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Abstract

Entropy in Unsupervised Machine Learning

by

Zengyi Li

Doctor of Philosophy in Physics

University of California, Berkeley

Adjunct Professor Friedrich T. Sommer, Co-chair

Associate Professor Michael R. DeWeese, Co-chair

Entropy is a central concept in physics and has deep connections with Information
theory, which is one of the foundations of modern machine learning. Specifically,
energy-based models are unsupervised machine learning models that adopt a simple
yet general formulation based on the principle of maximum entropy. Three Chapters
in my thesis are related to energy-based models, and one Chapter uses a Gaussian
Coding rate function, which is also related to entropy.

The Boltzmann machine is an energy-based model with strong connections to spin
systems in Physics. Boltzmann machines were conceived with bipolar real-valued
spin states (up and down) and later generalized to complex valued spin states with
unit length. Building on the previous work on complex Boltzmann machines, here
we study a generalization where the complex spin states can vary in both, phase and
amplitude. Complex Boltzmann machines are closely related to networks of coupled
stochastic oscillators and thus can be efficiently implemented in coupled oscillator
and also neuromorphic hardwares.

Neural Network Energy-based model (EBM) provide a unified framework for a diverse
set of functions, such as sample synthesis, denoising, outlier detection, and Bayesian
reasoning. However, the downside of EBMs is that their standard training method
based on maximum-likelihood requires expensive sampling and is therefore extremely
slow. Denoising score matching is an attractive alternative. Inspired by [143], we
study a new method of training EBM in high-dimensional space using multiple scales
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with denoising score matching. The resulting model exhibits strong performance on
data generation and inpainting.

Another approach that could make training of EBMs efficient is developing an ef-
ficient MCMC (Markov Chain Monte Carlo) sampler. The entropy of the proposal
distribution of a sampler is an effective measure of the efficiency of the sampler with-
out reference to any detail of the target distributions, thus has the potential to be
applied to neural networks energy functions. We developed a new neural network
augmented MCMC sampler that can be trained to exactly maximize its proposal en-
tropy. The resulting sampler can adapt to very difficult target distribution geometry,
and is shown to improve the training of an EBM.

Self-supervised learning, another important type of unsupervised learning, learns a
useful data representation for downstream tasks (for example classification), instead
of learning a generative model that fully recreates the dataset. For this, an objec-
tive function based on the Gaussian coding rate function called MCR2[178] shows
promise. Using this objective, we build a framework that unifies neural networks
based non-linear subspace clustering and data-augmentation based self-supervised
learning. The resulting algorithm shows strong performance in various subspace
clustering tasks.
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Chapter 1

Introduction

1.1 Organization of this Thesis

The introduction Chapter provides relevant backgrounds for understanding later
chapters, which will be organized by topic. Machine Learning is a field moving in
incredibly rapid pace, a lot of interesting development can happen after work in
this thesis is done. To provide reader a better context, at the end of some chapters,
Epilogue sections are included to provide up to date review of the impact of the work
in that chapter, as well as recent developments related to topics in that Chapter.

1.2 Unsupervised Learning and Energy-based

models

Modern machine learning is achieving stunning success across more and more task
domains that previously were thought to be only solvable by humans. Look no
further than famous examples like GPT-3 language models [14] and DALL-E image
models[127]. The central driving force that made this possible is the combination of
using larger datasets and spending more compute to train the model. To get a sense
of the scale, GPT-3 uses 570G of text data and DALL-E used 250 million images.
Labeling such datasets by hand is completely infeasible. Thus, unsupervised learning,
a learning technique that consumes unlabeled data directly, has been essential to
learn from datasets of this scale.

Unsupervised learning uses many different objectives, in this thesis we focus on one
of the most basic, where the objective is to recreate a dataset as faithfully as possible.
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Regardless of the modality, a dataset can be regarded as a set of points x sampled
from a data distribution p(x). The goal of learning would then be to approximate
the true data distribution p(x) by a model distribution qθ(x) where θ are parameters
of the model. Naturally, the learning target consist of a measure of closeness between
the two distributions D[qθ(x)|p(x)], whose specific form we will explore later. This
class of models are often referred to as generative models [157]

Examples of generative models include GANs[49], autoregressive models[117], flow-
based models[31][32], variational auto-encoders (VAE)[83], etc. The focus of this
thesis is Energy-based models (EBM) [5][94][173], in which the model parameters θ
assign an energy value to a sample x (or combination of samples and internal state)
Eθ(x). The model distribution is naturally defined by the Boltzmann distribution
with the maximum entropy principle:

qθ(x) = e−Eθ(x)/Zθ (1.1)

Where Z =
∫
dxe−Eθ(x) is the partition function. To train an EBM, the most basic

method is to minimize the Kullback–Leibler divergence between the model and data
distribution:

DKL[p(x)||qθ(x)] =< log[p(x)]− log[qθ(x)] >p(x) (1.2)

Where the bracket <>p(x) denotes the average over p(x). The first term in the
parenthesis does not depend on the model parameters, thus can be ignored when op-
timizing the model. The objective thus reduces to simply maximizing the average log
likelihood of the data points in the model: < log[qθ(x)] >p(x). Maximum Likelihood
learning is among the most popular method in statistics to fit models to data.

In the case of EBMs, we use Equation 1.1 to obtain expression for the log likelihood
of EBM:

log[qθ(x)] = −Eθ(x)− log(Zθ) (1.3)

To optimize θ, one needs to take the derivative of the quantity above with respect
to θ. The Eθ(x) part is usually straight forward, however, for the partition function,
we have: ∇θlog(Zθ) = 1

Zθ

∫
dx[−∇θEθ(x)]e

−Eθ(x) =< −∇θEθ(x) >qθ(x). Putting
both terms together and including the average over data distribution, we have the
following learning rule:

∇θ < log[qθ(x)] >p(x)=< ∇θEθ(x) >p(x) − < ∇θEθ(x) >qθ(x) (1.4)
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As one of the expectations is taken over the model distribution, samples from the
EBM are required to train the EBM using maximum likelihood. Unfortunately, this
can be computationally very expensive, since obtaining unbiased samples from a
complicated distribution defined by an energy function generally requires Markov
Chain Monte Carlo (MCMC) methods, which is known to be very slow [115]. Much
of this thesis revolves around ideas to remedy this problem. In particular, Chapter
3 describes a new method to train EBM without sampling, and Chapter 4 proposes
a neural network MCMC sampler for improving the sampling efficiency.

1.3 Markov Chain Monte Carlo (MCMC)

Sampling and its efficiency

In broad strokes, the MCMC sampling process works as follows. First, sample points
are initalized according to some initial distribution pi(x). Second the sample points
are modified or “evolved” according to some rule (A Markov Chain) that leaves the
target distribution invariant. Therefore, gradually, the samples relax to the target
distribution p(x). A Markov Chain is defined by the transition probability T (x′|x)
that describes how the samples are evolved between sampling steps. Often the direct
construction of the transition probability is difficult. In such cases the most common
way is to evolve with Metropolis-Hastings (MH) updates. Each step update the
sample with an arbitrary proposal distribution q(x′|x) combined with a decision
process of whether the modification is accepted or rejected. The accept probability
A(x′, x) = min[1, p(x

′)q(x|x′)
p(x)q(x′|x) ] of the decision process is designed so that the target

distribution is preserved.

The efficiency of a MCMC technique is quantified by how many steps it takes to
evolve from one sample to another sample which is uncorrelated. Two applications
we will investigate, Boltzmann machine and deep EBMs, both use MCMC sampling.
For Boltzmann machines, the invariant transition probability T (x′|x) can easily be
derived, and sampling is relatively efficient. Deep EBMs typically use Langevine
dynamics, and the corresponding sampling efficiency is very low.

In a M-H style sampler, the core difficulty is the design of efficient proposal distri-
butions. In each step the proposed sample should move far from the previous one
(being uncorrelated) and at the same time concentrate on high probability regions
of the target distribution to keep the rejection rate low. For example, Langevine
dynamics is inefficient because it makes very local moves. In Chapter 4, we propose
a new model that learns a proposal distribution to significantly improve sampling
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efficiency.

1.4 Boltzmann machines

Boltzmann Machines and Restricted Boltzmann Machine

Boltzmann Machines (BM) are a particular type of EBM with strong connections to
Ising models in physics. Ising models are physical systems of interacting particles
whose local states are described by a binary spin, i.e., up or down. Thus the system
state is represented by a binary vector x ∈ [−1, 1]d, and energy function E(x) =
−1/2xTWx− xTb, where W ∈ Rd×d and b ∈ Rd are interactions weights and bias.
While the interaction weights of Ising models are given in physics, the weights of
BM are learned from data. Like Ising models, BMs have a Boltzmann distribution
over x given by Equation 1.1. In machine learning, this fully visible BM is not a
very expressive model. Since for 2d−1 degrees of freedom in the general distribution
over x, the system only has d2+d parameters. Further, sampling in fully visible BM
is very slow, as sampling is a recurrent process in which spins have to be updated
individually until convergence. Both the capacity and sampling inefficiency issue can
be remedied by a simple alternative, called Restricted Boltzmann Machine (RBM)
[138]. In RBMs, units are divided into visible v and hidden units h, only visible units
are fit to data, and there’s interaction weights between hidden and visible units, but
not amount themselves. The resulting energy function is:

E(v,h) = −vTWh− vTbv − hTbh (1.5)

We then have the probability for a certain configuration pθ(v,h) =
1
Zθ
e−Eθ(v,h), where

θ = [W,bv,bh] are collection of all parameters in the RBM.

Sampling and Learning in RBM

One useful property of RBMs is that the visible (hidden) units are independent of
each other given the hidden (visible) units. This give rise to a natural sampling
algorithm called block Gibbs that alternate between sampling all visible and hidden
units in parallel. The update rule for each unit is simply the marginal distribution
of that unit given all other units: p(v|h) = σ(Wh + bv), p(h|v) = σ(vTW + bh).
Where σ denotes sigmoid function.

The learning rule for RBMs is slightly different from standard EBM due to the
presence of hidden units. Consider the probability of some configuration pθ(v) =∑

h pθ(v,h) =
1
Zθ

∑
h e

−Eθ(v,h).
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∇θlog[pθ(v)] =

∑
v′,h′ ∇θEθ(v

′,h′)e−Eθ(v,h)∑
v′,h′ e−Eθ(v′,h′)

−
∑

h′ ∇θEθ(v,h
′)e−Eθ(v,h

′)∑
v′,h′ e−Eθ(v,h′)

(1.6)

= −⟨∇θEθ(v
′,h′)⟩pθ(v′,h′) + ⟨∇θEθ(v,h

′)⟩pθ(h′|v) (1.7)

Compared to Eq. 1.4 the average over the data distribution is nested by an average
over hidden state given a particular sample from the data distribution, and the
average over model distribution includes hidden state as well.

As the average over model distribution is still expensive to compute, some techniques
are developed to reduce the sampling burden. In particular, Contrastive Divergence
(CD) [66][169] and Persistent Contrastive Divergence (PCD) [155] are proven to be
very effective for training RBMs. Instead of randomly initializing v and h, consider
initializing v at a sample v0 from the data distribution. Block Gibbs sampling can
be used to draw a fair sample h0 from p(h|v0). This sample can be used as a sample
for the second average in 1.6. We can then sample v1 from p(v|h1) using Gibbs
sampling, and then h2 from p(h|v1), etc. For Contrastive Divergence, one use vn

and hn as samples in the first average in 1.6, the resulting algorithm is refereed to
as CDn.

Contrastive divergence is a heuristic method that can quickly learn meaningful fea-
tures using RBMs, although the resulting update is not a gradient of any function,
and it may not converge to a fix point [179]. Note that when n → ∞, vn and hn will
be fair samples from the model distribution, and the resulting gradient update will
be exact.

For PCD, a pool of samples from the model are kept between gradient updates of the
model. The samples are updated by a few steps of sampling by the current model
before used as samples for gradient update. The reasoning behind this is that the
model only changes slightly between gradient updates, and a few steps are sufficient
for the samples to ”catch up” to the current model. PCD does not have the limitation
of initializing the chain from data samples, thus may explore the sample space better
than CD.
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1.5 Training Neural Network Energy-based

Models

The more straight-forward and modern approach to EBM is to use a deep neural net-
work to model E(x) directly [173]. When x is continuous, such as images, continuous-
space sampling method is required, most of the time, unadjusted Langevine dynamics
[35][115] is used:

xt+1 = xt −
ϵ2

2
∇xE(xt) + ϵ ∗ N (0, Id) (1.8)

Where N (0, Id) denote normal distribution with 0 mean and diagonal covariance,
and ϵ is the discretization step size. Physically, this corresponds to a discrete sim-
ulation of the diffusion process. This update can also be considered as a proposal
distribution, but the M-H accept-reject step is omitted, as it is difficult to achieve
reasonable acceptance rate for practical step sizes. Diffusion process is notoriously
slow to explore the state space, but still, some practical EBM has been trained with
Langevine dynamic.

Analogous to RBM, samples from CD and PCD can be used in place of the full model
distribution in Eq 1.4. Although the use of CD is challenging in this case and requires
some care[36]. Notably, even though PCD alleviate the burden of sampling by quite
a bit, training neural network EBMs can still be extremely expensive [115]. To
understand the challenge, one need to realize that computing one step of Langevine
dynamics requires 2 passes through the deep neural network, and PCD in general
requires ∼ 40 steps of sampling per model gradient update [115], that means the
training process is ∼ 40 times more expensive than training the same network for
classification tasks. Besides high computational cost, Langevine dynamics is also
ineffective in exploring the sample space, limiting the quality of the resulting EBM.

Score matching

Score matching [72] is an alternative to the maximum likelihood objective. Instead
of fitting an energy-based model by matching the gradient of the log probability
between the model and data distribution using the following loss:

LSM(θ) =
1

2
Ep(x)||∇xlog[p(x)] +∇xEθ(x)||2 (1.9)

Importantly, the generally intractable partition function does not appear since it
doesn’t depend on x. It’s not difficult to understand that when the gradient matches
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exactly, so will the density itself. Practically, this objective function is rarely used
directly because one usually don’t have access to the gradient of the data distribution.
An alternative form of score matching exists, but has its own problems which we
won’t elaborate here, but see[146].

Denoising Score Matching (DSM) [164] is an interesting alternative to the origi-
nal score matching objective. In DSM, instead of estimating the original p(x), one
changes the learning target to a Parzen density estimator of the original distribution:
pσ(x̃) =

∫
qσ(x̃|x)p(x)dx. Remarkably, the following equation holds:

Epσ(x̃)||∇x̃log[pσ(x̃)]−∇x̃Eθ(x̃)||2 = Epσ(x̃|x)p(x)||∇x̃log[pσ(x̃|x)]−∇x̃Eθ(x̃)||2 (1.10)

When qσ(x̃|x) is Gaussian, ∇x̃log[pσ(x̃|x)] = (x− x̃)/2σ2, which is a vector pointing
from the clean sample to the noisy sample, hence the name denoising.

Denoising score matching is a very convenient objective to train an EBM for a data
distribution of a certain noise scale [135][134]. However, to generate high quality
samples, multiple noise scales are required [143]. Training EBM with denoising score
matching of multiple noise scales is studied in Chapter 3.

1.6 Self-supervised feature learning and manifold

clustering

Given enough capacity, generative models introduced above will capture all and
every details of the data distribution. While this is useful, for some applications, it
is sufficient to learn some discriminate features that capture the “useful’ information
about the data while discarding other information. Examples of this includes learning
features for classifying images [21][160] or for speech recognition [6], neither of which
requires full reconstruction of the original data. This type of unsupervised learning
is often referred to as self-supervised learning, although the boundary of this term is
not very clear sometimes.

Here we focus on learning discriminative features from images. One type popu-
lar and successful method [21] [61] utilizes the following general procedure: Images
from the learning dataset are processed by two random transformations called data-
augmentations. Typically the transformations perturb aspects of the images that do
not change the underlying object class as perceived by humans, for example, color,
zoom, aspect ratio, position, etc. The data-augmentation used is usually found em-
pirically. The neural network is required to output features that are similar for the
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two augmented images. At the same time, the neural network should not collapse
the features of all images to the same point. After training with this procedure, the
feature output of the network can be used to classify images with relatively simple
classifier, i.e. linear or k-Nearest-Neighbor (kNN), achieving accuracy close to fully
supervised methods, where the neural network is also trained with labels. Although
the precise reason for the success of such method is still being studied [57][89][187], it
can be conceptually understood by assuming that features invariant to those trans-
formations are closely correlated with class information.

In Chapter 5, we study the relationship between augmentation based self-supervised
learning and Manifold Clustering, a seemingly unrelated type of classical machine
learning problem. To understand Manifold Clustering, consider its linear version,
called Subspace Clustering [163], which aims to identify individual linear subspaces
from a dataset consist of mixture of them. Additionally, coordinates on those sub-
spaces should be learned. Manifold Clustering goes one step beyond and aims to
achieve this for mixture of non-linear manifolds [3].

Being an unsupervised learning problem, Manifold clustering is ill-posed without
some assumptions on the underlying data. The most common assumption is that
the manifolds are continuous, and there’s sufficient data points to outline the un-
derlying structure. Augmentation-based self-supervised learning has the underlying
assumption that important features are invariant to augmentations. In Chapter 5, we
demonstrate that Self-supervised learning and Manifold Clustering are closely related
by tackling them with a unified algorithm that works strongly in both problems.
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Chapter 2

Complex Phase-Amplitude
Boltzmann Machines

2.1 Introduction

Boltzmann machines are recurrent stochastic neural networks that can be used for
learning data distributions. Originally proposed with binary stochastic neurons [5],
a complex-valued Boltzmann machine was first introduced under the name DUBM
(Directional Unit Boltzmann Machine) [181]. In this model, the neurons represent
complex numbers of modulus 1 with arbitrary phase angles. DUBM can learn rela-
tive phase distributions. The practical impact of DUBM has been somewhat limited
because complex data representing real-world problems often have not only phase
but also amplitude variations. From a neuroscience perspective, DUBMs also have
the undesirable property that all neurons are active all the time. Here we propose
a complex Boltzmann machine whose neurons can represent complex numbers with
arbitrary phase angles and amplitudes of 1 or 0. As we demonstrate in simula-
tion experiments, this model enables unsupervised learning of complex-valued data
with variable amplitudes. Further, it permits the introduction of regularization of
the network activity, such as a sparsity constraint. We also show the necessity of
an amplitude-amplitude coupling term that is potentially useful for other types of
complex-valued neural networks [54, 158].
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2.2 Model Setup

The DUBM model [181] is an energy based model, p(zzz) = e−E(zzz)/Z, for a data
distribution of phasor variables, i.e., a vector of complex-valued components zj with
modulus 1. Z is the partition sum. The energy function of the DUBM is given by:

E(zzz) = −1

2
zzz†WzWzWz (2.1)

where the superscript † denotes the conjugate transpose. The matrix WWW ∈ CN is a
complex coupling matrix. For (2.1) to be real-valued, the matrix is required to be
Hermitian, i.e., WWW † =WWW .

If we allow a state zj to take two modulus values, 1 and 0, corresponding to an active
or inactive neuron, (2.1) induces an amplitude and relative phase distribution. To
control the fraction of active units, we add into (2.1) a penalty term of the form:
ϵϵϵT |zzz|, where ϵϵϵ ∈ RN is a bias vector. Further, we introduce an amplitude-amplitude
coupling term: −1

2
|zzz|TJJJ |zzz|, with JJJ ∈ RN a symmetric real-valued matrix. Putting it

all together, the energy function of Complex Amplitude-Phase Boltzmann Machine
(CAP-BM) is:

E(zzz) = −1

2
zzz†WzWzWz − 1

2
|zzz|TJJJ |zzz|+ ϵϵϵT |zzz| (2.2)

Like in the DUBM model, the CAP-BM model is symmetric with respect to global
phase shifts in all units. The benefit of the amplitude-amplitude coupling in the
CAP-BM might not be obvious here, but we will explore its effect experimentally
and argue later why this term is essential.

Sampling in complex Boltzmann machines can be achieved by a Gibbs sampling
procedure similar to that in real-valued Boltzmann machines. One difference is
that we sample amplitude and phase separately. To achieve this, two marginal
probabilities induced by the Boltzmann distribution are required: P (|zj| = 1|zzz!j)
and p(θj| |zj| = 1, zzz!j). They represent the marginal probability for a unit to take
amplitude 1 and the probability density of its phase, given that it takes amplitude
1. They can be obtained in the same manner as in [5], for derivations, see Appendix
A:

P (|zj| = 1|zzz!j) =
1

1 + (eµj−ϵj I0(aj))−1
(2.3)

p(θj| |zj| = 1, zzz!j) =
1

2πI0(aj)
eajcos(αj−θj) (2.4)
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In the above equations the variables aj, αj, µj represent the complex and real-valued
input sums to neuron j: uj = aje

iαj =
∑

k ̸=j Wjkzk and µj =
∑

k ̸=j Jjk|zk|. I0(x)
denotes the zeroth order Bessel function of the first kind, which becomes similar to
an exponential function for large arguments. Therefore, P (|zj| = 1|zzz!j) is sigmoid
shaped as a function of aj and µj. Similar as that in the DUBM model, the phase
distribution p(θj| |zj| = 1, zzz!j) is a von Mises distribution, the circular analog of
Gaussian. For a graphic depicting of the behavior of P (|zj| = 1|zzz!j), see Appendix,
Figure A.1.

Note here the amplitude depends on phase through aj, and phase depends on ampli-
tude as units with amplitude 0 do not contribute to the input sum uj. Therefore, the
CAP-BM model is not equivalent to the combination of DUBM and a real-valued
Boltzmann machine, in which amplitudes and phases would be modeled separately.

2.3 Learning rules for the Complex Boltzmann

machine

Like for the real-valued Boltzmann machine[5], the learning rules for model param-
eters of the CAP-BM model can be derived for the Maximum Likelihood objective
G (derivations, see Appendix A):

∂G

∂bjk
= ⟨|zj ||zk|cos(θjk + θk − θj)⟩sample − ⟨|zj ||zk|cos(θjk + θk − θj)⟩model (2.5)

∂G

∂θjk
=−⟨|zj ||zk|bjksin(θjk+θk−θj)⟩sample+⟨|zj ||zk|bjksin(θjk+θk−θj)⟩model (2.6)

∂G

∂Jjk
= ⟨|zj ||zk|⟩sample − ⟨|zj ||zk|⟩model (2.7)

∂G

∂ϵj
= −⟨|zj |⟩sample + ⟨|zj |⟩model (2.8)

Here bjk and θjk denote amplitude and phase of complex weight Wjk = bjke
iθjk , Jjk

the real-valued weight for amplitude-amplitude coupling, and ϵj the bias.

The learning rules (2.7) and (2.8) are the same as that of real-valued BM while rules
(2.5) and (2.6) are similar to that of DUBM with extra amplitude dependencies.
Another similarity to real-valued BMs is that training in our model requires sampling
from the model distribution. To speed up the training in real-valued BMs, learning
schemes such as Contrastive Divergence (CD) and Persistent Contrastive Divergence
(PCD) [66, 155] have been proposed that do not require full model distribution.
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Another proposal for higher sampling efficiency is to choose a network architecture,
now called the restricted Boltzmann machine [138], in which sampling from model
is more parallelizable because recurrent weights within the sets of hidden or visible
units are absent. All these techniques for speeding up the training can equally be
applied to the CAP-BM model.

2.4 Experiments with a Complex

Phase-Amplitude RBM

Here we demonstrate a restricted version of the CAP-BM, referred to as CAP-RBM,
on synthetic data and on the MNIST dataset pre-processed with a complex wavelet
transform (CWT).

For synthetic dataset, the CAP-RBM was trained using 1-step contrastive divergence
(CD-1) [66] on a synthetic dataset of complex-valued images of bars with a noisy sine-
wave phase pattern. We compare the performance of models with and without the
amplitude-amplitude coupling term J . As can be seen in Fig. 2.1 a), the model
without the J term does not form a stable representation of test data.

The necessity of J term can be explained as follows. In equations 2.4 and 2.3 one can
see that the amplitude of the complex input sum to a unit, aj, plays a dual role of
controlling the activation of a unit and the variance of phase distribution. Sometimes
the data may have sharp amplitude distribution while having large variance on its
phase, this distribution cannot be learned without J since this would require aj to
be large and small at the same time.

We then train CAP-RBM on complex wavelet transformed MNIST dataset, where
only middle two frequency bands are used and the complex coefficients are thresh-
olded and normalized. Training used PCD [155] algorithm after initializing with
CD-1. As can be seen from Fig. 2.1 b) and c), the model captures data distribution
well.

Further experimental details are provided in Appendix A.

2.5 Conclusion

In this Chapter we proposed and demonstrated a model of Boltzmann machine with
both amplitude and phase variation. Our work differs from previous formulations of
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Figure 2.1: Demonstration of the Complex restricted Boltzmann machine (CAP-
RBM) on a synthetic bar dataset and on CWT-transformed MNIST dataset. a)
Training CAP-RBM on complex images of bars with noisy phase (best viewed in
color). The two blocks of images show results of the CAP-RBM without J matrix and
the full CAP-RBM. The first row in each block shows samples from dataset. The four
lower rows in each block show the expectation of visible unit activity after variable
numbers of Gibbs sampling steps initialized at sample. The model without J matrix
does not form stable representation of the sample. b) original and reconstructed
MNIST digits after various numbers of sampling steps, initialized at samples. c)
samples generated from random initialization, global phase for each sample has to
be set by hand.
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complex BM by being a natural extension of DUBM. In contrast, [125] use variables
with binary real and imaginary parts, and [102] use complex-Gaussian visible unit.
In particular we showed the importance of an amplitude-amplitude coupling term not
seen in previous works on complex-valued neural networks. In addition, this model
is potentially directly applicable since new hardware implementation of Boltzmann
sampling in complex domain is becoming available. Examples include electronic [167]
and optical[150] implementations. Furthermore, there is recent proposal of mapping
recurrent network of oscillating spiking neurons to complex networks [43], which
could also benefit from a probabilistic interpretation.
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Chapter 3

Learning EBMs in
high-dimensional spaces with
MDSM

3.1 Introduction and Motivation

Treating data as stochastic samples from a probability distribution and developing
models that can learn such distributions is at the core for solving a large variety of
application problems, such as error correction/denoising [165], outlier/novelty detec-
tion [182, 24], sample generation [115, 35], invariant pattern recognition, Bayesian
reasoning [170] which relies on good data priors, and many others.

Energy-Based Models (EBMs) [94, 113] assign an energy E(xxx) to each data point
xxx which implicitly defines a probability by the Boltzmann distribution pm(xxx) =
e−E(xxx)/Z. Sampling from this distribution can be used as a generative process that
yield plausible samples of xxx.

Compared to other generative models, like GANs [49], flow-based models [31, 84], or
auto-regressive models [117, 118], energy-based models have significant advantages.
First, they provide explicit (unnormalized) density information, compositionality [65,
55], better mode coverage [90] and flexibility [35]. Further, they do not require special
model architecture, unlike auto-regressive and flow-based models. Recently, Energy-
based models has been successfully trained with maximum likelihood [115, 35], but
training can be very computationally demanding due to the need of sampling model
distribution. Variants with a truncated sampling procedure have been proposed,
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such as contrastive divergence [66]. Such models learn much faster with the draw
back of not exploring the state space thoroughly [155].

Score Matching, Denoising Score Matching and Deep
Energy Estimators

Score matching (SM) [72] circumvents the requirement of sampling the model dis-
tribution. In score matching, the score function is defined to be the gradient of
log-density or the negative energy function. The expected L2 norm of difference
between the model score function and the data score function are minimized.

One convenient way of using score matching is learning the energy function corre-
sponding to a Gaussian kernel Parzen density estimator [121] of the data: pσ0(x̃xx) =∫
qσ0(x̃xx|xxx)p(xxx)dxxx. Though hard to evaluate, the data score is well defined: sd(x̃xx) =

∇x̃xx log(pσ0(x̃xx)), and the corresponding objective LSM(θ) =:

Epσ0(x̃xx) ∥ ∇x̃xx log(pσ0(x̃xx)) +∇x̃xxE(x̃xx; θ) ∥2 (3.1)

LSM is also known as the Fisher divergence or the Fisher information distance [76,
28], LSM = DFD(pσ0||pm), where pm(xxx) = e−E(xxx)/Z is the normalized distribution
from the model energy function. While the KL divergence requires the ratio between
two density functions, this metric doesn’t depend on the normalizing constant Z,
which for energy-based model needs global integration through sampling and is rarely
accurately available.

[164] studied the connection between denoising auto-encoder and score matching, and
proved the remarkable result that the following objective, named Denoising Score
Matching (DSM), is equivalent to the objective above, and LDSM(θ) =:

Epσ0 (x̃xx,xxx)
∥ ∇x̃xx log(qσ0(x̃xx|xxx)) +∇x̃xxE(x̃xx; θ) ∥2 (3.2)

Note that in (3.2) the Parzen density score is replaced by the derivative of log density
of the single noise kernel ∇x̃xx log(qσ0(x̃xx|xxx)), which is much easier to evaluate. In

the particular case of Gaussian noise, log(qσ0(x̃xx|xxx)) = − (x̃̃x̃x−xxx)2

2σ2
0

+ C, and therefore

LDSM(θ) =:
Epσ0(x̃xx,xxx) ∥ xxx− x̃xx+ σ0

2∇x̃xxE(x̃xx; θ) ∥2 (3.3)

The intuition behind the objective (3.3) is simple, it forces the energy gradient to
align with the vector pointing from the noisy sample to the clean data sample.
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To optimize an objective involving the derivative of a function defined by a neural
network, [82] proposed the use of double backpropagation [34]. Deep energy estimator
networks [135] first applied this technique to learn an energy function defined by a
deep neural network. In this work and similarly in [134], an energy-based model was
trained to match a Parzen density estimator of data with a certain noise magnitude.
The previous models were able to perform denoising task, but they were unable to
generate high-quality data samples from a random input initialization. Recently,
[143] trained an excellent generative model by fitting a series of score estimators
coupled together in a single neural network, each matching the score of a Parzen
estimator with a different noise magnitude.

The questions we address here is why learning energy-based models with single noise
level does not permit high-quality sample generation and what can be done to im-
prove such energy based models. Our work builds on key ideas from [135, 134, 143].

Section 3.2 provides a geometric view of the learning problem in denoising score
matching and provides a theoretical explanation why training with one noise level is
insufficient if the data dimension is high.

Section 3.3 presents a novel method for training energy based model, Multiscale
Denoising Score Matching (MDSM). Section 3.4 describes empirical results of the
MDSM model and comparisons with other models.

3.2 A Geometric View of Denoising Score

Matching

[143] used denoising score matching with a range of noise levels, achieving great
empirical results. The authors explained that large noise perturbation are required to
enable the learning of the score in low-data density regions. But it is still unclear why
a series of different noise levels are necessary, rather than one single noise level that
is large enough. Following [134], we analyze the learning process in denoising score
matching based on measure concentration properties of high-dimensional random
vectors.

We adopt the common assumption that the data distribution to be learned is high-
dimensional, but only has support around a relatively low-dimensional manifold [153,
128, 93]. If the assumption holds, it causes a problem for score matching: The density,
or the gradient of the density is then undefined outside the manifold, making it
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A. Training B. Sampling

?

?

Single noise level All noise levels

Figure 3.1: Illustration of multiscale denoising score matching. A. During training,
derivative of log-likelihood is forced to point toward data manifold, establishing en-
ergy difference between points within manifold and points outside. Note that energy
is negative log-likelihood therefore energy is higher for point further away from data
manifold. B. During annealed Langevin sampling, sample travel from outside data
manifold to data manifold. Shown are singled step denoised sample during sampling
of an energy function trained with MDSM on Fashion-MNIST (see text for details).

difficult to train a valid density model for the data distribution defined on the entire
space. [134] and [143] discussed this problem and proposed to smooth the data
distribution with a Gaussian kernel to alleviate the issue.

To further understand the learning in denoising score matching when the data lie on
a manifold X and the data dimension is high, two elementary properties of random
Gaussian vectors in high-dimensional spaces are helpful: First, the length distribution
of random vectors becomes concentrated at

√
dσ [162], where σ2 is the variance of a

single dimension. Second, a random vector is always close to orthogonal to a fixed
vector [151]. With these premises one can visualize the configuration of noisy and
noiseless data points that enter the learning process: A data point xxx sampled from
X and its noisy version x̃xx always lie on a line which is almost perpendicular to the
tangent space TxxxX and intersects X at xxx. Further, the distance vectors between
(xxx, x̃xx) pairs all have similar length

√
dσ. As a consequence, the set of noisy data

points concentrate on a set X̃√
dσ,ϵ that has a distance with (

√
dσ− ϵ,

√
dσ+ ϵ) from

the data manifold X , where ϵ ≪
√
dσ.

Therefore, performing denoising score matching learning with (xxx, x̃xx) pairs generated
with a fixed noise level σ, which is the approach taken previously except in [143], will
match the score in the set X̃√

dσ,ϵ and enable denoising of noisy points in the same
set. However, the learning provides little information about the density outside this
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set, farther or closer to the data manifold, as noisy samples outside X̃√
dσ,ϵ rarely

appear in the training process. An illustration is presented in Figure 3.1A.

Let X̃C√
dσ,ϵ

denote the complement of the set X̃√
dσ,ϵ. Even if pσ0(x̃xx ∈ X̃C√

dσ,ϵ
) is

very small in high-dimensional space, the score in X̃C√
dσ,ϵ

still plays a critical role in

sampling from random initialization. This analysis may explain why models based
on denoising score matching, trained with a single noise level encounter difficulties in
generating data samples when initialized at random. For an empirical support of this
explanation, see our experiments with models trained with single noise magnitudes
(Appendix B.2). To remedy this problem, one has to apply a learning procedure
of the sort proposed in [143], in which samples with different noise levels are used.
Depending on the dimension of the data, the different noise levels have to be spaced
narrowly enough to avoid empty regions in the data space. In the following, we will
use Gaussian noise and employ a Gaussian scale mixture to produce the noisy data
samples for the training (for details, See Section 3.3 and Appendix B.1).

Another interesting property of denoising score matching was suggested in the de-
noising auto-encoder literature [165, 80]. With increasing noise level, the learned
features tend to have larger spatial scale. In our experiment we observe similar phe-
nomenon when training model with denoising score matching with single noise scale.
If one compare samples in Figure B.1, Appendix B.2, it is evident that noise level
of 0.3 produced a model that learned short range correlation that spans only a few
pixels, noise level of 0.6 learns longer stroke structure without coherent overall struc-
ture, and noise level of 1 learns more coherent long range structure without details
such as stroke width variations. This suggests that training with single noise level in
denoising score matching is not sufficient for learning a model capable of high-quality
sample synthesis, as such a model have to capture data structure of all scales.

3.3 Learning Energy-Based Model with

Multi-Scale Denoising Score Matching

Multiscale Denoising Score Matching

Motivated by the analysis in section 3.2, we strive to develop an EBM based on
denoising score matching that can be trained with noisy samples in which the noise
level is not fixed but drawn from a distribution. The model should approximate the
Parzen density estimator of the data pσ0(x̃xx) =

∫
qσ0(x̃xx|xxx)p(xxx)dx. Specifically, the

learning should minimize the difference between the derivative of the energy and the
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score of pσ0 under the expectation EpM (x̃xx) rather than Epσ0 (x̃xx)
, the expectation taken

in standard denoising score matching. Here pM(x̃xx) =
∫
qM(x̃xx|xxx)p(xxx)dx is chosen to

cover the signal space more evenly to avoid the measure concentration issue described
above. The resulting Multiscale Score Matching (MSM) objective LMSM(θ) =:

EpM (x̃xx) ∥ ∇x̃xx log(pσ0(x̃xx)) +∇x̃xxE(x̃xx; θ) ∥2 (3.4)

Compared to the objective of denoising score matching (3.1), the only change in the
new objective (3.4) is the expectation. Both objectives are consistent, if pM(x̃xx) and
pσ0(x̃xx) have the same support, as shown formally in Proposition 1 of Appendix B.1.
In Proposition 2, we prove that Equation 3.4 is equivalent to the following denoising
score matching objective LMDSM∗ =:

EpM (x̃xx)qσ0 (xxx|x̃xx) ∥ ∇x̃xx log(qσ0(x̃xx|xxx)) +∇x̃xxE(x̃xx; θ) ∥2 (3.5)

The above results hold for any noise kernel qσ0(x̃xx|xxx), but Equation 3.5 contains the
reversed expectation, which is difficult to evaluate in general. To proceed, we choose
qσ0(x̃xx|xxx) to be Gaussian, and also choose qM(x̃xx|xxx) to be a Gaussian scale mixture:
qM(x̃xx|xxx) =

∫
qσ(x̃xx|xxx)p(σ)dσ and qσ(x̃xx|xxx) = N (xxx, σ2Id). After algebraic manipulation

and one approximation (see the derivation following Proposition 2 in Appendix B.1),
we can transform Equation 3.5 into a more convenient form, which we call Multiscale
Denoising Score Matching (MDSM), LMDSM =:

Ep(σ)qσ(x̃xx|xxx)p(xxx) ∥ ∇x̃xx log(qσ0(x̃xx|xxx)) +∇x̃xxE(x̃xx; θ) ∥2 (3.6)

The square loss term evaluated at noisy points x̃xx at larger distances from the true
data points xxx will have much larger magnitude. Therefore, in practice it is necessary
to add a monotonically decreasing term l(σ) for balancing the loss in different noise
scales, e.g. l(σ) = 1

σ2 . Ideally, we want our model to learn the correct gradient
everywhere, so we would need to add noise of all levels. However, learning denoising
score matching at very large or very small noise levels is useless. At very large noise
levels the information of the original sample is completely lost. Conversely, in the
limit of small noise, the noisy sample is virtually indistinguishable from real data. In
neither case one can learn a gradient which is informative about the data structure.
Thus, the noise range needs only to be broad enough to encourage learning of data
features over all scales. Particularly, we do not sample σ but instead choose a series

of fixed σ values σ1 · · ·σK . Further, substituting log(qσ0(x̃xx|xxx)) = − (x̃̃x̃x−xxx)2

2σ2
0

+ C into



CHAPTER 3. LEARNING EBMS IN HIGH-DIMENSIONAL SPACES WITH
MDSM 21

Equation 3.4, we arrive at the final objective L(θ) =:∑
σ∈{σ1···σK}

Eqσ(x̃xx|xxx)p(xxx)l(σ) ∥ xxx− x̃xx+ σ2
0∇x̃xxE(x̃xx; θ) ∥2 (3.7)

It may seem that σ0 is an important hyperparameter to our model, but after our
approximation σ0 become just a scaling factor in front of the energy function, and
can be simply set to one as long as the temperature range during sampling is scaled
accordingly (See Section 3.3). Therefore the only hyper-parameter is the rang of
noise levels used during training.

On the surface, objective (3.7) looks similar to the one in [143]. The important
difference is that Equation 3.7 approximates a single distribution, namely pσ0(x̃xx),
the data smoothed with one fixed kernel qσ0(x̃xx|xxx). In contrast, [143] approximate
the score of multiple distributions, the family of distributions {pσi

(x̃xx) : i = 1, ..., n},
resulting from the data smoothed by kernels of different widths σi. Because our
model learns only a single target distribution, it does not require noise magnitude as
input.

Sampling by Annealed Langevin Dynamics

Langevin dynamics has been used to sample from neural network energy functions
[35, 115]. However, those studies described difficulties with mode exploration unless
very large number of sampling steps is used. To improve mode exploration, we
propose incorporating simulated annealing in the Langevin dynamics. Simulated
annealing [85, 104] improves mode exploration by sampling first at high temperature
and then cooling down gradually. This has been successfully applied to challenging
computational problems, such as combinatorial optimization.

To apply simulated annealing to Langevin dynamics. Note that in a model of Brow-
nian motion of a physical particle, the temperature in the Langevin equation enters
as a factor

√
T in front of the noise term, some literature uses

√
β−1 where β = 1/T

[78]. Adopting the
√
T convention, the Langevin sampling process [11] is given by:

xxxt+1 = xxxt −
ϵ2

2
∇xxxE(xxxt; θ) + ϵ

√
TtN (0, Id) (3.8)

where Tt follows some annealing schedule, and ϵ denotes step length, which is fixed.
During sampling, samples behave very much like physical particles under Brownian
motion in a potential field. Because the particles have average energies close to the
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their current thermic energy, they explore the state space at different distances from
data manifold depending on temperature. Eventually, they settle somewhere on the
data manifold. The behavior of the particle’s energy value during a typical annealing
process is depicted in Appendix Figure B.7B.

If the obtained sample is still slightly noisy, we can apply a single step gradient
denoising jump [134] to improve sample quality:

xxxclean = xxxnoisy − σ2
0∇xxxE(xxxnoisy; θ) (3.9)

This denoising procedure can be applied to noisy sample with any level of Gaussian
noise because in our model the gradient automatically has the right magnitude to
denoise the sample. This process is justified by the Empirical Bayes interpretation
of this denoising process, as studied in [134].

[143] also call their sample generation process annealed Langevin dynamics. It should
be noted that their sampling process does not coincide with Equation 3.8. Their sam-
pling procedure is best understood as sequentially sampling a series of distributions
corresponding to data distribution corrupted by different levels of noise.

3.4 Image Modeling Results

Training and Sampling Details. The proposed energy-based model is trained
on standard image datasets, specifically MNIST, Fashion MNIST, CelebA [97] and
CIFAR-10 [87]. During training we set σ0 = 0.1 and train over a noise range of
σ ∈ [0.05, 1.2], with the different noise uniformly spaced on the batch dimension.
For MNIST and Fashion MNIST we used geometrically distributed noise in the
range [0.1, 3]. The weighting factor l(σ) is always set to 1/σ2 to make the square
term roughly independent of σ. We use batch size of 128 and use the Adam opti-
mizer with a learning rate of 5 × 10−5. For MNIST and Fashion MNIST, we use a
12-Layer ResNet with 64 filters, for the CelebA and CIFAR-10 datasets we used a
18-Layer ResNet with 128 filters [59, 60]. No normalization layer was used in any
of the networks. We designed the output layer of all networks to take a generalized
quadratic form [41]. Because the energy function is anticipated to be approximately
quadratic with respect to the noise level, this modification was able to boost the
performance significantly. For more detail on training and model architecture, see
Appendix B.4. One notable result is that since our training method does not involve
sampling, we achieved a speed up of roughly an order of magnitude compared to
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the maximum-likelihood training using Langevin dynamics 1. Our method thus en-
ables the training of energy-based models even when limited computational resources
prohibit maximum likelihood methods.

We found that the choice of the maximum noise level has little effect on learning
as long as it is large enough to encourage learning of the longest range features in
the data. However, as expected, learning with too small or too large noise levels is
not beneficial and can even destabilize the training process. Further, our method
appeared to be relatively insensitive to how the noise levels are distributed over a
chosen range. Geometrically spaced noise as in [143] and linearly spaced noise both
work, although in our case learning with linearly spaced noise was somewhat more
robust.

For sampling the learned energy function we used annealed Langevin dynamics with
an annealing schedule where the temperature varies continuously, see Figure B.7B for
the particular shape of annealing schedule we used. In contrast, annealing schedules
with theoretical guaranteed convergence property takes extremely long [46]. The
range of temperatures to use in the sampling process depends on the choice of σ0,
as the equilibrium distribution is roughly images with Gaussian noise of magnitude√
Tσ0 added on top. To ease traveling between modes far apart and ensure even

sampling, the initial temperature needs to be high enough to inject noise of sufficient
magnitude. A choice of T = 100, which corresponds to added noise of magnitude√
100 ∗ 0.1 = 1, seems to be sufficient starting point. For step length ϵ we generally

used 0.02, and [0.015, 0.05] seemed to be a reasonable range for this parameter. After
the annealing process we performed a single step denoising to slightly enhance sample
quality.

Unconditional Image Generation. We demonstrate the generative ability of our
model by displaying samples obtained by annealed Langevin sampling and single
step denoising jump. We evaluated 50k sampled images after training on CIFAR-10
with two performance scores, Inception [133] and FID [62]. We achieved Inception
Score of 8.31 and FID of 31.7, comparable to modern GAN approaches. Scores for
CelebA dataset are not reported here as they are not commonly reported and may
depend on the specific pre-processing used. More samples and training images are
provided in Appendix for visual inspection. We believe that visual assessment is still
essential because of the possible issues with the Inception score [8]. Indeed, we also

1For example, on a single GPU, training MNIST with a 12-layer Resnet takes 0.3s per batch
with our method, while maximum likelihood training with a modest 30 Langevin steps per weight
update takes 3s per batch. Both methods need similar number of weight updates to train.
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Figure 3.2: Unconditional samples from our model trained on Fashion MNIST,
CelebA and CIFAR-10. See Figure B.5 and Figure B.6 in Appendix for more samples
and comparison with training data.

found that the visually impressive samples were not necessarily the one achieving
the highest Inception Score.

Although overfitting is not a common concern for generative models, we still tested
our model for overfitting. We found no indication for overfitting by comparing model
samples with their nearest neighbors in the dataset, see Figure B.2 in Appendix.

Table 3.1: Unconditional inception score, FID scores and likelihoods for CIFAR-10

Model IS ↑ FID ↓ Likelihood NLL (bits/dim) ↓

iResNet [9] - 65.01 Yes 3.45
PixelCNN [117] 4.60 65.93 Yes 3.14
PixelIQN [118] 5.29 49.46 Yes -

Residual Flow [20] - 46.37 Yes 3.28
GLOW [84] - 46.90 Yes 3.35

EBM (ensemble) [35] 6.78 38.2 Yes - 2

MDSM (Ours) 8.31 31.7 Yes 7.04 3

SNGAN [101] 8.22 21.7 No -
NCSN [143] 8.91 25.32 No -
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Mode Coverage. We repeated with our model the 3 channel MNIST mode coverage
experiment similar to the one in [90]. An energy-based model was trained on 3-
channel data where each channel is a random MNIST digit. Then 8000 samples were
taken from the model and each channel was classified using a small MNIST classifier
network. We obtained results of the 966 modes, comparable to GAN approaches.
Training was successful and our model assigned low energy to all the learned modes,
but some modes were not accessed during sampling, likely due to the Langevin
Dynamics failing to explore these modes. A better sampling technique such as HMC
[105] or a Maximum Entropy Generator [90] could improve this result.

Image Inpainting. Image impainting can be achieved with our model by clamping
a part of the image to ground truth and performing the same annealed Langevin and
Jump sampling procedure on the missing part of the image. Noise appropriate to
the sampling temperature need to be added to the clamped inputs. The quality of
inpainting results of our model trained on CelebA and CIFAR-10 can be assessed in
Figure 3.3. For CIFAR-10 inpainting results we used the test set.

Log Likelihood Estimation. For energy-based models, the log density can be ob-
tained after estimating the partition function with Annealed Importance Sampling
(AIS) [131] or Reverse AIS [15]. In our experiment on CIFAR-10 model, similar to
reports in [35], there is still a substantial gap between AIS and Reverse AIS estima-
tion, even after very substantial computational effort. In Table 3.1, we report result
from Reverse AIS, as it tends to over-estimate the partition function thus underesti-
mate the density. Our reported density value on the CIFAR dataset underperforms
other models likely due to two reasons: the model is approximating a Gaussian ker-
nel density estimator of the data distribution, which is not a very good model on its
own. Also, the lower bound obtained by reverse AIS may not be tight due to the
difficulty in sampling.

We also report a density of 6.79 bits/dim on MNIST dataset, again not comparable
to other density models. Density reported here follows the convention of measuring
density of pixel values between [0, 255]. More details on this experiment is provided
in the Appendix.

Outlier Detection. [24] and [103] have reported intriguing behavior of high dimen-
sional density models on out of distribution samples. Specifically, they showed that
a lot of models assign higher likelihood to out of distribution samples than real data

3Author reported difficulties evaluating Likelihood
3Upper Bound obtained by Reverse AIS
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samples. We investigated whether our model behaves similarly.

Our energy function is only trained outside the data manifold where samples are
noisy, so the energy value at clean data points may not always be well behaved.
Therefore, we added noise with magnitude σ0 before measuring the energy value.
We find that our network behaves similarly to previous likelihood models, it assigns
lower energy, thus higher density, to some OOD samples. We show one example of
this phenomenon in Appendix Figure B.7A.

We also attempted to use the denoising performance, or the objective function to
perform outlier detection. Intriguingly, the results are similar as using the energy
value. Denoising performance seems to correlate more with the variance of the orig-
inal image than the content of the image.

3.5 Discussion

The central goal of our work is to investigate how to build EMBs in high-dimensional
spaces, with an objective function similar to denoising score matching, or the “Fisher
divergence”. We first provided analyses and empirical results for understanding the
limitations of learning the structure of high-dimensional data with denoising score
matching. We found that the objective function LSM confines learning to a small
set due to the measure concentration phenomenon in high-dimensional random vec-
tors. Therefore, sampling the learned distribution starting from the outside of the
set, where the gradient is learned more accurately, does not produce good result. In
our opinion, the expectation w.r.t. the target distribution Epσ0(x̃xx) is not of critical
importance and it actually only enforces the score matching in the confined high-
probability region. Since sampling from random initial location requires the model
score matches the target distribution score everywhere, we propose that Epσ0(x̃xx) should
be replaced by EpM (x̃xx), where pM(x̃xx) covers a much larger range in the signal space
than pσ0(x̃xx). This leads to the multiscale denoising score matching, which can be
viewed as ”multiscale Fisher Divergence”. The resulting Multiscale Denoising Score
Matching (MDSM) EBM model is capable of denoising, producing high-quality sam-
ples from random noise, performing image inpainting, etc. While also providing
density information, our model learns an order of magnitude faster than the models
based on maximum likelihood and sampling.

Previous efforts to learn energy-based models with score matching [82, 146] are un-
able to produce high-quality samples, and sometimes are computationally intensive.
[135] and [134] trained energy-based models with the denoising score matching ob-
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jective, their method is compuatationally efficient but the resulting models cannot
perform sample synthesis from random noise initialization. The recently proposed
NCSN [143], though does not belong to EBMs, is capable of high-quality sample
synthesis. This model learns a sequence of score functions, each approximates the
data smoothed by a different sized Gaussian. Sample generation in NCSN is achieved
by sequentially sampling from this set of distributions. Our MDSM method instead
learns an energy-based model corresponding to pσ0(x̃xx) for a fixed σ0. This method
improves score matching in high-dimensional space by matching the gradient of an
energy function to the score of pσ0(x̃xx) in the whole space and avoids measure con-
centration issue.

All told, we offer a novel EBM model that achieves high-quality sample synthesis,
which among EBM approaches provides a new state-of-the art. Compared to the
NCSN model, our model is more parsimonious and can support single step denoising
without prior knowledge of the noise magnitude. Our model performs sightly worse
than the NCSN model in sample quality, which could have several reasons. First, the
derivation of Equation 3.6 requires an approximation to keep the training procedure
tractable, which could be inaccurate. Second, the NCSN’s output is a vector that,
at least during optimization, does not always have to be the derivative of a scalar
function. In contrast, in our model the network output is a scalar. Thus it is possible
that the NCSN model performs better because it explores a larger set of functions
during optimization.

3.6 Epilogue

Although [143] and MDSM achieved strong generative performance, the formulation
of learning data distribution perturbed by different level of noises is still unsatisfac-
tory. However, a later work [68] showed that the Denoising Score Matching objective
can be used to train a diffusion probabilistic model [140] very efficiently. Notably,
the new diffusion model achieves extremely strong generative performance, reaching
as low as 3.17 on CIFAR-10 FID score, for example. Later it was shown that dif-
fusion model outperforms GAN in larger scale image synthesis [30] without speed
limitations [171]. Therefore, it appears that diffusion is the better formulation com-
pared to multi-scale sampling in [143] and Annealed Langevine Dynamics used in
this Chapter.

Further study showed that diffusion model has strong connection to stochastic dif-
ferential equations [145], and it can be cast to a Maximum Likelihood formulation,
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where the exact density of samples can be evaluated [144]. This also provided a
principled way to set the weight of different noise scales. Ironically, denoising score
matching, which was originally considered an alternative to maximum likelihood,
turned out to be compatible with maximum likelihood, but still having the advan-
tage of not needing to perform sampling.

Besides score matching, various other techniques has been developed to train EBMs
without sampling, or with greatly reduced sampling burden. Examples include
Diffusion Recovery Likelihood [44], Flow Contrastive Estimation [45], Improved
Contrastive Divergence [36], Learned Stein Discrepancy[50] ,None-Newtoniam HMC
[161], etc. Another class of methods use EBM as a correction to another genera-
tive model with tractable density, for example, Neural Transport MCMC[114] and
VAEBM[172]. It is also possible to train a generator network in place of MCMC to
train EBM[91][38][2]. It is fair to say research into EBMs has been pretty thorough.
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Figure 3.3: Demonstration of the sampling process (top two), and image inpainting
(bottom two). The sampling process is shown with Gaussian noise (first), and de-
noised by single step gradient jump (second). The column next to sampling process
shows samples after the last denoising jump at the end of sampling. Inpainting re-
sults are shown next to initial image (left column) and the ground truth image (right
column).
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Chapter 4

A Neural Network MCMC
Sampler That Maximizes Proposal
Entropy

4.1 Introduction

Sampling from unnormalized distributions is important for many applications, in-
cluding statistics, simulations of physical systems, and machine learning. However,
the inefficiency of state-of-the-art sampling methods remains a main bottleneck for
many challenging applications, such as protein folding [116], energy-based model
training [115], etc.

A prominent strategy for sampling is the Markov Chain Monte Carlo (MCMC)
method [107]. In MCMC, one chooses a transition kernel that leaves the target
distribution invariant and constructs a Markov Chain by applying the kernel repeat-
edly. The MCMC method relies only on the ergodicity assumption. Other than that
it is general, if enough computation is performed, the Markov Chain generates cor-
rect samples from any target distribution, no matter how complex the distribution
is. However, the performance of MCMC depends critically on how well the chosen
transition kernel explores the state space of the problem. If exploration is ineffective,
samples will be highly correlated and of very limited use for downstream applica-
tions. Thus, despite the theoretical guarantee that MCMC algorithms are exact,
practically they may still suffer from inefficiencies.

Take, for example, Hamiltonian Monte Carlo (HMC) sampling [106], a type of
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MCMC technique. HMC is regarded state-of-the-art for sampling in continuous
spaces [126]. It uses a set of auxiliary momentum variables and generates new sam-
ples by simulating a Hamiltonian dynamics starting from the previous sample. This
allows the sample to travel in state space much further than possible with other
techniques, most of whom have more pronounced random walk behavior. Theo-
retical analysis shows that the cost of traversing an d-dimensional state space and
generating an uncorrelated proposal is O(d

1
4 ) for HMC, which is lower than O(d

1
3 ) for

Langevin Monte Carlo, and O(d) for random walk. However, unfavorable geometry
of a target distribution may still render HMC ineffective because the Hamiltonian
dynamics has to be simulated numerically. Numerical errors in the simulation are
corrected by a Metropolis-Hastings (MH) accept-reject step of a proposed sample. If
the the target distribution has unfavorable geometric properties, for example, large
differences in variance along different directions, the numerical integrator in HMC
will produce high errors, leading to a very low accept probability [13]. For sim-
ple distributions this inefficiency can be mitigated by an adaptive re-scaling matrix
[106]. For analytically tractable distributions, one can also use the Riemann mani-
fold HMC method [47]. But in most other cases, the Hessian required in Riemann
manifold HMC algorithm is often intractable or expensive to compute, preventing
its application.

Recently, approaches have been proposed that inherit the exact sampling property
from the MCMC method, while potentially mitigating the described issues of unfa-
vorable geometry. One approach is MCMC samplers augmented with neural networks
[142, 95, 53], the other approach is neural transport MCMC techniques [69, 114]. A
disadvantage of these recent techniques is that their objectives optimize the quality
of proposed samples, but do not explicitly encourage exploration speed of the sam-
pler. One notable exception is L2HMC [95], a method whose objective includes the
size of the expected L2 jump, thereby encouraging exploration. But the L2 expected
jump objective is not very general, it only works for simple distributions (see Figure
4.1, and below).

In another recent work [156], exploration speed is encouraged by a quite general ob-
jective: the entropy of the proposal distribution. In continuous space, the entropy of
a distribution is essentially the logarithm of its volume in state space. Thus, the en-
tropy objective naturally encourages the proposal distribution to “fill up” the target
state space as well as possible independent of the geometry of the target distribution.
The authors demonstrated the effectiveness of this objective on samplers with simple
linear adaptive parameters.
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Here we employ the entropy-based objective in a neural network MCMC sampler
for optimizing exploration speed. To build the model, we design a flexible proposal
distribution where the optimization of the entropy objective is tractable. Inspired
by the HMC and the L2HMC[95] algorithm, the proposed sampler uses a special
architecture that utilizes the gradient of the target distribution to aid sampling. The
proposed method is demonstrated for a 2D distribution in Figure 4.1. The sampler,
trained with the entropy-based objective, generates samples that explore the target
distribution quite well. In contrast, sampling by constructing proposals with higher
L2 expected jump leads to a less desirable result (right panel).

The reminder of the paper is organized as follows. Section 2 briefly introduces MCMC
methods. In Section 3 we formulate the model. Section 4 discusses relationships
and differences of the new model and HMC-based models from the literature. In
Section 5 we will show with experiments that the newly proposed method achieves
significant improvement in sampling efficiency over previous techniques. Further we
demonstrate how our model can be applied in training an energy-based model of
images. The paper concludes with a discussion in Section 6.

4.2 Preliminaries: MCMC methods, From

vanilla to Learned

Consider the problem of sampling from a target distribution p(x) = e−U(x)/Z de-
fined by the energy function U(x) in a continuous state space. MCMC methods
solve this problem by constructing and running a Markov Chain with a transition
probability p(x′|x) that leaves p(x) invariant. The most general invariance condition
is: p(x′) =

∫
p(x′|x)p(x)dx for all x′, which is typically enforced by the simpler but

more restrictive condition of detailed balance: p(x)p(x′|x) = p(x′)p(x|x′).

For a general distribution p(x) it is difficult to directly construct a p(x′|x) that
satisfies detailed balance. However, one can easily1 make any transition probability
satisfy detailed balance by adding a Metropolis-Hastings (M-H) accept-reject step
[58]. When we sample x′ at step t from an arbitrary proposal distribution q(x′|xt),
the M-H accept-reject process accepts the new sample xt+1 = x′ with probability

A(x′, x) = min
(
1, p(x′)q(xt|x′)

p(xt)q(x′|xt)

)
. If x′ is rejected, the new sample is set to the previous

state xt+1 = xt. This transition kernel p(x′|x) constructed from q(x′|x) and A(x′, x)
leaves any target distribution p(x) invariant.

1Up to ergodic and aperiodic assumptions.
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Sampler stay close to an identity 
function if training objective does 
not encourage exploration

Proposal learned by Entropy-based 
exploration speed objective covers 
target distribution well. 

A less desirable proposal distribu-
tion with higher L2 expected jump.

Figure 4.1: Illustration of the benefit of learning for exploring a state space. The
three panels show samples from different proposal distributions, with the target dis-
tribution depicted in red. In each panel, the large yellow dot on the top left is
the initial point x, blue and black dots are accepted and rejected samples from the
proposal distribution q(x′|x), respectively. Left panel: Langevin sampler without
learning – the samples are highly biased towards the (arbitrary) initial point, explo-
ration is poor and samples will be highly correlated. Middle panel: Samples obtained
from our method that optimize the entropy objective – the samples travels far within
target distribution p(x) and has little correlation to the initial point. Right panel:
Samples that have a higher value in the L2 jump objective than the samples in the
middle panel – exploration is still worse despite higher L2 jump.

Most popular MCMC techniques use the described M-H accept-reject step to en-
force detailed balance, for example, Random Walk Metropolis (RWM), Metropolis-
Adjusted Langevin Algorithm (MALA) and Hamiltonian Monte Carlo (HMC). For
brevity, we will focus on MCMC methods that use the M-H step, although some
alternatives do exist [139]. These methods share the requirement that the accept
probability in the M-H step must be tractable to compute. For two of the mentioned
MCMC methods this is indeed the case. In the Gaussian random-walk sampler, the
proposal distribution is a Gaussian around the current position: x′ = x+ ϵ ∗N (0, I),
which has the form x′ = x + z. Thus, forward and reverse proposal probabilities
are given by q(x′|x) = pN [(x′ − x)/ϵ] and q(x|x′) = pN [−(x′ − x)/ϵ], where pN de-
note the density function of Gaussian with 0 mean and unit diagonal variance. The

probability ratio q(xt|x′)
q(x′|xt)

used in the M-H step is therefore equal to 1. In MALA the

proposal distribution is a single step of Langevin dynamics with step size ϵ: x′ = x+z
with z = − ϵ2

2
∂xU(x) + ϵN(0, I). We then have q(x′|x) = pN

[
(x′ − x)/ϵ+ ϵ

2
∂xU(x)

]
and q(x|x′) = pN

[
−(x′ − x)/ϵ+ ϵ

2
∂x′U(x′)

]
. Both, the forward and reverse proposal
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probability are tractable since they are the density of Gaussians evaluated at a known
location.

Next we introduce the HMC sampler and show how it can be formulated as a M-
H sampler. Basic HMC involves a Gaussian auxiliary variable v of the same di-
mension as x, which plays the role of the momentum in physics. HMC sampling
consists of two steps: 1. The momentum is sampled from a normal distribution
N (v; 0, I). 2. The Hamiltonian dynamics is simulated for a certain duration with
initial condition x and v, typically by running a few steps of the leapfrog integra-
tor[106]. Then, a M-H accept-reject process with accept probability A(x′, v′, x, v) =

min
(
1, p(x

′,v′)q(x,v|x′,v′)
p(x,v)q(x′,v′|x,v)

)
= min

(
1, p(x

′)pN (v′)
p(x)pN (v)

)
is performed to correct for error in

the integration process. We have q(x,v|x′,v′)
q(x′,v′|x,v) = 1 since the Hamiltonian transition is

volume-preserving over (x, v). Both HMC steps leave the joint distribution p(x, v)
invariant, therefore HMC samples from the correct distribution p(x) after marginal-
izing over v. To express basic HMC in the standard M-H scheme, step 1 and 2 can
be aggregated into a single proposal distribution on x with the proposal probability:
q(x′|x) = pN (v) and q(x|x′) = pN (v′). Note, although the probability q(x′|x) can be
calculated after the Hamiltonian dynamics is simulated, this term is intractable for
general x and x′. The reason is that it is difficult to solve for the v at x to make the
transition to x′ using the Hamiltonian dynamics. This issue is absent in RWM and
MALA, where q(x′|x) is tractable for any x and x′.

Previous work on augmenting MCMC sampler with neural networks also relied on
the M-H procedure to ensure asymptotic correctness of the sampling process, for
example [142] and [95]. They used HMC style accept-reject probabilities that lead to
intractable q(x′|x). Here, we strive for a flexible sampler for which q(x′|x) is tractable.
This maintains the tractable M-H step while allowing us to train this sampler to
explore the state space by directly optimizing the proposal entropy objective, which
is a function of q(x′|x).

4.3 Gradient based sampler with tractable

proposal probability

We “abuse” the power of neural networks to design a sampler that is flexible and has
tractable proposal probability q(x′|x) between any two points. However, without any
extra help, the sampler would be modeling a conditional distribution q(x′|x) with
brute force, which might be possible but requires a large model capacity. Thus, our
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method uses the gradient of the target distribution to guide proposal distribtion.
Specifically, we use an architecture similar to L2HMC [95], which itself was inspired
by the HMC algorithm and RealNVP [32]. To quantify the benefit of using the target
distribution gradient, we provide ablation studies of our model in the Appendix C.1.

Proposal model and how to use gradient information

We restrict our sampler to the simple general form x′ = x + z. As discussed in
Section 4.2, the sampler will have tractable proposal probability if one can calculate
the probability of any given z. To fulfill this requirement, we model vector z by a
flow model2: z = f(z0;x, U), with inverse z0 = f−1(z;x, U). Here z0 is sampled from
a fixed Gaussian base distribution. The flow model f is a flexible and trainable in-
vertible function of z conditioned on x, U , and it has tractable Jacobian determinant
w.r.t. z. The flow model f can be viewed as a change of variable from the Gaus-
sian base distribution z0 to z. The proposed sampler then has tractable forward
and reverse proposal probability: q(x′|x) = pZ(x

′ − x;x), q(x|x′) = pZ(x − x′;x′),
where pZ(z;x) = pN (z0)| ∂z∂z0

|−1 is the density defined by the flow model f . Note,
this sampler is ergodic and aperiodic, since q(x′|x) ̸= 0 for and x and x′, which
follows from the invertibility of f . Thus, combined with the M-H step, the sampling
process will be asymptotically correct. The sampling process first consists of draw-
ing from pN (z0) and then evaluating z = f(z0;x, U) and q(x′|x). Next, the reverse
z′0 = f−1(−z;x + z, U) is evaluated at x′ = x + z to obtain the reverse proposal
probability q(x|x′). Finally, the sample is accepted with the standard M-H rule.

For the flow model f , we use an architecture similar to a non-volume preserving
coupling-based flow RealNVP [32]. In the coupling-based flow, half of the compo-
nents of the state vector are kept fixed and used to update the other half through
an affine transform parameterized by a neural network. The gradient of the target
distribution enters our model in those affine transformations. To motivate this par-
ticular model choice, we take a closer look at the standard HMC algorithm. Basic
HMC starts with drawing a random initial momentum v0, followed by several steps
of leapfrog integration. In the nth leapfrog step, the integrator first updates v with a
half step of the gradient: vn′ = vn−1− ϵ

2
∂xU(xn−1), followed by a full step of x update:

xn = xn−1 + ϵvn′, and another half step of v update: vn = vn′ − ϵ
2
∂xU(xn). After

several steps, the overall update of x can be written as: xn = x0+
∑n

i=0 v
i′, which has

the form x′ = x+ z with z =
∑n

i v
i′ = −nv0− nϵ

2
[∂xU(x0)]− ϵ [

∑n
i=1(n− i)∂xU(xi)].

This equation suggest that when generating z through affine transformations, gradi-

2For more details on flow models, see [86, 119].
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ent should enter through the shift term with a negative sign.

Model formulation

To formulate our model (Equation 4.1, 4.2), we use a binary mask vector m and its
complement m to select half of z’s dimensions for update at a time. As discussed
above, we include the gradient term with a negative sign in the shift term. We also
use an element-wise scaling on the gradient term as in [95]. However, two issues
remain. First, as required by the coupling-based architecture, the gradient term can
only depend on the masked version of vector z. Second, it is unclear where the
gradient should be evaluated to sample effectively. As discussed above, the sampler
should evaluate the gradient at points far away from x, similar as in HMC, to travel
long distances in the state space. To handle these issues, we use another neural
network R which receives x and the masked z as input, and evaluates the gradient
at x + R. During training, R learns where the gradient should be evaluated based
on the masked z.

We denote the input to network R by ζnm = (x,m ⊙ zn) and the input to the other
networks by ξnm = (x,m⊙ zn, ∂U(x+R(ζnm))), where ⊙ is the Hadamard product
(element wise multiply). Further, we denote the neural network outputs that param-
eterize the affine transform by S(ξnm), Q(ξnm) and T (ξnm). For notational clarity we
omit dependencies of the mask m and all neural network terms on the step number
n.

Additionally, we introduce a scale parameter ϵ, which modifies the x update to
x′ = x+ ϵz. We also define ϵ′ = ϵ/(2N), with N the total number of z update steps.
This parameterization makes our sampler equivalent to the MALA algorithm with
step size ϵ at initialization, where the neural network outputs are zero. The resulting
update rule is:

zn′=m⊙ zn−1+m⊙
(
zn−1⊙ exp[S(ξn−1

m )]− ϵ′{∂U [x+R(ζn−1
m )]⊙exp[Q(ξn−1

m )] + T (ξn−1
m )}

)
(4.1)

zn = m⊙ zn′ +m⊙
(
zn′⊙ exp[S(ξn′m)]− ϵ′{∂U

[
x+R(ζn′m)

]
⊙ exp[Q(ξn′m)] + T (ξn′m)}

)
(4.2)

The log determinant of N steps of transformation is:

log

∣∣∣∣∂zN∂z0

∣∣∣∣ = ϵ 1 ∗ 1+
N∑

n=1

1 ∗
[
m⊙ S(ξn−1

m )
]
+ 1 ∗

[
m⊙ S(ξn

′

m )
]

(4.3)

where 1 is the vector of 1-entries with the same dimension as z, ∗ denotes the dot
product.
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Optimizing the proposal entropy objective

The proposal entropy can be expressed as:

H
(
X ′|X = x

)
=−

∫
dx′q

(
x′|x

)
log

[
q
(
x′|x

)]
=−

∫
dz0pN

(
z0
) [

log
(
pN

(
z0
))
−log

∣∣∣∣∂zN∂z0

∣∣∣∣]
(4.4)

For each x, we aim to optimize S(x) = exp [βH(X ′|X = x)] × a(x), where a(x) =∫
A(x′, x)q(x′|x)dx′ is the average accept probability of the proposal distribution

at x. Following [156], we transform this objective into log space and use Jensen’s
inequality to obtain a lower bound:

logS(x) = log

∫
A(x′, x)q(x′|x)dx′ + βH(X ′|X = x)

≥
∫

log [A(x′x)]q(x′|x)dx′ + βH(X ′|X = x) = L(x)

The distribution q(x′|x) is reparameterizable, therefore the expectation over q(x′|x)
can be expressed as expectation over pN (z0). Expanding the lower bound L(x) and
omitting the (constant) entropy of the base distribution pN (z0), we arrive at:

L(x) =

∫
dz0pN (z0)

[
min

(
0, log

p(x′)

p(x)
+ log

q(x|x′)

q(x′|x)

)
− β log

∣∣∣∣∂zN∂z0

∣∣∣∣] (4.5)

During training we maximize L(x) with x sampled from the target distribution p(x)
if it is available, or with x obtained from the bootstrapping process [142] which
maintains a buffer of samples and updates them continuously. Typically, only one
sample of z0 is used for each x.

A curious feature of our model is that during training one has to back-propagate
over the gradient of the target distribution multiple times to optimize R. In [156]
the authors avoid multiple back-propagation by stopping the derivative calculation
at the density gradient term. In our experiment we do not use this trick and perform
full back-propagation without encountering any issue. We found that stopping the
derivative computation instead harms performance.

The entropy-based exploration objective contains a parameter β that controls the
balance between acceptance rate and proposal entropy. As in [156], We use a simple
adaptive scheme to adjust β to maintain a constant accept rate close to a target
accept rate. The target accept rate is chosen empirically. As expected, we find that
the target accept rate needs to be lower for more complicated distributions.



CHAPTER 4. A NEURAL NETWORK MCMC SAMPLER THAT MAXIMIZES
PROPOSAL ENTROPY 38

4.4 Related work: other Neural Network

samplers inspired by HMC

Here we discuss other neural network MCMC samplers and how they differ from our
method. Methods we compare ours to in the Results are marked with bold font.

A-NICE-MC [142], which was generalized in [148], used the same accept probability
as HMC, but replaced the Hamiltonian dynamics by a flexible volume-preserving flow
[31]. A-NICE-MC matches samples from q(x′|x) directly to samples from p(x), using
adversarial loss. This permits training the sampler on empirical distributions, i.e.,
in cases where only samples but not the density function is available. The problem
with this method is that samples from the resulting sampler can be highly correlated
because the adversarial objective only optimizes for the quality of the proposed
sample. If the sampler produces a high quality sample x, the learning objective does
not encourage the next sample x′ to be substantially different from x. The authors
used a pairwise discriminator that empirically mitigated this issue but the benefit in
exploration speed is limited.

Another related sampling approach is Neural Transport MCMC [100, 69, 114]
, which fits a distribution defined by a flow model pg(x) to the target distribution
using KL[pg(x)||p(x)]. Sampling is then performed with HMC in the latent space
of the flow model. Due to the invariance of the KL-divergence with respect to a
change of variables, the “transported distribution” in z space pg−1(z) will be fitted
to resemble the Gaussian prior pN (z). Samples of x can then be obtained by passing
z through the transport map. Neural transport MCMC improves sampling efficiency
compared to sampling in the original space because a distribution closer to a Gaussian
is easier to sample. However, the sampling cost is not a monotonic function of the
KL-divergence used to optimize the transport map [92].

Another line of work connects the MCMC method to Variational Inference [132, 185].
Simply put, they improve the variational approximation by running several steps of
MCMC transitions initialized from a variational distribution. The MCMC steps
are optimized by minimizing the KL-divergence between the resulting distribution
and the true posterior. This amounts to optimizing a “burn in” process in MCMC.
In our setup however, the exact sampling is guaranteed by the M-H process, thus
the KL divergence loss is no longer applicable. Like in variational inference, the
Normalizing flow Langevin MC (NFLMC) [53] also used a KL divergence loss.
Strictly speaking, this model is a normalizing flow but not a MCMC method. We
compare our method to it, because the model architecture, like ours, uses the gradient
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of the target distribution.

Another related technique is [109], where the authors trained an independent M-H
sampler by minimizing KL [p(x)q(x′|x)||p(x′)q(x|x′)]. This objective can be viewed
as a lower bound of the M-H accept rate. However, as discussed in [156], this type
of objective is not applicable for samplers that condition on the previous state.

All the mentioned techniques have in common that their objective does not encourage
exploration speed. In contrast, L2HMC [95, 154] does encourage fast exploration
of the state space by employing a variant of the expected square jump objective
[122]: L(x) =

∫
dx′q(x′|x)A(x′, x)||x′−x||2. This objective provides a learning signal

even when x is drawn from the exact target distribution p(x). L2HMC generalized
the Hamiltonian dynamics with a flexible non-volume-preserving transformation [32].
The architecture of L2HMC is very flexible and uses gradient of target distribution.
However, the L2 expected jump objective in L2HMC improves exploration speed
only in well-structured distributions (see Figure 4.1).

The shortcomings of the discussed methods led us to consider the use of an entropy-
based objective. However, L2HMC does not have tractable proposal probability
p(x′|x), preventing the direct application of the entropy-based objective. In principle,
the proposal entropy objective could be optimized for the L2HMC sampler with
variational inference [124, 141], but our preliminary experiments using this idea were
not promising. Therefore, we designed our sampler to possess tractable proposal
probability and investigated tractable optimization of the proposal entropy objective.

4.5 Experimental result

synthetic dataset and bayesian logistic regression

First we demonstrate that our technique accelerates sampling of the funnel distri-
bution, a particularly challenging example from [108]. We then compare our model
with A-NICE-MC [142], L2HMC [95], Normalizing flow Langevin MC (NFLMC) [53]
as well as NeuTra [69] on several other synthetic datasets and a Bayesian logistic re-
gression task. We additionally compare to gradMALA [156] to show the benefit of
using neural network over linear adaptive sampler. For all experiments, we report
Effective Sample Size [71] per M-H step (ESS/MH) and/or ESS per target density
gradient evaluation (ESS/grad). All results are given in minimum ESS over all di-
mensions unless otherwise noted. In terms of these performance measures, larger
numbers are better.
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Here a brief description of the datasets used in our experiments:

Ill Conditioned Gaussian: 50 dimensional ill-conditioned Gaussian task described
in [95], a Gaussian with diagonal covariance matrix with log-linearly distributed
entries between [10−2, 102].

Strongly correlated Gaussian: 2 dimensional Gaussian with variance [102, 10−1]
rotated by π

4
, same as in [95].

Funnel distribution: The density function is pfunnel(x) =
N (x0; 0, σ

2)N (x1:n; 0, I exp (−2x0)). This is a challenging distribution because
the spatial scale of x1:n varies drastically depending on the value of x0. This
geometry causes problems to adaptation algorithms that rely on a spatial scale. An
important detail is that earlier work, such as [12] used σ = 3, while some recent
works used σ = 1. We run experiments with σ = 1 for comparison with recent
techniques and also demonstrate our method on a 20 dimensional funnel distribution
with σ = 3. We denote the two variants by Funnel-1 versus Funnel-3.

Bayesian Logistic regression: We follow the setup in [71] and used the German,
Heart and Australian datasets from the UCI data registry.

In Figure 4.2, we compare our method with HMC on the 20d Funnel-3 distribution.
As discussed in [12], the stepsize of HMC needs to be manually tuned down to allow
traveling into the neck of the funnel, otherwise the sampling process will be biased.
We thus tune the stepsize of HMC to be the largest that still allows traveling into
the neck. Each HMC proposal is set to use the same number of gradient steps as
each proposal of the trained sampler. As can be seen, the samples proposed by our
method travel significantly further than the HMC samples. Our method achieves
0.256 (ESS/MH), compared to 0.0079 (ESS/MH) with HMC.

As a demonstration we provide a visualization of the resulting chain of samples in
Figure 4.2 and the learned proposal distributions in Appendix C.2. The energy value
for the neck of the funnel can be very different than for the base, which makes it
hard for methods such as HMC to mix between them [12]. In contrast, our model
can produce very asymmetric q(x′|x) and q(x|x′), making mixing between different
energy levels possible.

Performances on other synthetic datasets and the Bayesian Logistic Regression are

1Author reported difficulties evaluating Likelihood
2Upper Bound obtained by Reverse AIS
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a) b)

mean: 0.16  std:  2.52  ESS: 0.0079/MH mean: -0.076  std:  2.86  ESS: 0.256/MH

Figure 4.2: Comparison of our method with HMC on the 20d Funnel-3 distribution.
a) Chain and samples of x0 (from neck to base direction) for HMC. b) Same as a)
but for our learned sampler. Note, samples in a) look significantly more correlated
than those in b), although they are plotted over a longer time scale.

shown in Table 4.1. In all these datasets our method outperformed previous neural
network based MCMC approaches by significant margin. Our model also outperform
gradMALA [156], which use the same objective but only use linear adaptive param-
eters. The experiments used various parameter settings, as detailed in Appendix
C.2. Results of other models are adopted or converted from numbers reported in
the original papers. The Appendix provides further experimental results, ablation
studies, visualizations and details on the implementation of the model.
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Dataset (measure) L2HMC Ours

50d ICG (ESS/MH) 0.783 0.86
2d SCG (ESS/MH) 0.497 0.89
50d ICG (ESS/grad) 7.83× 10−2 2.15× 10−1

2d SCG (ESS/grad) 2.32× 10−2 2.2× 10−1

Dataset (measure) Neutra Ours

Funnel-1 x0 (ESS/grad) 8.9× 10−3 3.7× 10−2

Funnel-1 x1···99(ESS/grad) 4.9× 10−2 7.2× 10−2

Dataset (measure) A-NICE-MC NFLMC Ours

German (ESS/5k) 926.49 1176.8 3150
Australian (ESS/5k) 1015.75 1586.4 2950

Heart (ESS/5k) 1251.16 2000 3600

Table 4.1: Performance Comparisons. SCG: strongly correlated Gaussian, ICG: Ill-
conditioned Gaussian. German, Autralian, Heart: Datasets for Bayesian Logistic
regression. ESS: Effective Sample Size (a correlation measure)

Training a convergent deep energy-based model

A very challenging application of the MCMC method is training a deep energy-
based model (EBM) of images [173, 115, 35]. We demonstrate stable training of
a convergent EBM, and that the learned sampler achieves better proposal entropy
early during training, as well as better sample quality at convergence, compared to
the MALA algorithm. An added benefit is that, like in adaptive MALA, tuning the
Langevin dynamics step size is no longer needed, instead, one only needs to specify a
target accept rate. This contrasts earlier work using unadjusted Langevin dynamics,
where step size needs to be carefully tuned [115].

Following [115], we use the Oxford flowers dataset of 8189 28∗28 colored images.
We dequantize the images to 5 bits by adding uniform noise and use logit transform
[32]. Sampling is performed in the logit space with variant 2 of our sampler (without
the R network, see Appendix C.1). During training, we use Persistent Contrastive
Divergence (PCD) [155] with a replay buffer size of 10000. We alternate between
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training the sampler and updating samples for the EBM training. Each EBM training
step uses 40 sampling steps, with a target accept rate of 0.6.

Figure 4.3 depicts samples from the trained EBM replay buffer, as well as samples
from a 100k step sampling process –for demonstrating that in general the sampling
sequence converges to a fixed low energy state. We also show that early during train-
ing, the proposal entropy of the learned sampler is higher than that of an adaptive
MALA algorithm with the same accept rate target. Later during training, the pro-
posal entropy is not significantly different (See Figure C.3 a)). This is likely because
the explorable volume around samples becomes too small for the learned sampler to
make a difference. Additionally, we show that the model trained with the learned
sampler achieves better sample quality by evaluating the Fréchet Inception Distance
(FID) [63] between the replay buffer and ground truth data. A model trained with
the learned sampler achieves 38.1 FID, while a model trained with MALA achieves
43.0 FID (evaluated at a late checkpoint, lower is better). We provide a plot that
tracks the FID during training in Appendix Figure C.3.

a) b)

c)

Figure 4.3: Training of convergent EBM with pixel space sampling. a) Samples
from replay buffer after training. b) Proposal entropy of trained sampler vs. MALA
early during training –note that entropy of learned sampler is significantly higher. c)
Samples from 100k sampling steps by the learned sampler, initialized at samples from
replay buffer. Large transitions like the one in the first row are rare, this atypical
example was selected for display.
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4.6 Discussion

In this paper we propose a gradient based neural network MCMC sampler with
tractable proposal probability. The training is based on the entropy-based explo-
ration speed objective. Thanks to an objective that explicitly encourages exploration,
our method achieves better performance than previous neural network based MCMC
samplers on a variety of tasks. Compared to the manifold HMC [12] methods, our
model provides a more scalable alternative for mitigating unfavorable geometry in
the target distribution.

There are many potential applications of our method beyond what is demonstrated
in this paper. For example, training latent-variable models [70], latent sampling
in GANs [19], and others applications outside machine learning, such as molecular
dynamics simulation [116]. For future research, it would be interesting to investigate
other architectures, such as an auto-regressive architecture, or alternative masking
strategies to improve the expressiveness of the proposed model. Another promising
direction could be to combine our technique with neural transport MCMC.

Our proposed sampler provides more efficient exploration of the target distribution,
as measured by the ESS results and proposal entropy. However, the exploration
provided is local. In EBM training for example, as reported previously [115], the
learned energy landscape is highly multi-modal with high energy barriers in between
the minimas. Sample proposal cannot cross those high barriers since it will result in
high rejection probability. Our sampler achieves a small level of mixing as is visible in
some sampling examples. But our sampler, being a local algorithm, cannot explore
different modes efficiently – it exhibits the same shortcoming in mixing as Langevin
dynamics sampler.

4.7 Epilogue

Improving the sampling efficiency of MCMC techniques continued to be an active
area of research [16]. Although the proposal entropy of HMC is not exactly tractable,
[67] developed an approximation that can be used to optimize the mass matrix.
Adaptive MCMC using neural networks also found application in sampling the Lat-
tice Gauge Theory in Physics [42].

One interesting development in HMC is the use of non-Newtonian momentum in-
stead of the quadratic momentum from physics [161]. Dynamics with a quadratic
momentum tends to spend longer time at high energy areas, where the momentum
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and speed is low, but plausible samples are mostly at low energy areas. By revers-
ing this effect with a hand-crafted momentum term, HMC sampling efficiency can
be greatly improved. The sampler is shown to work much better than Langevin
dynamics on training convergent EBM on images.
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Chapter 5

Neural Manifold Clustering and
Embedding

5.1 Introduction

Here we investigate unsupervised representation learning, which aims to learn struc-
tures (features) from data without the use of any label. If the data lie in a linear
subspace, the linear subspace can be extracted by Principal Component Analysis
(PCA) [77], one of the most basic forms of unsupervised learning. When the data
occupy a union of several linear subspaces, subspace clustering (SC) [163] is needed
to cluster each data point to a subspace as well as estimating the parameters of each
subspace. Here we are concerned with even more challenging scenarios, when data
points come from a union of several non-linear low-dimensional manifolds. In such
scenarios, the clustering problem can be formulated as follows [39]:

Task 1 Manifold Clustering and Embedding: Given that the data points come from a
union of low-dimensional manifolds, we shall segment the data points based on their
corresponding manifolds, and obtain a low-dimensional embedding for each manifold.

Various methods have been developed to solve this problem [3], but it is still an
open question how to use neural networks effectively in manifold clustering problems
[56]. In this paper, we propose neural manifold clustering and embedding (NMCE)
that follows three principles: 1) The clustering and representation should respect
a domain-specific constraint, e.g. local neighborhoods, local linear interpolation or
data augmentation invariances. 2) The embedding of a particular manifold shall not
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collapse. 3) The embedding of identified manifolds shall be linearized and separated,
i.e. they occupy different linear subspaces. We achieve 1) using data augmentations,
and achieve 2) and 3) with the subspace feature learning algorithm maximal cod-
ing rate reduction (MCR2) objective [178]. This work make the following specific
contributions:

1. We combine data augmentation with MCR2 to yield a novel algorithm for
general purpose manifold clustering and embedding (NMCE). We also discuss
connections between the algorithm and self-supervised contrastive learning.

2. We demonstrate that NMCE achieves strong performance on standard subspace
clustering benchmarks, and can outperform the best clustering algorithms on
more challenging high-dimensional image datasets like CIFAR-10 and CIFAR-
20. Further, empirical evaluation suggests that our algorithm also learns a
meaningful feature space.

5.2 Related Work

Manifold Learning. In classical manifold learning, the goal is to map the manifold-
structured data points to a low-dimensional representation space such that the man-
ifold structure is preserved. There are two key ingredients: 1) Choosing a geometric
property from the original data space to be preserved. For example, the local eu-
clidean neighborhood [10], or linear interpolation by neighboring data points [129].
2) The embedding should not collapse to a trivial solution. To avoid the trivial solu-
tion, the variance of the embedding space is typically constrained in spectral-based
manifold learning methods.

Manifold Clustering and Embedding. When the data should be modeled as
a union of several manifolds, manifold clustering is needed in addition to manifold
learning. When these manifolds are linear, subspace clustering algorithms [98, 40,
163] can be used. When they are non-linear, manifold clustering and embedding
methods were proposed. They generally divide into 3 categories [3]: 1. Locality pre-
serving. 2. Kernel based. 3. Neural Network based. Locality preserving techniques
implicitly make the assumption that the manifolds are smooth, and are sampled
densely [147, 39, 23]. Additionally, smoothness assumption can be employed [48].
Our method generalizes those techniques by realizing them with geometrical con-
straints. The success of kernel based techniques depends strongly on the suitability
of the underlying kernel, and generally requires a representation of the data in a
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space with higher dimension than the data space [123]. Deep subspace clustering
methods, such as [75, 183, 186] jointly perform linear subspace clustering and rep-
resentation learning, and has the potential to handle high dimensional non-linear
data effectively. However, it has been shown that most performance gains obtained
by those methods should be attributed to an ad-hoc post-processing step applied to
the self-expression matrix. Using neural networks only provide a very marginal gain
compared to clustering the raw data directly using linear SC [56]. Our work differs
from those techniques mainly in two aspects: i) While most of the previous methods
were generative (autoencoders, GANs), our loss function is defined in the latent em-
bedding space and is best understood as a contrastive method. ii) While previous
methods use self-expression based SC to guide feature learning, ours uses MCR2 to
learn the subspace features. Recently, some deep SC techniques also applied data
augmentation [149, 1]. However, in those works, data augmentation played a com-
plementary role of improving the performance. In our method, data augmentation
plays a central role for enabling the identification of the clusters.

Self-Supervised Representation Learning. Recently, self-supervised represen-
tation learning achieved tremendous success with deep neural networks. Similar
to manifold clustering and embedding, there are also two essential ingredients: 1)
Data augmentations are used to define the domain-specific invariance. 2) The la-
tent representation should not collapse. The second requirement can be achieved
either by contrastive learning [21], momentum encoder [61, 52] or siamese network
structure [22]. More directly related to our work is [152], which proposed feature
orthogonalization and decorrelation, alongside contrastive learning. Recently, vari-
ance regularization along was also successfully used to achieve principle 2) [180, 7],
attaining state-of-the-art SSL representation performance. Part of our method, the
total coding rate (TCR) objective achieves a similar effect, see discussion in Ap-
pendix D.1. However, beyond self-supervised features, our algorithm additionally
show strong clustering performance, and directly learns a meaningful latent space.
The simultaneous manifold clustering and embedding in NMCE is also related to
online deep clustering [17, 18] method. Also notable is [29], where the concept of
population consistency is closely related to the constraint functional we discussed.

Clustering with Data Augmentation Our method use data augmentation to
ensure correct clustering of the training data. Although not explicitly pointed out,
this is also the case for other clustering techniques [137, 159, 96]. Our understanding
of data augmentation is also consistent to works that specifically study the success
of data augmentations [57, 89].
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5.3 Neural Manifold clustering and Embedding

Problem Setup

Let’s assume data points xi ∈ Rd are sampled from a union
⋃n

j=1 Xj of manifolds

X1,X2, ...,Xn.
1 As stated in Task 1, the goal of manifold clustering and embedding

is to assign each data point to the corresponding manifold (clustering), as well as
learning a coordinate for each manifold (manifold learning). To achieve this goal, we
use neural network f , which learns to map a data point x to the feature embedding
z ∈ Rdemb and the cluster assignment c ∈ [1, n], i.e. z, c = f(x). The cluster assign-
ment shall be equal to the ground-truth manifold assignment,2 z should parameterize
the coordinates of the corresponding manifold Xc.

To make the feature space easier to work with, one can enforce the additional sep-
arability requirement that for any Xj,Xk and j ̸= k, the feature vectors are per-
pendicular, Zj ⊥ Zk. Here Zj denotes the embedding feature vectors of data points
in Xj, and we define perpendicular between two sets in the following fashion: If
Z̃j ⊆ Zj, Z̃k ⊆ Zk such that ∀zj ∈ Z̃j, zk ∈ Z̃k, we have zj · zk ̸= 0, then either Z̃j or
Z̃k has zero measure.

In the following, we first argue that to make clustering possible with a neural net-
work, one should define the additional geometric constraint that makes the manifold
clusters identifiable. Second, we discuss how to implement the required geometric
constraints and combine them with a recently proposed joint clustering and subspace
learning algorithm MCR2 [178] to achieve neural manifold clustering and embeddng
(NMCE).

Clustering always involves implicit assumptions

Even the simplest clustering algorithms rely on implicit assumptions. For example,
in k-means clustering, the implicit assumption is that the clusters in the original
data space are continuous in terms of L2 distance. For Linear SC, the assumption is
that data points are co-linear within each cluster. If a neural network is trained on
example data to learn a cluster assignment function c = f(x), the resulting clustering
will be arbitrary and not resemble the solution of k-means or linear SC clustering.
This is because neural networks are flexible and no constraint is imposed on the

1We do not consider topological issues here and assume that all of them are homeomorphic to
Rdi for some di

2Up to a permutation since the training is unsupervised.
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Clustering with neural 
network does not respect 

the manifold structure.

Addional constraint implemented 
via data augmentation allows 
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Figure 5.1: Locality constraint enforced by adding Gaussian noise as data augmen-
tation allows neural network to find the desired non-linear manifolds.

clustering function to force the result to respect the geometry of the original data.
One example of this is shown in Figure 5.1 left panel, where a deep clustering method
outputs a rather arbitrary clustering for the double spiral data.

To make the clusters learnable for a neural network, one needs to introduce con-
straints explicitly. In the example in Figure 5.1, one can easily reason that, to be
able to separate the two spirals from each other, the clustering function needs to en-
sure that all close neighbors of a point from the data distribution are assigned to the
same cluster, essentially the same assumption implicitly made in locality-based man-
ifold clustering algorithms [3]. We formalize the notion of constraints to a constraint
functional D(f) (for a specific data distribution) that has the following property:
All cluster assignment functions f that makes D attain its minimum value (assumed
to be 0) and also cluster data points to the ground truth number of clusters will
correctly cluster all data points. For example, we can construct a functional D that
takes value D = 0 for all clustering functions that satisfy the locality constraint
on the dataset, and D > 0 otherwise. This notion of constraint function is com-
pletely general. For example, linear subspace clustering is recovered if the constraint
function take value 0 if and only if the found clusters are linear subspace.

In practice, one usually cannot optimize the neural network clustering function f
subject to D = 0, since the correct solution would have to be found at initialization.
A more practical way to use the constraint function is to use the relaxed objective
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with weighting λ:
L(f) = Lclst(f) + λ ∗D(f) (5.1)

where Lclst is some objective function that will force f to cluster the dataset. With
a suitable λ, optimizing this objective leads to learning of the correct clusters, by
the assumption above. To achieve manifold clustering, one just needs to find the
appropriate constraint functional.

Subspace feature learning with Maximum Coding Rate
Reduction

Having introduced explicit constraints for learning the manifold clustering with
neural networks, we still need a concrete algorithm for learning a linear subspace-
structured representation given the clustering (manifold learning). Fortunately, the
recently proposed principle of Maximum Coding Rate Reduction (MCR2) [178] pro-
vides a principled learning objective for this purpose. We denote the dataset (union
of all manifolds) by X, and random variable that represent distribution on each
manifold Xi by Xi. For a certain encoder Z = f(X ) (without clustering output),
z ∈ Rdemb , the Gaussian coding rate function is defined to be:

R(Z, ϵ) =
1

2
logdet(I+

demb

ϵ2
cov(Z)) (5.2)

where cov denotes the covariance matrix function for a vector random variable:
cov(Z) = Ep(z)[zz

T ]. This function is approximately the Shannon coding rate of
a multivariate Gaussian distribution given average distortion ϵ [27], and can be mo-
tivated by a ball-packing argument. However, we focus on its geometric implication
and do not discuss the information-theoretic aspect further. Readers interested to
the full introduction of this objective can refer to the original papers [178, 98].

Suppose for now that we are also given the cluster assignment function c(x) that
outputs the manifold index c(x) = i for x ∈ Xi. We can then calculate the average
coding rate for a particular cluster i as R(Zi, ϵ), where Zi = f(Xi). The MCR2

principle states that, to learn a subspace-structured representation, one needs to
optimize f by maximizing the difference between the coding rate of all of Z and the
sum of coding rate for each cluster Zi:

∆R(Z, c, ϵ) = R(Z, ϵ)−
n∑

i=1

R(Zi, ϵ) (5.3)

Intuitively, this objective minimizes the sum of volume of each cluster to push each
of them into a lower-dimensional representation, while a the same time maximize
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the total volume of the union of all clusters to avoid collapse. It has been shown
that MCR2 guarantees the perpendicularity requirement in the problem setup above.
Theorem A.6 in [178] states that under the assumption that rank(Zi) is bounded, and
the coding error ϵ is sufficiently low, maximizing the MCR2 objective guarantees that
Zi ⊥ Zj for any i ̸= j, and the rank of each Zi is as large as possible.

Neural Manifold Clustering and Embedding

The MCR2 principle can be extended to the case where the labeling function c(x) is
not given, but is instead learned jointly by optimizing the MCR2 objective. In this
case, we fuse the clustering function into f : z, c = f(x), note that now Zi depends
on f implicitly. However, as discussed earlier, one will not be able to find the correct
clusters by using MCR2 alone, as it is unconstrained in the data space. An additional
constraint term D(f) has to be included to make the clusters identifiable. This leads
to the Neural Manifold Clustering and Embedding (NMCE) objective:

LNMCE(f, ϵ) =
n∑

i=1

R(Zi, ϵ)−R(Z, ϵ) + λD(f) (5.4)

It is possible to replace the MCR2 objective in (5.4) by any other objective for
subspace feature learning, however, this generalization is left for future work. Given
a suitable constraint functionalD, the NMCE objective will guide the neural network
to cluster the manifold correctly and also learn the subspace-structured feature, thus
achieving manifold clustering and embedding. We explain in the next section how
D can be practically implemented.

Implementing constraints via data augmentation

Here we propose a simple method to implement various very useful constraints. The
proposed method uses data augmentations, a very common technique in machine
learning, and enforce two conditions on the clustering and embedding function f : 1.
Augmented data points generated from the same point should belong to the same
cluster. 2. The learnt feature embedding of augmented data points should be similar
if they are generated from the same point. We use T (x) to represent a random
augmentation of x: c, z = f(T (x)), c′, z′ = f(T ′

(x)), then D(f) = Ep(x)sim(z, z′).
Here, sim is a function that measures similarity between latent representations, for
example cosine similarity, or L2 distance. The requirements c = c′ can be enforced
by using average of c and c′ to assign z and z′ to clusters during training.
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For the double spiral example, the augmentation is simply to add a small amount of
Gaussian noise to data points. This will have the effect of forcing neighboring points
in the data manifold to also be neighbors in the feature space and be assigned to the
same cluster. The result of using this constraint in the NMCE objective can be seen in
Figure 5.1 middle and right panel. For more difficult datasets like images, one needs
to add augmentations to constrain the clustering in the desired way. The quality of
clustering is typically measured by how well it correspond to the underlying content
information (object class). Therefore, we need augmentations that perturbs style
information (color, textures and background) but preserves content information, so
that the clustering will be based on content but not style. Fortunately, extensive
research in self-supervised contrastive learning has empirically found augmentations
that achieves that very effectively [21, 89].

Multistage training and relationship to self-supervised
contrastive learning

In practice, we find that for all but the simplest toy experiments it is difficult to
optimize the full NMCE objective (Eq. 5.4) from scratch. This is because the
clusters are incorrectly assigned at the start of training, and the sum in Eq 5.4
effectively cancels out the total coding rate term R(Z, ϵ), making it hard to initialize
the training. We observe that to achieve high coding rate difference, it is critical to
achieve high total coding rate first, so we resort to a multistage training procedure,
with the first stage always being optimizing the following objective:

LTCR(f, ϵ) = −R(Z, ϵ) + λD(f) (5.5)

We call this the Total Coding Rate (TCR) objective, which is a novel self-supervised
learning objective by itself. Through simple arguments (Appendix D.1) one can see
that this objective encourages the covariance matrix of Z to be diagonal. Along
with a similarity constraint between augmented samples, this objective turns out to
asymptotically achieve the same goal as VICReg [7] and BarlowTwins [180]. We
discuss this further in Appendix D.1.

After training with the TCR objective, we found that usually the feature Z already
possess approximate subspace structure. For simple tasks, the features can be di-
rectly clustered with standard linear SC techniques such as EnSC [174]. For more
difficult tasks, we found that the full NMCE objective performs much better.
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5.4 Results

We provide code for our experiment here3,

For the synthetic experiments, a MLP backbone is used as backbone and two linear
last layers are used to produce feature and cluster logits output, ELU is used as the
activation function. For all image datasets, standard ResNet with ReLU activation
and various sizes is used as the backbone. After the global average pooling layer,
one linear layer with 4096 output units, batch normalization and ReLU activation is
used. After this layer, two linear heads are used to produce feature and cluster logits
outputs. The number of clusters used is always equal to the ground truth. For all
experiments, two augmented samples, or ”views”, are used for each data sample in
a batch. Gumbel-Softmax [73] is used to learn the cluster assignments. Similar to
[178], feature vectors are always normalized to the unit sphere. The constraint term
D is always cosine similarity between two augmented samples. Cluster assignment
probabilities and feature vectors are averaged between augmentations before sending
into the NMCE loss, which enforce consistency between the augmentations. The
regularization strength λ is always determined empirically. Hyper-parameters and
further details are available in the Appendix D.2.

Table 5.1: Clustering performance comparison on COIL20 and COIL100. Listed are
error rates, NMCE is our method, see text for references for other listed methods .

Dataset SSC KSSC AE+EDSC DSC S2ConvSCN MLRDSC-DA AK-SC NMCE (Ours)

COIL20 14.83 24.65 14.79 5.42 2.14 1.79 0.0 0.0
COIL100 44.90 47.18 38.88 30.96 26.67 20.67 - 11.53

Synthetic and image datasets

For the toy example in Figure 5.1, data augmentation is simply adding a small
amount of noise, and full NMCE objective is directly used, the clustering output is
jointly learned.

To verify the NMCE objective, we perform synthetic experiment by clustering a
mixture of manifold-structured data generated by passing Gaussian noise through
two randomly initialized MLPs. Small Gaussian noise data augmentation is used to

3https://github.com/zengyi-li/NMCE-release
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enforce the locality constraint. A two stage training process is used, the first stage
uses TCR objective while the second stage uses full NMCE objective. Much like the
toy experiment, the result is consistent with our interpretation, see Appendix D.1
for results and details.

To compare NMCE with other subspace clustering methods, we apply it to COIL20
[110] and COIL100 [111], both are standard datasets commonly used in SC literature.
They consist of images of objects taken on a rotating stage in 5 degree intervals.
COIL20 has 20 objects with total of 1440 images, and COIL100 has 100 objects with
total of 7200 images. Images are gray-scaled and down-sampled by 2x. For COIL20,
a 18-layer ResNet with 32 filters are used as the backbone, the feature dimension is
40. For COIL100, and 10-layer ResNet with 32 filters is used, and feature dimension
is 200. We determined the best augmentation policy for this experiment by manual
experimentation on COIL20, and the same policy is applied to COIL100. Details
on the searched policy can be found in Appendix D.2. For this experiment, we use
EnSC [174] to cluster features learned with TCR objective. We found this procedure
already performs strongly, and full NMCE objective is not necessary.

We compare with classical baseline such as SSC [40],KSSC[123] and AE+EDSC[74],
as well as deep SC techniques including , DSC[75], S2ConvSCN[183] and MLRDSC-
DA[1]. We also include AK-SC[4], where data-augmentation is combined with classi-
cal SC. As can be seen in Table 5.1, our method achieves 0.0 error rate for COIL20,
and error rate of 11.53 for COIL100, on par with previous best result of 0.0 for COIL-
20, and outperforming previous best result of 20.67 on COIL-100. This suggests that
NMCE can better leverage the non-linear processing capability of deep networks, un-
like previous deep SC methods, which only marginally outperform linear SC on the
pixel space [56].

Self-supervised learning and clustering of natural images

Recently, unsupervised clustering has been extended to more challenging image
datasets such as CIFAR-10, CIFAR-20 [88] and STL-10 [25]. The original MCR2

paper [178] also performed those experiments, but they used augmentation in a very
different way (See Appendix D.1 for a discussion). The CIFAR-10 experiment used
50000 images from the training set, CIFAR-20 used 50000 images from training set
of CIFAR-100 with 20 coarse labels. The STL-10 experiment used 13000 labeled im-
ages from original train and test set. ImageNet-10 and ImagetNet-Dogs used 13000
and 19500 images subset from ImageNet, respectively [96]. We use ResNet-18 as the
backbone to compare with MCR2, and use ResNet-34 as the backbone to compare
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with other clustering methods. In both cases, the feature dimension is 128. Standard
image augmentations for self-supervised learning is used [21].

Table 5.2: Supervised evaluation performance for different feature types and evalu-
ation algorithms. See text for details.

Model Proj Pre-feature Pool Proj (16 avg) Pre-feature (16 avg) Pool (16 avg)

SVM 0.911 0.889 0.895 0.922 0.905 0.929
kNN 0.904 0.851 0.105 0.910 0.800 0.103

NearSub 0.898 0.902 0.903 0.903 0.909 0.911

Training strategy, supervised evaluation

Here we use a three stage training procedure: 1. Train with TCR objective. 2.
Reinitialize the last linear projection layer and add a cluster assignment layer. Then,
freeze parameters in the backbone network and train the two new layers with full
NMCE objective. 3. Fine tune the entire network with NMCE objective.

As discussed earlier, the first stage is very similar to self-supervised contrastive learn-
ing. Therefore, we study features learned at this stage with supervised evaluation,
the result with ResNet-34 is listed in Table 5.2. To evaluate the learned features, we
use SVM, kNN and a Nearest Subspace classifier (NearSub). We use SVM instead
of linear evaluation training because we find that it is more stable and insensitive to
particular parameter settings. Here we compare three types of features, Proj: 128d
output of the projector head. Pre-feature: 4096d output of the linear layer after
backbone. Pool: the 2048d feature from the last average pooling layer. We find that
averaging features obtained from images processed by training augmentations im-
proves the result. Therefore we also compare performance in this setting and denote
it by 16avg, as 16 augmentations are used per image. Images from both training
and test set are augmented. As can be seen from the table, without augmentation,
SVM using the projector head feature gives the best accuracy. This is surprising,
as most self-supervised learning techniques effectively use Pool features because the
performance obtained with Proj features is poor. When averaging is used, a SVM
with Pool feature becomes the best performer, however, SVM and kNN with Proj
feature also achieve very high accuracy. In Appendix, we further compared Proj
and Pool features using SVM in cases where limited labeled data are available. In
such cases, Proj feature significantly outperform Pool feature, showing that the TCR
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objective encourages learning of meaningful feature in the latent space – unlike other
algorithms, where the gap between performance of Pool and Proj features can be
very large [21].

Table 5.3: Clustering performance comparisons. Clustering: clustering specific meth-
ods. SC: subspace clustering methods. See text for details.

Models
CIFAR-10 CIFAR-20 STL-10 ImageNet-10 ImageNet-Dogs

ACC NMI ARI ACC NMI ARI ACC NMI ARI ACC NMI ARI ACC NMI ARI

Clustering
k-means 0.525 0.589 0.276 0.130 0.084 0.028 0.192 0.125 0.061 0.241 0.119 0.057 0.105 0.055 0.020
Spectral 0.455 0.574 0.256 0.136 0.090 0.022 0.159 0.098 0.048 0.271 0.151 0.076 0.111 0.038 0.013
CC 0.790 0.705 0.637 0.429 0.431 0.266 0.850 0.764 0.726 0.893 0.859 0.822 0.429 0.455 0.474
CRLC 0.799 0.679 0.634 0.425 0.416 0.263 0.818 0.729 0.682
MoCo Baseline 0.776 0.669 0.608 0.397 0.390 0.242 0.728 0.615 0.524 - - - 0.338 0.347 0.197
MiCE 0.835 0.737 0.698 0.440 0.436 0.280 0.752 0.635 0.575 - - - 0.439 0.428 0.286
TCC 0.906 0.790 0.733 0.491 0.479 0.312 0.814 0.732 0.689 0.897 0.848 0.825 0.546 0.512 0.409
ConCURL 0.846 0.762 0.715 0.479 0.468 0.303 0.749 0.636 0.566 0.958 0.907 0.909 0.695 0.630 0.531
IDFD 0.815 0.711 0.663 0.425 0.426 0.264 0.756 0.643 0.575 0.954 0.898 0.901 0.591 0.546 0.413

SC
MCR2-EnSC 0.684 0.630 0.508 0.347 0.362 0.167 0.491 0.446 0.290 - - - - - -
MCR2-ESC 0.653 0.629 0.438 - - - - - - - - - - - -
MCR2-SENet 0.765 0.655 0.573 - - - - - - - - - - - -

Ours
NMCE-Res18 0.830 0.761 0.710 0.437 0.488 0.322 0.725 0.614 0.552 0.906 0.819 0.808 0.398 0.393 0.227
NMCE-Res34 0.891 0.812 0.795 0.531 0.524 0.375 0.711 0.600 0.530 - - - - - -

Clustering Performance

We compare clustering performance of NMCE after all 3 stages of training to other
techniques. Due to space limits, we only compare with important baseline methods
as well as highest performing deep learning based techniques, rather than being fully
comprehensive. For a more complete list of methods, see for example [137]. We
follow the convention in the field and use clustering Accuracy (ACC), Normalized
Mutual Information (NMI), and Adjusted Rand Score (ARI) as metrics. For defini-
tions, see [178], for example. We list results in Table 5.3, K-means[99] and Spectral
clustering[112] results were adopted from [184] and [137], we always selected the best
result. For deep learning based techniques, we compare our ResNet-34 results with
CC[96], CRLC[33], MiCE[159], TCC[137], ConCURL[29], and IDFD[152]. We did
not include [120] or [81] since the former is a post processing step, and the later
uses a special network architecture. We also separately compare ResNet-18 result
with features learned by MCR2 (MCR2-CTRL to be precise, see Appendix D.1) and
clustered by EnSC[174], ESC[175] or SENet[184]. They are denoted by MCR2-EnSC,
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Figure 5.2: Visualization of principal components from subspace representation
learned from CIFAR-10. Rows in each panel are training images that has the largest
cosine similarities with different principle components of that subspace. Similarity
of images within each component is apparent. For a more complete visualization,
see Figure D.1.

MCR2-ESC and MCR2-SENet, respectively. For MCR2-EnSC, we adopt the result
from [178], since the result is higher and include all 3 datasets, MCR2-ESC and
MCR2-SENet results are from [184].

Compared with the result from MCR2, our method achieved a substantial gain in
all metrics considered. For example, the accuracy is improved by more than 6% on
CIFAR-10, and by 9% on CIFAR-20. This shows that we used data augmentation
in a much more effective way than original MCR2. Our method can also outperform
previous techniques which were specifically optimized for clustering, this happens on
most CIFAR-10 and CIFAR-20 metrics, for example.

In the experiments above, stage 1 learns pre-features that are approximately
subspace-structured, and stage 2 can be seen as performing subspace clustering on
the pre-feature output, as MCR2 was originally a subspace clustering objective [98].
For CIFAR and STL-10 experiments, fine tuning the entire network with the NMCE
objective (stage 3) improves performance by a small but significant amount, see
Appendix D.1). Features learned from stage 1 of the training can also be directly
clustered by methods like EnSC, but the results were rather poor for the image
dataset. It seems that NMCE is a more robust way to cluster the learned features
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for the image experiments.

After all 3 training stages, one can visualize the structure of each subspace by per-
forming PCA and displaying the training examples that have the highest cosine
similarity to each of the principle components. In Figure 5.2 we show this for 4 out
of 10 clusters of CIFAR-10. As can be seen, principle components in each cluster cor-
respond to semantically meaningful sub-clusters. For example, the first row in ”dog”
cluster are mostly close-ups of white dogs. This shows that after training with the
full NMCE objective, samples are clustered based on content similarity in the latent
space, instead of being distributed uniformly on the hyper-sphere, as training with
just the TCR objective or other self-supervised learning methods would encourage
[168, 37, 180, 7, 187].

5.5 Discussion

In this paper we proposed a general method for manifold clustering and embedding
with neural networks. It consists of adding geometric constraint to make the clusters
identifiable, then performing clustering and subspace feature learning. In the special
case where the constraint is implemented by data-augmentation, we discussed its re-
lationship to self-supervised learning and demonstrated its competitive performance
on several important benchmarks.

In the future, it is possible to extend this method beyond data augmentation to other
type of constraint functions, or improves its performance using a stronger subspace
feature learning algorithm.
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Appendix A

Supplementary material for
CAP-BM

A.1 Sampling rules derivation

The amplitude probability distribution P (|zj| = 1|zzz!j) =: Pj is computed as
marginals of the Boltzmann distribution induced by energy function (2.2):

Pj =

∫
2π

dθ p(|zj| = 1, θj = θ|zzz!j) =
∫
2π
dθ e−Ej(|zj |=1,θj=θ)−E!j

ZZZ
(A.1)

Here Ej and E!j denote parts of the energy function that depend and do not depend
on zj, respectively. To avoid dealing with the intractable partition function ZZZ, one
can calculate Pj/1− Pj then solve for Pj:

1− Pj =

∫
2π
dθ e−Ej(|zj |=0,θj=θ)−E!j

ZZZ
(A.2)

Divide (A.1) and (A.2) and insert the following expression easily derived from (2.2):
Ej = −Re(z∗juj)−|zj|µj+ϵj where uj =

∑
k ̸=j wjkzk = aje

iαj and µj =
∑

k ̸=j Jjk|zk| is
the complex and real-valued postsynaptic sums, respectively. Putting it all together
yields:

Pj

1− Pj
=

∫
2π dθ e

−Ej(|zj |=1,θj=θ)−E!j∫
2π dθ e

−E!j
=

1

2π

∫
2π

dθ eajcos(αj−θ)+µj−ϵj = eµj−ϵj I0(aj)

where I0 denotes the zeroth order modified Bessel function of the first kind. Solving
for Pj yields:

P (|zj| = 1|zzz!j) =
1

1 + (eµj−ϵj I0(aj))−1
(A.3)
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We note that result (A.3) can also serve as the natural amplitude activation function
for a continuous-valued complex neural network that also has amplitude-amplitude
coupling. See Figure A.1 for a plot illustrating some of its properties.

a

P µ-ε=0

µ-ε=-7
µ-ε=-1.5P

µ-ε

a=0
a=3
a=7

a) b)

Figure A.1: The amplitude activation function Pj. a) Pj is a sigmoid function with
respect to the real-valued postsynaptic sum with the saturation levels at Pj = 0 and
Pj = 1. A horizontal offset is determined by a. b) TPj as a function of the modulus
of the complex postsynaptic sum is also approximately sigmoid shaped except near
a = 0 where it always have slop 0. For large negative values of µ − ϵ, saturation
levels are at Pj = 0 and Pj = 1. However, when µ− ϵ = 0, the value of Pj near a = 0
rises to a value of 0.5.

Finally, for obtaining the phase distribution p(θj| |zj| = 1, zzz!j), we use Bayes rule:

p(θj | |zj | = 1, zzz!j) =
p(|zj | = 1, θj |zzz!j)
P (|zj | = 1 |zzz!j)

=
e−Ej(|zj |=1,θj)−E!j∫

2π dθ e
−Ej(|zj |=1,θj=θ)−E!j

=
1

2πI0(aj)
eajcos(αj−θj)

(A.4)

which is a von Mises distribution, the circular analog of Gaussian with its mode at
θj = αj.

A.2 Learning rules derivation

We start with KL-divergence between model and data distribution, which is equiva-
lent to maximum likelihood:

G = p(vvv)∥p∞m (vvv) =
∑
2N

∫
(2π)N

dθN p(vvv) log(
p(vvv)

p∞m (vvv)
) = −H(p(vvv))− ⟨log(p∞m (vvv))⟩p(vvv)
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where p(vvv) and p∞m (vvv) denote data and model distribution of visible units. The sum
over 2N denotes all 2N possibilities of the modulus of visible units and the integral
over (2π)N is the integration over the phase angles of all visible units.

Writing the complex weights in polar coordinates wjk = bjke
iθjk , we compute the

derivative of G w.r.t. bjk:

∂G

∂bjk
= −

〈
∂ log(p∞m (vvv))

bjk

〉
p(vvv)

= −

〈∑
2M

∫
dθM e−E(vvv,hhh)(−∂E(vvv,hhh)

∂bjk
)∑

2M
∫
dθM e−E(vvv,hhh)

−

∑
2N+M

∫
dθN+M e−E(vvv,hhh)(−∂E(vvv,hhh)

∂bjk
)∑

2N+M

∫
dθN+M e−E(vvv,hhh)

〉
p(vvv)

The sum and integral over M variables denote the average over hidden unit states,
each term inside becomes an average, either over the marginal distribution of the
hidden variables given the visibles, or an average over the free model distribution:

∂G

∂bjk
=

〈〈
∂E(vvv,hhh)

∂bjk

〉
p(hhh|vvv)

−
〈
∂E(vvv′,hhh′)

∂bjk

〉
p(vvv′,hhh′)

〉
p(vvv)

= ⟨|zj ||zk|cos(θjk + θk − θj)⟩sample − ⟨|zj ||zk|cos(θjk + θk − θj)⟩model

Similarly, the gradients w.r.t θjk, Jjk and ϵj are:

∂G

∂θjk
= −⟨|zj ||zk|bjksin(θjk + θk − θj)⟩sample + ⟨|zj ||zk|bjksin(θjk + θk − θj)⟩model

∂G

∂Jjk
= ⟨|zj ||zk|⟩sample − ⟨|zj ||zk|⟩model

∂G

∂ϵj
= −⟨|zj |⟩sample + ⟨|zj |⟩model

A.3 Experimental Details

General Setup and Toy experiment

Energy function of CAP-RBM can be written in the obvious way. In the following,
vvv and hhh denote the complex visible and hidden units, and aaa and bbb the bias vectors
for visible and hidden units. The energy function is then:

E = −vvv†WWWhhh− |vvv|TJJJ |hhh|+ aaaT |vvv|+ bbbT |hhh| (A.5)

Naively written in this way, this function is not necessarily real, but various simple
arguments can show that we can just take the real part without causing any issue.
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As in real-valued RBM, alternating parallel Gibbs sampling can be applied to hidden
and visible units to sample from the model distribution. Rate, instead of sample,
is used to generate an output from the CAP-RBM, for example, to compute weight
updates during training, or to display visible unit activity. Rate is defined as the
expected complex activity or expected modulus given fixed input to that unit. Do
note that, in general, the expected modulus of a complex unit is not equal to the
modulus of the expected complex activity, a slightly subtle point.

We trained our CAP-BM using 1 step Contrastive divergence (CD-1), or that fol-
lowed by Persistent Contrastive divergence (PCD). The procedure of applying those
methods are exactly the same as in real-valued RBMs. We observe that those meth-
ods behave as expected: CD-1 only explores the state space in vicinity to data, and
forms relatively stable representations quickly. PCD learning is slower but it pro-
duces a higher quality model [64]. In our case it is able to produce a generative
model for MNIST digits in CWT representation.

We first investigate learning in the CAP-RBM on an artificial dataset of random bars
with noisy phase structure. Each data sample is a 24X24 complex image, each has
random numbers (2-4 each direction) of horizontal and vertical 2 pixels wide bars
consist of complex numbers of modulus 1. A sinusoidal phase pattern with random
overall phase offset is assigned to each bar. Additional phase perturbation is added
to each pixel in a bar, sampled uniformly from (0, 0.6). We compare a full CAP-RBM
and a CAP-RBM without JJJ couplings by their ability to simultaneously learn the
bar-shaped amplitude pattern and the sinusoidal phase pattern. We trained both
models on 40000 training examples using 10 epochs of (CD-1). The phase on bars
from full CAP-RBM model appears smooth because rate, instead of samples, are
shown.

MNIST experiment

A complex wavelet transform (CWT) was used to produce a complex representation
of the original MNIST image. The CWT employs localized and oriented band pass
filters with 6 orientation angles. Roughly speaking, the modulus of the resulting
complex coefficients represents local power of a particular spatial frequency at differ-
ent orientations, the phase represents its spatial phase value [136]. We used slightly
modified version of CWT (dtcwt library 0.12.0, circularly symmetric filters). The
CWT were modified so that phases of filters progress mostly in the same direction
when image is gradually translated. This is achieved by using complex conjugate
of two of the directional filter coefficient outputs from the software package. Then
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average is taken over all maximum magnitudes for each frequency band across all
images and the result is used to set the amplitude for each frequency band during
reconstruction.

The described modified CWT was used to transform all 60000 MNIST images. Com-
plex coefficients were normalized by the maximum modulus in its frequency band
and thresholded at a cut-off modulus of 0.15 before normalizing to modulus 1. Such
thresholding is not uncommon in the CWT literature [136], and it is necessary here
because coefficients with small modulus contribute little to the reconstruction but
add noise to the input of other units, which deteriorates learning considerably.

Despite the thresholding of CWT coefficients, the reconstruction quality remains ex-
cellent because most of the information about digit shape is stored in phase relations
between complex coefficients (Fig. 2.1 b) second row).

MNIST digit images have a resolution of 28× 28 = 784 pixels. Each band pass filter
in the CWT downsamples the image by a factor of 2 so there are total of 5 frequency
bands. Each band has 6 directional filters. Thus, after a full DWT transform, each
image is represented by a total of (14×14+7×7+4×4+2×2+1)×6 = 1596 complex
numbers. In our experiments, only two bands are used for learning, resulting in 7×7
and 4 × 4 = 390 coefficients. The highest frequency band is suppressed to limit
the number of input parameters into our model, and because the high-frequency
structure is relatively unimportant for expressing the relevant features of MNIST
digits. Those coefficients are set to 0 during reconstruction. The low frequency
bands are also suppressed in the learning because they only represent an amplitude
envelope over all digits and contain little digit-specific information – they are set to
their global average during reconstruction.

Since CAP-RBM only learns relative phase structure, visible unit activities some-
times do not have the correct global phase to yield a reasonable image reconstruction.
This usually happens after large numbers of free Gibbs sampling. In cases this hap-
pened, a global phase offset was manually added based on the similarity of resulting
reconstruction to hand written character.

To produce a generative model of MNIST in CWT domain, we use a CAP-RBM with
400 hidden units and perform 10 epochs of CD1 training as initialization. Subse-
quently, 100 epochs of PCD training were performed without weight decay, followed
by another 100 epochs of PCD training with weight decay. All experiments were
implemented in numpy.
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Appendix B

Supplementary material for
MDSM

B.1 MDSM Objective

In this section, we provide a formal discussion of the MDSM objective and suggest
it as an improved score matching formulation in high-dimensional space.

[164] illustrated the connection between the model score −∇x̃xxE(x̃xx; θ) with the score
of Parzen window density estimator ∇x̃xx log(pσ0(x̃xx)). Specifically, the objective is
Equation 3.1 which we restate here:

LSM(θ) = Epσ0(x̃xx) ∥ ∇x̃xx log(pσ0(x̃xx)) +∇x̃xxE(x̃xx; θ) ∥2 (B.1)

Our key observation is: in high-dimensional space, due the concentration of measure,
the expectation w.r.t. pσ0(x̃xx) over weighs a thin shell at roughly distance

√
dσ to

the empirical distribution p(x). Though in theory this is not a problem, in practice
this leads to results that the score are only well matched on this shell. Based on this
observation, we suggest to replace the expectation w.r.t. pσ0(x̃xx) with a distribution
pσ′(x̃xx) that has the same support as pσ0(x̃xx) but can avoid the measure concentration
problem. We call this multiscale score matching and the objective is the following:

LMSM(θ) = EpM (x̃xx) ∥ ∇x̃xx log(pσ0(x̃xx)) +∇x̃xxE(x̃xx; θ) ∥2 (B.2)

Proposition 1 LMSM(θ) = 0 ⇐⇒ LSM(θ) = 0 ⇐⇒ θ = θ∗.
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Proof 1 Given that pM(x̃xx) and pσ0(x̃xx) has the same support, it’s clear that LMSM = 0
would be equivalent to LSM = 0. Due to the proof of the Theorem 2 in [72], we have
LSM(θ) ⇐⇒ θ = θ∗. Thus, LMSM(θ) = 0 ⇐⇒ θ = θ∗.

Proposition 2 LMSM(θ) ⌣ LMDSM∗ = EpM (x̃xx)qσ0(xxx|x̃xx) ∥ ∇x̃xx log(qσ0(x̃xx|xxx)) +
∇x̃xxE(x̃xx; θ) ∥2.

Proof 2 We follow the same procedure as in [164] to prove this result.

JMSM(θ) = EpM (x̃xx) ∥ ∇x̃xx log(pσ0(x̃xx)) +∇x̃E(x̃xx; θ) ∥2

= EpM (x̃xx) ∥ ∇x̃E(x̃xx; θ) ∥2 +2S(θ) + C

S(θ) = EpM (x̃xx)⟨∇x̃xx log(pσ0(x̃xx)),∇x̃xxE(x̃xx; θ)⟩

=

∫
x̃xx

pM(x̃xx)⟨∇x̃xx log(pσ0(x̃xx)),∇x̃xxE(x̃xx; θ)⟩ dx̃xx

=

∫
x̃xx

pM(x̃xx)⟨∇x̃xxpσ0(x̃xx)

pσ0(x̃xx)
,∇x̃xxE(x̃xx; θ)⟩ dx̃xx

=

∫
x̃xx

pM(x̃xx)

pσ0(x̃xx)
⟨∇x̃xxpσ0(x̃xx),∇x̃xxE(x̃xx; θ)⟩ dx̃xx

=

∫
x̃xx

pM(x̃xx)

pσ0(x̃xx)
⟨∇x̃xx

∫
xxx

p(xxx)qσ0(x̃xx|xxx)dxxx,∇x̃xxE(x̃xx; θ)⟩ dx̃xx

=

∫
x̃xx

pM(x̃xx)

pσ0(x̃xx)
⟨
∫
xxx

p(xxx)∇x̃xxqσ0(x̃xx|xxx)dxxx,∇x̃xxE(x̃xx; θ)⟩ dx̃xx

=

∫
x̃xx

pM(x̃xx)

pσ0(x̃xx)
⟨
∫
xxx

p(xxx)qσ0(x̃xx|xxx)∇x̃xx log qσ0(x̃xx|xxx)dxxx,∇x̃xxE(x̃xx; θ)⟩ dx̃xx

=

∫
x̃xx

∫
xxx

pM(x̃xx)

pσ0(x̃xx)
p(xxx)qσ0(x̃xx|xxx)⟨∇x̃xx log qσ0(x̃xx|xxx),∇x̃xxE(x̃xx; θ)⟩ dx̃xxdxxx

=

∫
x̃xx

∫
xxx

pM(x̃xx)

pσ0(x̃xx)
pσ0(x̃xx,xxx)⟨∇x̃xx log qσ0(x̃xx|xxx),∇x̃xxE(x̃xx; θ)⟩ dx̃xxdxxx

=

∫
x̃xx

∫
xxx

pM(x̃xx)qσ0(xxx|x̃xx)⟨∇x̃xx log qσ0(x̃xx|xxx),∇x̃xxE(x̃xx; θ)⟩ dx̃xxdxxx

Thus we have:

LMSM(θ) = EpM (x̃xx) ∥ ∇x̃xxE(x̃xx; θ) ∥2 +2S(θ) + C

= EpM (x̃xx)qσ0 (xxx|x̃xx) ∥ ∇x̃xxE(x̃xx; θ) ∥2 +2EpM (x̃xx)qσ0 (xxx|x̃xx)⟨∇x̃xx log qσ0(x̃xx|xxx),∇x̃xxE(x̃xx; θ)⟩+ C

= EpM (x̃xx)qσ0(xxx|x̃xx) ∥ ∇x̃xx log(qσ0(x̃xx|xxx)) +∇x̃xxE(x̃xx; θ) ∥2 +C ′
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So LMSM(θ) ⌣ LMDSM∗.

The above analysis applies to any noise distribution, not limited to Gaussian. but
LMDSM∗ has a reversed expectation form that is not easy to work with. To pro-
ceed further we study the case where qσ0(x̃xx|xxx) is Gaussian and choose qM(x̃xx|xxx) as a
Gaussian scale mixture [166] and pM(x̃xx) =

∫
qM(x̃xx|xxx)p(xxx)dx. By Proposition 1 and

Proposition 2, we have the following form to optimize:

LMDSM∗(θ) =

∫
x̃xx

∫
xxx

pM(x̃xx)qσ0(xxx|x̃xx) ∥ ∇x̃xx log(qσ0(x̃xx|xxx)) +∇x̃xxE(x̃xx; θ) ∥2 dx̃xxdxxx

=

∫
x̃xx

∫
xxx

qσ0(xxx|x̃xx)
qM(xxx|x̃xx)

pM(x̃xx)qM(xxx|x̃xx) ∥ ∇x̃xx log(qσ0(x̃xx|xxx)) +∇x̃xxE(x̃xx; θ) ∥2 dx̃xxdxxx

=

∫
x̃xx

∫
xxx

qσ0(xxx|x̃xx)
qM(xxx|x̃xx)

pM(xxx, x̃xx) ∥ ∇x̃xx log(qσ0(x̃xx|xxx)) +∇x̃xxE(x̃xx; θ) ∥2 dx̃xxdxxx

=

∫
x̃xx

∫
xxx

qσ0(xxx|x̃xx)
qM(xxx|x̃xx)

qM(x̃xx|xxx)p(xxx) ∥ ∇x̃xx log(qσ0(x̃xx|xxx)) +∇x̃xxE(x̃xx; θ) ∥2 dx̃xxdxxx

(*)

≈ LMDSM(θ)

To minimize Equation (*), we can use the following importance sampling procedure
[130]: we can sample from the empirical distribution p(xxx), then sample the Gaussian

scale mixture qM(x̃xx|xxx) and finally weight the sample by
qσ0 (xxx|x̃xx)
qM (xxx|x̃xx) . We expect the ratio

to be close to 1 for the following reasons: Using Bayes rule, qσ0(xxx|x̃xx) =
p(xxx)qσ0 (x̃xx|xxx)

pσ0 (x̃xx)
we

can see that qσ0(xxx|x̃xx) only has support on discret data points xxx, same thing holds for
qM(xxx|x̃xx). because in x̃xx is generated by adding Gaussian noise to real data sample,
both estimators should give results highly concentrated on the original sample point
xxx. Therefore, in practice, we ignore the weighting factor and use Equation 3.6.
Improving upon this approximation is left for future work.

B.2 Problem with Single Noise Denoising Score

Matching

To compare with previous method, we trained energy-based model with denoising
score matching using one noise level on MNIST, initialized the sampling with Gaus-
sian noise of the same level, and sampled with Langevin dynamics at T = 1 for
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1000 steps and perform one denoise jump to recover the model’s best estimate of the
clean sample, see Figure B.1. We used the same 12-layer ResNet as other MNIST
experiments. Models were trained for 100000 steps before sampling.

0.3 0.6 1.0

Figure B.1: Denoised samples from energy-based model trained with denoising score
matching with single magnitude Gaussian noise on MNIST. Noise magnitude used
in training is shown above samples.

B.3 Overfitting Test

We demonstrate that the model does not simply memorize training examples by
comparing model samples with their nearest neighbors in the training set. We use
Fashion MNIST for this demonstration because overfitting can occur there easier
than on more complicated datasets, see Figure B.2.

B.4 Details on Training and Sampling

We used a custom designed ResNet architecture for all experiments. For MNIST
and Fashion-MNIST we used a 12-layer ResNet with 64 filters on first layer, while
for CelebA and CIFAR dataset we used a 18-layer ResNet with 128 filters on the
first layer. All network used the ELU activation function. We did not use any
normalization in the ResBlocks and the filer number is doubled at each downsampling
block. Details about the structure of our networks used can be found in our code
release. All mentioned models can be trained on 2 GPUs within 2 days.
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Figure B.2: Samples from energy-based model trained on Fashion MNIST (Left
column) next to 10 (L2) nearest neighbors in the training set.

Since the gradient of our energy model scales linearly with the noise, we expected our
energy function to scale quadratically with noise magnitude. Therefore, we modified
the standard energy-based network output layer to take a flexible quadratic form
[41]:

Eout = (
∑
i

aihi + b1)(
∑
i

cihi + b2) +
∑
i

dih
2
i + b3 (B.3)

where ai, ci, di and b1, b2, b3 are learnable parameters, and hi is the (flattened)
output of last residual block. We found this modification to significantly improve
performance compared to using a simple linear last layer.

For CIFAR and CelebA results we trained for 300k weight updates, saving a check-
point every 5000 updates. We then took 1000 samples from each saved networks
and used the network with the lowest FID score. For MNIST and Fashion MNIST
we simply trained for 100k updates and used the last checkpoint. During training
we pad MNIST and Fashion MNIST to 32*32 for convenience and randomly flipped
CelebA images. No other modification was performed. We only constrained the gra-
dient of the energy function, the energy value itself could in principle be unbounded.
However, we observed that they naturally stabilize so we did not explicitly regularize
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them. The annealing sampling schedule is optimized to improve sample quality for
CIFAR-10 dataset, and consist of a total of 2700 steps. For other datasets the shape
has less effect on sample quality, see Figure B.7 B for the shape of annealing schedule
used.

For the Log likelihood estimation we initialized reverse chain on test images, then
sample 10000 intermediate distribution using 10 steps HMC updates each. Tem-
perature schedule is roughly exponential shaped and the reference distribution is an
isotropic Gaussian. The variance of estimation was generally less than 10% on the
log scale. Due to the high variance of results, and to avoid getting dominated by a
single outlier, we report average of the log density instead of log of average density.

B.5 Extended Samples and Inpainting Results

We provide more inpainting examples and further demonstrate the mixing during
sampling process in Figure B.3. We also provide more samples for readers to visually
judge the quality of our sample generation in Figure B.4, B.5 and B.6. All samples
are randomly selected.

B.6 Sampling Process and Energy Value

Comparison

Here we show how the average energy of samples behaves vs the sampling tempera-
ture. We also show an example of our model making out of distribution error that
is common in most other likelihood based models [103] Figure B.7.
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Figure B.3: Denoised sampling process and inpainting results. Sampling process is
from left to right.
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Figure B.4: Extended Fashion MNIST and MNIST samples
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Figure B.5: Samples (left panel) from network trained on CelebA, and training
examples from the dataset (right panel).
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Figure B.6: Samples (left panel) from energy-based model trained on CIFAR-10 next
to training examples (right panel).
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B.A.

Figure B.7: A. Energy values for CIFAR-10 train, CIFAR-10 test and SVHN datasets
for a network trained on CIFAR-10 images. Note that the network does not over fit
to the training set, but just like most deep likelihood model, it assigns lower energy
to SVHN images than its own training data. B. Annealing schedule and a typical
energy trace for a sample during Annealed Langevin Sampling. The energy of the
sample is proportional to the temperature, indicating sampling is close to a quasi-
static process.
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C.1 Ablation study: effect of gradient

information

In the main text we propose to use gradient information in sampling, inspired by the
success of gradient-based sampling techniques. Here we present an ablation study
that shows the impact of gradient information and of some architectural simplifica-
tions. We compare the full model to two ablated model variants: 1. The original
model with data distribution gradient set to 0, this is equivalent to generating pro-
posals with a Real-NVP flow model conditioned on x. 2. A Langevin dynamics with
noise generated by model variant 1. Specifically, variant 2 consists of the following
proposal process x′ = x + ϵz − ϵ2

2
∂xU(x) ⊙ exp [S(x)] + T (x), where z = f(z0;x) is

modeled by the original architecture with the gradient turned off, and S, T are neural
networks. Thus, variant 2 implements Langevin dynamics with flexible noise and an
element-wise affine transformed gradient. It is not flexible enough to express the full
covariance Langevin dynamics [156], but we found it to be sufficient for energy-based
model training. The computation time is significantly smaller than for our full model
because it only uses per step only 2 gradient evaluations instead of 4N evaluations.

For training on the 100d Funnel-1 distribution, the learning rate of each model is
tuned to the maximum stable value, with both models using the same learning rate
schedule. As can be seen in Figure A1, both ablated models learn more slowly and
have difficulty with mixing between energy levels, resulting in proposal distributions
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with poor coverage.

a) b) c) d)

Figure C.1: Illustrating the role of gradient information. a) Comparison of proposal
entropy (up to a common constant) during training. Full: full model with gradient,
LD: model variant 2, no grad: model variant 1. b), c), d): Example proposal
distribution of Full, LD and no grad model.

C.2 Experimental details

Architecture and training details We use a single network for S, Q and T . The
network is a 5-layer MLP with ELU activation function and constant width that
depends on the dataset (See Table C.1). The weights of both input and output layer
are indexed with step number as a means to condition on the step number. The two
substeps of the z update need not to be indexed as they use disjoint sets of input
and output units indicated by the masks. The weights of all other layers are shared
across different steps. We use a separate network with the same architecture and
size for R and we condition on the step number in the same way. Weights of the
output layers of all networks are initialized at 0. We use random masks that are
drawn independently for each z update step.

When training the sampler, we use gradient clipping with L2 norm of 10. Addi-
tionally, we use a cosine annealing learning rate schedule. For training the Bayesian
logistic regression task, we use a sample buffer of size equal to the batch size. For
ESS evaluation we sample for 2000 steps and calculate the correlation function for
samples from the later 1000 steps. One exception is the HMC 20d Funnel-3 result,
where we sampled for 50000 steps. For the ESS/5k result used in Bayesian logistic
regression task, we simply multiply the obtained ESS/MH value by 5000.

Other hyperparameters used in each experiments are listed in Table C.1. All models
are trained with batch size of 8192, for 5000 steps, except for 20d Funnel-3, where
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the batch size is 1024, and the number of training steps is 20000. The momentum
parameters in the Adam optimizer are always set to (0.9, 0.999). The scale parameter
ϵ is chosen to be 0.01 for EBM training and 0.1 for all other experiments.

For deep EBM training we use architecture variant 2, described in section C.1 because
it uses less gradient computation. We use a small 4-layer convnet with 64 filters and
ELU activation for S, Q and T . In the invertible network we use a fixed checkerboard
mask. For the energy function in the EBM we used a 6 layer convnet with 64 filters
and ELU activation function. In the EBM experiment we use 4 steps of z updates.
We use a replay buffer with 10000 samples, in each training step we first draw 64
samples randomly from the replay buffer and train the sampler for 5 consecutive
steps. Updated samples are put back into the replay buffer. If the average accept
rate of the batches is higher than target accept rate −0.1, another 128 samples are
draw from the replay buffer and are updated 40 times using the sampler. These
samples are then used as negative samples in the Maximum Likelihood training of
the EBM. The EBM uses the Adam optimizer with a learning rate of 10−4 and Adam
momentum parameters of (0.5, 0.9). The sampler uses the same learning parameter,
and has an accept rate target of 0.6. The EBM was trained for a total of 100000
steps, where the learning rate is decreased by a factor of 0.2 at steps 80000 and
90000. All results with the MALA sampler are generated by loading a checkpoint
at 1000 steps with the trained sampler. For reasons unclear to us, MALA is unable
to stably initialize the training, although the later training process with MALA is
stable. The FID is calculated for a model trained by learned sampler and trained by
MALA at 82k steps.

Other datasets Recent studies of neural network based samplers used datasets
other than those reported in the Results. We experimented with applying our model
on some of those datasets. In particular, we attempted applying our method to
the rotated 100d ill-conditioned Gaussian task in [69], without getting satisfactory
result. Our model is able to learn the 2d SCG tasks which shows that it is able to
learn a non-diagonal covariance, but in this task it learns very slowly and does not
achieve good performance. We believe this is because coupling-based architectures
do not have the right inductive bias to efficiently learn the strongly non-diagonal
covariance structure, perhaps the autoregressive architecture used in [69] would be
more appropriate.

[95] also presented the rough well distribution. We tried implementing it as described
in the paper, but found that already a well-tuned HMC can easily sample from this
distribution. Therefore we did not proceed to train our sampler on it. We should
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Width Steps AR LR Min LR
50d ICG 256 1 0.9 10−3 10−5

2d SCG 32 1 0.9 10−3 10−5

100d Funnel-1 512 3 0.7 10−3 10−5

20d Funnel-3 1024 4 0.6 5× 10−4 10−7

German 128 1 0.7 10−3 10−5

Australian 128 1 0.8 10−3 10−5

Heart 128 1 0.9 10−3 10−5

Table C.1: Table for hyperparamters used in synthetic datasets and Bayesian Logistic
regression. Width: width of MLP networks. Steps: Steps of updates in invertible
model f . AR: target acceptance rate. LR: learning rate, Min LR: terminal learning
rate of cosine annealing schedule.

also add a comment regarding the 2d SCG task in [95]: In the paper the authors
stated that the covariance is [102, 10−2], but in the provided code it is [102, 10−1], so
we use the latter in our experiment.

Some neural network MCMC studies considered the mixture of Gaussian distribution.
Our model optimizes a local exploration speed objective starting from small initial-
ization. It is therefore inherently local and not able to explore modes far away and
separated by high energy barriers. The temperature annealing trick in the L2HMC
paper [95] does result in a sampler that can partially mix between the modes in a
2d mixture of Gaussian distribution. However, this approach cannot be expected
to scale up to higher dimensions and more complicated datasets, therefore we did
not pursue it. We believe multi-modal target distributions are a separate problem
that might be solvable with techniques such as the independent M-H sampler [109],
however, not with our current model.

C.3 Additional experimental results

Comparing computation time with HMC Here we compare the efficiency of our
method to HMC in terms of actual execution speed (ESS/s) on Bayesian Logistic
regression tasks.

We follow [142] in using HMC with 40 Leapfrog steps and the optimal step size
reported in this paper. The learned sampler and HMC are both executed on the
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Figure C.2: Visualizations of proposal distributions learned on the Funnel-3 distribu-
tion. Yellow dot: x, Blue dots: accepted x′, Black dots: rejected x′. The sampler has
an accept rate of 0.6. Although not perfectly covering the target distribution, the
proposed samples travel far from the previous sample and in a manner that complies
to the geometry of the target distribution

same 2080Ti GPU with batch size 64. Results of this experiment are listed in Table
C.2. As can be seen, the learned model outperforms HMC significantly.

We did not compare run time with other neural network based MCMC methods due
to the difficulty of reproducing the previous models. In our experiment, the run
time does not significantly depend on the batch size for batches as large as 10000,
indicating that the execution speed is likely limited by other factors than the FLOPs
(floating point operation per second) of the GPU. This makes execution speed a poor
indicator of the true computation budget of the algorithm, but we still provide some
execution speed results to comply with the community standard.

Visualization of proposal distributions on Funnel-3 distribution The pro-
posal distributions learned on the 20d Funnel-3 distribution ars visualized in Figure
C.2. This demonstrates the ability of the sampler to adapt to the geometry of the
target distribution. Further, it shows that the sampler can generate proposal points
across regions of very different probability density, since the neck and base of the
funnel have very different densities but proposals can travel between them easily.

Our sampler can achieve a significant speed up in terms of ESS/MH compared to
HMC sampler, the improvement on the 20d funnel distribution is comparable to the
one obtained by the Riemann Manifold HMC. However, the 100d funnel used in the
manifold HMC paper could not be handled by our method.

Further EBM results Figure C.3 displays further results from the deep EBM
training. a) shows that the learned sampler achieves better proposal entropy early
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Dataset (measure) HMC Ours

German (ESS/s) 772.7 3651
Australian (ESS/s) 127.2 3433

Heart (ESS/s) 997.1 4235

Table C.2: Comparing ESS/s between learned sampler and HMC on Bayesian Lo-
gistic regression task. Learned sampler is significantly more efficient.

during training. b) shows that the learned sampler converges faster than MALA,
as indicated by the lower FID. c) shows the EBM remains stable with a mixture of
positive and negative energy differences between batch of real samples and a batch
of samples from replay buffer. d) Compares the L2 expected jump of MALA and
the learned sampler, plotted in log scale. It has almost the exact same shape as the
proposal entropy plot in the main text. f) and g) provide a sanity check showing
that the learned sampler does not use a trivial solution. In g) the pixel-wise standard
deviation of variable z = f(z0;x) (note we use variant 2 in Appendix C.1 which does
not employ the gradient) is displayed after normalizing it into the image range. One
can clearly see image-like structures similar to the sample of which the proposal is
generated from. A MALA sampler would produce uniform images in this test, as
z is just a Gaussian in MALA. This shows that the learned sampler is utilizing the
structures of the samples to generate better proposals.

As shown in Figure C.3 a), MALA achieves similar proposal entropy if not slightly
higher later during EBM training, while the learned sampler helps training initializa-
tion and early training. This suggests for future research that the optimal strategy
could be to use the learned sampler initially and then switch to MALA once it
produces similar proposal entropy.

Since we do not use noise initialization during EBM training, our model does not
provide a meaningful gradient to re-sample from noise after the model has converged.
This is quite different from what was reported in for example [177, 51]. The combi-
nation of non-mixing as discussed earlier, and inability of sampling from noise brings
the problem of not being able to obtain new samples of the model distribution after
the EBM is trained, replay buffer is all we have to work with. Resolving this difficulty
is left for future study.
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Checks of correctness for the proposed sampler and the EBM training
process We run some simple experiments to check the correctness of samples gen-
erated from the proposed sampler and show that the EBM training process is not
biased by the learned sampler, see Figure C.4.

To check if the learned sampler generates correct samples for the Bayesian Logis-
tic regression task, we compare dimension-wise mean, standard deviation and 4th
moment of samples from the learned sampler and samples from the HMC sampler.
We average over large amount of samples to obtain the moments, and the result
matches very closely, indicating that the learned sampler samples from the correct
target distribution, see Figure C.4 a).

Second, we sample an EBM energy function trained by the learned sampler with
the MALA sampler, samples are initialized with samples from the replay buffer. As
shown in Figure C.4 b), MALA generate plausible samples from the model and does
not cause issues such as saturated image [115], indicating that the learned EBM is
not biased by the learned sampler and is indeed a valid energy function of the data
distribution.
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a) b) c)

d) e)

f )

g)

Figure C.3: Further results for Deep EBM. a), b) and c): Proposal Entropy, FID
of replay buffer and energy difference during training. Result for MALA is also
included in a) and b). a) shows that the learned sampler achieves better proposal
entropy early during training. b) shows that the learned sampler converges faster
than MALA. c) shows the EBM remain stable with a mixture of positive and negative
energy difference. d) Compares L2 expected jump of MALA and learned sampler,
plotted in log scale. It has almost the exact same shape as the proposal entropy
plot in the main text. e) More samples from sampling process of 100k steps with
the learned sampler. f) g) Samples from the replay buffer and the corresponding
visualization of the pixel-wise variance of displacement vector z evaluated at the
samples. Images in f) and g) are arranged in the same order. Image-like structures
that depends on the sample of origin are clearly visible in g). A MALA sampler
would give uniform variance.
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a)

b)

Figure C.4: Checking correctness of samples and EBM training process. a) Compar-
ing dimension-wise mean, standard deviation and 4th moment of samples obtained
from HMC and learned sampler for the Bayesian Logistic Regression datasets. Mo-
ments are matching very closely, indicating the learned sampler generates samples
from the correct target distribution. b) 100k sampling steps by MALA sampler on
an EBM energy function trained by the adaptive sampler, samples are initialized
from the replay buffer. Samples look plausible throughout the sampling process.
This indicates that stable attractor basins are formed are not specific to the learned
sampler, and that EBM training is not biased by the adaptive sampler.
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D.1 Additional Results and Discussions

Synthetic experiment

We verify the proposed manifold clustering and embedding algorithm by a simple
synthetic experiment. Ground truth data from a union of two manifolds with di-
mension 3 and 6 is generated by passing 3d and 6d iid. Gaussian noise through two
randomly initialized neural networks with Leaky-ReLU activation function (negative
part slop 0.2). Data augmentation is Gaussian noise with manitude 0.1. Training
used two stages, the first stage used only TCR objective, the second stage with full
NMCE objective.

Two situations are examined. One where the random neural network also has ran-
domly initialized biases, which will cause the two manifold to be far apart, making
locality constraint implemented by noise augmentation sufficient for identifying the
manifolds. Another situation is when bias is not used, the two manifolds then inter-
sect at 0, where the density is rather high. This makes the manifolds not identifiable
with only locality constraint.

Results are listed in Table D.1. As can be seen, when the clusters are identifiable,
NMCE is able to correctly cluster the data points, as well as learn latent features
that is perpendicular between different clusters. At the same time, the feature is not
collapsed within each cluster, since if so the average cosine similarity within cluster



APPENDIX D. SUPPLEMENTARY MATERIAL FOR NMCE 101

would be 1. When the clusters are not identifiable, they cannot be learned correctly.

Table D.1: Result from synthetic experiment. Accuracy is in % (chance level is 50%),
z-sim is the average absolute value of cosine similarity between feature vectors z for
different pairs of z. True Cluster: pairs of z are from different ground truth clusters.
Found Clusters: pairs of z are from two different found clusters. Within Cluster:
pairs of z are randomly picked from the same found cluster, averaged between two
found clusters.

Dataset Accuracy z-sim: True Cluster z-sim: Found Clusters z-sim: Within Cluster

Identifiable 100.0 0.017 0.017 0.503
Not-identifiable 69.8 0.717 0.287 0.770

Relationship to self-supervised learning with MCR2

The original paper [178] performed self-supervised learning using MCR2 objective
without any additional term. Their method treats different augmentations of the
same image as a self-labeled subspace. They used large number of augmentations
(50) of each image, with only 20 images in each batch. The performance of this
method is rather poor, which is expected based on our understanding. In this case,
augmented images will form a subspace with certain dimension in the feature space,
thus large amount of information about augmentations will be preserved in the latent
space. Clustering can then utilize style information and not respect class information.

To improve performance, a variant called MCR2-CTRL is developed, where the total
coding rate term is down-scaled. This variant performs significantly better, and
is also used in our comparison. This result is also expected, since decreasing the
subspace term effectively contract different augmentations of the same image in the
feature space, making the feature better respect the constraint needed for correct
clustering. However, since the total coding rate is not high in this case, the feature
is not diverse enough to achieve good performance.

Fine-tuning backbone with NMCE objective

For CIFAR-10, CIFAR-20 and STL-10 experiments, the first training stage already
learns very strong self-supervised features, which is then clustered into subspaces
in the second stage with backbone network frozen. The clustering performance is
already quite good after this stage. In the third stage, the backbone is fine-tuned,
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which further improves clustering performance. In Table D.2, we show the effect of
fine-tuning backbone network on CIFAR-10 and CIFAR-20 experiment with ResNet-
18. As can be seen, fine-tuning produces a small but noticeable gain in clustering
performance for all metrics and both datasets. This indicates that using the full
NMCE objective can improve performance. If the optimization issue can be re-
solved, and the entire network is trained with the NMCE objective from scratch, the
performance may be further improved.

Table D.2: Fine tuning backbone with NMCE objective. Results shown are from
ResNet-18. Fine tuning backbone improves result slightly but notably.

Model ACC NMI ARI

CIFAR-10 before 0.819 0.743 0.690
CIFAR-10 after 0.830 0.761 0.710
CIFAR-20 before 0.422 0.471 0.300
CIFAR-20 after 0.437 0.488 0.322

Compare pool and proj feature on low data classification

Here we compare SVM accuracy of Pool and Proj features from CIFAR-10 ResNet-18
experiment. The feature averaged over 16 augmentations. The accuracy is plotted
as a function of the number of labeled training samples used, see Figure D.1.

As can be seen, Proj feature clearly outperforms Pool feature when few labeled
examples are available. This makes Proj feature much more useful than Pool feature,
since labeled examples are often scarce real applications.

Note that what shown here is obviously not the optimal way to use labeled example,
if one further leverage the clustering information, accuracy should reach 90 with
only 10 labeled examples.

Effect of Lambda parameter

Here we study the effect of λ parameter that balances the constraint and subspace
feature learning term. CIFAR-10 self-supervised accuracy with SVM and kNN evalu-
ation on Proj feature is listed in Table D.3. As can be seen, the accuracy is reasonable
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Figure D.1: CIFAR-10 SVM test accuracy plotted against number of labeled exam-
ples used for Pool and Proj feature from ResNet-18 experiment. Features averaged
over 16 augmentations is used. Error bar is std. over 10 random sampling of training
examples.

in a range of λ spanning more than 3x low to high, indicating that the quality of the
learned feature is not very sensitive to this parameter.

Table D.3: Effect of parameter λ.

λ 20 30 40 50 60 70

Proj SVM acc 0.899 0.902 0.903 0.902 0.903 0.903
Proj kNN acc 0.890 0.895 0.894 0.896 0.895 0.897

Understanding the feature space

Here we show that the TCR objective used in the first stage in our training pro-
cedure for CIFAR and STL-10 datasets theoretically achieve the same result as the
recently proposed VICReg [7] and BarlowTwins[180], both are self-supervised learn-
ing algorithms. The optimization target of the two techniques are both making the
covariance matrix of latent vector Z approach the diagonal matrix. The first stage
training using TCR essentially achieves the same result. To see this, we note the
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following property of the coding rate function [79]: For any Z ∈ Rm×d:

logdet(I+ ZTZ) =

min(m,d)∑
i=1

log(1 + σ2
i ) (D.1)

Where σi is the ith singular value of Z. Additionally, we have:
∑min(m,d)

i=1 σ2
i = ||Z||2F,

which follows easily from ||Z||2F = tr(ZTZ). Since the function log(1+ x) is concave,
the optimization problem maxx1,x2,...,xn

∑n
i=1 log(1 + xi) given

∑n
i=1 xi = C reaches

maxima when all x are equal to each other. Since we normalize the row of Z,
||Z||2F = m, optimization of Equation D.1 result in solution with uniform singular
value, which is equivalent to diagonal covariance.

We could not successfully reproduce VICReg in our setup due to the large amount of
hyper-parameters that needs to be tuned. Therefore we resort to the open-source li-
brary solo-learn [26], which provided VICReg implementation. Running the provided
script for VICReg produced accuracy of 91.61% on CIFAR-10. We also implemented
TCR objective in solo-learn library. Running TCR obtained accuracy of 92.1%. All
hyper-parameters and augmentations are the same as VICReg, except batch size is
1024 instead of 256, projection dimension is 64 instead of 2048. Larger batch size or
smaller projection dimension didn’t work for VICReg, so we stayed with the original
parameters.

The covariance matrices of learned feature for SimCLR, VICReg and TCR computed
over entire training set are visualized in Figure D.2. For VICReg, first 128 dimen-
sion is visualized out of 2048. As can be seen, the diagonal structure is visible in
SimCLR feature space, TCR feature space is the closest to diagonal matrix. VICReg
feature space is also quite close to diagonal, but the off-diagonal terms seems noisier.
Additionally, we plot normalized singular values for VICReg projection space in Fig-
ure D.4. This can be compared to TCR and SimCLR singular values in Figure D.3
a). As can be seen, TCR achieves flatter singular value distributions than VICReg,
neither SimCLR or VICReg are close to full rank in projection space.

We demonstrate subspace structure of feature space after clustering with full NMCE
objective by plotting singular values of each learned subspace in Figure D.3 b). Each
subspace found are around rank 10. In all other panels of Figure D.3, we display
samples whose feature vector has the highest cosine similarity to the top 10 principle
components of each subspace. One can see that most principle components represent
a interpretable sub-cluster within each class (even if the sub-cluster is of a different
class than the cluster). Same as in Figure 5.2, feature vectors calculated by averaging
16 augmented images are used.
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a) b) c)

Figure D.2: a), b), c) Covariance matrix of feature vector computed over training
set for TCR, SimCLR and VICReg. VICReg result is slightly noisier on the diagonal
than TCR. VICReg result is the first 128 dimensions out of 2048, see text for details.

D.2 Experimental Details

We list hyper-parameters for each experiment in Table D.4.

Toy and synthetic experiments

The toy dataset consists of double spiral with radius approximately equal to 15 and
Gaussian noise magnitude of 0.05, samples are generated online for each batch. Data
augmentation is Gaussian noise with magnitude 0.05.

COIL-20 and COIL-100

The augmentation policy we found with manual search on COIL20 is (all are from
torchvision transforms): 1. Random Horizontal Flip with p = 0.5. 2. RandomPer-
spective with magnitude 0.3 and p = 0.6 3. ColorJitter with manitude (0.8, 0.8, 0.8,
0.2), always applied. The entire dataset is passed as a single batch.

CIFAR-10, CIFAR-20, STL-10, ImageNet-10 and
ImageNet-Dogs

For CIFAR-10 and CIFAR-20, we use standard ResNet-18 and ResNet-34 with 64
input filters. The first layer uses 3x3 kernel, and and no max pooling is used. For
other experiments, we use standard ResNet-18 and ResNet-34 with 5x5 first layer
kernel and max pooling. For COIL-20 and COIL-100 experiment, 32 input filters is
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used, and the ResNet-10 is obtained by reducing number of blocks in each stage in
ResNet-18 to 1. For full details, see our code release.

For CIFAR-10, CIFAR-20, STL-10, ImageNet-10 and ImageNet-Dogs experiments,
we used LARS optimizer [176], with base batch size 256, for other experiments we
used Adam. We note that stage 2 and 3 in the 3 stage training process is quite
sensitive to weight decay, a careful search of this parameter is usually required for
good performance.

Computational Cost

All experiments involving ResNet-34 requires 8 GPUs, others can be done in 1 GPU.

Our objective doesn’t add significant computational burden compared to neural-
networks involved. The covariance matrix is computed within a batch. For a batch
of latent feature vectors with shape [B, d], where B is batch size and d is latent
dimension. We first compute the covariance matrix with shape [d, d], with O(B2d)
cost. Then the log determinant of this matrix is calculated, which we assume has
O(d3) cost. The O(B2) scaling with respect to batch size is the same as most
contrastive learning method such as SimCLR, which is known to scale to very large
batch size.
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Table D.4: Hyper-parameters for all experiments. lr: learning rate. wd: weight
decay. ϵ: coding error. dz: dimension of feature output. λ: regularization constant.
bs: batch size. epochs (steps): total epochs trained, or total steps trained if the
entire dataset is passed at once. S1, S2, S3 denote 3 training stages.

Model lr wd ϵ dz λ bs epochs (steps)

Double Spiral 1e-3 1e-6 0.01 6 4000 4096 30000
Synthetic 1e-3 1e-6 0.01 12 100 4096 3000
COIL-20 1e-3 1e-6 0.01 40 20 1440 2000
COIL-100 1e-3 1e-6 0.001 200 20 7200 10000

CIFAR-10 ResNet-18 S1 1 1e-6 0.2 128 50 1024 600
CIFAR-10 ResNet-18 S2 0.5 0.005 0.2 128 50 1024 100
CIFAR-10 ResNet-18 S3 0.003 0.005 0.2 128 50 1024 100
CIFAR-10 ResNet-34 S1 1 1e-6 0.2 128 50 1024 1000
CIFAR-10 ResNet-34 S2 0.5 0.001 0.2 128 0 1024 100
CIFAR-10 ResNet-34 S3 0.003 0.001 0.2 128 0 1024 100
CIFAR-20 ResNet-18 S1 1 1e-6 0.2 128 50 1024 600
CIFAR-20 ResNet-18 S2 0.5 0.001 0.2 128 0 1024 100
CIFAR-20 ResNet-18 S3 0.003 0.001 0.2 128 0 1024 100
CIFAR-20 ResNet-34 S1 1 1e-6 0.2 128 50 1024 1000
CIFAR-20 ResNet-34 S2 0.5 0.002 0.2 128 0 1024 100
CIFAR-20 ResNet-34 S3 0.003 0.002 0.2 128 0 1024 100
STL-10 ResNet-18 S1 1 1e-6 0.2 128 30 1024 1000
STL-10 ResNet-18 S2 0.5 0.002 0.2 128 0 1024 400
STL-10 ResNet-18 S3 0.0005 0.002 0.2 128 30 1024 400
STL-10 ResNet-34 S1 1 1e-6 0.2 128 30 1024 2000
STL-10 ResNet-34 S2 0.5 0.002 0.2 128 0 1024 400
STL-10 ResNet-34 S3 0.0005 0.002 0.2 128 30 1024 400
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a) b)

Components Components

Figure D.3: a) Singular values of feature vector distribution for SimCLR and TCR.
b) Singular values for subspaces learned after all 3 training stages. The rest of
panels: visualizing 10 training examples most similar to principal components of
each clustered subspaces.
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Figure D.4: Singular values of feature vector distribution for VICReg using ResNet-
18. VICReg uses 2048d feature space.




