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ABSTRACT OF THE THESIS

Predicting Pedestrian Crossing Intention

by

Afnan Alofi

Master of Science in Electrical Engineering
(Intelligent Systems, Robotics, and Control)

University of California San Diego, 2023

Professor Mohan M. Trivedi, Chair

Autonomous vehicles face significant challenges in understanding pedestrian behavior,

particularly in urban environments. The system must recognize pedestrians’ intentions and

anticipate their actions to achieve intelligent driving. This paper focuses on predicting pedestrian

crossings, aiming to enable oncoming vehicles to react in a timely manner. We investigate the

effectiveness of various input modalities for pedestrian crossing prediction, including human

poses, bounding boxes and ego vehicle speed features. We propose a novel lightweight architec-

ture based on LSTM and attention to accurately identifying crossing pedestrians. Our methods

evaluated on two widely used public datasets for pedestrian behavior, PIE and JAAD datasets,

ix



and our algorithm achieved a state-of-the-art performance in both datasets.
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Chapter 1

Introduction

Autonomous vehicles, or self-driving cars, significantly advance transportation technol-

ogy. These autonomous vehicles are designed to operate without human intervention, using a

combination of sensors, algorithms, and artificial intelligence systems to navigate roads and

make driving decisions. Autonomous vehicle development has the potential to revolutionize

transportation by improving road safety, reducing congestion, and increasing accessibility. With

the ability to perceive and interpret their surroundings, autonomous vehicles can adapt to chang-

ing road conditions and interact with other vehicles, pedestrians, and infrastructure.

Having the capacity to comprehend the surrounding surroundings and predict the intentions of

other road users is of utmost importance in mitigating traffic fatalities. Autonomous vehicles

play a vital role in ensuring pedestrian safety, and preventing collisions with pedestrians is

paramount. Current methods for pedestrian collision prevention primarily involve integrating

visual pedestrian detectors with Automatic Emergency Braking (AEB) systems, which can

trigger warnings and apply brakes as a pedestrian enters the vehicle’s path. However, these

pedestrian-detection-based systems face limitations, including reduced effectiveness in low-light

conditions and when pedestrians are occluded and challenges in handling complex scenarios

and adverse weather conditions. These limitations highlight the need for advancements in

sensor technology and algorithms to improve pedestrian detection and response capabilities in

autonomous vehicles.
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Based on the 2020 report by the National Highway Traffic Safety Administration [1], there were

6,516 pedestrian fatalities and 54,769 pedestrian injuries resulting from traffic accidents in the

United States. Despite vehicle and road safety advancements over the past two decades, there

has been a significant 42% increase in pedestrian fatalities on public roads from 2000 to 2020.

Most pedestrian deaths (80%) occurred in urban areas, with 75% happening on open roads rather

than at intersections. The report highlighted that the leading cause of pedestrian fatalities (50%)

was the failure of drivers to yield the right of way.

In light of the alarming statistics and the need for improved pedestrian safety, this project aims

to develop a predictive model to anticipate whether a pedestrian is likely to cross the street. By

analyzing various visual and contextual cues, the model will assess the intention of pedestrians

and provide early indications of potential crossing behavior. The objective is to leverage ma-

chine learning algorithms, such as utilizing a combination of vision and non-vision features, to

accurately predict pedestrian intentions, especially scenarios where they might cross the street

unexpectedly, such as crossing in the middle of the street instead of using designated crosswalks

as shown in figure 1.1(d). Another challenging scenario for predicting pedestrian crossing

behavior occurs when pedestrians are standing on a crosswalk but display hesitation in crossing,

as depicted in (a) and (b) of Figures1.1. Additionally, predicting their behavior becomes even

more complex when they suddenly change their crossing direction, as shown in Figures 1.1(c).

By building this predictive model, we aim to contribute to the prevention of pedestrian

accidents and provide valuable insights for developing advanced driver assistance systems

(ADAS). The proposed solution can improve road safety by enabling vehicles to anticipate and

respond effectively to pedestrian behavior, reducing the risk of collisions and ultimately saving

lives.

1.1 contributions

In summary, the contributions of this work are three folds as follows:
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(a) (b) (c) (d)

Figure 1.1. (a) Pedestrian have the intention to cross but did not crossing,PIE dataset. (b)
Pedestrian have the intention to cross but did not crossing,JAAD dataset. (c) Pedestrian crossing
the street unexpectedly,PIE dataset. (d) Pedestrians crossing the street from the middle, JAAD
dataset.

1. A new framework is proposed, utilizing non-visual features, to accurately predict a pedes-

trian’s intention to cross the street

2. Through comprehensive ablation studies, different features are systematically evaluated as

inputs to the model, aiming to identify the optimal set of features.

3. The effectiveness and efficiency of the proposed method are demonstrated by evaluating

its performance on two widely used pedestrian datasets, namely JAAD dataset [2] and PIE

dataset [3].
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Chapter 2

Related work

The Related Work section provides an overview of prior research in understanding

pedestrian behavior and predicting their actions in the context of autonomous vehicles. The

investigation into predicting pedestrian crossing actions can be systematically classified into four

distinct categories, each delineated by its approach: historical data, utilization of multimodal

data models, and application of unimodal data models.

2.1 History

In our previous work, ”Pedestrian Behavior Maps for Safety Advisories: CHAMP

Framework and Real-World Data Analysis” [4], we addressed these issues by developing an

online, map-based pedestrian detection aggregation system. The system leverages repeated

passes of locations to learn common pedestrian zones and overcome challenges like dark lighting

or pedestrian occlusion. Through careful data collection and annotation in La Jolla, CA, we

demonstrated the system’s ability to learn pedestrian zones and generate advisory notices when a

vehicle approaches a pedestrian in challenging conditions.

2.2 Multimodal data

In recent years, numerous crossing-action prediction models have employed multimodal

data. These models leverage diverse features to comprehensively understand intricate real-world
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scenarios, encompassing elements such as the visual appearance of pedestrians and their sur-

roundings, their precise locations, poses, and the speed of the ego-vehicle. For instance, in

the paper ”Predicting Pedestrian Crossing Intention with Feature Fusion and Spatio-Temporal

Attention” [5], a novel neural network architecture is proposed. The model incorporates CNN

modules, RNN modules, attention modules, and a unique feature fusion approach. It combines

visual features, such as local and global context, with non-visual features, such as pose keypoints,

bounding boxes, and vehicle speed. The paper achieved state-of-the-art performance on the

JAAD dataset, demonstrating the effectiveness of their approach.

Another example is found in the paper titled ”Early intention prediction of pedestrians

using contextual attention-based LSTM” [6]. The proposed model consists of two layers of

LSTM and one layer of attention mechanism as its core components. The model first detects

and tracks pedestrians and then utilizes visual, contextual, and motion feature extraction to

predict their crossing behavior through an attention-based LSTM (CA-LSTM). Visual features

are extracted by applying two convolution layers and one average pooling layer to the pedes-

trian area cropped from the image based on bounding boxes. Similarly, contextual features are

extracted, with the only difference being the expansion of the pedestrian’s bounding box at a

specific scale. Motion features encompass the pedestrian’s velocity and walking angle, with the

angle range determined by the direction relative to the horizontal axis. The paper demonstrates

state-of-the-art performance in predicting future pedestrian crossing behavior, as evaluated on

the JAAD dataset.

However, it is essential to highlight that a previous study achieved outstanding perfor-

mance by utilizing non-visual features. In the research paper titled ”Feature Selection and

Multi-task Learning for Pedestrian Crossing Prediction” [7], the proposed model incorporated

three features: vehicle speed, bounding box, and pose. While the body pose provided in the

JAAD and PIE datasets was extracted using the OpenPose method, the study observed limitations

in OpenPose’s performance on the image data within these datasets. The challenges stemmed

from most pedestrians being located at a considerable distance, resulting in small image crops

5



and out-of-focus image regions, which hindered accurate pose estimation. To overcome this

issue, the researchers adopted the HRNet [8] method by training on the BDD100K dataset [9].

This strategic choice substantially enhanced the precision of detected poses within the JAAD and

PIE datasets. Consequently, the pedestrian crossing prediction accuracy significantly improved,

achieving a state-of-the-art performance level of 91% accuracy.

The paper ”Benchmark for Evaluating Pedestrian Action Prediction” [10] has made a

notable contribution to the field by introducing a novel evaluation protocol designed explicitly for

benchmarking pedestrian action prediction algorithms. The authors recognized the importance

of establishing a standardized framework to enable fair comparisons among different prediction

models. They conducted thorough evaluations using two publicly available datasets, PIE and

JAAD, considering various data properties such as time-to-event, occlusion, and scale. However,

they found it challenging to attribute the difficulty of the samples to specific data properties,

and they observed inconsistency in model agreement. Furthermore, based on the benchmark

results, the authors proposed a groundbreaking hybrid model that combines recurrent and 3D

convolutional approaches with temporal and modality attention mechanisms. This novel model

achieved state-of-the-art performance on both the PIE and JAAD datasets. The meticulous

annotation of ground truth trajectories and action labels in the benchmark dataset allowed for

the precise evaluation of prediction models. The benchmark dataset and evaluation framework

presented in this paper have gained widespread adoption within the research community, serving

as a fundamental resource for evaluating and comparing various pedestrian action prediction

algorithms.

The authors of the paper titled ”Pedestrian Graph +: A Fast Pedestrian Crossing Predic-

tion Model Based on Graph Convolutional Networks” [11] introduce the Pedestrian Graph +

model, an advancement over their earlier Pedestrian Graph model, designed to predict pedestrian

crossing actions in urban environments using a Graph Convolutional Network. By incorporating

two convolutional modules into the new model, the researchers provide supplementary context

information such as cropped images, segmentation maps, and ego-vehicle velocity data to en-
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hance the accuracy of predictions. Notably, the Pedestrian Graph + model is more efficient than

other state-of-the-art models, offering equivalent accuracy while exhibiting a faster inference

time of 6 ms and minimal memory consumption. The model’s performance is validated on

the Joint Attention in Autonomous Driving (JAAD) and Pedestrian Intention Estimation (PIE)

datasets, achieving accuracies of 86% and 89%, respectively.

2.3 Unimodal data

Conversely, within the scope of unimodal data, certain studies have successfully harnessed

individual features to yield impressive outcomes. For example, the paper titled ”Is attention

to bounding boxes all you need for pedestrian action prediction?” [12], where the researchers

introduce a framework that employs multiple variations of Transformer models to predict

pedestrian street-crossing decisions based on their initiated trajectory dynamics. The study

reveals that the framework surpasses previous state-of-the-art results by solely considering

bounding boxes as input features. Notably, on the PIE dataset, the framework achieves a

prediction accuracy 91% and an F1-score of 83%.

An additional intriguing study, titled ”Anticipating Pedestrian Crossing Intentions through

Head Gestures: Leveraging Head Pose Estimation,” [13]. This research utilizes advanced

techniques, including Head Pose Estimation, to predict pedestrians’ intentions to cross the

road. The methodology employs the YOLOv3 algorithm to detect human heads within groups

of pedestrians precisely. Subsequently, the WHENet model is utilized to estimate the head’s

pose accurately. To finalize the decision-making process, the researchers employ a K-Nearest

Neighbor classifier to determine whether a pedestrian will engage in crossing or not. This

approach achieves a remarkable accuracy of 97.2% when tested on a subset of the jaad dataset.

This subset comprises 18 distinct sample videos featuring pedestrians characterized by unique

head gestures.
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Table 2.1. Related Work

study Methodology Features PIE JAAD Important findings
acc ↑ auc ↑ f1 ↑ acc ↑ auc ↑ f1 ↑

Kotseruba RNN with bounding box Establishes benchmark
[10] attention modules Speed,pose 0.87 0.86 0.77 0.85 0.86 0.68 evaluating pedestrian

2021 local context for action prediction
models .

Perdana MI K-Nearest Head Pose - - - 0.97 - - Using head pose
[13] Neighbor Estimation to predicted Pedestrian

2021 Crossing Intention but
just part of jaad dataset

, just 18 videos.
Yang D RNN modules bounding box, - - - 0.83 0.82 0.63 combines visual features

[5] and pose, with non-visual features
2022 attention modules global context

Schörkhuber RNN-based bounding box - Multi-task learning
[7] encoder-decoder Speed improvement over all

2022 PoesHRNet 0.91 0.93 0.82 0.90 0.95 0.76 performance, jointly
trains to predict crossing
,trajectory and location.

- Pose from HRNet
improvement performance.

Cadena PR Graph Convolution Speed fast pedestrian crossing
[11] Network and pose 0.89 0.90 0.81 0.86 0.88 0.65 prediction model based

2022 parallel RNN local context on graph
convolutional networks

Achaji L, Using solely input feature
[12] Transformer bounding box 0.91 0.91 0.83 - - - bounding boxes surpasses
2022 previous state-of-the-art

result
Lian J Series LSTM Visual feature

[6] and Contextual
feature

using pedestrian’s

2023 attention modules pedestrian’s - - - 0.89 - 0.75 velocity and
velocity and walking angle
walking angle
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Chapter 3

Datasets and Features

3.1 Datasets

3.1.1 Pedestrian Intention Estimation (PIE) dataset

The Pedestrian Intention Estimation (PIE) dataset is a valuable and extensive resource for

studying pedestrian behavior in traffic. It provides a comprehensive understanding of pedestrians’

actions and intentions through over 6 hours of recorded footage and accurate vehicle information.

With rich annotations for pedestrians, vehicles, and infrastructure, spanning more than 300,000

labeled video frames, the dataset offers detailed insights into various aspects of pedestrian behav-

ior. The pedestrian counts within the dataset reveal that 519 pedestrians successfully crossed,

894 intended to cross but did not, and 429 showed no intention to cross. These counts provide

significant insights for studying pedestrian behavior in diverse traffic situations. [3].

3.1.2 Joint Attention in Autonomous Driving (JAAD) dataset

The JAAD (Joint Attention in Autonomous Driving) dataset is a comprehensive resource

for studying pedestrian and driver behaviors in autonomous driving scenarios. It consists of

346 short video clips, providing a richly annotated collection from over 240 hours of driving

footage. The dataset includes spatial annotations with bounding boxes for 2,793 pedestrians and

9



Table 3.1. Comparing the PIE Dataset with the JAAD Dataset

Dataset PIE JAAD

Released year 2019 2017

Total number 909,480 82,032
of frames

Video Duration over 6 hours over 240 hours

Number of pedestrians 1842 686
with behavior annot.

Number of pedestrians who 519 495
cross the street

Number of pedestrians who 1323 191
do not cross the street

Geographic Scope Toronto, Canada North America
and Eastern Europe

Ego-vehicle sensor yes No
information

Nighttime Cases None 4 Videos
Pedestrian adult and young 1640 574

Pedestrian child 17 16
Pedestrian senior 185 96

behavioral annotations specifying their actions. With a variety of scenarios captured in North

America and Europe, the JAAD dataset offers valuable insights into pedestrian behavior during

street crossings, including 495 instances of pedestrians crossing and 191 instances of pedestrians

not crossing.[2].The comparison between the PIE dataset and the JAAD dataset is presented in

Table 3.1.
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3.2 Features

3.2.1 Pose:

The Human Body Poses ( Pose), sourced from the JAAD and PIE datasets, were estimated

using the OpenPose technique. These poses were the subject of investigation in the research

paper titled ”Feature Selection and Multi-task Learning for Pedestrian Crossing Prediction”

[7]. Initially, the findings indicated limitations in using the OpenPose method to extract body

poses from the JAAD and PIE datasets. However, a more robust performance was achieved by

integrating the HRNet method into the OpenPose approach. In our methodology, we harnessed

the capabilities of HRNet [8] to enhance the accuracy of human pose estimation. The procedure

encompassed the cropping of the video frame to align with the respective bounding box of

pedestrian annotations. Subsequently, the HRNet was employed to execute the pose estimation,

and the resulting coordinates of estimated keypoints were normalized in relation to the dimensions

of the video frame. This normalization process confined the values within the range of [−1,1]⊂

R.

3.2.2 Speed of Ego-Vehicle:

The ego vehicle Speed (Speed), it is incorporated as factual data in the PIE and JAAD

datasets. While the vehicle speed in the PIE dataset is recorded using multiple sensors and is

presented in kilometers per hour (km/h), the JAAD dataset lacks such quantitative measurements.

Instead, it employs numerical labels ranging from 0 to 4, signifying stationary, slow movement,

rapid movement, deceleration, and acceleration, respectively.

3.2.3 Bounding Box:

Bounding Box Sequences (Box) are utilized to capture the positional and dimensional

information of pedestrians. These boxes are defined by their upper-left and lower-right corner

coordinates, namely (x1, y1) and (x2, y2).
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Chapter 4

Pedestrian Prediction Modules

4.1 Predicting Pedestrian Crossing Intention model (PPCI)

The overall architecture is shown in Figure 4.1. It consists of RNN modules, and a novel

way of fusing different features.

Figure 4.1. The Predicting Pedestrian Crossing Intention model (PPCI) architecture

RNN module. We use Long Short-Term Memory ( LSTM ) [14] to build the RNN

module. The applied LSTMs have 256 hidden units. LSTMs are a special kind of RNNs that are

equipped with memory cells and gates. These structures enable them to maintain information

12



in their memory for extended periods. Each hidden units corresponds to a memory cell in the

LSTM, allowing the network to store and retrieve information efficiently over time.

LSTMs possess a unique cell structure that distinguishes them from traditional RNNs.

They introduce three critical gates: the input gate (it), forget gate ( ft), and output gate (ot), along

with a cell state (Ct).

Given an input vector xt and a previous hidden state ht−1, the LSTM updates are as

follows:

it = σ(Wiixt +bii +Whiht−1 +bhi) (4.1)

ft = σ(Wi f xt +bi f +Wh f ht−1 +bh f ) (4.2)

ot = σ(Wioxt +bio +Whoht−1 +bho) (4.3)

C̃t = tanh(Wigxt +big +Whght−1 +bhg) (4.4)

Ct = ft ·Ct−1 + it ·C̃t (4.5)

ht = ot · tanh(Ct) (4.6)

Where:

• σ is the sigmoid activation function.

• tanh is the hyperbolic tangent activation function.

• W and b are the weight matrices and bias terms for the respective gates.

These gates control the flow of information, making sure the network retains or forgets

data as needed. The main advantage of LSTMs over standard RNNs is their ability to remember

long-term dependencies, thanks to the cell state and these gating mechanisms.

Hybrid fusion. We applied a hierarchically way of fusing the features from different

sources. The RNN module branch fuses three non-visual features (bounding boxes, pose key

13



points, and vehicle speed). They are hierarchically fused according to their complexity and

level of abstraction. This is illustrated in Figure . First, sequential pedestrian poses key points

are fed to an RNN-based encoder. Second, the output of the first stage is concatenated with

a bound box and fed to a new RNN-based encoder. Last, the output of the second stage is

concatenated with ego-vehicle speed S and fed to a final RNN-based encoder. The output will

fed to double LSTM then to fully-connection (FC) , followed with LSTM. Finally, the output fed

into a fully-connection (FC) layer to obtain the final predicted action.

Training. We train the model with Adam optimizer [15], binary crossentropy loss and

batch size set to 8. We train for 20 epochs on PIE dataset with learning rate set to 1×10−4 and

reduce it after every epoch with a decay rate of 0.20 and for 90 epochs on JAAD dataset with

learning rate 1×10−4 and reduce it after every epoch with a decay rate of 0.95.

4.2 Predicting Pedestrian Crossing Intention with Atten-
tion Mechanisms Model (PPCI att)

The overall architecture is shown in Figure 4.2. It consists of RNN modules, attention

modules, and a novel way of fusing different features.

RNN module. We use Long Short-Term Memory ( LSTM ) [14 ] to build the RNN

module. The applied LSTMs have 256 hidden units. see section 4.1 RNN module.

Attention module. Attention module [16], by selectively focusing on parts of features,

is used for better memorizing sequential sources. Sequential features are represented as hidden

states hs = {h1,h2, ...,ht}. The attention weight is computed as shown in Equation 4.7 .

αts =
exp(score(ht ,hs))

∑
S
s′=1 exp(score(ht ,hs′))

[Attention weights] (4.7)

where score(ht ,hs) = hT
t Wshs and Ws is a weight matrix. Such attention weight trades

off the end hidden state ht with each previous source hidden state hs. The output vector of the
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Figure 4.2. The Predicting Pedestrian Crossing Intention model (PPCI) architecture

attention module is produced as shown in Equation 4.9

ct = ∑
s

αtshs [Context vector] (4.8)

at = f (ct ,ht) = tanh(Wc[ct ;ht ]) [Attention vector] (4.9)

where Wc is a weight matrix, and ct is the sum of all attention weighted hidden states as shown

in Equation 4.8 . The output of the attention module in our work is a feature tensor.

Hybrid fusion. We applied a hybrid way of fusing the features from different sources.

The strategy is shown in Figure 4.2. The proposed architecture has two branches, one for RNN

module features and one for Attention module features. The RNN module branch fuses three

non-visual features (bounding boxes, pose key points, and vehicle speed). They are hierarchically

fused according to their complexity and level of abstraction. This is illustrated in Figure 4.2

. First, sequential pedestrian poses key points are fed to an LSTM. Second, the output of the

first stage is concatenated with a bound box and fed to a new LSTM. Last, the output of the

15



second stage is concatenated with ego-vehicle speed S and fed to a final LSTM , then fed into

the Attention module block.

The Attention module’s feature branch combines three distinct non-visual components:

bounding boxes, pose key points, and vehicle speed, which are the same features used in the

RNN module branch. These features are individually fed into the Attention module, and their

outputs are subsequently merged by concatenating them together.

Finally, the output of RNN module branch and Attention module branch are concatenated

together and fed into a fully-connection (FC) layer to obtain the final predicted action.

Training. We train the model with Adam optimizer [15], binary crossentropy loss, and

batch size set to 8. We train for 20 epochs on the PIE dataset with a learning rate set to 1×10−4

and reduce it after every epoch with a decay rate of 0.20 and for 40 epochs on JAAD dataset

with learning rate 5×10−4.
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Chapter 5

Experimental Analysis

5.1 Results

The evaluation is performed with the recently proposed Benchmark for Evaluating

Pedestrian Action Prediction [10]. The Benchmark for Evaluating Pedestrian Action Prediction

integrates the datasets PIE (Pedestrian Intention Estimation) and JAAD (Joint Attention in

Autonomous Driving) into a common evaluation framework. We compare Predicting Pedestrian

Crossing Intention model (PPCI) results with state-of-the-art and recently published methods for

pedestrian crossing prediction [7] ,[10] and [12] which use the PIE, JAAD or both datasets for

evaluation.

5.1.1 Predicting Pedestrian Crossing Intention model (PPCI)

The performance of the Predicting Pedestrian Crossing Intention model (PPCI) is pre-

sented in Table 5.1 on the PIE and JAAD datasets. The table includes the following evaluation

metrics: accuracy (acc), the area under the curve (AUC), and F1 score (f1). The results indicate

that the ”Predicting Pedestrian Crossing Intention” model achieves state-of-the-art performance

on the JAAD Beh dataset with an accuracy of 65%, an improvement of 2% over the previous

state-of-the-art.
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Table 5.1. Predicting Pedestrian Crossing Intention model (PPCI) result.

Model features PIE Jaad beh Jaad all
ACC↑ AUC↑ F1↑ ACC↑ AUC↑ F1↑ ACC↑ AUC↑ F1↑

PPCI poseHRNet 0.89 0.87 0.81 0.65 0.58 0.75 0.83 0.76 0.58
(our) , bound box

speed
MTL bound box 0.91 0.93 0.82 0.63 0.65 0.77 0.90 0.95 0.76
[7] Pose

(HRNet pertrain)
speed

TED bound box 0.91 0.91 0.83 - - - - - -
[12]

PCPA pose, box, 0.87 0.86 0.77 0.58 0.50 0.71 0.85 0.86 0.68
[10] speed,

local context

5.1.2 Predicting Pedestrian Crossing Intention with Attention Mecha-
nisms Model (PPCI att)

The performance of the Predicting Pedestrian Crossing Intention model (PPCI) is pre-

sented in Table 5.2 on the PIE and JAAD datasets. The table includes the following evaluation

metrics: accuracy (acc), the area under the curve (AUC), and F1 score (f1). The results indicate

that the Predicting Pedestrian Crossing Intention with Attention Mechanisms model achieves

state-of-the-art performance on both the PIE and JAAD Beh datasets, excelling in accuracy

and F1 score metrics. Accuracy measures the proportion of correctly identified predictions out

of the total predictions. On the other hand, the The F1 score offers insights into the balance

between the model’s precision (its ability to avoid false positives) and its recall (its capacity to

correctly identify true positives). On the PIE dataset, the model showcases an accuracy of 91%

coupled with an F1 score of 84%, marking a notable improvement of 1% in F1 compared to the

preceding best results. When evaluated on the JAAD Beh dataset, the model demonstrates an

accuracy of 67% and an F1 score of 77%. Impressively, this denotes an enhancement in accuracy

by 4% over the previous state-of-the-art. Moreover, these results highlight the advancements

the ”Predicting Pedestrian Crossing Intention with Attention Mechanisms” model has made

over its predecessor, the ”Predicting Pedestrian Crossing Intention” model. Including attention
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mechanisms has contributed to this significant leap in performance.

Table 5.2. Predicting Pedestrian Crossing Intention with Attention Mechanisms Model (PPCI att)
result.

Model features PIE Jaad beh Jaad all
ACC↑ AUC↑ F1↑ ACC↑ AUC↑ F1↑ ACC↑ AUC↑ F1↑

PPCI att poseHRNet 0.91 0.89 0.84 0.67 0.60 0.77 0.81 0.78 0.75
(our) , bound box

speed
PPCI poseHRNet 0.89 0.87 0.81 0.65 0.58 0.75 0.83 0.76 0.58
(our) , bound box

speed
MTL bound box 0.91 0.93 0.82 0.63 0.65 0.77 0.90 0.95 0.76
[7] Pose

(HRNet
pertrain)
speed

TED bound box 0.91 0.91 0.83 - - - - - -
[12]

PCPA pose, box, 0.87 0.86 0.77 0.58 0.50 0.71 0.85 0.86 0.68
[10] speed,

local con-
text

5.2 An Ablation Study

5.2.1 Feature Selection

Feature selection is critical in developing an efficient and accurate Pedestrian Crossing

Prediction model. As shown in Table 5.3, different feature combinations yield varying accuracy,

AUC, and F1 scores for the PIE, Jaad beh, and Jaad all datasets. When combining Pose Hrent,

bound box, and speed as features, the model demonstrates the highest accuracy (ACC) of 0.91

on the PIE dataset, suggesting that this combination is particularly effective for this specific

dataset. This combination also yields promising results for the Jaad beh and Jaad all datasets.

Interestingly, when the pose (Open pose) was estimated by using the Open pose method and

combined with box and speed, there was a slight decrease in performance metrics across all

datasets. This indicates that while ”Open pose” might be a popular pose estimation method, it
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might not be the most optimized for pedestrian crossing prediction in the given context.

Table 5.3. Feature Selection for Predicting Pedestrian Crossing Intention with Attention Mecha-
nisms Model (PPCI att)

Features
PIE Jaad beh Jaad all

ACC↑ AUC↑ F1↑ ACC↑ AUC↑ F1↑ ACC↑ AUC↑ F1↑
poseHRNet , bound
box

0.91 0.89 0.84 0.67 0.60 0.77 0.81 0.78 0.75

speed
poseOpenpose,
bound box,

0.86 0.86 0.77 0.64 0.58 0.75 0.79 0.77 0.58

speed
poseHRNet , bound
box

0.88 0.86 0.79 0.62 0.53 0.74 0.79 0.78 0.56

poseHRNet 0.80 0.76 0.65 0.52 0.45 0.65 0.74 0.75 0.50
bound box 0.82 0.82 0.72 0.62 0.54 0.73 0.78 0.76 0.54

5.2.2 Fusion Strategies

An ablation study was also conducted to compare different strategies for fusing features.

We tried different fusion strategies, including later fusion and early fusion, to be compared

with the proposed hybrid fusion strategy, as shown in the table 5.4. According to the results

detailed in Table 5.4, the hybrid-fusion approach—when fusing features such as poseHRNet as

estimated by HRNet, bounding box, and speed—outperformed the other methods for the PIE

dataset, achieving an accuracy of 0.91, AUC of 0.89, and an F1 score of 0.84. Comparatively,

early fusion rendered slightly inferior results with an accuracy of 0.89, while the later-fusion

strategy clocked in with 0.88 for the same dataset. The hybrid fusion strategy in amalgamating

features effectively paves the way for a more precise prediction of pedestrian intentions across

various datasets.

5.2.3 layer ablation study

In another ablation study, we examined the impact of removing particular layers from the

Predicting Pedestrian Crossing Intention with attention mechanisms model (PPCI att) to observe

the resulting changes in performance. We began by assessing the hierarchy model without any
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Table 5.4. Comparing Feature Fusion Strategies for Predicting Pedestrian Crossing Intention
with Attention Mechanisms Model (PPCI att)

Fusion Features PIE Jaad beh Jaad all
Approach ACC↑ AUC↑ F1↑ ACC↑ AUC↑ F1↑ ACC↑ AUC↑ F1↑
hybrid-
fusion

poseHRNet ,

(OUR) bound box 0.91 0.89 0.84 0.67 0.60 0.77 0.81 0.78 0.75
speed

early poseHRNet ,
fusion bound box 0.89 0.87 0.80 0.59 0.51 0.71 0.78 0.77 0.54

speed
later poseHRNet ,
fusion bound box 0.88 0.87 0.80 0.58 0.54 0.67 0.77 0.76 0.54

speed

attention layers to establish a baseline, as shown in Figure 5.1. Subsequently, we incorporated a

late attention layer at the end of the hierarchy model, as shown in Figure 5.2.

Figure 5.1. The hierarchy model architecture.

Our architecture is distinctly structured into two branches: one that processes features

using an LSTM module and another that handles features through an Attention module, as shown

in Figure 4.2. The results are shown in table 5.5, our model demonstrated a marked increase in

accuracy, AUC (Area Under the Curve), and F1 score across both the JAAD behavioral (Jaad

beh) and JAAD all datasets and the PIE dataset. This indicates that the attention mechanisms

21



Figure 5.2. The hierarchy + late attention model architecture.

employed in our model significantly enhance its ability to predict pedestrian crossing intentions,

ultimately making it the best-performing architecture in our study.

Table 5.5. layer ablation study.

Model
Architec-
ture

Features PIE Jaad beh Jaad all

Approach ACC↑ AUC↑ F1↑ ACC↑ AUC↑ F1↑ ACC↑ AUC↑ F1↑
hierarchy poseHRNet ,

box, speed
0.89 0.86 0.80 0.62 0.55 0.74 0.80 0.76 0.56

hierarchy
+ late
attention

poseHRNet ,
box, speed

0.89 0.87 0.80 0.63 0.56 0.74 0.81 0.76 0.57

PPCI att
(OUR)

poseHRNet ,
box, speed

0.91 0.89 0.84 0.67 0.60 0.77 0.81 0.78 0.75

5.3 Qualitative results

We show qualitative results for the best performing model Predicting Pedestrian Crossing

Intention with an attention mechanisms model (PPCI att).

This first case from the Jaad dataset is shown in Figure 5.3, which illustrates two

pedestrians crossing the street. Our model PPCI att was able to predict it correctly.
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Figure 5.3. Two pedestrians crossing the street from the Jaad dataset.

Similarly, Figure 5.4 from the PIE dataset illustrates another instance of pedestrians

crossing the street, where our PPCI att model’s prediction was also accurate.

Figure 5.4. Two pedestrians crossing the street from the PIE dataset.

Another Figure 5.5 from the PIE dataset illustrates instance of pedestrians not crossing

the street and our model PPCI att was able to predict it correctly.

Figure 5.5. Two pedestrians not crossing the street from the PIE dataset.

Figure 5.6 illustrates a scenario where two pedestrians cross the street from PIE dataset.

Our algorithm successfully predicted the crossing intentions of one pedestrian but failed with the

other. We observed that the pedestrian our model PPCI att failed to predict momentarily exits
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the frame, rendering them invisible. This temporary absence likely impacted our model’s ability

to accurately predict their crossing intention.

Figure 5.6. Two pedestrians crossing the street from the PIE dataset.

24



Chapter 6

CONCLUSION

In this work, we propose a novelty Predicting Pedestrian Crossing Intention with an

attention mechanisms model (PPCI att) based on LSTM and attention mechanism to predict

pedestrian attention intention to cross the street or not by using non-visual feature pose boundary

box and vehicle speed. We Evaluate the model on two widely-used pedestrian datasets: the

Joint Attention in Autonomous Driving (JAAD) dataset and The Pedestrian Intention Estimation

(PIE) dataset. Predicting Pedestrian Crossing Intention with the attention mechanisms model

(PPCI att) achieved state-of-the-art results on both the PIE and JAAD datasets. We show different

Ablation studies, study the effects of different input features. The second ablation study is about

the features of Fusion.

Finally, we showed qualitative results and failed cases. Future work can focus on

improving our model by using feature fusion with more information sources can be explored,

e.g., using trajectory.
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crossing intention with feature fusion and spatio-temporal attention,” IEEE Transactions
on Intelligent Vehicles, vol. 7, no. 2, pp. 221–230, 2022.

[6] J. Lian, F. Yu, L. Li, and Y. Zhou, “Early intention prediction of pedestrians using contextual
attention-based lstm,” Multimedia Tools and Applications, vol. 82, no. 10, pp. 14 713–
14 729, 2023.
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