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Introduction 

As predatory financial markets dismembered Lehman Brothers in the autumn of 2008, panicked 

investors took refuge in US Treasuries. However, the rich returns to US sovereign bonds were 

not evenly distributed across the market. Prices of Treasury Inflation Protected Securities (TIPS), 

for which the principal and interest payments are indexed to the CPI, fell dramatically as their 

nominal counterparts rose in value. Near-term “breakeven” or “expected” inflation, which is the 

difference between nominal and real yields, plummeted to 6.5.1 

The autumn 2008 divergence between TIPS and nominal Treasuries was unusual: the correlation 

between these asset classes has historically hovered around 0.9, but fell to a low of 0.4 in 

November 2008.2 The divergence was also impactful, since TIPS account for roughly 10 of the 

US sovereign bond market, and they represent hundreds of billions of dollars in outstanding 

principal. Even after the fact, (backward-looking) statistical risk models are unfit to assess the 

likelihood of a dramatic shock to breakeven inflation. It is nevertheless possible to account for a 

shock of this type in an investment process. 

Investors stress their portfolios to analyze the impact of extreme events, which tend to lie outside 

the purview of statistical risk measures. Stress tests can detect a portfolio’s vulnerabilities and 

assess its expected reaction to market scenarios, and consequently can add significant value to 

an investment process. However, it can be challenging to determine and implement the most 

salient scenarios. Further, the output of many stress tests is expressed in terms of profits and 

losses (P&L), and this information is not directly actionable. The investor must translate P&L into 

modified portfolio weights. 

In this article, we address both of these issues. First, we introduce a structured set of tools that 

enable investors to envision and administer extreme historical and hypothetical scenarios. We 

show how to take account of historical and hypothetical covariance matrices in scenario 

construction, and we provide examples that demonstrate the substantial impact of doing so. In 

short, the risk climate can and should be incorporated in a stress test. 

Second, we provide a means to incorporate the output of a portfolio stress test directly into an 

investment decision, which ultimately boils down to a tradeoff between the competing objectives 

of minimizing risk and maximizing return. In the examples provided below, we achieve this with a 

scenario-constrained mean-variance optimization. However, as discussed in Cases 4 and 5, we 

can incorporate extreme risk and other non-Gaussian effects in a stress test. Below, we review 

the standard framework for stress testing a portfolio. Subsequently, we sketch our new paradigm 

and provide numerous examples that illustrate its features.   

                                                      
1 Inflation rates in the US have been overwhelming positive over the past century. The lowest inflation rates, roughly 5, occurred in the 
mid-1920s and again in the mid-1930s. Since 1950, the rate of inflation has not fallen below 1. The low level of breakeven inflation in 
autumn 2008 may be attributed to market-wide fears of a 1929-style deflation.  
2The time series of correlations between TIPS between Nominal Treasuries is shown in Exhibit A1 of Appendix I. 
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Standard Stress Testing Methodology 

Standard stress tests apply a market shock to an existing portfolio, and they analyze the impact in 

terms of the overall portfolio P&L. In the simplest case, a manager may wish to see how much his 

portfolio would lose if the term structure of interest rates were to rise by 2 across all maturities. 

All instruments with direct exposure to interest rates are revalued at the shocked levels, and the 

resulting portfolio profit or loss associated with this rate hike is computed. 

However, dramatic rate hikes do not happen in isolation. This leads to a more comprehensive 

way to analyze the impact of rising interest rates on a portfolio: a factor or asset covariance 

matrix is used to apply a narrowly defined shock to assets that are not explicitly affected. While 

equities, for example, are not explicitly affected by yield curve movements, there is an expected 

impact that is implied by the correlations between equities and bonds. For completeness, we 

review the standard framework for estimating the expected impact. 

Consider a collection X  of returns to assets or asset classes that an investor wishes to stress. 

Let Y be a second (non-overlapping) collection of returns to assets, asset classes, or risk factors 

that can be shocked directly. Suppose that together, X  and Y  follow a joint normal distribution 

with covariance matrix Σ. In this setup, the expected impact on X  of a shock to Y can be 

expressed as the mean of a conditional multivariate normal distribution.  

  1( | ) ( ) ( ( ))XY YYE X Y E X Y E Y       (1) 

The unconditional means [ ]E X  and [ ]E Y  depend on the particular assets and factors in 

question, the time horizon for the shock, and the details of the ambient economic regime. They 

can be specified as part of the stress test, and for simplicity, we set them to zero in the examples 

below. As such, the expected shock to ,X  conditional on a shock to ,Y depends only on the 

magnitude of the direct shock and the covariance matrix .  

Suppose the US Equity Market, ,Y loses 10. Using Formula (1), the expected P&L of ,X  say 

nominal US Treasuries, is the covariance of US Equities and nominal US Treasuries ( XY ) 

divided by the variance of the US Equity Market ( YY ), multiplied by the 10 shock magnitude. 

In other words, the implied P&L of nominal US Treasuries is the beta of nominal US Treasuries to 

Equities multiplied by 0.1.3 Using an EWMA covariance matrix with a 21-day half-life estimated 

on 09/09/09, the annualized daily covariance of US Equities with nominal US Treasuries is 

49.02, while the annualized daily variance of US Equities is 391.32. The P&L implied for 

nominal US Treasuries is thus (49.0391.3) (0.10) 1.25. 

                                                      
3 The simplicity of the calculation stems from the fact that we directly shocked a single asset class. In the case of a multivariate shock, the 
calculation of the expected P&L is more complicated. In essence, the set X  of asset classes that we want to stress is projected onto the 
set of shocked asset classesY , and the coefficients from this multivariate regression are used in tandem with the shock magnitude to 
reflect the forecast profit or loss to each asset class in X . Note that the forecast P&L depends only on the covariance matrix and the 
shocks, and it is independent of portfolio weights. This is an essential property for our inclusion of forecast P&L estimates into the asset 
allocation problem. 
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Expanding the Concept of a Stress Test 

Following standard practice, we apply a shock to specific asset classes, and we infer the impact 

on other asset classes using Formula (1). Note however, that Formula (1) relies on a covariance 

matrix. So, in addition to explicit asset class shocks, we shock correlations between asset classes 

and asset class volatility levels as part of stress scenario generation. Through a series of 

examples, we analyze the impact of changes to a covariance matrix on P&L, and we show how to 

modify weights to optimally mitigate the effect of the shock.  In the last two examples, we broaden 

the concept of risk to include non-Gaussian effects that are not fully explained by a covariance 

matrix, and we demonstrate a substantial impact on P&L. Throughout this paper, we define a 

scenario as the combination of a risk forecast with a set of explicit asset class shocks. 

Our examples are based on the problem of allocating assets in a stressful situation. We develop 

two schematic scenarios.  The first is an extreme deflationary scenario that is motivated by the 

autumn 2008 divergence of Nominal Treasuries and TIPS.4 Specifically, we posit a 5 profit to 

Nominal Treasuries accompanied by a 5 loss to TIPS.  The second is an extreme inflationary 

scenario, in which the value of a nominal investment decays, but an inflation adjusted investment 

is protected. Our inflationary shock is represented by a 5% profit to TIPS and a 5% loss to 

Nominal Treasuries.   

Modifying an Asset Allocation to Account for Stress  

Consider a plan for which the current allocation is given below. We use market indices to 

represent the six asset classes in the allocation; they are listed in Exhibit A3 of Appendix II. Our 

stress testing framework enables investors to both analyze the impact of scenarios on the plan 

and to modify the weights of the asset classes to take account of the impact. 

Exhibit 1: Initial Plan Allocation. This allocation will be used as the starting point for all 
examples unless otherwise stated.   

 Equities REITs Nominal 
Treasuries 

High Yield 
Bonds 

TIPS Commodities 

Weight 50 10 10 10 10 10 

The framework for using forecast scenarios to perturb an existing asset allocation decision is a 3-

step process.  

 Specify the Scenario: Establish a forecast covariance matrix to represent the risk climate.(In 
our Gaussian examples, the risk climate is described fully by a covariance matrix, while in our 
more general empirical framework a covariance matrix is used in conjunction with additional 
information.) Explicitly shock a subset of the asset classes, and using the conditional 
multivariate framework described above in (1), infer profits and losses for the remaining asset 
classes. 

 Reverse Optimize: Determine the expected asset class returns (alphas) that are consistent 
with the initial asset allocation, forecast covariance matrix, and level of risk aversion. These 
are the alphas for which the initial allocation is mean-variance optimal, given the investor’s 
level of risk aversion and forecast covariance matrix.5  

                                                      
4A history of recent history of differences between nominal and real interest rates, known as breakeven inflation, is described in Appendix 
IV and shown in Exhibit A12-A14. 
5 The reverse optimized alphas serve as a peg to the initial asset allocation. As such, they are different in character from exogenously 
supplied alphas that directly incorporate investors’ views. It is possible to modify the process to include exogenous alphas and to use 
turnover constraints (or other means) to stay close to the initial allocation.  Another alternative, which we explore in Case 3, is to modify the 
initial allocation in response to the scenario being applied, so that the reverse optimized alphas now peg to an alternate allocation.   
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 Perturb the Initial Allocation: Mean-variance optimize the allocation subject to the following 
constraint: total portfolio loss under the specified scenario must be less than or equal to a 
specified bound.  

Because the expected P&L for a given asset class is independent of the weight of that asset 

class, and since the overall profit or loss to the aggregate portfolio is a weighted function of the 

profits and losses of the individual asset classes, total portfolio profit or loss can be expressed as 

a linear constraint. The asset allocation problem can be succinctly expressed as a quadratic 

program. 

 Max ' 'w w Vw   such that 

 1i
i

w   Full Investment (2) 

  0iw   i  Long Only Positions 

  'w S  Max Loss Constraint on loss from scenario 

In Formula (2), w  represents the vector of allocation weights for each asset class, V  represents 

the asset class covariance matrix, α represents a vector of expected asset class returns implied 

by the initial allocation and risk climate, and S represents the forecast impact vector of an 

imposed scenario across all asset classes. We explicitly shock a subset of the asset classes 

represented by ,S and we infer implicit shocks to the remaining asset classes.6 Note that other 

constraints, including turnover or position level bounds, can be incorporated into this formulation. 

In the event that the constraint on maximum loss is non-binding, that is to say, if the forecast 

profit and loss associated with the initial allocation does not exceed the stated maximum level, 

then the quadratic program in Formula (2) returns the initial portfolio. 

Incorporating a Risk Climate in a Stress Test 

Extreme events occur in both high- and low-volatility regimes, and the impact of an extreme event 

on a portfolio depends on the regime. In the examples below, we include a regime, or risk climate 

in a scenario, and illustrate the impact of doing so. Our initial examples feature a Gaussian 

framework, where risk is wholly defined by a covariance matrix and there is an implicit 

assumption of normality. However, with the incorporation of additional historical information, our 

methods extend naturally beyond the Gaussian distribution. Our final two examples illustrate how 

non-Gaussian extensions might work. 

                                                      
6 In all the examples below, we directly shock a subset of the variables inS , and we infer shocks to the remaining variables in the context of 
a risk climate. In Cases 1-3, the risk climate is embodied in a covariance matrix, and unspecified shocks are determined by Formula (1). To 
be precise, variables shocked explicitly correspond toY , and the implicit shocks are given by 1

XY YYX Y  . In Cases 4 and 5, a non-
Gaussian, empirically based method is used to infer X  fromY . 
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Case 1: Allocating Assets in a Stable Risk Climate 

Roughly 3100 US market daily observations dating from 1997 to 2009 were equally weighted to 

forecast our stable asset class covariance matrix on 9/9/09.7 

Exhibit 2: Stable and Crisis Covariance Matrices.  This exhibit highlights the substantial 
difference in volatilities and correlations that can emerge during times of crisis.  The top 
panel provides stable volatilities and correlations for six US asset classes as of 9/9/2009, 
the estimation is based on twelve years of equally weighted daily data, while the bottom 
panel provides crisis volatilities and correlations for the six US asset classes estimated 
using a responsive 21-day exponentially weighted moving average as of 11/20/2008. 

STABLE Volatility 

(annualized) 

Equities REITs Nominal 
Treasuries 

High 
Yield 

Bonds 

TIPS Commoditi
es 

Equities 21.67 1.00      

REITs 31.51 0.63 1.00     

Nominal Treasuries 4.92 0.26 0.18 1.00    

High Yield Bonds 4.98 0.19 0.10 0.01 1.00   

TIPS 5.59 0.18 0.14 0.71 0.10 1.00  

Commodities 16.78 0.00 0.02 -0.02 0.02 -0.01 1.00 

 

CRISIS Volatility 

(annualized) 

Equities REITs Nominal 
Treasuries 

High 
Yield 

Bonds 

TIPS Commoditi
es 

Equities 67.23 1.00      

REITs 109.47 0.86 1.00     

Nominal Treasuries 8.46 0.44 0.41 1.00    

High Yield Bonds 18.80 0.40 0.22 0.35 1.00   

TIPS 11.62 0.01 0.11 0.42 0.41 1.00  

Commodities 31.82 0.11 0.13 -0.30 0.09 -0.01 1.00 

 

Consider the deflationary and inflationary scenarios described above. In the deflationary scenario, 

TIPS fall by 5 and Nominal Treasuries increase by 5 and in the inflationary scenario, the 

directions of the shocks are reversed. Exhibit 3 shows these explicit shocks, as well as the 

Formula (1) implicit shocks to other asset classes under the stable covariance regime described 

above. Also in Exhibit 3 are the reverse optimization implied alphas---these are the asset class 

expected returns that make the plan’s existing weights optimal given the stable covariance 

regime and a risk aversion parameter of 0.00758.  The reader may notice that the implicit shocks 

                                                      
7Equally weighting approximately 12 years of daily observations is one naïve approach to estimating a stable risk forecast. An alternative 
would be to construct and equal-weight a sample of observations taken from selected periods of market tranquility. 
8 A value of 0.0075 is arbitrarily selected as a risk aversion coefficient for this analysis. Note that because the mean variance objective 
function in our framework is based on implied alphas, which themselves are a function of risk aversion and serve as a peg to the initial 
allocation, the value of the risk aversion coefficient does not impact optimal weights. 
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for the inflationary scenario are equal in magnitude but of opposite sign to those for the 

deflationary scenario. This is a direct function of the symmetry in our choice of explicit shocks to 

represent these extreme economic scenarios.9 

 

Exhibit 3: Implied alphas and Explicit and Implicit shocks for six US asset classes. This 
table highlights the characteristics of stress scenarios in different economic regimes. The 
implied alphas are reverse optimized from the 9/9/2009 stable covariance matrix shown in 
Exhibit 2 and the initial asset allocation in Exhibit 1.  We explicitly shock Nominal 
Treasuries and TIPS to reflect disinflationary and inflationary scenarios, and we use the 
9/9/2009 stable covariance matrix to imply shocks to the remaining four asset classes.  
 

 Allocation 
implied 
alpha 

Deflationary Inflationary 

Explicit Implicit Explicit Implicit 

Equities 0.0164   6.76   6.76 

REITs 0.0183   3.66   3.66 

Nominal Treasuries 0.0007 5.00 5.00 -5.00 -5.00 

High Yield Bonds 0.0007   1.74   1.74 

TIPS 0.0005 5.00 5.00 5.00 5.00 

Commodities 0.0018   -0.49   0.49 

Using the stable covariance matrix, implied alphas, and explicit and implicit shocks, the quadratic 

program outlined in Formula (2) can be solved with a no-loss constraint to obtain the perturbed 

allocations shown in Exhibit 4. It is no surprise that the weight of Nominal Treasuries increases in 

the deflationary scenario. Historically, Nominal Treasuries have been a safe haven during market 

disruptions.   Note that there is no perturbation required to satisfy a zero-loss constraint from our 

inflationary scenario.  In our stable risk climate, Nominal Treasuries are negatively correlated with 

Equities and REITs. Consequently, a negative shock to Nominal Treasuries implies a gain for 

Equities and REITS, and the initial allocation is not adversely impacted by our inflationary 

scenario. More generally, the P&L of the shock, and the perturbed allocation in Exhibit 4, depend 

on the stable risk climate, which is based on average co-behavior of the asset classes between 

1997 and 2009. 

Exhibit 4: Optimal weights for six US asset classes under the deflationary and inflationary scenarios 
in Exhibit 3. We solve the quadratic program outlined in Formula 2 under a constraint that the 
portfolio incurs no loss. This optimization is driven by the implied alphas in Exhibit 3 and the stable 
covariance as of 9/9/2009 in Exhibit 2.  The deflationary scenario slants the allocation toward 
Nominal Treasuries.  The zero-loss constraint is not binding for our inflationary scenario, so the 
initial allocation is optimal and no perturbation occurs. 

 Initial allocation Zero-loss constraint 

Deflationary shock Inflationary shock 

                                                      
9 Note we define implicit shocks as YX YYXY

1 .  If we let YD  and XD denote the explicit and implicit shocks for our above 

deflationary scenario, and YI  and XI as the explicit and implicit  shocks for our above inflationary scenario, we have the following:  

 1 DI YY ,  
DYYXYD YX 1  and IYYXYI YX 1 .  By substitution, we have    111  

DDYYXYI XYX . 
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Equities 50 33.29 50.00 

REITs 10 12.54 10.00 

Nominal Treasuries 10 54.17 10.00 

High Yield Bonds 10 0.00 10.00 

TIPS 10 0.00 10.00 

Commodities 10 0.00 10.00 

It is well-understood that asset class volatilities are not stationary, and dramatic changes in asset 

class correlations and spikes in asset class volatility are pervasive during market crises (see 

Appendix I, Exhibit A2). An illustration of correlation matrices generated using a 21-day half-life10 

exponentially weighted moving average as of 11/20/08 can be seen in the bottom panel of Exhibit 

2, alongside our familiar stable forecast estimated from 12 years of equally weighted data as of 

09/09/09 for comparison. In the throes of the 2008 financial crisis, asset-class volatilities and 

correlations are substantially different than their long-term, equally weighted analogs. The use of 

a stressed covariance matrix to define scenarios and to run the constrained mean-variance 

optimization has a profound impact on the perturbed asset allocation. 

Case 2: Allocating Assets in a Crisis Risk Climate 

It is straightforward to create risk models that range in responsiveness by generating current 

covariance matrices using a variety of half-lives. However, if a manager believes that markets are 

on the precipice of a crisis, it may be prudent to go back in history to find a consistent covariance-

matrix forecast. For example, a manager who believes that the US economy is on the brink of a 

prolonged period of disinflation might wish to impart this view to his asset allocation in the context 

of a stressed covariance matrix taken from a disinflationary historical period. 

The financial crisis of 2008 spawned a disinflationary regime that led to deflation. To assess how 

asset class returns may behave during a period of disinflation or deflation, a manager can either 

construct a covariance matrix from an equally weighted sample of observations from relevant 

historical periods or take a historical, exponentially weighted moving average (EWMA) covariance 

matrix using an analysis date from the relevant regime. We take the latter approach using the 21-

day EWMA covariance matrix from 11/20/08 shown in the bottom panel of Exhibit 2. 

We re-examine the deflationary scenario defined in Case 1, but now analyze its impact using the 

responsive risk forecast described above. As expected, the scenario-implied profits and losses 

are much larger in magnitude in a crisis risk climate than in an average one. Notably, combining 

the explicit deflationary asset-class shock with a crisis risk climate leads to a sharp increase in 

allocation to government bonds—an unmistakable flight to quality. The crisis covariance matrix, 

with both its heightened asset class volatilities and extreme correlations, implies substantially 

larger losses and leads to a greater allocation to Nominal Treasuries, even at moderate loss 

levels. These results are summarized in Exhibits 5 and 6 below: 

                                                      
10 A 21-day half life was chosen for this exercise, as this rate of decay has been empirically shown to provide accurate one-day variance 
forecasts.  
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Exhibit 5:  Implied alphas and Explicit and Implicit shocks for six US asset classes in a deflationary 
scenario. This table highlights the impact of the risk climate on implied alphas, and on implicit 
shocks generated by Formula (1). We apply a covariance matrix to the initial allocation in Exhibit 1 to 
generate implied alphas. Then, we apply the same covariance matrix to an explicit deflationary 
shock to Nominal Treasuries and TIPS, yielding implicit shocks to the other four asset classes. In 
the left panel, we use a responsive, 21-Day EWMA crisis covariance matrix as of 11/20/2008, which is 
shown in the bottom panel of Exhibit 2. In the right panel, we use the stable covariance as of 
9/9/2009, which is shown in the top panel of Exhibit 2. The crisis covariance matrix, with both its 
heightened asset class volatilities and extreme correlations, implies substantially larger losses. 

 
 

 Allocation 
implied 
alpha 

11/20/08 (responsive) Allocation 
implied 

alpha 

9/9/09 (stable) 

Explicit Implicit Explicit Implicit 

Equities 0.18   27.36 0.01%   6.76 

REITs 0.26   32.31 0.02%   3.66 

Nominal Treasuries 0.0098 5.00 5.00 -.0007% 5.00 5.00 

High Yield Bonds 0.015   12.50 .0007%   1.74 

TIPS 0.0006 5.00 5.00 -.0005% 5.00 5.00 

Commodities 0.016   8.87 .0018%   -0.49 

Exhibit 6: Perturbed Asset Allocations to six US Asset Classes in a deflationary scenario under 
varying constraints on maximum loss.  This figure highlights the impact of the covariance matrix on 
the optimal allocation (determined by Formula (2) driven by data in Exhibit (5)). In the left panel, we 
use a responsive, 21-Day EWMA crisis covariance matrix as of 11/20/2008 (shown in the bottom 
panel of Exhibit 2). In the right panel, we use the stable covariance as of 9/9/2009, (shown in the top 
panel of Exhibit 2).   The crisis covariance matrix, with both its heightened asset class volatilities 
and extreme correlations, leads to a greater allocation to Nominal Treasuries, even at moderate loss 
levels. (See Exhibit A4 in Appendix III for data underlying the charts.) 

 

 11/20/08 (responsive)   9/9/09 (stable) 
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Case 3: Allocating Assets in a Hypothetical Risk Climate 

We have seen that using historical risk climates may be more relevant to anticipated market 

behavior than a long-term average. We now show how to create hypothetical risk climates that 

fall outside the range of historical experience. Following Bender, Lee, and Stefek (2010), we can 

manipulate asset class correlations to reflect a manager’s view.  This is accomplished by 

introducing a latent risk driver, which selectively raises or lowers correlations between targeted 

asset classes without compromising the statistical integrity of the correlation matrix.11 

For illustration, consider a stable forecast estimated from 10 years of equally weighted data as of 

Nov. 20 2008. Just at that time, Troubled Asset Relief Program (TARP)12 was beginning to take 

effect, and some investors may have been concerned that inflation, not deflation, was on the 

horizon. Further, some may have believed that the (unstable) negative correlation between 

Equities and Nominal Treasuries that pervaded the early 2000s would not persist in the future, 

and assumed instead that the correlation between these two asset classes would revert to levels 

realized in the 1980s and mid-1990s of around 0.4.13  

By giving both Equities and Nominal Treasuries positive exposure to a latent driver, we can 

modify the November 20, 2008 stable asset class correlation matrix to reflect the view that the 

correlation between these asset classes will return to the positive levels seen in a prior decade. 

Exhibit 7 shows volatilities and correlations before and after manipulation by assigning Equities 

and Nominal Treasuries an exposure of 0.75 to a latent driver14. The impact on the allocation 

decision can be seen by comparing the scenario-implied profits and losses in Exhibit 8, as well as 

allocations at various maximum loss levels in Exhibit 9. In the inflationary scenario based on the 

modified correlation matrix, the allocation to TIPS increases while the allocation to Equities 

decreases as the loss constraint tightens. As expected in an inflationary environment, Nominal 

Treasuries are eschewed.  

Subtler effects, including an increased allocation to REITs, which showed a loss in this scenario, 

and a decreased allocation to Commodities, which are a standard inflation hedge, require deeper 

analysis.  The explanation for these allocations lies in the implied alphas obtained through 

reverse optimization.  Up to a constant of proportionality, implied alphas are marginal 

contributions of asset classes to portfolio volatility, and each marginal contribution is the product 

of the volatility of the asset class and its correlation with the portfolio15. Thus, the initial allocation 

affects the implied alphas. In our example, the REITs implied alpha is significantly larger than the 

Commodities implied alpha.  

                                                      
11Modification of a correlation matrix can undermine its positive semi-definiteness, thereby making it unfit for statistical applications. In the 
framework outlined in Bender, Lee, and Stefek (2010), all asset class correlation adjustments are based on asset exposures to a latent 
variable. This procedure, maintains the positive semi-definiteness of the correlation matrix. 
12 TARP is a US Government program intended to strengthen the financial sector through the purchase of so-called troubled assets. The 
program was signed into law by President George W. Bush on October 3, 2008. 
13 Bekaert et al. (2010) document the historical correlation between US Equities and Nominal Treasuries. Before 2000, the correlation was 
typically positive, relatively stable, and averaged around 0.4.  After 2000, the correlation was less stable and often negative.  
14 Bender, Lee and Stefek ‘s framework introduces a parameter νi to control the exposure of asset class i to a latent risk driver or 
unobservable source of commonality.  They then use the following expression to manipulate the correlation between asset classes i and j,: 

)(,
22

)(, 11 originaljijijinewji    

15 Davis and Menchero (2010) illustrate that the marginal contribution to portfolio risk of a given source, traditionally defined as the partial 
derivative of portfolio volatility with respect to a change in source weight, can be intuitively expressed as the volatility of the source times 

the correlation of the source returns with the portfolio returns.  ),()(
)(

),cov()(
Pii

P

Pi

i

P
i Rrr

R

Rr

w

R
MCR 








 Their risk 

attribution framework, built around this derivation, is aptly monikered x-sigma-rho. 
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To illustrate the impact of the initial allocation, we retain the inflationary scenario described by the 

manipulated November 20, 2008 stable asset class correlation matrix, but now begin with an 

equally weighted allocation to the six asset classes.  Exhibit 10 provides a comparison of implied 

alphas under the original and alternate initial allocations.  In the alternate (equally weighted) 

allocation, the implied alpha for Equities is substantially lower, due to the reduction in correlation 

to the aggregate portfolio resulting from the reduced weight. A knock-on effect lowers the implied 

alpha for REITs, while the implied alpha for Commodities is higher. Exhibit 11 shows the 

dependence of perturbed allocations on the loss constraint using the equally weighted initial 

allocation. There is less tendency toward REITs and greater tendency toward Commodities than 

in the same scenario with the original initial allocation.  Because of its profound impact on 

perturbed allocations, it is important to consider the initial allocation in the context of the scenario 

being defined.
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Exhibit 7: Volatilities and correlation matrices for six US asset classes. This table 
highlights the latent variable technique for imposing views on an historical covariance 
matrix. The original covariance matrix in the top panel is as of 11/20/2008, and it is based 
on ten years of equally weighted daily data. The manipulated covariance matrix in the 
bottom panel is obtained by adding a latent driver that raises the correlation between 
Equities and Nominal Treasuries from the recent historical estimate of -0.27 to 0.44, which 
reflects empirically observed behavior in the 1990s.  

ORIGINAL Volatility 

(annualized) 

Equities REITs Nominal 
Treasuries 

High Yield 
Bonds 

TIPS Commoditi
es 

Equities 20.77% 1.00      

REITs 24.35% 0.61 1.00     

Nominal 
Treasuries 

4.84% 

-0.27 0.17 1.00    

High Yield Bonds 4.74% 0.22 0.13 0.03 1.00   

TIPS 5.44% 0.18 0.15 0.74 0.09 1.00  

Commodities 15.88%  0.00  0.02  ‐0.01  0.03  0.00  1.00 

 
 

MANIPULATED Volatility 

(annualized) 

Equities REITs Nominal 
Treasuries 

High 
Yield 
Bonds 

TIPS Commodities 

Equities 20.77% 1.00      

REITs 24.35% 0.40 1.00     

Nominal 
Treasuries 

4.84% 

0.44 0.11 1.00    

High Yield Bonds 4.74% 0.14 0.13 0.02 1.00   

TIPS 5.44% 0.12 0.15 0.49 0.09 1.00  

Commodities 15.88%  0.00  0.02  ‐0.01  0.03  0.00  1.00 



 
 

 

Exhibit 8:  Implied alphas and Explicit and Implicit shocks for six US asset classes in an inflationary 
scenario. This table highlights the impact of the risk climate on implied alphas, and on implicit 
shocks generated by Formula (1). We apply a covariance matrix to the initial allocation in Exhibit 1 to 
generate implied alphas. Then, we apply the same covariance matrix to an explicit deflationary 
shock to Nominal Treasuries and TIPS, yielding implicit shocks to the other four asset classes In the 
left panel, we use a stable, historical covariance matrix as of 11/20/2008, shown in the top panel of 
Exhibit 7. In the right panel, we use a manipulated version of this covariance matrix, shown in the 
bottom panel of Exhibit 7. The latent variable manipulation elevates the estimated correlation 
between Nominal Treasuries and TIPS to the level seen in the 1990s, changes the scenario Equity 
gain of 7.21% to a substantial loss. 

 Allocation 
implied 
alpha 

Original Allocation 
implied 

alpha 

Manipulated 

Explicit Implicit Explicit Implicit 

Equities 0.0145   7.21% 0.0143%   -22.59% 

REITs 0.0124   1.68% 0.0094%   -1.64% 

Nominal Treasuries 0.0007 -5.00 -5.00% .0015% -5.00 -5.00% 

High Yield Bonds 0.007   2.16% .0005%   1.01% 

TIPS -0.0004 5.00 5.00% -.0003% 5.00 5.00% 

Commodities 0.0015   .59% .0015%   .22% 

 

Exhibit 9: Perturbed Asset Allocations to six US Asset Classes in an inflationary scenario under 
varying under varying constraints on maximum loss. This figure highlights the impact of the risk 
climate on implied alphas, and on implicit shocks generated by Formula (1).  In the left panel, we use 
a stable, historical covariance matrix as of 11/20/2008, shown in the top panel of Exhibit 7. In the 
right panel, we use a manipulated version of this covariance matrix, shown in the bottom panel of 
Exhibit 7. The latent variable manipulation elevates the estimated correlation between Nominal 
Treasuries and TIPS to the level seen in the 1990s.  The inflationary scenario based on the original 
covariance does not produce a binding constraint and the initial allocation is unchanged.  Under the 
inflationary scenario based on the manipulated covariance matrix, the allocation to TIPS increases 
while the allocation to Equities decreases as the loss constraint tightens. As expected in an 
inflationary environment, Nominal Treasuries are eschewed. (See Exhibits A5 and A6 in Appendix III 
for data underlying the charts.) 

 Original Covariance Matrix Manipulated Covariance Matrix 
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Exhibit 10:  Implied alphas for six US asset classes in an inflationary scenario. This table highlights 
the impact of the initial allocation on implied alphas. We apply the manipulated stable covariance 
shown in the bottom panel of Exhibit 7.  The first initial allocation is shown in the first column in the 
table  below as well as in Exhibit 1, and it has been used in all previous examples. The second, 
equally weighted initial allocation is in the third column in the table below.  In the equally weighted 
allocation, the implied alpha for Equities is substantially lower than in the original allocation, due to 
the reduction in correlation to the aggregate portfolio resulting from the reduced weight. A knock-on 
effect lowers the implied alpha for REITs, while the implied alpha for Commodities is higher. 

 

 Intial Allocation Allocation 
Implied Alpha 

Intial Allocation Allocation 
Implied Alpha 

   

Equities 50% .0143% 16.67% .0067% 

REITs 10% .0094% 16.67% .0075% 

Nominal Treasuries 10% .0015% 16.67% .0007% 

High Yield Bonds 10% .0005% 16.67% .0003% 

TIPS 10% -.0003% 16.67% .0001% 

Commodities 10% .0015% 16.67% .0026% 

 

Exhibit 11: Perturbed Asset Allocations to six US Asset Classes in an inflationary scenario under 
varying constraints on maximum loss.  This figure highlights the impact of the initial allocation on 
the optimal allocation (determined by Formula (2) driven by the covariance matrix in the bottom 
panel of Exhibit 7 and the implied alphas in Exhibit 10.) In the left panel, we use the initial allocation 
shown in Exhibit 1 and the first column in Exhibit 10.  In the right panel, we use the equally-weighted 
initial allocation in the third column of Exhibit 10.  There is less tendency toward High Yield Bonds 
and Equities, and greater tendency toward Commodities than in the same scenario with the original 
initial allocation.  (See Exhibit s A6 and A7 in Appendix III for data underlying the charts.) 

 

                     Standard Initial Allocation   Equally Weighted Intial Allocation 

  

Case 4: Allocating Assets using empirically defined Shocks 

In the previous examples, risk was determined by a covariance matrix, which was used to infer 

implicit asset class shocks from a specified explicit shock via the multivariate framework in 

Formula (1). Underlying this methodology is the assumption that asset class returns follow a 

Gaussian distribution. However, it is the tail scenarios, where traditional normality assumptions 
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break down, that may be most relevant to stress testing. Accordingly, we broaden our scenario 

derivation process to take account of empirically observed extreme events. 

An alternative to the Gaussian approach underlying Formula (1) is to define asset class profit and 

loss as the expected value of the return of that asset class, conditional on the explicit shocks 

exceeding a threshold. To forecast meaningfully the behavior of asset classes in the presence of 

shocks, we use a deep data history, and we apply the (minimally parametric) Barra Extreme Risk 

(BxR) methodology developed in Goldberg et al. (2008).16 BxR recognizes that asset class 

volatility is non-stationary, so that the magnitude of an “extreme” return depends on the risk 

climate. 

For example, a 3 loss in a single day may have been disastrous in May 2006, but it was 

relatively benign in October 2008. Therefore, we can create a more empirically grounded (and 

non-Gaussian) profit and loss scenario by scaling historical returns to a desired covariance 

climate. The expected value of each normalized asset class return, conditional on the shocked 

variables exceeding a specified threshold, is estimated directly from the rescaled data series, 

without making parametric assumptions. It is important to highlight that while our empirical 

approach makes no parametric assumption about the expected P&L for a given scenario, the 

estimate is based upon re-scaled historical returns that are directly impacted by a covariance-

defined risk climate.  Importantly, the magnitude of rescaled returns, and hence of asset class 

expected profit and loss, depends critically upon the covariance climate chosen.  Exhibit 12 

displays the asset class profits and losses for a scenario whereby TIPS fall by 3, and Nominal 

Treasuries simultaneously rise by 1. 

First, we derive the returns in the Gaussian framework from Formula (1) using a 21-day EWMA 

covariance matrix as of 11/20/08. Second, we use the empirically defined approach described 

above, using the 11/20/08 21-day EWMA covariance matrix as the climate for re-scaling. 

Specifically, we estimate the expected value as of 11/20/08 of each asset class, conditional on 

both (covariance-scaled) Nominal Treasuries rising by at least 1 and (covariance-scaled) TIPS 

falling by 3, over the entire history of observations. The profits and losses vary substantially 

between these two approaches. In particular, the empirical approach, which is more sensitive to 

extreme events, returns a substantially larger loss for REITs and High Yield Bonds than does the 

Gaussian distribution. This leads to a dramatic difference in perturbed allocations as shown in 

Exhibit 13. 

                                                      
16 As documented in Dubikovsky et al. (2010), this methodology leads to accurate forecasts of shortfall for a wide range of international 
equity portfolios. 
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Exhibit 12: Explicit and Implicit shocks for six US asset classes in a deflationary scenario. This table 
highlights the impact of the Gaussian assumption underlying Formula (1).  We explicitly apply a 
deflationary shock of a 1% increase to Nominal Treasuries and a 3% decrease to TIPS in the crisis 
risk climate determined by the 21-day halflife EWMA covariance matrix as of 11/20/2008, shown in 
the bottom panel of Exhibit 2.  The left panel shows Gaussian Implicit shocks generated by Formula 
(1), and the right panel shows Empirical implicit shocks. The empirical approach, which is more 
sensitive to extreme events, returns a substantially larger loss for REITs and High Yield Bonds than 
does the Gaussian distribution.  

 Gaussian Empirical 

Explicit Implicit Explicit Implicit

Equities   8.00  10.13 

REITs   7.95  22.44 

Nominal Treasuries 1.00 1.00 1.00 1.48 

High Yield Bonds   4.69  12.48 

TIPS 3.00 3.00 3.00 3.91 

Commodities   2.57  3.85 

Exhibit 13: Perturbed Asset Allocations to six US Asset Classes in a deflationary scenario under 
varying constraints on maximum loss.  This figure highlights the impact of the Gaussian assumption 
on the optimal allocation (determined by Formula (2) driven by the covariance matrix in the bottom 
panel of Exhibit 2 and the implied alphas in the first column of Exhibit 5.) In the left panel, we use the 
Gaussian scenario in the left panel of Exhibit 12.  In the right panel, we use Empirical scenario in the 
right panel of Exhibit 12.  The Empricial shocks diminish allocations to risky asset classes under 
milder constraints. (See Exhibits A8 and A9 in Appendix III for data underlying the charts.) 

 Gaussian Deflationary Scenario   Empirical Deflationary Scenario 

 
 
 

Case 5: Comparing Asset Allocations using Gaussian and empirically defined 
shocks under combat conditions 
 
In our final example, we explore the impact that extreme risk climate asset allocation might have 
had in the darkest moments of the financial crisis. We emphasize the differences that stem from 
using empirical- versus Gaussian-implied shocks.  Note that the examples presented below serve 
only as illustrations and do not constitute a thorough statistical evaluation. 
 



 
 

17 
 

By June 2008, market participants had weathered a year of high volatility and unprecedented 
extreme events.  Some may have sought a relatively conservative investment strategy that would 
perform well in a flight-to-quality.  Consider a hypothetical flight-to-quality risk climate with 
volatility, say, at three times the level observed at the end of June 2008. Further, we assume 
relatively high correlation across the five riskier asset classes, and will specify this assumption by 
supposing all are pairwise correlated at .7.  Finally, we assume that the traditional safe haven, 
Nominal Treasuries, moves in the opposite direction from riskier asset classes with a correlation 
coefficient of -0.3.17   This hypothetical risk climate, meant only to be a naïve schematic, is 
summarized in Exhibit 14. 
 
We retain the deflationary shock used in Case 4, a 1% increase in Nominal Treasuries and a 3% 
decline in TIPS, and show in Exhibit 15, the implied asset class profits and losses under the 
Gaussian and empirical models using the hypothetical risk climate.   Note that while they are a 
function of the same risk climate, the implied loss to Equities is much greater under the empirical 
model than under the Gaussian model, empirically suggesting that Equities may exhibit tails that 
are heavier than what is implied by the Gaussian distribution. 
 
The corresponding perturbed asset allocations are shown in Exhibit 16. The shocks implied by 
the empirical approach lead to modifications of the initial asset allocation under weaker loss 
constraints.  Under tighter constraints, the Gaussian model allocates almost completely to 
Nominal Treasuries, while the empirical model allocation is largely a split between Nominal 
Treasuries and Commodities. In Exhibit 17, we examine the performance of the asset allocations 
over the turbulent six-month period from June to December 2008. Since the 6% loss constraint 
produced by the Gaussian model was not binding, it left the initial allocation untouched and 
resulted in a return of -25%.  The empirical model generated a binding constraint that moved 
assets from Equities, REITS and High Yield Bonds to TIPS, Commodities and Nominal 
Treasuries.  The result was a better performance at -19%.  The 4% loss constraint was binding 
for both models, and resulted in returns of -25% for the Gaussian model and -17% for the 
empirical model. When losses were more tightly constrained to 2% or 0%, the empirical model 
underperformed the Gaussian, which concentrated assets in the only class that performed well in 
during the period from June through December 2008. 
 
It turns out that investors who were able to accurately envision the 11/20/2008 risk climate in 
June 2008 would have been in a fortuitous position.  Even without precise knowledge of the 
future asset class returns, those who could accurately forecast the covariance regime prevailing 
through the fall of 2008, would have been poised to benefit substantially. We examined the 
performance of the perturbed allocations displayed in Exhibit 13 for the six-month period 
extending from June through December 2008.  These allocations were generated by using the 
Gaussian and empirical models calibrated to the 11/20/2008 crisis covariance matrix to generate 
shocks to all asset classes based on a 1% increase in Nominal Treasuries and a 3% decrease in 
TIPS.  As shown in Exhibit 18, the empirical model outperformed the Gaussian model at all levels 
of loss constraint, and both models outperformed the initial allocation whenever the constraint 
was binding. 
 

                                                      
17 This hypothetical regime is inspired by the events of autumn 2008.   



 
 

 

 Exhibit 14:  Hypothetical Covariance Matrix.  Volatilities and correlations for six US asset 
classes in a flight-to-quality in which volatilities are relatively high, risky assets are 
relatively correlated with one another and anti-correlated with Nominal Treasuries. 

HYPOTHETICAL Volatility 

(annualized) 

Equities REITs Nominal 
Treasuries 

High Yield 
Bonds 

TIPS Commoditi
es 

Equities 56.04% 1.00      

REITs 92.16% 0.7 1.00     

Nominal 
Treasuries 

17.33% 

-0.3 -0.3 1.00    

High Yield Bonds 12.11% 0.7 0.7 0.3 1.00   

TIPS 24.59% 0.7 0.7 -0.3 0.7 1.00  

Commodities 64.37%  0.7  0.7  ‐0.3  0.7  0.7  1.00 

 
 
 
Exhibit 15: Implied Alphas and Explicit and Implicit shocks for six US asset classes in a 
deflationary scenario. This table highlights the impact of the Gaussian assumption 
underlying Formula (1).  We explicitly apply deflationary shock of a 1% increase to 
Nominal Treasuries and a 3% decrease to TIPS in the hypothetical risk climate shown in 
Exhibit 14.  The left panel shows Gaussian Implicit shocks generated by Formula (1), and 
the right panel shows Empirical implicit shocks. The implied alphas are reverse optimized 
from the hypothetical covariance matrix in Exhibit 14 and the initial allocation in Exhibit 1.  
The empirical approach, which is more sensitive to extreme events, returns a substantially 
larger loss for Equities than does the Gaussian distribution 

 Allocation 
implied 
alpha 

Gaussian Empirical 

Explicit Implicit Explicit Implicit 

Equities .1719%   4.90  15.41 

REITs .2110%   8.06  8.84 

Nominal Treasuries -.0119% 1.00 1.00 1.00 2.03 

High Yield Bonds .0312%   1.06  3.04 

TIPS .0351% 3.00 3.00 3.00 3.47 

Commodities .1085%   5.63  2.88 
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Exhibit 16: Perturbed Asset Allocations to six US Asset Classes in a deflationary scenario under 
varying constraints on maximum loss.  This figure highlights the impact of the Gaussian assumption 
on the optimal allocation (determined by Formula (2) driven by the covariance matrix in Exhibit 14 
and the implied alphas in the first column of Exhibit 15.) In the left panel, we use the Gaussian 
scenario in the left panel of Exhibit 15.  In the right panel, we use Empirical scenario in the right 
panel of Exhibit 15.  Under tighter constraints, the Gaussian model allocates almost completely to 
Nominal Treasuries, while the empirical model allocation is largely a split between Nominal 
Treasuries and Commodities. See Exhibits A10 and A11 in Appendix III for data underlying the 
charts.) 

 

Gaussian Deflationary Scenario     Empirical Deflationary Scenario 

 
 

Exhibit 17:  Six-month Performance (6/30/2008-12/31/2008) of perturbed allocations at various levels 
of maximum loss. This figure highlights the impact of the Gaussian assumption on performance 
during the darkest moments of the financial crisis.   We show the realized performance of the 
Gaussian and Empirical allocations shown in Exhibit 16. Empirical allocations outperform at weaker 
constraints, while the Gaussian allocations outperform at tighter constraints.  

 
 



 
 

20 
 

Exhibit 18: Six-month Performance (6/30/2008-12/31/2008) of perturbed allocations at various levels 
of maximum loss.  This figure highlights the value of perfect foresight into future risk climates.  We 
use the initial allocation in Exhibit 1, the crisis covariance matrix  as of 11/20/1008 in the bottom 
panel of Exhibit 2 and both Gaussian and Empirical assumptions to imply deflationary scenarios 
corresponding to a 1% gain to Nominal treasuries and a 3% loss to TIPS. Empirical allocations 
outperform at all constraints examined. 

 

Conclusion 

While it may not be possible to measure precisely the likelihood of an extreme event, it is 

nevertheless a valuable exercise to assess its impact on a portfolio. In this article, we introduce a 

new paradigm for translating extreme events into asset class scenarios. An essential point is that 

the risk climate plays an integral role in the translation. Even within a Gaussian framework, a wide 

range of risk climates can be obtained from history by varying the analysis date and the 

responsiveness of covariance matrix estimation. Further, any historical covariance matrix can be 

modified to reflect exogenous views on future correlations via the introduction of a latent factor, 

which can represent a flight to quality, a change in liquidity, or another transient effect that 

disrupts markets in a crisis. Importantly, the latent factor preserves positive semi-definiteness, 

and hence the essential statistical character of the covariance matrix. More broadly, risk climates 

can be empirically specified in terms of expected values of asset classes in an extreme situation.  

Anecdotally, implicit shocks generated by empirical distributions tend to be larger than the 

Gaussian analogs. A more systematic analysis is a topic for future research. 

 A second contribution made in this Research Insight is a quantitative method to modify asset 

allocation weights in a stress scenario. A scenario-constrained optimization using reverse-

optimized alphas modifies an initial asset allocation in intuitive and conservative ways. It is 

important to highlight the flexibility of the approach outlined here. The quadratic formulation 

outlined in Formula (2) can easily be modified to include additional constraints such as bounds on 

weights or portfolio turnover in order to make the results more applicable to an individual’s 

existing allocation process. It can also be expanded to include a constraint or penalty for extreme 

risk, as discussed in Bender et al. (2010) and Goldberg et al. (2011). 

Whether used in combination or alone, these contributions are material extensions of the 

standard stress testing methodology and they can provide investors of all stripes with valuable 

input to their decisions. 
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Appendix I:  Historical Asset Class Correlations and Volatilities 

Exhibit A1: Correlation between Treasuries and IPBs, 21-Day EWMA 

 

Exhibit A2: Asset Class Volatility, 21-Day EWMA 

 

Appendix II: Data Proxies 

Exhibit A3: Representative Index Portfolio per Asset Class 

Asset class Representative Index Portfolio 

Equities MSCI USA 

REITs MSCI US REIT 

Nominal Treasuries Merrill Lynch US Treasury 

High Yield Bonds Merrill Lynch US High Yield 

TIPS Merrill Lynch US Inflation Linked 

Commodities Dow Jones UBS Commodity 
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Appendix III: Modified Asset Class Weights Under Stress Scenarios 

 

Exhibit A4: Perturbed Allocations, 21-Day EWMA and Equal Weighted stable Covariance forecast 

 Maximum loss from deflationary scenario (Responsive, 11/20/08) 

 Starting 
allocation 

16 14 12 10 8 6 4 2 0 

Equities 50.0 53.3 47.5 40.1 31.5 22.8 14.2 5.6 0.0 0.0 

REITs 10.0 7.2 8.9 10.8 12.9 15.0 17.2 19.3 18.8 13.4 

Nominal 
Treasuries 

10.0 31.7 41.3 49.1 55.6 62.1 68.6 75.1 81.2 86.6 

High Yield 
Bonds 

10.0 0.0 0.0 0.0 0. 0 0.0 0.0 0. 0 0. 0 0. 0 

TIPS 10.0 0.0 0.0 0.0 0. 0 0.0 0.0 0. 0 0. 0 0. 0 

Commodities 10.0 7.9 2.4 0.0 0. 0 0.0 0.0 0.0 0. 0 0. 0 

 Maximum loss from deflationary scenario (Stable 9/9/09) 

 Starting 
allocation 

16 14 12 10 8 6 4 2 0 

Equities 50. 0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 48.2 33.3 

REITs 10. 0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.1 12.5 

Nominal 
Treasuries 

10. 0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 33.3 54.2 

High Yield 
Bonds 

10. 0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 0. 0 0.0 

TIPS 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 0.0 0.0 

Commodities 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 8.5 0.0 

Exhibit A5: Perturbations using Original Covariance Matrix, Stable (11/20/08) 

 Maximum loss from inflationary scenario 

 Starting 
allocation 

16 14 12 10 8 6 4 2 0 

Equities 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 

REITs 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 

Nominal 
Treasuries 

10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 

High Yield 
Bonds 

10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 

TIPS 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 

Commodities 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 
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Exhibit A6: Perturbations using Manipulated Covariance Matrix, Stable (11/20/08) 

 Maximum loss from inflationary scenario 

 Starting 
allocation 

16 14 12 10 8 6 4 2 0 

Equities 50.0 50.0 50.0 50.0 48.7 41.4 31.1 26.9 19.6 12.4 

REITs 10.0 10.0 10.0 10.0 10.4 12.4 14.3 16.3 18.3 20.2 

Nominal 
Treasuries 

10.0 10.0 10.0 10.0 0.0 0.0 0.0 0.0 0.0 0.0 

High Yield 
Bonds 

10.0 10.0 10.0 10.0 10.4 8.4 6.5 4.5 2.6 0.6 

TIPS 10.0 10.0 10.0 10.0 20.7 29.0 37.3 45.6 53.9 62.2 

Commodities 10.0 10.0 10.0 10.0 9.9 8.8 7.7 6.7 5.6 4.6 

 

 
 
 
 
 
 
 
 
 
 
 



 
 

 

Exhibit A7: Perturbations using Manipulated Covariance Matrix, Stable (11/20/08) and 
equally weighted initial allocation 

 Maximum loss from inflationary scenario 

 Starting 
allocation 

16 14 12 10 8 6 4 2 0 

Equities 16.7 16.7 16.7 16.7 16.7 16.7 16.7 16.7 15.8 8.6 

REITs 16.7 16.7 16.7 16.7 16.7 16.7 16.7 16.7 17.0 19.0 

Nominal 
Treasuries 

16.7 16.7 16.7 16.7 16.7 16.7 16.7 16.7 0.0 0.0 

High Yield 
Bonds 

16.7 16.7 16.7 16.7 16.7 16.7 16.7 16.7 17.7 15.7 

TIPS 16.7 16.7 16.7 16.7 16.7 16.7 16.7 16.7 32.8 41.2 

Commodities 16.7 16.7 16.7 16.7 16.7 16.7 16.7 16.7 16.7 15.6 

 

Exhibit A8:  Perturbed Allocations, 21-Day EWMA Covariance Forecast (11/20/08) 
Gaussian-Implied Deflationary Scenario 

 Maximum loss from deflationary scenario, covariance based 

 Starting 
allocation 

16 14 12 10 8 6 4 2 0 

Equities 50.0 50.0 50.0 50.0 50.0 50.0 50.0 43.5 11.2 0.0 

REITs 10.0 10.0 10.0 10.0 10.0 10.0 10.0 11.2 22.2 11.2 

Nominal 
Treasuries 

10.0 10.0 10.0 10.0 10.0 10.0 10.0 43.0 66.5 88.8 

High Yield 
Bonds 

10.0 10.0 10.0 10.0 10.0 10. 0 10.0 0.0 0.0 0.0 

TIPS 10.0 10.0 10.0 10.0 10.0 10.0 10.0 0.0 0.0 0.0 

Commodities 10.0 10.0 10.0 10.0 10.0 10.0 10.0 2.3 0.0 0.0 



 
 

26 
 

Exhibit A9: Perturbed Allocations, 21-Day EWMA Covariance Forecast (11/20/08) 
Empirically Defined Deflationary Scenario 

 Maximum loss from deflationary scenario, empirical 

 Starting 
allocation 

16 14 12 10 8 6 4 2 0 

Equities 50.0 50.0 50.0 50.0 50.0 56.3 61.0 47.2 30.0 12.8 

REITs 10.0 10.0 10.0 10.0 10.0 6.3 0.5 0.0 0.0 0.0 

Nominal 
Treasuries 

10.0 10.0 10.0 10.0 10.0 10.7 33.1 52.8 70.0 87.2 

High Yield 
Bonds 

10.0 10.0 10.0 10.0 10.0 0.00 0.0 0.0 0.0 0.0 

TIPS 10.0 10.0 10.0 10.0 10.0 15.6 0.0 0.0 0.0 0.0 

Commodities 10.0 10.0 10.0 10.0 10.0 11.1 5.4 0.0 0.0 0.0 

Exhibit A10:  Perturbed Allocations, Hypothetical Risk Climate, Gaussian Implied Deflationary 
Scenario 

 Maximum loss from deflationary scenario, Gaussian 

 Starting 
allocation 

16 14 12 10 8 6 4 2 0 

Equities 50.0 50.0 50.0 50.0 50.0 50.0 50.0 49.9 41.0 16.9 

REITs 10.0 10.0 10.0 10.0 10.0 10.0 10.0 9.9 4.4 0.0 

Nominal 
Treasuries 

10.0 10.0 10.0 10.0 10.0 10.0 10.0 11.9 49.0 83.1 

High Yield 
Bonds 

10.0 10.0 10.0 10.0 10.0 10. 0 10.0 12.2 3.9 0.0 

TIPS 10.0 10.0 10.0 10.0 10.0 10.0 10.0 6.2 0.0 0.0 

Commodities 10.0 10.0 10.0 10.0 10.0 10.0 10.0 9.9 2.0 0.0 
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Exhibit A11: Perturbed Allocations, Hypothetical Risk Climate, Empirically Defined Deflationary 
Scenario 

 Maximum loss from deflationary scenario, empirical 

 Starting 
allocation 

16 14 12 10 8 6 4 2 0 

Equities 50.0 50.0 50.0 50.0 50.0 42.3 28.6 14.8 1.0 0.0 

REITs 10.0 10.0 10.0 10.0 10.0 11.1 12.9 14.6 16.4 0.0 

Nominal 
Treasuries 

10.0 10.0 10.0 10.0 10.0 18.6 26.3 33.8 41.2 58.6 

High Yield 
Bonds 

10.0 10.0 10.0 10.0 10.0 0.7 0.0 0.0 0.0 0.0 

TIPS 10.0 10.0 10.0 10.0 10.0 13.0 11.1 8.9 6.8 0.0 

Commodities 10.0 10.0 10.0 10.0 10.0 14.4 21.1 27.9 34.7 41.4 

 

Appendix IV: A Chronicle of Recent Breakeven Inflation in the United States 

 

Exhibits A12 and A13 show US nominal and real interest rate term structures on a series of dates 

at six-month intervals. The earliest curve shown, 7 Jul 2007, predates the recent crisis and 

indicates flat nominal and real rates at roughly 5 and 3, respectively. Later in July, however, 

troubles at two Bear Stearns hedge funds specializing in subprime mortgages became public, 

setting off market disruptions that foreshadowed the crisis that followed. The market responded 

with a flight to quality. Rates dropped by roughly 2 at the short end and 0.5 at the long end, 

leaving an upwardly sloping yield curve as of 4 Jan 2008. 

In the first half of 2008, increased commodity and oil prices led to a bout of inflation that troubled 

consumers in the form of increasing prices for gasoline, shipping, and air travel. In March, Bear 

Stearns was sold to JP Morgan at a fire-sale price. Markets were volatile, nominal interest rates 

held steady, and real interest rates dropped at the short end. Autumn 2008 witnessed the 

unprecedented deflationary shock featured in this article. The Lehman Brothers collapse triggered 

a dramatic flight to nominal US Treasuries, and TIPS were eschewed along with equities, REITS, 

commodities, and other risky securities. As the US rolled out its Troubled Assets Relief Program 

(TARP), investors began to worry about potential inflation and reversed their positions on TIPS, 

and there was a return to normalcy in the first half of 2009. US breakeven inflation rates 

corresponding to the four 6-month intervals between July 2007 and July 2009 are shown in 

Exhibits A14. 
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Exhibit A12: US Nominal Rates 

 

Exhibit A13: US Real Rates 

 

Exhibit A14: US Breakeven Inflation Rates 
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