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Characterizing Regional-Scale Temporal Evolution of Air Dose Rates 

After the Fukushima Dai-ichi Nuclear Power Plant Accident

Abstract

In this study, we quantify the temporal changes of air dose rates in the 

regional scale around the Fukushima Dai-ichi Nuclear Power Plant in Japan, 

and predict the spatial distribution of air dose rates in the future. We first 

apply the Bayesian geostatistical method developed by Wainwright et al. 

(2017) to integrate multiscale datasets including ground-based walk and car 

surveys, and airborne surveys, all of which have different scales, resolutions,

spatial coverage, and accuracy. This method is based on geostatistics to 

represent spatial heterogeneous structures, and also on Bayesian 

hierarchical models to integrate multiscale, multi-type datasets in a 

consistent manner. We apply this method to the datasets from three years: 

2014 to 2016. The temporal changes among the three integrated maps 

enables us to characterize the spatiotemporal dynamics of radiation air dose 

rates. The data-driven ecological decay model is then coupled with the 

integrated map to predict future dose rates. Results show that the air dose 

rates are decreasing consistently across the region. While slower in the 

forested region, the decrease is particularly significant in the town area. The 

decontamination has contributed to significant reduction of air dose rates. By

2026, the air dose rates will continue to decrease, and the area above 3.8 

Sv/h will be almost fully contained within the non-residential forested zone. 
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1. Introduction

Six years has passed since the radionuclide release occurred at the 

Fukushima Dai-ichi Nuclear Power Plant (FDNPP). During the accident, 

radionuclides were deposited on soil and plants through wet and dry 

deposition (Tanaka, 2012). Radiocesium (134Cs and 137Cs) is currently the 

main contaminant in the environment (Saito, 2016). Over the past six years, 

the region around FDNPP has experienced remarkable recovery. The current 

evacuation designated area has shrunk to 370 km2 in April 2017, which is 

2.7% of the Fukushima Prefecture (Fukushima Prefectural Government, 

2017). The extensive decontamination effort has played a critical role in this 

recovery process (Yasutaka et al., 2013). In addition, many studies have 

reported that the decrease in the air dose rates – including the reduction 

associated with radiocesium transport in the environment – has been 

accelerated compared to the physical decay (Kinase et al., 2014; Kinase et 

al., 2017). It has been found that the air dose rates have reduced to around 

one fourth in the undisturbed flat land and one fifth on the urban roads in the

first four years (Saito, 2016). 

An extensive monitoring program has been established after the accident 

and still continues to this day (Mikami et al., 2015a; Saito and Onda, 2015). 

One of the main goals in the monitoring program has been to map radiation 

dose rates, i.e., the ambient dose equivalent rates, in a regional scale based 

on the datasets collected by different agencies (Saito, 2016). The datasets 
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have been carefully archived and made accessible to the public (Seki et al., 

2014). The monitoring program has been playing a central role towards 

ensuring the public safety and preparing for decontamination efforts and 

residents’ return. In addition, monitoring has provided information critical to 

understand the transport behavior of radiocesium in the environment (Saito, 

2016). 

There are a variety of monitoring platforms and data available in the regions.

In addition to continuous-time monitoring posts, spatially extensive datasets 

include airborne, car and walk surveys once or twice a year. Car surveys are 

based on a GPS-aided mobile radiation monitoring system, the Kyoto 

University Radiation Mapping system (KURAMA), which has been used 

extensively to characterize the distribution of air dose rates along the roads 

in real time (Andoh et al., 2015; Tanigaki et al., 2015). In walk surveys, 

people carry around the same KURAMA-II systems in small streets and 

various places outside where people walk around, so that the potential 

external dose outside can be mapped in detail. Airborne surveys have 

provided vital information to map the air dose rates across the region (Torii 

et al., 2012). These measurements of air dose rates have been also 

considered an excellent proxy for radiocesium contamination in soil at flat 

fields (Mikami et al., 2015b; Saito et al., 2015). 
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Changes in air dose rates have been characterized extensively based on 

these monitoring datasets, aiming to describe and predict the reduction of 

radiation air dose rates in the environment (Kinase et al., 2014; Kinase et al.,

2015). Although there have been efforts to model radionuclide transport 

mechanistically in the near surface environment (e.g., Kitamura et al., 2014; 

Wei et al., 2017), the exact prediction has been challenging, since the 

transport involves numerous spatially and temporally heterogeneous factors 

difficult to measure over time and space. In particular, the radiocesium 

transport in urban areas is known to be dictated by anthropologic impacts 

such as traffic and human movements (Andoh et al., 2015). Such enhanced 

reduction in air dose rates can be defined as environmental or ecological 

decay, and described by data-driven models with the environmental or 

ecological half-life (Peles et al., 2002). In the Fukushima region, a significant 

effort was made to develop data-driven models and to compute the rate of 

ecological decay (e.g., Kinase et al., 2014; 2017).

However, it has been difficult to quantify the heterogeneity of environmental 

decay in the regional scale, since spatially extensive airborne survey 

datasets often have discrepancy with the ground-based measurements and 

have a larger uncertainty due to the large measurement footprints, and 

atmospheric effects. In addition, the complex terrain in the forested 

mountainous region is considered to increase uncertainty (Torii et al., 2012). 

Recently, Wainwright et al. (2017) developed a Bayesian hierarchical 
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modeling approach to integrate multiscale datasets (i.e., car, walk and 

airborne surveys), and also to estimate the spatial distribution of air dose 

rates in high resolution over space. They estimated the air dose rates 

equivalent to walk surveys, since walk surveys represent the exposure of an 

average person walking outside. The integrated air dose-rate maps are more

accurate than the airborne data alone, having less bias and uncertainty. 

In this study, our goals are (1) to quantify the temporal changes of air dose 

rates in the regional scale, (2) to identify the characteristics of environmental

decay rates depending on land-use, and (3) to predict air dose rates in the 

future. We focus on the evacuation designated area and the region where 

the restriction order was recently lifted in March 2017. We first extend the 

approach by Wainwright et al. (2017) to a larger area covering this region, 

and create multiple integrated maps every year at the time when the 

airborne datasets were collected. Then we characterize the changes in air 

dose rates, including the effect of decontamination in villages and urban 

areas. Our results are expected to help inform efforts to plan for the 

residents’ return and decontamination efforts in the area currently 

designated for evacuation. 

2. Materials and methods

2.1. Site and data
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The area of interest in this study includes the current evacuation designated 

area, and the area where the restriction order was recently lifted in March 

2017 (Fig. 1a). It extends from the FDNPP location to the northwest, following

the radioactive plume during the accident. This area –approximately 730 km2

– is mostly forested with 16 % of the land used for agriculture, 83 % forested,

and just 1 % representing urban use, according to the high-resolution land-

use and land-cover map of Japan (version 14.02) created by Japan Aerospace

Exploration Agency (Takahashi et al., 2013). This area extends from the 

coast towards the mountains, with the altitude ranging from 0 m to about 

1000 m above the sea level. 

In the same manner as Wainwright et al. (2017), we used the three types of 

air dose rate datasets compiled by Japan Atomic Energy Agency (JAEA). The 

car survey datasets used in our study were acquired through the publically 

available database (http://emdb.jaea.go.jp/emdb/en/) and collected using the

KURAMA-II systems along the major roads. The KURAMA-II system included a 

CsI(Tl) scintillation detector, GPS and a software-designed control device 

(Tsuda et al., 2015). The calibration was done using gamma rays from 

radioisotope sources at the Facility of Radiation Standard and the Instrument

Calibration Facility in JAEA. The dose rate was measured automatically along 

with the GPS location every three seconds, while the car was moving in the 

legal speed or along with the traffic. The datasets were averaged within the 

100 m-by-100 m mesh. The walk survey datasets were provided by JAEA 
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after averaging the data values within the 20 m-by-20 m mesh. The walk 

survey used the KURAMA-II system as well. In addition, we used the 

publically available air survey datasets that were calibrated to the equivalent

dose rates to the one 1m-above ground (Torii et al., 2012). The datasets 

were given within the 250 m-by-250 m mesh after interpolation using the 

IDW (inverse distance weighted) method. 

Although the types of datasets are the same as those used in Wainwright et 

al. (2017), there are some differences. The dose rate is generally higher in 

the evacuation designated area than Fukushima City used for the estimation 

in the previous study. It is known that the air dose rate reduction tendencies 

are different in the evacuation zone due to the lack of human activity (Saito, 

2016). In addition, the evacuation designated area has a larger spatial 

coverage of forested areas with less human activity. The spatial coverage of 

car and walk surveys is therefore limited compared to the spatial data 

coverage in Fukushima City. 
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2.2. Methodology

We use the data integration methodology developed by Wainwright et al. 

(2017). Although the detailed description is available in Wainwright et al. 

(2017), we briefly summarize the methodology here for completeness. Our 

data integration is based on a Bayesian hierarchical model, which consists of 

statistical sub-models: data models and process models (Wikle et al., 2001). 

The process models–in this context–describe the spatial pattern (or map) of 

air dose rates within the domain, representing the spatial trend and 

heterogeneity of contamination. We use a geostatistical model to describe 

this spatial pattern (Deutsch and Journel, 1998; Diggle and Ribeiro, 2007). 

The goal is to estimate the air dose rates equivalent to walk surveys, since 

walk surveys represent the exposure of an average person walking outside. 

To develop an integrated map, we denote the radiation dose rate at i-th pixel

by yi, where i = 1, …, n. We also denote three datasets by three vectors, 

representing the airborne survey data zA (each data point is represented by 

zA,j, where j = 1,…, mA), car survey data zC (each data point is represented by

zC,j, where j = 1,…, mC), and walk survey data (each data point is represented

by zW,j, where j = 1,…, mW). The goal is to estimate the posterior distribution 

of the radiation dose-rate map y (i.e., the vector representing the radiation 

dose rates at all the pixels) conditioned on these three datasets (zA, zC and 

zW), written as p(y |zA, zC, zW). By applying Bayes’ rule, we can re-write this 

posterior distribution as:
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p(y | zA, zC, zW) ∝ p(zA | y) p(zC | y) p(y | zW)

(1)

We assume that the datasets are conditionally independent of each other, 

given the air dose rate distribution y. 

Detailed descriptions of mathematical formulation are available in 

Wainwright et al. (2017). The first distributions p(zA | y) and p(zC | y) 

represent the data models to describe the low-resolution data (i.e., airborne 

and car survey data) as a function of the air dose rate map y. The spatial 

average functions are included in these conditional distributions. For spatial 

averaging, Wainwright et al. (2017) have compared different averaging 

schemes based on the observation in the datasets. Based on their results, 

we use simple averaging for car survey data within the 100-meter radius. We

use weighted averaging to represent the large footprint of airborne survey, 

the weight of which is computed by the radiation transport simulations 

(Malins et al., 2016). The third distribution p(y | zW) represents the process 

model (i.e., geostatistical model) to describe the spatial pattern given the 

measured dose rates in the walk surveys. We also assume that the 

parameters in the data and process models are estimated and well-

constrained through the exploratory data analysis and hence they are fixed 

during this Bayesian estimation. The correlation parameters are determined 

for each land-use class. After all the sub-models are defined and 

parameterized, the air dose rate map can be computed according to Eq. (1). 
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We have defined different parameters in the data and process models for 

different land-cover types (Table S1 and S2). 

To characterize the temporal changes and their spatial variability, we define 

the dose rate reduction by the log-difference of the air dose rates in each 

year in a similar manner as Kinase et al. (2015). In this study, we first apply 

this integration method separately to the datasets in each year from 2014 to 

2016 for creating three integrated maps at the 50-meter resolution. The 

geostatistical and correlation parameters are determined separately for each

year based on available datasets. This process provides snapshots of 

spatiotemporal dynamics of air dose rates in the region. We then analyze the

spatial heterogeneity of the dose rate reduction to see whether it has been 

affected by decontamination or whether it is dependent on land-use type. 

We then temporally extrapolate the air dose rates by coupling this integrated

map in 2016 with the data-driven ecological decay model developed by 

Kinase et al. (2014; 2017). Since we assume the 2016 map as the initial 

condition, we can predict the air dose rate at time t2 based on the known 

dose rate map at time t1 (t1 = 2016). We modify the equation in Kinase et al. 

(2014) as:

D (t2 )−DBG

D (t1 )−DBG

=
{f fast 0.5t2 /T fast+(1−f fast )0.5t2 /T slow}

{f fast 0.5t1 /T fast+(1−f fast )0.5t1 /T slow}
k e−λ134 t2+e−λ137t 2

k e−λ134 t1+e−λ137t 1
 (2)
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where 𝐷(𝑡) is the air dose rate at time t, 𝐷BG is the background dose rate 

[μSv/h], 𝑓fast is the fractional distribution of fast elimination component, 𝑇fast is

the ecological half-life for the fast elimination component, 𝑇slow is the 

ecological half-life for the slow elimination component, 𝑘 is the ambient dose 

equivalent rate ratio of 134Cs and137Cs at time zero, 𝜆134 is the physical decay 

constant of 134Cs, and 𝜆137 is the physical decay constant of 137Cs. In addition 

to the mean integrated map of radiation dose rates in 2016, we use the 

decay parameters determined through fitting in Kinase et al. (2017) or the 

same assumed parameters (Table S3) to create a predicted air dose rate 

map in 2026. 

3. Results and discussions

The 2016 data on air dose rates are shown as an example in Fig. 2, which 

are the latest datasets currently available. Although the airborne survey (Fig.

2a) has the complete coverage of this region, the discrepancies are apparent

between the airborne data and other ground-based measurements. In 

particular, the airborne data show higher air dose rates compared to the car 

and walk survey data in the same regions. On the other hand, the car survey 

data are limited along the major roads (Fig. 2b), while the walk survey data 

are clustered in multiple small areas (Fig. 2c). The ground-based surveys 

alone cannot capture the spatial heterogeneity of the air dose rate 

distribution in the regional scale. 
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The comparison among different types of datasets (Fig. 3 and 4) shows the 

discrepancy of air dose rates among them. Figure 3 shows that the car and 

walk survey datasets are along the one-to-one lines, and highly correlated 

(the correlation coefficients of 0.96 to 0.97), when co-located data points are 

selected. Simple spatial averaging of walk survey data around each car data 

point improves the correlation coefficients to 0.99. The comparison between 

the airborne and walk survey datasets (Fig. 4) shows that the airborne 

survey data values are higher than the walk survey data even at the same 

locations, although the two types of data are significantly correlated (the 

correlation coefficients of 0.93 to 0.96). Weighted spatial averaging of the 

walk survey data around each airborne data point improves the correlation 

significantly to the correlation coefficients of 0.96 – 0.99. Several studies 

have found that the airborne survey data are consistently higher than co-

located ground-based measurements (Naito et al., 2014; NRA, 2014; 

Yamashita and Itabashi, 2015; Miyazaki and Hayano, 2016; Wainwright et al.,

2017; Kinase et al., 2017). To account such systematic shift in Fig. 4, a linear

model was fitted with two parameters (i.e., slope and intercept) shown in 

Table S1 and S2. In Fig. 3 and 4, the correlation coefficients are generally 

higher than the data from Fukushima City presented in Wainwright et al. 

(2017). This is due to the fact that the dose rates are higher in the 

evacuation zone than Fukushima City, as discussed in Wainwright et al. 

(2017).
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The three kinds of data were integrated using the developed method 

(Wainwright et al., 2017). A series of integrated maps from 2014 to 2016 (50 

m by 50 m resolution) are compared to the airborne survey datasets in Fig. 5

(The zoom-up figures are available in Fig. S1). Both airborne data and 

integrated maps show that air dose rates are decreasing consistently across 

the region over the two years, and that the region above 3.8 Sv/h is 

shrinking. In general, the integrated maps (Fig. 5c-d) show more detailed and

finer-resolution heterogeneity than the original airborne data (Fig. 5a-c), 

although the general trend is very similar. The systematic bias (or shift) in 

the airborne data (Fig. 5a-c) is corrected in the integrated maps (Fig.5d-f). 

For example, the area of above 3.8 Sv/h is 72.8 km2 in the integrated map 

in 2016, which is significantly smaller than the one in the original airborne 

survey (141.3 km2). The overestimation is quite significant so that the region 

above 3.8 Sv/h is larger in the airborne survey data in 2016 (Fig. 5c) than 

the 2015 integrated map (Fig. 5e). Correcting such overestimation would be 

important, since 3.8 Sv/h is considered to roughly correspond to an annual 

exposure dose of 20 mSv and often used as the threshold value for policy 

decision making. 

The performance of the integrated maps was confirmed by the validation 

(Fig. 6), using one hundred points of the walk survey data excluded from the 

estimation. Without the data integration, the airborne data at co-located 

points (blue dots) exhibit larger scatters and a systematic bias compared to 
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the co-located walk survey data. After the data integration, the predicted 

values (based on our approach and the three datasets) are tightly distributed

around the one-to-one line and are mostly included in the 99% confidence 

interval. The validation result (Fig. 6) shows that this method successfully 

estimates the fine-resolution dose-rate map based on the spatially sparse 

walk and car survey data and airborne data. 

Figure 7 shows the log-difference in the air dose rates between two 

consecutive years calculated from the integrated maps shown in Fig. 5. 

Although the east-west lines associated with the flight lines can be seen as 

an artifact in the forested region, we can still see significant anthropologic 

effects. The artifact is relatively small (5-10% of the dose rates) so that it is 

noticeable only in this reduction map (Fig. 7): not in the integrated map or 

airborne data (Fig. 5). The artifact was corrected within the urban or 

cropland areas where the walk and car survey datasets are available. 

Between 2014 and 2015, the Joban highway was opened with a fresh 

pavement without contamination, which shows as a large reduction along 

the north-south road in the southwest part of the domain (Fig. 7a). The 

decontamination activity was known to be particularly active in the 

southwest region of the domain (Tomioka Village). Between 2015 and 2016, 

the decontamination was active in the northwestern region (Minami-soma 

City), which can be seen in Fig. 7b. This is the first time that the 

decontamination effect is visualized in the regional scale. After the 
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Chernobyl accident, regional-scale decontamination was found to be 

ineffective due to the re-contamination (Vovk et al., 1993). After the 

Fukushima accident, extensive research and investigation have been made 

in decontamination technologies and applications (Miyahara et al., 2012). 

Our results show that the decontamination is quite effective to reduce the air

dose rates. 

The dose rate reduction of air dose rates was computed at each pixel, and 

summarized in each land-use class as the median and five and ninety-five 

percentiles (Table 1). The urban area has a large reduction as well as a large 

variability in the reduction, which suggests the effect of paved surfaces on 

the mobility of radiocesium (e.g. roads) as well as anthropologic effects (e.g.,

decontamination and traffic) consistent with previous studies (e.g., Kinase et 

al., 2014; Kinase et al., 2017; Saito, 2016). The reduction is larger than the 

computed median values in each land-use type based on the data-driven 

model in Kinase et al. (2017). This suggests that the regional-scale ecological

half-life for the fast and slow elimination components could be smaller or the 

fast elimination fraction could be larger than the values used in Kinase et al. 

(2017). In addition, the reduction is smaller in 2015-2016 than 2014-2015, 

suggesting the decreasing fraction of 134Cs. We expect the reduction rate 

would decrease in the future, although the reduction would remain larger 

than the physical decay due to the radiocesium transport in the 

environment. 
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Figure 8 shows the predicted maps in 2026 based on the 2016 integrated 

map (the enlarged version is available in the supporting information as 

Figure S2). The prediction is based on the assumptions that the ecological 

decay continues at the current rate, and that the decontamination is not 

considered. The air dose rates continue to decrease, and the region above 

3.8 Sv/h is predicted to shrink significantly in 2026. Since we used the 

parameters from Kinase et al. (2017), the actual reduction could be faster 

than this map. Although there is still a remaining area above 3.8 Sv/h, this 

area is almost fully contained within the non-residential forested zone. The 

area above 3.8 Sv/h is 14.2 km2, 97.8 % of which is in the forested area. 

The effectiveness of remediation in the forested region has been debated 

since the accident, since the soil, plant and/or litter removal leads to 

significant ecological disturbance (Ayabe et al., 2017). Globally, there has 

been a paradigm shift in environmental remediation from an approach of 

intense soil removal and treatment to one of passive remediation or natural 

attenuation (Ellis and Hadley, 2009). Such sustainable remediation considers

net environmental impacts including ecological disturbances, waste 

generation and energy usage. Also, it promotes longer institutional control 

with alternative end-use of the restricted land. Our prediction – that 

contamination will be limited within the non-residential forested zone in 10 

years – could have an impact on decontamination planning in the sustainable

remediation framework. For example, focusing decontamination in the 
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residential areas would be more effective for the residents’ return while 

avoiding ecological disturbances in forested regions and reducing cost and 

waste. 

4. Conclusion

In this study, we characterized the regional-scale changes in the air dose 

rates within the evacuation designated area around the Fukushima Nuclear 

Power Plant. We first applied the Bayesian data integration approach to 

create the integrated maps of air dose rates in 2014, 2015 and 2016, based 

on multi-type multiscale datasets available in the region. We quantified the 

ecological half-life and dose-rate reduction depending on land-use types, 

then coupled the integrated map with the data-driven predictive model to 

predict the future radiation air dose rates with increased accuracy. 

This was the second demonstration of our Bayesian data-integration 

approach developed by Wainwright et al. (2017) in a higher-dose region and 

in the larger spatial scale. The results have again shown that the proposed 

method was effective to integrate multiscale, multi-type dose-rate 

measurements, and also to create the high-resolution air dose rates over the

large spatial extent. The validation has confirmed a consistent performance 

of this method over these three years. Integrated maps captured more 

detailed spatial heterogeneity than the regional airborne survey data, and 

corrected a significant positive bias in the airborne survey. 
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The integrated maps enable us to visualize the temporal changes of air-dose 

rates in the regional scale. The dose rate reduction was computed based on 

these integrated maps, and the reduction was shown to be smaller in the 

forested region than the other land-use types, which is consistent with 

previous studies (Kinase et al., 2014; Saito, 2016). The integrated maps were

particularly powerful in identifying anthropologic effects such as the re-

opening of roads and effects of decontamination. In addition, the predictive 

modeling results showed that by 2026, the air dose rates would continue to 

decrease, and the area above 3.8 Sv/h would be almost fully contained 

within the non-residential forested zone. 
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(a)  (b)             

Figure 1. (a) Evacuation designated area and (b) land cover types (blue = 

urban, green = cropland and yellow = forest). In (a), the red region is the 

evacuation designated area as of April 2017. The green region is where the 

restriction order was lifted in April 2017.
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 (a)      (b) (c)

Figure 2. Comparison among different types of datasets in 2016: (a) airborne

survey, (b) car survey and (c) walk survey data. The thin black contour lines 

are the threshold of 3.8 Sv/h. The thick black lines are different zones within

the evacuation designated area shown in Fig. 1a.
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(a)  (b)     (c)

Figure 3. Comparison between the car and walk survey data: (a) urban, (b) 

cropland, and (c) forest areas in the 2016 data. The blue circles (“Min. D”) 

are the co-located points identified by the minimum distance. The red circles 

(“Simple”) are the average of the walk survey points using the simple 

average. In each plot, the correlation coefficients are shown. 
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(a)  (b)     (c)

Figure 4. Comparison between the air and walk survey data in: (a) urban, (b) 

cropland, and (c) forest and areas in the 2016 data. The blue circles (“Min. 

D”) are the co-located points identified by the minimum distance. The red 

circles (“Malin”) are the average of the walk survey points using the weights 

computed by the radiation transport simulation. In each plot, the correlation 

coefficients are shown. 
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(a)      (b) (c)

(d)      (e) (f)

Figure 5. Temporal evolution of (a-c) airborne survey data and (d-f) 

integrated maps in (a, d) 2014, (b, e) 2015 and (c, f) 2016. The thin black 

contour lines are the threshold of 3.8 Sv/h. The thick black lines are 

different zones within the evacuation designated area shown in Fig. 1a.
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(a)      (b) (c)

Figure 6. Validation results: comparison of the log-transformed walk survey 

data to the integrated map (red circles) and to the co-located airborne data 

(blue circles) at the walk-survey data locations not used for the estimation in 

(a) 2014, (b) 2015 and (c) 2016. The red dots represent the predicted values 

based on the data integration method; the blue dots are the co-located 

airborne data without using the integration. The black line is the one-to-one 

line; the red lines are the 99% confidence intervals.
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 (a) (b)

Figure 7. Log-difference of the air dose rates between (a) 2014 – 2015 and 

(b) 2015 –2016. 
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Figure 8. Predicted air dose rate in 2026 based on the integrated map. The 

thin black contour lines are the threshold of 3.8 Sv/h. The thick black lines 

are different zones within the evacuation designated area.
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Table 1. Median reduction in the air dose rate within each land-use type, 

along with the range of the five and ninety-five percentiles in the prentices. 

The reduction was defined by the ratio of air dose rates between the two 

years at each pixel. 

2014-2015 2015-2016 2014-2016
Urban 0.68 (0.46 – 

0.95)

0.74 (0.40 – 

1.00)

0.50 (0.25 – 

0.75)
Cropland 0.70 (0.46 – 

0.89)

0.72 (0.47 – 

0.93)

0.50 (0.28 – 

0.71)
Forest 0.72 (0.57 – 

0.86)

0.78 (0.63 – 

0.95)

0.57 (0.42 – 

0.70)
Kinase 

model(forest)*

0.83 (0.79 – 

0.87)

0.86 (0.82 – 

0.89)

0.72 (0.65 – 

0.77)
Kinase model (others)0.83 (0.78 – 

0.87)

0.86 (0.81 – 

0.89)

0.72 (0.64 – 

0.77)
* Kinase et al. (2017)
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