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ABSTRACT OF THE DISSERTATION 

 

Bayes Neutral Zone Classification in  

Unsupervised and Semi-Supervised Settings 

 

by 

Scott Robert Benecke 

Doctor of Philosophy, Graduate Program in Applied Statistics 

University of California, Riverside, March 2012 

Dr. Daniel R. Jeske, Chairperson 

 

  

 Neutral zone classifiers allow for a region of neutrality when there is inadequate 

information to assign a predicted class label with suitable confidence.  A neutral zone 

classifier is defined by classification regions that trade off the cost of an incorrect 

classification against the cost of remaining neutral.  We derive a Bayes neutral zone 

classifier and demonstrate that it outperforms previous neutral zone classifiers with 

respect to the expected cost of misclassifications and also with respect to computational 

complexity.  Additionally, we present the scenarios where the previous neutral zone 

classifiers and the proposed Bayes neutral zone classifier achieve equivalence in both the 

two-class and three-class setting. 

 Following the theoretical derivation of the Bayes neutral zone classifier we extend 

the methodology to both the unsupervised and semi-supervised setting via the EM 

algorithm for the purpose of developing neutral zone classifiers beyond the supervised 

setting.  Previous versions of neutral zone classifiers have only dealt with the supervised 
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settings.  The discussion of unsupervised and semi-supervised neutral zone classifiers 

covers both the parametric and nonparametric cases.  Simulation studies in both the 

parametric and nonparametric cases show the improvements that can be obtained by 

adding labeled data for semi-supervised learning.      

 The Bayes neutral zone classifier is illustrated with a microbial community 

profiling application in which no training data is available.  In this example we show the 

benefits obtained over previous neutral zone classifiers.  Additionally, a simulation study 

is performed to investigate the benefits of using neutral zone classification to remove 

noise from microbial community profiling data sets. 
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Chapter 1  

Introduction 

1.1. Neutral Zone Classification 

 Classification is a procedure in which the attribute variables of an object are used 

to assign the object a class label.  A classifier is an algorithm that maps the objects to the 

appropriate class labels.  Often a classifier will learn to predict class labels based on a set 

of labeled training data and will therefore be able to subsequently operate on objects with 

unknown labels.  Accuracy can be of extreme importance to the success and usefulness of 

classifiers.  In many circumstances an incorrect classification can lead to a substantial 

cost.  Misclassifications may arise out of the similarities between the attribute variables 

of two objects, or alternatively, large variability in the underlying class distributions. 

These situations can be managed by a classifier that, in addition to predicting class labels, 

utilizes “no classification” (N) as a prediction outcome.  A classifier that allows for an N 

classification outcome is called a neutral zone classifier.  The advantage of the N 

classification outcome is that it enables the user to minimize the cost of misclassifications 

by alerting them that more information would be needed in order to confidently assign a 

specific class label to an observation.   

Jeske et al. (2007) developed a two-class neutral zone classifier and Yu et al. 

(2009) extended this concept to the three-class setting. Their applications were motivated 
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by a microbial community profiling application (see, for example, Valinsky 2002a and 

2002b) where a classification rule was needed to predict whether individual nucleotide 

probes successfully binded to an rRNA gene based on an observed intensity measurement.  

For the binding outcomes where there was too much ambiguity for a confident prediction, 

an N (neutral) classification outcome was used because inaccurate predictions of binding 

outcomes would cause problems in a subsequent clustering analysis of the predicted 

binding outcomes.  The N classification was a useable predicted class label, since the 

clustering analysis was performed on vectors of predicted class labels for each gene. 

 

1.2. Bayes Classification 

 Here we quickly introduce the Bayes classification methodology, which is utilized 

extensively in this dissertation. The Bayes classifier is one of the most widely used 

classification tools and is defined in the following manner.  Let  1 2, ,..., nX X X X  be 

the input vector consisting of n  real numbers and let Y  be a class label which takes the 

values  1,2,...,Y K  where K  is the number of classes.  Then the probability that an 

observation x  belongs to a class y  is calculated using Bayes’ theorem in the following 

manner: 

    
 

 

|
|

p x y
P y x P y

p x
  

Typically, the  |p x y  values are estimated using a training data set and using the 

equation for  |P y x  it is possible to compute the probability that a new observation x  is 
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in class y .  Then taking the largest  |P y x  value for the new observation we can assign 

a class label to x .  The prior probabilities ( )P y  are either assigned subjectively or 

perhaps estimated from the training data set.   

 

1.3. Structure of the Dissertation 

The rest of this dissertation is organized as follows.  In Chapter 2 of this 

dissertation, we improve on the work of Jeske et al. (2007) and Yu et al. (2009) by 

developing an improved neutral zone classifier with respect to misclassification costs and 

computational complexity.  The improvement in misclassification cost results from 

developing a neutral zone classifier within a minimum cost Bayes framework, while the 

improvement in computational complexity results from eliminating the need for a 

numerical search algorithm to find the classification boundaries.  Neutral zone 

classification in an unsupervised setting is also addressed in this chapter.  Unlike 

supervised classification, there is no training data available in unsupervised classification.  

Semi-supervised contexts are where some of the training data has labels and some 

does not.  In Chapter 3 we present simulation studies to illustrate the benefits of utilizing 

labeled data and unlabeled data together for semi-supervised learning.  Chapter 4 

addresses whether neutral zone classifiers are useful in reducing the noise in the 

microbial community profiling data set.  This is done via a simulation study.  Finally, 

Chapter 5 summarizes the work presented in the dissertation and discusses potential 

future work.  
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Chapter 2  

 

Bayes Neutral Zone Classifiers with Applications 

to Nonparametric Settings 

 

2.1. Introduction 

 In this chapter, we improve on the work of Jeske et al. (2007) and Yu et al. (2009) 

by developing a superior neutral zone classifier with respect to misclassification costs and 

computational complexity.  The improvement in misclassification cost results from 

developing a neutral zone classifier within a minimum cost Bayes framework, while the 

improvement in computational complexity results from eliminating the need for a 

numerical search algorithm to find the classification boundaries.  

Another aspect of classification addressed in this chapter is unsupervised 

classification.  Unlike supervised classification, there is no training data available in 

unsupervised classification (Hastie et al., 2001). Therefore the prediction boundaries for 

classification must be determined entirely from unlabeled data.  The microbial 

community profiling applications considered in Jeske et al. (2007) and Yu et al. (2009) 

were able to utilize labeled data.  However, alternative data acquisition paradigms exist 

for that application where there is no labeled data (see Mitra et al., 1999 and Aach et al., 

2004).  These applications measure whether individual nucleotide probes successfully 
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bind to rRNA genes through observed intensity measurements.  Instead of measuring 

probe binding events on indexed arrays, the application can utilize polony arrays.  In 

polony arrays, the locations of specific genes are not indexed because it is not feasible to 

track their locations during the experimental process.  As a result, many microbial 

community profiling applications do not have labeled training data.  In this chapter, we 

also develop a methodology for unsupervised neutral zone classification in this context. 

The rest of this chapter is organized as follows.  In Section 2.2 and Section 2.3 we 

derive two-class and three-class Bayes neutral zone classifiers, respectively, and discuss 

why the proposed classifiers outperform the previously mentioned neutral zone classifiers 

developed by Jeske et al. (2007) and Yu et al. (2009).  In Section 2.4 we develop the 

methodology for performing neutral zone classification in an unsupervised setting, which 

has not been previously addressed.  Our proposed method for dealing with no training 

data can be used with any of the neutral zone classifiers we discuss in this paper.  Also in 

Section 2.4, we use data from the microbial community profiling application to compare 

the results of a nonparametric implementation of the Bayes neutral zone classifier to 

previously published neutral zone classifiers.  Comparisons are made in terms of both 

misclassification cost and computational efficiency.  Finally, Section 2.5 summarizes the 

work presented in this paper. 
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2.2. Two-Class Neutral Zone Classifiers 

 In this section we look at neutral zone classifiers in the two-class setting.  The 

two-class Bayes neutral zone classifier is developed and its relationship to previous 

neutral zone classifiers is derived.  

 

2.2.1. Previous Work 

 For a two-class neutral zone classifier we are seeking to classify an observation as 

either 0, 1 or N.  Let 0  and 1  be the prior probability that an observation belongs to 

class 0 ( 0C  ) and class 1 ( 1C  ), respectively, where 0 1 1   .  Let Y denote the 

observed data, and y denote a realization of Y.  Then the posterior probability of the event 

1C   is given by   1 1 1 0 0 1 1( ) ( ) / ( )p y f y f y f y     where if  is the conditional 

density of Y, given it belongs to class i .  We assume we have sufficient training data to 

estimate the densities via a suitable nonparametric density estimate (NDE).  Yu et al. 

(2009) defined two-class neutral zone classifiers of the form 

  
   
 

   

0 1

1 0

0 1

0 if

ˆ ; 1 if ( )

if

NZ

p y p y L

C y L p y p y L

N p y p y L

  


  


 

 (2.1) 

where  0,1L  and is a threshold that establishes the classification boundaries between 

the three outcomes 0, 1 and N.  Using the relation 0 1( ) ( ) 1p y p y  , it is easy to see that 

the neutral zone region in (2.1) is symmetric about 0.5.  The optimal value of L  for the 
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classifier in (2.1) leads to a neutral zone classifier and is determined by minimizing the 

expected cost with respect to Table 2.1, which is given by 

 
   

   

0 10

1 01

( ) 1| 0 | 0

  0 | 1 |

ˆ ˆ

ˆ 1ˆ

NZEC L P C P N C

P C N C

C C

C CP

 

 

      
 

      
 

 (2.2) 

 

where /ij ij NC C  .  Since the optimal value of L  cannot be solved for directly, a 

numerical search method is used to determine the minimizing value. 

 

True Class 

Label 

Predicted Class Label 

0 1 N 

0 0 C10 CN 

1 C01 0 CN 

Table 2.1.  Asymmetric cost structure in two-class setting. 

 

 

2.2.2. Two-Class Bayes Neutral Zone Classifier 

 We now derive a Bayes neutral zone classifier that has both a lower expected cost 

and less computational complexity than the neutral zone classifier in (2.1).  Let BEC  be 

the expected cost of an arbitrary classifier that assigns labels 0, 1 and N, when Y falls in 

the regions 0R , 1R  and NR  , respectively.  Consider again the cost structure in Table 2.1.   

Then,  

 

     

     

1

0

10 0 0 0 0 1 1

01 1 1 0 0 1 1

1

.

B

R

R

EC f y f y f y dy

f y f y f y dy

   

   

     

    




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Let  0I y  be the term in the integral over 0R  and  1I y be the term in the integral 

over 1R .  Using boundary-value conventions consistent with Johnson and Wichern (2007), 

it follows that the classifier that minimizes this cost, the so-called Bayes neutral zone 

classifier, has the form 

  
0 1

1 0

0 1

( ) min[0 , ( )]

( ) min[0 , ( )]

if min

0 if

ˆ 1

[ ( ) ( ] 0

i

, )

fB

I y I y

I y I y

N I y I

C y

y










 



 (2.3) 

 

Equivalently, 

  
       
       
   

01 101 0 01 10

10 01 10 01

01 10

1 0

0 1 0 1

1 0

0 if  or  1 

if

1 

ˆ 1 1

if 1  and  

 or  1

1,

B

p y p y p y p y

p y p y p y p y

p y

C

y

y

N p

   

   

 

   






  
  

 

 

which, noting that    0 1 1p y p y   can finally be rewritten as  

  

   

   

 

10

01 10 10 01 10

10

01 10 01 10 01

1 1

1

01 10

1

1

1 1 1
min ,1 1

1 1 1ˆ 1 ,1

1 1
if

0 if  or   

if max

1

 or 

.

 B

p y p y

p y p y

p y

C y

N



    



    

 

  
     

 


 
  

 





  



 






 (2.4) 

 

   Unlike (2.1), it is clear that the neutral zone in (2.4) is not necessarily symmetric 

about 0.5, and thus the classifier in (2.1) is not generally optimal.  Because (2.4) is the 
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Bayes neutral zone classifier, it is optimal, and additionally we are able to determine the 

classification outcome boundaries without the need to use a numerical search algorithm  

From (2.4) we can see that a neutral zone will exist if and only if 01 101/ 1/ 1   .  

When a neutral zone exists, then only the first part of each 'or' condition in (2.4) is 

pertinent and the classifier can be simplified further.  Alternatively, when a neutral zone 

does not exist, then the two parts of each 'or' condition can be combined and (2.4) 

simplifies to the standard two-class Bayes classifier with asymmetric cost structure. 

 

2.2.3. Equivalence of Bayes Neutral Zone Classifier 

 For the two-class case we can show that the neutral zone classifier, originally 

proposed by Jeske et al. (2007) and the Bayes classifier in (2.4) are equivalent.  The form 

of the neutral zone classifier (Jeske et al., 2007) is: 

  
 
 

 

1 0

0 1 1 1

0 1 1

0 if

ˆ ; , 1 if

if

p y l

C y l l p y l

N l p y l

 


 
  

 (2.5) 

where  0 10 1l l   and  0 1, l l  are thresholds, determined by the user, that establish the 

classification boundaries of the three outcomes 0, 1 and N .  It is equivalent to state the 

two-class neutral zone classifier as 

  
   
 
       

0 1 0

0 1 1 0 1

0 1 0 1 0 1

0 if

ˆ ; , 1 if ( )

if  and 

p y p y L

C y L L p y p y L

N p y p y L p y p y L

  


  
    

 (2.6) 
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where   0 1,  0,1L L   The neutral zone classifier in (2.6) is the form of the classifier we 

will use for the purposes of this section.  To see the equivalence of (2.5) and (2.6) we 

substitute    0 11p y p y   into (2.6) to get 

 

 

 

 

0
1

1
0 1 1

0 1
1

1
0 if

2 2

1ˆ ; , 1 if
2 2

1 1
if

2 2 2 2

L
p y

L
C y L L p y

L L
N p y


 




  



   


. 

Letting 0
0

1

2 2

L
l    and 1

1

1

2 2

L
l    can be rewritten as 

 
 
 

 

1 0

0 1 1 1

0 1 1

0

ˆ

if

; , 1 if

if

p y l

y L L p y l

N l p y

C

l

 


 
  

. 

where we see  0 10 .5 1l l     since   0 1,  0,1L L   This is simply a 

reparameterization of (2.5) and yields a nice result where our region for  0 1, l l becomes 

 0 10 .5 1l l    instead of  0 10 1l l   which cuts the sample space in half.   

 Now, using the neutral zone classifier in (2.6), we can show equivalence to the 

Bayes classifier in (2.4).  This leads to a direct method of calculating  and in (2.6).  

To do this we will make use of Lemma 1 and Lemma 2 which allow us to write the two-

class neutral zone classifier in an alternative way proposed by Definition 1.   
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Lemma 1 

If          , 0,1 and   i jp y p y for i j i j    then   0jI    if  / 2j j NC C   , where 

j i j i i N i j N jI C f C f C f     . 

 

Proof 

First note that    i jp y p y  implies that  
1

2
ip y   and therefore 

1

2

i i

i i j j

f

f f



 



.  

Rearranging we have  2 0i i i i j jf f f      and if 2j   then 

 
 

  

 

2 

0

j i j i i N i j N j

j

N i i i i j j

N

N i i i i j j

I C f C f C f

C
C f f f

C

C f f f

  

  

  

  

 
   

 

  



 

 

Lemma 2 

If           , 0,1 and   i jp y p y for i j i j    then the neutral zone classifier in (2.6) reduces 

to  

  
   
   

ˆ ;
i j i

i j i

i if p y p y L
C y L

N if p y p y L

  
 

 
 

Proof 

Since    i jp y p y  this implies that     0j ip y p y  .  Since we know 0jL  , the 

neutral zone classifier in (2.6) reduces to 
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 
   
   

ˆ ;
i j i

i j i

i if p y p y L
C y L

N if p y p y L

  
 

   

Lemma 2 shows us that we can write the two-class neutral zone classifier in the 

alternative form proposed in Definition 1.   

 

Definition 1 

For         for   , 0,1 and   i jp y p y i j i j   , let 0iL   be a threshold determined by the 

user, then 

  
   
   

if
ˆ ;

if

i j i

i

i j i

i p y p y L
C y L

N p y p y L

  
 

   

 

Theorem 1 

If  0 1 1/ 1     then given the asymmetric cost structure in Table 2.1, the neutral 

zone classifier in Definition 1 and the Bayes classifier in (2.3) are equivalent and the 

optimal choice of the optimal choice of  0 1,L L  is 
* *

0 1

0 1

2 2
1 , 1L L

 

 
    

 
 if and only 

if   0 12,  2   . 

If  0 1 1/ 1     then given the asymmetric cost structure in Table 2.1, the neutral 

zone classifier in Definition 1 and the Bayes classifier in (2.3) are equivalent and the 

optimal choice of the optimal choice of  0 1,L L  is  * *

0 10, 0L L   if and only if  0 1  . 

 Proof:  see Appendix A 
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 Note that when we input  and  into the neutral zone classifier in Definition 1 

then our classifier can be expressed as 

  

1

0

1

1

1

0 1

1
0 if ( )

1ˆ 1 if ( ) 1  

1 1
if ( ) 1  

p y

C y p y

N p y





 







  



  


 (2.7) 

 

2.2.4. Equivalence Examples 

 In this section we look at several examples showing when equivalence between 

the Bayes neutral zone classifier in (2.4) and the neutral zone classifier in (2.6) is 

achieved.  

Example 1: Normal – Equal Costs 

 Our data is from one of two normal distributions with equal probability.  The 

normal distributions are    0 ~ 1, .5f y N     and     1 ~ 2, .6f y N    .  Also 

our cost ratios are 0 1 4   .  Performing a grid search over   0 1,  0,1L L   to find the 

values of 0L  and 1L  that minimizes the expected cost in (2.2) we get 0 1

1

2
L L  .  This 

result is consistent with what we would expect from Theorem 1 which tells us that 

*

0

2 1
1

4 2
L     and *

1

2 1
1

4 2
L    .  The neutral zone classifier can then be expressed in 

the form of (2.6) as 
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 

   

 

       

0 1

0 1 1 0

0 1 1 0

1
0 if

2

1ˆ ; , 1 if ( )
2

1 1
if  and 

2 2

NZ

p y p y

C y L L p y p y

N p y p y p y p y


 




  



   


. 

Furthermore, we simulated 50,000 observations our mixture of normal distributions and 

classified each value using both the neutral zone classifier with 0 1

1

2
L L   and the 

Bayes classifier in (2.4).  The classification of each observation was identical for both 

classifiers.  This illustrates our boundaries for neutral zone classification derived in 

Theorem 1 are indeed optimal and eliminates the need to perform a computationally 

intensive grid search to the values of 0L  and 1L hat minimizes the expected cost in (2.2).  

Additionally, for the one L neutral zone classifier in (2.1) our grid search for the choice 

of L hat minimizes the expected cost in (2.2) is 0.5L  which tells that in this equal cost 

situation there is no difference between the neutral zone classifier in (2.6) and the neutral 

zone classifier in (2.1).  This equivalence under the equal cost setting is examined in 

Section 2.2.6.   

 

Example 2: Normal – Unequal Costs 

 Our data is again from one of two normal distributions with equal probability.  

The normal distributions are     0 ~ 1, .5f y N     and    1 ~ 2, .6f y N    .  

Our cost ratios are 0 5   and 1 4  .  Performing a grid search to find the values of 0L  

and 1L hat minimizes the expected cost in (2.2) we get 0 0.6L   and 1 0.5L  .  This result 
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is consistent with what we would expect from Theorem 1 which tells us that 

*

0

2 3
1

5 5
L     and *

1

2 1
1

4 2
L     This gives us a neutral zone classifier in the form of 

(2.6)that can be represented as 

 

   

 

       

0 1

0 1 1 0

0 1 1 0

3
0 if

5

1ˆ ; , 1 if ( )
2

3 1
if  and 

5 2

NZ

p y p y

C y L L p y p y

N p y p y p y p y


 




  



   


. 

Furthermore, we simulated 50,000 observations our mixture of normal distributions and 

classified each value using both the neutral zone classifier with 0 0.6L   and 1 0.5L   and 

the Bayes classifier in (2.4).  The classification of each observation was identical for both 

classifiers.  This illustrates our boundaries for neutral zone classification derived in 

Theorem 1 are indeed optimal and eliminates the need to perform a computationally 

intensive grid search to the values of 0L  and 1L hat minimizes the expected cost in (2.2).  

Additionally, for the one L  neutral zone classifier in (2.1) our grid search for the choice 

of L hat minimizes the expected cost in (2.2) is 0.558L  .  To compare the average cost 

of the neutral zone classifier in (2.6) and the neutral zone classifier in (2.1) we obtained a 

95% confidence interval for the difference in the average cost of the two classifiers.  The 

confidence interval is (-0.0538964, -0.0229836) for the average cost of the zone classifier 

in (2.6) minus the average cost of the neutral zone classifier in (2.1).  This shows us that 

when we allow for two choices of L  we do in fact obtain a classifier with a lower cost. 
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Example 3: Normal – Unequal Costs/Nonequivalence 

 Our data is again from one of two normal distributions with equal probability.  

The normal distributions are    0 ~ 1, .5f y N     and     1 ~ 2, .6f y N    .  

Our cost ratios are 0 3   and 1 1.8  .  We can see from (2.4) that our boundaries for 

Bayes classification are as follows 

 

 

 

 

1

1

1

1
0 if

3

4ˆ 1 if
9

1 4
if  

3 9

B

p y

C y p y

N p y







 



 


. 

However, when 1.45y   then  0 0.549205p y   and   1 0.450795p y   which will lead 

us to a classification value of  ˆ 1.45 1BC  , which by definition is not possible in the 

neutral zone classifier.  Therefore the two classifiers are not equivalent under this cost 

structure. 

 

2.2.5. Other Cost Scenarios 

 Theorem 1 gives us conditions when the two-class neutral zone classifier and the 

two-class Bayes classifier are equivalent, which allows for direct calculation of *

0L  and 

*

1L .  In Figure 2.1 we see when the Bayes and neutral zone classifier are equivalent for all 

cost scenarios.  As Theorem 1 states when  0 1 1/ 1     then equivalence between 

the Bayes and neutral zone classifier is achieved in the shaded area in Figure 2.1 or 
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 0 12,  2    Also, when  0 1 1/ 1     then equivalence between the Bayes and 

neutral zone classifier can only be achieved along the line 0 1  as shown in Figure 2.1. 

 

 

Figure 2.1. Shaded area shows neutral zone equivalence. 

 

 

2.2.6. Symmetry Considerations 

 From (2.7), we see that for the neutral zone region to be symmetric around 0.5 

then 
0 1 

1 1
0.5 1 0.5

 

 
   

 
.  Equivalently, 

0 1 

1 1
1 1

 
    or 

0 1 

1 1

 
 .  That is 0 1   . 

The classifier in this case becomes 
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 

 

 

 

1

1

1

1
0 if

1ˆ 1 if 1

1 1
if 1

p y

C y p y

N p y





 







  



  


. 

and the necessary and sufficient conditions for which an N classification is possible 

becomes 2   This is the classifier mentioned in Yu et al. (2009). 

 

2.3. Three-Class Neutral Zone Classifiers 

2.3.1. Previous Work 

 For a three-class neutral zone classifier we are seeking to classify an observation 

as either 0, 1, 2 or N.  Using similar notation as in Section 2.1, let 0 , 1  and 2  be the 

prior probability that an observation belongs to class 0 ( 0C  ), class 1 ( 1C  ) and class 

2 ( 2C  ), respectively, where 20 1 1    .  Then the posterior probability of the 

event 1C   is given by   2 21 1 1 0 0 1 1( ) ( ) / ( ) ( )p y f y f y f y f y      where if  is the 

conditional density of class i .  We assume we have sufficient training data to estimate 

the densities via a suitable NDE.  Yu et al. (2009) defined a three-class neutral zone 

classifier as 

 

       
       
       

0 1 0 2

1 0 1 2

2 0 2 1

0 if      and  

1 if      and  ˆ ;
2 if      and  

otherwise ,

NZ

p y p y L p y p y L

p y p y L p y p y L
C y L

p y p y L p y p y L

N

    


   
 

   



 (2.8) 
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where  0,1L  and is a threshold that establishes the classification boundaries.  The 

optimal value of L  for the classifier in (2.8) is determined by minimizing the expected 

cost with respect to the general form in Table 2.2, which is given by 

     

     

     

10 20

01 21

0

0

2 122

1

ˆ ˆ ˆ( ) 1| 0 2| 0 | 0

ˆ ˆ ˆ0| 1 2| 1 | 1

ˆ ˆ ˆ0| 2 1| 2 | 2

NZEC L P C C P C C P C N C

P C C P C C P C N C

P C C P C C P C N C

  

  

  

         
 

         
 

         
 

 (2.9) 

 

where /ij ij NC C  .  As in the two-class case, a numerical search method must be used 

to determine the optimal L , making the implementation of the classifier demanding from 

a computational point of view. 

 

True Class 

Label 

Predicted Class Label 

0 1 2 N 

0 0 C10 (4)  C20 (4.5) CN (1) 

1 C01 (4) 0 C21 (4) CN (1) 

2 C02 (4.5) C12 (4) 0 CN (1) 

Table 2.2.  Asymmetric cost structure in three-class setting with 

exact costs used for polony example in parentheses. 

 

 

2.3.2. Three-Class Bayes Neutral Zone Classifier   

 The three-class Bayes neutral zone classifier is developed as follows.  First, BEC   

is modified to be the expected cost of an arbitrary classifier that assigns labels 0, 1, 2 and 
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N, when Y falls in the regions  0R , 1R , 2R  and NR  , respectively.  Assuming the cost 

structure shown in the general form in Table 2.2, we then have 

 

         

         

         

0

1

2

10 1 1 20 2 2 0 0 1 1 2 2

01 0 0 21 2 2 0 0 1 1 2 2

02 0 0 12 1 1 0 0 1 1 2 2

1B

R

R

R

EC f y f y f y f y f y dy

f y f y f y f y f y dy

f y f y f y f y f y dy

      

      

      

       

      

      







 (2.10) 

 

Let 0 ( )I y  , 1( )I y  and 2 ( )I y  be the terms in the integral over 0R ,  1  R and 2R , 

respectively.  Again, using boundary-value conventions consistent with Johnson and 

Wichern (2007), it follows the Bayes neutral zone classifier in the three-class case has the 

form  

 

0 1 2

1 0 2

2 0 1

0 1 2

( ) min[ 0 , ( ) , ( ) ]

( ) min[ 0 , ( ) , ( ) ]

2 if ( ) min[ 0 , (

0 if

1 i

) , ( ) ]

if min[ ( ) , ( ) , ( ) ] 0

f
ˆ

B

I y I y I y

I y I y I y

I y I y I y

N

y

I y I y I

C

y

















 (2.11) 

  

 If all the cost ratios satisfy 2 ij  , then from Theorem 2 it is possible to further 

simplify (2.11) by defining it individually on the three interior 0 1( ( ) , ( ))p y p y regions 

shown in Figure 2.2.   
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Theorem 2 

Suppose  2    , 1,2,3 and lr l r l r     .  Let 

           j i ji k jk i N i j N j k N ki k
I C f y C f y C f C f Cy y y yf          and 

           k i ki j kj j i N i j N j k N ki
I C f y C f C f C f Cy y y y yf         .  Then, if 

      i j kp y p y p y  , for , , 1,2,3 and   i j k i j k   , we necessarily have    0jI y   

and   0kI y  .  Consequently, the Bayes neutral zone classifier on the branch 

      i j kp y p y p y   reduces to 

 
 
 

if 0   
ˆ

if 0  

i

B

i

i I
C y

N I

y

y

 



  

 Proof:  See Appendix B. 
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Figure 2.2.  Classification regions for three-class Bayes neutral 

zone classifier under Theorem 2. 

 

Evaluation of the classifier simply involves determining which regions the observed point 

0 1( ( ) , ( ))p y p y  lies, and then evaluating the predicted label according to the respective 

formulas 0ˆ ( )BC y  , 1ˆ ( )BC y , and 2ˆ ( )BC y  that are defined in Figure 2.2 and overlaid on each 

of the regions.  Note that as in the two-class case, the Bayes neutral zone classifier is 

much easier to compute than the neutral zone classifier given by (2.8), and of course has 

a lower expected cost as well. 
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 Examining (2.11), we can see that the Bayes neutral zone classifier will not have a 

neutral zone if 0 1 2min[ ( ) , ( ) , ( ) ] 0I y I y I y  , for all y, and under this condition it will 

classify as 0,1,2k   based on whichever of  0 1 2( ) , ( ) ,  or  ( )I y I y I y  is the smallest, 

respectively.  After some algebraic manipulation, this can be restated as classifying 

0,1,2k   based on whichever of 
2

0

( )

i k

i i ki

i

f y C




  is the smallest, and this characterization 

is equivalent to the standard three-class Bayes classifier with asymmetric cost structure 

which is detailed in Theorem 3. 

 

Theorem 3 

If 0 1 2min[ ( ) , ( ) , ( ) ] 0I y I y I y  , for all y, then (2.11) can be restated as classifying 

0,1,2k   based on whichever of 
2

0

( )

i k

i i ki

i

f y C




  is the smallest.   

 Proof:  See Appendix C. 

 

 

2.3.3. Equivalence of Bayes Neutral Zone Classifier 

 In this section we outline conditions when the neutral zone classifier in Definition 

2 and the Bayes classifier in (2.11) are equivalent.  This leads to a direct method of 

calculating  in Definition 2.  First let us state the neutral zone as follows: 
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Definition 2 

For Case m  where          for   , , 1,2,3 and   i j kp y p y p y i j k i j k      let 0mL   

be a threshold determined by the user, then 

 
   
   

if
ˆ ;

if

i j m

m

i j m

i p y p y L
C y L

N p y p y L

  
 

 
 

For our purposes we will let Case 1 be the set       0 1 2:   y p y p y p y  Case 2 be the 

set       0 2 1:   y p y p y p y  Case 3 be the set       1 0 2:   y p y p y p y  Case 4 

be the set       1 2 0:   y p y p y p y  Case 5 be the set 

      2 0 1:   y p y p y p y  nd Case 6 be the set       2 1 0:   y p y p y p y   Note 

that not all cases are possible. 

 Notice that Definition 2 proposes a three-class neutral zone classifier where the 

threshold, , varies depending on the order of your posterior probabilities.  This is a 

slightly different form than the neutral zone classifier proposed by Yu et al. (2009) in (2.8) 

and is necessary for equivalence of the Bayes neutral zone classifier.  For instance, when 

 the choice of   is different than the case when 

.  In this section define how to choose the optimal value of .  

Also, Definition 2 only allows for a classification of either the class with the highest 

posterior probability, , or N.  This is consistent with previous definitions of neutral 

zone classification.  Figure 2.3 shows the regions for the six cases in Definition 2. 
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Figure 2.3. Six region of neutral zone in Definition 2. 

 

Lemma 3 

If         for  , , 1,2,3 and   i j kp y p y p y i j k i j k      and if 

 2    , 1,2,3   lr l r and l r     then   0jI  and 0kI  where 

j i ji i k jk k i N i j N j k N kI C f C f C f C f C f          and 

k i ki i j kj j i N i j N j k N kI C f C f C f C f C f          

Proof 

Because      i j kp y p y p y   we must have    
1

2
i kp y p y  otherwise  

1

2
jp y   

and would be larger than  ip y  Now consider 
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Similarly, because      i j kp y p y p y  we must have    
1

2
i jp y p y   otherwise 

 
1

2
kp y   and would be larger than  ip y .  Now consider 

  

    

     
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 
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Theorem 4 

For Case m where         :    i j ky y y p y p y p y     let      i jg y p y p y  , 

    ih y I , 0   and given the asymmetric cost structure in Table 2.2.  If *y  is the unique 

root of  h y  and one of the following conditions hold: 

1.  * 0h y    and      * *      :g y g y y y y y    and 

     * *      :g y g y y y y y      
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2.  * 0h y    and      * *      :g y g y y y y y     and 

     * *      :g y g y y y y y     

then the three-class neutral zone classifier proposed in Definition 2 and the Bayes 

classifier in (2.11) are equivalent and the optimal choice (i.e. the choice that minimizes 

the expected cost) of  mL  is  * *

mL g y  if and only if 0jI   and 0kI   

 Proof:  See Appendix C. 

Note:  If there is no unique root of  h y then * 0mL   if   0h y   and * 1mL   if   0h y   

 

 Note that Lemma 3 gives us a sufficient condition on lr  where 

 , 1,2,3   l r and l r   for Theorem 4 to hold, that is  2    , 1,2,3   lr l r and l r     .  We 

can, however, find a cost structure illustrated by the Example 3 in Section 2.3.4 where 

2lr   for some  , 1,2,3   l r and l r   and Theorem 4 will still hold.   

 The neutral zone classifier in Definition 2 under cases 1-6 is represented 

graphically in Figure 2.4 where the coordinates of the points are as follows: 
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Figure 2.4. Neutral zone classifier for six cases. 
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Combining the regions in cases 1-6 into one plot we have the following regions of 

classification shown in Figure 2.5. 

1
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p1(y)
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N
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b

 

Figure 2.5. Combined classification plot for neutral zone. 

 

where in Figure 2.5   * *

2 5

1

2
a L L  ,  * *

2 5

1

2
b L L   and  * *

4 6

1

2
c L L  .  Figure 2.5 

and the length of a, b and c are consistent with the derivation in Yu et al. (2009). 

 Theorem 4 shows a direct way of calculating the optimal choice of mL  for the 

neutral zone classifier proposed in Definition 2.  This greatly reduces the computational 

burden of finding an optimal six L  neutral zone classifier.  Additionally Theorem 4 

shows that in order for the neutral zone classifier to obtain optimal boundaries then six 

different thresholds are needed, one for each of the six cases. 
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2.3.4. Equivalence Examples 

 In this section we look at several examples showing when equivalence between 

the Bayes neutral zone classifier in (2.11)  and the neutral zone classifier in Definition 2 

is achieved.  

 

Example 1: Normal – Equal Variances, Equal Cost 

 Consider the following example where we have misclassification costs equal to 

 3    , 1,2,3   lr l r and l r     .  Our data is from one of three normal distributions with 

equal prior probabilities    0 ~ 1, 1f y N    ,    1 ~ 3, 1f y N     and 

   2 ~ 5, 1f y N    .  The results are summarized in Table 2.3.   

 For example, under case 1 we see that the possible y  values are  : 2y y y  .  

In addition we see in Figure 2.6 that  h y  has a unique root, * 1.648909y   and 

 * 0h y   , and also that      * *      :g y g y y y y y     and 

     * *      :g y g y y y y y    .  Therefore  * *

1 0.3363313L g y   and our optimal 

classification region when        0 1 2:  y y p y p y p y    is 

 
0 if   1.648909ˆ ;

if   1.648909

y
C y L

N y


 


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Case 
Posterior Probability 

Order 
y range 

*y    *g y  N Region 

1      0 1 2p y p y p y    2y    1.648909  0.3363313  *y y  

2      0 2 1p y p y p y    y   - - - 

3      1 0 2p y p y p y   
 

2 3y   

 2.388046  0.3598662 *y y  

4      1 2 0p y p y p y   
 

3 4y   

 3.611954  0.3598662 *y y  

5      2 0 1p y p y p y    y  - - - 

6      2 1 0p y p y p y   4y   4.351091 0.3363313 *y y  

Table 2.3. Example 1 simulation results. 

  

 Furthermore, we simulated 10,000 observations from our mixture of three normal 

distributions and classified each simulated value using both the neutral zone classifier in 

Definition 2 with *

1 0.3363313L  , *

3 0.3598662L  , *

4 0.3598662L   and *

6 0.3363313L   

and the Bayes classifier in (2.11).  The classification of each observation was identical for 

both classifiers.  This illustrates the boundaries for neutral zone classification derived in 

Theorem 4 are indeed optimal since the neutral zone and Bayes classifications are 

identical.  Additionally, we compared the accuracy and runtime for the neutral zone 

classifier in Definition 2 with  *

1 0.3363313L  , *

3 0.3598662L  , *

4 0.3598662L   and 

*

6 0.3363313L   and the neutral zone classifier in (2.8).  The neutral zone classifier in 

(2.8), with 0.346L   takes 817.86 seconds to run as opposed to 5.43 seconds for the 

neutral zone classifier in Definition 2.   Furthermore, a 95% confidence interval for the 
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mean cost of the neutral zone classifier in Definition 2 minus the mean cost of the neutral 

zone classifier in (2.8) is -0.005 meaning we would need a sample size of 290,705 in 

order for the mean cost of the neutral zone classifier in Definition 2 to be significantly 

less than the mean cost for the neutral zone classifier in (2.8).  Additionally, Figure 2.7 is 

the spider plot for this dataset where the bold line through the region is the possible 

points that can be attained.  Note that this bold line does not pass through the region for 

Case 2 or Case 5. 
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Figure 2.6. Example 1 simulation results. 
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Figure 2.7. Example 1 spider plot with possible values plotted. 

 

Example 2: Normal – Unequal Variances, Unequal Costs 

 Consider the following cost structure in Table 2.4 

True 

Class 

Label 

Predicted Class Label 

0 1 2 N 

0 0 2.2 2.5 1 

1 2.3 0 2.4 1 

2 3.1 2.8 0 1 

Table 2.4. Example 2 cost structure. 

 

therefore 01 2.2  , 02 2.5  , 10 2.3  , 12 2.4  , 20 3.1   and 21 2.8  .  
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 Our data is from one of three normal distributions with prior probabilities 0  .3  , 

1  .3   and 2  .4   and     0 ~ 1, .5f y N    ,    1 ~ 2.6, .7f y N     and 

   2 ~ 4.7, 2.2f y N    .  The results are summarized in Table 2.5.   

 For example, under case 1 we see that the possible y  values are 

 :1.02 1.67y y y   .  In addition we see in Figure 2.8 that  h y  has a unique root, 

* 1.5581601y   and  * 0h y    and also that      * *      :g y g y y y y y     and 

     * *      :g y g y y y y y    .  Therefore  * *

1 0.3406686L g y  and our optimal 

classification region when        0 1 2:  y y p y p y p y    is 

 
0   1.5581601ˆ ;

  1.5581601

if y
C y L

N if y


 


 

 

Case 
Posterior Probability 

Order 
y range 

*y    

region 

1      0 1 2p y p y p y   1.02 1.67y   1.5581 0.3406 *y y  

2      0 2 1p y p y p y    0.39 1.02y    -0.2122 0.3562 *y y  

3      1 0 2p y p y p y    1.67 1.98y   1.9362 0.3684 *y y  

4      1 2 0p y p y p y   1.98 3.70y   3.2835 0.2857 *y y  

5      2 0 1p y p y p y   3.01 0.39y     -0.4787 0.2013 *y y  

6      2 1 0p y p y p y   3.01  or  3.70y y    3.7252 0.1666 *y y  

Table 2.5. Example 2 simulation results. 
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 Furthermore, we simulated 1,000,000 observations from our mixture of three 

normal distributions and classified each simulated value using both the neutral zone 

classifier in Definition 2 with *

1 0.340668L  , *

2 0.3562209L  , *

3 0.3684428L  ,  

*

4 0.2857388L  , *

5 0.2013093L   and *

6 0.1666675L  and the Bayes classifier in (2.11).  

The classification of each observation was identical for both classifiers.  This illustrates 

the boundaries for neutral zone classification derived in Theorem 4 are indeed optimal 

since the neutral zone and Bayes classifications are identical.  Additionally, we compared 

the accuracy and runtime for the neutral zone classifier in Definition 2 with 

*

1 0.340668L  , *

2 0.3562209L  , *

3 0.3684428L  , *

4 0.2857388L  , *

5 0.2013093L   and 

*

6 0.1666675L   and the neutral zone classifier in (2.8).  The neutral zone classifier in 

(2.8), with 0.264L  takes 1191.82 seconds to run as opposed to 4.81 seconds for the 

neutral zone classifier in Definition 2.  Furthermore, a 95% confidence interval for the 

mean cost of the neutral zone classifier in Definition 2 minus the mean cost of the neutral 

zone classifier in (2.8) is (-0.004296347, 0.0009263471) indicating there is no significant 

different in the average cost of the two classifiers.  In order for there to have been a 

significant difference we would have had to increase our sample size to 2,401,759 given 

our point estimate of -0.001685.  Additionally, Figure 2.9 is the spider plot for this 

dataset where the bold line through the region is the possible points that can be attained.  

Notice how in this example all cases are possible. 
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Figure 2.8. Example 2 simulation results. 
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Figure 2.9. Example 2 spider plot. 
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Example 3: Normal – One 2ij   

 Consider the following cost structure in Table 2.6 

True 

Class 

Label 

Predicted Class Label 

0 1 2 N 

0 0 1.9 2.5 1 

1 2.3 0 2.4 1 

2 3.1 7.0 0 1 

Table 2.6. Example 3 cost structure. 

 

therefore 01 1.9  , 02 2.5  , 10 2.3  , 12 2.4  , 20 3.1   and 21 7.0  . 

 Our data is from one of three normal distributions with prior probabilities 0  .3  , 

1  .3  , 2  .4   and    0 ~ 1, 1f y N    ,    1 ~ 3, 1f y N     and 

   2 ~ 5, 1f y N    .  The results are summarized in Table 2.7. 

 For example, under case 1 we see that the possible y  values are 

 :1.02 1.67y y y   .  In addition we see in Figure 2.10 that  h y  has a unique root, 

* 1.5581601y   and  * 0h y    and also that      * *      :g y g y y y y y     and 

     * *      :g y g y y y y y    .  Therefore  * *

1 0.3406686L g y   and our optimal 

classification region when        0 1 2:  y y p y p y p y    is 

 
0 if   1.5581601ˆ ;

if   1.5581601

y
C y L

N y


 


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Case 
Posterior Probability 

Order 
y range 

*y   *g y  N region 

1      0 1 2p y p y p y    2y   1.85780 0.140410 *y y  

2      0 2 1p y p y p y   y  - - - 

3      1 0 2p y p y p y   2 3y   2.00631 0.006253 *y y  

4      1 2 0p y p y p y   3 4y   3.04512 0.669837 *y y  

5      2 0 1p y p y p y   y  - - - 

6      2 1 0p y p y p y   4y   4.17510 0.172414 *y y  

Table 2.7. Example 3 simulation results. 

 

 Furthermore, we simulated 10,000 observations from our mixture of three normal 

distributions and classified each simulated value using both the neutral zone classifier in 

Definition 2 with *

1 0.1404102L  , *

3 0.0062533L  , *

4 0.6698374L   and 

*

6 0.1724142L   and the Bayes classifier in(2.11).  The classification of each observation 

was identical for both classifiers.  This illustrates the boundaries for neutral zone 

classification derived in Theorem 4 are indeed optimal since the neutral zone and Bayes 

classifications are identical.  This example illustrates that one of the cost ratios can be 

smaller than two and still have equivalence between the neutral zone classifier in 

Definition 2 and the Bayes classifier in (2.11). 
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Figure 2.10. Example 3 simulation results. 
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2.3.5. Comments On One L Neutral Zone Classifier 

 In this section we look at some concerns with the version of the three-class neutral 

zone classifier as proposed by Yu et al. (2009).   Note again that all inequalities hold with 

probability one.  Given posterior probabilities, 

0

( ) ( | ) ( ) / ( )
n

k k k i i

i

p y P C k Y y f y f y 


      where if  is the conditional density of the 

thi  class and is estimated based on the training data from that class, let L  be a threshold 

determined by the user, then the neutral zone classifier assigns a class value of N  if 

( ) ( 1)| ( ) ( ) |n np y p y L  .  Where ( ) ( )np y  denotes the largest value among  
0

( )
n

i i
p y


.  For 

our purposes 3n  .  Another way of expressing N if ( ) ( 1)| ( ) ( ) |n np y p y L   is as follows: 

  

       
       
       

0 1 0 2

1 0 1 2

2 0 2 1

0 if     and 

1 if     and ˆ ;
2 if     and 

otherwise

p y p y L p y p y L

p y p y L p y p y L
C y L

p y p y L p y p y L

N

    


   
 

   



 (2.12) 

For a three-class example, Yu et al. (2009) showed that (2.12) can be expressed as: 

  

       
       
       

1 0 1 0

1 0 1 0

1 0 1 0

0 if    1 2  and 

1 if     and  .5 .5 .5ˆ ;
2 if    1 2  and  .5 .5 .5

otherwise

p y p y L p y p y L

p y p y L p y p y L
C y L

p y p y L p y p y L

N

     


     
 

      



 (2.13) 

Figure 2.11 gives us a visual representation of the form of a three-class neutral zone 

classifier when expressed in the form in (2.13).  Then in the neutral zone classifier we 

find the optimal value of L  by minimizing the expected cost function given by: 
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     

     

     

0 2 1

1 2 2

2 1 2

ˆ ˆ ˆ( ) 1| 0 2| 0 | 0

ˆ ˆ ˆ0| 1 2| 1 | 1

ˆ ˆ ˆ0| 2 1| 2 | 2

EC L P C C P C C P C N C

P C C P C C P C N C

P C C P C C P C N C

  

  

  

         
 

         
 

         
 

 

where k  is the prior probability of class k  and i  are the cost ratios associated with the 

misclassifications, 1 1 / NC C   and 2 2 / NC C  .  The costs of a misclassification are 

given in Table 2.8. 

 

True 

Class 

Label 

Predicted Class Label 

0 1 2 N 

0 0 C2 C1 CN 

1 C2 0 C2 CN 

2 C1 C2 0 CN 

Table 2.8. Three class symmetric cost structure.  

 

Furthermore,  ˆ ˆ|P C j C k   is defined as  ˆ( | )

k

j

A

P C j C k f y dy     where 

  ˆ: ;kA y C y L k  .  Then to find the optimal value of L , we search over L  from 0 to 

1 in order to find the value which minimizes the expected cost (Yu et al., 2009). 

 There are some concerns, however, when using the neutral zone classifier defined 

in (2.12).  Note that if we use the definition for neutral zone classification as N if 

( ) ( 1)| ( ) ( ) |n np y p y L  or the two-class neutral zone classifier, the classifier will take on 

the following form: 
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  
   
   
       

0 1

1 0

0 1 1 0

0 if       

ˆ ; 1 if     

if       and  

p y p y L

C y L p y p y L

N p y p y L p y p y L

  


  
    

 (2.14) 

Which substituting    1 0  1  p y p y   into (2.14) yields the following: 

 

 

 

 

1

1

1

1
0 if    

2 2

1ˆ ; 1 if      
2 2

1 1
   

2 2 2 2

L
p y

L
C y L p y

L L
N p y


 




  



   


. 

 Since the one L  neutral zone classifier in (2.14) does not achieve optimal 

boundaries for the N region, except in the case of symmetric cost, we suspect that it is 

also insufficient in the three-class case.   

p1(y)=p0(y)
1

02

p0(y)

p1(y)

1

1

0.5

0.5

p1(y)=1-2p0(y)

p1(y)=0.5-0.5p0(y)

L

L

L/2 N

 

Figure 2.11. Spider plot one L. 
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 In Figure 2.11 we see that we are making three separate sets of comparisons, a 

comparison between class 0 and class 1, class 0 and class 2 as well as class 1 and class 2, 

with each comparison having its own neutral zone region.  Now if each one of these 

comparisons behaves in the same way as separate two-class cases we would need two 

distinct choices of L for each of our three comparisons, or six total choices of L.  

Updating (2.12) to reflect a three-class neutral zone classifier allowing for six choices of 

L would be: 

  

       
       
       

0 1 01 0 2 02

1 0 10 1 2 12

2 0 20 2 1 21

0 if     and 

1 if     and ˆ ;
2 if     and 

otherwise

p y p y L p y p y L

p y p y L p y p y L
C y L

p y p y L p y p y L

N

    


   
 

   



 (2.15) 

Another logical choice might be to allow for one L for each comparison, or three total 

choices of L.  This would have the form: 

  

       
       
       

0 1 0 0 2 0

1 0 1 1 2 1

2 0 2 2 1 2

0 if     and 

1 if     and ˆ ;
2 if     and 

otherwise

p y p y L p y p y L

p y p y L p y p y L
C y L

p y p y L p y p y L

N

    


   
 

   



 (2.16) 

 In order to determine which of our three-class neutral zone classifiers, (2.12), 

(2.15) or (2.16) gives us the minimum expected cost we run a simulation for three 

densities and find our optimal L values.  We use the following densities 

       0 1~ 1.0, 0.9 ,  ~ 2.2, 0.8f y N f y N       ,    2 ~ 4.2, 1.7f y N     

and the cost structure in Table 2.8 with 1 3C  nd 2 2C   The results of the simulation are 

summarized in the following table: 
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 Minimizing L Values Minimum Expected 

Cost 

Run Time 

1-L 0.1 0.5904834 16.3 seconds 

3-L 0.2, 0.1, 0.1 0.5902864 192.1 seconds 

6-L 0.2, 0.3, 0.1, 0.0, 0.3, 

0.1 

0.5902346 210314.2 seconds 

 

 We see that the six L  neutral zone classifier does in fact give us the minimum 

expected cost but it takes 13,144 times longer to run than the one L case.  At such a small 

gain in expected cost the additional run time makes the six L  case impractical to 

implement in a real world setting.  If, however, we use the neutral zone classifier 

proposed in Definition 2 we have shown that we are able to obtain a classifier that is 

equivalent to the Bayes classifier and therefore obtains the minimum with a much quicker 

computation time.  We are also able to obtain a nice visual representation of the classifier 

in Definition 2 as we saw in Figure 2.3. 

 

 

2.4. Neutral Zone Classification in Unsupervised Setting 

2.4.1. Motivation 

 Yu et al. (2009) developed a method to handle a microbial community profiling 

application when labeled data exists.  The outcome of the classifier in this application 

was a classification of either no binding (0), partial binding (1), complete binding (2), or 

a neutral outcome (N) when binding experiments between probes and genes were 

performed. As discussed in the introduction, recent changes in the methodologies in this 
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field have made it impractical to collect training data motivating the need for developing 

a neutral zone classification methodology within an unsupervised setting.  In this section, 

we extend our neutral zone classifier methodology to handle this paradigm by combining 

a-priori knowledge about the correlation between Y and the binding status and an NDE 

algorithm developed by Benaglia et al. (2009).   

 

2.4.2. Nonparametric Density Estimation 

 In order to implement the Bayes neutral zone classifier in (2.11) we need a 

method for determining the underlying class distributions.  However, without training 

data we are unable to estimate these distributions directly.  For our application, which we 

will discuss in more detail in the next section, our data is probe-to-polony binding 

intensity measurements.  For each polony we measure the binding intensity (Y) to each 

probe and seek to classify those intensities as a 0, 1, 2 or N.  The intensity observation 

can be organized into a matrix where the rows correspond to polonies and the columns 

correspond to the probes.   

We classify based on the underlying mixture of class distributions (corresponding 

to the 0, 1 and 2 outcomes of the binding experiment) of each probe.  Since we do not 

know the form of the component distributions, we will estimate them using the EM 

algorithm for NDE described in Benaglia et al. (2009a, 2009b) as follows.  A separate 

EM algorithm for NDE is executed each probe in our data.  Starting with n observations 

corresponding to one of the probes and, in our case, 3m  classes, we will initialize an n 

x m matrix 
0 0( )ijP   where 

0

ij  is the probability of the thi observation belonging to the 
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thj class at the 0th  iteration.  To determine the initial 0P  matrix, we use a 3-class 

clustering algorithm (e.g., k-means algorithm) and arbitrarily assign class labels 0, 1 and 

2 to the outputted clusters.  This will leave 0P  to contain ones and zeros, which works 

well in practice (Benaglia et al., 2009a).  Once we have our initial 0P  matrix each 

iteration of the EM algorithm for NDE consists of the following three steps:   

 

1. For 0t   initialize the 
0 0( )ijP   matrix using k-means where 

0

ij  is the 

probability of the 
thi observation belonging to the 

thj class at the 0th
 iteration.  

2. The E-step:  
 

 
1

ˆ

t t

j j it

ij m t t

k k ik

f x

f x










.  When 0t   we skip this step. 

3. The M-step: 

a. 1

1

/ˆ
n

t t

j ij

i

n 



   where λj are the mixing proportions and t is our 

iteration number.   

b.  1

1
1

1
ˆ

n
t t i
j ijt

ij

u x
f u K

nh h









 
  

 
   where h  is a bandwidth chosen by 

the user and  K   is a kernel density function.  The kernel density 

function typically chosen is the standard normal density function and a 

suitable choice for 1/5 IQR
0.9 min SD,

1.34
h n  
  

 
 which is Silverman’s 

rule of thumb. 
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 In this section, we assume that n is large enough that the resulting NDEs from the 

EM algorithm are accurate.  Once we have our NDEs for each class from EM algorithm, 

we can use them as inputs to the Bayes neutral zone classifier the same way a parametric 

density estimate would be used.  A problem, however, lies in what labels to assign to 

each density estimate (Castelli and Cover, 1995).  When executing the EM algorithm 

above, the initial step assigned class labels arbitrarily.  Having prior knowledge about the 

ordering of the densities allows us to confidently assign these labels.  In particular, Y is 

positively correlated with the class label since stronger intensity measurements 

correspond to more binding.  Therefore, considering the three NDEs, we can label the 

distribution with the smallest mean to be class 0, the distribution with the second largest 

mean to be class 1 and the distribution with the largest mean to be class 2.   

   

2.4.3. Neutral Zone Classifier 

 As an example, in Figure 2.12, we see an overlay of a histogram and an NDE of 

the intensity measurements for corresponding to probe 17.  The mixing proportions for 

the three classes are .751, .121 and .127 from left to right in Figure 2.12.   
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Figure 2.12.  Fitted nonparametric density estimates  

for the three-class mixture for Probe 17. 

 

Using our prior knowledge about the ordering of the groups, we can use output from the 

last NDE-step in the EM algorithm for NDE to obtain estimates of 0 ( )f y , 1( )f y  and 

2 ( )f y  for constructing the Bayes neutral zone classifier in (2.11). Figure 2.13 is the 

graphical representation of the resulting classifier using the cost structure shown by the 
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numerical values in Table 2.2.  Evaluating 0 1( ( ) , ( ))p y p y  for each polony, Figure 2.13 

can be used classify each polony's binding status to probe 17 as a 0, 1, 2 or N .   

 

 

Figure 2.13.  Bayes neutral zone classifier regions for probe 17  

and the numerical cost structure in Table 2.2.  
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2.4.4. Cost and Computational Comparisons 

 Using the Bayes neutral zone classifier in (2.11) as opposed to the neutral zone 

classifier in (2.8) has two substantial benefits, improved accuracy and reduced runtime.  

We can use our example to compare the two classifiers by their estimated expected costs.  

The expected cost for the Bayes neutral zone classifier is obtained by evaluating (2.10) 

after inserting the NDEs, and the expected cost for the neutral zone classifier in (2.8) is 

obtained by evaluating (2.9) where,  ˆ( | )

i

j

A

P C i C j f y dy    where 

 ˆ{ : ; }i NZA y C y L i   is evaluated using Simpson’s Rule where again the NDEs are 

used for  jf y . 

 For probe 17 the Bayes neutral zone classifier has an expected cost of 0.0791 

while the neutral zone classifier in (2.8) has an expected cost of 0.1136.  Also, the 

runtime for the Bayes neutral zone classifier was 5.85 seconds while the runtime for the 

neutral zone classifier (executed on the same computer, Dell Studio 1537, 2.40 GHz, 4.00 

GB) was 330.14 seconds.  Both runtimes include the times spent by the EM algorithm for 

the NDE.  The results for all 40 probes are summarized in Table 2.9.  As we can see the 

results vary by probe, however, the Bayes neutral zone classifier always performs at least 

as good as the neutral zone classifier in terms of expected cost and in some cases 

performs as much as three times better.  Also, computation time of the Bayes neutral 

zone classifier is on the order of 1.7-23.3 minutes smaller than the time needed to 

compute the neutral zone classifier. 
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Computation 

Time (sec) 

Expected 

Cost  

Computation 

Time (sec) 

Expected 

Cost 

Probe Bayes NZ Bayes NZ Probe Bayes NZ Bayes NZ 

1 3.21 566.71 0.127 0.129 22 3.02 554.25 0.038 0.061 

2 10.12 273.05 0.986 0.986 23 4.06 471.06 0.032 0.032 

3 5.19 107.60 0.555 0.577 24 2.78 292.25 0.033 0.033 

4 2.89 428.16 0.085 0.085 25 2.57 600.09 0.033 0.070 

5 8.85 250.37 0.817 0.851 26 2.46 277.12 0.034 0.036 

6 4.97 1403.90 0.086 0.999 27 18.29 118.62 0.991 0.991 

7 2.08 205.71 0.019 0.022 28 2.71 359.10 0.007 0.007 

8 1.98 212.82 0.012 0.015 29 3.18 512.40 0.079 0.079 

9 3.12 695.68 0.017 0.019 30 2.67 569.59 0.004 0.008 

10 2.73 443.69 0.044 0.047 31 1.71 224.35 0.008 0.014 

11 3.71 418.41 0.062 0.065 32 2.47 638.22 0.118 0.146 

12 18.99 281.36 0.992 1.156 33 3.33 560.04 0.005 0.006 

13 1.93 193.76 0.067 0.069 34 3.76 781.50 0.059 0.061 

14 3.51 659.95 0.005 0.005 35 10.05 317.82 0.767 0.907 

15 22.62 220.57 0.591 0.695 36 2.96 375.44 0.444 0.448 

16 4.87 313.31 0.097 0.110 37 2.65 170.97 0.094 0.094 

17 5.85 330.14 0.079 0.113 38 3.09 509.56 0.009 0.009 

18 10.61 653.49 0.308 0.999 39 2.25 354.82 0.007 0.007 

19 14.85 208.27 0.849 0.849 40 12.90 686.78 0.260 0.488 

20 2.49 405.53 0.003 0.006 41 2.98 397.58 0.008 0.009 

21 3.00 392.03 0.005 0.005      

Table 2.9.  Computation time and expected cost  

for each probe in polony example. 

 

2.5. Summary 

 Neutral zone classifiers allow for a region of neutrality when the data is too 

ambiguous to confidently assign a predicted class.  Previous versions of neutral zone 

classifiers have involved computationally complex methods for finding the boundaries 

for classification that minimize expected cost.  We developed a neutral zone classifier 

from a Bayes point of view that significantly reduces the computation time for 
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classification while at the same time reducing the expected cost of the classifier.  We 

extended the original application of neutral zone classifiers to cover the paradigm of 

unsupervised classification.  To do this we, we incorporated use of an EM algorithm for 

NDE into the development of the Bayes neutral zone classifier.  We demonstrated 

superior performance of the Bayes neutral zone classifier with respect to both estimated 

expected cost and computational complexity.    
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Chapter 3  

 

Semi-Supervised Neutral Zone Classification 

3.1. Introduction 

 Supervised learning methods require a large amount of labeled data to obtain 

adequate classification results.  For instance, consider a two-class model, if there is only a 

small number of labeled data available then estimating class densities can often be 

difficult.  Often the labels can be very time consuming or expensive to obtain and there 

are some instances where gathering labeled data is not possible or impractical, such as 

some microbial community profiling applications, which we discussed in the previous 

chapter.  Because of the problems that arise in using solely supervised learning methods, 

it is an intriguing idea to supplement labeled data with unlabeled data.  Unlabeled data 

alone are generally insufficient to yield a classification outcome that is better than a 

random choice because there is no information about the class label (Castelli and Cover, 

1995).  However, when unlabeled data is supplemented with labeled data the 

classification performance can often be improved dramatically. 

 When we are dealing with unlabeled data, the problem is not separating the data 

in classification groups.  The problem lies in declaring which class those groups represent.  

In the case of a two-class unsupervised classification problem, we can often effectively 

separate our data into two groups but are unable to determine which of the groups to label 
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0 and which of the groups to label 1.  Because the best we can do is make a random 

assignment, the probability of an error is equal to 0.5. However, if we can augment our 

unlabeled data with labeled data, even if we can only obtain one labeled observation, we 

can reduce the probability of an error (Castelli and Cover, 1995, Nigam et al., 1999). 

 This chapter deals with component density estimation in the semi-supervised 

setting and not directly with neutral zone classification.  However, it is straightforward to 

apply the neutral zone classification methods introduced in the previous chapter once we 

have our component density estimates.     

 The rest of this chapter is set up as follows.  Section 3.2. details the previous work 

by Castelli and Cover (1995) on the value of a single labeled observation.  In Section 3.3. 

we outline the methodology for implementing semi-supervised classification for the case 

of a mixture of normal distributions and perform a simulation study.  In Section 3.4., we 

consider how semi-supervised classification can be done in a nonparametric way.  

Section 3.5 compares the results of the parametric and nonparametric simulations. 

  

3.2. Importance of Labeled Data 

Determining the relationship between the number of labeled observations l  and the 

number of unlabeled observations u  in relation to the resulting probably of a 

classification error ( , )R l u  was addressed by Castelli and Cover (1995).  They showed 

that labeled data is exponentially more valuable than unlabeled data in reducing ( , )R l u .  

The value of labeled data can be shown using the following framework.  Suppose a label 
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 0,1Y   has a distribution  0P Y    and  1 1P Y    , and let the 

corresponding X  be conditionally distributed with density    |X Y Yf x f x .  Following 

this setup the labeled observations are distributed according to the joint density function

        
1

, 0 1, 1
y y

X Yf x y f x f x 


         

The marginal distribution of X is the two-class mixture distribution  

        0 11f x f x f x    . 

 Let a new observation  0 0,X Y  be distributed from  , ,X Yf x y  but for which only 

0X  is observable.  We want a prediction of  0Y , denoted by 0Ŷ .  If  0f x ,  1f x  and   

are known, then an optimal classifier is given by the Bayes decision rule as follows 

 

 

 

 

 

0 0

1 0

0

0 0

1 0

1
0 if 

ˆ

1
1 if 

f X

f X
Y

f X

f X









 



 

 



 

and the Bayes risk *R , or the probability of an error, is given by 

       
1 0

*

0 0 0 1
ˆ 1

R R

R P Y Y f x dx f x dx       where iR  is the region where 0Ŷ i . 

 When  0f x ,  1f x  and   are unknown, however, the classification problem is 

not as simple as using the previously stated Bayes classifier.  In order to gain an 

understanding of the value of one labeled observation we will assume that  0f x ,  1f x  

and   are unknown, but a training data set contains an infinite number of unlabeled 

samples,  1 2, ,X X  . 
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 Since we have an infinite amount of unlabeled data it is known that we can 

estimate the mixture distribution  Xf x  accurately (McLachlan and Krishnan, 1997).  

Despite being able to estimate the mixture distribution we are unable to construct a 

classification since we do not know which component of the mixture corresponds to 

which label.  Rewrite the mixture distribution as        0 11Xf x g x g x     where 

 0g x  and  1g x  arbitrarily refer to the identified component densities.  That is  0g x  

refers to either  0f x  or  1f x .  Likewise,   is either   or 1  , but we do not know 

which.  When we have an infinite number of unlabeled samples we can recover  0g x , 

 1g x  and   and therefore recover  Xf x .  However, we are unable to determine if 

   0 1 0 1, , , ,g g f f   or if    0 1 1 0, , , ,1g g f f   .  To denote the two different cases 

we define the random variable Z  to take the following values 

 
   
   

0 1 0 1

0 1 1 0

0 if , , , ,

1 if , , , ,1

g g f f
Z

g g f f

 

 

 
 

 
 

With no other information available, one would have to guess at Z , implying that 

   0 1 0.5P Z P Z     (Castelli and Cover, 1995), which corresponds to randomly 

assigning labels to the two components.  In order to make a classification decision on 0X  

when no labeled data is available we follow the following two-step procedure: 

1. Randomly choose  0,1Z   

2. 
       

     

0 0 0 1 0

0 0 1 0

ˆ 1 1

 1

Y Z I g x g x

Z I g x g x

 

 

     

    

 



60 

 

The probability of an error  0 0
ˆP Y Y , using the two-step procedure, can then be 

expressed as: 

 

 

 

       

   

error (error in step 1 AND no error in step 2)

+ no error in step 1 AND error in step 2

error in step 1 no error in step 2 no error in step 1 error in step 2

0.5 no error in step 2 error in step 2

P P

P

P P P P

P P



 

 

0.5

  



 

where we note that since we are guessing at Z  in step 1 then  error in step 1 0.5P   and 

is independent of step 2.   

 When one labeled observation is introduced to the data, however, the 

misclassification rate can be reduced.  The method of classification when we have one 

labeled observation  1 1,X Y  is a two-step procedure developed by Castelli and Cover 

(1995) as follows:  

1. 
       

       

1 11 1

1 1

1 11 1

1 1

11

1 1 1

11

1 1 1

0 if 1 1

1 if 1 1

Y YY Y

Y Y

Y YY Y

Y Y

g X g X
Z

g X g X

   

   









   
 

  

 

2. 
       

     

0 0 0 1 0

0 0 1 0

ˆ 1 1

 1

Y Z I g x g x

Z I g x g x

 

 

     

    

 

Step 2 can be obtained by looking at the case when 0Z   and 1Z   separately.  First, 

looking at the case when 0Z   we have: 

     
     

0 0 1 0

0

0 0 1 0

0 if 1
ˆ

1 if 1

g X g X
Y

g X g X

 

 

  
 

 
 

Then looking at the case when 1Z   we have  
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     
     

1 0 0 0

0

1 0 0 0

0 if 1
ˆ

1 if 1

g X g X
Y

g X g X

 

 

  
 

 
 

which can be represented by the expression in step 2.   

 A classification error then occurs when either step 1 or step 2 gives an incorrect 

answer.  For instance, consider an error in step 1 where 1 0Y   and we assign 1Z   when 

the truth is 0Z  .  In this scenario    0 1 0 1, , , ,g g f f  , however we have assigned 

   0 1 1 0, , , ,1g g f f   .  Then in step 2 we are using the incorrect indicator function 

and will classify 0X  as the opposite of what is true.  If, however, both steps are incorrect 

then the mistakes cancel each other out.  Using the two-step procedure, Castelli and 

Cover (1995) show the probability of an error reduces from 0.5 to  * *2 1R R  which is 

less than twice the Bayes risk of *R . 

  

3.3. Parametric Semi-Supervised Learning 

 In this section we examine the value of labeled data in the parametric setting for a 

two-class problem.  In Section 3.3.1. the general form of the EM algorithm when both 

labeled and unlabeled data are present is developed.  In Section 3.3.2. the EM algorithm 

is derived for a mixture of two normal distributions.  Section 3.3.3. provides an 

illustrative example in the form of a simulation study and Section 3.3.4. compares the 

EM algorithm to the Castelli and Cover procedure.  Finally, Section 3.3.5. looks at the 

EM algorithm for a mixture of exponential distributions. 
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3.3.1. General Form 

 In order to estimate the underlying class distribution in the data we will use the 

EM algorithm.  For the case of semi-supervised learning, the log-likelihood function is 

modified to include both labeled and unlabeled data.  Therefore, the general 

representation of the log-likelihood function in the semi-supervised setting is 

 
           

      

0 11 1 1

0 11

log | , , log 1 |  |

log 1 |  |

ll l u

i i i i i i ii i l i

l u

i ii l

l X Y X y f x y f x

f x f x

 

   



   



 

  

  





θ
 

where  
1

,
l

i i i
X Y


 represents the labeled data,  

1

l u

i i l
X



 
 represents the unlabeled data and 

 0 1, ,  θ .  Our initial data can be organized as follows: 

i  
iX  iY  

1 
1x  1y  

2 
2x  2y  

… … … 

l  lx  ly  

1l   
1lx    

… …  

l u  
l ux    

Table 3.1. General form EM algorithm data format. 

  

 The EM algorithm for labeled and unlabeled data will proceed in the following 

way.   
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1. Set 0t  , where t  represents the current iteration of the EM algorithm.  Calculate 

the initial parameter estimates, in our case  0 0 0 0

0 1
ˆ ˆ ˆˆ , ,  θ , from the labeled 

 ,l lX Y  pairs using the maximum likelihood estimates.  Therefore,  

 0 1ˆ

l

ii
y

l
 


  

     
0

0

0 01

ˆ arg max log 1 |
l

i ii
y f x


 


   

   
1

0

1 11

ˆ arg max log  |
l

i ii
y f x


 


   

2. E-step:  Compute the predicted label probabilities  

  
 

     
1

0 1

ˆˆ |
ˆˆ 1| ,

ˆ ˆˆ ˆ1 | |

t t

it t

i i i t t t t

i i

f x
P y x

f x f x

 


   
  

 
θ   

for all ux X .  Note that  ˆ ˆ0 | , 1t t

i i ip y x   θ .    

3. M-step:  Update the parameter estimates using the maximum likelihood estimates.  

Therefore,  

     1

1 1

ˆ ˆarg max log | , , ,
l ult t

i i i ii i l
l X Y X


 




  
 θ  

  

4. Iterate steps 2 and 3, setting 1t t   before each iteration, until 

         1 1

1 11 1

ˆ ˆˆ ˆlog | , , , log | , , ,
l u l ul lt t t t

i i i i i i i ii ii l i l
l X Y X l X Y X  

 
 

    
 θ θ  where 

  is an acceptable level of convergence (e.g. 510e  ).   

After each iteration of the EM algorithm our data will look as follows: 
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i  
iX  iY   0iP Y    1iP Y   

1 
1x  1y  11 y  1y  

2 
2x  2y  21 y  2y  

… … … … … 

l  lx  ly  1 ly  ly  

1l   
1lx    

1
ˆ1 t

l   1
ˆt

l   

… …  … … 

l u  
l ux    ˆ1 t

l u   ˆt

l u   

Table 3.2. General form EM algorithm data iteration format. 

 

3.3.2. Normal Mixture 

 For our illustration we are interested in two versions of the EM algorithm when 

both labeled and unlabeled data are present, one for a known Normal mixture and one for 

a nonparametric mixture.  In this section we will look at the first version of interest, the 

two-class Normal mixture.  In the previous section the general form for the EM algorithm 

was detailed.  Applying that general form to the two-class Normal mixture situation 

yields a log-likelihood function of 

 
           

      

0 0 1 11 1 1

0 0 1 11

log | , , log 1 | ,  | ,

log 1 | , | ,

ll l u

i i i i i i ii i l i

l u

i ii l

l X Y X y f x y f x

f x f x

   

     



   



 

  

  





θ
 

where  
1

,
l

i i i
X Y


 represents the labeled data,  

1

l u

i i l
X



 
 represents the unlabeled data and  

   0 1 0 0 1 1, , , , , ,        θ .  As in the general case, our data can be organized as 

follows: 
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i  
iX  iY  

1 
1x  1y  

2 
2x  2y  

… … … 

l  lx  ly  

1l   
1lx    

… …  

l u  
l ux    

Table 3.3. Normal mixture EM algorithm data format. 

 

 The EM algorithm when labeled and unlabeled data are present for the two-class 

Normal mixture will proceed in the following way.   

1. Set 0t  , where t  represents the current iteration of the EM algorithm.  Calculate 

the initial parameter estimates, in our case    0 0 0 0 0 0 0 0 0

0 1 0 0 1 1
ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ, , , , , ,        θ , 

from the labeled  ,l lX Y  pairs using the maximum likelihood estimates.  

Therefore,  

 0 1ˆ

l

ii
y

l
 


 

 
 

 
0 1
0

1

1
ˆ

1

l

i ii

l

ii

y x

y
 











        

  
 

2
0

00 1

0

1

ˆ1
ˆ

1

l

i ii

l

ii

y x

y


 



 







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0 1
1

1

 
ˆ

l

i ii

l

ii

y x

y
 







     

 
2

0

10 1

1

1

ˆ
ˆ

l

i ii

l

ii

y x

y


 








 

2. E-step:  Compute the predicted label probabilities  

  
 

     
1 1

0 0 1 1

ˆ ˆ ˆ| ,
ˆˆ 1| ,

ˆ ˆ ˆ ˆ ˆ ˆ1 | , | ,

t t t

it t

i i i t t t t t t

i i

f x
p y x

f x f x

  


     
  

 
θ   

for all  
1

l u

i i l
x X



 
 .  Note that  ˆ ˆ0 | , 1t t

i i ip y x   θ .    

3. M-step:  Update the parameter estimates using the weighted means and variances.  

Therefore,  

 
   
   

1 1 1

0

1 1

ˆ1 1
ˆ

ˆ1 1

l u t

i i i it i i l

l u t

i ii i l

y x x

y






   

  

  


  

 

 
   

 
     

   

2 2
1 1

0 01 1 1

0

1 1

ˆˆ ˆ1 1
ˆ

ˆ1 1

l ut t t

i i i it i i l

l u t

i ii i l

y x x

y

  




 

   

  

    


  

 

 
 

 
1 1 1

1

1 1

ˆ 
ˆ

ˆ

l u t

i i i it i i l

l u t

i ii i l

y x x

y






   

  






 

 
 

 
   

2 2
1 1

1 11 1 1

1

1 1

ˆˆ ˆ
ˆ

ˆ

l ut t t

i i i it i i l

l u t

i ii i l

y x x

y

  




 

   

  

  




 

 
 

 1 1 1
ˆ

ˆ

l l u t

i it i i l
y

l u






   





 
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4. Iterate steps 2 and 3, setting 1t t   before each iteration, until  

         1 1

1 11 1

ˆ ˆˆ ˆlog | , , , log | , , ,
l u l ul lt t t t

i i i i i i i ii ii l i l
l X Y X l X Y X  

 
 

    
 θ θ  where 

  is an acceptable level of convergence (e.g. 510e  ).   

As in the previous section, after each iteration of the EM algorithm our data will look as 

follows: 

i  
iX  iY   0iP Y    1iP Y   

1 
1x  1y  11 y  1y  

2 
2x  2y  21 y  2y  

… … … … … 

l  lx  ly  1 ly  ly  

1l   
1lx    

1
ˆ1 t

l   1
ˆt

l   

… …  … … 

l u  
l ux    ˆ1 t

l u   ˆt

l u   

Table 3.4. Normal mixture EM algorithm data iteration format. 

    

3.3.3. Simulation Study 

 Previous literature has established that supplementing unlabeled data with labeled 

data will improve classification results.  We provide numerical insight, when dealing with 

a two-class Normal mixture with common variance, as to the situations when 

performance is improved most in relation to the Mahalanobis distance between the two 

classes.  Mahalanobis distance is defined as 1 2d     .  For each Mahalanobis 

distance that we test  0.5,1,2,4 , various unlabeled and labeled data sample size 

combinations are examined in order to find the smallest labeled data sample size that 

provides a significant improvement over classification that uses solely labeled data.  It is 
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important to note that typically the results of unsupervised methods provide no better 

than a random outcome (Castelli and Cover, 1995), however, as explained in the previous 

chapter regarding the microbial community profiling application we will assume that 

unsupervised methods are of value since we have prior knowledge of group labels based 

on the ordering of their respective means. 

            The simulation study is setup in the following manner.  First, choose parameter 

values from which the data will be simulated.  For a normal mixture in the two-class case 

the density function with common variance can be expressed as 

     0 1 0 1 0 0 1 1; , , , , ; , ; ,f x N x N x             therefore the parameter values we 

must choose are  0 1 0 1, , , ,      .  Then, after the parameter values are determined, 

we must simulate three sets of data:  labeled data, unlabeled data and a test dataset which 

will be used to evaluate classification accuracy.  The sample sizes of both the labeled data 

and unlabeled data will be varied to investigate how the accuracy varies.  The sample size 

of the test set is chosen to be 10,000 so that the estimated misclassification rates are 

trustworthy.  For each combination of labeled and unlabeled data we average the error 

rates on the test set over 25 simulation replicates.     

 After the data sets are simulated the EM algorithm is executed as described in 

Section 3.3.2.  Once there is convergence in the EM algorithm and our respective class 

densities are estimated we classify the test set using a standard Bayes classifier.  In order 

to show that augmenting unlabeled data with labeled data improves the classification 

error rates we calculated the average error rates of the classifier over all the simulation 

replications and categorized the situations based on the Mahalanobis distance, 
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1 2d     ,  between the two class densities.  Based on our simulations there was not 

a significance difference in the error rate when different parameter values were used but 

the Mahalanobis distance was equal.   

 The tables below show the results for four different Mahalanobis distances, 0.5, 1, 

2 and 4.  For instance, when the Mahalanobis distance between the two groups is 0.5 then 

we see a significant improvement when up to 200 labeled observations are added to 100 

and 500 unlabeled observations and when up to 100 labeled observations are added to 

1,000 and 10,000 unlabeled observations.  This guideline tells us that when we are 

dealing with either 100 or 500 unlabeled observations it is best to augment with up to 200 

labeled observations and when we are dealing with either 1,000 or 10,000 unlabeled 

observations it is best to augment with up to 100 labeled observations when our 

Mahalanobis distance is 0.5.  After these points there is a diminishing return on the value 

of additional labeled observations.  The plot below shows this relationship graphically 

when the Mahalanobis distance is 0.5.   

 For the case when the Mahalanobis distance is 1 then we see a leveling off of the 

benefit of additional labeled data points for all unlabeled sample sizes at 100 labeled 

observations.  Therefore, if our data set has a Mahalanobis distance of 1 then we would 

see the best cost benefit in improving our classification error rate if we were able to 

obtain up to 100 labeled observations.  This relationship is illustrated in the figure below 

labeled for a Mahalanobis distance of 1.  When the Mahalanobis distance between the 

two groups is 2, however, we see from the table below that we only need 5 labeled 

observations before we see the first significant improvement in the classification error 
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rate.  In addition, when the Mahalanobis distance between the two groups is 4, we only 

need 1 labeled observation to realize a significant improvement in classification error rate.   

This relationship is illustrated in the figures below for a Mahalanobis distance of 2 and 4, 

respectively.  

 The results illustrated in the tables below indicate the value of semi-supervised 

classification and show, in relationship to Mahalanobis distance, the amount of labeled 

data necessary before we have seen a leveling off of the classification error rates, 

meaning that by adding more labeled data we will no longer see any significant 

improvement in the classification results.  We can see as per the earlier discussion that 

adding even 1 labeled observation will yield significantly better results than the case 

when there are no labeled observations.  For example, the Mahalanobis distance of 0.5 

(e.g.  0 1 0 10.5, 0.5, 1, 3, 4           ) has a true error rate of 

   
2

*

2
0.401295 0.5 ;1,4 0.5 ;3,4R N x dx N x dx




    , and therefore 

 * *2 1 0.4805R R   which is close to the simulated values of the error rate when 1 

labeled observation is present in the data.  
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Error Rates (Mahalanobis Distance = 0.5) 

 0 1 0 10.5, 0.5, 1, 3, 4            

 Unlabeled 

Labeled 100 500 1000 10000 

0 0.4976 0.4983 0.5055 0.5019 

1 0.4791 0.4601 0.4698 0.4677 

2 0.4745 0.4569 0.4673 0.4626 

5 0.4721 0.4546 0.4649 0.4603 

10 0.4697 0.4524 0.4626 0.4580 

20 0.4614 0.4417 0.4532 0.4487 

50 0.4360 0.4343 0.4408 0.4363 

100 0.4321 0.4252 0.4132 0.4091 

200 0.4106 0.4042 0.4112 0.4071 

500 0.4017 0.4032 0.4017 0.3977 

1000 0.4035 0.4008 0.4037 0.3997 

 margin of error = .01 

Table 3.5. Parametric semi-supervised  

classification results Mahalanobis distance = 0.5. 

 

 

Figure 3.1. Parametric semi-supervised  

classification results Mahalanobis distance = 0.5. 

  



72 

 

Error Rates (Mahalanobis Distance = 1) 

 0 1 0 10.5, 0.5, 1, 3, 2            

 Unlabeled 

Labeled 100 500 1000 10000 

0 0.4935 0.5091 0.5012 0.4987 

1 0.4409 0.4113 0.4129 0.4145 

2 0.4384 0.4060 0.4040 0.4036 

5 0.3715 0.3562 0.3672 0.3636 

10 0.3696 0.3544 0.3654 0.3618 

20 0.3496 0.3548 0.3373 0.3339 

50 0.3394 0.3378 0.3338 0.3325 

100 0.3113 0.3130 0.3155 0.3124 

200 0.3102 0.3097 0.3099 0.3068 

500 0.3090 0.3093 0.3079 0.3049 

1000 0.3092 0.3084 0.3097 0.3066 

 margin of error = .01 

Table 3.6. Parametric semi-supervised  

classification results Mahalanobis distance = 1. 

 

 

Figure 3.2. Parametric semi-supervised  

classification results Mahalanobis distance = 1. 
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Error Rates (Mahalanobis Distance = 2) 

 0 1 0 10.5, 0.5, 1, 3, 1            

 Unlabeled 

Labeled 100 500 1000 10000 

0 0.5042 0.4991 0.5034 0.4991 

1 0.2445 0.2367 0.2198 0.2031 

2 0.2433 0.2273 0.2171 0.1978 

5 0.2028 0.1748 0.1737 0.1720 

10 0.2017 0.1740 0.1728 0.1711 

20 0.1715 0.1633 0.1667 0.1650 

50 0.1627 0.1632 0.1655 0.1639 

100 0.1605 0.1631 0.1628 0.1612 

200 0.1598 0.1580 0.1609 0.1593 

500 0.1594 0.1593 0.1580 0.1565 

1000 0.1584 0.1587 0.1580 0.1564 

 margin of error = .01 

Table 3.7. Parametric semi-supervised  

classification results Mahalanobis distance = 2.    

 

 

Figure 3.3. Parametric semi-supervised  

classification results Mahalanobis distance = 2. 
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Error Rates (Mahalanobis Distance = 4) 

 0 1 0 10.5, 0.5, 1, 3, 0.5            

 Unlabeled 

Labeled 100 500 1000 10000 

0 0.5010 0.4975 0.4963 0.5034 

1 0.0559 0.0367 0.0349 0.0328 

2 0.0541 0.0312 0.0308 0.0304 

5 0.0451 0.0240 0.0237 0.0234 

10 0.0449 0.0239 0.0235 0.0232 

20 0.0267 0.0240 0.0233 0.0231 

50 0.0246 0.0231 0.0234 0.0232 

100 0.0244 0.0228 0.0230 0.0228 

200 0.0235 0.0234 0.0226 0.0224 

500 0.0233 0.0233 0.0225 0.0223 

1000 0.0231 0.0223 0.0225 0.0223 

 margin of error = .01 

Table 3.8. Parametric semi-supervised  

classification results Mahalanobis distance = 4. 

 

 

Figure 3.4. Parametric semi-supervised  

classification results Mahalanobis distance = 4. 
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3.3.4. One Labeled Observation Comparison 

 While the EM algorithm outlined in Section 3.3.3. would require at least 2 labeled 

observations from each component in order to calculate initial parameter estimates we 

can get around this issue by performing the EM algorithm for a grid of starting values and 

choosing the result with the maximum likelihood as our final component estimates 

(Nigam et al., 1999).  To illustrate this consider a situation where the Mahalanobis 

distance is 4, for instance  0 1 0 1 0 10.5, 5, 9, 1           .  Simulating unlabeled 

data of size 100,000 and one labeled observation from group 0 we get unique maximum 

likelihood estimates for our parameters as 

 0 1 0 1 0 1
ˆ ˆ ˆ ˆ ˆ ˆ0.499, 0.501, 5.002, 9.004, 0.993, 1.001           .  Once we have our 

estimates we can then proceed to the classification step.   

 Next we will compare the EM algorithm to the procedure outlined by Castelli and 

Cover (1995).  We use the same population parameters and unlabeled data sample size of 

100,000 to ensure accurate parameter estimates which is necessary for the Castelli and 

Cover procedure.  After estimating the parameters and performing the classification step 

the EM algorithm has a misclassification rate of 0.0227 and the Castelli and Cover 

procedure has a misclassification rate of 0.0227.  This suggests the EM algorithm, 

together with the subsequent Bayes classifier, is equivalent to the Castelli and Cover 

procedure. 
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3.3.5. Semi-Supervised Exponential Simulation 

 In Section 3.3.3. we looked at the simulation results using a mixture of two 

Normal distributions to determine if classification results could be improved by adding 

labeled data to unlabeled data.  The resulting semi-supervised classification showed that 

for various Mahalanobis distances adding labeled data up to a certain amount would 

improve the classification error rates.  In order to determine if other distributions behave 

similarly we looked at a mixture of two exponential distributions.  To compare the results 

of the normal distribution and exponential distribution we will use the Kullback-Leibler 

divergence which is defined as 
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The Kullback-Leibler divergence for a Normal distribution is  
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 
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exponential distribution is 1 1
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log 1
 

 

 
  

 
.  Therefore, for our example with a 

Mahalanobis distance of 1 our parameters for the Normal distribution are 

 0 1 0 10.5, 0.5, 1, 3, 2            which gives a Kullback-Leibler divergence of 

0.5.  Using a mixture of exponential distributions with mean equal to 1 and 2.35 and 

mixing proportion equal to 0.5 we also have Kullback-Leibler divergence of 0.5.  Using 

these parameters and repeating the simulation experiment for the exponential mixture we 

see the error rate improve by adding up to 100 labeled observations.  The results of this 

simulation are similar to that of the Normal setting with the same Kullback-Leibler 
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divergence where we also saw significant improvement for up to 100 labeled 

observations.  This provides evidence that for different distributions the results of adding 

more labeled observations will be similar. 

Error Rates (Exponential Mean = (1,2.35)) 
 

 Unlabeled 

Labeled 100 500 1000 10000 

2 0.4719 0.4589 0.4290 0.4272 

5 0.4765 0.4165 0.4197 0.4093 

10 0.4237 0.4195 0.4093 0.4116 

20 0.3783 0.3746 0.3713 0.3749 

50 0.3694 0.3639 0.3633 0.3634 

100 0.3507 0.3478 0.3534 0.3528 

200 0.3503 0.3524 0.3477 0.3496 

500 0.3486 0.3484 0.3477 0.3506 

1000 0.3480 0.3483 0.3467 0.3495 

 margin of error = .01 

Table 3.9. Parametric semi-supervised classification  

results for an exponential mixture. 

 

 

Figure 3.5. Parametric semi-supervised classification  

results for an exponential mixture. 
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3.4.  Nonparametric Semi-Supervised Learning 

 In this section we examine the value of labeled data in the two-class 

nonparametric setting.  In Section 3.4.1. a nonparametric EM algorithm for semi-

supervised learning is presented.  Section 3.4.2. provides an illustrative example in the 

form of a simulation study. 

 

3.4.1. Nonparametric EM Algorithm 

 In this section we introduce a nonparametric EM algorithm when both labeled and 

unlabeled data are present for a two-class mixture model.  In Chapter 2, we introduced 

the nonparametric EM algorithm developed by Benaglia et al. (2009a, 2009b).  The 

nonparametric EM algorithm is an unsupervised learning method, however when labeled 

data is present we can utilize that information in combination with the unlabeled data and 

improve on the classification results of the unsupervised method.  

 The nonparametric EM algorithm for semi-supervised learning is setup in the 

following way for the case when we have 2m   classes.  Starting with l  labeled 

observations and u  unlabeled observations, we will initialize an 2n  matrix 
0 0( )ijP p  

where 
0

ijp  is the probability of the thi observation belonging to the thj class at the 0th  

iteration and n l u  .  As in the unsupervised setting, an initial 0P  matrix must also be 

determined in the semi-supervised setting.  In the unsupervised setting, a clustering 

algorithm such as the k-means algorithm is used to arbitrarily assign class labels which 

leaves 0P  to contain ones and zeroes (Benaglia et al., 2009a).  In the semi-supervised 
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setting we again will use a clustering algorithm to assign class labels, however, the labels 

will not be arbitrary.  Instead of arbitrary labels, the labeled data is utilized in 

determining the initial 0P  matrix.  To do this we use seeded k-means, which is a semi-

supervised k-means clustering algorithm (Basu et al., 2002).  As in the parametric case 

our data can be organized as follows: 

i  
iX  iY  

1 
1x  1y  

2 
2x  2y  

… … … 

l  lx  ly  

1l   
1lx    

… …  

l u  
l ux    

Table 3.10. Nonparametric EM algorithm data format. 

  

 Utilizing labeled data to perform seeding in the k-means algorithm works in the 

following way.  Taking a dataset X , the k-means algorithm generates 2m   clusters 

 
2

1j j
X


 of X  so that the k-means objective function is locally minimized where the k-

means objective function is given by 

 
2

1 i j

m

i jj x X
x 

 
   

 where j  is the mean of the observations in jX .  Now let uX  be the set of unlabeled 

data and lX  be the set of labeled data, or the seed set, where the labels for lX  are 

denoted by lY .  We assume that corresponding to each desired partition jX  of X  there is 

at least one labeled observation.  Each labeled observation is then used to guide the 
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seeded k-means algorithm as follows.  Rather than initializing the k-means algorithm 

from 2m   random means, the initial means are determined as the averages of the 

labeled observations (Basu et al., 2002).   

 Once we have completed the semi-supervised or seeded k-means 

initialization of the 0P  matrix each iteration of the nonparametric EM algorithm for NDE 

consists of the following three steps:   

 

1. For 0t   initialize the 
0 0( )ijP   matrix using seeded k-means where 

0

ij  is the 

probability of the 
thi observation belonging to the 

thj class at the 0th
 iteration. 

2. The E-step:  
 

 
1

ˆ

t t

j j it

ij m t t

k k ik

f x

f x










.  When 0t   we skip this step. 

3. The M-step: 

a. 1

1

/ˆ
n

t t

j ij

i

n 



   where λj are the mixing proportions and t is our 

iteration number.   

b.  1

1
1

1
ˆ

n
t t i
j ijt

ij

u x
f u K

nh h









 
  

 
   where h  is a bandwidth chosen by 

the user and  K   is a kernel density function.  The kernel density 

function typically chosen is the standard normal density function and a 

suitable choice for 1/5 IQR
0.9 min SD,

1.34
h n  
  

 
 which is Silverman’s 

rule of thumb. 
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Note that these three steps are the same as the nonparametric EM algorithm introduced in 

Chapter 2 and that the semi-supervised learning comes from the utilization of the seeded 

k-means algorithm.  After each iteration of the nonparametric EM algorithm our data will 

look as follows: 

i  
iX  iY   0iP Y    1iP Y   

1 
1x  1y  11 y  1y  

2 
2x  2y  21 y  2y  

… … … … … 

l  lx  ly  1 ly  ly  

1l   
1lx    

1
ˆ1 t

l   1
ˆt

l   

… …  … … 

l u  
l ux    ˆ1 t

l u   ˆt

l u   

Table 3.11. Nonparametric EM algorithm data iteration form. 

     

 

3.4.2. Simulation Study 

 In the previous section we outlined a nonparametric EM algorithm for semi-

supervised learning.  In this section we will perform a simulation study to provide 

numerical insight to the benefits of labeled data in the nonparametric setting.  The 

simulation study is implemented in the following manner.  First, simulate three sets of 

data,  ,l lX Y  which denotes the labeled data set, uX  which denotes the unlabeled data 

set and a data set that we will use to test the accuracy of the classifier which we will call 

the test set.  The sample sizes we chose for each of these three data sets are (2, 5, 10, 20, 

50, 100, 200, 500, 1000) for the labeled sets, (100, 500, 1000, 10000) for the unlabeled 



82 

 

sets and 10,000 for the test set.  For this example, as in the parametric setting, we 

simulated data from two Normal distributions of varying Mahalanobis distances.  The 

Mahalanobis distances that we examined were 0.5, 1, 2 and 4.  For each Mahalanobis 

distance, we will perform a simulation for each combination of labeled and unlabeled 

sample size combinations and average the classification error rates over 25 simulation 

replicates of each combination. 

 Once we have simulated the three data sets for the sample sizes of the current 

simulation, we execute the nonparametric EM algorithm for semi-supervised learning on 

our simulated data sets.  First it is necessary to use the labeled data set to estimate the 

starting cluster means for the k-means algorithm.  Therefore, in this two-class simulation 

study the starting cluster means can be estimated by  
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. 

 After the cluster means are calculated, we use seeded k-means to estimate the initial 0P  

matrix and then use the nonparametric EM algorithm to estimate each class density 

function.  The next step after estimating each class density is to perform classification.  

To do this we use a standard Bayes classifier on the test set to determine the predicted 

class of each observation in the test set.  The setup for the Bayes classifier in the semi-

supervised nonparametric setting is similar to the standard Bayes classifier for the 
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parametric case.  First, from the nonparametric EM algorithm we have the estimated 

NDEs for each class,  0f̂ x  and  1f̂ x .  Also, the EM algorithm yields the estimated 

mixing proportions, 0̂  and 1̂ .  Therefore, we will classify an observation according to 

the following   

  

 

   

 

   

0 0

0 0 1 1

0 0

0 0 1 1

ˆˆ
0 if 0.5

ˆ ˆˆ ˆ
ˆ

ˆˆ
1 if 0.5

ˆ ˆˆ ˆ

f x

f x f x
C x

f x

f x f x



 



 





 





 

Then, using the Bayes classifier with our estimated densities, the average error rate is 

calculated for the 10,000 simulation outcomes.   

 As we can see from the tables below adding more labeled data does significantly 

improve the classification results in most cases.  Let us first look at the case when the 

Mahalanobis distance is 0.5, or when the two groups are closest together.  We see that for 

each unlabeled sample size that we can improve the classification results of as we add 

more labeled data.  However, once we reach 50 labeled observations there is a leveling 

off of the benefit of adding more labeled data.  Therefore if the data you are working with 

has a Mahalanobis distance of 0.5 then you would get the most benefit by adding 50 

labeled observations to your unlabeled data.  This is also illustrated in the plot for the 

error rates when the Mahalanobis distance is 0.5.  Next, for the case when the 

Mahalanobis distance is 1, we again see improvement in the classification results for each 

unlabeled data sample size as we add more labeled observations to the semi-supervised 

learning procedure.  In this case, however, we appear to no longer see a significant 
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improvement in the results once we reach 20 labeled observations.  Therefore when the 

data has a Mahalanobis distance of 1 the greatest benefit can be reached by adding 20 

labeled observations to the semi-supervised learning process.  This result can also be seen 

in the plot of the error rates when the Mahalanobis distance is 1.  For the case when the 

Mahalanobis distance between the two groups is 2, there is once again a benefit of adding 

labeled data.  In this case, however, the benefit appears to stop having a significant effect 

on the error rate after adding 5 labeled observations.  Therefore is your data has a 

Mahalanobis distance of 2 then the most cost effective approach for improving the 

classification error rate is to add 5 labeled observations.  This is illustrated as well in the 

plot below for the case of a Mahalanobis distance of 2.  In our last case, when the 

Mahalanobis distance is 4 and therefore has the greatest separation of the two groups, we 

do not see a significant improvement after adding 2 labeled observations.  This means 

that as long as we have one labeled observation from each group we will gain that same 

benefit as if we had 1,000 labeled observations.  This is because the groups are so well 

separated the probability of having an error in the labeled observations is negligible.  As 

in the other cases, the plot below for when the Mahalanobis distance is 4 clearly 

illustrates these findings. 

 In summary, for all the Mahalanobis distances, we can improve the error rates of 

classification by adding labeled data.  Depending on the degree of separation of the two 

groups, or the size of the Mahalanobis distance, the most cost effective labeled sample 

size varies.  For instance, the labeled sample size where we stop seeing a significant 

improvement in the classification results, assuming there is at least one labeled 
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observation in each group, is 50 when the Mahalanobis distance is .5, 20 when the 

Mahalanobis distance is 1, 5 when the Mahalanobis distance is 2 and 2 when the 

Mahalanobis distance is 4.  Therefore as the groups are better separated the need 

probability of a incorrect labeled observation decreases which reduces the number of 

labeled observations that are necessary for improving the classification results in the 

semi-supervised nonparametric learning setting.  
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Error Rates (Mahalanobis Distance = 0.5) 

 Unlabeled 

Labeled 100 500 1000 10000 

2 0.5853 0.5687 0.5075 0.4823 

5 0.5614 0.5460 0.5059 0.4642 

10 0.5590 0.5278 0.4768 0.4470 

20 0.5315 0.5018 0.4638 0.4335 

50 0.5105 0.4881 0.4456 0.4142 

100 0.5023 0.4766 0.4414 0.4103 

200 0.4891 0.4629 0.4396 0.4043 

500 0.4749 0.4383 0.4294 0.4042 

1000 0.4344 0.4259 0.4196 0.4042 

 margin of error = .01 

Table 3.12. Nonparametric semi-supervised  

classification results Mahalanobis distance = 0.5. 

 

 

Figure 3.6. Nonparametric semi-supervised  

classification results Mahalanobis distance = 0.5. 
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Error Rates (Mahalanobis Distance = 1) 

 Unlabeled 

Labeled 100 500 1000 10000 

2 0.4972 0.4430 0.4345 0.4029 

5 0.4722 0.4300 0.3938 0.3893 

10 0.4586 0.3848 0.3759 0.3404 

20 0.4261 0.3723 0.3287 0.3101 

50 0.4135 0.3530 0.3302 0.3104 

100 0.3939 0.3504 0.3290 0.3103 

200 0.3643 0.3422 0.3261 0.3098 

500 0.3482 0.3277 0.3226 0.3104 

1000 0.3291 0.3232 0.3195 0.3099 

 margin of error = .01 

Table 3.13. Nonparametric semi-supervised  

classification results Mahalanobis distance = 1. 

 

 

Figure 3.7. Nonparametric semi-supervised  

classification results Mahalanobis distance = 1. 
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Error Rates (Mahalanobis Distance = 2) 

 Unlabeled 

Labeled 100 500 1000 10000 

2 0.2751 0.2513 0.2158 0.1873 

5 0.2565 0.2021 0.1892 0.1735 

10 0.2476 0.1815 0.1703 0.1665 

20 0.2387 0.1846 0.1709 0.1593 

50 0.2255 0.1794 0.1698 0.1596 

100 0.2115 0.1804 0.1695 0.1594 

200 0.2096 0.1770 0.1666 0.1597 

500 0.1790 0.1699 0.1658 0.1590 

1000 0.1671 0.1651 0.1645 0.1591 

 margin of error = .01 

Table 3.14. Nonparametric semi-supervised  

classification results Mahalanobis distance = 2. 

 

 

Figure 3.8. Nonparametric semi-supervised  

classification results Mahalanobis distance = 2. 
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Error Rates (Mahalanobis Distance = 4) 

 Unlabeled 

Labeled 100 500 1000 10000 

2 0.0460 0.0343 0.0275 0.0277 

5 0.0446 0.0330 0.0283 0.0232 

10 0.0454 0.0317 0.0277 0.0229 

20 0.0425 0.0323 0.0280 0.0231 

50 0.0394 0.0327 0.0273 0.0229 

100 0.0384 0.0321 0.0267 0.0230 

200 0.0363 0.0300 0.0267 0.0231 

500 0.0316 0.0274 0.0263 0.0233 

1000 0.0265 0.0259 0.0245 0.0232 

 margin of error = .01 

Table 3.15. Nonparametric semi-supervised  

classification results Mahalanobis distance = 4. 

 

 

Figure 3.9. Nonparametric semi-supervised  

classification results Mahalanobis distance = 4. 
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3.5.  Parametric vs. Nonparametric Comparison 

 We have discussed in detail the methodology for implementing semi-supervised 

learning via the EM algorithm for the purpose of extending the use of neutral zone 

classifiers beyond the supervised setting.  Our discussion covered both the parametric and 

nonparametric cases.  The EM algorithm for the parametric semi-supervised case is well 

established, however in the nonparametric semi-supervised case we detailed a procedure 

drawing on the semi-supervised k-means algorithm (Basu et al., 2002) and the 

nonparametric EM algorithm (Benaglia et al., 2009a).  The results are fairly similar with 

the parametric case having slightly better performance when the data is simulated from 

two Normal distributions, however as both the labeled and unlabeled sample sizes 

increase the difference in classification accuracy becomes negligible.   

 The most notable difference in performance is in the nonparametric case when 

there is only 100 unlabeled observations.  In this situation the classification error rate is 

much higher than in any of the other situations.  This is because the nonparametric EM 

algorithm requires more observations to accurately estimate each class density.  When the 

sample size increases to 500 unlabeled observations the performance of the 

nonparametric classification aligns more closely the parametric classification results.  All 

of these results show us that when we are dealing with data from an unknown distribution 

that the nonparametric EM procedure for semi-supervised learning outlined in this 

chapter provides an effective method for class density estimation that will yield useful 

classification results when using the Bayes classifier. 
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Chapter 4  

Neutral Zone Classification Clustering 

Effectiveness 

 

4.1. Introduction 

 An OFRG fingerprint vector is a representation of the binding between a polony 

and a set of hybridization probes.  Both a polony and probe are sequences of DNA.  

Probes are very short sequences.  If they bind to the polony we gain information about it 

through knowledge of embedded subsegments.  Binding experiments measure the 

intensity of the binding between the polony and several probes leaving us with a vector of 

intensity values, or fingerprint.  Obtaining accurate fingerprints, however, is often 

challenging for several reasons.  Quantifying the intensity of the probe-polony binding is 

often difficult and can be subject to noise from various factors.   

 Once we have a vector of intensity values we want to cluster similar polonies. 

Ideally we would like to translate the intensity values into binary values where 0 

represents no binding and 1 represents binding.  Because of the noise in the intensity 

values it is not always easy to determine whether a polony binded to a probe.  Therefore 

one method to do this would be to cluster directly on the intensity values using a 

clustering algorithm such as k-means.  Another method is to first classify the intensity 
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values into groups that represent the degree of the probe-polony binding (i.e. no binding, 

partial binding, complete binding) and then to cluster the result of classification 

fingerprints.  It is not entirely clear which approach is better and in this chapter we seek 

to study this question.    

 Performing three-class neutral zone classification on the intensity values gives us 

a fingerprint representation of a polony to multiple probes that is represented by 0, 1, 2 

and N values.  Here, 0, 1 and 2 represent no binding, partial binding and complete 

binding, respectively.  It is these 0, 1, 2 and N values that we can cluster on.  An 

algorithm that is used to cluster the fingerprint vectors that result from neutral zone 

classification is the greedy clique clustering algorithm developed by Figueroa et al. 

(2003).  This algorithm seeks to resolve the N values in the fingerprint produced by the 

neutral zone classification step in order to cluster similar sequences. 

   The rest of this chapter is organized as follows.  In Section 4.2. we provide an 

overview of the greedy clique clustering algorithm developed by Figueroa et al. (2003).  

In Section 4.3. we perform a simulation study to investigate if first performing neutral 

zone classification on the intensity values will lead to better cluster results than if we 

performed clustering only on the intensity values.  In Section 4.4. we summarize the 

findings of our study.    
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4.2. Greedy Clique Clustering Algorithm 

 In order to cluster the fingerprints for each polony we use the greedy clique 

clustering algorithm developed by Figueroa et al. (2003).  The algorithm uses graph 

theory to find suitable clusters and has been developed to work with neutral zone 

classification.  For the three-class neutral zone classifier fingerprints are vectors 

consisting of 0, 1, 2 or N values which represent no binding, partial binding, complete 

binding and neutral, respectively.  For a set of n  polonies there will be a fingerprint that 

corresponds to each polony and the set of all fingerprints will be denoted by 

 1 2, , , nF f f f .  Two relationships between fingerprints that are defined for the 

greedy clique clustering algorithm are resolved fingerprints and compatible fingerprints.  

Fingerprints if  and jf  are considered to be resolved if they do not differ in any location 

and contain no N values.  For example if  0,1,0,0,2if   and  0,1,0,0,2jf   then if  

and jf  are resolved.  Additionally, fingerprints if  and jf  are considered to be 

compatible if they differ only at locations with N values.  For example if 

 0,1, ,0,2if N  and  0,1,0,0,2jf   then if  and jf  are compatible.  After the greedy 

clique clustering algorithm is run on the set of fingerprints F  the result is a set of clusters 

 1 2, , , mC C C C  where iC  is a set of mutually compatible fingerprints. 

 Figure 4.1 represents a possible scenario for fingerprint relationships.  In order to 

understand this figure we must define some terms.  In Figure 4.1 the vertices represent 
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the fingerprints, the edges represent the relationship between compatible fingerprints and 

a clique is the portion of the graph where every two vertices are connected.  Additionally, 

a maximum clique is defined as a clique that contains the largest number of vertices and a 

unique maximal clique is defined as a clique that has all compatible vertices. 

 The greedy clique clustering algorithm can be defined using the following steps: 

1. Search and remove a unique maximal clique uC  from the graph; add uC  to C  

2. Repeat step 1 until no more unique maximal cliques are left. 

3. Search and remove a maximum clique mC  from the graph; add mC  to C . 

4. Repeat step 1 and step 3 until all fingerprints are added to C .  
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Unique Maximal Clique

Clique

Edge:

Compatible 

between 

fingerprints

Vertex:

Fingerprint

Maximum Clique

 

Figure 4.1.  Sample clique graph. 

 

4.3. Simulation Study 

 In order to determine if there is a benefit to performing neutral zone classification 

before the clustering step on the intensity data the following simulation was performed.  

First we choose the number of fingerprints, or expected clusters, as well as the fingerprint 

length.  In this case we chose the number of fingerprints to be 5c   and the fingerprint 

length to be 5K  .   Therefore each of these c  fingerprints of length 5K   corresponds 

to a true cluster.  We then randomly generate the 5c   fingerprints where 
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 1 2, , ,i i i iKC C C C denotes each randomly generated sequence and  0,1,2ijC  .  An 

example of one of the randomly generated fingerprints is as follows: 

i  1iC  2iC  3iC  4iC  5iC  

1 0 0 2 0 1 

2 0 2 1 1 2 

3 0 2 0 1 2 

4 1 0 2 0 1 

5 0 2 1 1 1 

Table 4.1. Simulation study fingerprint example. 

 

Then for each iC  randomly generate in  vectors of intensity measurements  
1

in

ij j
X


, 

where  1 2, , ,ij ij ij ijKX X X X  and  2,
ilijl CX N    for 1,2, ,l K .  Since 

 0,1,2ijC   we need to select values for i  where  0,1,2i  and 2 .  For this 

particular simulation we select 0 1 21, 3, 5      and 2 0.5  .  Also, in , the number 

of intensity vectors we simulate from each fingerprint, is chosen to be  5,5,5,5,2in  .   

 Once the intensity measurements are randomly generated, Bayesian neutral zone 

classification is performed in order to obtain the predicted fingerprint,  
,

1, 1

ˆ ic n

ij
i j

C
 

, for each 

intensity vector,  
,

1, 1

ic n

ij i j
X

 
.  The predicted fingerprints of each intensity vector are then 

run through the greedy clique clustering algorithm to obtain predicted clusters.  We then 

evaluate the accuracy of the predicted clusters by comparing the results to the known, 

simulated clusters for each vector in the following way.  For each grouping size (i.e. pairs, 

triples, quads, etc.), we count the number of incorrect groupings.  Take each pair of 
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intensity vectors, for example  12, 13X X , and compare whether the predicted clusters 

agree with the true clusters in terms of whether the pair should belong to the same cluster.  

In the case of the pair  12, 13X X  both vectors are from cluster 1 so we would expect them 

to be grouped together, whereas the pair  12, 33X X  one vector is from cluster 1 and one 

vector is from cluster 3 therefore we would expect them to not be grouped together.  For 

the simulated example we have 22 choose 2, or 231, total cluster pairs and we evaluate 

the accuracy of the classifier by how many incorrect pairings are made.  We perform the 

same process for all grouping sizes (i.e. triples, quads, etc.). 

 To establish whether performing Bayesian neutral zone classification does in fact 

improve clustering results, comparison to clustering on the intensity vectors is performed 

through the k-means algorithm.  For Bayesian neutral zone classification we use the 

parametric setting and assume known densities.  The cost structure used is given in Table 

4.2. 

True 

Class 

Label 

Predicted Class Label 

0 1 2 N 

0 0 6 8 1 

1 6 0 6 1 

2 8 6 0 1 

Table 4.2.  Cost structure for neutral zone study. 

 

For the k-means clustering step, each intensity vector  
,

1, 1

ic n

ij i j
X

 
 is clustered directly on 

the simulated values without first performing any classification methods.    In order to not 

predetermine the number of clusters, k , in the k-means algorithm a search for the optimal 
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value of k  is performed using average silhouette width (Kaufman and Rousseeuw, 2005).  

The procedure is performed by executing the k-means algorithm over a range of k  and 

choosing the k  value which gives the smallest average silhouette width.  Silhouette width 

is defined as  

 
   

    max ,

b i a i
s i

a i b i


  

where  a i  is the average dissimilarity of i  to all other objects in the cluster containing i  

and  b i  is the smallest average dissimilarity of i  to any cluster created by the k-means 

algorithm.  The results of the k-means clustering algorithm are then compared for 

accuracy in the same manner as the clique clustering results, by comparing the predicted 

cluster of each ijX  grouping size. 

 The results of the simulation are based on 50 trials of the experiment where each 

trial consists first of randomly generating 5c   new fingerprints of length 5K   before 

simulating the vectors of intensity measurements,  
1

in

ij j
X


.  The values of each i  where 

 0,1,2i  and 2  remain unchanged for each trial.  For each group size the clique 

clustering on the Bayesian neutral zone classified values outperforms the k-means 

clustering results.  For example, in a group size of two, clique averages 8.5 mistakes over 

the 50 simulations while k-means averages 14.6 mistakes.  In a group size of three, clique 

averages 14.12 mistakes over the 50 simulations while k-means averages 65.52 mistakes.  

The complete results of each trial are in the following table:
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Mean Incorrect 

Groupings 

Grouping 

Size 

Total 

Groupings 
Clique K-Means 

2 231 8.50 14.60 

3 1,540 14.12 65.52 

4 7,315 12.12 175.88 

5 26,334 6.34 359.82 

6 74,613 2.60 608.20 

7 170,544 0.92 863.08 

8 319,770 0.20 1020.10 

9 497,420 0.02 991.80 

10 646,646 0.00 783.38 

11 705,432 0.00 496.00 

12 646,646 0.00 247.60 

13 497,420 0.00 95.20 

14 319,770 0.00 27.20 

15 170,544 0.00 5.44 

16 74,613 0.00 0.68 

17 26,334 0.00 0.04 

Table 4.3.  Number of incorrect intensity vector pairings for the 

clique and k-means clustering algorithms. 

 

 In addition to the simulation study described above we varied 2  while keeping 

0 1 21, 3, 5      and the cost structure the same as in Table 4.2 in order to see how 

additional variance in data will affect the clustering results.  We used five choices for 

 2 0.2,0.3,0.4,0.5,0.6   and ran the previously described simulation for 10 trials at 

each 2  value.  The incorrect number of pairs and triples are shown in Table 4.4.  As we 

can see from the table that as the variability is introduced into the data the number of 

incorrect pairs and triples increases.   
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 Pairs Triples 

Std. 

Dev. Clique 

K-

Means Clique 

K-

Means 

0.2 0 2.5 0 10 

0.3 0 7 0 25 

0.4 8 12.4 9.6 48.4 

0.5 8.5 14.6 12.1 65.5 

0.6 14 18.3 24.3 82.4 

Table 4.4. Number of incorrect groupings for various 2  values. 

 

 

4.4. Summary 

 We demonstrated that clustering performance of intensity values can be improved 

by first applying Bayesian neutral zone classification rather than only clustering the 

intensity values directly.  For the example presented in Section 4.3. we demonstrated the 

using the greedy clique clustering algorithm is substantially better than performing 

clustering using k-means on the intensity values.  While the simulation does not provide 

evidence that this will always be the case, it does give encouraging results.  Currently, 

Bayesian neutral zone classification and greedy clique clustering algorithm are being 

used in microbial community profiling applications.  In these applications the size of each 

cluster is typically not equal.  This is the setting where using Bayesian neutral zone 

classification proved most effective, which provides encouraging results for the 

usefulness of neutral zone classification in microbial community profiling applications. 
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Chapter 5  

Summary 

 

5.1. Summary 

 Neutral zone classifiers allow for a region of neutrality when the data is too 

ambiguous to confidently assign a predicted class.  Previous versions of neutral zone 

classifiers have involved computationally complex methods for finding the boundaries 

for classification that minimize expected cost.  In Chapter 2, we developed a neutral zone 

classifier from a Bayes point of view that significantly reduces the computation time for 

classification while at the same time reducing the expected cost of the classifier.  Also in 

Chapter 2, we extended the original application of neutral zone classifiers to cover the 

paradigm of unsupervised classification.  To do this we, we incorporated use of an EM 

algorithm for NDE into the development of the Bayes neutral zone classifier.   

 In Chapter 3 we discussed in detail the methodology for implementing semi-

supervised learning via the EM algorithm for the purpose of extending the use of neutral 

zone classifiers in a semi-supervised setting.  The discussion covered both the parametric 

and nonparametric cases.  We demonstrated, using a simulation study, the benefits of 

adding labeled data to unlabeled data and performing semi-supervised learning as 

opposed to unsupervised learning. 
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 Chapter 4 addresses the benefits of utilizing neutral zone classification methods to 

reduce the noise in a data set.  This is an important issue for the microbial community 

profiling application.  We demonstrated that under certain scenarios that there are 

benefits to using neutral zone classification to reduce noise. 

 

5.2. Future Work 

 In Chapter 2 we introduced a method to perform neutral zone classification in the 

unsupervised nonparametric setting.  Potential future work in this area could develop 

rigorous guidelines of when it is appropriate to use nonparametric methods in order to 

avoid any distribution assumptions.    

 For the semi-supervised work in Chapter 3 we focused the analysis mainly on a 

mixture of normal distributions to determine the value of labeled observations.  Future 

work could extend this analysis to other distributions.  A mixture of exponential 

distributions was briefly examined, however, this could be extended to many families of 

distributions to determine how much labeled data is needed to yield the best classification 

improvement. 

 In Chapter 4 we explored through a simulation study whether neutral zone 

classification improves the clustering results over performing clustering on solely the 

intensity values.  Future work could investigate this further by performing extensive 

simulation studies over various distributions to determine when neutral zone 

classification is most effective. 
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Appendix 

 

A. Proof of Theorem 1 

Proof: 

First we will prove for  0 1 1/ 1    .  Consider the case when     i jp y p y  and 

suppose 2j   then we have 0jI   from Lemma 1.  Therefore the Bayes classifier in 

(2.3) reduces to 

  
if 0  

ˆ
if 0 

i

B

i

i I
C y

N I





 

which is equivalent to 

  

 

 

1
if  

ˆ
1

if

j

i

B

j

i

i p y

C y

N p y










 


 (6.1) 

The neutral zone classifier in Definition 1 is defined as  

  
   
   

if
ˆ ;

if

i j i

NZ i

i j i

i p y p y L
C y L

N p y p y L

  
 

 
 

which, since     1i jp y p y  , can be rewritten as  
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  
 

 

1
if

2ˆ ;
1

if
2

i
j

NZ i

i
j

L
i p y

C y L
L

N p y





 



 (6.2) 

Therefore, for    ˆ ˆ ;B NZ iC y C y L  then  

 
1 1 2

         1
2

i
i

i i

L
L

 


     

and since the Bayes classifier is, by definition, optimal it follows that * 1 2 /i iL   . 

 Next suppose    ˆ ˆ ;B NZ iC y C y L .  Let us first consider the case when 

   0 1p y p y  which implies that  1

1

2
p y  .  We know from Definition 1 our neutral 

zone classifier when    0 1p y p y   is defined as 

  
 

 

0
1

0

0
1

1
0 if

2ˆ ;
1

if
2

NZ

L
p y

C y L
L

N p y





 



 

 Let us now look at the Bayes classifier in (2.4).  Since  0 1 1/ 1     then 

0 1

1 1
  1

 
   and the Bayes classifier in (2.4) becomes 

  

 

 

   

1

0

1

1

1 1

0 1

1
0 if  

1ˆ 1 if   1

1 1
if  and  1

B

p y

C y p y

N p y p y





 







  



  

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However,  ˆ 1BC y   since    0
ˆ ˆ ;B NZC y C y L .  This implies that 

1

1 1
1

2
  , or 1 2  , 

since  1

1

2
p y  .  Also, since    0

ˆ ˆ ;B NZC y C y L
 
we have that  

 0
0

0 0

1 1 2
         1

2

L
L

 


     

 

and since the Bayes classifier is, by definition, optimal it follows that *

0 01 2 /L   .  We 

can show similarly for the case when    1 0p y p y  that *

1 11 2 /L   . 

 

Next we will prove for  0 1 1/ 1    .  We have  
0 1

1 1
  1

 
   and the Bayes classifier 

in (2.4) becomes 

  

 

     

 

     

1

1

1
1 1 1

0 1 0 1

1

0

1
1 1 1

0 1 0 1

1
0 if   1

1 1
0 if  and  1  and 

ˆ
1

1 if  

1 1
1 if  and  1  and 

p y

p y p y p y

C y

p y

p y p y p y





   





   


 




    

 


    
 

 

 

Also, since 
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0 1

1 0 1 0

1

0 0 1

1 1
  1

 

1
 

 

   



  

 

  

 


 

 

and  

 

0 1

1 0 1 0

0
0

1

0
1 0 1

1

01
1 0 1

1 1

0 1
1 0 1

1

1

0 1 1

1 1
  1

 

1

1

1
  1

 

   







  




  

 

 
  





  

 

  

  

    

    

 
     

 

  


 

 

Therefore we have that   1

1 0 1 0

1 1
1



   
  


 and our Bayes classifier in (2.4) when 

0 1

1 1
  1

 
   becomes  

  

 

 

1
1

0 1

1
1

0 1

0 if  

ˆ

1 if  

B

p y

C y

p y



 



 


 


 
 
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 First assume 0 1   then for    0 1
ˆ ˆ ; ,B NZC y C y L L  we have that 

 

0
0

1
1

1 1
0

2 2

1 1
0

2 2

L
L

L
L


  


  

 

and since the Bayes classifier is, by definition, optimal it follows that  * *

0 10, 0L L  . 

 Next assume    0 1
ˆ ˆ ; ,B NZC y C y L L .  When    0 1p y p y  then  ˆ 1BC y   

which implies that 1

0 1

1

2



 



, or 1 0  , since  1

1

2
p y  .  Also, when  

   1 0p y p y  then  ˆ 0BC y   which implies that 1

0 1

1

2



 



, or 1 0  , since 

 1

1

2
p y  .  Therefore, for    ˆ ˆ ;B NZ iC y C y L

 
we again must have  

0
0

1
1

1 1
0

2 2

1 1
0

2 2

L
L

L
L


  


  

 

        

Therefore we have 1 0   when    0 1p y p y  and 1 0   when    1 0p y p y  

which implies that 1 0   for    0 1
ˆ ˆ ; ,B NZC y C y L L .  Also, since the Bayes classifier 

is, by definition, optimal it follows that *

0 0L   and *

1 0L  . 
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B.  Proof of Theorem 2 

 Proof: 

Because      i j kp y p y p y   we must have   1/ 2jp y  , and thus  

    1/ 2i kp y p y  .   Hence, 

 

             

            

     
     

2

2 1

0 .

j N i ji k jk k i i j j k ki

N i k k i i j j k ki

N
i k

i i j j k k

I y C f y f y f y f y f y

C f y f y f y f y f y

C
p y p y

f y f y f y

      

    

  

    

    

  
 



 

Similarly, we must have     1/ 2i jp y p y  , and thus   0kI y  .  Consequently, it 

follows that on the branch      i j kp y p y p y  , the Bayes neutral zone classifier in 

(2.11) simplifies to 

 
 
 

if 0  
ˆ

if 0 . 

i

B

i

i I
C y

N

y

yI

 



 

Referring to Figure 2.2 each of the three regions shown represents the union of two of the 

six branches defined by the conditions      i j kp y p y p y  .  For example, the lower 

right region in Figure 2.2 corresponds to the union of the two branches 

     0 1 2p y p y p y   and      0 2 1p y p y p y  .  On each of these two branches, the 

Bayes neutral zone classifier is the same; namely  
 
 

0

0

0 if 0  
ˆ

if 0  
B

I
C y

N I

y

y

 



.  The 

other two regions in Figure 2.2 are justified in a similar way. 
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C. Proof of Theorem 3 

Proof: 

If 0 1 2min[ ( ) , ( ) , ( ) ] 0I y I y I y  , for all y, then at least one of the integrands in (2.10) is 

negative and (2.11) can be alternatively expressed as 

 
0 1 2

1 0 2

2 0 1

( ) min[ ( ) , ( ) ]

( ) min[ ( ) , ( ) ]

2 if (

0 if

ˆ 1 i

) min[ ( ) , ]

f

( )

B

I y I y I y

I y I y I y

I y I y I y

C y













 

which from (2.10) we see is equivalent to 

 

min[ , ]

min[ , ]

0 i

2 if min[ , ]

f

ˆ 1 ifBC y

c a b

a c d

d e f















 

where 

   

   

   

   

   

   

10 0 0 12 2 2

20 0 0 21 1 1

01 1 1 02 2 2

20 0 0 21 1 1

01 1 1 02 2 2

10 0 0 12 2 2

a f y f y

b f y f y

c f y f y

d f y f y

e f y f y

f f y f y

   

   

   

   

   

   

 

 

 

 

 

 

 

Or, equivalently, we classify as 0,1,2k   based on whichever of 
2

0

( )

i k

i i ki

i

f y C




  is the 

smallest. 
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D. Proof of Theorem 4 

Proof: 

We will prove for case m  where       i j kp y p y p y  .  First suppose 0jI   and 

0kI   then the Bayes classifier in (2.11) reduces to  

 
 
 

if 0  
ˆ

if 0 

i

B

i

i h y I
C y

N h y I

  


 
. 

The neutral zone classifier in Definition 2 is defined as  

 
     
     

if
ˆ ;

if

i j m

NZ m

i j m

i g y p y p y L
C y L

N g y p y p y L

   
 

  
.  

Therefore, under condition 1 illustrated in Figure 5.1, for    ˆ ˆ ;Z mB Ny C yC L  the 

following must hold: 

 
 

   

   

*

*

*

ˆ

0

ˆ ; provided we choose 

B

NZ m m

C y i

h y

y y

g y g y

C y L i L g y



 

 

 

  

. 
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h(y)

g(y*)

y
0

g(y)

y*

Condition 1

 

Figure 5.1. Sample plot of condition 1 for Theorem 2. 

And under Condition 2 illustrated in Figure 5.2, for  BC y he following must hold: 

 
 

   

   

*

*

*

0

ˆ provided we choose 

ˆ
B

NZ m

y i

h y

y y

g y g y

C y i

C

L g y



 

 

 

  

. 
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g(y)

g(y*)

y
0

h(y)

y*

Condition 2

 

Figure 5.2. Sample plot of condition 2 for Theorem 2. 
 

Therefore, since the Bayes classifier is, by definition, optimal it follows that  * *

mL g y         

 

Next suppose    ˆ ˆ ;B NZ mC y C y L  then  ˆ
BC y j  and  ˆ

BC y k  which implies from 

(2.11)  that 0jI  nd 0kI   Also since,    ˆ ˆ ;B NZ mC y C y L  we again have that  *

mL g y  

and since the Bayes classifier is, by definition, optimal it follows that  * *

mL g y .    
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