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Abstract

We consider the estimation of an optimal dynamic two time-point treatment rule defined as the 

rule that maximizes the mean outcome under the dynamic treatment, where the candidate rules are 

restricted to depend only on a user-supplied subset of the baseline and intermediate covariates. 

This estimation problem is addressed in a statistical model for the data distribution that is 

nonparametric, beyond possible knowledge about the treatment and censoring mechanisms. We 

propose data adaptive estimators of this optimal dynamic regime which are defined by sequential 

loss-based learning under both the blip function and weighted classification frameworks. Rather 

than a priori selecting an estimation framework and algorithm, we propose combining estimators 

from both frameworks using a super-learning based cross-validation selector that seeks to 

minimize an appropriate cross-validated risk. The resulting selector is guaranteed to 

asymptotically perform as well as the best convex combination of candidate algorithms in terms of 

loss-based dissimilarity under conditions. We offer simulation results to support our theoretical 

findings.

Keywords

causal inference; cross-validation; dynamic treatment; loss function; oracle inequality

1 Introduction

Consider a time-dependent random variable consisting of baseline covariates, initial 

treatment and censoring indicator, intermediate covariates, subsequent treatment and 

censoring indicator, and a final outcome. A dynamic treatment rule is a rule that 

deterministically assigns treatment as a function of the available history. If treatment is 

assigned at two time points, then this dynamic treatment rule consists of two rules, one for 

each time point [1–3]. The mean outcome under a dynamic treatment is a counterfactual 

quantity of interest representing what the mean outcome would have been if everybody 

would have received treatment according to the dynamic treatment rule [1, 4–7]. We define 

the optimal dynamic multiple time-point treatment rule as the rule that maximizes the mean 
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outcome under the dynamic treatment, where the candidate rules are restricted to only 

respond to a user-supplied subset of the baseline and intermediate covariates.

In this article, we aim to use an ensemble method known as super-learning [8–10] to learn 

the optimal dynamic treatment rule. This method will allow the user to data adaptively select 

from many state of the art methods for estimating the optimal treatment rule, yielding an 

estimation scheme which we prove performs at least as well as the best of these methods.

1.1 State of the art

Researchers have aimed to learn optimal rules from data generated by (sequential) multiple 

assignment randomized trials (SMART) [11]. Researchers have also aimed to learn dynamic 

treatments from observational studies: Cotton and Heagerty [12], Orellana et al. [13], Robins 

et al. [14], Petersen et al. [15, 16], Moodie et al. [17]. These observational and sequentially 

randomized studies provide an opportunity to learn an optimal multiple time-point dynamic 

treatment defined as the treatment rule that maximizes the mean dynamic-regime specific 

counterfactual outcome over a user supplied class of dynamic regimes.

The literature on Q-learning defines the optimal dynamic treatment among all dynamic 

treatments in a sequential manner [11, 18–21]. The optimal treatment rule for the second 

line treatment is defined as the maximizer of the conditional counterfactual mean outcome, 

given the observed past, over the possible second line treatments. The optimal treatment rule 

for the first line treatment is defined as the maximizer of the conditional mean counterfactual 

outcome, given baseline covariates, over the possible values for the initial treatment, under 

the assumption that the second line treatment is assigned according to the optimal rule for 

the second line treatment. The optimal rule can be learned through fitting the sequential 

regressions. Ernst et al. [23] and Ormoneit and Sen [24] use regression trees and kernel 

regression estimators, respectively.

Murphy [18] and Robins [19, 21] develop structural nested mean models tailored to optimal 

dynamic treatments. These models assume a parametric model for the “blip function” 

defined as the additive effect of a blip in current treatment on a counterfactual outcome, 

conditional on the observed past, in the counterfactual world in which future treatment is 

assigned optimally. Each blip function defines the optimal treatment rule for that time point 

by maximizing it over the treatment, so that knowing the blip functions allows one to 

calculate the optimal dynamic treatment by starting with maximizing the last blip function 

and iterating backwards in time. These models are semi-parametric since they rely on a 

parametric model of the blip function (at least in a SMART), but they leave the nuisance 

parameters unspecified. Structural nested mean models have been generalized to learning 

optimal rules that are restricted to only using a (counterfactual) subset of the past [21]; 

Section 6.5 in [25].

Qian and Murphy [26] and Zhao et al. [27] show that the estimation of the optimal dynamic 

treatment can be reduced to a classification problem. Rubin and van der Laan [28] and 

Zhang et al. [29] independently identify entire families of such reductions to classification. 

Zhao et al. [30] extend these results to the multiple time point setting.
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1.2 Super-learning of an optimal dynamic treatment rule

Our proposed estimators of the V-optimal rule are based on sequential loss-based super-

learning which involves the application of an ensemble method known as super-learning to 

fit each rule given an estimate of the optimal rule at future time points. The super-learner is 

defined by a family of candidate estimators, a risk for each candidate estimator, and 

selection among all candidate estimators based on a cross-validation based estimator of this 

risk. Some of these candidate estimators could be based on parametric models of the blip 

functions, while others are based on regression or classification machine learning 

algorithms. By previously established oracle inequality results on the cross-validation 

selector established in the above references, our results guarantee that in a SMART the 

super-learner will be asymptotically equivalent with the estimator selected by the oracle 

selector and thereby outperform any of the parametric model based estimators and any of the 

other estimators in the family of candidate estimators, under the assumption that none of the 

parametric models are correctly specified. If one of the parametric models is correctly 

specified, the proposed method achieves an almost parametric log n/n rate. In this manner, 

our sequential super-learner is at each stage doing an asymptotically optimal job in fitting 

the blip function relative to its user supplied class of candidate estimators. Past findings 

strongly suggest that this will also result in superior performance in most practical situations 

relative to a priori selecting one particular estimation procedure [31, 32]. We also outline 

how to develop a cross-validated targeted minimum loss-based estimator of the cross-

validated risk.

This work is related to that appearing in Section 9 of Robins [21], which discusses a cross-

validated selector to choose between different parametric working models for the blip 

function. Robins04 cites oracle inequalities in an earlier version of Dudoit and van der Laan 

(2005) [22], for choosing between working models for the blip function using cross-

validation. He also introduces a double robust loss function that can be used to estimate the 

blip functions. We expand this work in several directions. First, we formally give conditions 

under which the oracle inequality will hold, including for several of our losses. This makes 

clear what is needed in order to interpret one’s cross-validation selector as (nearly) optimal. 

Second, our selector considers weighted combinations of candidates rather than simply 

choosing the best of the candidate algorithms. Additionally, we provide several families of 

loss functions, thereby allowing the user more options for candidate algorithms for the cross-

validation selector, including machine learning algorithms available in prepackaged 

software. We encourage the reader to review Section 9 of Robins [21], as it contains 

thought-provoking discussion that (for the most part) applies to the results in this paper.

For the sake of presentation, we focus on two-time point treatments in this article. In the 

appendix of an accompanying technical report (van der Laan and Luedtke [33]) we 

generalize these results to general multiple time point treatments.

1.3 Organization of article

Section 2 formulates the estimation problem. Section 2.1 defines the optimal rule as a causal 

parameter, and gives identifiability assumptions under which the causal parameter is 
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identified with a statistical parameter of the observed data distribution. Section 2.2 outlines 

how one can sequentially learn the optimal rule.

Section 3 describes a cross-validation selector known as a super-learner that can combine 

multiple estimation algorithms. Section 3.1 gives the oracle inequality for the second time 

point treatment. A finite sample oracle inequality is given to support the proposed 

methodology and the asymptotic implications of this inequality are described. Section 3.2 

describes the super-learner for estimating the treatment rule at the first time point.

The cross-validation selector relies on a loss function for the optimal rule. We give examples 

of such loss functions in Section 4. Section 4.1 describes sequential estimation of blip 

functions based on any loss function that provides a valid estimate of a conditional mean 

(e.g. squared error loss), where the sign of the estimated conditional mean is used to 

estimate the optimal rule. Section 4.2 aims to directly estimate the optimal treatment by 

maximizing the sequential mean outcomes under the fitted rules, where the treatment at 

future time points is set according to the previously fit rule. Section 4.3 shows that 

maximizing an estimate of the mean outcome can be written as a weighted classification 

problem that includes a rich class of previously described classification loss functions. All 

loss functions presented in Section 4 rely on correct specification of the treatment/censoring 

mechanism, which is trivially true in an RCT without missingness. Double robust 

generalizations of the loss functions in Section 4 are presented in Appendix A. Section 5 

gives conditions under which some of the loss functions presented in Section 4 satisfy the 

conditions of the oracle inequality for the cross-validation selector.

Section 6 outlines a cross-validated targeted minimum loss-based estimator (CV-TMLE) for 

the sequential mean outcome losses presented in Section 4.2. The CV-TMLE is a 

substitution estimator, and thus naturally respects the bounded nature of the data. Appendix 

D describes a non-sequential super-learner which directly uses the estimated mean outcome 

under the optimal rule to combine candidate estimators.

Section 7 presents the simulation methods. The simulations compare our proposed super-

learner to single choices of machine learning algorithms and misspecified parametric 

models. Section 8 presents the simulation results. Section 9 closes with a discussion and 

directions for future work.

All proofs can be found in Appendix A.

2 Formulation of optimal dynamic treatment estimation problem

2.1 Parameter of interest

We use the same formulation for the parameter of interest as is given in Section 2 of van der 

Laan and Luedtke [34]. We restate important notation here, but refer to the other paper for a 

more thorough discussion of the context and assumptions which identify our statistical 

parameter with a causal parameter.
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For a discrete-time process X(·), we will use the notation X(t) = (X(s):0 ≤ s ≤ t), where 

X( − 1) = 0. Suppose we observe n i.i.d. copies O1, …, On ∈ 𝒪 of O = (L(1), A(1), Y) P0, where 

A(j) = (A1(j), A2(j)), A1(j) is a binary treatment and A2(j) is an indicator of not being right-

censored at “time” j, j = 0, 1. Each time point j has covariates L(j) that precede treatment, j = 

0, 1, and the outcome of interest is given by Y and occurs after time point 1. Let ℳ be a 

statistical model that makes no assumptions on the marginal distribution Q0, L(0) of L(0) and 

the conditional distribution Q0, L(1) of L(1), given A(0), L(0), but might make assumptions 

on the conditional distributions g0, A(j) of A(j), given A( j − 1), L( j), j = 0, 1. We will refer to 

g0 as the treatment/censoring mechanism, which can be factorized in a treatment mechanism 

g01 and censoring mechanism g02 as follows:

g0(O) = ∏
j = 1

2
g0, 1, A( j − 1)(A1( j) A( j − 1), L( j))g0, 2, A( j − 1)(A2( j) A1( j), A( j − 1), L( j)) .

Throughout this article we will automatically assume the positivity assumption:

P0 0 < min
a1 ∈ 0, 1

g0, A(0)(a1, 1 L(0)) = 1,

P0 0 < min
a1 ∈ 0, 1

g0, A(1)(a1, 1 L(1), A(0)) = 1.

(1)

The strong positivity assumption will be defined as this assumption (1), but where the 0 is 

replaced by a δ >0.

Let (A(0), V(1)) be a function of (L(0), A(0), L(1)), and let V(0) be a function of L(0). Let V 
= (V(0), V(1)). Consider dynamic treatment rules V(0) ↦ dA(0)(V(0)) ∈ {0, 1} × {1} and 

(A(0), V(1)) ↦ dA(1)(A(0), V(1)) ∈ {0, 1} × {1} for assigning treatment A(0) and A(1), 

respectively. Note that the rules for A(0) and A(1) are only a functions of V(0) and (A(0), 

V(1)), respectively, and are restricted to set the observations to uncensored. Let 𝒟 be the set 

of all such rules. We assume that V(0) is a function of V(1), but in the theorem below we 

indicate an alternative assumption. At times we abuse notation and let a(0) ∈ {0, 1} × {1} 

and a(1) ∈ {0, 1} × {1} represent the static rules at the first and second time points in which 

everyone receives treatment a(0) or a(1).

Define the distribution P0, d as the distribution with density

p0, d(L(0), A(0), L(1), A(1), Y)

≡ I(A = d(V))q0, L(0)(L(0))q0, L(1)(L(1) L(0), A(0)q0, Y(Y L(1), A(1)),

where q0, L(0), q0, L(1), and q0, Y are the densities for Q0, L(0), Q0, L(1), and Q0, Y and all 

densities are absolutely continuous with respect to some dominating measure μ. This 

probability distribution P0, d is the G-computation formula [1, 3, 35], and can be identified 

with the counterfactual distribution in which the treatment rule d is, possibly contrary to fact, 
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implemented for the entire population. We use the notation Ld (or Yd, Od) to mean the 

random variable with distribution P0, d.

In this article we are concerned with estimation of the V-optimal rule defined as

d0 = arg max
d ∈ 𝒟

EP0, d
Yd .

We note that d0 is not necessarily unique, but that there exists a closed-form expression for a 

maximizer as we will show in the upcoming theorem. In this work our objective is to obtain 

an estimated rule dn with the property that EP0, dn
Ydn

 (approximately) maximizes the mean 

outcome under a treatment rule. Thus we only care about the optimal mean outcome under a 

treatment rule, and the non-uniqueness of the maximizer is irrelevant. Given positivity, P0, d 

is a well-defined mapping of the observed data distribution, and thus our statistical problem 

of interest is well-defined even if P0, d is not identified with the counterfactual distribution of 

interest.

The next theorem states an explicit form of the V-optimal individualized treatment rule d0 as 

a function of P0. We proved the theorem in van der Laan and Luedtke [34].

Theorem 1—Suppose V(0) is a function of V(1). A V-optimal rule d0 can be represented 

as the following explicit parameter of P0:

Q20(a(0), v(1)) = EP0
(Ya(0), A(1) = (1, 1) Va(0) = v(1)) − EP0

(Ya(0), A(1) = (0, 1) Va(0)(1) = v(1)),

d0, A(1)(A(0), V(1)) = (I(Q20(A(0), V(1)) > 0), 1),

Q10(v(0)) = EP0
(Y(1, 1), d0, A(1)

V(0)) − EP0
(Y(0, 1), d0, A(1)

V(0)),

d0, A(0)(V(0)) = (I(Q10(V(0)) > 0), 1),

where a(0) ∈ {0, 1} × {1}. If V(1) does not include V(0), but, for all (a(0), a(1)) ∈ ({0, 1} × 

{1})2,

EP0
(Ya(0), a(1) V(0), Va(0)(1)) = EP0

(Ya(0), a(1) Va(0)(1)), (2)

then the above expression for the V-optimal rule d0 is still true.

The non-uniqueness of the first and second time point optimal rules occurs precisely on the 

sets where Q10(v(0)) = 0 and Q20(a(0), v(1)) = 0, respectively. One can vary treatment 

arbitrarily on these sets without affecting the mean outcome of the rule.

We refer to Q20 and Q10 as the blip functions. These functions are sometimes referred to as 

optimal blip-to- reference functions, where the reference treatment level is set to A = 0 
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(Section 4.1 of Chakraborty and Moodie, 2013) [36]. The blip functions can be easily 

interpreted under causal assumptions given in, e.g., Robins [1]. In particular, Q20(a(0), v(1))

represents the additive treatment effect for second time point treatment within the strata in 

which Va(0) (1) = v(1), in a world where everyone is assigned a(0) at the first time point. The 

first time point blip function Q10(v(0)) represents the V(0) = v(0) strata specific average 

treatment effect for the first time point treatment in a world where everyone receives the 

optimal treatment d0, A(1) at the second time point.

2.2 Sequential learning of the optimal rule

This section assumes the existence of loss functions which can be used to estimate the 

optimal rule. We show that such loss functions exist and give examples in Section 4.

Let g be a treatment/censoring mechanism and dA(1) be a second time point rule. For a 

function f2 mapping (A(0), V(1)) to ℝ, let L2, g (f2) map from 𝒪 to ℝ. For a function f1 

mapping from V(0) to ℝ, let L1, dA(1), g( f 1) map from 𝒪 to ℝ. We refer to L2, g and L1, dA(1), g

as loss functions. Define the risk minimizers

f 20 = arg min
f 2

P0L2, g0
( f 2),

f 10 = arg min
f 1

P0L1, d0, A(1), g0
( f 1),

(3)

where the minimimums are over all measurable functions f2 of (A(0), V(1)) and f1 of V(0) 

and we note that g = g0 in the above expression. Above we use the notation Pt = EP[t(O)] for 

a distribution P and a function t. These loss functions should have the property that the risk 

minimizers are latent functions which return the optimal rule:

d0, A(1)(A(0), V(1)) = I( f 20(A(0), V(1)) > 0),
d0, A(0)(V(0)) = I( f 10(V(0)) > 0) .

By Theorem 1, one valid choice of f20 and f10 is given by Q20 and Q10. The equation above 

suggests that one can estimate the optimal rule using empirical risk minimization. First, one 

estimates the treatment/censor- ing mechanism g0 with gn. Next, one estimates f20 with the 

minimizer of an estimate of PnL2, gn
( f 2) over f2 in some class ℱ2, where Pn is the empirical 

distribution of the n observations. An estimate dn, A(1) of d0, A(1) is given by plugging the 

estimate of f20 into the above expression. Now, taking this estimate of d0, A(1) as fixed, one 

can iterate this same procedure to estimate d0, A(0) by minimizing PnL1, dn, A(1),gn
( f 1) over f1 

in some class ℱ1.

While appealing for its simplicity, empirical risk minimization often yields estimates which 

overfit f20 and f10 when the classes ℱ2 and ℱ1 are too large. At the same time, choosing ℱ2
and ℱ1 large is exactly what one wants given that the minima in are over all measurable 
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functions. Typically correctly specifying a small, e.g. parametric, ℱ2 or ℱ1 which contains 

f20 or f10 (or even contains an approximation thereof) will be challenging due to the 

complexity of real world problems.

In the next section we will present a cross-validated procedure known as super-learning 

which implements the general sequential procedure we have described in this section, but 

uses sample splitting to allow one to both allow one to estimate f20 and f10 over a large class 

while also avoiding overfitting. We support these claims with an oracle inequality.

3 Sequential super-learning of the optimal rule

We now present an ensemble method called super-learning that combines candidate 

estimators of the optimal rule at a particular time point into a single estimated rule for that 

time point. At each time point, the final estimator satisfies an oracle inequality stating that it 

will asymptotically perform at least as well as the best convex combination of candidates in 

the library in terms of loss-based dissimilarity under mild conditions. The super-learner 

methodology allows for data adaptive candidate estimators, by which we mean estimators 

that are consistent over a large semi-parametric model. Our super-learner can select the best 

resolution for a data set based on data adaptive and parametric candidate estimators.

3.1 Second time point

For the sake of presentation we will present these results for IPCW loss functions in an RCT 

without missingness, but the oracle inequalities for the double robust losses are 

straightforward extensions of the results in this section. At the end of this section we give 

examples of loss functions that satisfy the conditions for the oracle inequality derived from 

the blip function, mean performance, and weighted classification approaches.

We start by introducing the notation used in this section. Let Bn ∈ {0, 1}n denote a random 

split of the data into a training sample {i :Bn(i) = 0} and validation sample {i :Bn(i) = 1} so 

that npn of the elements in each realization of Bn have value 1 for some pn ∈ (0, 1). Let 

Pn, Bn
0  and Pn, Bn

1  denote the corresponding empirical distributions of these two 

complementary subsamples.

Let f 2, j, j = 1, …, J, denote an estimator of a latent function that takes a distribution P as 

input and outputs an estimate f 2, j(P) for which the indicator that f 2, j(P)(A(0), V(1)) is 

positive gives an estimate of the optimal rule d0, A(1) evaluated at (A(0), V(1)). For example, 

f 2, j may return an estimate of Q20, though we will show that other latent functions satisfy 

this property.

We first give a general oracle inequality as presented in van der Laan, Polley, and Hubbard 

[10] for estimating d0, A(1). Let αn fall in a grid Gn of K(n) points on ΔJ − 1, where ΔJ − 1 

represents the (J − 1)-simplex is the set of all α ∈ [0, 1]J such that ∑ jα j = 1. We have the 

following finite sample result.
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Theorem 2—Let L2, g0
 be some loss function that relies on g0 which takes as input a 

function f 2:𝒜(0) × 𝒱(1) ℝ and yields a function of O. Let f 20 = arg min f 2
P0L2, g0

( f 2). 

Suppose that:

sup
f 2

sup
o ∈ O

L2, g0
( f 2)(o) − L2, g0

( f 20)(o) < ∞, (4)

sup
f 2

VarP0
(L2, g0

( f 2)(O) − L2, g0
( f 20)(O))

EP0
[L2, g0

( f 2)(O) − L2, g0
( f 20)(O)] < ∞ . (5)

where the supremums are over all measurable functions f 2:𝒜(0) × 𝒱(1) ℝ and we take 0/0 

= 0. For all α ∈ ΔJ − 1, define f 2, α(P) = ∑ j = 1
J α j f 2, j(P). For a fixed sample of size n, 

define:

αn = arg min
α ∈ Gn

EBn
Pn, Bn

1 L2, g0
( f 2, α(Pn, Bn

0 )) .

Then for all n ∈ ℕ and λ > 0,

E
P0

nEBn
P0 L2, g0

( f 2, αn
(Pn, Bn

0 ) − L2, g0
( f 20) ≤ (1 + λ)E

P0
n min

α ∈ Gn
EBn

P0 L2, g0
( f 2, α(Pn, Bn

0 )) − L2, g0

( f 20) + C(λ) logK(n)
npn

,

where C(λ) ≥ 0 is a constant that may rely on P0 and P0
n represents the distribution of the 

observed n i.i.d. draws from P0.

The above theorem is a special case of Corollary 3.2 in van der Laan, Dudoit, and van der 

Vaart [9] so the proof is omitted. In this article we focus on U-fold cross-validation. In U-

fold cross-validation, the data is split into U mutually exclusive and exhaustive sets of size 

approximately n/U uniformly at random. Each set is then used as the validation set once, 

with the union of all other sets serving as the training set. The fact that n may not be 

divisible by U so that the validation sets are not all exactly the same size will not matter 

asymptotically and will make little difference in finite samples.

We can choose Gn so that any point on the simplex can be arbitrarily well approximated by a 

point on the grid of polynomial size K(n) asymptotically. Given a Lipschitz condition on the 

loss-based dissimilarity, the approximation error by using points on K(n) instead of the 

entire simplex is asymptotically negligible. Such a Lipschitz condition will hold under 
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bounding conditions for all loss functions to be discussed in this paper except the mean 

outcome and weighted 0–1 losses discussed in Sections 4.2 and 4.3. We posit that the finite 

sample result on the grid Gn still gives a useful asymptotic result over the entire simplex 

under reasonable conditions even when this Lipschitz condition does not hold.

The limiting result is referred to as an oracle inequality because we asymptotically do as 

well as the oracle in selecting α (up to an almost parametric O(log n/n) term) in terms cross-

validated loss-based dissimilarity averaged across training samples. The methodology shows 

that there is no need to a priori decide on a single loss function or algorithm to fit the 

optimal rule – simply including all candidate methods of interest in the super-learner library 

guarantees that we asymptotically do at least as well as the best of the algorithms in terms of 

the cross-validated loss-based dissimilarity resulting from the chosen L2, g0
.

In Algorithm 1 we describe how to implement the super-learner algorithm using U-fold 

cross-validation for a given data set a collection of prediction algorithms f 2, 1, …, f 2, j. Let 

L2, g0
 be a loss function satisfying the conditions of Theorem 2. For simplicity we assume 

that n is divisible by U. Rather than optimize for αn over Gn, we recommend 

(approximately) optimizing over the entire simplex.

Algorithm 1

Super-learner estimation of d0, A(1)

1:
function SuperLearner(o1, …, On, f 2, 1, …, f 2, j)

2: Let F be a randomly ordered vector of length n containing n/U 1s, n/U 2s,…, n/U U’s

3: Initialize an empty matrix X of dimension n × J

4: for u = 1 to U do

5:   for j =1 to J do

6:
    Fit the estimate f2, u, j by running f 2, j on the set {Oi : Fi ≠ u}

7:       For all i such that Fi = u, let Xi, j = f2, u, j(A(0)i, V(1)i)

8:

Run an optimization routine to solve: αn = arg min
α ∈ ΔJ − 1

∑
u = 1

U
∑

i = Fi = u
L2, g0

∑
j = 1

J
α jXi, j

9: for j = 1 to J do

10:
  Fit the estimate fj by running f 2, j on the {Oi : i = 1, …, n}

11:
Let f αn

≡ ∑ j = 1
J αn, j f j

12:
return dn, A(1) ≡ (a(0), v(1) ↦ I( f αn

(a(0), v(1)) > 0) ..

For an observational study or an RCT with an unknown censoring mechanism, an estimate 

gn, u of g0 can be estimated each training sample u = 1, …, U. We then let:
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αn = arg min
α ∈ ΔJ − 1

∑
u = 1

U
∑

i = Fi = u
L2, gn, u

∑
j = 1

J
α j f 2, u, j (Oi) . (6)

3.2 First time point

The approach for estimating the optimal rule at the first time point is analogous to the 

second time point, with the caveat that it takes an estimate of d0, A(1) as a nuisance function. 

To incorporate the estimate of the nuisance function, we suggest using the same approach 

used to incorporate an estimate of g0 when it is unknown as we do in (6). In particular, this 

means estimating the nuisance function d0, A(1) on training set u and using this estimate of 

the nuisance function to obtain an estimate of a latent function at the first time point based 

on training set u for each algorithm j. One can then learn the convex combination similarly 

to as in (6), and apply this convex combination to the candidates learned on the full data set, 

which take an estimate of d0,A(1) based on the entire data set as nuisance function. The rate 

of convergence of the estimated first time point rule to d0,A(0) will be upper bounded by the 

rate of convergence of the estimated second time point rule to dn,A(1), see Theorem 1 of van 

der Laan and Dudoit [8] for a detailed exposition.

To estimate the nuisance function d0,A(1), we suggest using the super-learner procedure 

presented in Algorithm 1, leading to a nested cross-validation procedure. In terms of 

runtime, this can cost up to a factor of U. If this is a concern, one can simply use the 

estimate of dn,A(1) resulting from the entire data set as nuisance function for all folds. Such a 

practice is not generally advisable because it invalidates the oracle inequality and 

necessitates empirical process conditions on the candidates. In general we look to avoid such 

conditions since they limit the data adaptivity of the estimators. Thus we believe that an 

honest cross-validation scheme in which the candidate estimators are only functions of the 

training samples is valuable for estimating rules in practice. In a forthcoming work we will 

present an honest cross-validation procedure which does not require an additional runtime 

factor of U.

4 Sequential loss functions for the V-optimal rule

We will derive three classes of loss functions for the V-optimal rule. Having a collection of 

possible loss functions will allow us to provide our super-learner with a variety of candidate 

algorithms. The first is based on estimating the blip function. The second aims to directly 

maximize an estimate of the mean outcome under the optimal rule. The third is based on 

previously described weighted classification approaches [27–29]. In the next section we will 

give conditions under which these loss functions satisfy the conditions for the oracle 

inequality given in Theorem 2.

We will generally assume that dA(1) = d0,A(1) when stating results in this section. 

Nonetheless, it is straightforward to show that the first time point loss functions in this 

section are valid for estimating the optimal fitted rule given correct specification of the 
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treatment/censoring mechanism under the constraint that the second time point treatment 

must follow the possibly suboptimal rule dA(1).

For presentation purposes, all of the loss functions described in this section are inverse 

probability of censoring weighted (IPCW) loss functions. That is, these loss functions are 

correct if the treatment/censoring mechanism is specified correctly, which is trivially true in 

an RCT without missingness. We denote a (possibly misspecified) treatment/censoring 

mechanism estimate with g. We take gA(0) and gA(1) to be the resulting first and second time 

point treatment/censoring mechanisms.

In the appendix we present double robust versions all of the loss functions and theorems 

given in this section so that the loss functions will be correct if either the treatment/

censoring mechanism is correctly specified or if particular conditional expectations of the 

outcome are correctly specified. Because the IPCW versions of the theorems are special 

cases of the double robust versions, we only give proofs for the double robust case in the 

appendix.

The simplicity of the IPCW formulations comes at the expense of robustness and efficiency. 

In an observational study or an RCT with missingness, one must also estimate the treatment 

and/or censoring mechanism g0. The rate of convergence of the final estimate when g0 is 

estimated will be upper bounded by the rate at which the estimate g converges to g0. For this 

reason we suggest using the more efficient double robust inverse probability of censoring 

weighted (DR-IPCW) loss function presented in the appendix. For double robust loss 

functions the rate of convergence of the estimate will be upper bound by a product of the 

rate of convergence of the treatment/censoring mechanism estimate and the outcome 

regression estimate.

4.1 Blip functions

We first give a formulation which aims to sequentially learn the blip functions at each time 

point. That is, we aim to sequentially learn the V-strata-specific average treatment effect at 

each time point. For the second time point, we find this strata-specific average treatment 

effect under the counterfactual distribution in which the first time point treatment is fixed at 

a(0) ∈ {0, 1} × {1}. For the first time point, we find this under the counterfactual 

distribution in which the second time point follows the estimated second time point rule.

The blip function was the target of estimation in Robins [21], though the blip was estimated 

using structural nested models instead of using our IPCW or augmented IPCW loss 

functions. Robins gives an alternative loss function for estimating the blip functions in a 

sequential decision problem in his Corollary 9.2. He subsequently discusses challenges for 

using this loss function sequentially due to the fact that one cannot estimate the two decision 

rules simultaneously. Nonetheless, the sequential procedure can still yields valid losses, as 

we show below and he shows in his Corollary 9.2.

Define
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D2(g)(O) = A2(1)
2A1(1) − 1

gA(1)(O) Y . (7)

The choice of D2(g) is motivated by the fact that 

EP0, a(0)
[D2(g0)(Oa(0)) Va(0)(1) = v(1)] = Q20(a(0), v(1)) Let P0, a(0) denote the static-

intervention specific G-computation distribution P0, a(0) and Oa(0) represents a counterfactual 

observation under this distribution. Let L2, D2(g)
F (Q2)(O) denote a valid loss function for 

estimating EP0, a(0)
[D2(g0) Va(0)(1) = va(0)(1))], in the sense that

(a(0), v(1)) ↦ EP0, a(0)
[D2(g)(Oa(0)) Va(0)(1) = v(1)]

minimizes

∑
a∼(0) ∈ 0, 1 × 1

EP0, a∼(0)
L2, D2(g)

F (Q2)(Oa∼(0)) (8)

over all measurable functions Q2 of a(0) and v(1). Because the minimum is over all 

measurable functions, one can split the above sum and minimize the expected loss (risk) first 

for a∼ = (0, 1), and then for a∼ = (1, 1). At the end of this section we provide two examples of 

loss functions satisfying this property. In fact, one can construct a valid L2, D2(g)
F  from any 

loss that can be used to fit a conditional mean. To identify the resulting risk function with the 

observed data distribution, we apply the IPCW mapping [8]:

L2, g(Q2)(O) =
A2(0)

gA(0)(O)L2, D2(g)
F (Q2)(O), (9)

Note that we inverse weight by the entire first time point treatment/censoring mechanism, 

not just the censoring mechanism at the first time point. We will use the sign of the Q2 which 

minimizes L2, g to estimate d0, A(1). The use of the IPCW mapping is motivated by the fact 

that EP0
[L2, g(Q2)(O)] is equal to the expression in (8).

For a given rule at the second time point dA(1), define

D1(g)(O) = A2(0)
2A1(0) − 1

gA(0)(O) Y . (10)
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The choice of D1(g) is motivated by the fact that 

EP0, d0, A(1)
[D1(g0)(O) V(0) = v(0)] = Q20(v(0)). Let L1, D1(g)

F  be some loss that satisfies:

EP0, dA(1)
[D1(g)(OdA(1)

) V(0) = ⋅ ] = arg min
Q1

P0, dA(1)
L1, D1(g)

F (Q1), (11)

where P0, dA(1)
 represents the post-intervention distribution corresponding with the dynamic 

intervention dA(1) and OdA(1)
 represents a counterfactual observation under this distribution. 

Our proposed loss function is obtained by applying the IPCW mapping to the above loss 

function:

L1, dA(1), g(Q1)(O) =
I(A(1) = dA(1)(A(0), V(1)))

gA(1)(O) L1, D1(g)
F (Q1) . (12)

We now state a theorem that gives conditions under which the above loss functions allow us 

to learn the optimal rule d0.

Theorem 3—Suppose the positivity assumption holds at g0. Then:

P0 L2, g0
(Q2) − L2, g0

(Q20) = ∑
a(0)

P0, a(0) L2, D2(g0)
F (Q2) − L2, D2(g0)

F (Q20) ,

P0 L1, d0, A(1), g0
(Q1) − L1, d0, A(1), g0

(Q10) = P0, d0, A(1)
L1, D1(g0)

F (Q1) − L1, D1(g0)
F (Q10) ,

(13)

where the sum is over α(0) ∈ {0, 1} × {1}. As a consequence:

Q20 = arg min
Q2

P0L2, g0
(Q2),

Q10 = arg min
Q1

P0L1, d0, A(1), g0
(Q1) .

(14)

A double robust generalization of the above theorem appears with proof in the appendix. We 

will refer to the quantities in (13) as loss-based dissimilarities for L2, g0
 and L2, d0, A(1), g0

, 

which represent the difference between the P0-expected loss (risk) at a candidate function 

and the P0-expected loss (risk) at the true parameter value. The loss-based dissimilarity is 

defined analogously for general losses.
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The expressions in (14) make L2, g0
 and L2, d0, A(1), g0

 valid losses. Even if the estimated rule 

is not the optimal rule, one can show that the blip function at the first time point will 

maximize the mean outcome under the constraint of the suboptimal second time point rule. 

In an observational study, we have access to an empirical rather than the true observed data 

distribution. Hence it may be important to consider the smoothness of L2, D2(g)
F  and L1, D1(g)

F

in the neighborhood of the minimizers in (8) and (11) so that reasonable estimation of the 

sequential risk functions is possible. We close this section with an examples of a loss 

function which satisfies the conditions of Theorem 3.

Example 1—Squared error loss.

L2, D2(g), MSE
F (Q2)(o) = h2(a(0), v(1))[D2(g)(o) − Q2(a(0), v(1))]2,

L1, D1(g), MSE
F (Q1)(o) = h1(a(0))(D1(g)(o) − Q1v(0)))2,

where h2 and h1 represent positive user-supplied weight functions of (a(0), v(1)) and v(0), 

respectively. By Theorem 3

P0 L2, g0, MSE(Q2) − L2, g0, MSE(Q20) = ∑
a(0)

P0 h2(Q2 − Q20)2(a(0), Va(0)(1)) ,

P0 L1, d0, A(1), g0, MSE(Q1) − L1, dA(1), g0, MSE(Q10) = P0 h1(Q1 − Q10)2(V(0)) .

□

4.2 Performance of rule

We now describe a risk function which sequentially targets the performance of the fitted rule 

in terms of mean outcome. By definition, d0 = arg maxd ∈ 𝒟 EP0, dYd. It follows immediately 

that −EP0
Yd is a valid risk function for a candidate rule d. In van der Laan and Luedtke [34] 

we discuss two estimates of −EP0
Yd. Rather than restate these results, we state a single 

theorem which summarizes these findings and refer the reader to van der Laan and Luedtke 

[34] for a thorough discussion of the proposed methods.

Define:

L∼2, g(dA(1))(O) = −
A2(0)

gA(0)(O)
I(A(1) = dA(1)(A(0), V(1)))

gA(1)(O) Y . (15)

Let dA(1) be a treatment rule for the second time point. Define:
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L∼1, dA(1), g(dA(0))(O) = −
I(A(1) = dA(1)(A(0), V(1)))

gA(1)(O)
I(A(0) = dA(0)(V(0)))

gA(0)(O) Y .

Theorem 4—Suppose the positivity assumption holds at g0. Then:

P0 L∼2, g0
(dA(1)) − L∼2, g0

(d0, A(1)) = ∑
a(0)

P0I(dA(1) ≠ d0, A(1)) Q20 (a(0), Va(0)),

P0 L∼1, d0, A(1), g0
(dA(0)) − L∼1, d0, A(1), g0

(d0, A(0)) = P0I(dA(0) ≠ d0, A(0)) Q10 (V(0)),

where the sum is over α(0) ∈ {0, 1} × {1}. It follows that the minimizer of P0L∼2, g0
(dA(1))

over rules dA(1) is an optimal second time point rule, and the minimizer of 

P0L∼1, d0, A(1), g0
(dA(0)) over rules dA(0) is an optimal first time point rule.

A double robust generalization of the above theorem appears with proof in the appendix.

4.3 Weighted classification

We now show that maximizing EP0
Yd can be viewed as a risk minimization problem 

resulting from using a weighted 0-1 loss function. This result is a longitudinal extension to 

that of Zhang et al. [29]. We then show that a rich class of smooth surrogate loss functions 

can be used to improve computational tractability, a result which is slightly more general 

than an earlier result in Zhao et al. [30]. We will use the definitions of D1 and D2 from the 

Section 4.1.

Let ℝ ℝ represent the function Z (x) = I(x ≥ 0). Define:

K2, g(O) =
A2(0)

gA(0)(O)D2(g)(O),

L2, g(dA(1))(O) = K2, g(O) I(dA(1)(A(0), V(0)) ≠ (Z ∘ K2, g(O), 1)),

where ◦ denotes function composition. For some fixed dA(1), define:

K1, dA(1),g
(O) =

I(A(1) = dA(1)(A(0), V(1)))
gA(1)(O) D1(dA(1), g))(O),

L1, dA(1), g(dA(0))(O) = K1, dA(1), g(O) I dA(0)(V(0) ≠ (z ∘ K1, dA(1), g(O), 1) .

The following theorem shows that the optimal rule can be learned through a sequential 

classification problem using Z ◯ K2,g(O) and Z ∘ K1, dA(1), g(O) as outcomes and weighted 
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0–1 loss functions with weights |K2,g| and K1, dA(1), g , where the weights respectively do not 

rely on dA(1) or dA(0), i.e. the current rule the routine aims to learn.

Theorem 5—Suppose the positivity assumption holds at g and g0. Then for any 

(dA(0), dA(1)) ∈ 𝒟2:

L2, g(dA(1)) = L∼2, g(dA(1)) + C2, g,

L1, dA(1), g(dA(0)) = L∼1, dA(1), g(dA(0)) + C1, dA(1), g,

where C2, g(O) and C1, dA(1), g(O) do not rely on dA(1) or dA(0), respectively. It follows that 

L2, g and L1, d0, A(1), g are valid loss functions for sequentially estimatini d0, A(1) and d0, A(0) if 

g = g0.

A double robust generalization of the above theorem appears with proof in the appendix. 

The above theorem shows that the weighted classification losses yield the same loss-based 

dissimilarities as the corresponding mean performance based losses.

It is well known that risk functions from the 0-1 loss can be difficult to optimize in practice. 

For this reason people often use convex surrogate loss functions which yield an easier 

optimization problem. A detailed examination of the theoretical properties of these loss 

functions is presented in Bartlett et al. [37]. We will use the same results to establish that a 

convex surrogate of the indicator function used in the definition of L2, g yields a valid loss 

function. Let be some convex function that is differentiable at 0 with ϕ′(0) < 0. Define the 

losses

L2, ϕ, g( f 2)(O) = K2, g(O) ϕ f 2(A(0), V(1))(2Z ∘ K2, dA(1), g(O) − 1)

L1, ϕ, dA(1), g( f 1)(O) = K1, dA(1), g(O) ϕ f 1(V(0))(2Z ∘ K1, dA(1), g(O) − 1) .

We show in Appendix B that the f 2
∗ which minimizes P0L2, ϕ, g0

( f 2) over f2 is a latent 

function for an optimal rule, i.e. I( f 2
∗ > 0) is an optimal rule, provided 

0 < EP0
K2, g0

(O) < ∞. A sufficient condition for EP0
K2, g0

(O) < ∞ is that g0 satisfies the 

strong positivity assumption and Y is uniformly bounded. We also give the double robust 

generalization of this result. Because nonnegatively weighted linear combinations of convex 

functions are convex, L2, ϕ, g is necessarily convex. Thus the proposed procedure yields an 

empirical risk that is easy to minimize via convex optimization techniques. A similar proof 

shows the validity of the loss for the first time point rule.
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The results in this section are closely related to those of Zhao et al. [30], namely their 

backward outcome weighted learning (BOWL) estimation procedure. Unlike the procedure 

Zhao et al. [30], the procedure in the appendix allow for the use of a double robust type 

rather than an inverse probability weighted type loss function. Nonetheless, the objective of 

the current section is simply to obtain more candidate estimators or possible loss functions 

to use with the super-learner algorithm. Thus we refer the reader to Zhao et al. [30] for an 

overview of some of the theoretical properties of the inverse weighted version of this loss 

function and give no further details here.

We close this section with two examples of valid weighted surrogate loss functions, and 

refer the reader to Bartlett et al. [37] for more examples. One can verify that ϕ is convex and 

differentiable at 0 in both of these examples.

Example 2—Weighted log loss: ϕ(x) = log(1 + e−x). Then:

L2, ϕ, g( f 2)(O) = Kk, g(O) log 1 + e
− f 2(A(0), V(1))(2Z ∘ K2, g(O) − 1)

,

L1, ϕ, dA(1), g( f 1)(O) = K1, dA(1), g(O) log 1 + e
− f 1(V(0))(2Z ∘ K1, dA(1), g(O) − 1)

.

□

Example 3—Weighted hinge loss: ϕ(x) = max(1 − x, 0). Then:

L2, ϕ, g( f 2)(O) = K2, g(O) max 1 − f 2(A(0), V(1))[2Z ∘ K2, g(O) − 1], 0 ,

L2, ϕ, g( f 1)(O) = K1, dA(1), g(O) max 1 − f 1(V(0))[2Z ∘ K1, dA(1), g(O) − 1], 0 .

Zhao et al. [30] focus on this loss function in their paper, though note that the method 

extends to other surrogates ϕ for the indicator function. □

5 Examples of loss functions satisfying the conditions of the oracle 

inequality

Theorem 2 gave an oracle inequality showing that we asymptotically estimate the best 

candidate rule at each time point given our sample, subject to the implementation of possibly 

suboptimal rules at future time points. The oracle inequality relies (4), i.e. that the loss is 

uniformly bounded, and (5), i.e. that the variance of the loss can be upper bounded by a 

constant times its expectation. We now give examples of loss functions which satisfy these 

conditions. Each of the below examples makes use of a subset of following assumptions 

(each example specifies the subset it uses). The fourth assumption is only used in Example 4 

and is discussed there.
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A1 PrP0
( Y < M) = 1 for some M < ∞.

A2 The strong positivity assumption holds at g0 for some δ >0.

A3 Each of the estimators in the candidate library produces estimates of uniformly 

bounded range, where the uniformity is over input distributions P.

A4 There exists some constant c > 0 that may rely on P0 such that 

Q20(A(0), Va(0)(1)) ≥ cEP0
[Ya(0), a(1)

2 Va(0)] almost surely with respect to the 

distribution in which the first treatment is set to a(0) for α(0), α(1) ∈ {0, 1} × 

{1}.

Example 1 (continued)

Squared error loss. We consider the unweighted case so that h2 = 1. If 1, 2, and 3 then 

L2, g0, MSE  is uniformly bounded and thus satisfies (4). For all f2, it can be shown that:

VarP0
(L2, g0, MSE( f 2) − L2, g0, MSE(Q20)) ≤ EP0

L2, g0, MSE( f 2) − L2, g0, MSE(Q20)
2

≤ M1EP0
L2, g0, MSE( f 2) − L2, g0, MSE(Q20) ,

where M1 = sup f 2
supo ∈ 𝒪 2D2(g0)(o) − ( f 2 + Q20)(a(0), v(1)) 2 ≥ 0 is bounded by the stated 

assumptions. Thus the condition in (5) holds. The alternative squared error blip loss 

developed in Section 9 of Robins has a certain appeal because it is bounded even if A2 does 

not hold. Future simulation studies will help shed light on how these two losses perform in 

practice. □

Example 2 (continued)

Weighted log loss. Suppose 1, 2, and 3. It follows that K2, g0
 is almost surely bounded. 

These conditions immediately show that (4) holds. The result is obvious if EP0
K2, g0

= 0, 

so suppose EP0
K2, g0

> 0. To show that (5) holds, one can use a similar change of measure 

argument as the one applied in the proof of our Theorem 9 in the appendix to account for the 

weighting and apply Corollary 5.4 in van der Laan et al. [9] to:

ϕ(x) = log(1 + e−x) = − log 1
1 + e−x .

□
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Example 4

Mean performance. Define:

L2, g0
( f 2)(O) = −

A2(0)
gA(0)(O)

I(A(1) = dA(1)(A(0), V(1)))
gA(1)(O) Y ,

where dA(1) (A(0), V(1))) = I(f2(A(0), V(1)) >0) and we have modified the definition in (15) 

so that L2, g0
 depends directly on the latent function. Suppose A1, A2, and A4. The loss-

based dissimilarity representation in Theorem 4 shows that L∼2, g0
 satisfies (4). We show that 

the stated conditions suffice for (5) in Appendix C.

Assumption A4 can be viewed as a margin condition that ensures that the classification 

problem is not too difficult. In particular, it requires that the strata-specific treatment effect 

be larger than both of the expected squared outcomes under the counterfactual distributions 

where α(1) is fixed without censoring. For binary Y, this means that the absolute average 

treatment effect in each strata of Va(0) be larger than some fixed proportion of the 

counterfactual prevalence of the outcome in strata of Va(0) when we set α(0) and α(1). □

6 CV-TMLE of risk

The empirical risk estimates resulting from the loss functions provided in Section 4 are valid 

in the sense that they are minimized at the true optimal treatment regime. Nonetheless, the 

empirical risk resulting from the given loss functions (and the double robust losses presented 

in the appendix) are not substitution estimators and thus can fail to respect a key constraint 

of the model: the fact that the risk is bounded. To improve finite sample performance, we 

propose using a CV-TMLE based estimate of risk. The CV-TMLE is a substitution estimator 

and thus naturally respects the bounded nature of our data. The CV-TMLE was originally 

proposed in Zheng and van der Laan [38]. Diaz et al. [39] use a CV-TMLE to estimate the 

risk of the causal dose response curve. In van der Laan and Luedtke [34] we presented a CV-

TMLE for the cross-validated mean outcome under a fitted rule. Here we present a 

sequential CV-TMLE that estimates the risks resulting from Theorem 4. In Appendix D we 

present a nonsequential CV-TMLE that aims to directly maximize the mean outcome under 

the fitted two time point rule. Robins [21] presents a non-sequential IPCW loss for 

sequential decisions at the end of his Section 9, though does not provide a double robust 

version for the multiple time point case.

To distinguish between the convex combinations for super-learner at the first and second 

time points in this section, we will use the notation αA(k) for the convex combination used at 

time k, k = 0, 1.

Suppose we use the sequential negative mean performance risk function from Section 4.2 

and conditions hold so that the risk is bounded. Consider selecting the convex combination 

αA(1) and αA(0) for the super-learner presented in the previous section when g0 is known 

(e.g., in an RCT without missingness). Suppose the outcome Y is bounded. While the 
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empirical risk is root-n consistent under conditions (and the double robust empirical risk is 

even asymptotically efficient under conditions), the given risk estimates may not respect the 

bounded nature of the data in finite samples.

Given an αA(1), we can estimate the risk for the second time point rule indexed by this αA(1). 

The CV- TMLE for the second time point is identical to the CV-TMLE presented in 

Appendix B.2 of van der Laan and Luedtke [34], with the exception that the covariate for ε2 

is replaced by

A2(0)I(A(1) = I ∑ jαA(1), j f 2, u, j(A(0), V(1)) > 0)
g0(O) ,

and the covariate for ε1 is replaced by A2(0)/g0, A(0)(O). The conditions for the validity of 

the resulting risk estimate are not presented here, but are analogous to those presented in 

Diaz et al. [39]. The CV-TMLE has the same double robustness and asymptotic efficiency 

properties as the cross-validated empirical mean of the double robust loss. For more details, 

we refer the reader to van der Laan and Luedtke [34].

Fitting the rule at the first time point is similar, with the covariate for ε2 replaced by

I A(0) = I(∑ jαA(0), j f 1, u, j(V(0)) > 0) I A(1) = dn, u, A(1)(A(0), V(1))
g0(O) ,

where dn, u, A(1) is a nuisance parameter for the second time point rule learned only on 

training sample u. The covariate for ε1 is then given by 

I(A(0) = I(∑ jαA(0), j f 1, u, j(V(0)) > 0))/g0, A(0)(O).

One could in fact derive CV-TMLEs of the risks resulting from any of the losses presented 

in this paper.

7 Simulation methods

Section 7.1 and Section 7.2 respectively introduce the data and methods for estimating the 

optimal rule d0 in the one and two time point cases.

7.1 Single time point

We start by presenting two single time point simulations. In an accompanying technical 

report we directly describe the single time point problem. Here, we instead note that a single 

time point optimal treatment is a special case of a two time point treatment when only the 

second treatment is of interest. In particular, we can see this by taking L(0) = V(0) = ∅, 

estimating Q2, 0 without any dependence on α(0), and correctly estimating Q1, 0 with the 

constant function zero. We can then let I(A(0) = dn, A(0)(V(0))) =1 for all A(0), V(0) 

wherever the indicator appears in our calculations. Because the first time point is not of 

interest, we only describe Q2, 0 and the second time point treatment/censoring mechanism for 
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this simulation. We refer the interested reader to our accompanying technical report for a 

thorough discussion of the single time point case.

7.1.1 Data—This is the same simulation as that presented in Section 8.1.1 of van der Laan 

and Luedtke [34]. We simulate 1,000 data sets of 1,000 observations from a randomized 

controlled trial without missingness. We let L(1) = (W1,..., W4). The data is generated as 

follows:

W1, W2, W3, W4 A(0)iidN(0, 1),

A1(1) L(1), A(0) Bern(1/2),

A2(1) A1(1), A(0), L(1), Bern(1),

logitEP0
Y A(1), L(1), H = 0 = 1 − W1

2 + 3W2(1) + A1(1)(5W3
2 − 4.45),

logitEP0
Y A(1), L(1), H = 1 = − 0.5 − W3 + 2W1W2 + A1(1)(3 W2 − 1.5),

where Y is a Bernoulli random variable and H is an unobserved Bern(1/2) variable 

independent of A(1), L(1).

Static treatments (treating everyone or no one at the second time point) have approximately 

the same mean outcome of 0.464. The optimal rule has mean outcome EP0
Yd0

≈ 0.536 when 

V(1) = W3 and the optimal rule has mean outcome EP0
Yd0

≈ 0.563 when V(1) = (W1, W2, 

W3, W4).

7.1.2 Estimation methods—We assume that the treatment/censoring mechanism is 

known. For ease of interpretation, we consider two estimates of EP0
[Y A(1), W]: (i) a naive 

estimate of 1/2 for all A(1), W, and (ii) the true conditional expectation EP0
[Y A(1), W]. We 

note that (i) is slightly different from an IPCW estimator in that it contains a term which 

stabilizes the inverse weighted outcome term in the (cross-validated) empirical or CV-TMLE 

estimate of risk. This stabilized approach should do slightly better in our simulation since 

the conditional mean of Y given A(1), W is approximately centered around 1/2. In practice 

we always recommend using a double robust approach, even if just an intercept-only best 

guess of the conditional mean as we do here. One can always (approximately) center the 

outcome by subtracting 1/2. This turns out to be equivalent to misspecifying EP0
[Y A(1), W]

to be the constant function 1/2.

We also use super-learner to estimate Q2, 0. Table 1 shows the methods used from the 

SuperLearner package in R [40] and the corresponding estimating methodology with which 

they were estimated. The multivariate adaptive regression splines algorithm was only used 

for V = W1,…, W4. We separately consider the candidates generated according to the 
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squared error and surrogate log loss functions, and also consider a candidate library that 

includes both the squared error and surrogate log loss function methods.

To generate convex combinations of predictors we maximize the CV-TMLE or CV-DR-

IPCW estimates of mean outcome (see [34] for a description of the estimating equation 

based CV-DR-IPCW estimator). We approximate solutions to the resulting optimization 

problems using the Subplex routine in the nloptr package in R [41]. We use thirty starting 

values selected randomly from the simplex to avoid sensitivity to intitial conditions, and also 

include the selection of α based on the weighted log loss criterion as an initial value. We 

also consider minimizing the cross-validated empirical risk functions derived from the 

squared error and weighted log loss functions. We do not truncate the latent functions, 

though we note only the empirical MSE blip function estimates can be unbounded, and this 

should not cause problems in our data set because the outcome is bounded. We compare the 

mean outcome under the rules generated by several combinations of candidate libraries and 

criteria for choosing the convex combination.

To evaluate the performance of the described methods we will use the mean performance of 

the estimated rule as a criterion, which is given by EP0
Ydn

 for a given rule dn. We estimate 

EP0
 using 106 Monte Carlo simulations.

7.2 Two time points

We now show that our proposed method can sequentially learn a rule with good 

performance.

7.2.1 Data—This is the same simulation as that presented in Section 8.1.2 of van der Laan 

and Luedtke [34]. We again simulate 1,000 data sets of 1,000 observations from a 

randomized controlled trial without missingness. The observed variables have the following 

distribution:

L1(0), L2(0)iidUnif ( − 1, 1),

A1(0) L(0) Bern(1/2),

A2(0) A1(0), L(0) Bern(1),

U1, U2 A(0), L(0)iidUnif ( − 1, 1),

L1(1) A(0), L(0), U1, U2 U1(1.25A1(0) + 0.25),

L1(1) A(0), L(0), L1(1), U1, U2 U2(1.25A1(0) + 0.25),

A1(1) A(0), L(1) Bern(1/2),

A1(1) A(0), A1(1), L(1) Bern(1),

Y A(1), L(1) Bern(0.4 + 0.069b(A(1), L(1))),

where
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b(A(1), L(1)) ≡ 0.5A1(0) −0.8 − 3(sgn(L1(0)) + L1(0)) − L2(0)2 + A1(1) −0.35 + (L1(1) − 0.5)2 + 0.08A1(0)A1
(1) .

Static treatments yield mean outcomes EP0
Y(0, 1), (0, 1) = 0.400, EP0

Y(0, 1), (1, 1) ≈ 0.395, 

EP0
Y(1, 1), (0, 1) ≈ 0.361, and EP0

Y(1, 1), (1, 1) ≈ 0.411. The true optimal treatment has mean 

outcome EP0
Yd0

≈ 0.485 when V(0) = L(0) and V(1) = (A(0), L(1)).

7.2.2 Estimation methods—As in the single time point case, we treat the treatment/

censoring mechanism as known. Rather than estimate EP0
[Y A(1), L(1)] when estimating d0, 

A(1), we consider two extreme cases, namely plugging in either the truth or the constant 

function 1/2 for the desired expectation. Once the rule dn, A(1) at the second time point has 

been estimated, we estimate EP0
[Ydn, A(1)

A(0), L(0)] by either plugging in the truth, which 

can be computed analytically using the G-computation formula, or the constant function 1/2. 

In our simulations we only consider the cases where either both or neither of the sequential 

regressions is estimated correctly. All simulations use the IPCW mapping to relate the full 

data loss function to the observed data distribution (see Appendix A).

We use the candidate library in Table 1, with the exception that the Bayes GLM algorithm 

was excluded from these runs due to an occasional error from the software and the 

multivariate adaptive regression spline model was also excluded. The convex combinations 

for the sequential super-learners are selected using the cross-validated empirical risk 

resulting from the surrogate log loss function and the CV-TMLE estimate of the negative 

mean outcome risk. The weights 1/g0, A(0)(O) and I(A(1) = dn, A(1)(O))/g0, A(1)(O) were 

incorporated into the procedures for estimating d0, A(1) and d0, A(0) by weighting the 

candidate algorithms and the empirical risk optimization problem. The fitted rule dn, A(1) 

used to weight the losses for estimating d0, A(0) was not fitted on the training samples as we 

recommended in Section 3.2 due to computational constraints.

8 Simulation results

8.1 Single time point

Figures 1(a) and 1(b) respectively give performance results of the super-learner based 

methods when V(1) = W3 and V(1) = W1, …, W4. In this simulation, combining both the 

weighted classification and the regression libraries performs well in both cases. The 

regression methods with the MSE risk criterion also performs well for all settings of our 

simulation. The CV-TMLE and CV-DR-IPCW are outperformed by all other methods for 

selecting α regardless of the specification of EP0
[Y A(1), W] in the single time point 

simulation, but as we note below they perform well compared to many of the individual 
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algorithms. Correctly specifying the estimate of EP0
[Y A(1), W] improves performance for all 

candidate libraries and choices of the convex combination vector α. Comparing the 

weighted classification and blip function approaches is difficult given the different candidate 

library sizes, but both perform well overall.

Multivariate adaptive regression splines appear do the best of all algorithms in the super-

learner library when V(1) = W1, …, W4, though only slightly better than the super-learner 

fits which do not require a priori specification of a single algorithm. The super-learner which 

used both blip and weighted classification based candidates outperformed all other 

algorithms in the candidate library. This super-learner performs similarly to the neural 

network algorithm when V(1) = W3 and outperforms all other algorithms in the candidate 

library.

All generalized linear model (GLM) methods performed poorly for all settings. For example, 

when a stepwise regression which includes interaction was used to estimate the blip function 

and EP0
[Y A(1), W] was correctly specified, the mean performance was respectively 0.465 

and 0.483 when V = W3 and V = W1, …, W4. Thus here we see a setting where using data 

adaptive methods is important for good estimation of the optimal rule.

8.2 Two time points

Figure 2 shows that the the performance of several estimation methods in the two time point 

case. It appears that the optimal rule for our simulation can be well described by a 

generalized linear model. In particular, we see a stepwise regression with only main terms 

outperform all other methods under consideration, including our super-learners. Though the 

weighted classification based stepwise regression was not included in our model, we ran this 

algorithm alone to compare to the blip function based stepwise regression. The results were 

similar, with mean performance of approximately 0.470 for both settings considered.

Although the stepwise regression algorithm performed better for the given data generating 

distribution at this sample size, the super-learners which aim to maximize an estimate of the 

mean performance perform well overall. Note that some of the data adaptive methods, such 

as blip function based neural networks and classification based recursive partitioning 

perform poorly compared to the other methods. On average across the thousand runs, the 

super-learner which seeks to maximize the CV-TMLE estimate of the mean outcome and has 

the conditional mean correctly specified gave the most weight at the first time point to the 

following algorithms: blip stepwise regression, 0.12; blip stepwise regression with 

interactions, 0.10; and blip forward stepwise regression, 0.09. Thus our super-learner 

appears to have learned to select a linear as opposed to a more data adaptive estimator for 

the latent function.

The mean outcome based super-learners slightly outperformed the weighted log based 

super-learners in terms of mean performance for both settings.
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9 Discussion

This article investigated nonparametric estimation of a V-optimal dynamic treatment. We 

proposed sequential loss-based super-learning to construct such a nonparametric estimator of 

the V-optimal rule. When applied in sequentially randomized controlled trials, this method 

is guaranteed to asymptotically outperform any competitor (with respect to loss-based 

dissimilarity) at each stage by simply including it in the library of candidate estimators. 

Some of the proposed sequential super-learners aim to minimize risks associated with 

learning some latent function which gives the optimal rule. One of these super-learners aims 

to optimize the performance of the fitted rule itself by maximizing the mean outcome. This 

seems to be more targeted towards our goal, but our theoretical claim suggests that stronger 

conditions are needed for the oracle inequality for this selector to hold.

Our simulation results support our theoretical findings. The super-learners always performed 

comparably to the best candidate in the library, and our theoretical results suggest that 

increasing sample size will improve their relative performance further.

In the current article we defined the treatment as binary at each time point. Consider now a 

treatment that has k possible values. We can then define a vector of binary indicators that 

identify the treatment. We can now apply the results for the multiple time-point treatment 

case in the appendix of van der Laan and Luedtke [33], since this represents a special case in 

which at some time-point there are no intermediate covariates between binary treatments. 

Because the rate of convergence at each time point is upper bounded by the convergence 

rates at previously fitted time points, there may be better approaches when log2 k ≫1.

The sophistication of estimation and inference strategies for optimal treatment regimes has 

progressed dramatically in recent years thanks to the innovative work of many researchers. 

We look forward to continued statistical and computational advancements in this field, and 

to the eventual implementation of these treatment strategies on a large scale.
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Appendix

A Double robust loss functions

Below Q represents a parameter value, where the parameter maps from a distribution P to a 

collection of conditional distributions. Alternatively, we can set these estimates equal to 0 

for IPCW-like risk estimates. We use Q0 to denote the parameter mapping applied to P0, i.e. 

the collection of conditional distributions under the observed data distribution P0. All of the 

mappings used in this section only require expectations under the conditional distributions in 

Q. Thus in practice standard regression algorithms can be used to estimate the needed 

portions of Q0. When we write conditional expectations under Q as EQ, it will always be 
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clear from context what parameter mapping (conditional distribution) of P0 the appropriate 

part of Q is supposed to estimate.

Estimates for the optimal rule can be obtained using any regression or classification 

software, including data adaptive techniques. Because products of differences of Q and Q0 

and g and g0 will serve as remainder terms for the final risk estimates, it is important to 

consistently estimate as many of these quantities of interest as possible, ideally at a 

reasonable rate. Note that the desire for consistent estimates of Q0 likely precludes the use of 

parametric regressions for fitting Q, though parametric regressions can be taken as 

candidates in a cross-validation based algorithm such as SuperLearner. If known, any 

knowledge of Q0 or g0 may be incorporated into the estimates.

Throughout this section we introduce double robust versions of functions defined in the 

main text. Rather than introduce new notation to account for this, we simply add a Q next to 

the g in the notation, e.g. D2(g) becomes D2(Q, g) and L2,g becomes L2,Q, g.

A.1 Blip functions

Define

D2(Q, g)(O) = A2(1)
2A1(1) − 1
g0, A(1)(O) (Y − EQ[Y L(1), A(1))]

+ EQ[Y L(1), A(0), A(1) = (1, 1)] − EQ[Y L(1), A(0), A(1) = (0, 1)],

Let L2, D2(g)
F (Q2)(O) denote a valid loss function for estimating 

EP0, a(0)
[D2(Q, g) Va(0)(1) = va(0)(1))], in the sense that

(a(0), v(1)) ↦ EP0, a(0)
[D2(Q, g)(Oa(0)) Va(0)(1) = v(1)]

minimizes

∑
a∼(0) ∈ 0, 1 × 1

EP0, a∼(0)
L2, D2(g)

F (Q2)(Oa∼(0))

over all measurable functions Q2 of a(0) and v(1). Applying the DR-IPCW mapping 

(vanderLaan Dudoit, 2003) gives:
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L2, Q, g(Q2)(O) =
A2(0)

gA(0)(O) L2, D2(Q, g)
F (Q2) − EQ L2, D2(Q, g)

F (Q2) A(0), L(0)

+ ∑
a1(0) = 0

1
EQ L2, D2(Q, g)

F (Q2) A(0) = (a1(0), 1), L(0) ,

(16)

We will use the sign of the Q2 which minimizes L2,Q, g to estimate d0,A(1). For a given dA(1), 

define

D1(dA(1), Q, g)(O) = A2(0)
2A1(0) − 1
gA(0)(O) Y − EQ YdA(1)

L(0), A(0)

+ EQ YdA(1)
L(0), A(0) = (1, 1) − EQ YdA(1)

L(0), A(0) = (0, 1) .

Let L1, D1(dA(1), Q, g)
F , be some loss that satisfies:

EP0, dA(1)
D1(dA(1), Q, g) V(0) = ⋅ = arg min

Q1
P0, dA(1)L1, D1(dA(1), Q, g)

F (Q1),

Our proposed loss function is obtained by applying the DR-IPCW mapping to the above loss 

function:

L1, dA(1), Q, g(Q1)(O) =
I(A(1) = dA(1)(A(0), V(1)))

gA(1)(O) L1, D1(dA(1), Q, g)
F (Q1)

−
I(A(1) = dA(1)(A(0), V(1)))

gA(1)(O) EQ L1, D1(dA(1), Q, g)
F (Q1) A(1), L(1)

+ EQ L1, D1(dA(1), Q, g)
F (Q1) A(0), A(1) = dA(1)(A(0), V(1), L(1) ,

(17)

We now state a theorem that gives conditions under which the above loss functions allow us 

to learn the optimal rule d0.

Theorem 3

(DR Version). Suppose the positivity assumption holds at g and g0 and either Q = Q0 or g = 

g0. Then:

Luedtke and van der Laan Page 28

Int J Biostat. Author manuscript; available in PMC 2018 July 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



P0 L2, Q, g(Q2) − L2, Q, g(Q20) = ∑
a(0)

P0, a(0) L2, D2(Q, g)
F (Q2) − L2, D2(Q, g)

F (Q20) ,

P0 L1, d0, A(1), Q, g(Q1) − L1, d0, A(1), Q, g(Q10)

= P0, d0, A(0)
L1, D1(d0, A(1), Q, g)

F (Q2) − L1, D1(d0, A(1), Q, g)
F (Q10) ,

where a(0) ∊ {0, 1} × {1}. As a consequence:

Q20 = arg min
Q2

P0L2, Q, g(Q2),

Q10 = arg min
Q1

P0L1, d0, A(1), Q, g(Q1) .

The condition that Q = Q0 can be weakened so that only the needed conditional expectations 

Q are equal to the analogous expectations under Q0. We state a slightly stronger form of 

double robustness than stated in the above theorem in Section 9.1 of the accompanying 

technical report. The stronger form shows that we have double robustness separately at each 

time point, so we need only have the portion of g0 or that of Q0 corresponding to each time 

point correctly specified. For example, we may have the treatment/censoring mechanism 

correctly specified at the first but not the second time point, but L2,Q, g is still a valid loss as 

long as the portion of Q corresponding to the second time point is correctly specified (even 

if Q is misspecified at the first time point!).

Proof of Theorem (DR Version)

Suppose Q = Q0 or g = g0. By the double robustness of DR-IPCW mapping:

EP0
L2, Q, g(Q2)(O) = ∑

a(0)
EP0, a(0)

L2, D2(Q, g)
F (Q2),

EP0
L1, d0, A(1), Q, g(Q1) = EP0, d0, A(1)

L1, D1(d0, A(1), Q, g)
F (Q1) .

All claims again follow immediately by the choice of L2, D2(Q, g)
F , and L1, D1(d0, A(1), Q, g)

F . □

Optimizing the double robust blip loss functions is not straightforward because of the final 

two terms in expressions in (16) and (17). Taking these terms to be 0, which is equivalent to 

misspecifying these needed conditional expectations under Q0, allows for the use of 

weighted regression methods. We show in Section A.3 that optimizing the weighted 

classification losses does not encounter this difficulty.

A.2 Performance of rule

Define:
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−L∼2, Q, g
F dA(1) (O) =

I(A(1) = dA(1)(a(0), V(1)))
gA(1)(O) (Y − EQ[Y L(1), A(1)])

+ EQ[Y L(1), A(0), A(1) = dA(1)(a(0), V(1))] .

Applying the DR-IPCW mapping [8] gives:

L∼2, Q, g dA(1) (O) =
A2(0)

gA(0)(O) L∼2, Q, g
F dA(1) (O) − EQ L∼2, Q, g

F dA(1) A(0), L(0)

+ ∑
a1(0) = 0

1
EQ L∼2, Q, g

F dA(1) A(0) = (a1(0), 1), L(0) .

Let dA(1) be a treatment rule for the second time point. Define:

−L∼1, dA(1), Q, g
F dA(0) (O) =

I(A(0) = dA(0)(V(0)))
gA(0)(O) (Y − EQ[YdA(1)

L(0), A(0)])

+ EQ[YdA(1)
L(0), A(0) = dA(0)(V(0))] .

Applying the DR-IPCW mapping gives:

L∼1, dA(1), Q, g dA(0) (O) =
I(A(1) = dA(1)(A(0), V(1)))

gA(1)(O) L∼1, dA(1), Q, g
F dA(0)

−
I(A(1) = dA(1)(A(0), V(1))

gA(1)(O) EQ L∼1, dA(1), Q, g
F dA(0) A(1), L(1)

+ EQ L∼1, dA(1), Q, g
F dA(0) A(0), A(1) = dA(1)(A(0), V(1)), L(1)

Theorem 4 (DR Version)

Suppose the positivity assumption holds at g and g0 and either Q = Q0 or g = g0. Then:

P0 L∼2, Q, g(dA(1)) − L∼2, Q, g(d0, A(1)) = ∑
a(0)

P0I(dA(1) ≠ d0, A(1)) Q20 (a(0), Va(0)(1)),

P0 L∼1, d0, A(1), Q, g(dA(0)) − L∼1, d0, A(1), Q, g(d0, A(0)) = P0I(dA(0) ≠ d0, A(0)) Q20 (V(0)),

where the sum is over a(0) ∊ {0, 1} × {1}. It follows that the minimizer of P0L∼2, Q, g(dA(1))

over rules dA(1) is an optimal second time point rule, and the minimizer of 

P0L∼1, d0, A(1), Q, g(dA(0)) over rules dA(0) is an optimal first time point rule.
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Proof of Theorem 4 (DR Version)

For all dA(1):

P0 L∼2, Q, g(dA(1)) − L∼2, Q, g(d0, A(1))

= ∑
a(0)

P0, a(0) L∼2, Q, g
F (dA(1)) − L∼2, Q, g

F (d0, A(1))

= ∑
a(0)

P0, a(0) EP0, a(0) L∼2, Q, g
F (dA(1)) − L∼2, Q, g

F (d0, A(1)) Va(0)

= ∑
a(0)

P0, a(0)I(dA(1) ≠ d0, A(1))(a(0), Va(0)) Q20(a(0), Va(0)) ,

where the sums are over a(0) ∊ {0, 1} × {1}. Because Q20 ≥ 0, the above is minimized at 

dA(1) = d0,A(1). For any first time point treatment rule dA(0):

P0r L∼1, d0, A(1), Q, g(dA(0)) − L∼1, d0, A(1), Q, g(d0, A(0))

= P0, d0, A(1)
L∼1, d0, A(1), Q, g

F (dA(0)) − L∼1, d0, A(1), Q, g
F (d0, A(0))

= P0, d0, A(1)
EP0, d0, A(1)

L∼1, d0, A(1), Q, g
F (dA(0)) − L∼1, d0, A(1), Q, g

F (d0, A(0)) V(0)

= P0I dA(0) ≠ d0, A(0) (V(0)) Q10(V(0)) .

The above expression is minimized at dA(0) = d0, A(0). □

A.3 Weighted classification

We will use the definitions of Q, D1, and D2 from the Section A.1.

Define:

K2, Q, g(O) =
A2(0)

gA(0)(O) (D2(Q, g) − EQ[D2(Q, g) A(0), L(0)])

+ ∑
a1(0) = 0

1
EQ[D2(Q, g) A(0) = (a1(0), 1), L(0)] .

Also define:

L2, Q, g(dA(1))(O) = K2, Q, g(O) I(dA(1)(A(0), V(0)) ≠ (Z ∘ K2, Q, g(O), 1)) .

Similarly, let:
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K1, dA(1), Q, g(O) =
I(A(1) = dA(1)(A(0), V(1)))

gA(1)(O) D1(dA(1), Q, g))

−
I(A(1) = dA(1)(A(0), V(1))

gA(1)(O) EQ D1(dA(1), Q, g) A(1), L(1)

+ EQ D1(dA(1), Q, g) A(0), A(1) = dA(1)(A(0), V(1)), L(1) ,

and:

L1, dA(1), Q, g(dA(0))(O) = K1, dA(1), Q, g(O) I(dA(0)(A(0), V(0)) ≠ (Z ∘ K1, dA(1), Q, g(O), 1)) .

We have the following theorem:

Theorem 5 (DR Version)

Suppose the positivity assumption holds at g and g0. Then for any (dA (0), dA (1)) ∈ 𝒟:

L2, Q, g(dA(1)) = L∼2, Q, g(dA(1)) + C2, Q, g,

L1, dA(1), Q, g(dA(0)) = L∼1, dA(1), Q, g(dA(0)) + C1, dA(1), Q, g,

where C2,Q,g(O) and C1, dA(1), Q, g(O)do not rely on dA(1) or dA(0), respectively. It follows that 

L2, Q, g and L1, dA(1), Q, g, are valid loss functions for sequentially estimating d0, A(1) and 

d0,A(0) if either either Q = Q0 or g = g0.

Proof of Theorem 5 (DR Version)

For all realizations o ∈ 𝒪, define:

C2, Q, g(o) = − L∼2, Q, g((Z ∘ K2, Q, g(o), 1))(o),

where L∼2, Q, g((Z ∘ K2, Q, g(o), 1)) represents L∼2, Q, g evaluated at the static decision rule where 

everyone is given the treatment Z ◦ K2,Q, g (o) ∊ {0, 1} without censoring.

Checking all values of dA(1) ∊ {0, 1} × {1}, Z ◦ K2,Q, g ∊ {0, 1}, a(0), a(1) ∊ {0, 1}2 shows 

that:

K2, Q, g I(dA(1) ≠ (Z ∘ K2, Q, g, 1)) − L∼2, Q, g(dA(1)) = C2, Q, g .

For the first time point, we define:
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C1, dA(1), Q, g(o) = − L∼1, dA(1), Q, g
F (Z ∘ K1, dA(1), Q, g(o), 1) (o) .

Checking all values of dA(0) ∊ {0, 1} × {1}, Z ∘ K1, dA(1), Q, g ∈ 0, 1 , and a(0), a(1) ∊ {0, 1}2 

shows that:

K1, dA(1), Q, g I dA(0) ≠ (Z ∘ K1, dA(1), Q, g, 1) − L∼1, dA(1), Q, g(dA(0)) = C1, dA(1), Q, g .

The claim that L2, Q, g and L1, dA(1), Q, g are valid loss functions for the sequential estimation 

of d0 follows by the double robust version of Theorem 4. □

B Convex surrogate for the weighted 0–1 loss

We now present a simple result which motivates future work to apply general results on 

surrogate loss functions like those in Bartlett, Jordan, and McAuliffe [35] to the above 

weighted classification problem. Zhao et al. [29] present a specific result with a weighted 

hinge loss function in the single time point case. The result below can be extended naturally 

using the methods in Bartlett et al. 06 but already covers many interesting cases. The 

theorem uses the double robust versions of K2,g and L2, g as presented in Appendix A.3.

Theorem 6

Suppose the positivity assumption holds at g and 0 < E|K2,Q, g(O)| < ∞. Let ϕ : ℝ → [0, ∞) 

be some convex function that is differentiable at 0 with ϕ′(0) < 0. Define

L2, ϕ, Q, g( f 2)(O) = K2, Q, g(O) ϕ f 2(A(0), V(1))(2Z ∘ K2, dA(1), Q, g(O) − 1)

for some latent function f with range ℝ. Let f2, i be some sequence of functions and dA(1), i 
be a sequence of functions such that dA(1)

(i) (A(0), V(1)) gives treatment I(f2,i(A(0), V(1)) ≥ 0) 

without censoring. Then:

P0L2, ϕ, Q, g( f 2, i)
i ∞ inf

f
∼

2
P0L2, ϕ, Q, g( f

∼
2) P0L2, Q, g(dA(i)

(i) ) i ∞
P0L2, Q, g(d0, A(1)),

where the infimum is over all measurable functions f
∼

2 that take A(0), V(1) as input.

Proof of Theorem 6

By the law of total expectation, for all dA(1) that set observations to uncensored:
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EP0
L2, Q, g dA(1) = EP0

EP0
K2, Q, g A(0), V(1), Z ∘ K2, Q, g(O) I dA(1), 1(A(0), V(1)) ≠ Z ∘ K2, Q, g ,

where dA(1), 1 is the treatment index of the optimal rule. Let P∼0 be the probability measure 

with:

Pr
P∼0

(A(0), V(1), Z ∘ K2, Q, g) ∈ B

= 1
EP0

K2, Q, g
∫B

EP0
K2, Q, g A(0), V(1), Z ∘ K2, Q, g(O) dP0

for all measurable sets B. Note that P∼0 is a probability distribution over values of A(0), V(1), 

Z ◦ K2,Q, g and that P∼0 is absolutely continuous with respect to P0. Also note that

EP0
L2, Q, g dA(1) = E

P∼0
I dA(1), 1 A 0 , V 1 ≠ Z ∘ K2, Q, g ,

so we can now consider a simple 0–1 loss under the distribution P∼0.

By Theorem 4 in Bartlett et al., ϕ is classification-calibrated according to the definition in 

the paper. By part (c) of Theorem 3 in the same paper, it follows that:

lim
i ∞

P∼0ϕ f 2, i(A(0), V(1))(2Z ∘ K1, dA(1), Q, g − 1) = inf
f
∼

2
P∼0ϕ f

∼
2(A(0), V(1))(2Z ∘ K1, dA(1), Q, g − 1)

lim
i ∞

P∼0I I( f 2, i(A(0), V(1)) > 0) ≠ Z ∘ K2, Q, g = inf
f
∼

2
P∼0I I( f

∼
2(A(0), V(1)) > 0) ≠ Z ∘ K2, Q, g ,

Writing the above expectations under P∼0 as expectations under P0 weighted by dP∼0/dP0 and 

multiplying by the constant EP0
K2, Q, g  gives the desired result. □

Examining the above proof shows that the conditions on ϕ can be weakened to the condition 

that ϕ is classification-calibrated according to the definition in Bartlett, Jordan, and 

McAuliffe [35].

If Q or g is correctly specified and the infimum of P0L2,ϕ, Q, g(·) is achievable at some f 2
∗

then it follows immediately that d0,A(1) has the same performance as the rule 

(A(0), V(1)) I( f 2
∗(A(0), V(1)) > 0) under P0,a(0). This shows that weighted surrogate loss 

functions are valid for d0,A(1).

An analogous result holds for the first time point using the loss
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L1, ϕ, dA(1), Q, g( f 1) = K1, ϕ, dA(1), Q, g(O) ϕ f 1(V(0))(2Z ∘ K1, dA(1), Q, g(O) − 1) .

C Example 4 proof

Proof that (5) holds in Example 4. Note that

VarP0
L2, g0

( f 2) − L2, g0
( f 20) ≤ EP0

L2, g0
( f 2) − L2, g0

( f 20)
2

= EP0
I(I( f 2 ≥ 0) ≠ I( f 20 ≥ 0))(A(0), V(1))

A2(0)

gA(0)(O)2
A2(1)

gA(1)(O)2
Y2

≤ δ−2 ∑
a(0)

∑
a(1)

EP0
I(I( f 2 ≥ 0) ≠ I( f 20 ≥ 0))(a(0), Va(0)(1))Ya(0), a(1)

2 ,

where the sums are over {0, 1} × {1}. For all kδ > 0, Theorem 4 shows that:

kδVarP0
L2, g0

( f 2) − L2, g0
( f 20) − EP0

L2, g0
( f 2) − L2, g0

( f 20)

≤ max
a(1) ∑

a(0)
EP0

I(I( f 2 ≥ 0) ≠ I( f 20 ≥ 0)) 2kδYa(0), a(1)
2 − Q20 (a(0), Va(0)) ,

where the maximum is over a(1) ∊ {0, 1} × {1}. By 4, we can choose kδ > 0 small enough 

so that 2KδEP0
Ya(0), a(1)

2 Va(0) − Q20(a(0), Va(0)(1)) ≤ 0 almost surely for all a(0), a(1) ∊ {0, 

1} × {1}. The law of total expectation applied to the above then shows that, for kδ > 0 

sufficiently small:

kδVarP0
L2, g0

( f 2) − L2, g0
( f 20) − EP0

L2, g0
( f 2) − L2, g0

( f 20) ≤ 0.

Condition (5) follows immediately, thus completing the proof. □

D Non-sequential super-learner targeted directly at mean outcome

We now sketch a non-sequential super-learner which seeks to maximize the mean outcome 

under the entire estimated rule dn = (dn,A(0), dn,A(1)). This estimator is a direct application of 

the CV-TMLE presented in Section 7.1 and Appendix B.2 of van der Laan and Luedtke [33]. 

Suppose we have libraries of sequential candidate latent function estimators 

(P ↦ f 1, j(P): j = 1, …, J1) and (P ↦ f 2, j(P): j = 1, …, J2) for the first and second time points. 

The latent function estimators for the first time point rely on nuisance function fits for the 

second time point rule, but there is no requirement that this nuisance function be the same as 

the final output rule dn,A(1) at the second time point. For each fold u we can compute a 
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sequential super-learner for the second time point on training set u, which yields an estimate 

dn, u, A(1)
nuis  of d0,A(1). In learning each dn, u, A(1)

nuis  we have estimated latent functions resulting 

from estimators f 2, j2
, j2 = 1, …, J2, applied to all of the training (·) samples. We can get 

estimates resulting from applying the sequential estimators f 1, j1
, j1 = 1, …, J1, to each 

training set u, where the treatment at the second time point is set to dn, u, A(1)
nuis .

We now have estimates resulting from estimators and f 1, j1
 and f 2, j2

 applied to each 

training sample for all j1, j2. We can simultaneously optimize over αA(0) and αA(1) to 

maximize the CV-TMLE of the mean outcome under the fitted rule. The final estimated 

latent functions at the first and second time points are given by ∑ jαn, A(0), j f 1, j(Pn) and 

∑ jαn, A(1), j f 2, j(Pn), respectively. This method seems to be most targeted towards our goal, 

namely maximizing the mean outcome under the estimated rule. We note that αA(1) need not 

equal any of the convex combinations αu, A(1)
nuis  used to obtain each dn, u, A(1)

nuis , but we can 

establish oracle inequalities will ensure that that αn,A(1) performs at least as well as each 

αu, A(1)
nuis  in terms of mean outcome for the final output optimal rule. We leave deeper 

consideration of this cross-validation scheme to future work.
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Figure 1. 

Mean performance of the estimated rule when the estimate En[Y A(1), W] of EP0
[Y A(1), W], 

is correctly and incorrectly specified. Error bars indicate 95% confidence intervals to 

account for uncertainty from the finite number of Monte Carlo draws in our simulation. (a) 

V(1) = W3, (b) V(1) = W1, …, W4.
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Figure 2. 

Mean performance of the estimated rule when EP0
[Y A(1), L(1)] and EP0

[Yd A(0), L(0)] are 

specified correctly and incorrectly. Error bars indicate 95% confidence intervals to account 

for uncertainty from the finite number of Monte Carlo draws in our simulation.
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Table 1

Candidate estimators used to estimate Q2, 0. See the SuperLearner package documentation for more details 

(Polley vanderLaan12). SL.earth only used for V = (W1,…,W4).

Loss function Method R function

Squared error Bayesian GLM SL.bayesglm

Generalized additive model SL.gam

Generalized linear model SL.glm

Generalized linear model, interactions SL.glm.interaction

Multivariate adaptive regression splines SL.earth

Sample mean SL.mean

Neural network SL.nnet

Stepwise regression SL.step

Forward stepwise regression SL.step.forward

Stepwise regression, interactions SL.step.interaction

Weighted log Generalized additive model SL.gam

Generalized linear model SL.glm

Generalized linear model, interactions SL.glm.interaction

Neural network SL.nnet

Recursive partitioning SL.rpart
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