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ABSTRACT: We present a three dimensional fluid-structure coupling between SPH and 3D-DDA for modelling rock-fluid
interactions. The Navier-Stokes equation is simulated using the SPH method and the motions of the blocks are tracked by
Lagrangian algorithm based on a newly developed, explicit, 3D-DDA formulation. The coupled model is employed to investigate
the water entry of a sliding block and the resulting wave(s). The coupled SPH-DDA algorithm provides a promising computationz
tool to for modelling a variety of solid-fluid interaction problems in many potential applications in hydraulics, rock mass stability,
and in coastal and offshore engineering.

water run-up heights up to 60 m which resulted in the

1. INTRODUCTION death of 41 people.

The complexity of the water-rock mass interaction
s been studies using both experimental and analytical
ethods. Fritz [7] and Fritz et al. [8, 9, and 10]

Landslides, rock falls, and debris avalanches carha
generate significant tsunami waves in the coastal areas,

Although !andsllde-genergted tsunamis are deqdedl erformed experiments to study waves created by a
more localized than seismically generated tsunamis, the S .
eformable landslide in a 2D wave tank. Zweifel et al.

gzrrl]groeduecse S;‘Z[I:u?%: rg(i?]set%:/;\ljg'gﬁe?nd ig‘%[l:;e Se%V 191] also used experiments to study the non-linearity of
g€, esp y gy bp impulse waves. Huber and Hager [12] looked at both 3D

the confines of inlets or semi-enclosed embayments [land 2D impulse waves. Raichlen and Synolakis [13]

2]. Among the best known examples of catastrophic erformed experiments with a freely sliding wedge

landslide-generated tsunamis are the 1958 Lituya Ba))o . . .
the 1963 Vaiont Valley, and the 1934 Tafjord events.representlng a land shde._ Liu et al. [lAT] used the same
type of experiments to validate a numerical model, based

The Lituya Bay event of July 10, 1958 was caused by B the large-eddy-simulation approach. Recently,

large rockslide at the head of Lituya Bay, SOUtheaS%aelevik et al. [6] performed two-dimensional

Alaska, that produced a giant wave that impacted thé . , :
sides of the inlet to a height of 525 m [1, 3, 4] Theexperlments of wave generation from the possible

) Akneset rock slide using solid block modules in a
Valon_t Valley event occurred on Qctober 9, 196.3 v_vhen Gransect with a geometric scaling factor of 1:500.
massive rock slide fell 175 m into a reservoir in the
Vaiont Valley, North ltaly, creating a wave that The numerical simulation approaches used a number
destroyed a town and killed approximately 3000 peopleof different methods. For example, Harbitz [15]
[1, 5]. In 1934 roughly 1.5-£am® of rock plunged into  simulated tsunamis generated by Storegga slides using
the Tafjord in Western Norway [6]. fjord and produced linear shallow water equations. Jiang and Leblond [2,

16], Fine et al. [17], Thomson et al. [18], Imamura et al.



[19], Titov and Gonzalez [20] used nonlinear shallo Our interaction model uses SPH to model the fluid a
water approximation to model the slide-water syséam the rigid body solids are modelled using 3-D DDA][3

a two-layer flow. Lynett and Liu [21] discussed the However, the general interaction model we propose
limitations of the depth-integrated models withats  works with any type of solid model representatian a
to landslide-generated waves, and developed fulljong as the object is represented by a polygondiacel
nonlinear weakly dispersive model for submarindesli  and the fluid by Lagrangian particles.

that is capable of simulating waves from relativegep
water to shallow water. C_5r|II| and Watts _[22] da_d/gnd 2 EXPLICIT TIME INTEGRATION SCHEME
validated a two-dimensional fully nonlinear dispess

model that does not have any restrictions on theewa DDA models a discontinuous material as a system of
amplitude, wavelength, or landslide depth, andrilese  individually deformable blocks that move indepertfen
the motion of the landslide by the position ofdenter  without interpenetration. Following the second lafv

of mass. thermodynamics, a mechanical system under loading

The limitation of these approaches has been thénUSt move or deform in a direction that produces th

assumption that the slide mass, soil or rock, cdid minimum total energy of the whole system. For aklo

approximated as an equivalent fluid mass or asystem the total energy consists of the kineticrggne

. . . ) Co tential energy, strain energy and the dissipateagy.
continuous solid. While this approximation may be P° oS
adequate and valid in many inst%?qces it is deleirgb In DDA individual blocks form a system .Of blocks
be able to model the complexity of individual rock Ergr?gt?:inscgﬂtzcst?n Sen;)?ggk Iglc?rC:Ss s?gfn 0?'3%?heemem
blocks interacting with water independently, thus g : y

) o simultaneous equilibrium equations, derived by
agvyénrg]]q;dglrlgzter flexibility in the type of phemena minimizing the total energyl of the block system.

In this paper we present Discontinuous Deformation Let D, and Dy, denote the approximation to the
Analysis (DDA) coupled with Smoothed Particles values .D(t) and D(t+1) for a time ~step At,
Hydrodynamics (SPH) numerical model for the stufly o respectlvely. Recall the systfam of equations Edf 1
rock-fluid interaction in 3-D. Since its introdusti by motion for a DDA system [23]:

Shi [23], 2-D DDA has been extensively developed inMD, ,; + CD,4; + KDp4q = Fpiq 1)
theory and computer codes, and there has been a . . -
significant interest in extending the formulatiand-D. ~ With  D(0)=0,D(0)=D, as initial boundary
Shi [24, 25] presented the 3-D block matrices sagh conditions. In the abovel, C, K are the global mass,
mass matrix, stiffness matrix, point load matrixdfp dam_pmg and stiffness matricdsjs the time dependent
load matrix, initial stress matrix and fixed pomatrix. ~ applied force vector, andd, D, D and denote
Grayeli and Hatami [26] presented formulation of acceleration, velocity and displacement vectors,
coupled DDA and FEM in three dimensions. Mikola and respectively.

Sitar [27] presented a new explicit time integnatio Original DDA time integration scheme adopts the

order to reduce the computational effort and memoryfreedom can be written in the following manner:

requirement. They utilized a uniform spatial

discretization method to eliminate unnecessaryamint u;,; = u; + Ati; + G — B) At2i; + BAtA 4 ()
computations and the contact resolution was harigyed

FCP approach [28], HalfEdge data structure was tsed Ui+1 = Ui + (1 — y)Ati; + yAtiy, )

handle the frequent navigation into the topologicalyhere ii,u, and u are acceleration, velocity, and
information associated with polyhedral blocks. displacement respectivelgt is the time stepp andy

Smoothed Particle Hydrodynamics (SPH), a meshles@e the collocation parameters defining the vanabf
Lagrangian method, is a method that can capture thacceleration over the time step. Unconditional istgb
complexity of free surface flow with fragmentatiand  of the scheme is assured f@ag >y = 0.5 . DDA
splashes. The SPH technique was conceived by Luciptegration scheme us@s= 0.5 andy = 1, thus setting
[29] and further developed by Gingold and Monaghanthe acceleration at the end of the time step toobstant
[30] for treating astrophysical problems. Its main over the time step. This approach is implicit and
advantage is the absence of a computational grid o@nconditionally stable. Substituting Egs. 2 andtd Eq.
mesh, since it is a Lagrangian particle based ndetho 1 results in the system of equations for solving th
This allows the possibility of easily modelling fis ~ dynamic problem:
with a complex geometry or flows where large ,
deformations or the appearance of a free surfameroc (E

2 2
M+=C+ K) Dpyy = Fpaq + (EM + c)Dn (4)



The solution of Eq. 4 requires assembling the dlobajy < 2 (8)
mass and stiffness matrices and solving the coupled ©max

system of equations using a direct matrix inversewherew,,,y is the element maximum eigenvalue.
operation or an iterative solver. The global stffa
matrix, K, includes the sub-matrix representing
deformability of blocks and contacts, with contact 3. NUMERICAL  MODELING =~ OF  WATER
matrices as off-diagonal terms. FLOW

Shi [23] solved the global equations iteratively by 3-1. Navier-Stokes Equations.

repeatedly adding and removing contact springsalpen  The dynamic behaviour of a viscous fluid, like wate
values) until each of the contacts converges tnastant  completely described by the so-called Navier-Stokes
state at each time step. This procedure of addmy a equations (NSEs). The equations for incompressible
removing contact springs (penalty values) is kn@8n fluids are the mass conservation equation and the
open-close iterations in the DDA literature [33f. | momentum conservation equation. Many forms of the
contact convergence is not achieved typically wmitsix NSEs appear in the literature. Equations (9) ar@ (1

iterations, the time step is reduced and the aisalys represent a simplified version for incompressihlédé.
repeated with the reduced time step. The increrhenta

displacement is restricted also by user-specifiedv'u=0 )
displacement  limit to  enforce infinitesimal su __1 2

displacements. If the incremental displacementésitgr &t @ Vu = pr vVt f (10)

than the threshold\t is divided by three and the analysis \yhere p, U, P,v, g are density, velocity, pressure,
is repeated. Large values dft may cause large gynamic viscosity coefficient of the fluid and
penetrations at contact points; which results infemo grayitational acceleration, respectively. The first
iterations to satisfy the penetration threshol&oAlarge equation is the incompressibility condition. Thesed

penetrations result in large contact matrices wiiah  equation is called momentum equation which dessribe
reduce the diagonal dominance of the global ss#ne nhow fluid moves due to the forces.

matrix leading to poorly conditioned system of

equations. 3.2. Smoothed  Particle Hydrodynamics  (SPH)
- . . equations
In the explicit solution procedure presented hetiaén _ _ . _ .
discrete blocks are integrated explicitly by thentcal ~ The SPH is an interpolation method for fluid motion
difference method, which gives simulation. SPH uses field quantities defined oaty
discrete particle locations and can be evaluated
Uipg = Ui+ Atyyy () anywhere in space. SPH distributes quantities local

6) neighborhood of the discrete locations using radial
symmetrical smoothing kernels. A scalar value A is
Where i,i +1/2 and i—1/2 refer to the increment interpolated at locationr by a weighted sum of

number and mid-increment numbers contributions from the particles. In SPH, a phyksica
. 1 value at positiorx is calculated as a weighted sum of
iy =M"(F -1 (7)

physical valueg; of neighbouring particles j
whereM is mass matrixF the applied load vector arid
is the internal force vector. The equations retatimese

values to each other are solved locally for eaotedi ) .
step. Moreover, since there is no need to solve é(vhe_rem_]-  pj .+ X are the mass, den§|ty and position of
complete system of equations, the incrementajParticle j, respectively and W is a weight function

f:alculations for each degree of _freedom are done The use of particles instead of a stationary grid
independently at the local level. This uncoupliigh®  simplifies these two equations substantially. First
equations of motion is one of the major advantagies pecause the number of particles is constant antl eac
explicit integration schemes. In contrast to th@liot  particle has a constant mass, mass conservation is
time integration scheme, the explicit solution soBe guaranteed and (9) can be omitted completely. $tcon

eliminates the need for assembly of global mass o . su .
stiffness matrices and inversion of the global matr the expression, + (u.V)u on the left hand side of (10)

However, computations are conditionally stable, tfee  can be replaced by the substantial deriva?gvéince the
time-step size must be smaller than a certaincatiti particles move with the fluid, the substantial dative
value (critical time stepdt.) for numerical errors not to  of the velocity field is simply the time derivativ# the
grow unbounded. The time increments must satisfy th velocity of the particles meaning that the conwexti

well-known criterion term u¥.u is not needed for particle systems. We regard

. . 1
Uir1/2 = Uig/2 + 5 (Atiyy + ALy)

As(X) = Xy my LW (X = X)) (11)



NSEs as the governing equations, and calculatatdens x;(t + At) = x;(t) + At v;(t + At) (21)
pressure and viscosity force separately using SPH hereAt is the i "
numerical methods. The density of fluid is caloadht whereat 1s the time step.
with (12) as

pj = XjmW(r; — 1, h) 12)

Accuracy of the algorithm highly depends on the
smoothing kernels. For our implementation we used t
following kernel:

4. COUPLING BETWEEN SPH AND DDA

The coupling algorithm used here is parallel; fl(&iPH)
and solid block (DDA) evolutions are calculated
explicitly at the same time. In order to couple tieH
and DDA the interaction force between fluid pagl
(h2—r%)3 (0<r<h) and solid blocks needs to be estimated. We chamse t
0 (r>h) (13) employ a fairly standard_ized “repulsion” _force e ypent

i ) a particle from penetrating the boundaries. Thisho
We use the weight functions proposed by Mullerlet a 2q chosen for the ease with which multiple types o
[34] and a modified solution is obtained for pressu 5 ndaries can be implemented. The repulsion fisrce
force guaranteeing the symmetry of forces: implemented for both “wall boundaries” as well as
fpressure _ —3m pi—Pj VWspiky(Ti _ rj,h) (14) “solid blocks”. The no-penetration condition stathat

W(r,h) = ﬂ{

641h°

' 7 2p; the fluid cannot penetrate the boundary surfacerepel
For pressure computations we use Debrun’s spikyeker the fluid particles from the boundary we use a figna
[34]: force method:

VWepity (7, 1) = fPHm = (Ksd = (v.n)Kp).n (22)
2 2
45 (h T Zh)r O<r<hr=]r] (15) where K is the penalty force stiffness aiig}, is the

Th® 0 (r > h) damping coefficient for the velocity of an approaching
fluid particle d is the penetrated distance measured
The pressure at particle locations has to be @ledl normal to the boundary, andis the unit-length surface
first, which can be computed via the ideal gas#gma ~ npormal. It can be seen from Equation (22) that the
p = kr (16) penalty force method behaves as a spring-basedlmode
because the more a particle penetrates the bouttdary

where k is a gas constant that depends on thenoreitis pushed away from the surface.
temperature. A modified version - which we usedun

implementation - makes the simulation numerically
more stable: 5. SIMULATIONS

p =k(p— po) (17 Three examples are presented to demonstrate thig new
_ _ _ developed 3-D DDA algorithm. The scenes in the
wherep, is the at-rest density. Applying the SPH rule to fo|lowing examples have been rendered with POV-aay,

the ViSCOSity term also y|e|dS to asymmetl’ic forceSfree code ray tracing rendering program [35]
because the velocity field varies. A symmetric

expression is obtained using velocity differences: 5.1. Example 1- Wave Maker
iscosi v; This simulation involves a wave maker in the forhao
fimscoswy =u Zj m; 0 Ly? Whiscosity (r— UL h) (18)

oscillating piston on the one end of the modelraight
Muller et al. [34], designed a kernel for the cortagion line beach with a slope of 4% and a horizontalisectO
of viscosity forces as follows:

Vi—

m long between the wave maker and the beach. THe SP
simulation used almost 65000 particles and the
VZinscosity(r,h)= boundaries as well as wavemaker itself have been

45 ((h—r1) O<sr<hr=]|r) 19 simulated using as rigid blocks. Figure 1 shows the
W{ 0 (r>h) (19) propagating waves onto the beach.

Finally, for the acceleratioa of a particleé we have

a; = %(fipressure + fiviscosity + fiexternal) (20)

wherefeXtermal gre external body forces such as gravity
forces. We then use a simple Euler integrator in ou
simulations, which is first order accurate in positand
velocity, and can be written as,

v;(t + At) = v;(t) + At a;(t)



(d)

®
Figure 1. Particles and rigid block configuratioor fthe
wavemaker.

5.2. Example 2- Siding Block

In this example we simulate waves generated bygid ri
wedge sliding into water along an inclined plametHis
simulation water waves were generated by allowing a
wedge shape block to freely slide down a plananad

at 25°. The density of the wedge assumed to be 2500
kg/m3. The SPH simulation used almost 25000 patrticles
and the boundaries as well as sliding block havenbe
simulated as rigid blocks. Particles configuratéhre to
sliding of the rigid wedge is presented at differiémes

in Figure 2.




(e)

(h)
Figure 2. Particles and rigid blocks configuratfon the rigid
wedge sliding down a plane inclined 2% the horizontal at
different time steps.

5.3. Example 3- Impacting Block

In this example we simulate waves generated byid ri
block impacting the water surface. In this simwati
water waves were generated by allowing a block to
freely slide down a plane inclined at 30° on the
horizontal and impact the water surface. The densit
the block assumed to be 2500/k§. The SPH
simulation used almost 100000 particles and the
boundaries as well as sliding block have been sitad|

as rigid blocks. Particles configuration due to atipof

the rigid block is presented at different timegigure 3.



(d)

Figure 3. Particles and rigid blocks configuratfon the rigid
block impacting the water surface at different tisbeps.

6. SUMMARY

We present a highly efficient, three dimensional
numerical model coupling the SPH method and 3D-
DDA for modeling fluid-discrete solid body interamrt
problems. The explicit 3D-DDA formulation
significantly simplifies and speeds up the compaiat
which is essential for analysis of full scale peshs.
Similarly, the coupling algorithm is very efficiemthen
dealing with fluid-structure interaction problems the
presence of a free-surface and is relatively simple
implement. The ability of SPH to fragment and



reconnect interfaces presents a great opporturtignw  13.

modeling impacts of solids on fluids, and vice eefBhe
result of the example computations show that caliple

SPH and DDA can be used to simulate dynamic fluid 14.

discrete block interactions in a variety of setsing
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