecyl sulfate (SDS)-based 395 

cell lysis42 was used. This method has been most widely used in microbial molecular ecology. In 396 

brief, for each soil sample, microbial DNA was extracted from 1.5 g soil using this grinding, 397 

freeze-thawing method42, and purified with a PowerSoil® DNA isolation kit (MoBio Laboratories) 398 

following the manufacturer’s protocol. DNA quality was evaluated based on the 260/280 nm and 399 

260/230 nm absorbance ratios using a NanoDrop ND-1000 Spectrophotometer (NanoDrop 400 

Technologies). All samples had the 260/230 ratios larger than 1.7 and 260/280 ratios larger than 401 

1.8. DNA concentration was measured by PicoGreen using a FLUOstar Optima fluorescence plant 402 

reader (BMG Labtech). DNA samples were stored at −80 °C until use. 403 

 404 

Amplicon sequencing and data preprocessing 405 
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We used a two-step PCR amplification method for library preparation of 16S rRNA gene (V4 406 

region), the intergenic region (ITS) between the 5.8S and 28S rRNA genes and 18S rRNA gene 407 

(V9 region) to improve sequence representation and quantification43,44. During the first 408 

amplification step, 10 ng DNA from each sample was PCR-amplified for 10 cycles in triplicate in 409 

25 μl reaction with the primers without adaptors. The obtained PCR products were purified and 410 

dissolved in 50 µl D.I. water. This initial amplification step avoided potential amplification bias 411 

caused by long tail of adaptors and other added components. During the second amplification step, 412 

15 µl of the PCR products from each sample were amplified using the primers with all adaptor, 413 

barcode, and spacers in triplicate for an additional 15 cycles. The low total cycle numbers (25-30 414 

cycles) ensure that the PCR amplification is not saturated and limits amplification artifacts. Finally, 415 

the triplicate amplified products were combined, purified, and quantified for subsequent 416 

sequencing using the same MiSeq instrument with 2 × 250 base pair kits at the Institute for 417 

Environmental Genomics, University of Oklahoma. The two-step PCR amplification method with 418 

phasing primers in triplicate can help reduce sequencing errors, minimize amplification bias, and 419 

preserve semi-quantitative information of PCR amplification43, which is critical for subsequent 420 

data analysis, data interpretation, and biological inference44.  421 

 422 

The primer sequences were trimmed from the paired-end sequences, which were then merged 423 

using FLASH45. Any merged sequences with an ambiguous base or a length of < 245 bp for the 424 

16S rRNA gene, < 220 bp for the ITS, or < 330 bp for 18S rRNA gene were further discarded. An 425 

average of 56,182±27,613, 23,569 ± 16,323, and 56,874 ± 55,642 sequence reads were obtained 426 

for 16S rRNA gene, and ITS and 18S rRNA gene, respectively (Extended Data Fig. 3a, b). These 427 
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high-quality 16S rRNA gene, ITS or 18S rRNA gene sequences were processed to generate 428 

amplicon sequence variants (ASVs; also known as unique sequence variants and zero-radius 429 

operational taxonomic units) by UNOISE346. Rarefaction analyses (Extended Data Fig. 4) 430 

indicated that the sequencing depth was sufficient for assessing the effects of various climate 431 

change factors on the diversity of these soil microbial communities.  432 

 433 

The representative 16S rRNA or 18 rRNA gene sequences were aligned using Clustal Omega 434 

v1.2.247 for constructing the phylogenetic tree by FastTree2 v2.1.1048. The FastTree topology 435 

search was constrained with the relatively reliable 16S-based bacterial tree in Silva Living Tree 436 

Project49 release 132. The fungal phylogenetic tree was constructed using ‘constrained topology 437 

search’ in FastTree v2.1.1150. A guide tree was built from the full-length SSU sequences of 511 438 

representative species, one species from each fungal family. Then, the full tree was built from the 439 

observed ITS sequences with the constraint alignment converted from the guide tree. The SSU 440 

sequences were retrieved from Silva 138.1 Ref NR database. For 16S rRNA gene, the ASVs or 441 

OTUs were taxonomically annotated with RDP Classifier using 16S rRNA gene training set 16 442 

with a confidence cutoff of 50%51, and Chloroplast and Mitochondria were further removed from 443 

the bacterial profiles. For ITS, the ASVs or OTUs were taxonomically annotated with RDP 444 

Classifier using UNITE Fungal ITS training set (version of August 2018)52; ITS sequences were 445 

further assigned into three functional groups—plant pathogens, AMF, and saprotrophs using 446 

FUNGuild31. Sequences that had multiple function assignments or in FUNGuild were termed as 447 

unassigned guild in this analysis. The sequence number in each sample was rarefied to the same 448 

depth for 16S rRNA gene (22,599) or ITS sequences (7,761) in subsequent comparative analyses.  449 

For 18S rRNA gene, the ASVs were taxonomically annotated with PR2 databases53. We also 450 



 21 

assigned the major protistan lineages to their dominant mode of energy acquisition (i.e., trophic 451 

functional groups)—either phototrophic, parasitic, or as consumers, following the classifications 452 

in Oliverio et al54. Sequences annotated as protists were further rarefied to 1,100 for subsequent 453 

comparative analyses. 454 

 455 

Sporulation gene profiling from metagenomic dataset 456 

The soil samples under single treatment of warming (warming and normal precipitation and 457 

unclipped) and control (ambient temperature and normal precipitation and unclipped) were 458 

selected for metagenomic sequencing. That is, 8 subplots × 8 years = 64 metagenomic samples. 459 

Libraries were constructed using genomic DNA with KAPA Hyper Prep Kit (KR0961) based on 460 

the manufacturer’s instruction, and DNA was sequenced using an Illumina HiSeq 2500 platform. 461 

A total of 1100.14 gigabases (Gb) were generated, with an average of 17.19 ± 2.68 Gb per sample. 462 

The quality of the metagenomic data was evaluated using FastQC v0.11.655. CD-HIT56 was used 463 

to remove duplicates with an identity cutoff of 100%. NGS QC Toolkit (version 2.3.3)57 was used 464 

for quality filtering, where poor-quality bases with quality score <20 were trimmed from the 3 end 465 

until the first base had a quality score ≥ 20. Trimmed reads with length of > 120 and the average 466 

quality score  ≥ 20 were kept. In addition, reads with more than one ambiguous base were removed.  467 

High-quality reads were then converted to fasta format, split into multiple partitions, and searched 468 

against NR database (BLASTx) using DIAMOND58 with E value cutoff of 1 × 10-5, coverage 469 

cutoff of 0.5, and maximum target number of 50.  The outputs were submitted to MEGAN6 470 

(Ultimate Edition, version 6.6)59 for function profiling with parameter of top percent of hits 10%, 471 

minimum score 50 and minimum support 1. The annotated functional profiles of SEED Subsystem 472 

(3 levels) were exported, and two major sporulation genes annotated at level 3, i.e., spo0A gene of 473 
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Firmicutes and bldD gene of Actinobacteria were selected. Their relative abundances were then 474 

determined by dividing the annotated sequence counts by the total number of high-quality 475 

sequences of the corresponding metagenomes. 476 

 477 

Statistical analyses 478 

This study is based on a well-designed long-term climate change experiment with a blocked split-479 

plot design, with 12 treatment combinations of warming, precipitation levels, and clipping. Each 480 

combination has 4 replicated plots (Extended Data Fig. 1). Also, the same plots were repeatedly 481 

sampled over 8 years and high quality of experimental data were generated, which greatly 482 

increased the power for various robust data analyses to ensure the liability of the statistical 483 

inference.  484 

 485 

Diversity analyses 486 

Richness was used to measure taxonomic α-diversity, using the Picante R package60,61.  Other 487 

taxonomic α-diversity indices, including Shannon index, inverse Simpson index and Pielou’s 488 

evenness were also calculated using the vegan R package62. Faith’s index, which is the sum of the 489 

total phylogenetic branch length based on the phylogenetic tree constructed, was used to measure 490 

phylogenetic α-diversity using the Picante R package60.  491 

 492 

 493 

Treatment effects by linear mixed-effects models 494 

Due to block design and repeated measurements, the experimental data are not completely 495 

independent. Therefore, linear mixed-effects models (LMMs) were used to assess the effects of 496 
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experimental treatments on environmental variables, microbial diversity or the relative abundance 497 

of microbial groups. The lme4 R package was used to implement LMMs63. In the linear mixed-498 

effects models, warming (0 for ambient temperature and 1 for warming), precipitation level (0.5 499 

for half, 1 for normal and 2 for double precipitation level) and clipping (0 for unclipped and 1 for 500 

clipped) treatments and their interactions were considered as fixed effects, while the sampling time 501 

(year) and the block were termed as random intercept effects (y ~ warming × precipitation level × 502 

clipping + (1|Block) + (1|year)). That is, three variables (warming, precipitation level, and clipping) 503 

were created to denote the experimental treatments for soil samples. The reason that the 504 

precipitation treatments were not treated as categorical variables is because a categorical variable 505 

can not capture the gradient of precipitation levels, which is assumed to linearly correlate with soil 506 

moisture and other variables.  507 

 508 

We also tested alternative models in which the effects of sampling year and its interaction with 509 

experimental treatments were considered as fixed effects (y ~ warming × precipitation level × 510 

clipping × year + (1|Block); or y ~ warming × precipitation level × clipping + year (1|Block)), yet 511 

the corresponding model with sampling year as random intercept effect was better, based on lower 512 

AIC values. Thus, we decided to use the model with experimental treatments as fixed effects with 513 

year and block as random intercept effects. Effect sizes of treatments or treatment interactions 514 

were represented by the regression coefficients in the LMMs. Wald type II χ² tests were used to 515 

calculate the p values from the LMMs using the car R package64. Since the precipitation level is 516 

considered as a continuous variable in the LMM (0.5 for half precipitation, 1 for normal and 2 for 517 

double precipitation), only one regression coefficient of precipitation treatment would be derived 518 

by the LMM. The effect size of half precipitation (as compared to ambient precipitation) can be 519 
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derived by multiplying the regression coefficient by - 0.5, while the effect size of double 520 

precipitation (as compared to ambient precipitation) can be derived by multiplying the regression 521 

coefficient by 1. For instance, as shown in Extended Data Fig. 2b, precipitation level was positively 522 

correlated to soil moisture with β = 0.7 per fold change (+100%) of precipitation (p < 0.0001; 523 

Extended Data Fig. 2b). That is, the double precipitation treatment only caused a 0.7% × 1 = 0.7% 524 

(absolute) increase in soil moisture, while half precipitation changed soil moisture by 0.7% × (-525 

0.5) = - 0.35%, i.e., half precipitation decreased soil moisture by 0.35% on average. 526 

 527 

Predicting microbial diversity with environmental variables 528 

To link the environmental variables to microbial diversity, the correlations between the individual 529 

environmental variable and bacterial or fungal diversity was tested by the linear mixed-effects 530 

model, in which the sampling year and the block were termed as random intercept effects. Since 531 

richness is highly correlated with other diversity indexes (Fig.S1), it is used to represent microbial 532 

biodiversity. The marginal coefficient of determination (pseudo-R-squared) was calculated using 533 

function ‘r.squaredGLMM’ of the MuMIn R package65, which represents the variance explained 534 

by the fixed effect in the linear mixed-effects model.  535 

 536 

Because most soil and plant predictor variables were strongly correlated with each other (Fig. 3a), 537 

we further performed a model selection analysis to compile sets of variables that are strong 538 

predictors of the data, least-correlated, or potentially biologically informative on the basis of a 539 

priori assumptions. The following tests were performed. First, the contribution of each variable on 540 

predicting bacterial or fungal richness was ranked using the method of bootstrap forest partitioning, 541 

conducted by the function of ‘Predictor Screening’ in JMP 15.0 (SAS Institute) (Table S3 & S4). 542 
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This method evaluates the relative contribution of predictors on the response66, which can identify 543 

predictors that might be weak alone, but strong when used in combination with other predictors. 544 

Second, the Pearson correlation coefficient between variables were calculated (Table S5) to reveal 545 

the colinearty between variables. We then applied different model selection strategies to obtain 546 

sets of variables for our linear mixed models, in which the random intercept effects of sampling 547 

year and block were included. Three alternative strategies were pursued to select soil and plant 548 

variables to be included in candidate models, based on their collinearity and/or informed 549 

hypotheses: (i) Model 1 (Table S6 for bacteria and Table S7 for fungi). For highly correlated 550 

variables which have similar biological inference, we kept the one with the highest contribution 551 

based on Predictor Screening. For example, we kept soil annual mean moisture rather than soil 552 

moisture at the sampling month for both LMMs on bacterial and fungal richness. For variables on 553 

plant biomass, we kept C3 plant biomass for the LMM on bacterial richness while we kept C4 plant 554 

biomass for that on fungal richness. Then, we iteratively removed variables with the highest 555 

correlation coefficients and kept variables that had high contributions in predictor screening, until 556 

the correlation between the remaining variables were less than 0.5. Through this way, each set of 557 

six variables were selected for the bacterial and fungal model. (ii). Model 2 (Table S6, S7). We 558 

kept six least-correlated variables by removing all variables with a correlation of r > 0.5 using R 559 

caret package67. (iii). Model 3 (Table S6, S7). The six variables with largest contributions from 560 

predictor screening were kept. 561 

 562 

The random intercept effects of sampling year and block were included in Models 1-3. Models 1-563 

3 were compared based on their AIC values, and the model with the lowest AIC chosen as the 564 

preferred model. Soil temperature, moisture, pH, and total plant richness were selected for both 565 
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bacteria and fungi although slight differences were observed with respect to nitrogen and plant 566 

biomass (Table S6, S7). These variables in the preferred model were used in the downstream 567 

structural equation modelling analyses.  568 

 569 

Structural equation modeling 570 

To further discern the direct and indirect effects of the environmental drivers on microbial 571 

biodiversity, structural equation modelling (SEM) analyses were performed to examine the 572 

relationships among experimental treatments, soil and plant variables, and microbial diversity. To 573 

correct the potential temporal autocorrelation, we used data at the plot level, by averaging the 574 

microbial or environmental data across time points of the same plot. We first considered a 575 

hypothesized conceptual model (Extended Data Fig. 8) that included all reasonable pathways. 576 

Then, we sequentially eliminated non-significant pathways unless the pathways were biologically 577 

informative, or added pathways based on the residual correlations. The procedure was repeated 578 

until the model showed sufficient fitting with the p values of χ2 test larger than 0.05 (i.e., the 579 

predicted model and observed data are not significantly different) and the root mean square error 580 

of approximation (RMSE) < 0.08. The SEM-related analysis was performed using the lavaan R 581 

package68. 582 

 583 

Data availability 584 

The DNA sequences of the 16S rRNA gene, 18S rRNA gene and ITS amplicons were deposited 585 

to the National Center for Biotechnology Information (NCBI) under the project accession number 586 

PRJNA331185. Raw shotgun metagenomic sequences are deposited in the European Nucleotide 587 

Archive (http://www.ebi.ac.uk/ena) under study no. PRJNA533082. Silva 138.1 Ref NR database 588 
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is available at https://www.arb-silva.de/documentation/release-138/. Protist Ribosomal Reference 589 

database (PR2) databases is available at https://github.com/pr2database/pr2database. The ASV 590 

table and ASV representative sequences, soil physical and chemical attributes, and plant biomass 591 

and richness are downloadable online at http://www.ou.edu/ieg/publications/datasets.. Source data 592 

are provided with this paper. 593 

 594 

Code availability 595 

R scripts for statistical analyses are available on GitHub at https://github.com/Linwei-596 

Wu/warming_soil_biodiversity. 597 
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Figure legends 624 
 625 
 626 
Fig. 1. Effects of experimental warming on soil microbial communities. a, Experimental 627 
settings for treatments. b-d, The effect sizes of warming, altered precipitation level and clipping 628 
on microbial richness (b), phylogenetic diversity (c) and biomass (d). The estimated effect 629 
sizes are regression coefficients based on rescaled response variables (with zero mean and unit 630 
standard deviation) in the linear mixed-effects models. Statistical significance is based on Wald 631 
type II χ² tests (n = 360). Bars represent mean effect sizes and error bars represent standard 632 
errors. The effects of treatment interactions and exact p values are indicated in Table S1 & S2. 633 
Significances of χ² tests are denoted by asterisks: *** p < 0.001, ** p < 0.01, * p < 0.05. PD, 634 
Faith’s phylogenetic diversity. PLFA, phospholipid fatty acid analysis. AMF, arbuscular 635 
mycorrhiza fungi. 636 
 637 
 638 
Fig. 2. Effects of experimental warming on different microbial taxa. a, Effect sizes of warming 639 
on the (rescaled) richness of major microbial groups based on linear mixed-effects models. Data 640 
are presented as mean values ±  standard errors of the estimated effect sizes. Statistical 641 
significance is based on Wald type II χ² tests (n= 360), which is denoted by asterisks: *** p < 642 
0.001, ** p < 0.01, * p < 0.05. Insignificant changes are denoted by grey dots. b, The phylogenetic 643 
relationship of individual bacterial ASVs (amplicon sequence variants, the first ring inside). Only 644 
the ASVs with a significant response (adjusted p < 0.05) to warming and their average read 645 
numbers ≥2 among warmed or unwarmed samples were included in the tree. The outside and 646 
inside bars of the second ring represent the positive and negative effect sizes of warming on 647 
rescaled taxon relative abundances. Colors of the branches in the first ring and the bars in the 648 
second ring correspond to individual phyla or classes, and the grey color in the tree indicates 649 
unclassified or other minor phyla. Colors in the third ring represent ASVs with significant increase 650 
(yellow) or decrease (blue) under warming. The area sizes of the pies reflect the total relative 651 
abundance of bacterial phyla/classes across all samples, where the yellow and blue parts represent 652 
the proportions of the total abundance of ASVs which increased and decreased under warming, 653 
respectively.   654 
 655 
 656 
Fig. 3. Environmental drivers of microbial diversity. a, Correlations between environmental 657 
variables and microbial diversity. Edge width corresponds to the absolute value of correlation 658 
coefficient determined by the linear mixed-effects models. Colors indicate correlation types. Solid 659 
and dashed lines denote significant and insignificant correlations, respectively, based on Wald type 660 
II χ² tests (n= 360 biologically independent soil samples). Pairwise comparisons of environmental 661 
factors are shown in the triangle, with a color gradient denoting Pearson’s correlation coefficient. 662 
b, Structural equation models (SEMs) showing the relationships among treatments, soil and plant 663 
variables, and bacterial and protistan richness. Blue and red arrows indicate positive and negative 664 
relationships, respectively. Solid or dashed lines indicate significant (p < 0.05) or nonsignificant 665 
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relationships. Numbers near the pathway arrow indicate the standard path coefficients. R2 666 
represents the proportion of variance explained for every dependent variable. χ2 = 47.69, df = 34, 667 
p = 0.06 (large p value indicates the predicted model and observed data are equal, i.e., good model 668 
fitting). Comparative fit index (CFI) = 0.955, and n = 48 independent plots. c, Standardized total 669 
effects (direct plus indirect effects) derived from SEMs. d, Correlations between microbial 670 
richness and ecosystem functioning. The color denotes the correlation coefficient determined by 671 
the linear mixed-effects model. Statistical significance is based on Wald type II χ² tests with n 672 
=360 independent soil samples. The p values were adjusted by false discovery rate and are denoted 673 
by asterisks: *** p < 0.001, ** p < 0.01, * p < 0.05. GPP: gross primary productivity; ER: 674 
ecosystem respiration; NEE: net ecosystem exchange; Rh: heterotrophic respiration; Rs: soil total 675 
respiration. 676 
 677 
 678 
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