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Abstract

Total positivity for Grassmannians and amplituhedra

by

Steven Neil Karp

Doctor of Philosophy in Mathematics

University of California, Berkeley

Professor Lauren K. Williams, Chair

Total positivity is the mathematical study of spaces and their positive parts, which can
have interesting combinatorial properties as well as applications in areas such as analysis,
representation theory, and theoretical physics. In this dissertation, I study total positivity
in the Grassmannian Grk,n, which is the space of k-dimensional subspaces of Rn. The totally
nonnegative Grassmannian Gr≥0

k,n is the subset of Grk,n where all Plücker coordinates are
nonnegative. In Chapter 2, I generalize a result of Gantmakher and Krein, who showed that
V ∈ Grk,n is totally nonnegative if and only if every vector in V , when viewed as a sequence
of n numbers and ignoring any zeros, changes sign at most k− 1 times. I characterize when
the vectors in V change sign at most k − 1 + m times for any m ≥ 0, in terms of the
Plücker coordinates of V . I then apply this result to solve the problem of determining when
Grassmann polytopes, generalizations of polytopes into the Grassmannian studied by Lam,
are well defined. In Chapter 3, which is joint work with Lauren Williams, we study the (tree)
amplituhedron An,k,m, the image in Grk,k+m of Gr≥0

k,n under a (map induced by a) linear map
which is totally positive. It was introduced by Arkani-Hamed and Trnka in 2013 in order to
give a geometric basis for computing scattering amplitudes in N = 4 supersymmetric Yang-
Mills theory. We take an orthogonal point of view and define a related “B-amplituhedron”
Bn,k,m, which we show is isomorphic to An,k,m, and use the results of Chapter 2 to describe
the amplituhedron in terms of sign variation. Then we use this reformulation to give a cell
decomposition of the amplituhedron in the case m = 1, using the images of a collection
of distinguished cells of Gr≥0

k,n. We also identify An,k,1 with the complex of bounded faces
of a cyclic hyperplane arrangement, and deduce that An,k,1 is homeomorphic to a ball. In
Chapter 4, I study the action of the cyclic group of order n on Gr≥0

k,n. I show that the cyclic
action has a unique fixed point, given by taking n equally spaced points on the trigonometric
moment curve (if k is odd) or the symmetric moment curve (if k is even). More generally, I
show that the cyclic action on the entire complex Grassmannian has exactly

(
n
k

)
fixed points,

corresponding to k-subsets of nth roots of (−1)k−1. I explain how these fixed points also
appear in the study of the quantum cohomology ring of the Grassmannian.
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Chapter 1

Introduction

Total positivity is the study of spaces and their ‘positive’ parts. A classical example is
the case of matrices: a real matrix is totally positive if each of its square submatrices has

positive determinant.1 For example, the matrix

[
1 2
1 4

]
is totally positive, but

[
1 2
4 1

]
is

not. There are two seminal results about totally positive matrices, proved in the 1930s. In
1930, Schoenberg [Sch30] showed that totally positive matrices diminish variation. That
is, given v ∈ Rn, let var(v) be the number of sign changes of v, viewed as a sequence of n
numbers and ignoring any zero components. (For example, if v = (3, 0, 2,−1) ∈ R4, we have
var(v) = 1.) Then var(Mx) ≤ var(x) for any n×k totally positive matrix M and x ∈ Rk. In
1937, Gantmakher and Krein [GK37] showed that the eigenvalues of a square totally positive
matrix are all real, positive, and distinct, and also showed that its eigenvectors satisfy certain
positivity properties. This is a remarkable result, since it gives a large class of non-symmetric
matrices closed under perturbation which are guaranteed to have real eigenvalues. While
we will focus on the discrete aspects of total positivity in this dissertation, we mention that
these results are discrete analogues of continuous results which had been proved by Kellogg
in the 1910s [Kel16, Kel18] and Gantmakher in 1936 [Gan36] for totally positive kernels,
i.e. continuous functions [0, 1]2 → R on the unit square satisfying an analogous positivity
condition.2

Building on the aforementioned work, a general theory of total positivity developed over
the subsequent decades. Two important works in the subject are the textbook of Gantmakher
and Krein [GK50], who were especially interested in applications of totally positive matrices
and kernels to the study of oscillations of mechanical systems,3 and the textbook of Karlin

1The modifier ‘totally’ is used to distinguish totally positive matrices from positive matrices, i.e. matrices
whose entries are all positive.

2Kellogg studied symmetric kernels, and Gantmakher generalized his results to the non-symmetric case.
Kellogg arrived at his work starting from the study of orthogonal functions. These functions were known to
possess positivity properties in many well-known examples, and he decided to make a systematic study of
such positivity properties.

3Their book garnered sufficient interest that the U.S. Atomic Energy Commission released an English
translation of the Russian original in 1961 [GK61].
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[Kar68], who was interested in applications in analysis, including integral equations and
interpolation of functions. We refer to the survey paper of Pinkus [Pin10] for an exposition
of the early history of total positivity.

The theory of total positivity was rejuvenated in the 1990s by Lusztig. As he says in his
seminal paper [Lus94], “I was introduced to the classical totally positive theory for GLn by
Bert Kostant, who pointed out to me its beauty and asked me about the possible connection
with the positivity properties of the canonical bases.” He generalized the theory of total
positivity to any split, reductive, connected, real algebraic group G, by defining a totally
positive part G>0 and generalizing some classical results for the case G = SLn(R) (totally
positive matrices) to arbitrary G. For example, the fact that every totally positive matrix has
distinct and positive eigenvalues may be phrased more generally as follows: every g ∈ G>0 is
contained in a unique orbit of T ∩G>0 under the action of G by conjugation, where T ⊆ G
is a maximal torus.4 He also defined the totally positive part of any partial flag variety G/P
[Lus98]. Fomin and Zelevinsky, interested in finding a more explicit description of G>0 (which
Lusztig had defined in terms of certain distinguished generators), introduced generalized
minors, and showed that these could be used to define G>0 [FZ99, FZ00]. They observed
that these minors obeyed certain three-term relations, which they abstracted to define cluster
algebras [FZ02]. Cluster algebras have since been widely studied, and been applied in diverse
areas such as representation theory, Teichmüller theory, and Poisson geometry.5

An important family of examples both for Lusztig’s total positivity for flag varieties G/P ,
and also for cluster algebras, is provided by Grassmannians. The (real) Grassmannian Grk,n
is the set of k-dimensional subspaces of Rn. Its positive part is defined in terms of certain
projective coordinates ∆I on Grk,n, called Plücker coordinates. Here I ranges over

(
[n]
k

)
, all

k-element subsets of [n] := {1, 2, . . . , n}. Explicitly, given V ∈ Grk,n, take a k × n matrix A
whose rows span V ; then the ∆I(V ) are the k × k minors of the matrix A, where I denotes
the column set used. (The ∆I(V ) depend on our choice of A only up to a global constant,
and so indeed give well defined projective coordinates.) If all nonzero ∆I(V ) have the same
sign, then V is called totally nonnegative, and if in addition no ∆I(V ) equals zero, then V
is called totally positive. For example, if V ∈ Gr2,4 is the row span of the matrix[

1 0 0 −1
−1 2 1 3,

]
,

then its Plücker coordinates are

∆{1,2}(V ) = 2, ∆{1,3}(V ) = 1, ∆{1,4}(V ) = 2, ∆{2,3} = 0, ∆{2,4}(V ) = 2, ∆{3,4}(V ) = 1,

so V is totally nonnegative but not totally positive. We denote the set of totally nonnegative
and totally positive elements of Grk,n by Gr≥0

k,n and Gr>0
k,n, respectively.

Total positivity in the Grassmannian is a special case of Lusztig’s theory of total pos-
itivity for partial flag varieties G/P , where we take G = SLn and P a maximal parabolic

4We refer to Lusztig’s paper [Lus08] for a survey of his results.
5We refer to Williams’s survey paper [Wil14] for an introduction to cluster algebras.
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subgroup.6 Lusztig defined a decomposition of the totally nonnegative part of such a G/P ,
which Rietsch proved is a cell decomposition [Rie98]. In the case of Gr≥0

k,n, each cell is given
by requiring some subset of the Plücker coordinates to be strictly positive, and the rest to
equal zero. There is a unique totally positive cell, namely Gr>0

k,n, where we require all Plücker
coordinates to be positive. Later, Postnikov independently studied the totally nonnegative
Grassmannian Gr≥0

k,n from a combinatorial perspective, giving parametrizations of each cell in
its cell decomposition using certain planar graphs drawn inside a disk, called plabic graphs7.
Besides these plabic graphs, he gave many other sets of objects (all in bijection with each

1

23

4

b

e

a d

c

a, b, c, d, e > 0, abcde = 1

7−→
[
1 0 −abc −(c+ ac)
0 1 1/e acd

]

Figure 1.1: A planar directed graph corresponding to the cell Gr>0
2,4 of the totally

nonnegative Grassmannian Gr≥0
2,4.

other) which label these cells, including decorated permutations, L-diagrams, and Grassmann
necklaces.

In addition to being studied in the context of cluster algebras, the totally nonnegative
Grassmannian and its cell decomposition has been applied to study mirror symmetry [MR],
the KP equation [KW14], and particle physics [AHBC+16]. However, in these exciting
modern developments, the historical connection between total positivity and sign variation
had been largely overlooked. While we believe this connection is interesting in its own right,
the results in this dissertation indicate it also provides a useful tool in studying total positivity
for Grassmannians and especially amplituhedra, objects which were recently introduced in
particle physics. (We will describe these results in more detail below.)

The starting point for much of the work in this dissertation is the following result of
Gantmakher and Krein from 1950. Recall that for v ∈ Rn, var(v) be the number of sign
changes of v (viewed as a sequence of n numbers, ignoring any zeros). We also define

var(v) := max{var(w) : w ∈ Rn such that wi = vi for all 1 ≤ i ≤ n with vi 6= 0},

i.e. var(v) is the maximum number of sign changes of v over all possible choices of sign for
its zero components.

6In fact it is not obvious that Lusztig’s definition is the same as the one we gave; this was proved by
Rietsch [Rie].

7Plabic stands for planar bicolored (in a plabic graph, the vertices in the interior of the disk are each
colored either black or white).
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Theorem 1.0.1 (Theorems V.3 and V.1 of [GK50]).
(i) V ∈ Grk,n is totally nonnegative if and only if var(v) ≤ k − 1 for all v ∈ V .
(ii) V ∈ Grk,n is totally positive if and only if var(v) ≤ k − 1 for all v ∈ V \ {0}.

For example, the two vectors (1, 0, 0,−1) and (−1, 2, 1, 3) each change sign exactly once, and
we can check that any vector in their span V changes sign at most once, which is equivalent
to V being totally nonnegative. On the other hand, var(1, 0, 0,−1) = 3, so V is not totally
positive. Every element of Grk,n has a vector which changes sign at least k − 1 times (put
a k × n matrix whose rows span V into reduced row echelon form, and take the alternating
sum of the rows), so the totally nonnegative elements are those whose vectors change sign
as few times as possible.

Theorem 1.0.1(i) also has the following geometric interpretation, due to Schoenberg and
Whitney [SW51] (who also independently proved part (i)). Let x1, . . . , xn ∈ Rk be vectors
which span Rk, and A be the k × n matrix with columns x1, . . . , xn. Then the polygonal
path with vertices x1, . . . , xn crosses any hyperplane passing through the origin at most k−1
times if and only if all nonzero k × k minors of A have the same sign. Indeed, the number
of times the path crosses the hyperplane through the origin normal to c ∈ Rk \ {0} equals
var(v), where vi = 〈xi, c〉 for i = 1, . . . , n.

In Chapter 2, we generalize Theorem 1.0.1 from the totally nonnegative part of the Grass-
mannian to the entire Grassmannian, by characterizing maxv∈V var(v) and maxv∈V \{0} var(v)
in terms of the Plücker coordinates of V ∈ Grk,n, beyond the case that the maximum is k−1.
Note that we may interpret maxv∈V var(v) as the maximum number of hyperplane crossings
of an associated polygonal path. First we state the result for maxv∈V \{0} var(v).

Theorem 1.0.2. Suppose that V ∈ Grk,n, and m ≥ 0. We have var(v) ≤ k − 1 + m

for all v ∈ V \ {0} if and only if var((∆I∪{i}(V ))i∈[n]\I) ≤ m for all I ∈
(

[n]
k−1

)
such that

∆I∪{i}(V ) 6= 0 for some i ∈ [n].

(See Theorem 2.3.1.) If we take m = 0, then we recover Theorem 3.3.4(ii). For example,

let V ∈ Gr2,4 be the row span of the matrix

[
1 0 −2 3
0 2 1 4

]
, so k = 2. Then the fact that

var(v) ≤ 2 for all v ∈ V \ {0} is equivalent to the fact that

(∆{1,2}(V ),∆{1,3}(V ),∆{1,4}(V )) = (2, 1, 4),

(∆{1,2}(V ),∆{2,3}(V ),∆{2,4}(V )) = (2, 4,−6),

(∆{1,3}(V ),∆{2,3}(V ),∆{3,4}(V )) = (1, 4,−11),

(∆{1,4}(V ),∆{2,4}(V ),∆{3,4}(V )) = (4,−6,−11)

each change sign at most once.
The case of maxv∈V var(v) is more interesting, since the analogue of the necessary and

sufficient condition of Theorem 1.0.2 does not hold for var(·). We say that V ∈ Grk,n is
generic if all Plücker coordinates of V are nonzero.
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Theorem 1.0.3. Let V ∈ Grk,n and m ≥ 0.

(i) If var(v) ≤ k − 1 +m for all v ∈ V , then var((∆I∪{i}(V ))i∈[n]\I) ≤ m for all I ∈
(

[n]
k−1

)
.

(ii) We can perturb V into a generic V ′ ∈ Grk,n such that maxv∈V var(v) = maxv∈V ′ var(v).
In particular, var(v) ≤ m for all v ∈ V if and only if var((∆I∪{i}(V

′))i∈[n]\I) ≤ m − k + 1

for all I ∈
(

[n]
k−1

)
.

(See Section 2.3.) Another way of stating part (ii) is that for any m ≥ 0, the generic elements
in {V ∈ Grk,n : var(v) ≤ k − 1 + m for all v ∈ V } are dense. If m = 0, this recovers the
result of Postnikov (Section 17 of [Pos]) that Gr>0

k,n is dense in Gr≥0
k,n.

In Section 2.5, we use sign variation to study the cell decomposition of Gr≥0
k,n. Recall that

the cell of V ∈ Gr≥0
k,n is determined by which Plücker coordinates of V are nonzero. How

can we determine which Plücker coordinates of V are nonzero from the sign patterns of its
vectors? Given I ⊆ [n] and a sign vector ω ∈ {+,−}I , we say that V realizes ω if there
exists a vector in V whose restriction to I has signs given by ω. It is not difficult to show
that for any V ∈ Grk,n and I ∈

(
[n]
k

)
, we have ∆I(V ) 6= 0 if and only if V realizes all 2k sign

vectors in {+,−}I . Conversely, for any ω ∈ {+,−}I , if n > k there exists V ∈ Grk,n such
that ∆I(V ) = 0 but V realizes all 2k sign vectors in {+,−}I except for ±ω. However, in
the case that V is totally nonnegative, we show that we only need to check k particular sign
vectors in {+,−}I to verify that ∆I(V ) 6= 0.

Theorem 1.0.4. For V ∈ Gr≥0
k,n and I ∈

(
[n]
k

)
, we have ∆I(V ) 6= 0 if and only if V realizes

the 2k (or k up to sign) sign vectors in {+,−}I which have at least k − 2 sign changes.

As a corollary, we describe the Grassmann necklace of V ∈ Gr≥0
k,n in terms of sign patterns

of its vectors.
In the next part of the dissertation, we study amplituhedra, objects recently appearing in

particle physics which we now define. Let m ≥ 0 satisfy k+m ≤ n, and Z be a (k+m)× n
matrix whose (k + m) × (k + m) minors are all positive. We can regard Z as a linear map
from Rn to Rk+m. This induces a map Z̃ on Grk,n, which takes the subspace V of Rn to
the subspace {Zv : v ∈ V } of Rk+m. The (tree) amplituhedron An,k,m(Z) is the image
Z̃(Gr≥0

k,n) in Grk,k+m. For special values of the parameters, we recover familiar objects. If
k +m = n, then the amplituhedron is isomorphic to the totally nonnegative Grassmannian
Gr≥0

k,n. If k = 1, then Gr≥0
1,n is an (n − 1)-simplex, and so the amplituhedron An,1,m(Z),

being the linear projection of a simplex, is a polytope in Pm. The positivity condition on Z
implies that An,1,m(Z) is a cyclic polytope [Stu88], i.e. it is combinatorially equivalent to a
polytope whose vertices lie on the moment curve (1 : t : t2 : · · · : tm). Cyclic polytopes were
defined Carathéodory [Car11], and have remarkable properties. For example, they have the
maximum number of faces of each dimension [McM70, Sta75].

Amplituhedra were introduced in 2013 by the physicists Arkani-Hamed and Trnka in
their study of scattering amplitudes in particle physics [AHT14]. A scattering amplitude is a
complex number whose norm squared equals the probability of observing a certain scatter-
ing process. In 2012, a collaboration of physicists and mathematicians made an astonishing
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Figure 1.2: The amplituhedron A6,1,3(Z) is a cyclic polytope with 6 vertices in R3.

connection between the study of scattering amplitudes in N = 4 supersymmetric Yang-Mills
theory and the totally nonnegative Grassmannian [AHBC+16]. Namely, they showed that
one could use the BCFW recursion [BCF05, BCFW05] to express the leading order term of
the scattering amplitude as the sum of integrals over certain 4k-dimensional cells of Gr≥0

k,n.
(Here n is the number of particles, and k records the helicity of the particles.) Building
on this work, Arkani-Hamed and Trnka [AHT14] asserted that one can assemble these 4k-
dimensional cells into a single object, which they call an amplituhedron. (In this application
m equals 4, though amplituhedra are interesting mathematical objects for any m.) They
verified this statement by computer using extensive sampling, but it has not been mathe-
matically proven. It is an important open problem in this area, and techniques employed
to solve it will likely yield more insight into amplituhedra and scattering amplitudes, and
hopefully total positivity more generally.

1

2

34

5

6

{1, 2, 3, 4, 6}

1

2

34

5

6

{1, 2, 4, 5, 6}

1

2

34

5

6

{2, 3, 4, 5, 6}

Figure 1.3: In the case k = 1, n = 6, the BCFW recursion outputs 3 plabic graphs, which
correspond to cells of Gr≥0

1,6. Their images under Z̃ triangulate the cyclic polytope A6,1,4(Z)
by 3 simplices. The vertex labels of the simplices are given below each graph.

Conjecture 1.0.5 (Arkani-Hamed, Trnka [AHT14]). The amplituhedron An,k,4(Z) is “trian-
gulated” by the images under Z̃ of the 4k-dimensional cells of Gr≥0

k,n coming from the BCFW
recursion.
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We will have more to say about this problem, but first we return to the definition of the
amplituhedron: why is it that it is well defined? That is, given V ∈ Grk,n, why does the
subspace Z̃(V ) of Rk+m have dimension k? This does not hold for all (k +m)× n matrices
Z, but it holds if Z has positive maximal minors (which is required in constructing the
amplituhedron An,k,1(Z)). Lam [Lam16b] proposed studying the images Z̃(Gr≥0

k,n) beyond

the case that Z has positive maximal minors. In the case that Z̃ is well defined, he calls
such an image a (full) Grassmann polytope. When k = 1 Grassmann polytopes are precisely
polytopes in Pm, so Grassmann polytopes generalize polytopes into the Grassmannian (while
amplituhedra generalize cyclic polytopes). Lam showed that Z̃ is well defined if the row span
of Z in Rn contains a totally positive k-dimensional subspace. We use sign variation to give
a necessary and sufficient condition for the map Z̃ to be well defined, and use Theorem 1.0.2
to translate it into a condition on the maximal minors of Z (see Section 2.4).

Theorem 1.0.6. Let Z be a (k+m)×n matrix (k+m ≤ n), which we also regard as a linear
map Rn → Rk+m, and let W ∈ Grd,n be the row span of Z. The following are equivalent:
(i) the map Z̃ is well defined, i.e. dim(Z̃(V )) = k for all V ∈ Gr≥0

k,n;
(ii) var(v) ≥ k for all nonzero v ∈ ker(Z); and
(iii) var((∆I\{i}(W ))i∈I) ≤ d− k for all I ∈

(
[n]
d+1

)
such that W |I has dimension d.

When I published Theorem 1.0.6, I left it as an open problem to determine whether
Lam’s condition is not only sufficient for Z̃ to be well defined, but also necessary. In March
2017, Pavel Galashin informed me that he found an example of a matrix Z which does not
satisfy Lam’s condition, but still gives a well-defined Grassmann polytope.8

In Chapter 3, which is joint work with Lauren Williams, we study the amplituhedron
An,k,m(Z) in the case m = 1. Recall that when k = 1, the amplituhedron is a cyclic polytope
in Pm. We show that when m = 1, the amplituhedron can be identified with the complex of
bounded faces of a certain hyperplane arrangement of n hyperplanes in Rk, called a cyclic
hyperplane arrangement. As a first step in our construction, we take orthogonal complements
and define (for any m) a related “B-amplituhedron”

Bn,k,m(W ) := {V ⊥ ∩W : V ∈ Gr≥0
k,n} ⊆ Grm(W ),

which we show is homeomorphic to An,k,m(Z), where W ∈ Gr>0
k+m,n is the subspace of Rn

spanned by the rows of Z (see Section 3.3). In the context of scattering amplitudes (m =
4), W is the span of 4 bosonic variables and k fermionic variables. Using the result of
Gantmakher and Krein (Theorem 1.0.1), we can show that

Bn,k,m(W ) ⊆ {X ∈ Grm(W ) : k ≤ var(v) ≤ k +m− 1 for all v ∈ X \ {0}}. (1.0.7)

It is an important problem to determine if equality holds, since it would give an intrinsic
description of the amplituhedron which does not mention Gr≥0

k,n. If equality does hold, then

8Lam has proposed calling the image Z̃(Gr≥0k,n) a tame Grassmann polytope if Z satisfies his condition,
and a wild Grassmann polytope otherwise.
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A3,2,1 A4,2,1 A5,2,1 A6,2,1

A4,3,1 A5,3,1 A6,3,1

Figure 1.4: The amplituhedron An,k,1(Z) as the complex of bounded faces of a cyclic
hyperplane arrangement of n hyperplanes in Rk, for k = 2, 3 and n ≤ 6.

we can apply the results of Chapter 2 to give an alternative description in terms of sign
changes of Plücker coordinates (see Corollary 3.3.22). This description is similar to one
independently conjectured by Arkani-Hamed, Thomas, and Trnka [AHTT].

In the case m = 1, it follows from Lemma 2.4.1 that equality holds in (1.0.7), i.e.

Bn,k,1(W ) = {w ∈ P(W ) : var(w) = k} ⊆ P(W ).

Modeling the m = 4 case, we define a BCFW-like recursion in the case m = 1, which we
use to produce a subset of k-dimensional “BCFW cells” of Gr≥0

k,n, whose images we show
triangulate the m = 1 amplituhedron.

Theorem 1.0.8. Let Z be a (k + 1)× n matrix with positive (k + 1)× (k + 1) minors, and
W ∈ Gr>0

k+1,n the row span of Z.

(i) The amplituhedron An,k,1(Z) is homeomorphic to the subcomplex of cells of Gr≥0
k,n induced

by the k-dimensional m = 1 BCFW cells.
(ii) The amplituhedron An,k,1(Z) is homeomorphic to the bounded complex of a cyclic hyper-
plane arrangement of n hyperplanes in Rk.

We describe when two cells of An,k,1(Z) are adjacent, and which cells lie on the boundary.
We also determine when an arbitrary cell of Gr≥0

k,n is mapped injectively by Z̃ to the ampli-
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tuhedron An,k,1(Z), and if so, describe its image. We then show that our construction in
part (ii) extends to tame Grassmann polytopes in the case m = 1: from Z, we can construct
a hyperplane arrangement whose bounded complex is homeomorphic to Z̃(Gr≥0

k,n).
It is known that the totally nonnegative Grassmannian has a remarkably simple topol-

ogy: it is contractible with boundary a sphere [RW10], and its poset of cells is Eulerian
[Wil07]. While there are not yet any general results in this direction beyond the case k = 1,
calculations of Euler characteristics [FGMT15] indicate that the amplituhedron An,k,m(Z) is
likely also topologically very nice. Theorem 1.0.8(ii), together with a result of Dong [Don08],
implies that the m = 1 amplituhedron is homeomorphic to a closed ball.

In Chapter 4, the final part of this dissertation, we study the cyclic symmetry of the
Grassmannian and its totally nonnegative part. For this part, it makes more sense for
us to work with the complex Grassmannian Grk,n(C) of k-dimensional subspaces of Cn.
We regard the totally nonnegative Grassmannian Gr≥0

k,n as the subset of Grk,n(C) where all
Plücker coordinates are real and nonnegative.

For each k and n, we define an action of the cyclic group of order n on Grk,n(C), as
follows. We let σ ∈ GLn(C) be given by

σ(v) := (v2, v3, . . . , vn, (−1)k−1v1) for v = (v1, . . . , vn) ∈ Cn,

and for V ∈ Grk,n(C), we denote by σ(V ) the subspace {σ(v) : v ∈ V } ∈ Grk,n(C). In terms
of Plücker coordinates, σ acts on Grk,n(C) by rotating the index set [n]. Hence σ on Grk,n(C)
is an automorphism of order n, which restricts to an automorphism of Gr≥0

k,n. This provides a
“cyclic symmetry” which is manifest in much of the combinatorics unique to total positivity
in the Grassmannian (as opposed to e.g. total positivity for matrices). For example, the
cyclic action acts on plabic graphs (see Figure 1.3), which index cells of Gr≥0

k,n, by shifting

the labels of the boundary vertices. Also, the poset of cells of Gr≥0
k,n is described in terms

of decorated permutations by an analogue of Bruhat order called circular Bruhat order (see
Section 17 of [Pos]). Our main result in Chapter 4 is the following.

Theorem 1.0.9. The cyclic shift map σ on Grk,n(C) has exactly
(
n
k

)
fixed points, each of

the form span{(1, zj, . . . , zn−1
j ) : 1 ≤ j ≤ k} for some k distinct nth roots z1, . . . , zk ∈ C of

(−1)k−1. Precisely one of these fixed points is totally nonnegative, corresponding to the k
roots z1, . . . , zk closest to 1 on the unit circle.

We remark that the proof of the uniqueness of the totally nonnegative fixed point uses
Gantmakher and Krein’s result (Theorem 3.3.4(i)).

There is another particularly nice description of this unique totally nonnegative fixed
point Vk,n ∈ Gr≥0

k,n. Define fk : R→ Rk by

fk(θ) :=

{(
1, cos(θ), sin(θ), cos(2θ), sin(2θ), . . . , cos

(
k−1

2
θ
)
, sin

(
k−1

2
θ
))
, if k is odd(

cos
(

1
2
θ
)
, sin

(
1
2
θ
)
, cos

(
3
2
θ
)
, sin

(
3
2
θ
)
, . . . , cos

(
k−1

2
θ
)
, sin

(
k−1

2
θ
))
, if k is even

.

Note that fk(θ + 2π) = (−1)k−1fk(θ). For odd k, the curve in Rk−1 formed from fk by
deleting the first component is the trigonometric moment curve, and for even k, the curve



CHAPTER 1. INTRODUCTION 10

fk is the symmetric moment curve. For example, f2 is the unit circle in R2. These curves
have a rich history, which we discuss in Remark 4.1.4. The fixed point Vk,n is represented by
any k× n matrix whose columns are fk(θ1), . . . , fk(θn), such that the points θ1 < θ2 < · · · <
θn < θ1 + 2π are equally spaced on the real line, i.e. θj+1 − θj = 2π

n
for 1 ≤ j ≤ n− 1.

(1, 0)

( 1√
2
, 1√

2
)

(0, 1)

(− 1√
2
, 1√

2
)

Figure 1.5: The unique totally nonnegative cyclically symmetric element of Gr≥0
2,4 is

represented by the matrix
[
1 1/

√
2 0 −1/

√
2

0 1/
√

2 1 1/
√

2

]
, which comes from taking four consecutive

points on the regular unit octagon.

We also have the following explicit formula for the Plücker coordinates of the totally
nonnegative fixed point Vk,n:

∆I(Vk,n) =
∏

1≤r<s≤k

sin
(
is−ir
n
π
)

for all k-subsets I = {i1 < · · · < ik} ⊆ {1, . . . , n}.

Since sin(θ) > 0 for 0 < θ < π, this directly implies that Vk,n is totally positive.
The other fixed points of σ are also interesting. Remarkably, they arise in quantum

cohomology. The quantum cohomology ring of Grk,n(C) is a deformation of the cohomology
ring by an indeterminate q. In unpublished work, Peterson discovered that this ring is
isomorphic to the coordinate ring of a certain subvariety Yk,n of GLn(C). This was proved
by Rietsch [Rie01]. Under her isomorphism, the indeterminate q corresponds to a map
Yk,n → C, and the specialization at q = 1 of the quantum cohomology ring corresponds
to the ring of C-valued functions on the fiber in Yk,n over q = 1. This fiber has size(
n
k

)
, and it turns out that there is a natural embedding of Yk,n into the (affine cone over)

Grk,n(C) which identifies the fiber with the fixed points of σ. Moreover, we can rewrite a
formula of Bertram [Ber97] for Gromov-Witten invariants (generalized intersection numbers)
of Schubert varieties in terms of the Plücker coordinates of the fixed points of σ. This makes
manifest the so-called ‘hidden symmetry’ of these Gromov-Witten invariants, i.e. they are
invariant (up to an appropriate change of degree) under the cyclic action of the ground set
[n]. This hidden symmetry first appeared in the work of Seidel [Sei97], and was further
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studied by Agnihotri and Woodward (see Section 7 of [AW98]) and Postnikov (see Section
6.2 of [Pos05])9.

Finally, we use the ideas behind proving Theorem 1.0.9 to construct many fixed points
of the twist map on the Grassmannian. This is an automorphism of Grk,n(C) which appears
in the study of the cluster-algebraic structure of the Grassmannian [MS16, MS], by relating
the A-cluster structure and the X -cluster structure of Grk,n(C). Marsh and Scott [MS16]
also showed that the twist map can be implemented by a maximal green sequence, a special
sequence of mutations in a cluster algebra which has been studied because of its importance
in the study of quiver representations. The element Vk,n is one of the fixed points of the
twist map which we identify, and the unique totally nonnegative one. It is an interesting
open problem to classify all fixed points of the twist map, and to determine whether Vk,n is
the only totally positive fixed point.

9Postnikov says the hidden symmetry “comes from symmetries of the extended Dynkin diagram of type
An−1, which is an n-circle.” [Pos05]
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Chapter 2

Sign variation in the Grassmannian

The work in this chapter has been published in Journal of Combinatorial Theory, Series
A [Kar17]. I thank the referees for their valuable feedback. I also thank Lauren Williams
for many helpful conversations and suggestions, and Sylvie Corteel and the Laboratoire
d’Informatique Algorithmique: Fondements et Applications at Université Paris Diderot for
hosting me while I conducted part of this work.

2.1 Introduction and main results

The (real) Grassmannian Grk,n is the set of k-dimensional subspaces of Rn. Given V ∈ Grk,n,
take a k × n matrix X whose rows span V ; then for k-subsets I ⊆ {1, . . . , n}, we let ∆I(V )
be the k × k minor of X restricted to the columns in I, called a Plücker coordinate. (The
∆I(V ) depend on our choice of X only up to a global constant.) If all nonzero ∆I(V ) have
the same sign, then V is called totally nonnegative, and if in addition no ∆I(V ) equals zero,
then V is called totally positive. For example, the span V of (1, 0, 0,−1) and (−1, 2, 1, 3) is
a totally nonnegative element of Gr2,4, but V is not totally positive since ∆{2,3}(V ) = 0.

The set Gr≥0
k,n of totally nonnegative V ∈ Grk,n, called the totally nonnegative Grassman-

nian, has become a hot topic in algebraic combinatorics in the past two decades. The general
algebraic study of total positivity for split reductive connected algebraic groups G over R,
and partial flag varieties G/P , was initiated by Lusztig [Lus94], of which Gr≥0

k,n corresponds

to the special case G/P = Grk,n. Of particular interest is the stratification of Gr≥0
k,n according

to whether each ∆I is zero or nonzero. This stratification is a cell decomposition, which was
conjectured by Lusztig [Lus94] and proved by Rietsch [Rie98] (for the general case G/P ),
and later understood combinatorially by Postnikov [Pos].

This general theory traces its origin to the study of totally positive matrices in the 1930s,
in the context of oscillation theory in analysis. Here positivity conditions on matrices can
imply special oscillation and spectral properties. A well-known result of this kind is due to
Gantmakher and Krein [GK37], which states that if an n × n matrix X is totally positive
(i.e. all

(
2n
n

)
minors of X are positive), then the n eigenvalues of X are distinct positive reals.
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Gantmakher and Krein [GK50] also gave a characterization of (what would later be called)
the totally nonnegative and totally positive Grassmannians in terms of sign variation. To
state their result, we introduce some notation. For v ∈ Rn, let var(v) be the number of times
v (viewed as a sequence of n numbers, ignoring any zeros) changes sign, and let

var(v) := max{var(w) : w ∈ Rn such that wi = vi for all 1 ≤ i ≤ n with vi 6= 0}.

(We use the convention var(0) := −1.) For example, if v := (1,−1, 0,−2) ∈ R4, then
var(v) = 1 and var(v) = 3.

Theorem 2.1.1 (Chapter V, Theorems 3 and 1 of [GK50]).
(i) V ∈ Grk,n is totally nonnegative if and only if var(v) ≤ k − 1 for all v ∈ V .
(ii) V ∈ Grk,n is totally positive if and only if var(v) ≤ k − 1 for all v ∈ V \ {0}.

(Part (i) above was proved independently by Schoenberg and Whitney [SW51].) For example,
the two vectors (1, 0, 0,−1) and (−1, 2, 1, 3) each change sign exactly once, and we can check
that any vector in their span V changes sign at most once, which is equivalent to V being
totally nonnegative. On the other hand, var((1, 0, 0,−1)) = 3, so V is not totally positive.
Every element of Grk,n has a vector which changes sign at least k − 1 times (put a k × n
matrix whose rows span V into reduced row echelon form, and take the alternating sum of
the rows), so the totally nonnegative elements are those whose vectors change sign as few
times as possible.

The results of the chapter are organized as follows. In Section 2.3, we generalize Theo-
rem 2.1.1 from the totally nonnegative Grassmannian to the entire Grassmannian, by giving
a criterion for when var(v) ≤ m for all v ∈ V , or when var(v) ≤ m for all v ∈ V \ {0}, in
terms of the Plücker coordinates of V . (Theorem 2.1.1 is the case m = k − 1.) As an appli-
cation of our results, in Section 2.4 we examine the construction of amplituhedra introduced
by Arkani-Hamed and Trnka [AHT14]. In Section 2.5, we show how to use the sign patterns
of vectors in a totally nonnegative V to determine the cell of V in the cell decomposition of
Gr≥0

k,n.
We briefly mention here that all of our results hold more generally for oriented matroids,

and we prove them in this context. In this section we state our results in terms of the Grass-
mannian, so as to make them as accessible as possible. We introduce oriented matroids and
the basic results about them we will need in Section 2.2. See Remark 2.1.13 at the end of
this section for further comments about oriented matroids.

We now describe our main results. We let [n] := {1, 2, . . . , n}, and denote by
(

[n]
r

)
the set of

r-subsets of [n].

Theorem 2.1.2. Suppose that V ∈ Grk,n, and m ≥ k − 1.

(i) If var(v) ≤ m for all v ∈ V , then var((∆I∪{i}(V ))i∈[n]\I) ≤ m− k + 1 for all I ∈
(

[n]
k−1

)
.

(ii) We have var(v) ≤ m for all v ∈ V \{0} if and only if var((∆I∪{i}(V ))i∈[n]\I) ≤ m−k+1

for all I ∈
(

[n]
k−1

)
such that ∆I∪{i}(V ) 6= 0 for some i ∈ [n].
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(See Theorem 2.3.1.) If we takem := k−1, then we recover Theorem 2.1.1; see Corollary 2.3.4
for the details.

Example 2.1.3. Let V ∈ Gr2,4 be the row span of the matrix

[
1 0 −2 3
0 2 1 4

]
, so k := 2.

Then by Theorem 2.1.2(ii), the fact that var(v) ≤ 2 =: m for all v ∈ V \ {0} is equivalent to
the fact that the 4 sequences

(∆{1,2}(V ),∆{1,3}(V ),∆{1,4}(V )) = (2, 1, 4),

(∆{1,2}(V ),∆{2,3}(V ),∆{2,4}(V )) = (2, 4,−6),

(∆{1,3}(V ),∆{2,3}(V ),∆{3,4}(V )) = (1, 4,−11),

(∆{1,4}(V ),∆{2,4}(V ),∆{3,4}(V )) = (4,−6,−11)

each change sign at most m− k + 1 = 1 time. ♦

We say that V ∈ Grk,n is generic if all Plücker coordinates of V are nonzero. If V is generic,
then (ii) above implies that the converse of (i) holds. The converse of (i) does not hold
in general (see Example 2.3.2); however, if V ∈ Grk,n is not generic and var(v) ≤ m for
all v ∈ V , then we show how to perturb V into a generic V ′ ∈ Grk,n while maintaining the
property var(v) ≤ m for all v ∈ V ′. Working backwards, we can then apply Theorem 2.1.2(i)
to V ′ in order to test whether var(v) ≤ m for all v ∈ V . The precise statement is as follows.

Theorem 2.1.4. Given V ∈ Grk,n, we can perturb V into a generic V ′ ∈ Grk,n such that
maxv∈V var(v) = maxv∈V ′ var(v). In particular, for m ≥ k − 1 we have var(v) ≤ m for all
v ∈ V if and only if var((∆I∪{i}(V

′))i∈[n]\I) ≤ m− k + 1 for all I ∈
(

[n]
k−1

)
.

Thus in {V ∈ Grk,n : var(v) ≤ m for all v ∈ V }, the generic elements are dense.

(See Theorem 2.3.14 and Theorem 2.3.15.) In the special case m = k − 1, we recover the
result of Postnikov (Section 17 of [Pos]) that the totally positive Grassmannian is dense in
the totally nonnegative Grassmannian.

Theorem 2.3.14 in fact gives an algorithm for perturbing V into a generic V ′. It involves
taking a k×n matrix X whose rows span V , and repeatedly adding a very small multiple of
a column of X to an adjacent column (and taking the row span of the resulting matrix). We
show that repeating the sequence 1→+ 2, 2→+ 3, . . . , (n−1)→+ n, n→+ (n−1), (n−1)→+

(n − 2), . . . , 2 →+ 1 of adjacent-column perturbations k times in order from left to right is
sufficient to obtain a generic V ′, where i→+ j denotes adding a very small positive multiple
of column i to column j. We give several other sequences of adjacent-column perturbations
which work; see Theorem 2.3.14.

We use these results to study amplituhedra, introduced by Arkani-Hamed and Trnka
[AHT14] to help calculate scattering amplitudes in theoretical physics. They consider the
map Gr≥0

k,n → Grk,r on the totally nonnegative Grassmannian induced by a given linear map
Z : Rn → Rr. Note that this map is not necessarily well defined, since Z may send a k-
dimensional subspace to a subspace of lesser dimension. In part to preclude this possibility,
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Arkani-Hamed and Trnka require that k ≤ r and Z has positive r×r minors (when viewed as
an r× n matrix), and call the image of the map Gr≥0

k,n → Grk,r a (tree) amplituhedron. Lam

[Lam16b] showed more generally that the map Gr≥0
k,n → Grk,r is well defined if the row span

of Z (regarded as an r × n matrix) has a totally positive k-dimensional subspace, in which
case he calls the image a (full) Grassmann polytope. (When k = 1, Grassmann polytopes
are precisely polytopes in projective space.) We use sign variation to give a necessary and
sufficient condition for the map Gr≥0

k,n → Grk,r induced by Z to be well defined, and in
particular recover the sufficient conditions of Arkani-Hamed and Trnka, and Lam.

Theorem 2.1.5. Suppose that k, n, r ∈ N with n ≥ k, r, and that Z : Rn → Rr is a linear
map, which we also regard as an r × n matrix. Let d be the rank of Z and W ∈ Grd,n the
row span of Z, so that W⊥ = ker(Z) ∈ Grn−d,n. The following are equivalent:
(i) the map Gr≥0

k,n → Grk,r induced by Z is well defined, i.e. dim(Z(V )) = k for all V ∈ Gr≥0
k,n;

(ii) var(v) ≥ k for all nonzero v ∈ ker(Z); and
(iii) var((∆I\{i}(W ))i∈I) ≤ d− k for all I ∈

(
[n]
d+1

)
such that W |I has dimension d.

(See Theorem 2.4.2.) We remark that the equivalence of (ii) and (iii) above is equivalent to
Theorem 2.1.2(ii).

We now describe our results about the cell decomposition of Gr≥0
k,n. Given V ∈ Grk,n, we

define the matroid M(V ) of V as the set of I ∈
(

[n]
k

)
such that ∆I(V ) is nonzero. If V is

totally nonnegative, we also call M(V ) a positroid. The stratification of Gr≥0
k,n by positroids

(i.e. its partition into equivalence classes, where V ∼ W if and only if M(V ) = M(W )) is a
cell decomposition [Rie98, Pos].

How can we determine the matroid of V ∈ Grk,n from the sign patterns of vectors in
V ? Given I ⊆ [n] and a sign vector ω ∈ {+,−}I , we say that V realizes ω if there exists a
vector in V whose restriction to I has signs given by ω. For example, if (2, 3,−2,−1) ∈ V ,
then V realizes (+,−,−) on {1, 3, 4}. Note that V realizes ω if and only if V realizes −ω.
It is not difficult to show that for all I ∈

(
[n]
k

)
, we have I ∈ M(V ) if and only if V realizes

all 2k sign vectors in {+,−}I . Furthermore, in order to determine whether I is in M(V )
from which sign vectors V realizes in {+,−}I , we potentially have to check all 2k−1 pairs of
sign vectors (each sign vector and its negation), since given any ω ∈ {+,−}I (and assuming
n > k), there exists V ∈ Grk,n which realizes all 2k sign vectors in {+,−}I except for ±ω.
(See Remark 2.5.7.) However, in the case that V is totally nonnegative, we show that we
need only check k particular sign vectors in {+,−}I to verify that ∆I(V ) 6= 0.

Theorem 2.1.6. For V ∈ Gr≥0
k,n and I ∈

(
[n]
k

)
, we have I ∈ M(V ) if and only if V realizes

the 2k (or k up to sign) sign vectors in {+,−}I which alternate in sign between every pair
of consecutive components, with at most one exceptional pair.

(See Corollary 2.5.6.) For example, if k = 5, these 2k sign vectors are (+,−,+,−,+),
(+,+,−,+,−), (+,−,−,+,−), (+,−,+,+,−), (+,−,+,−,−), and their negations.
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Example 2.1.7. Let V ∈ Gr≥0
3,5 be the row span of the matrix

2 1 0 0 3
0 0 1 0 0
0 0 0 1 1

. The-

orem 2.1.6 implies that for all I ∈
(

[5]
3

)
, we have ∆I(V ) 6= 0 if and only if V realizes

the 3 sign vectors (+,−,+), (+,+,−), (+,−,−) on I. For I = {1, 3, 5}, the vectors
(2, 1,−1, 0, 3), (2, 1, 1,−4,−1), (2, 1,−1,−4,−1) ∈ V realize the sign vectors (+,−,+),
(+,+,−), (+,−,−) on I, so ∆{1,3,5}(V ) 6= 0. (We do not need to check that (+,+,+),
the remaining sign vector in {+,−}I up to sign, is realized.) For I = {1, 4, 5}, the vectors
(2, 1, 0,−1, 2), (2, 1, 0,−4,−1) ∈ V realize the sign vectors (+,−,+), (+,−,−) on I, but no
vector in V realizes the sign vector (+,+,−) on I, so ∆{1,4,5}(V ) = 0. ♦

We now describe another way to recover the positroid of V ∈ Gr≥0
k,n from the sign patterns

of vectors in V . We begin by showing how to obtain the Schubert cell of V , which is labeled
by the lexicographic minimum of M(V ). To state this result, we introduce some notation.
For v ∈ Rn and I ⊆ [n], we say that v strictly alternates in sign on I if v|I has no zero
components, and alternates in sign between consecutive components. Let A(V ) denote the
set of I ∈

(
[n]
k

)
such that some vector in V strictly alternates in sign on I. Note that if

I ∈M(V ) then V |I = RI , so M(V ) ⊆ A(V ). We also define the Gale partial order ≤Gale on(
[n]
k

)
by {i1 < · · · < ik} ≤Gale {j1 < · · · < jk} if and only if i1 ≤ j1, i2 ≤ j2, . . . , ik ≤ jk.

Theorem 2.1.8. For V ∈ Gr≥0
k,n, the lexicographic minimum of M(V ) equals the Gale min-

imum of A(V ).

(See Theorem 2.5.1.) We remark that the lexicographic minimum of M(V ) is also the Gale
minimum of M(V ), but A(V ) does not necessarily equal M(V ) (see Example 2.1.9). We
also note that if V ∈ Grk,n is not totally nonnegative, then A(V ) does not necessarily have
a Gale minimum (see Example 2.5.3).

Example 2.1.9. Let V ∈ Gr≥0
3,5 be the row span of the matrix

2 1 0 0 3
0 0 1 0 0
0 0 0 1 1

, as in

Example 2.1.7. Theorem 2.1.8 implies that the lexicographic minimum {1, 3, 4} of M(V )
equals the Gale minimum of

A(V ) = {{1, 3, 4}, {1, 3, 5}, {1, 4, 5}, {2, 3, 4}, {2, 3, 5}, {2, 4, 5}, {3, 4, 5}}.

Note that {2, 4, 5} ∈ A(V ) \M(V ). ♦

By the cyclic symmetry of the totally nonnegative Grassmannian, we can then use Theo-
rem 2.1.8 to recover the Grassmann necklace of V ∈ Gr≥0

k,n (see Corollary 2.5.5), which in
turn determines the positroid of V by a result of Postnikov (Theorem 17.1 of [Pos]).

Remark 2.1.10. We can easily reinterpret results about upper bounds on var in terms of
lower bounds on var, and upper bounds on var in terms of lower bounds on var, by the
following two facts.
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Lemma 2.1.11. (i) [GK50] For v ∈ Rn \ {0}, we have

var(v) + var(alt(v)) = n− 1,

where alt(v) := (v1,−v2, v3,−v4, . . . , (−1)n−1vn) ∈ Rn.
(ii) [Hil90][Hoc75] Given V ∈ Grk,n, let V ⊥ ∈ Grn−k,n be the orthogonal complement of V .
Then V and alt(V ⊥) have the same Plücker coordinates:

∆I(V ) = ∆[n]\I(alt(V ⊥)) for all I ∈
(

[n]

k

)
.

(Part (i) is stated without proof as equation (67) in Chapter II of [GK50]; see equation (5.1)
of [And87] for a proof. The earliest statement of part (ii) we found in the literature is at the
beginning of Section 7 of [Hoc75]. Hochster does not give a proof, and says that this result
“was basically known to Hilbert.” The idea is that if [Ik|A] is a k × n matrix whose rows
span V ∈ Grk,n, where A is a k × (n − k) matrix, then V ⊥ is the row span of the matrix
[AT | − In−k]. This idea appears implicitly in equation (14) of [Hil90], and more explicitly in
Theorem 2.2.8 of [Oxl11] and Proposition 3.1(i) of [MR14]. I thank a referee for pointing out
the reference [MR14].) For example, we get the following dual formulation of Gantmakher
and Krein’s result (Theorem 2.1.1).

Corollary 2.1.12 (Chapter V, Theorems 7 and 6 of [GK50]).
(i) V ∈ Grk,n is totally nonnegative if and only if var(v) ≥ k for all v ∈ V ⊥ \ {0}.
(ii) V ∈ Grk,n is totally positive if and only if var(v) ≥ k for all v ∈ V ⊥ \ {0}.

Remark 2.1.13. The natural framework in which to consider sign patterns of vectors in V ,
and signs of the Plücker coordinates of V , is that of oriented matroids. Our results hold,
and are proven, in this context, and are more general because while every subspace gives
rise to an oriented matroid, not every oriented matroid comes from a subspace. (The totally
nonnegative Grassmannian is a special case; the analogue of a totally nonnegative subspace
is a positively oriented matroid, and Ardila, Rincón, and Williams [ARW16] recently showed
that each positively oriented matroid comes from a totally nonnegative subspace. Hence
there is no added generality gained here in passing from the Grassmannian to oriented
matroids.)

Those already familiar with oriented matroids can use the following dictionary to rein-
terpret the results stated in this section:

Subspaces Oriented matroids

sign vectors of vectors in V covectors of M(V )
∆(V ), up to sign the chirotope χM(V )

V is generic M(V ) is uniform
V ′ is a perturbation of V there is a weak map from M(V ′) to M(V )
the closure of S ⊆ Grk,n images of weak maps from M(V ′), over V ′ ∈ S

the orthogonal complement V ⊥ of V the dual of M(V )
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We also generalize to oriented matroids the operation of adding a very small multiple of
a column (of a k × n matrix whose rows span V ∈ Grk,n) to an adjacent column; see
Definition 2.3.6.

For those unfamiliar with oriented matroids, we give an introduction in Section 2.2,
biased toward the tools we need. For a thorough introduction to oriented matroids, see the
book [BLVS+99].

2.2 Introduction to oriented matroids

In this section, we introduce oriented matroids, and much of the notation and tools that
we use in our proofs. A comprehensive account of the theory of oriented matroids, and our
reference throughout, is the book by Björner, Las Vergnas, Sturmfels, White, and Ziegler
[BLVS+99]. We begin by describing oriented matroids coming from subspaces of Rn (i.e.
realizable oriented matroids), which will serve as motivation for the exposition to follow.

For α ∈ R we define

sign(α) :=


0, if α = 0

+, if α > 0

−, if α < 0

,

and for x ∈ RE we define the sign vector sign(x) ∈ {0,+,−}E by sign(x)e := sign(xe) for
e ∈ E. We will sometimes use 1 and −1 in place of + and −. For example, sign(5, 0,−1, 2) =
(+, 0,−,+) = (1, 0,−1, 1). Given a sign vectorX ∈ {0,+,−}E, the support ofX is the subset
X := {e ∈ E : Xe 6= 0} of E. We can think of X as giving a sign to each element of X (some
authors callX a signed subset). We also define−X ∈ {0,+,−}E by (−X)e := −Xe for e ∈ E.
For example, X = (+, 0,−,+) ∈ {0,+,−}4 has support {1, 3, 4}, and −X = (−, 0,+,−).

Definition 2.2.1 (realizable oriented matroids; 1.2 of [BLVS+99]). Let E be a finite set and
V a k-dimensional subspace of RE. The (realizable) oriented matroid M(V ) associated to V
is uniquely determined by E (the ground set of M(V )) and any one of the following three
objects:
• the set V∗ := {sign(v) : v ∈ V }, called the covectors of M(V ); or
• the set C∗ := {X ∈ V∗ : X has minimal nonempty support}, called the cocircuits ofM(V );
or
• the function χ : Ek → {0,+,−} (up to multiplication by ±1), called the chirotope of
M(V ), where χ(i1, . . . , ik) := sign(det([x(i1)| · · · |x(ik)])) (i1, . . . , ik ∈ E) for some fixed k×E
matrix [x(i) : i ∈ E] whose rows span V .
The rank of M(V ) is k.

Example 2.2.2. Let V ∈ Gr2,3 be the row span of the matrix

[
0 −1 1
3 0 2

]
. Then M(V ) is

an oriented matroid of rank k := 2 with ground set E := {1, 2, 3}. Note that (+,+,−) is
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a covector of M(V ), because it is the sign vector of e.g. (3, 3,−1) ∈ V . The covectors of
M(V ) are

(0, 0, 0), (0,+,−), (0,−,+), (+, 0,+), (−, 0,−), (+,+, 0), (−,−, 0),

(+,+,−), (−,+,−), (+,−,+), (−,−,+), (+,+,+), (−,−,−).

The cocircuits of M(V ) are the covectors with minimal nonempty support, i.e.

(0,+,−), (0,−,+), (+, 0,+), (−, 0,−), (+,+, 0), (−,−, 0).

The chirotope χ of M(V ) is given (up to sign) by

χ(1, 2) = sign(∆{1,2}(V )) = sign(3) = +,

χ(1, 3) = sign(∆{1,3}(V )) = sign(−3) = −,
χ(2, 3) = sign(∆{2,3}(V )) = sign(−2) = −,

and by the fact that χ is alternating, i.e. swapping two arguments multiplies the result by
−1. The fact that the Plücker coordinates ∆I(V ) are defined only up to multiplication by a
global nonzero constant explains why the chirotope is defined only up to sign. ♦

Definition 2.2.3 (oriented matroid, cocircuit axioms; 3.2.1 of [BLVS+99]). An oriented
matroid M is an ordered pair M = (E, C∗), where E is a finite set and C∗ ⊆ 2{0,+,−}

E

satisfies the following four axioms:
(C0) every sign vector in C∗ has nonempty support;
(C1) C∗ = −C∗;
(C2) if X, Y ∈ C∗ with X ⊆ Y , then X = ±Y ;
(C3) if X, Y ∈ C∗ and a ∈ E such that X 6= −Y and Xa = −Ya 6= 0, then there exists
Z ∈ C∗ such that Za = 0, and Zb = Xb or Zb = Yb for all b ∈ Z.

The set E is called the ground set ofM, and the sign vectors in C∗ are called the cocircuits
of M.

We denote the cocircuits of M by C∗(M). (The superscript ∗ is present to indicate that
cocircuits are circuits of the dual of M.) We remark that not all oriented matroids are
realizable; see 1.5.1 of [BLVS+99] for an example of a non-realizable oriented matroid.

Example 2.2.4. The sign vectors

(0,+,−), (0,−,+), (+, 0,+), (−, 0,−), (+,−, 0), (−,+, 0)

are not the cocircuits of an oriented matroid, because e.g. (C3) above fails when we take
X = (0,+,−), Y = (+, 0,+), a = 3. ♦
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For sign vectors X, Y ∈ {0,+,−}E, define the composition X ◦ Y as the sign vector in
{0,+,−}E given by

(X ◦ Y )e :=

{
Xe, if Xe 6= 0

Ye, if Xe = 0
for e ∈ E.

We can think of X ◦ Y as being formed by starting with X and recording Y in the empty
slots of X, or by starting with Y and overwriting X on top. In general, X ◦Y 6= Y ◦X; if the
composition of sign vectors X(1), . . . , X(r) of E does not depend on the order of composition,
we say that X(1), . . . , X(r) are conformal. For example, (+, 0,−) and (0,+,−) are conformal.

A covector of an oriented matroidM is a composition of some (finite number of) cocircuits
of M. (We include the empty composition, which is the zero sign vector.) We let V∗(M)
denote the set of covectors of M. Note that by (C2) of Definition 2.2.3, we can recover
the cocircuits of M as the covectors with minimal nonempty support. A key property of
covectors is the following conformality property.

Proposition 2.2.5 (conformality for covectors; 3.7.2 of [BLVS+99]). Suppose that X is a
covector of the oriented matroidM. Then X = C(1) ◦· · ·◦C(r) for some conformal cocircuits
C(1), . . . , C(r) of M.

There are axioms which characterize when a set of sign vectors in {0,+,−}E is the set of
covectors of an oriented matroid; see 3.7.5 of [BLVS+99].

Definition 2.2.6 (basis, rank; pp. 124, 115 of [BLVS+99]). Let M be an oriented matroid
with ground set E. A basis ofM is a minimal B ⊆ E such that B∩C 6= ∅ for every cocircuit
C of M. All bases of M have the same size k ≥ 0, called the rank of M.

M determines a unique orientation on its bases (up to a global sign).

Definition 2.2.7 (chirotope; 3.5.1, 3.5.2 of [BLVS+99]). Suppose that M is an oriented
matroid of rank k with ground set E. Then there exists a function χM : Ek → {0,+,−}
(called the chirotope of M), unique up to sign, satisfying the following properties:
(i) χM is alternating, i.e. χM(iσ(1), . . . , iσ(k)) = sgn(σ)χM(i1, . . . , ik) for i1, . . . , ik ∈ E and
σ ∈ Sk;
(ii) χM(i1, . . . , ik) = 0 if {i1, . . . , ik} ⊆ E is not a basis of M; and
(iii) if {a, i1, . . . , ik−1}, {b, i1, . . . , ik−1} ⊆ E are bases of M and C is a cocircuit of M with
i1, . . . , ik−1 /∈ C, then χM(a, i1, . . . , ik−1) = CaCbχM(b, i1, . . . , ik−1).

M is uniquely determined by χM up to sign (3.5.2 of [BLVS+99]). For the axioms charac-
terizing chirotopes of oriented matroids, see 3.5.3, 3.5.4 of [BLVS+99]. If E is totally ordered
(for example, E = [n] ordered by 1 < 2 < · · · < n), we let χM(I) denote χM(i1, . . . , ik) for
I ∈

(
E
k

)
(I = {i1, . . . , ik}, i1 < · · · < ik), and set χM(J) := 0 for J ⊆ E with |J | < k. In this

case χM gives an orientation (either + or −) to each basis of M.
The relation (iii) above between χM and the cocircuits ofM is called the pivoting prop-

erty; we state it in the following useful form.
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Proposition 2.2.8 (pivoting property; 3.5.1, 3.5.2 of [BLVS+99]). Suppose that M is an
oriented matroid of rank k with a totally ordered ground set E, I ∈

(
E
k−1

)
, and a, b ∈ E. If

I ∪ {a} and I ∪ {b} are bases of M, then there exists a cocircuit C of M with I ∩ C = ∅
(unique up to sign), whence a, b ∈ C, and

χM(I ∪ {a}) = (−1)|{i∈I:i is strictly between a and b}|CaCbχM(I ∪ {b}). (2.2.9)

Conversely, if there exists a cocircuit C of M with I ∩C = ∅ and b ∈ C, then (2.2.9) holds.

Only the first part of Proposition 2.2.8 is proved in [BLVS+99], so we prove the converse.

Proof (of converse). Let C be a cocircuit ofM with I∩C = ∅ and b ∈ C. First suppose that
I∪{b} is not a basis ofM; we must show that I∪{a} is also not a basis. By Definition 2.2.6
there exists a cocircuit D of M with (I ∪ {b}) ∩ D = ∅. If a /∈ C or a /∈ D, then we
immediately get that I ∪ {a} is not a basis. Otherwise we have a ∈ C ∪ D, and C 6= ±D
since b ∈ C \ D. Hence we may apply (C3) of Definition 2.2.3 to obtain a cocircuit of M
whose support is contained in (C ∪D) \ {a} ⊆ E \ (I ∪ {a}), whence I ∪ {a} is not a basis
ofM. Similarly, if a ∈ C and I ∪ {a} is not a basis ofM, then I ∪ {b} is not a basis, giving
(2.2.9). Also, if I ∪ {a} and I ∪ {b} are both bases of M, then (2.2.9) follows from the first
part of this result. The remaining case is when I ∪{b} is a basis ofM, I ∪{a} is not a basis,
and a /∈ C, whence both sides of (2.2.9) are zero. �

Now we introduce restriction of oriented matroids; for a realizable oriented matroid
M(V ), this corresponds to restricting V to a subset of the canonical coordinates.

Definition 2.2.10 (restriction; 3.7.11, 3.4.9, pp. 133-134 of [BLVS+99]). Let M be an
oriented matroid with ground set E, and F ⊆ E. The restriction of M to F , denoted
by M|F or M \ G (where G := E \ F ), is the oriented matroid with ground set F and
covectors {X|F : X ∈ V∗(M)}. The bases of M|F are the maximal elements of {B ∩ F :
B is a basis of M}. The chirotope χM|F is given as follows. Let k, l be the ranks ofM,M|F ,
respectively, and take i1, . . . , ik−l ∈ E \F such that F ∪{i1, . . . , ik−l} contains a basis ofM.
Then

χM|F (j1, . . . , jl) = χM(j1, . . . , jl, i1, . . . , ik−l) for j1, . . . , jl ∈ F.

If V is a subspace of RE, then M(V )|F =M(V |F ).

We conclude by describing a partial order on oriented matroids with a fixed ground
set. Geometrically, for point configurations, moving up in the partial order corresponds to
moving the points of the configuration into more general position. (A configuration of n
points in Rk gives rise to a subspace of Rn, and hence an oriented matroid with ground set
[n], by writing the points as the columns of a k × n matrix and taking the row span of this
matrix.) We use the partial order on sign vectors given by X ≤ Y if and only if Y = X ◦ Y
(X, Y ∈ {0,+,−}E), i.e. Xe = Ye for all e ∈ E such that Xe 6= 0. This also defines a partial
order on chirotopes, regarded as sign vectors in {0,+,−}Ek .
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Definition 2.2.11 (partial order on oriented matroids; 7.7.5 of [BLVS+99]). Let M, N be
oriented matroids with ground set E. We say that M ≤ N if for every covector X of M,
there exists a covector Y of N with X ≤ Y . Then ≤ is a partial order on oriented matroids
with ground set E. IfM and N have the same rank, thenM≤ N if and only if χM ≤ ±χN .

The standard terminology for M≤ N is that there is a weak map from N to M.

2.3 Relating sign changes of covectors and the

chirotope

Recall that given a sign vector X ∈ {0,+,−}E over a totally ordered set E, the number of
sign changes of X (ignoring any zeros) is denoted by var(X), and var(X) := maxY≥X var(Y ).
The goal of this section is to give, for any oriented matroidM with a totally ordered ground
set, a criterion for when var(X) ≤ m for all covectors X of M, or when var(X) ≤ m for all
nonzero covectors X of M, in terms of the chirotope of M. Theorem 2.3.1 provides such a
criterion in the latter case, as well as in the former case ifM is uniform, i.e. every k-subset of
its ground set is a basis (where k is the rank ofM). (Hence V ∈ Grk,n is generic if and only
if M(V ) is uniform.) For non-uniform M, we then show (Theorem 2.3.14) how to perturb
M into a generic uniform matroid N so that we may apply the criterion in Theorem 2.3.1
to determine whether var(X) ≤ m for all covectors X of M.

We remark that while var is weakly increasing (i.e. var(X) ≤ var(Y ) if X ≤ Y ), var is
weakly decreasing, which helps explain why var and var require such different treatments.

Theorem 2.3.1. Suppose that M is an oriented matroid of rank k with ground set [n], and
m ≥ k − 1.
(i) If var(X) ≤ m for all X ∈ V∗(M), then var((χM(I ∪ {i}))i∈[n]\I) ≤ m − k + 1 for all

I ∈
(

[n]
k−1

)
.

(ii) We have var(X) ≤ m for all X ∈ V∗(M) \ {0} if and only if var((χM(I ∪ {i}))i∈[n]\I) ≤
m− k + 1 for all I ∈

(
[n]
k−1

)
such that I ∪ {i} is a basis of M for some i ∈ [n].

For an example using this theorem, see Example 2.1.3. Note that (ii) above implies that if
M is uniform, then the converse of (i) holds. However, the converse of (i) does not hold in
general, as shown in Example 2.3.2. Example 2.3.3 shows that the condition “I ∪ {i} is a
basis ofM for some i ∈ [n]” (equivalently, that the sequence (χM(I ∪{i}))i∈[n]\I is nonzero)
in (ii) is necessary. Also note that there is no loss of generality in the assumption m ≥ k−1,
because there exists a covector of M which changes sign at least k − 1 times; in fact, if
B ∈

(
[n]
k

)
is any basis of M, then there exists a covector of M which strictly alternates in

sign on B. (This follows from Definition 2.2.10: M|B is the uniform oriented matroid of
rank k with ground set B, and so V∗(M)|B = V∗(M|B) = {0,+,−}B.)
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Example 2.3.2. Let V ∈ Gr2,4 be the row span of the matrix

[
1 0 1 0
0 1 0 1

]
, so k := 2. Note

that the 4 sequences of Plücker coordinates

(∆{1,2}(V ),∆{1,3}(V ),∆{1,4}(V )) = (1, 0, 1),

(∆{1,2}(V ),∆{2,3}(V ),∆{2,4}(V )) = (1,−1, 0),

(∆{1,3}(V ),∆{2,3}(V ),∆{3,4}(V )) = (0,−1, 1),

(∆{1,4}(V ),∆{2,4}(V ),∆{3,4}(V )) = (1, 0, 1)

each change sign at most m − k + 1 = 1 time (where we take m := 2), but the vector
(1,−1, 1,−1) ∈ V changes sign 3 times. Hence the converse to Theorem 2.3.1(i) does not
hold. However, if we were forced to pick a sign for, say, ∆{1,3}(V ), then either the first or third
sequence above would change sign twice. This motivates the introduction of perturbations
below. ♦

Example 2.3.3. Let V ∈ Gr3,5 be the row span of the matrix

1 1 0 0 0
0 0 1 0 −1
0 0 0 1 1

. Then

M(V ) satisfies the equivalent conditions of Theorem 2.3.1(ii) with m := 3, i.e. var(v) ≤ 3
for all v ∈ V \ {0}, and var((∆I∪{i}(V ))i∈[5]\I) ≤ 1 for all I ∈

(
[5]
2

)
such that ∆I∪{i}(V ) 6= 0

for some i ∈ [n]. We cannot remove the condition “∆I∪{i}(V ) 6= 0 for some i ∈ [n],” because
taking J := {1, 2} we have ∆J∪{i}(V ) = 0 for all i ∈ [n], and so var((∆J∪{i}(V ))i∈[5]\J) =
2. ♦

Proof (of Theorem 2.3.1). The idea is to use the fact that if X ∈ {0,+,−}n with var(X) = r,
then there exists A ∈

(
[n]
r+1

)
such that X strictly alternates in sign on A. We restrict our

attention to an appropriate choice of A, using Definition 2.2.6 and the pivoting property
(Proposition 2.2.8) to relate cocircuits, bases, and the chirotope.

(i) Suppose that I ∈
(

[n]
k−1

)
such that var((χM(I ∪ {i}))i∈[n]\I) ≥ m − k + 2. Take

A ∈
(

[n]\I
m−k+3

)
such that (χM(I ∪ {i}))i∈[n]\I strictly alternates in sign on A. Fix a ∈ A, and

for the remainder of this proof, for i, j ∈ [n] let [i, j) denote the interval of integers from i
(inclusively) to j (exclusively), i.e. {i, i+1, . . . , j−1} if j ≥ i and {j+1, j+2, . . . , i} if j ≤ i.
By Definition 2.2.6, for i ∈ I there exists a cocircuit C(i) ofM with ((I∪{a})\{i})∩C(i) = ∅;
since I ∪{a} is a basis ofM we have i ∈ C(i), so we may assume that C

(i)
i = (−1)|(I∪A)∩[a,i)|.

Also let D be a cocircuit of M with I ∩D = ∅; since a ∈ D we may assume that Da = 1.
Then for b ∈ [n], the pivoting property (Proposition 2.2.8) gives

χM(I ∪ {b}) = (−1)|I∩[a,b)|DaDbχM(I ∪ {a}).

Because (χM(I ∪ {i}))i∈A strictly alternates in sign, we have

χM(I ∪ {b}) = (−1)|A∩[a,b)|χM(I ∪ {a}) for b ∈ A,
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so Db = (−1)|(I∪A)∩[a,b)|. Now let X be the covector D ◦ C(i1) ◦ · · · ◦ C(ik−1) of M, where
I = {i1, . . . , ik−1}. Then Xi = (−1)|(I∪A)∩[a,i)| for i ∈ I ∪ A, so X strictly alternates in sign
on I ∪ A, giving var(X) ≥ m+ 1.

(ii) (⇒): Suppose that I ∈
(

[n]
k−1

)
such that I ∪ {i} is a basis of M for some i ∈ [n], and

var((χM(I ∪ {i}))i∈[n]\I) ≥ m− k + 2. We proceed as in the proof of (i). Take A ∈
(

[n]\I
m−k+3

)
such that var((χM(I∪{i}))i∈A) = m−k+2 and I∪{a} is a basis ofM for some a ∈ A; fix such
an a ∈ A. By Definition 2.2.6 there exists a cocircuit D of M with I ∩D = ∅; since a ∈ D
we may assume that Da = 1. Then for b ∈ [n], the pivoting property (Proposition 2.2.8)
gives

χM(I ∪ {b}) = (−1)|I∩[a,b)|DaDbχM(I ∪ {a}).

Because var((χM(I ∪ {i}))i∈A) = m− k + 2, for b ∈ A either χM(I ∪ {b}) = 0 or

χM(I ∪ {b}) = (−1)|A∩[a,b)|χM(I ∪ {a}),

whence either Db = 0 or Db = (−1)|(I∪A)∩[a,b)|. Hence D|I∪A ≤ X, where X is the sign vector
in {0,+,−}I∪A with Xa = 1 which strictly alternates in sign. This gives var(D) ≥ var(X) =
m+ 1.

(⇐): Suppose that var(X) ≥ m + 1 for some nonzero covector X of M. By Propo-
sition 2.2.5 there exists a cocircuit C of M with C ≤ X, whence var(C) ≥ m + 1. We
consider two cases. First suppose that |C| ≤ n − m − 1. Take a ∈ C, and note that by
(C2) of Definition 2.2.3, ([n] \C)∪{a} has nonempty intersection with the support of every
cocircuit of M. Hence by Definition 2.2.6, some subset of ([n] \ C) ∪ {a} is a basis of M,
which we may write as I ∪ {a} for some I ∈

(
[n]\C
k−1

)
. Then I ∪ {i} is not a basis of M for

i ∈ [n] \ C, whence (χM(I ∪ {i}))i∈[n]\I has at least m− k + 2 zero components. This gives
var((χM(I ∪ {i}))i∈[n]\I) ≥ m− k + 2, completing the proof.

Now suppose instead that |C| ≥ n−m−1. There exists J ∈
(

[n]
m+2

)
with var(C|J) = m+1;

take such a J which minimizes |J ∩ C|. It follows that [n] \ C ⊆ J . (Otherwise there exists
e ∈ [n]\(J∪C), whence letting e′ equal either minf∈J∩C,f>e f or maxf∈J∩C,f<e f , at least one
of which exists because |C| ≥ n−m− 1, we have var(C|(J\{e′})∪{e}) = m + 1, contradicting
our choice of J .) Since |C| ≥ n − m − 1, we may take j ∈ J ∩ C. Note that by (C2) of
Definition 2.2.3, ([n]\C)∪{j} has nonempty intersection with the support of every cocircuit
of M. Hence by Definition 2.2.6, some subset of ([n] \ C) ∪ {j} is a basis of M, which we
may write as I ∪ {j} for some I ∈

(
[n]\C
k−1

)
. In particular, we have I ⊆ J .

By the pivoting property (Proposition 2.2.8), we have

χM(I ∪ {i}) = (−1)|I∩[j,i)|CiCjχM(I ∪ {j}) for i ∈ [n].

Also, since C weakly alternates in sign on J , for i ∈ J we have either Ci = 0 or Ci =
(−1)J∩[j,i)Cj. Hence for i ∈ J \ I we have either χM(I ∪ {i}) = 0 or χM(I ∪ {i}) =
(−1)(J\I)∩[j,i)χM(I ∪ {j}), whence (χM(I ∪ {i}))i∈J\I weakly alternates in sign on J \ I, i.e.
var((χM(I ∪ {i}))i∈J\I) = m− k + 2. �
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We call an oriented matroid M with a totally ordered ground set positively oriented
if every basis of M has the same orientation, and alternating if M is positively oriented
and uniform. Hence V ∈ Grk,n is totally nonnegative if and only if M(V ) is positively
oriented, and V is totally positive if and only if M(V ) is alternating. We now obtain
the generalization of Gantmakher and Krein’s characterization (Theorem 2.1.1) to oriented
matroids, as a consequence of Theorem 2.3.1 in the special case m := k − 1.

Corollary 2.3.4. Suppose that M is an oriented matroid of rank k with ground set [n].
(i) M is positively oriented if and only if var(X) ≤ k − 1 for all X ∈ V∗(M).
(ii) M is alternating if and only if var(X) ≤ k − 1 for all X ∈ V∗(M) \ {0}.

We remark that the forward directions of (i) and (ii) above follow from Theorem 2.1.1
and Ardila, Rincón, and Williams’ result [ARW16] that every positively oriented matroid is
realizable. (The converses do not so follow, because we do not know a priori that an oriented
matroid M satisfying var(X) ≤ k − 1 for all X ∈ V∗(M) is realizable.) Part (ii) above is
implicit in the literature (cf. [BLV78], 9.4 of [BLVS+99], and [CD00]), though we have not
seen it explicitly stated and proven in this form.

Proof. (i) (⇒): Suppose thatM is positively oriented, and let N be the uniform positively
oriented matroid of rank k with ground set [n]. Then by Theorem 2.3.1(ii) with m := k− 1,
we have var(Y ) ≤ k− 1 for all Y ∈ V∗(N ) \ {0}. Now given any X ∈ V∗(M), sinceM≤ N
there exists Y ∈ V∗(N ) with X ≤ Y (Definition 2.2.11), whence var(X) ≤ var(Y ) ≤ k − 1.

(⇐): Suppose that var(X) ≤ k − 1 for all X ∈ V∗(M). Then by Theorem 2.3.1(i) with
m := k − 1, any two bases of M which have k − 1 elements in common have the same
orientation. Hence it will suffice to show that given any two bases I, J of M, there exist
bases I0 := I, I1, . . . , Ir−1, Ir := J of M such that |Is−1 ∩ Is| ≥ k − 1 for all s ∈ [r]. This
follows from the basis exchange axiom for (oriented) matroids (p. 81 of [BLVS+99]): if A and
B are bases of an (oriented) matroid and a ∈ A \ B, then there exists b ∈ B \ A such that
(A \ {a}) ∪ {b} is a basis.

(ii) The forward direction follows from Theorem 2.3.1(ii) with m := k − 1. For the
converse, suppose that var(X) ≤ k − 1 for all X ∈ V∗(M) \ {0}. Then M is positively
oriented by part (i) of this result. Also, if there exists I ∈

(
[n]
k

)
which is not a basis of M,

then by Definition 2.2.6 there exists a cocircuit C ofM with I ∩C = ∅, whence var(C) ≥ k,
a contradiction. Hence M is uniform. �

We have already observed that the converse to Theorem 2.3.1(i) holds when M is a
uniform oriented matroid, but not in general. Our goal in the remainder of the section is
to prove a necessary and sufficient condition for having var(X) ≤ m for all X ∈ V∗(M).
Namely, we give an algorithm for perturbing any oriented matroidM with a totally ordered
ground set into a uniform N ≥ M of the same rank, such that maxX∈V∗(M) var(X) =
maxY ∈V∗(N ) var(Y ); we then apply Theorem 2.3.1 to N to determine maxX∈V∗(M) var(X)
(Theorem 2.3.14). In the case of realizable oriented matroids M(V ) (V ∈ Grk,n), this
perturbation involves repeatedly adding a very small multiple of one column of a k × n
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matrix whose rows span V to an adjacent column (and taking the row span of the resulting
matrix). These perturbations generalize to all oriented matroids, as we explain below.

LetM be an oriented matroid with ground set E. A single element extension of M at a
is an oriented matroid M̃ with ground set E t{a} (where t denotes disjoint union) and the

same rank as M, such that M̃|E =M. (Some authors allow M̃ to have rank greater than
M.) Las Vergnas [LV78] studied single element extensions; we use his results as stated in
[BLVS+99]. For a sign vector X ∈ {0,+,−}E and y ∈ {0,+,−}, let (X, y)a ∈ {0,+,−}Et{a}
denote the sign vector whose restriction to E is X and whose ath component is y.

Lemma 2.3.5 (cocircuits of single element extensions; 7.1.4 of [BLVS+99]). Suppose that

the oriented matroid M̃ is the single element extension of M at a, where M has ground
set E and rank k. Then there exists a unique function σ : C∗(M) → {0,+,−} such that

(C, σ(C))a is a cocircuit of M̃ for all cocircuits C of M. We have C∗(M̃) = C1 t C2, where

C1 := {(C, σ(C))a : C ∈ C∗(M)},

C2 :=

{
(C ◦D, 0)a :

C,D ∈ C∗(M) are conformal, σ(C) = −σ(D) 6= 0, and

|B \ (C ∪D)| ≥ k − 2 for some basis B of M

}
.

In this case we say that M̃ is the single element extension of M at a by σ. In general,
not all functions σ : C∗(M) → {0,+,−} give rise to single element extensions. However,
for e ∈ E the evaluation function φe : C∗(M) → {0,+,−}, C 7→ Ce and its negation −φe
are guaranteed to give single element extensions (7.1.8 of [BLVS+99]). (Geometrically, the
single element extension by φe duplicates coordinate e at the new coordinate a.) Also, if the
two functions σ, τ : C∗(M) → {0,+,−} each give rise to a single element extension of M,
then so does the composition σ ◦ τ (7.2.2 of [BLVS+99]), and the extension ofM by σ is less
than or equal to (under Definition 2.2.11) the extension ofM by σ ◦ τ (7.7.8 of [BLVS+99]).
(The composition σ ◦ τ : C∗(M)→ {0,+,−} is defined just as for covectors, by

(σ ◦ τ)(C) :=

{
σ(C), if σ(C) 6= 0

τ(C), if σ(C) = 0
for C ∈ C∗(M).)

Definition 2.3.6 (i →ε j-perturbation). Let M be an oriented matroid with ground set
E, i, j ∈ E, and ε ∈ {+,−}. If i = j or j is a coloop of M, set N := M. (A coloop c of
an (oriented) matroid is an element of its ground set which is in every basis.) Otherwise,
the restriction M\ {j} has the same rank as M, so M is the single element extension of
M\ {j} at j by some σ : C∗(M\ {j})→ {0,+,−}. Let N be the single element extension
of M \ {j} at j by σ ◦ εφi, which is well defined and satisfies N ≥ M by the preceding
discussion. We call N the i→ε j-perturbation of M.

We now prove several properties of i→ε j-perturbation.
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Lemma 2.3.7 (chirotope of the i →ε j-perturbation). Suppose that M is an oriented ma-
troid of rank k with a totally ordered ground set E, and N is the i→ε j-perturbation of M
(where i, j ∈ E and ε ∈ {+,−}). Then the chirotope of N is given by

χN (I) =

{
(−1)|I∩(i,j)|εχM((I \ {j}) ∪ {i}), if i /∈ I, j ∈ I, and χM(I) = 0

χM(I), otherwise

for I ∈
(
E
k

)
, where (i, j) denotes the set of elements of E strictly between i and j.

Proof. If i = j or j is a coloop of M, then N = M and the result is clear, so we may
assume that i 6= j and j is not a coloop ofM. Let I ∈

(
E
k

)
. If j /∈ I, we have χN (I) = χM(I)

becauseM\ {j} = N \ {j}. Also, if χM(I) 6= 0, we have χN (I) = χM(I) becauseM≤ N .
Hence we may assume that j ∈ I and χM(I) = 0. Then by Definition 2.2.6 there exists a
cocircuit C of M with I ∩ C = ∅. In particular, Cj = 0. If Ci = 0, then by Lemma 2.3.5 C
is also a cocircuit of N , whence by Definition 2.2.6 both I and (I \ {j}) ∪ {i} are not bases
of M or N , giving χN (I) = χM((I \ {j}) ∪ {i}) = χM(I) = 0.

Suppose instead that Ci 6= 0. In particular i /∈ I, so we must show that χN (I) =
(−1)|I∩(i,j)|εχM((I \ {j}) ∪ {i}). By Lemma 2.3.5, we get a cocircuit D of N such that
De = Ce for e ∈ E \ {j}, and either Dj = εCi (if C ∈ C1) or Dj = 0 (if C ∈ C2). Hence by
the pivoting property (Proposition 2.2.8), we have

χN (I) = (−1)|I∩(i,j)|DiDjχN ((I \ {j}) ∪ {i}),

and χN ((I \ {j}) ∪ {i}) = χM((I \ {j}) ∪ {i}) since j /∈ (I \ {j}) ∪ {i}. If C ∈ C1, then
DiDj = ε, giving χN (I) = (−1)|I∩(i,j)|εχM((I \ {j}) ∪ {i}). Now suppose that C ∈ C2.
Then Dj = 0, giving χN (I) = 0; we must show that χM((I \ {j}) ∪ {i}) = 0. Since
C ∈ C2, we can write C = (X ◦ Y, 0)j for some conformal cocircuits X, Y of M\ {j} with
σ(X) = −σ(Y ) 6= 0, where M is the single element extension of M \ {j} by σ. From
I ∩ C = ∅ we get I ∩ X = I ∩ Y = ∅. Also, by Lemma 2.3.5, (X, σ(X))j and (Y, σ(Y ))j
are cocircuits of M. Hence if i /∈ X or i /∈ Y , then (I \ {j}) ∪ {i} is not a basis of M by
Definition 2.2.6. Otherwise we have Xi = Yi 6= 0 (since X and Y are conformal), and X 6= Y
(since σ(X) 6= σ(Y )). Then by (C3) of Definition 2.2.3, there exists a cocircuit ofM whose
support is contained in (X ∪ Y ∪ {j}) \ {i} ⊆ E \ ((I \ {j})∪ {i}), whence (I \ {j})∪ {i} is
not a basis of M. �

Corollary 2.3.8 (geometric interpretation of i→ε j-perturbation). Suppose that V ∈ Grk,n,
i, j ∈ [n], and ε ∈ {+,−}. For α ∈ R, let W (α) ∈ Grk,n be the row span of the k× n matrix
[x(1)| · · · |x(j−1)|(x(j) + αx(i))|x(j+1)| · · · |x(n)], where [x(1)| · · · |x(n)] is a k × n matrix whose
rows span V . (Note that W (α) does not depend on the choice of matrix.) Then for all α ∈ R
with sign ε such that ∆I(W (α)) has the same sign as ∆I(V ) for all I ∈

(
[n]
k

)
with ∆I(V ) 6= 0,

M(W (α)) is the i→ε j-perturbation of M(V ).
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Note that the possible values of α form an open interval between 0 and some number, or
±∞, with sign ε.

Example 2.3.9. Let V ∈ Gr2,4 be the row span of the matrix

[
1 0 2 0
0 3 −1 4

]
, and for α < 0

let W (α) ∈ Gr2,4 be the row span of the matrix

[
1 0 2 α
0 3 −1 4

]
. Note that the {3, 4}-minor

of the first matrix equals 8, and the {3, 4}-minor of the second matrix equals 8 + α, so we
should pick α > −8 so that these minors agree in sign. In fact, for all α ∈ (−8, 0) the
corresponding minors of the two matrices agree in sign whenever the first minor is nonzero,
whence M(W (α)) equals the 1→− 4-perturbation of M(V ). ♦

Proof (of Corollary 2.3.8). Note that for I ∈
(

[n]
k

)
and α ∈ R, we have

∆I(W (α)) =

{
∆I(V ) + (−1)|I∩(i,j)|α∆(I\{j})∪{i}(V ), if i /∈ I and j ∈ I
∆I(V ), otherwise

, (2.3.10)

where (i, j) denotes the set of elements of [n] strictly between i and j. Hence the result
follows from Lemma 2.3.7. �

We observe that certain i→ε j-perturbations do not increase sign variation.

Lemma 2.3.11 (sign variation and i →ε j-perturbation). Suppose that M is an oriented
matroid of rank k with ground set [n], and m ≥ k − 1.
(i) Let N be either the (i + 1) →+ i-perturbation of M (i ∈ [n − 1]), the i →+ (i + 1)-
perturbation of M (i ∈ [n − 1]), the 1 →(−1)m n-perturbation of M, or the n →(−1)m 1-
perturbation ofM. If var(X) ≤ m for all X ∈ V∗(M), then var(Y ) ≤ m for all Y ∈ V∗(N ).
(ii) Suppose that P ≥ M has rank k. If var(X) ≤ m for all X ∈ V∗(M) \ {0}, then
var(Y ) ≤ m for all Y ∈ V∗(P) \ {0}.

Note that (i) above does not hold for any other i→ε j-perturbations ofM (assuming i 6= j);
for counterexamples, we can take k := 1 and m ∈ {0, 1}.

Proof. (i) Note that for X ∈ {0,+,−}n, we have var(X) = var((Xn, Xn−1, . . . , X1)), and
if var(X) ≤ m then var((X2, X3, . . . , Xn, (−1)mX1)) ≤ m. By this cyclic symmetry, it will
suffice to prove the result assuming that N is the 2→+ 1-perturbation ofM. Suppose that
var(X) ≤ m for all X ∈ V∗(M), but there exists a covector Y of N with var(Y ) ≥ m + 1.
We will derive a contradiction by showing that Y is a covector of M.

Since M \ {1} = N \ {1}, by Definition 2.2.10 we have X|[n]\{1} = Y |[n]\{1} for some
covector X ofM. From var(X) ≤ m, we get that Y1 6= 0, Y2. WriteM as the single element
extension ofM\{1} by σ : C∗(M\{1})→ {0,+,−}. Since Y is a composition of conformal
cocircuits of N (Proposition 2.2.5), by Lemma 2.3.5 we have a composition of conformal
cocircuits

Y = (C(1), (σ ◦φ2)(C(1)))1 ◦ · · · ◦ (C(r), (σ ◦φ2)(C(r)))1 ◦ (D(1) ◦E(1), 0)1 ◦ · · · ◦ (D(s) ◦E(s), 0)1
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for some cocircuits C(1), . . . , C(r), D(1), E(1), . . . , D(s), E(s) of M\ {1}. If Y2 = 0, then (σ ◦
φ2)(C(t)) = σ(C(t)) for t ∈ [r], whence by Lemma 2.3.5

Y = (C(1), σ(C(1)))1 ◦ · · · ◦ (C(r), σ(C(r)))1◦
(D(1), σ(D(1)))1 ◦ (E(1), σ(E(1)))1 ◦ · · · ◦ (D(s), σ(D(s)))1 ◦ (E(s), σ(E(s)))1

is a covector ofM, a contradiction. Hence Y1 = −Y2. In particular, because the composition
above is of conformal cocircuits, we have C

(t)
2 6= Y1 and (σ ◦ φ2)(C(t)) 6= −Y1 for t ∈ [r]. We

also have σ(C(u)) = Y1 for some u ∈ [r], since otherwise (σ ◦φ2)(C(t)) = φ2(C(t)) 6= Y1 for all
t ∈ [r]. This gives

Y = (C(u), σ(C(u)))1 ◦ (C(1), σ(C(1)))1 ◦ · · · ◦ (C(r), σ(C(r)))1◦
(D(1), σ(D(1)))1 ◦ (E(1), σ(E(1)))1 ◦ · · · ◦ (D(s), σ(D(s)))1 ◦ (E(s), σ(E(s)))1,

so Y is a covector of M by Lemma 2.3.5, a contradiction.
(ii) This follows from a general fact about oriented matroids A and B with the same rank

and ground set (7.7.5 of [BLVS+99]): A ≤ B if and only if for all nonzero covectors Y of B,
there exists a nonzero covector X of A with X ≤ Y . �

We now explain how to perturb an oriented matroid into a uniform oriented matroid by
repeatedly applying i→ε j-perturbations.

Proposition 2.3.12 (uniform perturbation). Suppose thatM is an oriented matroid of rank
k with ground set [n].
(i) The oriented matroid obtained from M by applying any k(2n − k − 1) consecutive per-
turbations of the sequence

. . . , (n− 1)→ n, n→ 1, 1→ 2, 2→ 3, . . . , (n− 1)→ n, n→ 1, 1→ 2, . . .

in order from left to right is uniform. (Here an i → j-perturbation denotes either of the
i→ε j-perturbations, for ε ∈ {+,−}.)
(ii) The oriented matroid obtained from M by applying any (n− k)(n + k − 1) consecutive
perturbations of the sequence

. . . , n→ (n− 1), 1→ n, 2→ 1, 3→ 2, . . . , n→ (n− 1), 1→ n, 2→ 1, . . .

in order from left to right is uniform.
(iii) The oriented matroid obtained from M by applying the sequence of perturbations

1→ 2, 2→ 3, . . . , (n− 1)→ n, n→ (n− 1), (n− 1)→ (n− 2), . . . , 2→ 1

in order from left to right k times is uniform.
(iv) The oriented matroid obtained from M by applying the sequence of perturbations

2→ 1, 3→ 2, . . . , n→ (n− 1), (n− 1)→ n, (n− 2)→ (n− 1), . . . , 1→ 2

in order from left to right n− k times is uniform.
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Thus we have four specific algorithms for perturbing M into a uniform oriented matroid,
each using at most 2n2 perturbations. For example, if k := 1 and n := 3, then applying
any of the following sequences of perturbations to M, in order from left to right, produces
a uniform oriented matroid:
• 1→ 2, 2→ 3, 3→ 1, 1→ 2 (by (i)); or
• 2→ 3, 3→ 1, 1→ 2, 2→ 3 (by (i)); or
• 3→ 1, 1→ 2, 2→ 3, 3→ 1 (by (i)); or
• 2→ 1, 3→ 2, 1→ 3, 2→ 1, 3→ 2, 1→ 3 (by (ii)); or
• 3→ 2, 1→ 3, 2→ 1, 3→ 2, 1→ 3, 2→ 1 (by (ii)); or
• 1→ 3, 2→ 1, 3→ 2, 1→ 3, 2→ 1, 3→ 2 (by (ii)); or
• 1→ 2, 2→ 3, 3→ 2, 2→ 1 (by (iii)); or
• 2→ 1, 3→ 2, 2→ 3, 1→ 2, 2→ 1, 3→ 2, 2→ 3, 1→ 2 (by (iv)).

Example 2.3.13. Let V ∈ Gr2,3 be the row span of the matrix

[
1 3 0
0 0 1

]
, so that the

vectors in V change sign at most m := 1 time. Now V is not generic, because ∆{2,3}(V ) = 0.
We can perturb V into a generic subspace by applying a 3 →− 1-perturbation, giving the
row span of [

1 3 0
α 0 1

]
(α < 0),

or by applying a 3→+ 2-perturbation, giving the row span of[
1 3 0
0 β 1

]
(β > 0).

The vectors in either of these generic subspaces change sign at most once, as guaranteed
by Lemma 2.3.11. Note that we cannot make V generic by applying only 1 → 2- and
2→ 3-perturbations. ♦

Proof (of Proposition 2.3.12). Let N be an oriented matroid of rank k with ground set [n].
The dual N ∗ of N is the oriented matroid of rank n− k with ground set [n] whose chirotope
is given by χN ∗(J) = (−1)

∑
j∈J jχN ([n] \ J) for J ∈

(
[n]
n−k

)
. Note that N is uniform if and

only if N ∗ is uniform. Also, Lemma 2.3.7 implies that the dual of the i→ε j-perturbation of
N is the j →−ε i-perturbation of N ∗. Hence statements (i) and (ii) are dual, and statements
(iii) and (iv) are dual. We will prove (ii) and (iv).

A hyperplane of an (oriented) matroid is a maximal subset of its ground set which con-
tains no basis. Note that by Definition 2.2.6 and (C2) of Definition 2.2.3, hyperplanes are
precisely the complements of supports of cocircuits. Now suppose that we have a collection of
functions, each of which, given an oriented matroid P of rank k with ground set [n], produces
an oriented matroid P ′ ≥ P of rank k, such that no hyperplane of P of size at least k is a
hyperplane of P ′. Note that every basis of P is a basis of P ′ (by Definition 2.2.11), so every
hyperplane of P ′ is contained in a hyperplane of P . Hence the maximum size of a hyperplane
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of P ′ is less than the maximum size of a hyperplane of P , unless every hyperplane of P has
size less than k (i.e. P is uniform). By applying such a function n − k times (possibly a
different function in our collection each time), we obtain a uniform oriented matroid. Thus
to prove (ii), it suffices to show that for all i ∈ Z, applying the sequence of perturbations

(i+ 1)→ i, (i+ 2)→ (i+ 1), . . . , (i+ n+ k − 1)→ (i+ n+ k − 2)

(where we read the indices modulo n) in order from left to right is such a function (we then
apply this function for i = j, j + (n+ k− 1), j + 2(n+ k− 1), . . . , j + (n− k− 1)(n+ k− 1)
for any j ∈ Z). Similarly, to prove (iv), it suffices to show that applying the sequence of
perturbations

2→ 1, 3→ 2, . . . , n→ (n− 1), (n− 1)→ n, (n− 2)→ (n− 1), . . . , 1→ 2

in order from left to right is such a function. To this end, we prove the following claim.

Claim. Suppose that P is an oriented matroid of rank k with ground set [n], and I ⊆ [n] is
a hyperplane of P with |I| ≥ k. Take a ∈ I and b ∈ [k] such that
• a is not a coloop of P|I ;
• a+ 1, a+ 2, . . . , a+ b− 1 ∈ I are coloops of P|I ; and
• a+ b /∈ I,
where we read the indices modulo n. Then for all Q ≥ P of rank k, I is not a hyperplane
the oriented matroid obtained from Q by applying the sequence of perturbations (a+ 1)→
a, (a+ 2)→ (a+ 1), . . . , (a+ b)→ (a+ b− 1) in order from left to right, where we read the
indices modulo n.

Proof of Claim. First note that I 6= [n], and P|I has at most k − 1 coloops (otherwise the
rank of P|I would be at least k), so such a and b exist. Also note that for any oriented
matroids A ≤ B of equal rank with ground set [n], by Lemma 2.3.7 the i→ε j-perturbation
of A is less than or equal to the i →ε j-perturbation of B, for all i, j ∈ [n] and ε ∈ {+,−}.
Hence it will suffice to prove the claim assuming that Q = P .

Let P(0) := P , and define P(c) recursively for c = 1, . . . , b as either of the (a + c) →ε

(a+ c− 1)-perturbations of P(c−1) for ε ∈ {+,−}. Also let J ∈
(
I

k−1

)
be a basis of P|I which

does not contain a. Since a+ 1, a+ 2, . . . , a+ b− 1 are coloops of P|I , they are in J .
We claim that (J∪{a, a+b})\{a+c} is a basis of P(c) for 0 ≤ c ≤ b. Let us prove this by

induction on c. For the base case c = 0, we must show that J ∪{a+b} is a basis of P . If not,
then by Definition 2.2.6 there exists a cocircuit C of P with (J ∪ {a+ b})∩C = ∅. We then
have CI = 0. (Otherwise there exists a cocircuit D of PI with D ≤ CI by Proposition 2.2.5,
whence J ∩ D = ∅, contradicting Definition 2.2.6 since J is a basis of PI .) This gives
C ⊂ [n] \ I, which contradicts (C2) of Definition 2.2.3 because [n] \ I is the support of a
cocircuit of P . For the induction step, suppose that c ∈ [b] and (J ∪ {a, a+ b}) \ {a+ c− 1}
is a basis of P(c−1). By Lemma 2.3.7, we have

χP(c)((J ∪ {a, a+ b}) \ {a+ c}) =
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{
±χP(c−1)((J ∪ {a, a+ b}) \ {a+ c− 1}), if χP(c−1)((J ∪ {a, a+ b}) \ {a+ c}) = 0

χP(c−1)((J ∪ {a, a+ b}) \ {a+ c}), otherwise
.

In the first case we have χP(c)((J ∪ {a, a + b}) \ {a + c}) 6= 0 by the induction hypothesis,
while in the second case (J ∪ {a, a + b}) \ {a + c} is a basis of P(c−1), and hence also of
P(c) ≥ P(c−1). This completes the induction. Taking c := b we get that J ∪ {a} is a basis of
P(c), and so I is not a hyperplane of P(c). �

Note that for any a ∈ Z and b ∈ [k], the sequence (a+ 1)→ a, (a+ 2)→ (a+ 1), . . . , (a+
b)→ (a+ b− 1) is a consecutive subsequence of

(i+ 1)→ i, (i+ 2)→ (i+ 1), . . . , (i+ n+ k − 1)→ (i+ n+ k − 2)

for all i ∈ Z (where we read the indices modulo n). This proves (ii).
For (iv), let P be an oriented matroid of rank k with ground set [n], and I ⊆ [n] a

hyperplane of P with |I| ≥ k. It will suffice to show that I is not a hyperplane of the
oriented matroid P ′ obtained from P by applying the sequence of perturbations

2→ 1, 3→ 2, . . . , n→ (n− 1), (n− 1)→ n, (n− 2)→ (n− 1), . . . , 1→ 2

in order from left to right. To this end, take i ∈ [n] \ I. If there exists an element of
[1, i] ∩ I which is not a coloop of P|I , then we may take a and b as in the statement of
the claim such that we also have 1 ≤ a < a + b ≤ i; then I is not a hyperplane of the
oriented matroid obtained from any Q ≥ P by applying the sequence of perturbations
(a+ 1)→ a, (a+ 2)→ (a+ 1), . . . , (a+ b)→ (a+ b− 1) in order from left to right, whence
I is not a hyperplane of P ′. Otherwise, there exists an element of [i, n] ∩ I which is not a
coloop of P|I , whence we take a′ ∈ [i, n] ∩ I and b′ ∈ [k] such that
• a′ is not a coloop of P|I ;
• a′ − 1, a′ − 2, . . . , a′ − b′ + 1 ∈ I are coloops of P|I ; and
• a′ − b′ /∈ I.
We have a′− b′ ≥ i, and by the claim I is not a hyperplane of the oriented matroid obtained
from any Q ≥ P by applying the sequence of perturbations (a′ − 1) → a′, (a′ − 2) →
(a′− 1), . . . , (a′− b′)→ (a′− b′+ 1) in order from left to right, whence I is not a hyperplane
of P ′. �

We are now ready to give a necessary and sufficient condition that var(X) ≤ m for all
X ∈ V∗(M).

Theorem 2.3.14. Suppose that M is an oriented matroid of rank k with ground set [n],
and m ≥ k − 1. Let N be any oriented matroid obtained from M by applying one of the
following sequences of perturbations:
• any k(2n− k − 1) consecutive perturbations of the sequence

. . . , (n− 1)→+ n, n→(−1)m 1, 1→+ 2, 2→+ 3, . . . , (n− 1)→+ n, n→(−1)m 1, 1→+ 2, . . .
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in order from left to right; or
• any (n− k)(n+ k − 1) consecutive perturbations of the sequence

. . . , n→+ (n− 1), 1→(−1)m n, 2→+ 1, 3→+ 2, . . . , n→+ (n− 1), 1→(−1)m n, 2→+ 1, . . .

in order from left to right; or
• the sequence of perturbations

1→+ 2, 2→+ 3, . . . , (n− 1)→+ n, n→+ (n− 1), (n− 1)→+ (n− 2), . . . , 2→+ 1

in order from left to right k times; or
• the sequence of perturbations

2→+ 1, 3→+ 2, . . . , n→+ (n− 1), (n− 1)→+ n, (n− 2)→+ (n− 1), . . . , 1→+ 2

in order from left to right n− k times.
Then N is uniform, and the following are equivalent:

(i) var(X) ≤ m for all X ∈ V∗(M);
(ii) var(Y ) ≤ m for all Y ∈ V∗(N ); and
(iii) var((χN (I ∪ {i}))i∈[n]\I) ≤ m− k + 1 for all I ∈

(
[n]
k−1

)
.

Note that the first two sequences of perturbations take advantage of the cyclic symmetry of
sign variation, but they depend on (the parity of) m, whereas the last two sequences do not.
Note that none of the sequences depend on M (only on n and k, and perhaps m).

Proof. Proposition 2.3.12 implies that N is uniform. We have (i) ⇒ (ii) by Lemma 2.3.11,
(ii) ⇒ (i) by Definition 2.2.11, (ii) ⇒ (iii) by Theorem 2.3.1(i), and (iii) ⇒ (ii) by Theo-
rem 2.3.1(ii) (since N is uniform). �

We can interpret this statement as a closure result in the space of oriented matroids (or
the Grassmannian Grk,n), where the closure of a set S of oriented matroids is {M : M ≤
N for some N ∈ S}. (Grk,n has the classical topology.)

Theorem 2.3.15. Let n ≥ k ≥ 0 and m ≥ k − 1.
(i) Let S be the set of oriented matroidsM of rank k with ground set [n] satisfying var(X) ≤
m for all X ∈ V∗(M). Then the closure of the set of uniform elements of S (in the space of
oriented matroids of rank k with ground set [n]) equals S.
(ii) Let T := {V ∈ Grk,n : var(v) ≤ m for all v ∈ V }. Then the closure in Grk,n of the set
of generic elements of T equals T .

Proof. Theorem 2.3.14 implies (i). For (ii), note that the closure in Grk,n of the generic ele-
ments of T is contained in T . Conversely, given V ∈ T we can construct (by Theorem 2.3.14)
a sequence M0 :=M(V ),M1,M2, . . . ,Mr of elements of S such that Ms is the is →εs js-
perturbation of Ms−1 (for some is, js ∈ [n] and εs ∈ {+,−}) for all s ∈ [r], and Mr is



CHAPTER 2. SIGN VARIATION IN THE GRASSMANNIAN 34

uniform. For α > 0, let V0(α) := V , and define Vs(α) ∈ Grk,n recursively for s = 1, . . . , r as
the row span of the k×n matrix [x(1)| · · · |x(js−1)|(x(js) + εsα

2s−1
x(is))|x(js+1)| · · · |x(n)], where

[x(1)| · · · |x(n)] is a k × n matrix whose rows span Vs−1(α). Note that for 0 ≤ s ≤ r, every
Plücker coordinate of Vs(α) is a polynomial in α of degree at most 2s − 1; we can prove this
by induction on s, using (2.3.10).

Claim. Let s ∈ [r] and I ∈
(

[n]
k

)
. Then for α > 0 sufficiently small, either ∆I(Vs−1(α)) = 0,

or ∆I(Vs(α)) and ∆I(Vs−1(α)) are nonzero with the same sign.

Proof of Claim. Regard ∆I(Vs−1(α)) as a polynomial in α. If this polynomial is zero then
the claim is proven, so suppose that this polynomial is nonzero, and write ∆I(Vs−1(α)) =
cαd + O(αd+1) (as α → 0) for some d ≤ 2s−1 − 1 and c 6= 0. Then by (2.3.10) we have
∆I(Vs(α)) = ∆I(Vs−1(α)) + O(α2s−1

) = cαd + O(αd+1). Hence for α > 0 sufficiently small,
we have sign(∆I(Vs(α))) = sign(∆I(Vs−1(α))) = sign(c). �

Thus by Corollary 2.3.8, for α > 0 sufficiently small we haveM(Vs(α)) =Ms for all s ∈ [r],
whence Vr(α) is generic and Vr(α) ∈ T . Taking α → 0 shows explicitly that V is in the
closure of T . �

2.4 Defining amplituhedra and Grassmann polytopes

Let k, n, r ∈ N with n ≥ k, r, and let Z : Rn → Rr be a linear map, which we also regard as
an r×n matrix. Arkani-Hamed and Trnka [AHT14] consider the map Gr≥0

k,n → Grk,r induced
by Z on the totally nonnegative Grassmannian. Explicitly, if X is a k×n matrix whose row
span is V ∈ Gr≥0

k,n, then Z(V ) is the row span of the k×r matrix XZT . In the case that k ≤ r
and all r× r minors of Z are positive, Arkani-Hamed and Trnka call the image of this map a
(tree) amplituhedron, and use it to calculate scattering amplitudes in N = 4 supersymmetric
Yang-Mills theory (taking r := k+ 4). One motivation they provide for requiring that k ≤ r
and Z have positive r × r minors is to guarantee that the map Gr≥0

k,n → Grk,r induced by Z

is well defined, i.e. that Z(V ) has dimension k for all V ∈ Gr≥0
k,n. As a more general sufficient

condition for this map to be well defined, Lam [Lam16b] requires that the row span of Z has
a k-dimensional subspace which is totally positive. (It is not obvious that Arkani-Hamed
and Trnka’s condition is indeed a special case of Lam’s; see Section 15.1 of [Lam16b].) In
the case that the map Gr≥0

k,n → Grk,r induced by Z is well defined, Lam calls the image
a (full) Grassmann polytope, since in the case k = 1 Grassmann polytopes are precisely
polytopes in the projective space Gr1,r = Pr−1 (and the amplituhedra are projective cyclic
polytopes). In this section we give (Theorem 2.4.2) a necessary and sufficient condition for
the map Gr≥0

k,n → Grk,r to be well defined, in terms of sign variation; we are able to translate
this into a condition on the maximal minors of Z using the results of Section 2.3. As a
consequence, we recover Arkani-Hamed and Trnka’s and Lam’s sufficient conditions. To be
thorough, we similarly determine when the map Gr>0

k,n → Grk,r induced by Z on the totally
positive Grassmannian is well defined (Theorem 2.4.4).



CHAPTER 2. SIGN VARIATION IN THE GRASSMANNIAN 35

Lemma 2.4.1. Let v ∈ Rn \ {0} and k ≤ n.
(i) There exists an element of Gr≥0

k,n containing v if and only if var(v) ≤ k − 1.

(ii) There exists an element of Gr>0
k,n containing v if and only if var(v) ≤ k − 1.

Proof. The forward directions of (i) and (ii) follow from Gantmakher and Krein’s result
(Theorem 2.1.1). For the reverse direction of (i), suppose that var(v) ≤ k − 1. Then we
may partition [n] into pairwise disjoint nonempty intervals of integers I1, . . . , Ik, such that
for all j ∈ [k] the components of v|Ij are all nonnegative or all nonpositive. For j ∈ [k], let

w(j) ∈ Rn have support Ij such that w(j)|Ij equals v|Ij if v|Ij 6= 0, and eIj otherwise. Then

span({w(j) : j ∈ [k]}) ∈ Gr≥0
k,n contains v. (For example, if v = (2, 5, 0,−1,−4,−1, 0, 0, 3)

and k = 4, then we may take I1 := {1, 2, 3}, I2 := {4, 5, 6}, I3 := {7, 8}, I4 := {9}, whence
our subspace is the row span of the matrix

2 5 0 0 0 0 0 0 0
0 0 0 −1 −4 −1 0 0 0
0 0 0 0 0 0 1 1 0
0 0 0 0 0 0 0 0 3

 ;

note that v is the sum of rows 1, 2, and 4.)
Now we prove the reverse direction of (ii). The point is that by rescaling the basis

vectors of Rn (the torus action on the Grassmannian), we need only determine the sign
vectors appearing in totally positive subspaces.

Claim ([GK50], [BLVS+99]). Let V ∈ Gr>0
k,n.

(i) {sign(v) : v ∈ V } = {X ∈ {0,+,−}n : var(X) ≤ k − 1} ∪ {0}.
(ii) {sign(w) : w ∈ V ⊥} = {X ∈ {0,+,−}n : var(X) ≥ k} ∪ {0}.
In the terminology of oriented matroids, the sets in (i) and (ii) are the covectors and vectors,
respectively, of M(V ).

Proof of Claim. This essentially follows from known results, as follows. First recall that by
Lemma 2.1.11(ii), V is totally positive if and only if alt(V ⊥) is totally positive. Hence parts
(i) and (ii) of the claim are equivalent by Lemma 2.1.11(i). Let us prove (ii). The containment
⊆ follows from Gantmakher and Krein’s result (Corollary 2.1.12(ii)). For the containment
⊇, given X ∈ {0,+,−}n with var(X) ≥ k, take I ∈

(
[n]
k+1

)
such that X alternates in sign

on I. By Proposition 9.4.1 of [BLVS+99], there exists w ∈ V ⊥ such that sign(w|I) = X|I
and sign(w|[n]\I) = 0. Now for each j ∈ [n] \ I, take v(j) ∈ V ⊥ such that v

(j)
j = 1 and

v(j)|[n]\(I∪{j}) = 0. (For example, fix any h ∈ I, whence ∆([n]\I)∪{h}(V
⊥) 6= 0 since V ⊥ is

generic. Then take any (n− k)× n matrix whose rows span V ⊥, and row reduce it so that
we get an identity matrix in the columns ([n] \ I) ∪ {h}. Then we let v(j) for j ∈ [n] \ I be
the row of this matrix whose pivot column is j.) By perturbing w by v(j) for j ∈ [n] \ I so
that wj has sign Xj, we obtain a vector in V ⊥ with sign vector X. �
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Suppose that var(v) ≤ k − 1. Take any V ∈ Gr>0
k,n (e.g. let V be the row span of the

matrix 
1 1 · · · 1
t1 t2 · · · tn
t21 t22 · · · t2n
...

...
. . .

...
tk−1
1 tk−1

2 · · · tk−1
n

 ,
where t1 < · · · < tn). Then the oriented matroid M(V ) defined by V is the alternating
oriented matroid of rank k with ground set [n], whence sign(v) is a covector of M by the
claim. That is (cf. Definition 2.2.1), there exist α1, . . . , αn > 0 such that (α1v1, . . . , αnvn) ∈
V . Then {(w1

α1
, . . . , wn

αn
) : w ∈ V } ∈ Gr>0

k,n contains v. �

Theorem 2.4.2. Suppose that k, n, r ∈ N with n ≥ k, r, and that Z : Rn → Rr is a linear
map, which we also regard as an r × n matrix. Let d be the rank of Z and W ∈ Grd,n the
row span of Z, so that W⊥ = ker(Z) ∈ Grn−d,n. The following are equivalent:
(i) the map Gr≥0

k,n → Grk,r induced by Z is well defined, i.e. dim(Z(V )) = k for all V ∈ Gr≥0
k,n;

(ii) var(v) ≥ k for all nonzero v ∈ ker(Z); and
(iii) var((∆I\{i}(W ))i∈I) ≤ d− k for all I ∈

(
[n]
d+1

)
such that W |I has dimension d.

We explain how to use Theorem 2.4.2 to deduce the sufficient conditions of Arkani-Hamed
and Trnka, and of Lam, for the map Gr≥0

k,n → Grk,r induced by Z to be well defined. Note that
if the r×r minors of Z are all positive, then d = r and W is totally positive, so the condition
(iii) holds for any k ≤ r. Alternatively, by Corollary 2.1.12(ii), we have var(v) ≥ r for all
nonzero v ∈ ker(Z), so the condition (ii) holds for any k ≤ r. This recovers the sufficient
condition of Arkani-Hamed and Trnka [AHT14]. On the other hand, if W has a subspace
V ∈ Gr>0

k,n, then by Corollary 2.1.12(ii) we have var(v) ≥ k for all v ∈ V ⊥\{0}, which implies
condition (ii) above since ker(Z) = W⊥ ⊆ V ⊥. This recovers the sufficient condition of Lam
[Lam16b]. However, our result does not show why Arkani-Hamed and Trnka’s condition is
a special case of Lam’s. Indeed, it is an interesting open problem to determine whether or
not Lam’s sufficient condition is also necessary, i.e. whether the condition var(v) ≥ k for all
nonzero v ∈ W⊥ implies that W has a totally positive k-dimensional subspace. 1

Example 2.4.3. Let Z : R4 → R2 be the linear map given by the matrix

[
2 −1 1 1
1 2 −1 3

]
(so n = 4, d = r = 2), and let W ∈ Gr2,4 be the row span of this matrix. Let us use
Theorem 2.4.2(iii) to determine for which k (0 ≤ k ≤ 4) the map Gr≥0

k,4 → Grk,2 induced by

Z is well defined. The 4 relevant sequences of Plücker coordinates (as I ranges over
(

[4]
3

)
) are

(∆{2,3}(W ),∆{1,3}(W ),∆{1,2}(W )) = (−1,−3, 5),
1After this work was published, Pavel Galashin informed me that he found an example showing that

Lam’s condition is strictly stronger than mine. Thomas Lam has proposed using my condition for the
definition of a ‘Grassmann polytope’, calling those defined by Z satisfying his condition ‘tame’ Grassmann
polytopes.
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(∆{2,4}(W ),∆{1,4}(W ),∆{1,2}(W )) = (−5, 5, 5),

(∆{3,4}(W ),∆{1,4}(W ),∆{1,3}(W )) = (4, 5,−3),

(∆{3,4}(W ),∆{2,4}(W ),∆{2,3}(W )) = (4,−5,−1).

The maximum number of sign changes among these 4 sequences is 1, which is at most 2− k
if and only if k ≤ 1. Hence the map is well defined if and only if k ≤ 1.

Note that for k ≥ 2, the proof of Lemma 2.4.1(i) shows how to explicitly construct
V ∈ Gr≥0

k,4 with dim(Z(V )) < k: take a nonzero v ∈ ker(Z) with var(v) ≤ 1, and extend v

to V ∈ Gr≥0
k,4. For example, if k = 2 we can take v = (1,−3,−5, 0) ∈ ker(Z) and extend it

to the row span V ∈ Gr≥0
2,4 of the matrix

[
1 0 0 0
0 −3 −5 0

]
. Note that Z(V ) is the span of

(2, 1), so dim(Z(V )) = 1 < dim(V ). ♦

Proof (of Theorem 2.4.2). (i)⇔ (ii): The map Gr≥0
k,n → Grk,r induced by Z is well defined if

and only if for all V ∈ Gr≥0
k,n and v ∈ V \{0}, we have Z(v) 6= 0. This condition is equivalent

to (ii) above by Lemma 2.4.1(i).
(ii)⇔ (iii): This is exactly the dual statement of (the realizable case of) Theorem 2.3.1(ii).

Explicitly, recall that alt : Rn → Rn is defined by alt(v) := (v1,−v2, v3, . . . , (−1)n−1vn) for
v ∈ Rn. By Lemma 2.1.11(i), the condition (ii) is equivalent to var(v) ≤ n − k − 1 for all
v ∈ alt(ker(Z)) \ {0}, which is in turn equivalent to var((∆J∪{i}(alt(ker(Z))))i∈[n]\J) ≤ d− k
for all J ∈

(
[n]

n−d−1

)
such that ∆J∪{i}(alt(ker(Z))) 6= 0 for some i ∈ [n] by Theorem 2.3.1(ii).

This condition is precisely (iii) above, since ∆K(W ) = ∆[n]\K(alt(ker(Z))) for all K ∈
(

[n]
d

)
by Lemma 2.1.11(ii). �

We give the analogue of Theorem 2.4.2 for the map induced by Z not on Gr≥0
k,n, but on

Gr>0
k,n.

Theorem 2.4.4. Suppose that k, n, r ∈ N with n ≥ k, r, and that Z : Rn → Rr is a linear
map, which we also regard as an r × n matrix. Let d be the rank of Z and W ∈ Grd,n the
row span of Z, so that W⊥ = ker(Z) ∈ Grn−d,n. The following are equivalent:
(i) the map Gr>0

k,n → Grk,r induced by Z is well defined, i.e. dim(Z(V )) = k for all V ∈ Gr>0
k,n;

(ii) var(v) ≥ k for all nonzero v ∈ ker(Z); and
(iii) there exists a generic perturbation W ′ ∈ Grd,n of W such that var((∆I\{i}(W

′))i∈I) ≤
d− k for all I ∈

(
[n]
d+1

)
.

We omit the proof, since it is similar to that of Theorem 2.4.2; we only mention that instead
of Lemma 2.4.1(i) we use Lemma 2.4.1(ii), and along with Theorem 2.3.1(ii) we also use
Theorem 2.3.15.
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2.5 Positroids from sign vectors

Recall that the totally nonnegative Grassmannian Gr≥0
k,n has a cell decomposition, where the

positroid cell of V ∈ Gr≥0
k,n is determined by M(V ) := {I ∈

(
[n]
k

)
: ∆I(V ) 6= 0}. The goal

of this section is show how to obtain the positroid cell of a given V ∈ Gr≥0
k,n from the sign

vectors of V (i.e. V∗(M(V ))). Note that M(V ) is the set of bases of M(V ), so V∗(M(V ))
determines M(V ) by the theory of oriented matroids. However, this does not exploit the
fact that V is totally nonnegative. We now describe two other ways to recover M(V ) from
the sign vectors of V , both of which require V to be totally nonnegative.

We begin by examining the Schubert cell of V , which is labeled by the lexicographic
minimum of M(V ). Recall that the Gale partial order ≤Gale on

(
[n]
k

)
is defined by

I ≤Gale J ⇐⇒ i1 ≤ j1, i2 ≤ j2, . . . , ik ≤ jk

for subsets I = {i1, . . . , ik} (i1 < · · · < ik), J = {j1, . . . , jk} (j1 < · · · < jk) of [n]. Note that
I ≤Gale J if and only if |I ∩ [m]| ≥ |J ∩ [m]| for all m ∈ [n]. Also recall that for V ∈ Grk,n,

A(V ) is the set of I ∈
(

[n]
k

)
such that some vector in V strictly alternates in sign on I. Note

that if I ∈ M(V ) then V |I = RI , so M(V ) ⊆ A(V ). We can obtain the Schubert cell of
V ∈ Gr≥0

k,n from A(V ) as follows.

Theorem 2.5.1 (Schubert cell from sign vectors). For V ∈ Gr≥0
k,n, the lexicographic minimum

of M(V ) equals the Gale minimum of A(V ).

We remark that the lexicographic minimum of M(V ) is also the Gale minimum of M(V ),
for all V ∈ Grk,n. (In general, the lexicographically minimal basis of any matroid with
a totally ordered ground set is also a Gale minimum [Gal63].) However, A(V ) does not
necessarily equal M(V ) (see Example 2.1.9 or Example 2.5.2), nor does A(V ) necessarily
uniquely determine M(V ) (see Example 2.5.2). Also, if V is not totally nonnegative, then
A(V ) does not necessarily have a Gale minimum (see Example 2.5.3).

Example 2.5.2. Let V,W ∈ Gr≥0
2,3 be the row spans of the matrices

[
1 0 −1
0 1 0

]
,

[
1 0 −1
0 1 1

]
,

respectively. Then A(V ) = A(W ) =
(

[3]
2

)
, but M(V ) 6= M(W ) since {1, 3} ∈ M(W ) \

M(V ). ♦

Example 2.5.3. Let V ∈ Gr3,6 be the row span of the matrix

1 0 −1 −1 1 0
0 1 1 2 0 0
0 0 0 0 0 1

,

which is not totally nonnegative. Then (1,−1,−2,−3, 1, 0) ∈ V strictly alternates in sign
on {1, 2, 5}, and (3, 2,−1, 1, 3, 0) ∈ V strictly alternates in sign on {1, 3, 4}, but no vector in
V strictly alternates in sign on {1, 2, 3} or {1, 2, 4}. Hence A(V ) has no Gale minimum. ♦



CHAPTER 2. SIGN VARIATION IN THE GRASSMANNIAN 39

Proof. Given V ∈ Gr≥0
k,n, let I be the lexicographic minimum of M(V ).

Claim. Let m ∈ [n] and l := |I ∩ [m]|. Then V |[m] ∈ Gr≥0
l,m.

Proof of Claim. Express V as the row span of a k × n matrix X = [x(1)| · · · |x(n)] whose
restriction to the columns in I is an identity matrix. Note that V |[m] is the row span of
the first m columns of X. Since {x(i) : i ∈ I ∩ [m]} is linearly independent, we may extend
I ∩ [m] to B ∈ M(V |[m]), and then extend B to B′ ∈ M(V ). Since I is the Gale minimum
of M(V ) [Gal63], we have I ≤Gale B

′. In particular |I ∩ [m]| ≥ |B′ ∩ [m]|, so B = I ∩ [m].
Hence dim(V |[m]) = l, and the entries in the first m columns of X past the lth row are all
zero. It follows that V |[m] is the row span of the submatrix of X formed by the first l rows
and the first m columns. Since the restriction of X to the columns in I is an identity matrix,
we see that ∆K(V |[m]) = ∆K∪(I\[m])(V ) ≥ 0 for K ∈

(
[m]
l

)
. �

Hence if v ∈ V strictly alternates in sign on J ∈
(

[n]
k

)
, by Theorem 2.1.1 we get |I∩ [m]|−1 ≥

var(v|[m]) ≥ |J ∩ [m]| − 1 for all m ∈ [n], whence I ≤Gale J . �

Given n ≥ 0, for j ∈ [n] let ≤j be the total order on [n] defined by j <j j + 1 <j · · · <j

n <j 1 <j · · · <j j − 1. Then for V ∈ Grk,n, we let Ij (j ∈ [n]) denote the lexicographic
minimum of M(V ) with respect to ≤j. The tuple (I1, . . . , In) is called the Grassmann
necklace of V . For example, if V ∈ Gr2,4 is generic, then the Grassmann necklace of V is
({1, 2}, {2, 3}, {3, 4}, {4, 1}). The Grassmann necklace is of special interest to us because of a
result of Postnikov (Theorem 17.1 of [Pos]), which implies that if V is totally nonnegative, the
positroid cell of V is determined by its Grassmann necklace. Oh [Oh11] explicitly described
M(V ) in terms of the Grassmann necklace of V , for V ∈ Gr≥0

k,n.

Theorem 2.5.4 ([Oh11]). Suppose that V ∈ Gr≥0
k,n has Grassmann necklace (I1, . . . , In) ∈(

[n]
k

)n
. Then

M(V ) =

{
J ∈

(
[n]

k

)
: Ij ≤j-Gale J for all j ∈ [n]

}
.

(Here ≤j-Gale denotes the Gale order on
(

[n]
k

)
induced by ≤j.)

We can generalize Theorem 2.5.1 to the Grassmann necklace (I1, . . . , In) of V ∈ Gr≥0
k,n

as follows. For j ∈ [n], we define Vj as the row span of the cyclically shifted k × n matrix
[x(j)|x(j+1)| · · · |x(n)|(−1)k−1x(1)| · · · |(−1)k−1x(j−1)], where [x(1)| · · · |x(n)] is a k × n matrix
whose rows span V . Note that Vj does not depend on our choice of matrix, and since V is
totally nonnegative so is Vj. Then {i− j+ 1 (mod n) : i ∈ Ij} is the lexicographic minimum
of M(Vj), and so applying Theorem 2.5.1 to Vj gives the following result.

Corollary 2.5.5 (Grassmann necklace from sign vectors). Suppose that V ∈ Gr≥0
k,n. For

j ∈ [n], let Aj be the set of J ∈
(

[n]
k

)
such that some vector in V strictly alternates in sign

on J except precisely from component max(J ∩ [1, j)) to component min(J ∩ [j, n]) (if both
components exist). Then Aj has a j-Gale minimum Ij for all j ∈ [n], and (I1, . . . , In) is the
Grassmann necklace of V .
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For example, if n := 5, J := {1, 3, 4, 5}, and j := 3, then (1, 1, 1,−1, 1) strictly alternates
in sign on J except precisely from component max(J ∩ [1, j)) to component min(J ∩ [j, n]),
but (1, 1,−1, 1,−1) does not. (If j ≤ min(J) or j > max(J), then the condition reduces to
“strictly alternates in sign on J .”)

With Oh’s result (Theorem 2.5.4), we get the following corollary.

Corollary 2.5.6. Suppose that V ∈ Gr≥0
k,n has Grassmann necklace (I1, . . . , In) ∈

(
[n]
k

)n
, and

J ∈
(

[n]
k

)
. Then the following are equivalent:

(i) J ∈M(V );
(ii) Ij ≤j-Gale J for all j ∈ [n]; and
(iii) V realizes all 2k sign vectors in {+,−}J which alternate in sign between every pair of
consecutive components, with at most one exceptional pair.

For example, if k = 5 the 2k sign vectors in (iii) above are (+,−,+,−,+), (+,+,−,+,−),
(+,−,−,+,−), (+,−,+,+,−), (+,−,+,−,−), and their negations. Since V realizes a sign
vector if and only if V realizes its negation, we need only check k sign vectors in (iii) up to
sign.

Proof. We have (i) ⇒ (iii) since J ∈ M(V ) implies V |J = RJ , (iii) ⇒ (ii) by Corol-
lary 2.5.5(ii), and (ii) ⇒ (i) by Oh’s result (Theorem 2.5.4). �

We can prove (iii)⇒ (i) directly from Theorem 2.1.1, as follows. Suppose that (iii) holds, but
J /∈M(V ). Then there exists v ∈ V \ {0} with v|J = 0; take j ∈ [n] such that vj 6= 0. Then
(iii) guarantees the existence of a vector w ∈ V which strictly alternates in sign on J except
precisely from component max(J ∩ [1, j)) to component min(J ∩ [j, n]) (if both components
exist). Adding a sufficiently large multiple of ±v to w gives a vector in V which strictly
alternates in sign on J ∪ {j}, contradicting Theorem 2.1.1. This establishes the equivalence
of (i) and (iii) without appealing to Oh’s result (Theorem 2.5.4). The implication (i) ⇒ (ii)
is a general fact about matroids [Gal63]. We would be interested to see a direct proof of (ii)
⇒ (iii) (and hence of Corollary 2.5.6) which is substantially different from Oh’s proof, using
the tools of sign variation.

Remark 2.5.7. We remark that (iii) ⇒ (i) does not necessarily hold when V is not totally
nonnegative; in fact, it is possible that V realizes all 2k sign vectors in {+,−}J except two,
but J /∈ M(V ). To see this, given J ∈

(
[n]
k

)
, let v ∈ RJ have no zero components, and

take V ∈ Grk,n such that V |J = {v}⊥ (which is always possible, assuming n > k). That
is, J /∈ M(V ) and V |J = {w ∈ RJ :

∑
j∈J vjwj = 0}. We see that if w ∈ RJ satisfies

sign(w) = sign(v), then
∑

j∈J vjwj > 0, and so w /∈ V |J . Similarly, if sign(w) = − sign(v)

then w /∈ V |J . Conversely, given ω ∈ {+,−}J with ω 6= ± sign(v), let us construct w ∈ V |J
with sign(w) = ω. Take a, b ∈ J such that sign(va)ωa 6= sign(vb)ωb. For j ∈ J \ {a, b} let wj
be any real number with sign ωj, then take wb with sign ωb and sufficiently large magnitude

that sign(
∑

j∈J\{a} vjwj) = sign(vb)ωb, and set wa := −
∑
j∈J\{a} vjwj

va
. Thus V realizes all sign

vectors in {+,−}J except for precisely ± sign(v).
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On the other hand, if V realizes all 2k sign vectors in {+,−}J , then J ∈M(V ). Indeed,
if J /∈M(V ) then we may take v ∈ (V |J)⊥ \{0}, whence V does not realize any ω ∈ {+,−}J
satisfying sign(v) ≤ ω.
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Chapter 3

The m = 1 amplituhedron and cyclic
hyperplane arrangements

The work in this chapter is joint with Lauren Williams, and has been posted on the arXiv
[KW]. I am grateful to her for allowing me to include this work in my dissertation. This
work is an offshoot of a larger ongoing project which is joint with Yan Zhang, and we thank
him for many helpful conversations. We also thank Richard Stanley for providing a reference
on hyperplane arrangements, Nima Arkani-Hamed, Hugh Thomas, and Jaroslav Trnka for
sharing their results, Thomas Lam for giving useful comments about Proposition 3.8.4, Pavel
Galashin for resolving Problem 3.3.14, and anonymous referees for their feedback.

3.1 Introduction

The totally nonnegative Grassmannian Gr≥0
k,n is the subset of the real Grassmannian Grk,n

consisting of points with all Plücker coordinates nonnegative. Following seminal work of
Lusztig [Lus94], as well as by Fomin and Zelevinsky [FZ99], Postnikov initiated the combi-
natorial study of Gr≥0

k,n and its cell decomposition [Pos]. Since then the totally nonnegative
Grassmannian has found applications in diverse contexts such as mirror symmetry [MR],
soliton solutions to the KP equation [KW14], and scattering amplitudes for N = 4 super-
symmetric Yang-Mills theory [AHBC+16].

Building on [AHBC+16], Arkani-Hamed and Trnka [AHT14] recently introduced a beau-
tiful new mathematical object called the (tree) amplituhedron, which is the image of the
totally nonnegative Grassmannian under a particular map.

Definition 3.1.1. Let Z be a (k+m)×n real matrix whose maximal minors are all positive,
where m ≥ 0 is fixed with k +m ≤ n. Then it induces a map

Z̃ : Gr≥0
k,n → Grk,k+m

defined by
Z̃(〈v1, . . . , vk〉) := 〈Z(v1), . . . , Z(vk)〉,
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where 〈v1, . . . , vk〉 is an element of Gr≥0
k,n written as the span of k basis vectors.1 The (tree)

amplituhedron An,k,m(Z) is defined to be the image Z̃(Gr≥0
k,n) inside Grk,k+m.

In special cases the amplituhedron recovers familiar objects. If Z is a square matrix, i.e.
k+m = n, then An,k,m(Z) is isomorphic to the totally nonnegative Grassmannian. If k = 1,
then An,1,m(Z) is a cyclic polytope in projective space [Stu88].

While the amplituhedron An,k,m(Z) is an interesting mathematical object for any m, the
case of immediate relevance to physics is m = 4. In this case, it provides a geometric basis
for the computation of scattering amplitudes in N = 4 supersymmetric Yang-Mills theory.
These amplitudes are complex numbers related to the probability of observing a certain
scattering process of n particles. It is expected that such amplitudes can be expressed (mod-
ulo higher-order terms) as an integral over the amplituhedron An,k,4(Z). This statement
would follow from the conjecture of Arkani-Hamed and Trnka [AHT14] that the images of
a certain collection of 4k-dimensional cells of Gr≥0

k,n provide a “triangulation” of the ampli-
tuhedron An,k,4(Z). More specifically, the BCFW recurrence [BCF05, BCFW05] provides
one way to compute scattering amplitudes. Translated into the Grassmannian formulation
of [AHBC+16], the terms in the BCFW recurrence can be identified with a collection of
4k-dimensional cells in Gr≥0

k,n. If the images of these BCFW cells in An,k,4(Z) fit together in
a nice way, then we can combine the contributions from each term into a single integral over
An,k,4(Z).

In this chapter, we study the amplituhedron An,k,1(Z) for m = 1. We find that this
object is already interesting and non-trivial. Since An,k,1(Z) ⊆ Grk,k+1, it is convenient to
take orthogonal complements and work with lines rather than k-planes in Rk+1. This leads
us to define a related “B-amplituhedron”

Bn,k,m(W ) := {V ⊥ ∩W : V ∈ Gr≥0
k,n} ⊆ Grm(W ),

which is homeomorphic to An,k,m(Z), where W is the subspace of Rn spanned by the rows
of Z (Section 3.3). In the context of scattering amplitudes (m = 4), W is the span of 4
bosonic variables and k fermionic variables. Building on the results of Section 2.3, we use
this reformulation to give a description of the amplituhedron An,k,m(Z) in terms of sign
variation (Section 3.3).

Modeling the m = 4 case, we define a BCFW-like recursion in the case m = 1, which we
use to produce a subset of k-dimensional “BCFW cells” of Gr≥0

k,n (Section 3.4). The set of all

cells of Gr≥0
k,n are in bijection with various combinatorial objects, including L-diagrams and

decorated permutations, so we describe our m = 1 BCFW cells in terms of these objects. We
then show that their images triangulate the m = 1 amplituhedron; more specifically, we show
that An,k,1(Z) is homeomorphic to a k-dimensional subcomplex of the totally nonnegative
Grassmannian Gr≥0

k,n (Section 3.5). See Figure 3.6 for A4,2,1(Z) as a subcomplex of Gr≥0
2,4.

1The fact that Z has positive maximal minors ensures that Z̃ is well defined [AHT14]. See Theorem 2.4.2
for a characterization of when a matrix Z gives rise to a well-defined map Z̃.
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We also show that An,k,1(Z) can be identified with the complex of bounded faces of a
certain hyperplane arrangement of n hyperplanes in Rk, called a cyclic hyperplane arrange-
ment (Section 3.6; see also Figure 1.4). We use this description of the m = 1 amplituhedron
to describe how its cells fit together (Section 3.7).

It is known that the totally nonnegative Grassmannian has a remarkably simple topol-
ogy: it is contractible with boundary a sphere [RW10], and its poset of cells is Eulerian
[Wil07]. While there are not yet any general results in this direction, calculations of Euler
characteristics [FGMT15] indicate that the amplituhedron An,k,m(Z) is likely also topologi-
cally very nice. Our description of An,k,1(Z) as the complex of bounded faces of a hyperplane
arrangement, together with a result of Dong [Don08], implies that the m = 1 amplituhedron
is homeomorphic to a closed ball (Corollary 3.6.18).

Since k +m ≤ n, the map
Z̃ : Gr≥0

k,n → Grk,k+m

is far from injective in general. We determine when an arbitrary cell of Gr≥0
k,n is mapped in-

jectively by Z̃ into An,k,1(Z), and in this case we describe its image in An,k,1(Z) (Section 3.8).
Finally, we discuss to what extent our results hold in the setting of Grassmann polytopes

(Section 3.9). Grassmann polytopes are generalizations of amplituhedra obtained by relaxing
the positivity condition on the matrix Z [Lam16b].

3.2 Background on the totally nonnegative

Grassmannian

The (real) Grassmannian Grk,n is the space of all k-dimensional subspaces of Rn, for 0 ≤ k ≤
n. An element of Grk,n can be viewed as a k×n matrix of rank k, modulo left multiplication
by invertible k× k matrices. That is, two k× n matrices of rank k represent the same point
in Grk,n if and only if they can be obtained from each other by invertible row operations.

Let [n] denote {1, . . . , n}, and
(

[n]
k

)
the set of all k-element subsets of [n]. Given V ∈ Grk,n

represented by a k × n matrix A, for I ∈
(

[n]
k

)
we let ∆I(V ) be the maximal minor of A

located in the column set I. The ∆I(V ) do not depend on our choice of matrix A (up to
simultaneous rescaling by a nonzero constant), and are called the Plücker coordinates of V .

Definition 3.2.1 (Section 3 of [Pos]). We say that V ∈ Grk,n is totally nonnegative if

∆I(V ) ≥ 0 for all I ∈
(

[n]
k

)
, and totally positive if ∆I(V ) > 0 for all I ∈

(
[n]
k

)
. The set of all

totally nonnegative V ∈ Grk,n is the totally nonnegative Grassmannian Gr≥0
k,n, and the set of

all totally positive V is the totally positive Grassmannian Gr>0
k,n. For M ⊆

(
[n]
k

)
, the positroid

cell SM is the set of V ∈ Gr≥0
k,n with the prescribed collection of Plücker coordinates strictly

positive (i.e. ∆I(V ) > 0 for all I ∈M), and the remaining Plücker coordinates equal to zero
(i.e. ∆J(V ) = 0 for all J ∈

(
[n]
k

)
\M). We call M a positroid if SM is nonempty. We let Qk,n

denote the poset on the cells of Gr≥0
k,n defined by SM ≤ SM ′ if and only if SM ⊆ SM ′ .
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Remark 3.2.2. There is an action of the “positive torus” T>0 = Rn>0 on Gr≥0
k,n. Concretely,

if A is a k × n matrix representing an element of Gr≥0
k,n, then the positive torus acts on A

by rescaling its columns. If t = (t1, . . . , tn) ∈ T>0 and A represents an element of SM , then
t · A also represents an element of SM .

The fact that each nonempty SM is a topological cell is due to Postnikov [Pos]. Moreover,
it was shown in [PSW09] that the cells glue together to form a CW decomposition of Gr≥0

k,n.

Combinatorial objects parameterizing cells

In [Pos], Postnikov gave several families of combinatorial objects in bijection with cells of the
totally nonnegative Grassmannian. In this section we will start by defining L-diagrams, dec-
orated permutations, and equivalence classes of reduced plabic graphs, and give (compatible)
bijections among all these objects. This will give us a canonical way to label each positroid
by a L-diagram, a decorated permutation, and an equivalence class of plabic graphs.

Definition 3.2.3. A decorated permutation of the set [n] is a bijection π : [n] → [n] whose
fixed points are colored either black or white. We denote a black fixed point by π(i) = i
and a white fixed point by π(i) = i. An anti-excedance of the decorated permutation π is
an element i ∈ [n] such that either π−1(i) > i or π(i) = i (i.e. i is a white fixed point).

Definition 3.2.4. Fix k and n. Given a partition λ, we let Yλ denote the Young diagram
associated to λ. A L-diagram (or Le-diagram) D of shape λ and type (k, n) is a Young
diagram of shape Yλ contained in a k × (n − k) rectangle, whose boxes are filled with 0’s
and +’s in such a way that the L-property is satisfied: there is no 0 which has a + above it
in the same column and a + to its left in the same row. See Figure 3.1 for an example of a

L-diagram.

Lemma 3.2.5 (Section 20 of [Pos]). The following algorithm is a bijection between L-
diagrams D of type (k, n) and decorated permutations π on [n] with exactly k anti-excedances.

1. Replace each + in the L-diagram D with an elbow joint ��, and each 0 in D with a
cross .

2. Note that the southeast border of Yλ gives rise to a length-n path from the northeast
corner to the southwest corner of the k× (n− k) rectangle. Label the edges of this path
with the numbers 1 through n.

3. Now label the edges of the north and west border of Yλ so that opposite horizontal edges
and opposite vertical edges have the same label.

4. View the resulting ‘pipe dream’ as a permutation π = π(D) on [n], by following the
‘pipes’ from the southeastern border to the northwest border of the Young diagram. If
the pipe originating at label i ends at the label j, we define π(i) := j.
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5. If π(i) = i and i labels two horizontal (respectively, vertical) edges of Yλ, then π(i) := i
(respectively, π(i) := i).

Figure 3.1 illustrates this procedure.

0 + 0 + 0

+ + + + +

0 0 0

+ +

�� ������������
����

1
2

3

45
6

7
8

910

1457910

2

3

6

8

Figure 3.1: A L-diagram with λ = (5, 5, 3, 2), n = 10, and k = 4, and its corresponding pipe
dream with π = (1, 5, 4, 9, 7, 6, 2, 10, 3, 8).

Definition 3.2.6. A plabic graph2 is an undirected planar graph G drawn inside a disk
(considered modulo homotopy) with n boundary vertices on the boundary of the disk, labeled
1, . . . , n in clockwise order, as well as some colored internal vertices . These internal vertices
are strictly inside the disk and are each colored either black or white. Moreover, each
boundary vertex i in G is incident to a single edge. If a boundary vertex is adjacent to a
leaf (a vertex of degree 1), we refer to that leaf as a lollipop.

A perfect orientation O of a plabic graph G is a choice of orientation of each of its edges
such that each black internal vertex u is incident to exactly one edge directed away from
u, and each white internal vertex v is incident to exactly one edge directed towards v. A
plabic graph is called perfectly orientable if it admits a perfect orientation. Let GO denote
the directed graph associated with a perfect orientation O of G. Since each boundary vertex
is incident to a single edge, it is either a source (if it is incident to an outgoing edge) or a sink
(if it is incident to an incoming edge) in GO. The source set IO ⊂ [n] is the set of boundary
vertices which are sources in GO.

Figure 3.3 shows a plabic graph with a perfect orientation. In that example, IO =
{2, 3, 6, 8}.

All perfect orientations of a fixed plabic graph G have source sets of the same size k,
where k − (n − k) =

∑
color(v) · (deg(v) − 2). Here the sum is over all internal vertices v,

2“Plabic” stands for planar bi-colored.



CHAPTER 3. THE m = 1 AMPLITUHEDRON 47

where color(v) = 1 if v is black, and color(v) = −1 if v is white; see Lemma 9.4 of [Pos]. In
this case we say that G is of type (k, n).

The following construction of Postnikov (Sections 6 and 20 of [Pos]) associates a perfectly
orientable plabic graph to any L-diagram.

Definition 3.2.7. Let D be a L-diagram and π its decorated permutation. Delete the 0’s
of D, and replace each + with a vertex. From each vertex we construct a hook which goes
east and south, to the border of the Young diagram. The resulting diagram is called the
hook diagram H(D). After replacing the edges along the southeast border of the Young
diagram with boundary vertices labeled by 1, . . . , n, we obtain a planar graph in a disk, with
n boundary vertices and one internal vertex for each + of D. Then we replace the local
region around each internal vertex as in Figure 3.2, and add a black (respectively, white)
lollipop for each black (respectively, white) fixed point of π. This gives rise to a plabic graph
which we call G(D). By orienting the edges of G(D) down and to the left, we obtain a
perfect orientation.

7→ 7→ 7→ 7→

Figure 3.2: Local substitutions for getting the plabic graph G(D) from the hook diagram
H(D).

Figure 3.3a depicts the hook diagram H(D) corresponding to the L-diagram D from
Figure 3.1, and Figure 3.3b shows the corresponding plabic graph G(D).

More generally, each L-diagram D is associated with a family of reduced plabic graphs
consisting of G(D) together with other plabic graphs which can be obtained from G(D) by
certain moves ; see Section 12 of [Pos].

From the plabic graph constructed in Definition 3.2.7 (and more generally from a reduced
plabic graph G), one may read off the corresponding decorated permutation πG as follows.

Definition 3.2.8. Let G be a reduced plabic graph as above with boundary vertices 1, . . . , n.
The trip from i is the path obtained by starting from i and traveling along edges of G
according to the rule that each time we reach an internal black vertex we turn (maximally)
right, and each time we reach an internal white vertex we turn (maximally) left. This trip
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(a) The hook diagram H(D).
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(b) The plabic graph G(D).
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(c) The plabic graph G(D) redrawn and perfectly
oriented.

Figure 3.3: The hook diagram and plabic graph associated to the L-diagram D from
Figure 3.1.

ends at some boundary vertex π(i). By Section 13 of [Pos], the fact that G is reduced implies
that each fixed point of π is attached to a lollipop; we color each fixed point by the color of
its lollipop. In this way we obtain the decorated permutation πG = (π(1), . . . , π(n)) of G.

We invite the reader to verify that when we apply these rules to plabic graph G of
Figure 3.3b, we obtain the decorated permutation πG = (1, 5, 4, 9, 7, 6, 2, 10, 3, 8).

Matroids and positroids

A matroid is a combinatorial object which unifies several notions of independence. Among
the many equivalent ways of defining a matroid we will adopt the point of view of bases,
which is one of the most convenient for the study of positroids. We refer the reader to [Oxl11]
for an in-depth introduction to matroid theory.

Definition 3.2.9. Let E be a finite set. A matroid with ground set E is a subset M ⊆ 2E

satisfying the basis exchange axiom:



CHAPTER 3. THE m = 1 AMPLITUHEDRON 49

if B,B′ ∈M and b ∈ B \B′, then there exists b′ ∈ B′ \B such that (B \ {b}) ∪ {b′} ∈M .

The elements of M are called bases. All bases of M have the same size, called the rank of M .
We say that i ∈ E is a loop if i is contained in no basis of M , and a coloop if i is contained
in every basis of M .

Example 3.2.10. Let A be a k × n matrix of rank k with entries in a field F. Then the
subsets B ∈

(
[n]
k

)
such that the columns B of A are linearly independent form the bases of

a matroid M(A) with rank k and ground set [n]. In terms of the Grassmannian, the rows
of A span an element of Grk,n(F), whose nonzero Plücker coordinates are indexed by M(A).
For example, the matrix

A :=

[
1 0 2 0 0
0 1 3 0 1

]
over F := Q gives rise to the matroid M(A) = {{1, 2}, {1, 3}, {1, 5}, {2, 3}, {3, 5}} with
ground set [5]. In this example, 4 is a loop of M(A), and M(A) has no coloops.

Matroids arising in this way are called representable (over F). ♦

Example 3.2.11. Given k ∈ N and a finite set E, all k-subsets of E form a matroid M ,
called the uniform matroid (of rank k with ground set E). Note that M can be represented
over any infinite field, by a generic k × n matrix. ♦

Recall the definition of a positroid from Definition 3.2.1. In the language of matroid
theory, a positroid is a matroid representable by an element of the totally nonnegative
Grassmannian. Every perfectly orientable plabic graph gives rise to a positroid as follows.

Definition 3.2.12 (Proposition 11.7 of [Pos]). Let G be a plabic graph of type (k, n). Then
we have a positroid MG on [n] whose bases are precisely

{IO : O is a perfect orientation of G},

where IO is the set of sources of O.
If D is a L-diagram contained in a k×(n−k) rectangle, we let M(D) denote the positroid

MG(D) of the plabic graph G(D) from Definition 3.2.7.

Postnikov (Theorem 17.1 of [Pos]) showed that every positroid can be realized as M(D) for
some L-diagram D. We observe that we can describe the loops and coloops of M(D) in terms
of D as follows: i is a loop if and only if i labels a horizontal step whose column contains
only 0’s, and i is a coloop if and only if i labels a vertical step in the southeast border whose
row contains only 0’s.

We introduce some further notions from matroid theory which we will use later: duality,
direct sum, connectedness, restriction, and a partial order.

Definition 3.2.13. Let M be a matroid with ground set E. Then {E \ B : B ∈ M} is the
set of bases of a matroid M∗ with ground set E, called the dual of M .
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See Section 2 of [Oxl11] for a proof that M∗ is indeed a matroid. We make the following
observations about matroid duality:

• (M∗)∗ = M ;

• the ranks of M and M∗ sum to |E|;

• i ∈ E is a loop of M if and only if i is a coloop of M∗;

• if E = [n], then M is a positroid if and only if M∗ is a positroid (see Lemma 3.3.3(ii)).

Example 3.2.14. Let A :=

[
1 0 2 0 0
0 1 3 0 1

]
, as in Example 3.2.10. Then

M(A)∗ = {{3, 4, 5}, {2, 4, 5}, {2, 3, 4}, {1, 4, 5}, {1, 2, 4}},

and is represented by the matrix  0 0 0 1 0
0 1 0 0 −1
−2 0 1 0 −3

 ,
whose rows are orthogonal to the rows of A. ♦

Definition 3.2.15. Let M and N be matroids with ground sets E and F , respectively. The
direct sum M⊕N is the matroid with ground set EtF , and bases {BtC : B ∈M,C ∈ N}.
The rank of M ⊕N is the sum of the ranks of M and N .

A matroid is connected if we cannot write it as the direct sum of two matroids whose
ground sets are nonempty. Any matroid M can be written uniquely (up to permuting the
summands) as the direct sum of connected matroids, whose ground sets are the connected
components of M ; see Corollary 4.2.9 of [Oxl11].

Example 3.2.16. Consider the matrix A :=

[
1 0 0 1
0 1 1 0

]
and its associated matroid

M(A) = {{1, 2}, {1, 3}, {2, 4}, {3, 4}}. We have M(A) = M1⊕M2, where M1 is the uniform
matroid of rank 1 with ground set {1, 4}, and M2 is the uniform matroid of rank 1 with
ground set {2, 3}. Since M1 and M2 are connected, the connected components of M(A) are
{1, 4} and {2, 3}. In particular, M(A) is disconnected. ♦

Definition 3.2.17. Let M be a matroid with ground set E. For a subset F ⊆ E, the
restriction M |F of M to F is the matroid with ground set F whose bases are the inclusion-
maximal sets of {B ∩ F : B ∈M}; see p. 20 of [Oxl11].

For example, if M and N are matroids with ground sets E and F , respectively, then the
restriction of M ⊕N to E is M , and the restriction of M ⊕N to F is N .
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Definition 3.2.18. We define a partial order on matroids of rank k with ground set E as
follows: M ′ ≤ M if and only if every basis of M ′ is a basis of M . (In the matroid theory
literature, one says that the identity map on E is a weak map from M to M ′.)

Note that M ′ ≤ M if and only if M ′∗ ≤ M∗. This partial order, restricted to positroids of
rank k with ground set [n], recovers the poset Qk,n of cells of Gr≥0

k,n coming from containment

of closures (see Section 17 of [Pos]). The poset Q2,4 for Gr≥0
2,4 is shown in Figure 3.6.

Remark 3.2.19. All bijections that we have defined in this section are compatible. This
gives us a canonical way to label each positroid of rank k with ground set [n] by a set of
bases, a decorated permutation, a L-diagram, and an equivalence class of reduced plabic
graphs. The partial order on positroids (Definition 3.2.18) gives a partial order on these
other objects (of type (k, n)).

3.3 A complementary view of the amplituhedron

An,k,m
Background on sign variation

Definition 3.3.1. Given v ∈ Rn, let var(v) be the number of times v changes sign, when
viewed as a sequence of n numbers and ignoring any zeros. We use the convention var(0) :=
−1. We also define

var(v) := max{var(w) : w ∈ Rn such that wi = vi for all i ∈ [n] with vi 6= 0},

i.e. var(v) is the maximum number of times v changes sign after we choose a sign for each
zero component.

For example, if v := (4,−1, 0,−2) ∈ R4, then var(v) = 1 and var(v) = 3.
We now explain how var(·) and var(·) are dual to each other.

Definition 3.3.2. We define alt : Rn → Rn by alt(v) := (v1,−v2, v3,−v4, . . . , (−1)n−1vn)
for v ∈ Rn. If S ⊆ Rn, we let alt(S) denote {alt(v) : v ∈ S}.

Lemma 3.3.3 (Duality via alt).
(i)3 [GK50] We have var(v) + var(alt(v)) = n− 1 for all v ∈ Rn \ {0}.
(ii)4 [Hil90, Hoc75] Given V ∈ Grk,n, let V ⊥ ∈ Grn−k,n be the orthogonal complement of V .

3This result is stated without proof as Equation II.(67) of [GK50]. See Equation (5.1) of [And87] for a
proof.

4The earliest reference we found for this result is Section 7 of [Hoc75], where it appears without proof.
Hochster says this result “was basically known to Hilbert.” The idea is that if [Ik|A] is a k×n matrix whose
rows span V ∈ Grk,n, where A is a k × (n− k) matrix, then V ⊥ is the row span of the matrix [AT | − In−k].
This appears implicitly in Equation (14) of [Hil90], and more explicitly in Theorem 2.2.8 of [Oxl11] and
Proposition 3.1(i) of [MR14].
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Then V and alt(V ⊥) have the same Plücker coordinates, i.e. ∆I(V ) = ∆[n]\I(alt(V ⊥)) for

all I ∈
(

[n]
k

)
.

Note that part (ii) above implies that a subspace V is totally nonnegative if and only if
alt(V ⊥) is totally nonnegative, and totally positive if and only if alt(V ⊥) is totally positive.

The following result of Gantmakher and Krein, which characterizes totally nonnegative
and totally positive subspaces in terms of sign variation, will be essential for us.

Theorem 3.3.4 (Theorems V.3, V.7, V.1, V.6 of [GK50]). Let V ∈ Grk,n.
(i) V ∈ Gr≥0

k,n ⇐⇒ var(v) ≤ k − 1 for all v ∈ V ⇐⇒ var(w) ≥ k for all w ∈ V ⊥ \ {0}.
(ii) V ∈ Gr>0

k,n ⇐⇒ var(v) ≤ k−1 for all v ∈ V \{0} ⇐⇒ var(w) ≥ k for all w ∈ V ⊥\{0}.

Corollary 3.3.5. If V ∈ Gr≥0
k,n and W ∈ Gr>0

r,n, where r ≥ k, then V ∩W⊥ = {0}.

Proof. By Theorem 3.3.4, v ∈ V implies that var(v) ≤ k − 1. And w ∈ W⊥ \ {0} implies
that var(w) ≥ r ≥ k. Therefore V ∩W⊥ = {0}. �

We will also need to know which sign vectors appear in elements of Gr>0
k,n.

Definition 3.3.6. For t ∈ R we define

sign(t) :=


0, if t = 0

+, if t > 0

−, if t < 0

.

(We will sometimes use 1 and −1 in place of + and −.) Given v ∈ Rn, define the sign vector
sign(v) ∈ {0,+,−}n of v by sign(v)i := sign(vi) for i ∈ [n]. For example, sign(5, 0,−1, 2) =
(+, 0,−,+) = (1, 0,−1, 1). If S ⊆ Rn, we let sign(S) denote {sign(v) : v ∈ S}.

Lemma 3.3.7. Suppose that V ∈ Gr>0
k,n with orthogonal complement V ⊥.

(i) sign(V ) = {σ ∈ {0,+,−}n : var(σ) ≤ k − 1} ∪ {0}.
(ii) sign(V ⊥) = {σ ∈ {0,+,−}n : var(σ) ≥ k} ∪ {0}.

This result essentially follows from Theorem 3.3.4, Proposition 9.4.1 of [BLVS+99], and
Lemma 3.3.3. For a more thorough explanation, see the claim in the proof of Lemma 2.4.1.



CHAPTER 3. THE m = 1 AMPLITUHEDRON 53

An orthogonally complementary view of the amplituhedron
An,k,m(Z)

The amplituhedron An,k,m(Z) is a subset of Grk,k+m. Since we are considering the case
m = 1, it will be convenient for us to take orthogonal complements and work with sub-
spaces of dimension m, rather than codimension m. To this end, we define an object
Bn,k,m(W ) ⊆ Grm(W ) for W ∈ Gr>0

k+m,n, which we show is homeomorphic to An,k,m(Z)
(Proposition 3.3.12), where W = rowspan(Z). We remark that in the context of scattering
amplitudes when m = 4, W is the subspace of Rn spanned by 4 bosonic variables and k
fermionic variables.

Definition 3.3.8. Given W ∈ Gr>0
k+m,n, let

Bn,k,m(W ) := {V ⊥ ∩W : V ∈ Gr≥0
k,n} ⊆ Grm(W ),

where Grm(W ) denotes the subset of Grm,n of elements X ∈ Grm,n with X ⊆ W . Let
us show that Bn,k,m(W ) is well defined, i.e. dim(V ⊥ ∩ W ) = m for all V ∈ Gr≥0

k,n. By

Corollary 3.3.5 we have V ∩W⊥ = {0}, so the sum V +W⊥ is direct. Hence dim(V +W⊥) =
dim(V ) + dim(W⊥) = n−m. Since (V ⊥ ∩W )⊥ = V +W⊥, we get dim(V ⊥ ∩W ) = m. (We
remark that this is the same idea used in Section 2.4 to determine when, given an arbitrary
linear map Z : Rn → Rk+m, the image Z̃(Gr≥0

k,n) is well defined in Grk,k+m.)

Remark 3.3.9. While we were preparing this manuscript, we noticed that a similar con-
struction appeared in Lam’s definition of universal amplituhedron varieties Section 18 of
[Lam16b]. There are two main differences between his construction and ours. First, Lam
allows Z to vary (hence the term “universal”). Second, he works with complex varieties, and
does not impose any positivity conditions on V or Z (rather, he restricts V to lie in a closed
complex positroid cell in Grk,n(C)). Correspondingly he works with rational maps, while we
will need our maps to be well defined everywhere.

We now show that Bn,k,m(W ) is homeomorphic to An,k,m(Z), where Z is any (k+m)×n
matrix (n ≥ k + m) with positive maximal minors and row span W . The idea is that we
obtain Bn,k,m(W ) from An,k,m(Z) ⊆ Grk,k+m by taking orthogonal complements in Rk+m,
and then applying an isomorphism from Rk+m to W , so that our subspaces lie in W , not
Rk+m.

Lemma 3.3.10. Let Z : Rn → Rk+m be a surjective linear map, which we also regard
as a (k + m) × n matrix, and let W ∈ Grk+m,n be the row span of Z. Then the map
fZ : Grm(W )→ Grk,k+m given by

fZ(X) := Z(X⊥) = {Z(x) : x ∈ X⊥} for all X ∈ Grm(W )

is well defined and an isomorphism. (Here X⊥ ∈ Grn−m,n denotes the orthogonal complement
of X in Rn; we use the notation Z(X⊥), and not Z̃(X⊥), because dim(X⊥) 6= k.)
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Moreover, for X ∈ Grm(W ) with corresponding point Y := fZ(X) ∈ Grk,k+m, we can
write the Plücker coordinates of X (as an element of Grm,n) in terms of Y and Z, as follows.
Let z1, . . . , zn ∈ Rk+m be the columns of the (k+m)×n matrix Z, and y1, . . . , yk ∈ Rk+m be
a basis of Y . Then for 1 ≤ i1 < · · · < im ≤ n, we have

∆{i1,...,im}(X) = det([y1 | · · · | yk | zi1 | · · · | zim ]). (3.3.11)

The formula (3.3.11) is stated in Section 18 of [Lam16b], though the proof is deferred to
a forthcoming paper.

Proof. First let us show that fZ is well defined, i.e. for X ∈ Grm(W ), we have dim(fZ(X)) =
k. Since X ⊆ W , we have W⊥ ⊆ X⊥, so we can write X⊥ = V ⊕W⊥ for some V ∈ Grk,n.
Since ker(Z) = W⊥, we have Z(X⊥) = Z(V + W⊥) = Z(V ), and then V ∩ ker(Z) =
V ∩W⊥ = {0} implies dim(Z(V )) = k.

To see that fZ is injective, suppose that we have X,X ′ ∈ Grm(W ) with Z(X⊥) = Z(X ′⊥).
Then as above we have X⊥ = V ⊕W⊥ and (X ′)⊥ = V ′ ⊕W⊥ where V ∩ ker(Z) = {0} =
V ′ ∩ ker(Z). But then Z(X⊥) = Z(X ′⊥) implies that Z(V ) = Z(V ′), which implies that
V = V ′ and hence X = X ′. Now we describe the inverse of fZ . Given Y ∈ Grk,k+m, consider
the subspace Z−1(Y ) = {v ∈ Rn : Z(v) ∈ Y }. Since Z−1(Y ) contains ker(Z) = W⊥, which
has dimension n − k −m, and dim(Y ) = k, we have dim(Z−1(Y )) = n −m. Therefore we
can write Z−1(Y ) = X⊥ for some X ∈ Grm(W ), and then Y = fZ(X). It follows that fZ is
invertible, and hence an isomorphism.

Now given X ∈ Grm(W ) and Y := fZ(X) ∈ Grk,k+m, we prove (3.3.11). Fix column
vectors y1, . . . , yk ∈ Rk+m which form a basis of Y and x1, . . . , xn−m ∈ Rn which form a basis
of X⊥. For i ∈ [n − m], we can write Z(xi) =

∑k
j=1Ci,jyj for some Ci,j ∈ R. Let D be

the (n−m)× n matrix whose rows are xT1 , . . . , x
T
n−m. Then the elements of Grn−m,n+k and

Grk+m,n+k which are given by the row spans of

[−C |D] and [y1 | · · · | yk |Z],

respectively, are orthogonally complementary. Given I = {i1 < · · · < im} ⊆ [n] with
complement [n] \ I = {j1 < · · · < jn−m}, applying Lemma 3.3.3(ii) twice gives

∆I(X) = ∆[n]\I(alt(X⊥)) = ∆{k+j1,...,k+jn−m}(alt([−C |D])) =

∆{1,...,k,k+i1,...,k+im}([y1 | · · · | yk |Z]) = det([y1 | · · · | yk | zi1 | · · · | zim ]). �

Proposition 3.3.12. Suppose that Z is a (k+m)×n matrix (n ≥ k+m) with positive max-
imal minors, and W ∈ Gr>0

k+m,n is the row span of Z. Then the map fZ from Lemma 3.3.10

restricts to a homeomorphism from Bn,k,m(W ) onto An,k,m(Z), which sends V ⊥∩W to Z̃(V )
for all V ∈ Gr≥0

k,n. The Plücker coordinates of V ⊥ ∩W can be written in terms of Z̃(V ) and
Z by (3.3.11).
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Example 3.3.13. Let (n, k,m) := (4, 2, 1), and Z : R4 → R3 be given by the matrix1 0 0 1
0 1 0 −1
0 0 1 1

 =: [z1 | z2 | z3 | z4],

whose 3 × 3 minors are all positive. Also let V ∈ Gr≥0
2,4 be the row span of the matrix[

1 a 0 0
0 0 1 b

]
, where a, b ≥ 0, and define Y := Z̃(V ). We can explicitly find a basis y1, y2 ∈ R3

of Y as follows:

[y1 | y2] :=

1 0 0 1
0 1 0 −1
0 0 1 1




1 0
a 0
0 1
0 b

 =

1 b
a −b
0 1 + b

 .
Now let X := V ⊥∩ rowspan(Z), so that X ∈ B4,2,1(rowspan(Z)) is mapped to Y ∈ A4,2,1(Z)
under the homeomorphism of Proposition 3.3.12. We can write X as the line spanned by
(a(b+ 1),−(b+ 1),−b(a+ 1), a+ 1). We can check that we have

∆{1}(X) =

∣∣∣∣∣∣
1 b 1
a −b 0
0 1 + b 0

∣∣∣∣∣∣ , ∆{3}(X) =

∣∣∣∣∣∣
1 b 0
a −b 0
0 1 + b 1

∣∣∣∣∣∣ ,
∆{2}(X) =

∣∣∣∣∣∣
1 b 0
a −b 1
0 1 + b 0

∣∣∣∣∣∣ , ∆{4}(X) =

∣∣∣∣∣∣
1 b 1
a −b −1
0 1 + b 1

∣∣∣∣∣∣ ,
as asserted by (3.3.11). (Here |M | denotes the determinant of M .) ♦

Proof (of Proposition 3.3.12). Given V ∈ Gr≥0
k,n, since ker(Z) = W⊥ we have

fZ(V ⊥ ∩W ) = Z((V ⊥ ∩W )⊥) = Z(V +W⊥) = Z(V ) = Z̃(V ).

Thus the image fZ(Bn,k,m(W )) equals An,k,m(Z), and the result follows from Lemma 3.3.10.
�

A hypothetical intrinsic description of the amplituhedron

We now give a description of the amplituhedron Bn,k,1(W ) which does not mention Gr≥0
k,n.

This description will extend to Bn,k,m(W ) for m > 1 if part (i) of the following problem has
a positive answer.

Problem 3.3.14. Let V ∈ Grm,n, and l ≥ m.
(i) If var(v) ≤ l − 1 for all v ∈ V , can we extend V to an element of Gr≥0

l,n?

(ii) If var(v) ≤ l − 1 for all v ∈ V \ {0}, can we extend V to an element of Gr>0
l,n?
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Lemma 3.3.15. For W ∈ Gr>0
k+m,n, we have

Bn,k,m(W ) ⊆ {X ∈ Grm(W ) : k ≤ var(v) ≤ k +m− 1 for all v ∈ X \ {0}}.

If Problem 3.3.14(i) has a positive answer for l = n− k, then equality holds.

In calculating var(v) for v ∈ X (where X ∈ Grm(W )), we regard v as a vector in Rn. We
remark that showing equality holds in Lemma 3.3.15 does not resolve Problem 3.3.14(i),
because W ∈ Grk+m,n is not arbitrary, but is required to be totally positive.

Proof. Given X ∈ Bn,k,m(W ), we can write X = V ⊥ ∩W for some V ∈ Gr≥0
k,n. Then for

any v ∈ X \ {0}, we have var(v) ≥ k by Theorem 3.3.4(i) applied to V , and var(v) ≤
k + m − 1 by Theorem 3.3.4(ii) applied to W . This proves the containment. Now suppose
that Problem 3.3.14(i) has a positive answer for l = n−k. Let X ∈ Grm(W ) with var(v) ≥ k
for all v ∈ X \ {0}. Then var(w) ≤ n − k − 1 for all w ∈ alt(X) \ {0} by Lemma 3.3.3(i).
Hence we can extend alt(X) to an element of Gr≥0

n−k,n, which by Lemma 3.3.3(ii) we can

write as alt(V ⊥) for some V ∈ Gr≥0
k,n. Since alt(X) ⊆ alt(V ⊥), we have X ⊆ V ⊥, whence

X ⊆ V ⊥ ∩W . Since dim(X) = m = dim(V ⊥ ∩W ), we have X = V ⊥ ∩W ∈ Bn,k,m(W ). �

Problem 3.3.16. Do we have equality in Lemma 3.3.15? In other words, is it true that for
W ∈ Gr>0

k+m,n, we have

Bn,k,m(W ) = {X ∈ Grm(W ) : k ≤ var(v) ≤ k +m− 1 for all v ∈ X \ {0}}?

Remark 3.3.17. We observe that Problem 3.3.16 has a positive answer in the extreme cases
k = 0 (whence Bn,k,m(W ) = {W}), m = 0 (whence Bn,k,m(W ) = {{0}}), and k + m = n
(whence Bn,k,m(W ) = {V ⊥ : V ∈ Gr≥0

k,n}). Also, by Lemma 2.4.1, both parts (i) and (ii) of
Problem 3.3.14 have a positive answer for m = 1 (and all l and n), and so Problem 3.3.16
has a positive answer for m = 1.

This gives the following explicit description of Bn,k,1(W ), which will be important for us
in our study of the structure of Bn,k,1(W ).

Corollary 3.3.18. For W ∈ Gr>0
k+1,n, we have

Bn,k,1(W ) = {w ∈ P(W ) : var(w) = k} ⊆ P(W ).

Remark 3.3.19. We give some background on Problem 3.3.14. Lam (see Section 15 of
[Lam16b]) considered images Z̃(Gr≥0

k,n) ⊆ Grk,k+m of the totally nonnegative Grassmannian

induced by linear maps Z : Rn → Rk+m more general than those appearing in the construc-
tion of amplituhedra (where Z is represented by a matrix with positive maximal minors).
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We still need a positivity condition on Z so that the image Z̃(Gr≥0
k,n) is contained in Grk,k+m,

i.e. that

dim(Z(V )) = k for all V ∈ Gr≥0
k,n . (3.3.20)

Lam (Proposition 15.2 of [Lam16b]) showed that (3.3.20) holds if the row span of Z has a
subspace in Gr>0

k,n, in which case he calls Z̃(Gr≥0
k,n) a (full) Grassmann polytope, since in the

case k = 1 Grassmann polytopes are precisely polytopes in Pm. It is an open problem to
determine whether Lam’s condition is equivalent to (3.3.20). It turns out that this problem
is equivalent to Problem 3.3.14(ii); see Theorem 2.4.2 and the discussion which follows it.
Thus Problem 3.3.14(ii) is fundamental to the study of Grassmann polytopes. In the current
context, we are more concerned with part (i) of Problem 3.3.14, though part (ii) will reappear
in Section 3.3.

We now translate the hypothetical description of Problem 3.3.16 into one in terms of
Plücker coordinates. This is reminiscent of a description of the amplituhedron which was
conjectured by Arkani-Hamed, Thomas, and Trnka [AHTT]. We thank Jara Trnka for telling
us about this conjecture.

Proposition 3.3.21. Let W ∈ Gr>0
k+m,n, and define the open subset of Grm(W )

G := {X ∈ Grm(W ) : var(v) ≥ k for all v ∈ X \ {0}}.

We have int(Bn,k,m(W )) ⊆ G and Bn,k,m(W ) ⊆ G, where int(·) and · denote interior and
closure. If equality holds in Lemma 3.3.15, then both containments above are equalities.
Independently, we can describe G in terms of Plücker coordinates:

G =

{
X ∈ Grm(W ) :

var(((−1)|I∩[j]|∆I∪{j}(X))j∈[n]\I) ≥ k for all I ∈
(

[n]
m−1

)
such

that the sequence (∆I∪{j}(X))j∈[n]\I is not identically zero

}
.

We prove Proposition 3.3.21 below. First we translate this description to An,k,m(Z) using
Lemma 3.3.10, make some remarks, and give an example.

Corollary 3.3.22. Let Z be a (k+m)×n matrix whose maximal minors are all positive, with
row span W ∈ Gr>0

k+m,n. Let F := fZ(G) be the image of the set G from Proposition 3.3.21
under the map fZ from Lemma 3.3.10, and z1, . . . , zn ∈ Rk+m be the columns of Z. Then

F =

〈y1, . . . , yk〉 :

var((det([y1 | · · · | yk | zi1 | · · · | zim−1 | zj]))j∈[n]\I) ≥ k

for all I = {i1 < · · · < im−1} ∈
(

[n]
m−1

)
such that

this sequence of minors is not identically zero

 .

We have int(An,k,m(Z)) ⊆ F and An,k,m(Z) ⊆ F . If equality holds in Lemma 3.3.15, then
both containments above are equalities.



CHAPTER 3. THE m = 1 AMPLITUHEDRON 58

As stated, the descriptions of F and G require checking
(

n
m−1

)
sequences of minors. Does it

suffice to check fewer sequences?

Remark 3.3.23. For all X ∈ Grm(W ), we have var(v) ≤ k + m − 1 for all v ∈ X \
{0} by Theorem 3.3.4(ii), whence var((∆I∪{j}(X))j∈[n]\I) ≤ k for all I ∈

(
[n]
m−1

)
such that

the sequence (∆I∪{i}(X))j∈[n]\I is not identically zero (see Theorem 2.3.1). Note that the
sequence (∆I∪{j}(X))j∈[n]\I is the one in the description of G, without the sign (−1)|I∩[j]|.
For the sequence in the description of F , this sign change corresponds to moving zj from the

right end of the matrix into its proper relative position in the submatrix of Z. If I ∈
(

[n]
m−1

)
satisfies the condition that (−1)|I∩[j]| is the same for all j ∈ [n] \ I (called Gale’s evenness
condition [Gal63]), then these two sequences are the same up to multiplication by ±1.

Example 3.3.24. Let (n, k,m) := (5, 1, 2), and Z : R5 → R3 be given by the matrix1 0 0 1 3
0 1 0 −1 −2
0 0 1 1 1

 =: [z1 | z2 | z3 | z4 | z5],

whose 3 × 3 minors are all positive. In this case A5,1,2(Z) is a convex pentagon in P2 =
Gr1(R3). Given y ∈ R3, Corollary 3.3.22 says that we have 〈y〉 ∈ F if and only if each
sequence (det([y | zi | zj]))j∈[5]\{i}, for i ∈ [5], is either identically zero or changes sign at least
once. For example, if i = 3, this sequence is∣∣∣∣∣∣

y1 0 1
y2 0 0
y3 1 0

∣∣∣∣∣∣ ,
∣∣∣∣∣∣
y1 0 0
y2 0 1
y3 1 0

∣∣∣∣∣∣ ,
∣∣∣∣∣∣
y1 0 1
y2 0 −1
y3 1 1

∣∣∣∣∣∣ ,
∣∣∣∣∣∣
y1 0 3
y2 0 −2
y3 1 1

∣∣∣∣∣∣
 = (y2,−y1, y1 + y2, 2y1 + 3y2).

Geometrically, the sequence corresponding to i records where the point 〈y〉 ∈ P2 lies in
relation to each of the 4 lines joining vertex i to another vertex of the pentagon. If this
sequence does not change sign, then 〈y〉 lies on the same side of all 4 of these lines, i.e. the
line segment between 〈y〉 and vertex i does not intersect the interior of the pentagon. We
see that F is the interior of the pentagon. In general, F is the interior of An,k,m(Z) if k = 1,
independently of Problem 3.3.14(i). ♦

Proof (of Proposition 3.3.21). First we prove int(Bn,k,m(W )) ⊆ G, i.e. given X ∈ Bn,k,m(W )\
G, we have X /∈ int(Bn,k,m(W )). Since X /∈ G, there exists v ∈ X \ {0} with var(v) < k.
Let σ := sign(v), and take τ ∈ {+,−}n such that τ ≥ σ and var(τ) = var(σ). Then by
Lemma 3.3.7, there exists w ∈ W with sign(w) = τ . Now extend v to a basis v, v2, . . . , vm
of X, and for t > 0 let Xt := span(v + tw, v2, . . . , vm), so that Xt ∈ Grm(W ) except for at
most one value of t. Since var(v + tw) = var(τ) = var(v) < k, we have Xt /∈ Bn,k,m(W )
by Lemma 3.3.15. But {Xt ∈ Grm(W ) : t > 0} intersects every neighborhood of X, so
X /∈ int(Bn,k,m(W )). The fact that Bn,k,m(W ) ⊆ G follows from these two facts:
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• Gr≥0
k,n = Gr>0

k,n (see Section 17 of [Pos]);

• if V ∈ Gr>0
k,n, then V ⊥ ∩W ∈ G (by Theorem 3.3.4(ii)).

Conversely, if equality holds in Lemma 3.3.15, then G ⊆ Bn,k,m(W ). Since G is open and
Bn,k,m(W ) is closed, we get the reverse containments G ⊆ int(Bn,k,m(W )) and G ⊆ Bn,k,m(W ).

Now we describe G in terms of Plücker coordinates. By Lemma 3.3.3(i), we have

G = {X ∈ Grm(W ) : var(v) ≤ n− k − 1 for all v ∈ alt(X) \ {0}}.

Theorem 2.3.1(ii) states that for X ′ ∈ Grm,n, we have var(v) ≤ n − k − 1 for all v ∈
X ′ \ {0} if and only if var((∆I∪{j}(X

′))j∈[n]\I) ≤ n − k − m for all I ∈
(

[n]
m−1

)
such that

the sequence (∆I∪{j}(X
′))j∈[n]\I is not identically zero. Also by Lemma 3.3.3(i), we have

var(p) + var(alt(p)) = n−m for all nonzero p ∈ R[n]\I (I ∈
(

[n]
m−1

)
), where alt acts on R[n]\I

by changing the sign of every second component. We get

G =

{
X ∈ Grm(W ) :

var(alt(∆I∪{j}(alt(X)))j∈[n]\I) ≥ k for all I ∈
(

[n]
m−1

)
such

that the sequence (∆I∪{j}(X))j∈[n]\I is not identically zero

}
.

In order to obtain the desired description of G, it remains to show that given I ∈
(

[n]
m−1

)
such

that the sequence (∆I∪{j}(X))j∈[n]\I is not identically zero, we have

var(alt(∆I∪{j}(alt(X)))j∈[n]\I) = var(((−1)|I∩[j]|∆I∪{j}(X))j∈[n]\I). (3.3.25)

To this end, write I = {i1, . . . , im−1} ∈
(

[n]
m−1

)
. Then for j ∈ [n] \ I, component j of

alt(∆I∪{j′}(alt(X)))j′∈[n]\I ∈ R[n]\I equals

(−1)|([n]\I)∩[j]|−1(−1)(i1−1)+···+(im−1−1)+(j−1)∆I∪{j}(X) = εI(−1)|I∩[j]|∆I∪{j}(X),

where εI := (−1)(i1−1)+···+(im−1−1) = ±1 does not depend on j. This gives (3.3.25). �

Proof (of Corollary 3.3.22). Applying (3.3.11) to the description of G in Proposition 3.3.21
gives

F =

〈y1, . . . , yk〉 :

var(((−1)|I∩[j]| det([y1 | · · · | yk |ZI∪{j}]))j∈[n]\I) ≥ k

for all I = {i1 < · · · < im−1} ∈
(

[n]
m−1

)
such that

this sequence of minors is not identically zero

 ,

where ZJ denotes the submatrix of Z with columns J , for J ⊆ [n]. Moving the column
of ZI∪{j} labeled by j to the right end of the matrix introduces a sign (−1)|I∩(j,n]| in the
determinant. Since (−1)|I∩[j]|(−1)|I∩(j,n]| = (−1)|I|, which does not depend on j, we obtain
the stated description of F . The rest follows from Proposition 3.3.21, using Lemma 3.3.10.

�
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Removing k from the definition of the amplituhedron

In the definition of Bn,k,1(W ) (Definition 3.3.8), if we let W and k vary, then we obtain the
following object:

B̂m,n :=
⋃

0≤k≤n−m

{V ⊥ ∩W : V ∈ Gr≥0
k,n,W ∈ Gr>0

k+m,n} ⊆ Grm,n . (3.3.26)

By Theorem 3.3.4, we have

B̂m,n ⊆
⋃

0≤k≤n−m

{X ∈ Grm,n : k ≤ var(v) ≤ k +m− 1 for all v ∈ X \ {0}}, (3.3.27)

and equality holds if both parts of Problem 3.3.14 have a positive answer. (The proof is
similar to that of Lemma 3.3.15.) If m = 1, then Problem 3.3.14 has a positive answer, and

so B̂1,n = Gr1,n. However B̂m,n 6= Grm,n for m ≥ 2.

Our motivation for considering B̂m,n is that in the BCFW recursion [BCFW05], which
conjecturally provides a “triangulation” of An,k,4(Z), the parameter k is allowed to vary.
This suggests that the diagrams appearing in the BCFW recursion corresponding to a given
n might label pieces of an object which somehow encompasses An,k,4(Z) for all k. Could B̂4,n

be such an object?
As a first result about B̂m,n, we prove that the union in (3.3.26) is disjoint if m ≥ 1. It

suffices to show that the union in (3.3.27) is disjoint, which follows from the lemma below.
It also follows from the lemma that the union in (3.3.27) consists of the elements of Grm,n
whose range of var(·) (over nonzero vectors) is contained in as small an interval as possible.
That is, for X ∈ Grm,n with m ≥ 1, we have supv,w∈X\{0} var(v) − var(w) ≥ m − 1, and
equality holds if and only if X is contained in the union in (3.3.27).

Lemma 3.3.28. Suppose that X ∈ Grm,n with m ≥ 1, and k ≥ 0 such that k ≤ var(v) ≤
k+m−1 for all v ∈ X \{0}. Then var(v) = k+m−1 for some v ∈ X \{0} and var(w) = k
for some w ∈ X \ {0}.

Proof. Let v(1), . . . , v(m) be the rows of an m × n matrix whose rows span X, after it has
been put into reduced row echelon form. That is, if i1 < · · · < im index the pivot columns of
this matrix, then we have v

(r)
is

= δr,s for all r, s ∈ [m], and v
(r)
j = 0 for all r ∈ [m] and j < ir.

Let v := v(m), and note that var(v) = var(v|[im,n]) + im − 1. Now let

w := v + t

m−1∑
r=1

εrv
(r),

where t > 0 is sufficiently small that in positions j ∈ [im, n] where v is nonzero, wj has the
same sign as vj, and εr ∈ {1,−1} is chosen to be 1 precisely if |{i ∈ Z : ir < i < ir+1}| is
even. Then

k ≤ var(w) ≤ var(v|[im,n]) + im −m = var(v)−m+ 1 ≤ (k +m− 1)−m+ 1 = k,

and hence equality holds everywhere above. �
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3.4 A BCFW-like recursion for m = 1

In the case that m = 4, the BCFW recursion (named after Britto, Cachazo, Feng, and
Witten [BCF05, BCFW05]) can be viewed as a procedure which outputs a subset of cells of
Gr≥0

k,n whose images conjecturally “triangulate” the amplituhedron An,k,4(Z) [AHT14]. The
procedure is described in Section 2 of [AHBC+16] as an operation on plabic graphs.

In this section we give an m = 1 analogue of the BCFW recursion, which naturally leads
us to a subset of cells of Gr≥0

k,n that we call the m = 1 BCFW cells of Gr≥0
k,n. We remark

that unlike the recursion for m = 4 as described in [AHBC+16], there is no ‘shift’ to the
decorated permutation involved. These cells can be easily described in terms of their L-
diagrams, positroids, or decorated permutations. As we will show in Section 3.5, the images
of these cells “triangulate” the m = 1 amplituhedron An,k,1(Z). More specifically, they
each map injectively into An,k,1(Z), and their images are disjoint and together form a dense
subset of An,k,1(Z). In fact, we will show that the BCFW cells in Gr≥0

k,n plus the cells in their
boundaries give rise to a cell decomposition of An,k,1(Z).

n−1

or
n n

n−1 n−1

Figure 3.4: The m = 1 BCFW recursion: add a new vertex n, which is incident either to a
black lollipop or to the edge adjacent to vertex n− 1.

Definition 3.4.1. The BCFW recursion for m = 1 is defined as follows.

• We start from the plabic graph with one boundary vertex, incident to a black lollipop.
This is our graph for n = 1 (with k = 0).

• Given a plabic graph with n− 1 boundary vertices produced by our recursion (where
n ≥ 2), we perform one of the following two operations: we add a new boundary vertex
n which is incident either to a black lollipop, or to the edge adjacent to boundary vertex
n − 1. See Figure 3.4. The first operation preserves the k statistic, while the second
operation increases it by 1.

We refer to the set of all plabic graphs with fixed n and k statistics produced in this way
as the m = 1 BCFW cells of Gr≥0

k,n. See Figure 3.5 for all m = 1 BCFW cells of Gr≥0
k,n with

n ≤ 4.

The following lemma is easy to verify by inspection, using the bijections between plabic
graphs, L-diagrams, and decorated permutations which we gave in Section 3.2.
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Figure 3.5: The m = 1 BCFW-style recursion for n = 1, 2, 3, 4.

Lemma 3.4.2. The m = 1 BCFW cells of Gr≥0
k,n are indexed by the L-diagrams of type (k, n)

such that each of the k rows contains a unique +, which is at the far right of the row. The
decorated permutation of such a L-diagram D can be written in cycle notation as

π(D) = (i1, i1 − 1, i1 − 2, . . . , 1)(i2, i2 − 1, . . . , i1 + 1) · · · (n, n− 1, . . . , in−k−1 + 1),

where i1 < i2 < · · · < in−k−1 < in−k = n label the horizontal steps of the southeast border
of D (read northeast to southwest), and all fixed points are colored black. In particular, the
number of m = 1 BCFW cells of Gr≥0

k,n equals
(
n−1
k

)
.
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Figure 3.6: The poset Q2,4 of cells of Gr≥0
2,4, where each cell is identified with the

corresponding L-diagram. The bold edges indicate the subcomplex (an induced subposet)
which gets identified with the amplituhedron A4,2,1(Z).

3.5 An,k,1 as a subcomplex of the totally nonnegative

Grassmannian

In this section we show that the amplituhedron Bn,k,1(W ) (for W ∈ Gr>0
k+1,n) is isomorphic

to a subcomplex of Gr≥0
k,n. We begin by defining a stratification of Bn,k,1(W ), whose strata

are indexed by sign vectors PSignn,k,1 and have a natural poset structure. We will also

define a poset of certain L-diagrams Dn,k,1 and a poset of positroidsMn,k,1 and show that all
three posets are isomorphic. Finally we will give an isomorphism between the amplituhedron
Bn,k,1(W ) and the subcomplex of Gr≥0

k,n indexed by the cells associated toDn,k,1, which induces
an isomorphism on the posets of closures of strata, ordered by containment.
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Recall that by Corollary 3.3.18, we have

Bn,k,1(W ) = {w ∈ W \ {0} : var(w) = k} ⊆ P(W ),

where we identify a nonzero vector in W with the line it spans in P(W ). We define a
stratification of Bn,k,1(W ) using sign vectors.

Definition 3.5.1. Let Signn,k,1 denote the set of nonzero sign vectors σ ∈ {0,+,−}n with
var(σ) = k, such that if i ∈ [n] indexes the first nonzero component of σ, then σi = (−1)i−1.
(Equivalently, the first nonzero component of alt(σ) equals +.) Also let PSignn,k,1 denote
the set of nonzero sign vectors σ ∈ {0,+,−}n with var(σ) = k, modulo multiplication by
±1. We let Signn,k,1 and PSignn,k,1 be the subsets of Signn,k,1 and PSignn,k,1 consisting of
vectors with no zero components.

Definition 3.5.2. We stratify the amplituhedron Bn,k,1(W ) by PSignn,k,1, i.e. its strata are

Bσ(W ) := {w ∈ W \ {0} : sign(w) = ±σ} for σ ∈ PSignn,k,1. All strata are nonempty by
Lemma 3.3.7(i). The strata are partially ordered by containment of closures, i.e. Bσ(W ) ≤
Bτ (W ) if and only if Bσ(W ) ⊆ Bτ (W ).

This stratification for B5,2,1(W ) is shown in Figure 3.8. We will show in Theorem 3.5.17 and
Theorem 3.6.16 that the partial order on strata corresponds to a very natural partial order
on PSignn,k,1, which we now describe.

Definition 3.5.3. We define a partial order on the set of sign vectors {0,+,−}n as follows:
σ ≤ τ if and only if σi = τi for all i ∈ [n] such that σi 6= 0. Equivalently, σ ≤ τ if and only if
we can obtain σ by setting some components of τ to 0. This gives a partial order on Signn,k,1
by restriction. And for nonzero sign vectors σ, τ representing elements in PSignn,k,1, we say

that σ ≤ τ if and only if σ ≤ τ or σ ≤ −τ in Signn,k,1.

For example, (+, 0,+, 0,+) ≤ (+,−,+,+,+), but (+, 0,+, 0,+) � (+,−, 0,+,+). Fig-
ure 3.8 shows Sign5,2,1 as labels of the bounded faces of a hyperplane arrangement.

We will now show that Signn,k,1 and PSignn,k,1 are isomorphic as posets. Our reason for
using both posets is as follows. Since Bn,k,1(W ) is a subset of the projective space P(W ), the
sign vectors used to index strata should be considered modulo multiplication by ±1, which
leads us naturally to PSignn,k,1. However, in Theorem 3.6.16 we will show that Bn,k,1(W ) is
isomorphic to the bounded complex of a hyperplane arrangement, and the bounded faces of
this arrangement are labeled by sign vectors not considered modulo multiplication by ±1. To
prove this result, we will need to work with Signn,k,1, which requires a more careful analysis.

Lemma 3.5.4.
(i) The map Signn,k,1 → PSignn,k,1, σ 7→ σ is an isomorphism of posets.
(ii) Conversely, suppose that P is an induced subposet of {σ ∈ {0,+,−}n \{0} : var(σ) = k}
such that the map P → PSignn,k,1, σ 7→ σ is an isomorphism of posets. Then P equals

Signn,k,1 or −Signn,k,1.
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This says that ±Signn,k,1 are the unique liftings of PSignn,k,1 to {0,+,−}n which preserve its
poset structure. For example, if n = 2, k = 1, then the lifting P := {(+,−), (+, 0), (0,+)}
does not have the same poset structure as Sign2,1,1 = {(+,−), (+, 0), (0,−)}, since P has

two maximal elements, but Sign2,1,1 has the unique maximum (+,−).

Proof. (i) The map Signn,k,1 → PSignn,k,1, σ 7→ σ is a bijection and a poset homomorphism.

To show that it is a poset isomorphism, we must show that there do not exist σ, τ ∈ Signn,k,1
with σ ≤ −τ . Suppose otherwise that such σ and τ exist. Let σ′ := alt(σ) and τ ′ := alt(τ).
By Lemma 3.3.3(i), we have var(σ′) = var(τ ′) = n−k−1. Let i, j ∈ [n] index the first nonzero
components of σ′, τ ′, respectively, so that σ′i = τ ′j = +. But also by our assumption, σ′i = −τ ′i .
Since j < i, −τ ′ changes sign at least once from j to i. This implies var(−τ ′) > var(σ′), a
contradiction.

(ii) Let G be the graph with vertex set PSignn,k,1, where distinct σ, τ ∈ PSignn,k,1 are
adjacent if and only if σ differs in a single component from either τ or −τ .

Claim. G is connected.

Proof of Claim. Let us show that every vertex σ of G is connected to

σ̂ := (+,−,+,−, . . . , (−1)k−1, (−1)k, (−1)k, . . . ),

i.e. σ̂ is the sign vector which alternates in sign on [k + 1], and is constant thereafter. Take
i ∈ [n] maximum such that σ alternates in sign on [i]. If i = k + 1, then σ = σ̂. Otherwise,
take j > i minimum with σj 6= σi. That is, on the interval [i, j], σ equals (+,+, . . . ,+,−) up
to sign. By performing sign flips at components j−1, j−2, . . . , i+1, we obtain a sign vector
which equals (+,−,−, . . . ,−) on [i, j], and hence alternates in sign on [i + 1]. Repeating
this procedure for i + 1, i+ 2, . . . , k, we obtain σ̂. For example, if σ = (+,+,+,−,−,+,−)
(where n = 7, k = 3), then we obtain σ̂ as follows:

σ
i=17−−→ (+,−,−,−,−,+,−)

i=27−−→ (+,−,+,+,+,+,−)
i=37−−→ (+,−,+,−,−,−,−) = σ̂.

This proves the claim. �

Let H be the corresponding graph for P , i.e. H has vertex set Q := P ∩{+,−}n, and two
distinct sign vectors are adjacent in H if and only if they differ in a single component. Note
that G (respectively H) depends only on the poset PSignn,k,1 (respectively P ): two distinct
sign vectors are adjacent if and only if they cover a common sign vector in the poset. Since
P ∼= PSignn,k,1 and G is connected by sign flips, we get that H is connected by sign flips.
Note that we can never flip the first component, which would change sign variation. Hence
all elements of Q have the same first component. After replacing P with −P if necessary,
we may assume that σ1 = + for all σ ∈ Q.

Let σ ∈ P . We will show that σi = (−1)i−1, where i indexes the first nonzero component
of σ. Since var(σ) = k, we can extend σ to τ ∈ {+,−}n (i.e. τ ≥ σ) with var(τ) = k.
Then τ alternates in sign on [i], i.e. it equals ((−1)i−1σi, (−1)i−2σi, . . . , σi) on [i]. Now since
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P → PSignn,k,1, σ 7→ σ is a poset isomorphism, exactly one of τ,−τ is in P . If −τ ∈ P , then

σ � −τ in P but σ ≤ −τ in PSignn,k,1, a contradiction. Hence τ is in P (and hence in Q),
whence τ1 = +, i.e. σi = (−1)i−1. �

We now define a subcomplex of Gr≥0
k,n which will turn out to be isomorphic to Bn,k,1(W ).

Definition 3.5.5. Let Dn,k,1 (respectively, Dn,k,1) be the set of L-diagrams contained in a
k × (n − k) rectangle whose rows each have precisely one + (respectively, at most one +),
and each + appears at the right end of its row. For D ∈ Dn,k,1, we let dim(D) := dim(SD)
be the number of +’s in D.

Note that Dn,k,1 indexes the m = 1 BCFW cells of Gr≥0
k,n by Lemma 3.4.2.

Since L-diagrams index the cells of Gr≥0
k,n, Dn,k,1 has a poset structure as a subposet of

Qk,n. However, it is more convenient for us to define our own partial order on Dn,k,1, as
follows; we then show in Lemma 3.5.13 that our partial order agrees with the one coming
from Qk,n, and that our poset on Dn,k,1 is in fact an order ideal (a downset) of Qk,n.

Definition 3.5.6. We define a partial order on Dn,k,1, with the following cover relations l:

• (Type 1) Let D ∈ Dn,k,1, where dim(D) ≥ 1, and choose some + in D which has no
+’s below it in the same column. We obtain D′ from D by deleting the box containing
that + and every box below it and in the same column. Then D′ lD.

• (Type 2) Let D ∈ Dn,k,1, where dim(D) ≥ 1, and choose some + in D. We obtain D′

from D by replacing the + with a 0. Then D′ lD.

We now give a poset isomorphism ΩDS : Dn,k,1 → Signn,k,1.

Definition 3.5.7. Let D ∈ Dn,k,1 with Young diagram Yλ, where the steps of the southeast
border of Yλ are labeled from 1 to n. Then we define σ(D) ∈ Signn,k,1 recursively by setting:

• σ1 := +;

• σi+1 = σi if and only if i is the label of a horizontal step of Yλ, i = 1, . . . , n− 1.

Now let D ∈ Dn,k,1 with Young diagram Yλ. We obtain D̂ from D by putting a + at the far

right of every row which has no +. To define σ(D), we first compute σ(D̂) as above, but
then for every vertical step i corresponding to an all-zero row of D, we set σ(D)i = 0. This
gives a map ΩDS : Dn,k,1 → Signn,k,1 defined by ΩDS(D) = σ(D).

For examples of this bijection, compare Figure 3.9 with Figure 3.8.

Lemma 3.5.8. The map ΩDS from Definition 3.5.7 is an isomorphism of posets.
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Proof. First we show that ΩDS is well defined, i.e. given D ∈ Dn,k,1 we have σ(D)i = (−1)i−1,
where i ∈ [n] indexes the first nonzero component of σ(D). Indeed, we have that 1, . . . , i− 1
label vertical steps of the southeast border of D whose rows contain only 0’s, and i labels
either a vertical step whose row contains a +, or a horizontal step. Hence when we lift D to
D̂ in Definition 3.5.7, σ(D̂) alternates in sign on [1, i], whence σ(D)i = σ(D̂)i = (−1)i−1.

To show that ΩDS is a bijection, we describe its inverse. Given σ ∈ Signn,k,1, we construct

D ∈ Dn,k,1 with σ(D) = σ. We first lift σ to σ̂ ∈ Signn,k,1 by reading σ from right to left:

• Set σ̂n := (−1)k.

• For i = n− 1, . . . 1, if σi = 0, we set σ̂i := −σ̂i+1, and otherwise we set σ̂i := σi.

The reason we set σ̂n := (−1)k is that if τ ∈ {+,−}n with τ ≥ σ and var(τ) = k, then
τ1 = + since τ ∈ Signn,k,1, which implies that τn = (−1)k. The same reasoning implies that
σ̂ ∈ Signn,k,1. Now we construct D as follows. The vertical steps of the southeast border of
D are in bijection with positions i of σ̂ such that σ̂i = −σ̂i+1. In each row with vertical step
labeled i, where σi 6= 0, we place a + in the far right. We then fill the remaining boxes with
0’s. Note that σ(D) = σ. Moreover, we know that 0’s of σ must correspond to vertical steps
in the southeast border of D, which uniquely determines D. Therefore ΩDS is a bijection.

We can check that ΩDS is a poset homomorphism. It remains to check that its inverse
is a poset homomorphism. To this end, let σ′ l σ be a cover relation in Signn,k,1, so that σ′

is obtained from σ by setting some σi to 0. Construct D ∈ Dn,k,1 as above with σ(D) = σ.
Since σi 6= 0, either i labels a horizontal step in the southeast border of D and i− 1 labels a
vertical step (otherwise we would have var(σ′) > var(σ)), or i labels a vertical step and there
is a + in that row. In the first case, let D′ l D be the Type 1 cover relation obtained by
deleting the box containing the lowest + in column of D labeled by i (and all boxes below
it). In the second case, let D′ l D be the Type 2 cover relation obtained by replacing the
unique + in the row labeled by i with a 0. In either case we have σ(D′) = σ′. �

We now introduce the positroids corresponding to Dn,k,1.

Definition 3.5.9. Let Mn,k,1 be the set of matroids of rank k with ground set [n] which
are direct sums M1 ⊕ · · · ⊕Mn−k, where E1 t · · · tEn−k is a partition of [n] into nonempty
intervals, and Mj is the uniform matroid of rank |Ej|− 1 with ground set Ej, for j ∈ [n−k].
Let Mn,k,1 be the order ideal of matroids of Mn,k,1, i.e. the set of matroids M ′ of rank k
with ground set [n] such that M ′ ≤M for some M ∈Mn,k,1. (The partial order was defined
in Definition 3.2.18.)

We also defineM∗
n,k,1 := {M∗ : M ∈Mn,k,1} andM∗

n,k,1 := {M∗ : M ∈Mn,k,1}, so that

M∗
n,k,1 is the set of matroids M ′ of rank n − k with ground set [n] such that M ′ ≤ M for

some M ∈ M∗
n,k,1. Since taking duals commutes with direct sum (see Proposition 4.2.21 of

[Oxl11]), M∗
n,k,1 is the set of matroids of rank k with ground set [n] which are direct sums

M1 ⊕ · · · ⊕Mn−k, where E1 t · · · t En−k is a partition of [n] into nonempty intervals, and
Mj is the uniform matroid of rank 1 with ground set Ej, for j ∈ [n− k].
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The matroids inMn,k,1 andM∗
n,k,1 are in fact positroids; see Definition 3.5.12. (Alternatively,

using Lemma 3.5.10, we can easily construct a matrix representing any matroid in M∗
n,k,1.)

This implies that Mn,k,1 indexes an order ideal in Qk,n, the poset of cells of Gr≥0
k,n.

Lemma 3.5.10. The matroids inMn,k,1 andM∗
n,k,1 correspond to pairs (E1t· · ·tEn−k, C),

where

• E1 t · · · t En−k is a partition of [n] into nonempty intervals and C ⊆ [n];

• for all j ∈ [n− k], Ej \ C is nonempty; and

• max(Ej) /∈ C whenever max(Ej) 6= n.

The matroid M ∈Mn,k,1 associated to (E1 t · · · tEn−k, C) is the direct sum M1 ⊕ · · · ⊕
Mn−k, where Mj (j ∈ [n−k]) is the matroid with ground set Ej such that Ej ∩C are coloops
and the restriction of Mj to Ej \ C is a uniform matroid of rank |Ej \ C| − 1.

And the matroid M∗ ∈M∗
n,k,1 associated to (E1 t · · · tEn−k, C) is the direct sum M∗

1 ⊕
· · · ⊕M∗

n−k, where M∗
j (j ∈ [n− k]) is the matroid with ground set Ej such that Ej ∩ C are

loops and the restriction of Mj to Ej \ C is a uniform matroid of rank 1.

Proof. The description of Mn,k,1 follows from the description of M∗
n,k,1, so we prove the

latter. In considering M∗
n,k,1, we will use the following claim.

Claim. Let M be a matroid with ground set F and connected components F1, . . . , Fl, and
let M ′ ≤ M . Then each Fj (j ∈ [l]) is a union of connected components of M ′, and
M ′|Fj ≤M |Fj .

Proof of Claim. By Proposition 4.1.2 of [Oxl11] (see also Proposition 7.2 of [ARW16]),
elements i, j of the ground set are in the same connected component of a matroid N if
and only if there exist bases B,B′ of N with B′ = (B \ {i}) ∪ {j}. It follows that if
i, j ∈ F are in the same connected component of M ′, then they are in the same con-
nected component of M . The fact that M ′|Fj ≤ M |Fj for j ∈ [l] follows from Def-
inition 3.2.17, as long as M ′|Fj and M |Fj have the same rank. But this is true since∑l

j=1 rank(M ′|Fj) = rank(M ′) = rank(M) =
∑l

j=1 rank(M |Fj). �

Now note that if M is a uniform matroid of rank 1, then the matroids M ′ satisfying
M ′ ≤M are precisely all matroids of rank 1 with the same ground set as M . Hence by the
claim, the elements ofM∗

n,k,1 are obtained precisely by taking a matroid M1⊕ · · · ⊕Mn−k ∈
Mn,k,1 with ground set E1 t · · · t En−k, and choosing some subset C ⊆ [n] of the ground
set, satisfying Ej \ C 6= ∅ for all j ∈ [n− k], to turn into loops (i.e. we delete all bases with
a nonempty intersection with C). The condition that max(Ej) /∈ C if max(Ej) 6= n comes
from our convention that a loop which appears ‘between’ two intervals is associated to the
interval on its right. �
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Remark 3.5.11. Using Lemma 3.5.10, one can write down the generating function for the
stratification of Bn,k,1(W ) with respect to dimension; see Corollary 3.6.21. We will give a
different proof of Corollary 3.6.21, using the fact that Bn,k,1(W ) is isomorphic to the bounded
complex of a generic hyperplane arrangement, whose rank generating function is known.

We now give a poset isomorphism ΩDM : Dn,k,1 →Mn,k,1.

Definition 3.5.12. Given D ∈ Dn,k,1, we label the southeast border of D by the numbers
1 through n. Let the labels of the horizontal steps be denoted by h1, . . . , hn−k. Then
set E1 := {1, 2, . . . , h1}, Ej := {hj−1 + 1, hj−1 + 2, . . . , hj} for 1 < j < n − k, and En−k :=
{hn−k−1+1, hn−k−1+2, . . . , n}. Let C be the set of labels of all vertical steps indexing rows of
D with no +’s. Then (E1t· · ·tEn−k, C) determines a positroid inMn,k,1 as in Lemma 3.5.10,
which we denote by M(D). By inspection, we see that the map ΩDM : D 7→ M(D) is a
bijection, and we will denote the inverse by Ω−1

DM : M 7→ D(M).

We observe that M(D) is precisely the positroid of D defined in Definition 3.2.12. In par-
ticular, the elements of Mn,k,1 and M∗

n,k,1 are all positroids. See Figure 3.7. The white
lollipops correspond to coloops and the black lollipops correspond to loops. By considering
perfect orientations, it is easy to see that every component of the graph which is not a white
lollipop gives rise to a uniform matroid of corank 1.
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Figure 3.7: Going from a L-diagram in Dn,k,1 to the corresponding plabic graph, which in
turn determines the positroid in Mn,k,1.

Lemma 3.5.13. The map ΩDM from Definition 3.5.12 is an isomorphism of posets. In
particular, Dn,k,1 can be identified with an order ideal of Qk,n, the poset of cells of Gr≥0

k,n.

Proof. By inspection, ΩDM is a bijection and a poset homomorphism. To see that its inverse
is a poset homomorphism, let M ′ lM be a cover relation in Mn,k,1, and take D ∈ Dn,k,1
with M = M(D). Let E1 t · · · t En−k correspond to M as in Lemma 3.5.10. Then we
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obtain M ′ from M by taking some interval Ej which contains at least 2 elements which are
not coloops, and turning some i ∈ Ej into a coloop. If i is the greatest element of Ej not
already a coloop, then i labels a horizontal step in the southeast border of D. In this case,
let D′ lD be the Type 1 cover relation given by deleting the box containing the lowest +
in column of D labeled by i (and all boxes below it). Otherwise i labels a vertical step in
the southeast border of D whose row contains a +; let D′ lD be the Type 2 cover relation
given by replacing this + with a 0. Then M(D′) = M ′. �

By composing the bijections from Definitions (3.5.7) and (3.5.12), we obtain the following
result.

Corollary 3.5.14. The map ΩDS ◦ ΩDM
−1 :Mn,k,1 → Signn,k,1,M 7→ σ(M) is an isomor-

phism of posets, where we define σ(M) := σ(D) for D ∈ Dn,k,1 with M = M(D). We can
compute σ(M) from M as follows. If M ∈ Mn,k,1 is the direct sum M1 ⊕ · · · ⊕Mn−k with
ground set E1t· · ·tEn−k, then σ(M) is uniquely determined by the following two properties:

• σ(M)1 = +;

• σ(M)i = σ(M)i+1 if and only if i and i+ 1 are in different blocks of E1 t · · · t En−k.

And if M ∈ Mn,k,1 is the direct sum M1 ⊕ · · · ⊕Mn−k with ground set E1 t · · · t En−k and
coloops at C, then σ(M) is given exactly as above, except that σ(M)i = 0 for each i ∈ C.

For example, if M ∈ M8,5,1 is associated to E1 t E2 t E3 with E1 = {1, 2, 3}, E2 =
{4, 5, 6}, E3 = {7, 8}, then σ(M) equals (+,−,+,+,−,+,+,−).

Definition 3.5.15. Let S :=
⊔
M∈Mn,k,1

SM =
⊔
M∈Mn,k,1

SM be the subcomplex of Gr≥0
k,n

corresponding to Mn,k,1. We define a map (cf. Definition 3.3.8 )

φW : S → Bn,k,1(W ), V 7→ V ⊥ ∩W.

Proposition 3.5.16. If V ∈ SM for M ∈ Mn,k,1, then V ⊥ ∩ W ∈ Bσ(M)(W ). In other
words, the map φW from Definition 3.5.15 induces the map M 7→ σ(M) on strata.

Technically σ(M) is an element of Signn,k,1, while Bn,k,1(W ) is stratified by PSignn,k,1. By

Lemma 3.5.4(i) the map Signn,k,1 → PSignn,k,1, σ 7→ σ is a poset isomorphism, so we need
not concern ourselves with this distinction.

Proof. We first consider the case that M ∈Mn,k,1. Let us describe the sign vectors of V ⊥ for
V ∈ SM . Write M = M1⊕· · ·⊕Mn−k, where E1t· · ·tEn−k is a partition of [n] into nonempty
intervals, and Mj is the uniform matroid of rank |Ej|− 1 with ground set Ej, for j ∈ [n−k].
By Lemma 3.3.7(ii), if Vj ∈ SMj

then sign(V ⊥j ) = {σ ∈ {0,+,−}Ej : var(σ) ≥ |Ej|−1}∪{0},
i.e.

sign(V ⊥j ) = {0, (+,−,+,−, . . . ), (−,+,−,+, . . . )}.
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Hence for V ∈ SM , we have σ ∈ sign(V ⊥) if and only if σ|Ej equals 0 or strictly alternates
in sign, for all j ∈ [n− k].

Recall from Corollary 3.3.18 that

Bn,k,1(W ) = {w ∈ W \ {0} : var(w) = k} ⊆ P(W ).

Note that there is a unique nonzero σ ∈ sign(V ⊥) (modulo multiplication by ±1) with
var(σ) = k: σ has no zero components, and σi = σi+1 if and only if i and i + 1 are in
different blocks of E1t· · ·tEn−k, for all i ∈ [n−1]. This is precisely the definition of σ(M).
Therefore we must have V ⊥ ∩W ∈ Bσ(M)(W ).

Now we consider the general case of sign vectors of V ′⊥, where M ′ ∈Mn,k,1 and V ′ ∈ SM ′ .
We have M ′ ≤M for some M ∈Mn,k,1, and M ′ is obtained from M by making some subset
C ⊆ [n] of the ground set coloops. Thus the sign vectors of V ′⊥ are precisely obtained from
those of V ⊥ by setting the components indexed by C to 0. In particular, we again have
a unique nonzero σ′ ∈ sign(V ′⊥) (modulo multiplication by ±1) with var(σ′) = k, which
we obtain from σ(M) by setting the components C to 0. Then σ′ = σ(M ′), and therefore
V ′⊥ ∩W ∈ Bσ(M ′)(W ). �

Theorem 3.5.17. The map φW from Definition 3.5.15 is a homeomorphism which induces
a poset isomorphism on the stratifications of S and Bn,k,1(W ).

Proof. We know from Proposition 3.5.16 that φW induces a poset isomorphism on the strata.
To show that φW is a bijection, we construct the inverse map φ−1

W : Bn,k,1 → S as follows.
Given an element of Bn,k,1(W ) spanned by w ∈ W \ {0} (so var(w) = k), let σ be either
sign(w) or − sign(w), whichever is in Signn,k,1. Also let M ∈ Mn,k,1 be the positroid such
that σ(M) = σ, corresponding to (E1 t · · · t En−k, C) in Lemma 3.5.10. If V ∈ S with
φW (V ) = w, then V ∈ SM because φW induces a poset isomorphism on the strata. Since
Ej \ C 6= ∅ for all j ∈ [n − k], σ is nonzero when restricted to any interval Ej. Hence the
unique V ∈ S with φW (V ) = w is determined by the conditions

V ⊥|Ej = span(w|Ej) for all j ∈ [n− k].

Explicitly, V ⊥ has the basis w(1), . . . , w(n−k), where w(i)|Ej = δi,jw|Ej for i, j ∈ [n− k]. Thus
φW is invertible, with an inverse which is piecewise polynomial (each stratum is a domain of
polynomiality). The map φW is continuous, and therefore a homeomorphism. �

3.6 An,k,1 as the bounded complex of a cyclic

hyperplane arrangement

We show that the m = 1 amplituhedron Bn,k,1(W ) (or An,k,1(Z)) is homeomorphic to the
complex of bounded faces of a cyclic hyperplane arrangement of n hyperplanes in Rk. It
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then follows from a result of Dong [Don08] that it is homeomorphic to a ball. This story is
somewhat analogous to that of k = 1 amplituhedra An,1,m, which are cyclic polytopes with n
vertices in Pm.5 (We do not know whether this is a coincidence, or a specific instance of some
form of duality for amplituhedra.) Cyclic hyperplane arrangements have been studied by
Shannon [Sha79], Ziegler [Zie93], Ramı́rez Alfonśın [RA99], and Forge and Ramı́rez Alfonśın
[FRA01]. For an introduction to hyperplane arrangements, see [Sta07].

Remark 3.6.1. In the literature, a cyclic hyperplane arrangement of n hyperplanes in Rk
is usually defined to be an arrangement with hyperplanes

{x ∈ Rk : tix1 + t2ix2 + · · ·+ tki xk + 1 = 0} (i ∈ [n]), (3.6.2)

where 0 < t1 < · · · < tn. We will need to consider more general hyperplane arrangements,
whose hyperplanes are of the form

{x ∈ Rk : Ai,1x1 + · · ·+ Ai,kxk + Ai,0 = 0} (i ∈ [n]), (3.6.3)

such that

colspan((Ai,j)1≤i≤n,1≤j≤k) ∈ Gr>0
k,n and colspan((Ai,j)1≤i≤n,0≤j≤k) ∈ Gr>0

k+1,n .

(We will require that this latter subspace isW .) The hyperplane arrangement (3.6.2) is of this
form by Vandermonde’s identity. Theorem 3.6.16 implies that all hyperplane arrangements
of the form (3.6.3) are isomorphic, so we will not be concerned with the distinction between
(3.6.2) and (3.6.3). This is analogous to the situation for cyclic polytopes (see [Stu88]).

Definition 3.6.4. An arrangement {H1, . . . , Hn} of hyperplanes in Rk is called generic if
for all I ⊆ [n], we have dim(

⋂
i∈I Hi) = n− |I| if |I| ≤ k, and

⋂
i∈I Hi = ∅ if |I| > k.

Remark 3.6.5. Cyclic polytopes have many faces of each dimension, in the sense of the
upper bound theorem of McMullen [McM70] and Stanley [Sta75]. An analogous property
of cyclic hyperplane arrangements is that they have few simplicial faces of each dimension,
in the sense of Shannon [Sha79]. Note that it does not make sense to look at the total
number of faces, because the number of faces of a given dimension of a generic hyperplane
arrangement depends only on its dimension and the number of hyperplanes [Buc43].

In order to define our hyperplane arrangement, we will use the following convention.

5In fact, the k = 1 amplituhedra An,1,m are precisely the alternating polytopes of dimension m with n
vertices in Pm, as follows from work of Sturmfels [Stu88]. Alternating polytopes are cyclic polytopes which
have the additional property that every induced subpolytope is also cyclic. See pp. 396-397 of [BLVS+99]
for an example of a cyclic polytope which is not alternating.
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Definition 3.6.6. Suppose that V ∈ Gr>0
k,n and w ∈ Rn \ V such that V + w ∈ Gr>0

k+1,n.
Let u ∈ V ⊥ be the orthogonal projection of w to V ⊥, i.e. w − u ∈ V . Since u 6= 0,
Theorem 3.3.4(ii) implies that var(u) ≥ k. But since u also lies in V + w ∈ Gr>0

k+1,n,
Theorem 3.3.4(ii) implies that var(u) ≤ k. Therefore var(u) = var(u) = k. But var(u) =
var(u) implies that the first component u1 of u is nonzero. We call w positively oriented with
respect to V if u1 > 0, and negatively oriented if u1 < 0.

Example 3.6.7. Let V ∈ Gr>0
1,3 be the span of (1, 1, 1) (so n = 3, k = 1), and w := (1, 2, 4),

so that V + w ∈ Gr>0
2,3. Then the projection of w to V ⊥ is u := (−4

3
,−1

3
, 5

3
), since w − u =

7
3
(1, 1, 1) ∈ V . Since u1 = −4

3
< 0, w is negatively oriented with respect to V . ♦

Let us show that the cyclic hyperplane arrangements defined in (3.6.2) satisfy this positive
orientation property. Although we will not need Proposition 3.6.8 in what follows, it will
mean that our future characterization of face labels of HW in Proposition 3.6.14 applies
to “classical” cyclic hyperplane arrangements (3.6.2). (This is due to the assumption in
Definition 3.6.10 that w(0) is positively oriented with respect to V .)

Proposition 3.6.8. Let 0 < t1 < · · · < tn, and V ∈ Gr>0
k,n be the span of the vectors

(tj1, . . . , t
j
n) for 1 ≤ j ≤ k. Then w = (1, . . . , 1) is positively oriented with respect to V .

Proof. We define the n × (k + 1) matrix A with entries Ai,j := tji (1 ≤ i ≤ n, 0 ≤ j ≤ k).
Then A is a totally positive matrix, i.e. all its minors are positive. Indeed, for I = {i1 <
· · · < il} ⊆ [n] and J = {j1 < · · · < jl} ⊆ {0, 1, . . . , k}, the classical definition of Schur
functions implies that

det(AI,J) = s(jl−l+1,jl−1−l+2,...,j1)(ti1 , . . . , til)
∏

r,s∈[l], r<s

(tis − tir).

Since Schur functions are monomial-positive, det(AI,J) > 0.
Because V + w is the column span of A, and V is the span of the last k columns of A,

we get that V ∈ Gr>0
k,n and V + w ∈ Gr>0

k+1,n. As in Definition 3.6.6, we let u ∈ V ⊥ be the
projection of w to V ⊥. That is, w − u ∈ V and var(u) = var(u) = k. We must show that
u1 > 0. We will use the following properties of totally positive n× (k + 1) matrices A:

• var(Ax) ≤ var(x) for all x ∈ Rk+1 [Sch30];

• if var(Ax) = var(x), then the first nonzero components of Ax and x have the same
sign (Theorem V.5 of [GK50]).

Since w − u ∈ V , we can write u = Ax for some x ∈ Rk+1 with x1 = 1. And because
var(u) = k, we have var(x) = k, whence the first nonzero component of u is positive. �
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We will also need the following result of Rietsch.6

Lemma 3.6.9 ([Rie]). If W ∈ Gr>0
k+m,n, where m ≥ 0, then W contains a subspace in Gr>0

k,n.

We now define our hyperplane arrangement. A hyperplane arrangement H partitions its am-
bient space into faces; maximal faces (equivalently, connected components of the complement
of H) are called regions.

Definition 3.6.10. Given W ∈ Gr>0
k+1,n, by Lemma 3.6.9 we can find w(1), . . . , w(k) ∈

W such that V := span(w(1), . . . , w(k)) ∈ Gr>0
k,n. We extend {w(1), . . . , w(k)} to a basis

{w(0), w(1), . . . , w(k)} of W ; after replacing w(0) with −w(0) if necessary, we assume that w(0)

is positively oriented with respect to V (see Definition 3.6.6).
We let HW be the hyperplane arrangement in Rk with hyperplanes

Hi := {x ∈ Rk : w
(1)
i x1 + · · ·+ w

(k)
i xk + w

(0)
i = 0} for i ∈ [n].

Note that HW is generic by the first three sentences of the proof of Proposition 5.13 of
[Sta07].7 Also note that HW depends not only on W but also on our choice of basis of W .

Given w ∈ W , we let 〈w〉 ∈ P(W ) denote the line spanned by w. We define the maps

ΨHW : Rk → P(W ), x 7→ 〈x1w
(1) + · · ·+ xkw

(k) + w(0)〉,
ψHW : Rk → {0,+,−}n, x 7→ sign(x1w

(1) + · · ·+ xkw
(k) + w(0)).

Note that the faces of HW are precisely the nonempty fibers of ψHW . If σ ∈ {0,+,−}n has
a nonempty preimage under ψHW , we call this fiber the face of HW labeled by σ. When we
identify faces with labels in this way, the face poset of HW is an induced subposet of the
sign vectors {0,+,−}n (see Definition 3.5.3).

Finally, we let B(HW ) be the subcomplex of bounded faces of HW . We denote the set
of sign vectors which label the bounded faces of HW by VB(HW ).

Remark 3.6.11. By Proposition 3.6.8, the classical cyclic hyperplane arrangement (3.6.2)
is an example of such an HW from Definition 3.6.10.

6Rietsch [Rie] in fact proved that the totally nonnegative part Fl≥0n of the complete flag variety (as

defined by Lusztig in Section 8 of [Lus94]) projects surjectively onto Gr≥0k,n, and that the Lusztig-Rietsch

stratification of Fl≥0n projects onto Postnikov’s stratification of Gr≥0k,n. In particular, given V ∈ Gr>0
k,n, there

exists a complete flag V0 ⊂ V1 ⊂ · · · ⊂ Vn in the totally positive part Fl>0
n of Fl≥0n with Vk = V . This

immediately implies Lemma 3.6.9, because if V0 ⊂ V1 ⊂ · · · ⊂ Vn ∈ Fl>0
n then Vj ∈ Gr>0

j,n for 0 ≤ j ≤ n. (See
Corollary 7.2 of [TW15] for a related result.) An alternative proof of Rietsch’s result was given by Talaska

and Williams (see Theorem 6.6 of [TW13]), by relating Postnikov’s parameterizations of cells of Gr≥0k,n (see
Theorem 6.5 of [Pos]) to Marsh and Rietsch’s parameterizations of the Lusztig-Rietsch cells [MR04]. A direct
proof of Lemma 3.6.9 using similar tools was given in Lemma 15.6 of [Lam16b].

7We thank Richard Stanley for pointing out this argument to us.
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We will show that ΨHW gives a homeomorphism from B(HW ) to Bn,k,1(W ) (Theo-
rem 3.6.16). The key to the proof is establishing that VB(HW ) = Signn,k,1, which we do in

Proposition 3.6.14. (Recall that Signn,k,1 is the set of nonzero sign vectors σ ∈ {0,+,−}n such
that var(σ) = k, and if i ∈ [n] indexes the first nonzero component of σ, then σi = (−1)i−1.
See Definition 3.5.1.)

In what follows, we fix W ∈ Gr>0
k+1,n, as well as a basis {w(0), w(1), . . . , w(k)} of W and a

corresponding hyperplane arrangement HW , as in Definition 3.6.10.

Lemma 3.6.12.
(i) If σ ∈ {+,−}n satisfies var(σ) ≤ k − 1, then σ labels an unbounded region of HW .
(ii) If σ ∈ {0,+,−}n labels an unbounded face of HW , then var(σ) ≤ k − 1.

Proof. (i) Suppose that σ ∈ {+,−}n with var(σ) ≤ k−1. Since span(w(1), . . . , w(k)) ∈ Gr>0
k,n,

Lemma 3.3.7(i) implies that we can write σ = sign(w) for some w ∈ span(w(1), . . . , w(k)).
Then for all t > 0 sufficiently large we have sign(tw + w(0)) = σ, whence ψ−1

HW (σ) is un-
bounded.

(ii) Given σ ∈ {0,+,−}n such that ψ−1
HW (σ) is an unbounded face of HW , take a sequence

(x(j))j∈N in ψ−1
HW (σ) with limj→∞ ‖x(j)‖ =∞.

Claim. limj→∞ ‖x(j)
1 w(1) + · · ·+ x

(j)
k w(k) + w(0)‖ =∞.

Proof of Claim. Let c ∈ R be the minimum value of ‖x1w
(1) + · · ·+ xkw

(k)‖ on the compact
set {x ∈ Rk : ‖x‖ = 1}. Since w(1), . . . , w(k) are linearly independent, we have c > 0. Hence
by the triangle inequality,

‖x(j)
1 w(1) + · · ·+ x

(j)
k w(k) + w(0)‖ ≥ ‖x(j)

1 w(1) + · · ·+ x
(j)
k w(k)‖ − ‖w(0)‖ ≥ c‖x(j)‖ − ‖w(0)‖

for j ∈ N. The claim follows when we send j to ∞. �

By the claim, the following sequence is well defined for j sufficiently large:(
x

(j)
1 w(1) + · · ·+ x

(j)
k w(k) + w(0)

‖x(j)
1 w(1) + · · ·+ x

(j)
k w(k) + w(0)‖

)
j∈N

.

Since {x ∈ Rn : ‖x‖ = 1} is compact, this sequence has a convergent subsequence; we
let v ∈ Rn denote one of its limit points. Then since limj→∞ ‖x(j)‖ = ∞, we have v ∈
span(w(1), . . . , w(k)) \ {0}. We get var(σ) ≤ var(v) ≤ k − 1, where the first inequality holds
since sign(v) is obtained from sign(σ) by possibly setting some nonzero components to zero,
and the second inequality follows from Theorem 3.3.4(ii). �

Lemma 3.6.13. The map VB(HW ) → PSignn,k,1, σ 7→ σ is a poset isomorphism. In other
words, the face poset of the bounded faces of HW is isomorphic to the face poset of Bn,k,1(W ).
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Proof. First let us show that the map VB(HW ) → PSignn,k,1 is well defined, i.e. given σ ∈
VB(HW ), we have var(σ) = k. Since B(HW ) equals the closure of the union of the bounded
regions of HW [Don08] (see also Chapter 1, Exercise 7(d) of [Sta07]), the face labeled by
σ is contained in the closure of some bounded region of HW , labeled by, say, τ ∈ {+,−}n.
Therefore τ ≥ σ, where the partial order is the one on {0,+,−}n from Definition 3.5.3. By
Lemma 3.6.12(i) we have var(τ) ≥ k, and so var(σ) ≥ var(τ) ≥ k. But by Theorem 3.3.4(ii)
we also have var(σ) ≤ k, so var(σ) = k, as desired.

Therefore the map VB(HW ) → PSignn,k,1 is a poset homomorphism. To see that it is
surjective, note that if σ ∈ {0,+,−}n \ {0} satisfies var(σ) = k, then σ = sign(w) for some
w ∈ W by Lemma 3.3.7(i). When we write w in terms of the basis w(0), w(1), . . . , w(k),
the coefficient of w(0) is nonzero. (Otherwise w ∈ span(w(1), . . . , w(k)) ∈ Gr>0

k,n, implying
var(w) ≤ k − 1 by Theorem 3.3.4(ii).) Rescaling w by a positive real number so that this
coefficient is ±1, we see that we can write

w = x1w
(1) + · · ·+ xkw

(k) ± w(0)

for some x ∈ Rk. Therefore either σ or −σ labels a face of HW , and such a face is bounded
by Lemma 3.6.12(ii).

It remains to show that the map VB(HW ) → PSignn,k,1 is injective and that its inverse is a
poset homomorphism. It suffices to prove that there do not exist σ, τ ∈ {0,+,−}n labeling
bounded faces of HW such that σ ≤ −τ . Suppose otherwise that there exist such σ, τ . Take
x, y ∈ Rk with ψHW (x) = σ and ψHW (y) = τ . Subtracting, we get sign((x1 − y1)w(1) +
· · ·+ (xk − yk)w(k)) = −τ . Since span(w(1), . . . , w(k)) ∈ Gr>0

k,n, Theorem 3.3.4(ii) implies that
var(τ) ≤ k − 1. But we showed in the first paragraph that var(τ) = k. �

Proposition 3.6.14 (The face labels of HW ).
(i) The labels of the bounded faces of HW are precisely Signn,k,1, i.e. VB(HW ) = Signn,k,1.
(ii) The labels of the unbounded faces of HW are precisely σ ∈ {0,+,−}n with var(σ) ≤ k−1.

Example 3.6.15. Let n := 5, k := 2,m := 1, and W ∈ Gr>0
3,5 have the basis

w(0) := (−1,−1,−1,−1,−1), w(1) := (0, 1, 2, 3, 4), w(2) := (10, 6, 3, 1, 0).

Note that V := span(w(1), w(2)) ∈ Gr>0
2,5. The projection u of w(0) to V ⊥ is

u := w(0) + 1
831

(232w(1) + 90w(2)) = 1
831

(69,−59,−97,−45, 97).

Since u1 > 0, by Definition 3.6.6 w(0) is positively oriented with respect to V .
The hyperplane arrangement HW from Definition 3.6.10 consists of 5 lines in R2:

`1: 10y = 1, `2: x+ 6y = 1, `3: 2x+ 3y = 1, `4: 3x+ y = 1, `5: 4x = 1.

See Figure 3.8 and Figure 3.9 forB(HW ) labeled by sign vectors and L-diagrams, respectively.
(The positive side of each line is above and to the right of it.) By Proposition 3.6.14, the



CHAPTER 3. THE m = 1 AMPLITUHEDRON 77

`1

`2

`3

`4
`5

+++−+

++−−+

+−−−+

++−++

+−−++
+−+++

+++−0

++−−0

+−−−0

+++0+

++0−+

+0−−+

0−−−+

++−0+

+−−0+

++0++

+0−++

0−−++

+−0++ +0+++

0−+++

+++00

++0−0

+0−−0

0−−−0

++00+

+0−0+

0−−0+

+00++

0−0++ 00+++

Figure 3.8: The hyperplane arrangement HW from Example 3.6.15, with
B5,2,1(W ) ∼= B(HW ). Its bounded faces are labeled by sign vectors.
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`1

`2

`3

`4
`5

+

+

0 +

+

0 0 +

+

0 +

0 +

0 0 +

0 +
0 0 +

0 0 +

+

0 +

0 0 +

+

0

0

+

0 0

+

0 0 0

+

0 +

0

0 0 +

0

0 +

0 0

0 0

0 +

0 0 0

0 +

0 0 +

0 0

0 0 +

0 0 0

0 0 0

0 0 +

∅

0

0 0

0 0 0

0

0

0 0

0

0 0 0

0

0 0

0 0

0 0 0

0 0

0 0 0

0 0 0

Figure 3.9: The hyperplane arrangement HW from Example 3.6.15, with
B5,2,1(W ) ∼= B(HW ). Its bounded faces are labeled by L-diagrams.
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bounded faces of HW are labeled by sign vectors in Sign5,2,1, and the bounded regions by sign
vectors in Sign5,2,1. The unbounded regions are labeled by the sign vectors σ ∈ {0,+,−}5

satisfying var(σ) ≤ 1. By Theorem 3.6.16, we have B5,2,1(W ) ∼= B(HW ). ♦

Proof (of Proposition 3.6.14). (i) By Lemma 3.6.13 and Lemma 3.5.4(ii), VB(HW ) equals

either Signn,k,1 or −Signn,k,1. We must rule out the latter possibility. Recall that by con-

struction, w(0) is positively oriented with respect to V := span(w(1), . . . , w(k)). According
to Definition 3.6.6, there exist x1, . . . , xk ∈ R such that u := x1w

(1) + · · · + xkw
(k) + w(0)

satisfies var(u) = var(u) = k and u1 > 0. Let σ := sign(u). Then σ labels a face of HW ,
which is a bounded face by Lemma 3.6.12(ii). We get σ ∈ VB(HW ), and σ1 = + implies

VB(HW ) 6= −Signn,k,1.
(ii) One direction follows from Lemma 3.6.12(ii). For the other direction, we will use the

following fact about generic hyperplane arrangements H in Rk: if τ labels a face of H, then
σ also labels a face of H for all σ ≥ τ . (This follows from the fact that the normal vectors
of any k or fewer hyperplanes are linearly independent.)

Given σ ∈ {0,+,−}n with var(σ) ≤ k − 1, we must show that σ labels a face of HW

(whence this face is unbounded by part (i)). Since HW is generic, it suffices to construct
τ ≤ σ which labels a face of HW . Our strategy will be to modify the sign vector σ until we
get a sign vector τ ≤ σ with τ ∈ Signn,k,1, which then implies that τ labels a bounded face
of HW by part (i).

Set σ′ := alt(σ). By Lemma 3.3.3(i), we have var(σ′) ≥ n − k. In particular, the fact
that k < n implies that σ′ has a positive component. Take i ∈ [n] minimum with σ′i = +,
and let σ′′ be obtained from σ′ by setting to zero all components j with j < i. Note that
var(σ′′) ≥ var(σ′) − 1 ≥ n − k − 1. Now we repeatedly set the last nonzero component of
σ′′ to zero, until we obtain a sign vector τ ′ with var(τ ′) = n − k − 1. Letting τ := alt(τ ′),
we have τ ≤ σ, and var(τ) = k by Lemma 3.3.3(i). Since the first nonzero component of τ ′

equals +, we have τ ∈ Signn,k,1, as desired. �

We are now ready to show that Bn,k,1(W ) ∼= B(HW ).

Theorem 3.6.16. The restriction of ΨHW to B(HW ) is a homeomorphism from B(HW ) to
Bn,k,1(W ), and induces an isomorphism of posets on the strata of B(HW ) and Bn,k,1(W ).
Explicitly, ΨHW sends the stratum ψ−1

HW (σ) of B(HW ) to the stratum Bσ(W ) of Bn,k,1(W ),

for all σ ∈ Signn,k,1.

Proof. To see that ΨHW is injective, note that if ΨHW (x) = ΨHW (y) for some x, y ∈ Rk, then
there exists t ∈ R\{0} such that x1w

(1) + · · ·+xkw
(k) +w(0) = t(y1w

(1) + · · ·+ykw
(k) +w(0)).

The linear independence of the vectors w(0), w(1), . . . , w(k) implies that t = 1 and xi = yi for
all i ∈ [k], so x = y.

Recall that by Corollary 3.3.18, Bn,k,1(W ) = {w ∈ P(W ) : var(w) = k}. Let us show
that ΨHW (Rk) contains Bn,k,1(W ). It suffices to observe that when we express an element
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of Bn,k,1(W ) as a linear combination of w(0), w(1), . . . , w(k), the coefficient of w(0) is nonzero.
This follows from Theorem 3.3.4(ii), and the fact that span(w(1), . . . , w(k)) ∈ Gr>0

k,n.

Now we letQ := Ψ−1
HW (Bn,k,1(W )). We have shown that ΨHW is a homeomorphism fromQ

to Bn,k,1. Recall that Bn,k,1(W ) is stratified by the sign vectors in PSignn,k,1(W ). Therefore
Q is the union of the faces of HW labeled by σ ∈ {0,+,−}n satisfying var(σ) = k. By
Proposition 3.6.14, this is precisely B(HW ). The fact that ΨHW induces a poset isomorphism
on strata follows from Lemma 3.6.13. �

Remark 3.6.17. It follows from Theorem 3.6.16 that the amplituhedron Bn,k,1 is a regular
cell complex, and in particular its strata Bσ(W ) are homeomorphic to open balls. Using the
results of Section 3.5, we can also index the cells of the amplituhedron by L-diagrams and
matroids, in which case we will use the notation BD(W ) and BM(W ), respectively.

Corollary 3.6.18. The amplituhedron Bn,k,1(W ) (and also An,k,1(Z)) is homeomorphic to
a ball of dimension k.

Proof. This follows from Theorem 3.6.16 together with Dong’s result (Theorem 3.1 of
[Don08]) that the bounded complex of a uniform affine oriented matroid (of which the
bounded complex of a generic hyperplane arrangement is a special case) is a piecewise linear
ball. �

Recall from Theorem 3.5.17 that the amplituhedron Bn,k,1(W ) is homeomorphic to a
subcomplex of Gr≥0

k,n; indeed, Bn,k,1(W ) inherits a cell decomposition whose face poset is

an induced subposet of the face poset of Gr≥0
k,n. Another way to prove Corollary 3.6.18

would be to show that the face poset of Bn,k,1(W ), with a new top element 1̂ adjoined, is
shellable. Then since the cell decomposition of Bn,k,1(W ) is regular, and its face poset is
pure and subthin (this follows from Theorem 3.6.16), a result of Björner (Proposition 4.3(c)
of [Bjö84]) would imply that Bn,k,1(W ) is homeomorphic to a ball.

Problem 3.6.19. Show that the face poset of Bn,k,1(W ) with a top element 1̂ adjoined is
shellable, e.g. by finding an EL-labeling.

Remark 3.6.20. Note that in earlier work the second author proved that the face poset
of Gr≥0

k,n is thin and shellable [Wil07], which shows that the same is true for any induced

subposet. However, this does not solve Problem 3.6.19, because after adjoining 1̂, the face
poset of Bn,k,1(W ) is no longer an induced subposet of the face poset of Gr≥0

k,n.

As a further corollary of Theorem 3.6.16, we obtain the generating function for the
stratification of Bn,k,1(W ) with respect to dimension, since Buck found the corresponding
generating function of B(H) for a generic hyperplane arrangement H (which only depends
on its dimension and the number of hyperplanes).



CHAPTER 3. THE m = 1 AMPLITUHEDRON 81

Corollary 3.6.21 ([Buc43]). Let fn,k,1(q) :=
∑

strata S of Bn,k,1(W ) q
dim(S) ∈ N[q] be the gener-

ating function for the stratification of Bn,k,1(W ), with respect to dimension. Then

fn,k,1(q) =
k∑
i=0

(
n− k − 1 + i

i

)(
n

k − i

)
qi =

k∑
j=0

(
n− k − 1 + j

j

)
(1 + q)j.

For example, we have f5,3,1(q) = 4q3 + 15q2 + 20q + 10, which we invite the reader to verify
from Figure 1.4.

Proof. By the corollary to Theorem 3 of [Buc43], for i ∈ N the coefficient of qi in fn,k,1(q)
equals k+1

n−k+i

(
k
i

)(
n
k+1

)
, which we can rewrite as

(
n−k−1+i

i

)(
n
k−i

)
. This gives the first sum above.

For the last equality above, note that the coefficient of qi in
∑k

j=0

(
n−k−1+j

j

)
(1 + q)j equals

k∑
j=i

(
n− k − 1 + j

j

)(
j

i

)
=

(
n− k − 1 + i

i

) k∑
j=i

(
n− k − 1 + j

n− k − 1 + i

)
=

(
n− k − 1 + i

i

)(
n

n− k + i

)
by the hockey-stick identity. �

Remark 3.6.22. By substituting q = −1 into the last expression in Corollary 3.6.21, it is
easy to check that the Euler characteristic of Bn,k,1(W ) equals 1.

3.7 How cells of An,k,1 fit together

In this section we will address how cells of the m = 1 amplituhedron fit together. In
particular, we will explicitly work out when two maximal cells are adjacent, and which
cells lie in the boundary of Bn,k,1(W ), in terms of L-diagrams, sign vectors, positroids, and
decorated permutations. See Figure 3.8 and Figure 3.9 for examples when n = 5 and k = 2.

Proposition 3.7.1 (Adjacency of maximal cells in the m = 1 amplituhedron).
Given D1, D2 ∈ Dn,k,1, the following are equivalent:

(i) the cells BD1(W ) and BD2(W ) in Bn,k,1(W ) are adjacent, i.e. their closures intersect
in a cell BD′(W ) of codimension 1, where D′ ∈ Dn,k,1 is necessarily unique;

(ii) the Young diagrams of D1 and D2 differ by a single box, in which case we obtain D′

from either D1 or D2 by including this box with a 0 inside it;

(iii) there exists 2 ≤ i ≤ n − 1 such that the sign vectors σ(D1) and σ(D2) differ precisely
in component i, in which case we obtain σ(D′) from either σ(D1) or σ(D2) by setting
component i to 0;
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(iv) there exists 2 ≤ i ≤ n − 1 such that we can obtain the partition of [n] for M(D1) (in
the sense of Definition 3.5.9) from the partition of [n] for M(D2) by moving i from
one interval to another, in which case we obtain M(D′) from either M(D1) or M(D2)
by turning i into a coloop;

(v) there exists 2 ≤ i ≤ n − 1 such that π(D2) = si−1π(D1)si, in which case π(D′) equals
either π(D1)si = si−1π(D2) or si−1π(D1) = π(D2)si, whichever has exactly k − 1
inversions. (Here sj denotes the simple transposition exchanging j and j + 1, and all
fixed points are colored black.)

Proof. The uniqueness of D′ and the equivalence (i) ⇔ (iii) follows from the fact that
Bn,k,1(W ) ∼= B(HW ) (Theorem 3.6.16); note that since σ(D1), σ(D2) ∈ Signn,k,1, the sign
vectors cannot differ in their first or last component. The equivalence (ii)⇔ (iii) follows from
Lemma 3.5.8, and (ii)⇔ (iv) follows from the bijection in Definition 3.5.12. The equivalence
(ii)⇔ (v) follows from the bijection in Lemma 3.4.2, using the following explicit description
of π′ := si−1πsi for any m = 1 BCFW permutation π:

• if i is the minimum value in its cycle and not a fixed point, then we obtain π′ from π
in cycle notation by moving i to the cycle with i− 1, to the left of i− 1;

• if i is the maximum value in its cycle and not a fixed point, then we obtain π′ from π
in cycle notation by moving i to the cycle with i+ 1, to the right of i+ 1;

• if π(i) = i, then π′ has k+ 1 anti-excedances (and hence does not index a cell of Gr≥0
k,n,

by Lemma 3.2.5);

• if i− 1, i, and i+ 1 are all in the same cycle, then π′ = π. �

Since our stratification of the amplituhedron Bn,k,1(W ) is a regular cell decomposition of
a ball (see Remark 3.6.17 and Corollary 3.6.18), it is interesting to characterize which cells
(necessarily of codimension at least 1) comprise its boundary. Note that by our identification
of cell complexes Bn,k,1(W ) ∼= B(HW ), every cell of Bn,k,1(W ) lies in either the interior or
the boundary of Bn,k,1(W ).

Proposition 3.7.2 (Boundary of the m = 1 amplituhedron).
Given D ∈ Dn,k,1, the following are equivalent:

(i) the cell BD(W ) of Bn,k,1(W ) is contained in the interior;

(ii) D has k (nonempty) rows, and for all r ∈ [k] such that row r of D has no +’s, row
r − 1 of D is longer than row r (where row 0 has length n− k);

(iii) var(σ(D)) = k;

(iv) C ⊆ {min(E1), . . . ,min(En−k)} \ {1}, where (E1t · · · tEn−k, C) corresponds to M(D)
as in Lemma 3.5.10;
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(v) if i ∈ [n] is a white fixed point of π, then 2 ≤ i ≤ n−1 and i−1 is not an anti-excedance
of π.

We remark that the result applies even when D is in Dn,k,1 (i.e. the corresponding cell has
full dimension), in which case all of the above properties hold.

Proof. We fix a hyperplane arrangement HW as in Definition 3.6.10, so that Bn,k,1(W ) ∼=
B(HW ) by Theorem 3.6.16, and we let σ denote σ(D).

(i)⇒ (iii): Suppose that var(σ) 6= k. Then var(σ) < k, and we can construct τ ∈ {+,−}n
with τ ≥ σ and var(τ) = var(σ). For example, do the following repeatedly: take i ∈ [n] such
that component i is zero but either component i−1 or i+1 is nonzero, and make component
i nonzero and equal to either component i− 1 or i+ 1. Then τ labels an unbounded face of
HW by Proposition 3.6.14(ii), whose closure contains the face labeled by σ.

(iii) ⇒ (i): The faces of HW whose closure contains the face labeled by σ are labeled by
τ ∈ {+,−}n with τ ≥ σ. If var(σ) = k then var(τ) ≥ var(τ) ≥ var(σ) = k, whence the face
labeled by τ is bounded by Proposition 3.6.14(ii).

(ii) ⇔ (iii): Observe that var(σ) = var(σ) if and only if for all i ∈ [n] such that σi = 0,
we have that i 6= 1, n, and that σi−1, σi+1 are nonzero and of opposite sign. This condition
is equivalent to (ii) by Lemma 3.5.8.

(ii) ⇔ (iv): This follows from the bijection in Definition 3.5.12.
(ii) ⇔ (v): This follows from the bijection in Lemma 3.2.5. �

3.8 The image in An,k,1 of an arbitrary cell of Gr≥0
k,n

In this section we study the image in the m = 1 amplituhedron of an arbitrary cell of the
totally nonnegative Grassmannian. In particular, we describe the image of an arbitrary cell
in terms of strata of Bn,k,1(W ) (Lemma 3.8.2), we compute the dimension of the image of
an arbitrary cell (Proposition 3.8.4), and we characterize the cells which map injectively to
the m = 1 amplituhedron (Theorem 3.8.10). Since we have a regular cell decomposition of
the amplituhedron Bn,k,1(W ) using the m = 1 BCFW cells and their closures (which can be
indexed by the L-diagrams in Dn,k,1), it is also natural to ask how to describe the image of
an arbitrary cell of Gr≥0

k,n in terms of Dn,k,1. We answer this question (Theorem 3.8.10) for
cells which map injectively into the amplituhedron.

Let us fix a subspace W ∈ Gr>0
k+1,n for the remainder of the section. Given a L-diagram

D inside a k × (n − k) rectangle, let SD denote its corresponding positroid cell, i.e. the
cell SM(D) from Definition 3.2.1, where M(D) is the positroid corresponding to D from
Section 3.2. Recall from Remark 3.6.17 that

BD(W ) := {V ⊥ ∩W : V ∈ SD}

is the image of SD in Bn,k,1(W ). (It is equivalent to study the image Z̃(SD) in An,k,1(Z) by
Proposition 3.3.12, where Z is any (k + 1)× n matrix whose rows span W , but we will find
it more convenient to work in Bn,k,1(W ).)
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Definition 3.8.1. Let D be a L-diagram of type (k, n). Fix V ∈ SD and define

V(D) := {sign(v) : v ∈ V ⊥} ⊆ {0,+,−}n.

In terms of oriented matroids [BLVS+99], V(D) is the set of vectors of the positive orientation
of M(D), and so does not depend on our choice of V ∈ SD.

A basic observation is that BD(W ) depends precisely on the sign vectors in V(D) which
minimize var(·).

Lemma 3.8.2. For D a L-diagram of type (k, n), we have

BD(W ) =
⋃
{Bσ(W ) : σ ∈ V(D) with var(σ) = k}.

Recall that Bσ(W ) is the σ-stratum of Bn,k,1(W ) from Definition 3.5.2. While Lemma 3.8.2
is not very explicit (it requires being able to compute the sign vectors in V(D)), we will give
a more concrete description of the images of certain cells in Theorem 3.8.10.

Proof. By Corollary 3.3.18, the left-hand side is contained in the right-hand side. Con-
versely, given σ ∈ V(D) with var(σ) = k and an element span(w) ∈ Bσ(W ) (where
w ∈ W \ {0}), let us show that span(w) ∈ BD(W ). Take any V ∈ SD. Since σ ∈ V(D),
there exists v ∈ V ⊥ with sign(v) = σ. Since sign(v) = sign(w), there exist c1, . . . , cn > 0
such that (c1v1, . . . , cnvn) = w. We use the positive torus action (see Remark 3.2.2) to
define V ′ := {(x1

c1
, . . . , xn

cn
) : x ∈ V } ∈ SD, so that (c1v1, . . . , cnvn) ∈ V ′⊥ ∩ W . Since

dim(V ′⊥ ∩W ) = 1, we get span(w) = V ′⊥ ∩W ∈ BD(W ). �

Remark 3.8.3. If M is the positroid corresponding to a L-diagram D, with dual positroid
M∗, then by Lemma 3.3.3(ii) we have V(D) = {alt(sign(u)) : u ∈ U} for any U ∈ SM∗ .
Therefore by Lemma 3.3.3(i), determining which sign vectors in V(D) minimize var(·) is
equivalent to determining which sign vectors in sign(U) (for any U ∈ SM∗) maximize var(·).

Recall that Dn,k,1 is the set of L-diagrams with at most one + per row, and each +
appears at the right end of its row. We showed in Proposition 3.5.16 that for D ∈ Dn,k,1,
V(D) contains a unique sign vector σ (up to multiplication by ±1) with var(σ) = k, which
we denoted by σ(D) (Definition 3.5.7). In this case, we have BD(W ) = Bσ(D)(W ), as verified
by Lemma 3.8.2. Also note that by Theorem 3.5.17, the dimension of BD(W ) is the number
of +’s in D (see Figure 3.9). We now give a formula for dim(BD(W )) for any L-diagram D.

Proposition 3.8.4 (Dimension of the image of an arbitrary cell).
Let D be a L-diagram of type (k, n). Then the dimension of BD(W ) is the number of rows
of D which contain a +.
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This implies that a cell of Gr≥0
k,n has its dimension preserved when mapped by Z̃ to the m = 1

amplituhedron if and only if its L-diagram has at most one + in each row. Lam (Theorem
4.2 of [Lam16a]) gave an alternative criterion for general m in terms of the affine Stanley
symmetric function associated to the decorated permutation of the cell. This is related to the
notion of kinematical support (see Chapter 10 of [AHBC+16] and Definition 4.3 of [Lam16a]).

Proof. Label the steps of the southeast border of D by 1, . . . , n from northeast to southwest,
and denote by I ⊆ [n] the set of i ∈ [n] such that i labels a vertical step whose row contains
no +’s. We will show that the codimension of BD(W ) equals |I|.

It follows from Definition 3.2.12 that I is the set of coloops of M(D), i.e. I = {i ∈ [n] :
e(i) ∈ V } for any V ∈ SD, where e(i) denotes the ith unit vector. Hence I = {i ∈ [n] : σi =
0 for all σ ∈ V(D)}. Now let HW be a hyperplane arrangement from Definition 3.6.10, so
that B(HW ) is homeomorphic to Bn,k,1(W ) by Theorem 3.6.16. By Lemma 3.8.2 we have

BD(W ) ⊆
⋃
{Bσ(W ) : σ ∈ PSignn,k,1 with σi = 0 for all i ∈ I},

so the image of BD(W ) in B(HW ) under the homeomorphism Bn,k,1(W ) → B(HW ) is con-
tained in

⋂
i∈I Hi by Theorem 3.6.16. SinceHW is generic (Definition 3.6.4), the codimension

of
⋂
i∈I Hi equals |I|, so the codimension of BD(W ) is at least |I|.

Conversely, note that any X ∈ Grl,n contains a vector which changes sign at least l − 1
times: put an l × n matrix whose rows span X into reduced row echelon form, and take
the alternating sum of the rows. Now fix any V ∈ SD. The element alt(V ⊥) ∈ Grn−k,n
contains a vector alt(v) (for some v ∈ V ⊥) which changes sign at least n−k−1 times. Since
for all i ∈ [n] \ I there exists w ∈ V ⊥ with wi 6= 0, we may perturb v ∈ V ⊥ to make the
components [n] \ I all nonzero, without changing the sign of any nonzero components of v.
We obtain a vector v′ ∈ V ⊥ satisfying var(alt(v′)) ≥ n− k − 1 and v′i 6= 0 for all i ∈ [n] \ I.
By Lemma 3.3.3(i), we have var(v′) ≤ k, and since var(v′) ≥ k by Theorem 3.3.4(i), we
get var(v′) = k. Letting σ := sign(v′), we have Bσ(W ) ⊆ BD(W ) by Lemma 3.8.2. The
codimension of Bσ(W ) equals the number of zero components of σ, which is at most |I|.
Hence the codimension of BD(W ) is at most |I|. �

Next we determine which cells SD are mapped injectively to the m = 1 amplituhedron,
and explicitly describe the images of such cells.

Definition 3.8.5. Let Ln,k,1 denote the set of L-diagrams of type (k, n) which have at most
one + in each row, and which satisfy the L-condition: there is no 0 which has a + above
it in the same column and a + to the right in the same row. (However, we do not require
each + to appear at the right end of its row.) We let Ln,k,1 denote the subset of Ln,k,1 of

L-diagrams with exactly k +’s.

Note that Dn,k,1 ⊆ Ln,k,1 and Dn,k,1 ⊆ Ln,k,1. For example, we have

D2,2,1 =

{
0 +

0 +
,

0 +

+
,

+

+

}
and L2,2,1 = D2,2,1 t

{
+ 0

+ 0
,

+ 0

+

}
.
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Remark 3.8.6. It is not hard to see that Ln,k,1 (respectively, Ln,k,1) consists of the L-
diagrams we obtain from diagrams in Dn′,k,1 (respectively, Dn′,k,1) by inserting n−n′ columns
of all 0’s, as n′ ranges over all n′ ≤ n.

Definition 3.8.7. Given a L-diagram D ∈ Ln,k,1, we define a set of L-diagrams Slide(D) as
follows. If D ∈ Ln,k,1 (i.e. D has no zero rows), then we let Slide(D) be the set of L-diagrams
which can be obtained from D by doing the following for each + of D.

(1) Slide the + weakly to the right somewhere in the same row, say from box b to box b′,
such that the southeast corner of box b′ lies on the southeast border of D.

(2) Remove all boxes to the right of box b′ in the same row.

(3) If b′ 6= b and the entire lower edge of b′ lies on the southeast border of D, we can choose
to remove box b′ (or not).

More generally, if D ∈ Ln,k,1, we label the steps of the southeast border of D by 1, . . . , n,
and let I ⊆ [n] be the set of i which label a vertical step whose row contains no +’s. Let
D′ be the L-diagram obtained by deleting the rows corresponding to I from D, so D′ has
no zero rows. Then we define Slide(D) as a set of L-diagrams in bijection with Slide(D′),
where given a L-diagram in Slide(D′) we obtain the corresponding L-diagram in Slide(D) by
adding a row of all 0’s for each i ∈ I, such that its vertical step on the southeast border gets
labeled by i when we label the southeast border by 1, . . . , n. Note that Slide(D) ⊆ Dn,k,1.

Example 3.8.8. Let

D :=

0 + 0 0

0 0 0

0 + 0

0 + 0

+

∈ L5,9,1.

Then Slide(D) equals the set of L-diagrams appearing below.

0 0 +

0 0 0

0 0 +

0 +

+

0 0 +

0 0 0

0 0 +

0 0 +

+

0 0 +

0 0 0

0 0 +

0 0

+

0 0 0 +

0 0 0

0 0 +

0 +

+

0 0 0

0 0 0

0 0 +

0 +

+
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0 0 0 +

0 0 0

0 0 +

0 0 +

+

0 0 0 +

0 0 0

0 0 +

0 0

+

0 0 0

0 0 0

0 0 +

0 0 +

+

0 0 0

0 0 0

0 0 +

0 0

+
♦

Example 3.8.9. If D ∈ Dn,k,1, then each + of D is in the rightmost box of its row, so we
cannot slide it further to the right. Hence Slide(D) = {D}. ♦

Theorem 3.8.10. Let D be a L-diagram of type (k, n). Then the map SD → Bn,k,1(W ), V 7→
V ⊥ ∩W is injective on the cell SD if and only if D ∈ Ln,k,1. In this case, we have

BD(W ) =
⊔

D′∈Slide(D)

BD′(W ). (3.8.11)

We will prove Theorem 3.8.10 over the remainder of the section, divided into several
steps. First, we consider two examples.

Example 3.8.12. Let D be the L-diagram from Example 3.8.8. Then Theorem 3.8.10
asserts that SD maps injectively to the m = 1 amplituhedron, and that its image is the
disjoint union of the images of the 9 cells corresponding to the L-diagrams in Slide(D). ♦

Example 3.8.13. Theorem 3.8.10 implies that if two cells of Gr≥0
k,n map injectively to the

m = 1 amplituhedron, then their images are distinct. This can fail to hold if we do not
assume that the cells map injectively. For example, if n = 3 and k = 1, then the cells
{(1 : 0 : a) : a > 0} and {(1 : b : c) : b, c > 0} of Gr≥0

1,3 have the same image by Lemma 3.8.2,
namely B(+,−,−)(W ) t B(+,0,−)(W ) t B(+,+,−)(W ). ♦

Now we begin proving Theorem 3.8.10. Let us characterize the L-diagrams in Ln,k,1 by
a matroid-theoretic condition.

Definition 3.8.14. Let D be a L-diagram of type (k, n). The set of sign vectors V(D)
from Definition 3.8.1 is an induced subposet of {0,+,−}n from Definition 3.5.3. We call the
minimal elements of V(D)\{0} the circuits8 of D, and denote the set of circuits by C(D). A
more concrete way to think about circuits is the following. Fix V ∈ SD and an (n− k)× n
matrix A whose rows span V ⊥. For a subset I ∈

(
[n]
n−k

)
such that columns I of A form a

basis for Rn−k, let A(I) be the (n− k)× n matrix whose rows span V ⊥ which we obtain by

8In the language of oriented matroids, C(D) is the set of (signed) circuits of the oriented matroid rep-
resented by any V ∈ SD. The supports of circuits are precisely the (unsigned) circuits of the (unoriented)
matroid M(V ). What we call a circuit will always be a sign vector.



CHAPTER 3. THE m = 1 AMPLITUHEDRON 88

row reducing A so as to get an identity matrix in columns I. Then the sign vectors of rows
appearing in some matrix A(I) are precisely the circuits of D (up to sign).

We call i ∈ [n] a loop of D if the unit vector e(i) is contained in V(D), and a coloop if
σi = 0 for all σ ∈ V(D). These are precisely the loops and coloops (from Definition 3.2.9)
of the positroid M(D) from Definition 3.2.12. Alternatively, loops label the columns of D
which contain only 0’s, and coloops label the rows which contain only 0’s.

Lemma 3.8.15. Let D be a L-diagram of type (k, n). Then D ∈ Ln,k,1 if and only if there
do not exist σ ∈ C(D) and a < b < c in [n] such that

(i) σa, σc 6= 0;

(ii) σb = 0; and

(iii) b is neither a loop nor a coloop of D.

Proof. Let D′ be the L-diagram contained in a k′ × (n′ − k′) rectangle obtained from
D by deleting all rows and columns which contain only 0’s. Equivalently, the positroid
M(D′) is obtained from M(D) by restricting the ground set [n] (as in Definition 3.2.17) to
elements which are neither loops nor coloops. Then we obtain C(D′) from C(D) by deleting
the circuits ±e(i) corresponding to loops i, restricting all circuits from [n] to {i ∈ [n] :
i is neither a loop nor a coloop of D}, and multiplying certain components by −1. Note
that D′ has no loops or coloops, and D ∈ Ln,k,1 if and only if D′ ∈ Dn′,k′,1. Hence it suffices
to prove that D′ ∈ Dn′,k′,1 if and only if there do not exist σ ∈ C(D′) and a < b < c in [n]
such that σa, σc 6= 0 and σb = 0.

(⇒): Suppose that D′ ∈ Dn′,k′,1′ . Let us fix V ′ ∈ SD′ , so that the representable matroid
M(V ′⊥) (defined in Example 3.2.10) equals M(D′)∗. By Lemma 3.5.10, M(D′)∗ is the direct
sum of uniform matroids of rank 1 whose ground sets are all intervals. That is, we can write
V ′⊥ as the row span of an (n′ − k′)× n′ matrix of the form

∗ · · · ∗ 0 · · · 0 0 · · · 0 · · ·
0 · · · 0 ∗ · · · ∗ 0 · · · 0 · · ·
0 · · · 0 0 · · · 0 ∗ · · · ∗ · · ·

...
...

...
. . .

 , (3.8.16)

where all the ∗’s are nonzero. The sign vectors of these rows, and their negations, are
precisely the circuits of D′. We see that the circuits of D′ satisfy the required condition.

(⇐): Suppose that there do not exist σ ∈ C(D′) and a < b < c in [n] such that σa, σc 6= 0
and σb = 0. Let us again take some V ′ ∈ SD′ , and put an (n′ − k′)× n′ matrix whose rows
span V ′⊥ into reduced row echelon form. Then the sign vector of each row of this matrix is
a circuit of D′, and so the nonzero entries in each row form a consecutive block. It follows
that this matrix is of the form (3.8.16), where all the ∗’s are nonzero. (The matrix has no
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zero columns since D′ has no coloops.) Hence the matroid M(D′)∗ = M(V ′⊥) is the direct
sum of uniform matroids of rank 1 whose ground sets are all intervals, whence D′ ∈ Dn′,k′,1
by Lemma 3.5.10. �

Lemma 3.8.17. Let D be a L-diagram of type (k, n). Suppose that there exist a circuit
σ ∈ C(D) and a < b < c in [n] such that

(i) σa, σc 6= 0;

(ii) σb = 0; and

(iii) b is not a coloop of D.

Then there exists τ ∈ V(D) with var(τ) = k and τb = 0.

We will use such a sign vector τ in Corollary 3.8.18 to provide a certificate of non-injectivity,
if D /∈ Ln,k,1. In proving Corollary 3.8.18, we will want to require that b (satisfying τb = 0)
is not a loop of D, as in Lemma 3.8.15. But in order to prove just Lemma 3.8.17, we do not
need to assume that b is not a loop.

Proof. Fix V ∈ SD and an (n − k) × n matrix A whose rows span U := alt(V ⊥). By
Lemma 3.3.3(i), it suffices to show that there exists w ∈ U with var(w) = n − k − 1 and
wb = 0. We will use the fact that U ∈ Gr≥0

n−k,n, by Lemma 3.3.3(ii). The idea is to take
u ∈ U with sign vector σ′ := alt(σ), and perturb it so that it has n − k − 1 sign changes.
The presence of both a and c will allow us to get a ‘free’ sign change without ‘using’ b.

Let J := {j ∈ [n] : σj = 0}. The fact that σ is a circuit implies that columns J of A
do not span Rn−k, but columns J ∪ {a} do span Rn−k. Also, since b is not a coloop of D,
column b of A is nonzero. Hence we can extend {a, b} to I ∈

(
J∪{a}
n−k

)
such that columns I of

A form a basis of Rn−k. Let A(I) denote the (n− k)× n matrix whose rows span U which
we obtain by row reducing A so as to get an identity matrix in columns I. We denote by
v(i) the row of A(I) whose pivot column is i, i.e. v

(i)
i = 1 and v

(i)
j = 0 for all j ∈ I \ {i}.

Claim. σ′c = (−1)|I∩(a,c)|σ′a, where (a, c) denotes the open interval between a and c.

Proof of Claim. Write I = {i1 < · · · < in−k}, so that a = ir for some r ∈ [n − k]. Since
uis = 0 for all s ∈ [n− k] \ {r}, we can use v(is) to perturb u, without changing the sign of
uc, so that component is gets the sign{

(−1)s−rσ′a, if is < c

(−1)s−r+1σ′a, if is > c
.

Since the resulting vector u′ lies in U ∈ Gr≥0
n−k,n, we get var(u′) ≤ n − k − 1 by Theo-

rem 3.3.4(i). Hence u′ does not alternate in sign on I ∪{c}, and so σ′c 6= −(−1)|I∩(a,c)|σ′a. �
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We obtain our desired vector w ∈ U as follows. Write I \ {b} = {i′1 < · · · < i′n−k−1}, so
that a = i′r for some r ∈ [n − k]. Then for s ∈ [n − k − 1] \ {r}, we use v(i′s) to perturb u,
without changing the sign of uc, so that component i′s gets sign{

(−1)s−rσ′a, if i′s < c

(−1)s−r+1σ′a, if i′s > c
.

The resulting vector w alternates in sign on (I \{b})∪{c} by the claim, so var(w) ≥ n−k−1.
We have var(w) ≤ n− k − 1 by Theorem 3.3.4(i), and wb = 0 by construction. �

Corollary 3.8.18. Let D be a L-diagram of type (k, n) which is not in Ln,k,1. Then the map
SD → Bn,k,1(W ), V 7→ V ⊥ ∩W is not injective.

Proof. Fix V ∈ SD. By Lemma 3.8.15 and Lemma 3.8.17, there exist w ∈ V ⊥ and b ∈ [n]
such that var(w) = k, wb = 0, and b is neither a loop nor a coloop of D. The strategy of the
proof is to use the positive torus action (see Remark 3.2.2) so as to get from w an element of
Bn,k,1(W ), and then use the positive torus action again in component b to get many elements
of SD which map to our chosen element of Bn,k,1(W ).

Let σ := sign(w), so that by Lemma 3.3.7(i) there exists w′ ∈ W with sign(w′) = σ.
Letting w = (w1, . . . , wn), we can therefore write w′ = (c1w1, . . . , cnwn) for some c1, . . . , cn >
0. Letting V ′ := {(v1

c1
, . . . , vn

cn
) : v ∈ V } ∈ SD, we have w′ ∈ V ′⊥. Then for t > 0, we define

V ′t := {(v1, . . . , vb−1, tvb, vb+1, . . . , vn) : v ∈ V ′} ∈ SD.

Claim. The V ′t (t > 0) are all distinct.

Proof of Claim. Let M(D) denote the matroid from Definition 3.2.12. Since b is not a loop

or a coloop of D, there exist I, J ∈M(D) with b ∈ I and b /∈ J . Then
∆I(V ′t )

∆J (V ′t )
· ∆J (V ′)

∆I(V ′)
= t for

t > 0. �

Since w′ ∈ V ′⊥t ∩W and dim(V ′⊥t ∩W ) = 1, the elements V ′t (t > 0) all map to the line
spanned by w′ in Bn,k,1(W ). �

We now show that if D ∈ Ln,k,1, then SD maps injectively to the m = 1 amplituhedron,
and we also determine its image. We need to understand the sign vectors V(D) for such D.
This can be done, thanks to the fact that when we remove enough loops (columns containing
only 0’s) from D, we obtain an element of Dn,k,1 (see Remark 3.8.6). We first consider the
case that D is in Ln,k,1 (i.e. D has no coloops) and its +’s lie in a single column.

Lemma 3.8.19. Suppose that D ∈ Ln,k,1 with k ≥ 1 such that the +’s of D lie in a
single column. Then the map SD → Bn,k,1(W ), V 7→ V ⊥ ∩ W is injective on SD, and
BD(W ) =

⊔
D′∈Slide(D) BD′(W ).
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Proof. Let L ∈
(

[n]
n−k−1

)
denote the set of loops of D (from Definition 3.8.14). That is, if

we label the steps of the southeast border of D from 1 to n, then L is the set of labels of
the horizontal steps, excluding the label corresponding to the column of +’s. Then M(D) is
a matroid of rank k, which is uniform when restricted to [n] \ L and has set of loops L. It
follows from Lemma 3.3.7(ii) that σ ∈ V(D) if and only if

σ|[n]\L ∈ {0, (+,−,+,−, · · · ), (−,+,−,+, · · · )}.

(The sign of σi for i ∈ L is arbitrary.)
To compute BD(W ), we use Lemma 3.8.2. We need to identify those σ ∈ V(D) satisfying

var(σ) = k. Let us first consider the example D = + 0 0 , so n = 4, k = 1, L = {2, 3}.
We have

V(D) = {(+, ∗, ∗,−)} ∪ {(−, ∗, ∗,+)} ∪ {(0, ∗, ∗, 0)},

where each ∗ can be 0, +, or −. Since var(0, ∗, ∗, 0) ≥ 2, the sign vectors σ ∈ V(D) with
var(σ) = 1 (modulo multiplication by ±1) are

(+,+,+,−), (+,+,−,−), (+,−,−,−), (+,+, 0,−), (+, 0,−,−),

that is, a sequence of +’s followed by −’s, possibly with one 0 in between. The corresponding
L-diagrams (from Definition 3.5.7) are

+ , 0 + , 0 0 + , 0 , 0 0 ,

respectively.
Now we describe what happens in general. Write [n] \ L = {r1 < · · · < rk+1}. Given

σ ∈ {0,+,−}n, we have σ ∈ V(D) and var(σ) = k if and only if

• σ alternates in sign on [n] \ L;

• σi = σr1 for all i < r1;

• σi = σrk+1
for all i > rk+1; and

• for all j ∈ [k], there exists an integer sj ∈ [rj, rj+1 − 1] such that σi = σrj for all
i ∈ [rj, sj], σi = σrj+1

for all i ∈ [sj + 2, rj+1], and if sj + 1 6= rj+1 then σsj+1 equals
either 0 or σrj+1

.

We obtain the L-diagram Ω−1
DS(σ) (see Definition 3.5.7) by a slide as in Definition 3.8.7, as

follows. In step (1), we slide the + in the jth row of D so that it is sj − rj boxes to the
left of the rightmost box in the row. In step (2), we remove the boxes to the right of this
+. In step (3), we remove the box b′ containing this + if and only if σsj+1 = 0. (Note
that the case when b′ 6= b and the bottom edge of b′ lies on the southeast border of D
corresponds to sj + 1 6= rj+1.) Thus Ω−1

DS restricted to {σ ∈ V(D) : var(σ) = k} is a bijection
{σ ∈ V(D) : var(σ) = k} → Slide(D), with inverse ΩDS. Then Lemma 3.8.2 implies (3.8.11).
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To see that the map SD → Bn,k,1(W ) is injective, suppose that w ∈ W with sign(w) ∈
V(D) and var(w) = k. We have just observed that w is nonzero when restricted to [n] \ L,
so the vectors w and e(i) for i ∈ L are linearly independent. Their span is an element of
Grn−k,n, whose orthogonal complement is the unique V ∈ SD with V ⊥ ∩W = span(w). �

Proof (of Theorem 3.8.10). If D /∈ Ln,k,1, then the map SD → Bn,k,1(W ) is not injective by
Corollary 3.8.18. Now suppose that D ∈ Ln,k,1. We must show that the map SD → Bn,k,1(W )
is injective, and that its image equals

⊔
D′∈Slide(D) BD′(W ). We first show how to reduce to the

case that D ∈ Ln,k,1, i.e. D has no coloops (see Definition 3.8.14). Let us suppose that i ∈ [n]
is a coloop of D, and explain what happens when we delete i. In terms of L-diagrams, i labels
a row of D which contains only 0’s, and deleting this row gives a L-diagram D′ indexing a
cell of Gr≥0

k−1,n−1. In terms of cells, we have the map

{V ⊥ : V ∈ SD} → {V ′⊥ : V ′ ∈ SD′},
{(v1, . . . , vi−1, 0, vi+1, . . . , vn)} 7→ {(v1, . . . , vi−1,−vi+1, . . . ,−vn)}.

In terms of the subspace W ∈ Gr>0
k+1,n, we map it to

W ′ := {(w1, . . . , wi−1,−wi+1, . . . ,−wn) : w ∈ W with wi = 0},

where W ′ ∈ Gr>0
k,n−1 by Theorem 3.3.4(ii). Note that the map V 7→ V ⊥ ∩ W is injective

on SD if and only if the map V ′ 7→ V ′⊥ ∩W ′ is injective on SD′ . We also have a bijection
Slide(D) → Slide(D′) given by deleting the row labeled by i. By Lemma 3.8.2, this shows
that the result for D′ implies the result for D. Hence we may assume that D has no coloops,
i.e. D ∈ Ln,k,1.

In this case, we can decompose D as follows: there exist L-diagrams D1, . . . , Dl, where
each Dj has no coloops and all its +’s lie in a single column, such that we get D by gluing
together D1, . . . , Dl from northeast to southwest (so that the southwest corner of Dj and the
northeast corner of Dj+1 coincide, for all j ∈ [l−1]), and filling the space above and to the left

of the resulting diagram with 0’s. For example, if D =

0 0 +

0 0 +

+

, then D1 =
0 +

0 +
and

D2 = + . We have M(D) = M(D1)⊕· · ·⊕M(Dl), so any V ∈ SD can be written uniquely
as V1⊕ · · · ⊕Vl, where Vj ∈ SDj . Now for j ∈ [l], let Ej be the ground set of M(Dj), and let
Uj denote the orthogonal complement of Vj in REj , so that V ⊥ = U1 ⊕ · · · ⊕ Ul. It follows
that the vectors w ∈ V ⊥ satisfying var(w) = k can be written precisely as w = u1 + · · ·+ ul,
where uj ∈ Uj with var(uj) = dim(Vj) for all j ∈ [l], and the signs of the uj’s are such that
we never get an extra sign change from uj to uj+1 for j ∈ [l − 1]. Thus it suffices to verify
injectivity and (3.8.11) locally for each Dj, which we can do thanks to Lemma 3.8.19. �
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3.9 Relaxing to Grassmann polytopes

In this section we discuss what happens when we relax the condition that W ∈ Grk+m,n is
totally positive, in the sense of Lam’s Grassmann polytopes [Lam16b].

Definition 3.9.1 (Definition 15.1 of [Lam16b]). Let Z be a real r × n matrix with row
span W ∈ Grk+m,n, where k + m ≤ r (we allow Z to not have full row rank). Suppose
that W contains a totally positive k-dimensional subspace. Then by Proposition 15.2 of
[Lam16b], the map Z̃ : Gr≥0

k,n → Grk,r is well defined, i.e. dim(Z(V )) = k for all V ∈ Gr≥0
k,n

(see Remark 3.3.19). We call the image Z̃(SM) ⊆ Grk,r of the closure of a cell SM of Gr≥0
k,n

a Grassmann polytope. When SM = Gr≥0
k,n, i.e. M is the uniform matroid of rank k, we call

the image Z̃(Gr≥0
k,n) a full Grassmann polytope.

Analogously, given a cell SM of Gr≥0
k,n, let us define a Grassmann arrangement as

{V ⊥ ∩W : V ∈ SM} ⊆ Grm(W ).

We call this a full Grassmann arrangement in the case that SM = Gr≥0
k,n. A Grassmann

arrangement is well defined, and homeomorphic to the corresponding Grassmann polytope,
by the same arguments which appear in Section 3.3.

The amplituhedron An,k,1(Z) is a full Grassmann polytope (see Lemma 3.6.9). In the case
k = 1, Grassmann polytopes are precisely polytopes in the projective space Gr1,r = Pr−1.
Therefore, Grassmann polytopes are a generalization of polytopes into Grassmannians.

Lemma 3.3.15 generalizes to any full Grassmann arrangement; the proof is the same. In
particular, in the case that m = 1, the analogue of Corollary 3.3.18 holds.

Proposition 3.9.2. For m = 1, the full Grassmann arrangement can be described as follows:

{V ⊥ ∩W : V ∈ Gr≥0
k,n} = {w ∈ P(W ) : var(w) ≥ k} ⊆ P(W ).

As in Section 3.6, if m = 1 we can define a hyperplane arrangementHW depending on W , and
show that the full Grassmann arrangement above is homeomorphic to B(HW ). In slightly
more detail, we take a k-dimensional totally positive subspace W ′ of W as provided by Defi-
nition 3.9.1, and let w(1), . . . , w(k) be its basis. We extend this to a basis w(0), w(1), . . . , w(k) of
W , and define HW as in Definition 3.6.10 (we ignore the requirement that w(0) is positively
oriented). Then Lemma 3.6.12 holds for HW , with the same proof. This implies (as in the
first paragraph of the proof of Lemma 3.6.13) that the face labels of B(HW ) are precisely
the sign vectors σ ∈ {0,+,−}n such that var(σ) ≥ k and ψ−1

HW (σ) 6= ∅. We deduce that
ΨHW restricted to B(HW ) is a homeomorphism onto the full Grassmann arrangement of W ,
as claimed. If all Plücker coordinates of W are nonzero, this implies that the full Grass-
mann arrangement of W (for m = 1) is homeomorphic to a ball, as in Corollary 3.6.18. We
remark that Lam has conjectured that every Grassmann polytope is contractible (p. 112 of
[Lam16b]).
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We observe that as W varies, we do not recover all bounded complexes of hyperplane
arrangements in this way, since the condition that W ∈ Grk+1,n contains a subspace in Gr>0

k,n

is very restrictive. Indeed, if σ labels a face of B(HW ) for such W , then var(σ) ≥ k.

Remark 3.9.3. As in Remark 3.3.19, the map Z̃ : Gr≥0
k,n → Grk,r is well defined if and only

if var(v) ≥ k for all nonzero v ∈ ker(Z) (see Theorem 2.4.2). Hence we could have defined
Grassmann arrangements using this (possibly) more general class of matrices Z. However,
in the construction of HW above for m = 1, it was essential that W (the row span of Z)
should have a totally positive k-dimensional subspace. Indeed, we can see from the proof of
Lemma 3.6.12 that classifying the labels of bounded and unbounded faces of HW uses the
fact that span(w(1), . . . , w(k)) is totally positive.

Recall from Remark 3.3.19 that it is unknown whether there exists a matrix Z such that
Z̃ : Gr≥0

k,n → Grk,r is well defined, but the row span of Z does not contain a totally positive k-

dimensional subspace. The construction of HW above gives further motivation for resolving
this problem, which is equivalent to Problem 3.3.14(ii).
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Chapter 4

Cyclic symmetry, moment curves, and
quantum cohomology

I thank Gabriel Frieden, Michael Gekhtman, Rachel Karpman, Lauren Williams, Alexander
Postnikov, Konstanze Rietsch, and Franco Vargas Pallete for enlightening conversations
which influenced the work in this chapter.

4.1 Introduction

In this chapter we will work with the complex Grassmannian Grk,n(C), which is the set of
k-dimensional subspaces of Cn. We may view the totally nonnegative Grassmannian Gr≥0

k,n

as the subset of Grk,n(C) where all Plücker coordinates are real and nonnegative.
One of the remarkable properties of the totally nonnegative Grassmannian is its cyclic

symmetry. For fixed k and n, we define the (left) cyclic shift map σ ∈ GLn(C) by

σ(v) := (v2, v3, . . . , vn, (−1)k−1v1) for v = (v1, . . . , vn) ∈ Cn.
Given V ∈ Grk,n(C), we denote by σ(V ) the subspace {σ(v) : v ∈ V } ∈ Grk,n(C). In terms
of Plücker coordinates, σ acts on Grk,n(C) by rotating the index set {1, . . . , n}. Hence σ is
an automorphism of Grk,n(C) of order n, which restricts to an automorphism of Gr≥0

k,n. The
main result of this chapter is the following.

Theorem 4.1.1. The cyclic shift map σ on Grk,n(C) has exactly
(
n
k

)
fixed points, each of

the form span{(1, zj, . . . , zn−1
j ) : 1 ≤ j ≤ k}, where z1, . . . , zk ∈ C are some k distinct nth

roots of (−1)k−1. Precisely one of these fixed points is totally nonnegative, corresponding to
the k roots z1, . . . , zk closest to 1 on the unit circle.

Let Vk,n ∈ Gr≥0
k,n denote the unique totally nonnegative fixed point of σ. There is an

elegant way to describe Vk,n in terms of certain real curves. Define fk : R→ Rk by

fk(θ) :=

{(
1, cos(θ), sin(θ), cos(2θ), sin(2θ), . . . , cos

(
k−1

2
θ
)
, sin

(
k−1

2
θ
))
, if k is odd(

cos
(

1
2
θ
)
, sin

(
1
2
θ
)
, cos

(
3
2
θ
)
, sin

(
3
2
θ
)
, . . . , cos

(
k−1

2
θ
)
, sin

(
k−1

2
θ
))
, if k is even

.
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Note that fk(θ + 2π) = (−1)k−1fk(θ). For odd k, the curve in Rk−1 formed from fk by
deleting the first component is the trigonometric moment curve, and for even k, the curve
fk is the symmetric moment curve. These curves have a rich history, which we discuss in
Remark 4.1.4. The fixed point Vk,n is represented by any k × n matrix whose columns are
fk(θ1), . . . , fk(θn), such that the points θ1 < θ2 < · · · < θn < θ1 + 2π are equally spaced on
the real line, i.e. θj+1−θj = 2π

n
for 1 ≤ j ≤ n−1. We also have the following explicit formula

for its Plücker coordinates:

∆I(Vk,n) =
∏

1≤r<s≤k

sin
(
is−ir
n
π
)

for all k-subsets I = {i1 < · · · < ik} ⊆ {1, . . . , n}. (4.1.2)

Example 4.1.3. Let k := 2, n := 4. Then fk is the unit circle in the plane, and the fixed

point V2,4 is represented by the matrix

[
1 1√

2
0 − 1√

2

0 1√
2

1 1√
2

]
, whose columns correspond to four

consecutive points on the regular unit octagon:

(1, 0)

( 1√
2
, 1√

2
)

(0, 1)

(− 1√
2
, 1√

2
)

.

Alternatively, we can represent V2,4 by the matrix

[
1 ζ ζ2 ζ3

1 ζ−1 ζ−2 ζ−3

]
, where ζ := e

iπ
4 and

ζ−1 are the two fourth roots of −1 closest to 1 on the unit circle. ♦

We observe that by Theorem 4.1.1, we can recover the curve fk (up to an automorphism
of Rk) from the cyclic symmetry of Gr≥0

k,n, by taking a sort of limit of Vk,n as n → ∞. We
prove Theorem 4.1.1, and the properties of Vk,n stated above, in Section 4.2. We also discuss
a connection to arrangements of equal minors in the totally nonnegative Grassmannian (see
Section 4.2).

Remarkably, the
(
n
k

)
fixed points of σ on Grk,n(C) also arise in quantum cohomology.

The quantum cohomology ring of Grk,n(C) is a deformation of the cohomology ring by an
indeterminate q. In unpublished work, Peterson discovered that this ring is isomorphic to
the coordinate ring of a certain subvariety Yk,n of GLn(C). This was proved by Rietsch
[Rie01]. Under her isomorphism, the indeterminate q corresponds to a map Yk,n → C, and
the specialization at q = 1 of the quantum cohomology ring corresponds to the ring of C-
valued functions on the fiber in Yk,n over q = 1. This fiber has size

(
n
k

)
, and it turns out that
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there is a natural embedding of Yk,n into the (affine cone over) Grk,n(C) which identifies the
fiber with the fixed points of σ. Moreover, we can rewrite a formula of Bertram [Ber97] for
Gromov-Witten invariants of Schubert varieties in terms of the Plücker coordinates of the
fixed points of σ. We do this in Section 4.3, and also explain how the results of Section 4.2
give an alternative proof of an explicit description of Rietsch of the totally nonnegative part
of Yk,n, which can also be stated in terms of Schur polynomials evaluated at roots of unity.

In Section 4.4, we construct many fixed points of the twist map on Grk,n(C), which
appears in the study of the cluster-algebraic structure of the Grassmannian [MS16, MS].
The element Vk,n is one of the fixed points we identify, and the unique totally nonnegative
one. It is an open problem to classify all fixed points of the twist map, and to determine
whether Vk,n is the only totally positive fixed point.

Remark 4.1.4. The curves fk have an interesting history. For odd k, the curve in Rk−1

formed from fk by deleting the first component is the trigonometric moment curve. (Perhaps
fk should be regarded as a curve in Pk−1, however, for our purposes we need fk to give
vectors in Rk.) Carathéodory [Car11] used such curves, along with the moment curves
t 7→ (t, t2, . . . , tk−1), to define cyclic polytopes of even dimension. These polytopes have
many faces, in the sense of the upper bound theorem of McMullen [McM70] and Stanley
[Sta75]. For even k, the curve fk is the symmetric moment curve, first studied by Nudel’man
[Nud75] in order to resolve an isoperimetric problem. Before we discuss his result, we mention
that Barvinok and Novik [BN08] used symmetric moment curves to define bicyclic polytopes
of even dimension, which are centrally symmetric analogues of cyclic polytopes. Together
with Lee [BLN13], they showed that bicyclic polytopes have a record number of faces among
centrally symmetric polytopes.

Now we describe the isoperimetric problem to which we alluded earlier. A curve g : S →
Rk defined on an interval S ⊆ R is called convex on Rk if the determinants

det

([
1 1 · · · 1

g(t0) g(t1) · · · g(tk)

])
(t0 < t1 < · · · < tk in S)

are either all nonnegative or all nonpositive, and not all zero.1 Let L denote the length of
such a curve, and V the volume of its convex hull. The isoperimetric problem for convex
curves, first considered by Schoenberg [Sch54], is to find an upper bound for V in terms of
L (given a fixed k). There are three cases, depending on the parity of k and whether the
curve is closed or not. We present them in chronological order of their resolution, and give
an extremal curve (i.e. one which achieves equality in the isoperimetric inequality) in each
case.

1If we also require all the determinants to be nonzero, then we obtain the definition of a strictly convex
curve. Such curves have been widely studied under the various names curves of order k [Jue15], monotone
curves [Hje14], strictly comonotone curves [Mot60], alternating curves [BLVS+99], and hyperconvex curves
[Lab06].
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case reference
isoperimetric
inequality

extremal curve, for θ ∈ [0, 2π]

k even;
closed curves

[Sch54] V ≤ Lk

(πk)
k
2 k!(k2 )!

(
cos(θ), sin(θ), cos(2θ)2 , sin(2θ)2 , . . . ,

cos( k2 θ)
k
2

,
sin( k2 θ)

k
2

)

k odd
Theorem III.8.6
of [KN73]

V ≤ Lk

π
k−1
2 k

k
2 k!(k−12 )!

(
θ√
2
, cos(θ), sin(θ), cos(2θ)2 , sin(2θ)2 , . . . ,

cos( k−1
2 θ)

k−1
2

,
sin( k−1

2 θ)
k−1
2

)

k even [Nud75] V ≤ Lk

(πk2 )
k
2 k!(k − 1)!!

(
cos
(
1
2θ
)
, sin

(
1
2θ
)
,
cos( 3

2 θ)

3 ,
sin( 3

2 θ)

3 , . . . ,
cos( k−1

2 θ)

k−1 ,
sin( k−1

2 θ)

k−1

)

Note the similarity of these curves to fk−1 or fk. There is no fourth case, because there are
no closed curves convex on Rk if k is odd. We mention that in the first two cases above,
the extremal curve is unique (modulo affine isometries of Rk). It is not known if uniqueness
holds in the third case as well.

There is a discrete version of this isoperimetric problem, where we fix an integer n > k
and consider only those curves convex on Rk which are piecewise linear with n segments,
i.e. a polygonal path with n + 1 vertices. The convex hull of such a curve is precisely an
alternating polytope [Stu88], a special kind of cyclic polytope.2 Hence we may interpret
this formulation as an isoperimetric problem for alternating polytopes. This problem was
proposed by Krein and Nudel’man (see the discussion after Theorem III.8.6 of [KN73]) and
solved by Nudel’man (Theorems III, II, and IV of [Nud75]). We present his results for the
three cases in the same order as above.

case
isoperimetric
inequality

vertices of extremal piecewise linear curve, for
θ = 0, 2πn ,

4π
n , . . . , 2π

k even,
n segments;
closed curves

V ≤ Lk

k
k
2 k!
∏ k

2
j=1 n tan( jπn )

(
cos(θ)
sin(πn ) ,

sin(θ)
sin(πn ) ,

cos(2θ)

sin( 2π
n )
, sin(2θ)

sin( 2π
n )
, . . . ,

cos( k2 θ)

sin( kπ2n )
,
sin( k2 θ)

sin( kπ2n )

)
k odd,
n segments

V ≤ Lk

k
k
2 k!
∏ k−1

2
j=1 n tan( jπn )

(
nθ√
2π
, cos(θ)
sin(πn ) ,

sin(θ)
sin(πn ) ,

cos(2θ)

sin( 2π
n )
, sin(2θ)

sin( 2π
n )
, . . . ,

cos( k2 θ)

sin( kπ2n )
,
sin( k2 θ)

sin( kπ2n )

)
k even,
n segments

V ≤ Lk

k
k
2 k!
∏ k

2
j=1 n tan( (2j−1)π

2n )

(
cos( 1

2 θ)

sin( π2n ) ,
sin( 1

2 θ)

sin( π2n ) ,
cos( 3

2 θ)

sin( 3π
2n )

,
sin( 3

2 θ)

sin( 3π
2n )

, . . . ,
cos( k−1

2 θ)

sin(
(k−1)π

2n )
,

sin( k−1
2 θ)

sin(
(k−1)π

2n )

)

In all three cases, the extremal curve is unique. By taking n → ∞, we recover the isoperi-
metric inequalities in the continuous case, and in fact this was how Nudel’man resolved the
problem for even k. However, when we pass to the limit we are not able to conclude that

2A cyclic polytope of dimension k is, by definition, one whose face lattice is the same as a polytope whose
vertices lie on the moment curve t 7→ (t, t2, . . . , tk) for t > 0. An alternating polytope is one whose every
subpolytope (the convex hull of a subset of its vertices) is cyclic. The description stated above in terms of
convex curves is due to Sturmfels [Stu88]. It follows from a result of Shemer (Theorem 2.12 of [She82]) that
every cyclic polytope of even dimension is alternating. For an example of a cyclic polytope (necessarily of
odd dimension) which is not alternating, see pp. 396-397 of [BLVS+99].
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the resulting extremal curve is unique. We observe that Nudel’man’s constructions in the
first and third cases above are very similar to the definitions of Vk+1,n and Vk,n, respectively.
It is difficult to make a precise statement in this vein, since a real matrix representing Vk,n
is unique modulo linear automorphisms of Rk, while the extremal curves above are unique
modulo affine isometries of Rk.

We remark that before Nudel’man’s work [Nud75], it was not known what the extremal
curve for even k would look like. (Krein and Nudel’man [KN73] speculated that it might be
half of the extremal curve in the closed case, which is true for k = 2 but false in general.)
Similarly, before Barvinok and Novik’s work [BN08], it was not known that the symmetric
moment curve would give the ‘correct’ centrally symmetric analogue of the cyclic polytope.
We view Theorem 4.1.1, and indeed Lemma 4.2.1, as further confirmation that trigonometric
moment curves and symmetric moment curves belong in the same family.

4.2 Fixed points of the cyclic shift map

In this section we identify all fixed points of the cyclic shift map σ on Grk,n(C). We begin
by establishing the positivity properties of Vk,n ∈ Grk,n(C), which we will show is the unique
totally nonnegative fixed point. We define Vk,n as the element of Grk,n(C) represented by
the k × n matrix [fk(θ + 2π

n
) | fk(θ + 4π

n
) | · · · | fk(θ + 2π)] for any θ ∈ R. The fact that Vk,n

does not depend on θ follows from the formula (4.1.2) for its Plücker coordinates, which in
turn is a consequence of the following lemma.

Lemma 4.2.1. [Sco79] For k ≥ 0 and θ1, . . . , θk ∈ R, we have

det(fk(θ1), . . . , fk(θk)) = 2b(k−1)2/2c
∏

1≤r<s≤k

sin
(
θs−θr

2

)
.

Scott [Sco79] stated this result for odd k, and outlined a proof, which also handles the case
of even k. It is short, so we give it here. We use r and s to index the rows and columns of a
matrix, rather than i and j, since we reserve i to denote

√
−1.

Proof. Define gk : R→ Rk by gk(θ) := (e−
k−1
2
iθ, e−

k−3
2
iθ, . . . , e

k−3
2
iθ, e

k−1
2
iθ). We regard fk(θ)

and gk(θ) as column vectors. Using[
1 −i
1 i

] [
cos(θ)
sin(θ)

]
=

[
e−iθ

eiθ

]
, (4.2.2)

we can get from the matrix [fk(θ1) | · · · | fk(θk)] to [gk(θ1) | · · · | gk(θk)], introducing a factor
of ±(2i)−bk/2c when we take determinants. (The sign ± is − if k and k−1

2
are both odd, and

+ otherwise.) When we multiply each column of [gk(θ1) | · · · | gk(θk)] by a constant so that
its first entry is 1, we obtain a Vandermonde matrix, whose determinant is well known:

det([gk(θ1) | · · · | gk(θk)]) =
k∏
s=1

e−
k−1
2
iθs · det

(
(eiθs)r−1

)
1≤r,s≤k
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=
k∏
s=1

e−
k−1
2
iθs

∏
1≤r<s≤k

eiθs − eiθr =
∏

1≤r<s≤k

e−
iθr
2 e−

iθs
2 (eiθs − eiθr) =

∏
1≤r<s≤k

2i sin
(
θs−θr

2

)
.

We can check that ±(2i)−bk/2c(2i)(
k
2) = 2b(k−1)2/2c. �

We will use the following lemma to show that among the fixed points we identify, only
Vk,n can be totally nonnegative. First we make a useful definition.

Definition 4.2.3. We say that V ∈ Grk,n(C) is real if all (ratios of) Plücker coordinates of
V are real, or equivalently if V is closed under complex conjugation.

Lemma 4.2.4. Suppose that V ∈ Gr≥0
k,n with n > k ≥ 1, and (1, z, . . . , zn−1) ∈ V for some

z ∈ C×. Then |arg(z)| ≤ k−1
n−1

π, where arg : C× → (−π, π] denotes the argument function.

We remark that the upper bound k−1
n−1

π is optimal: given any z ∈ C× with |arg(z)| ≤
k−1
n−1

π, there exists V ∈ Gr≥0
k,n with (1, z, . . . , zn−1) ∈ V . To see this, first rescale z by an

element of R>0 so that |z| = 1, whence the general case follows using the torus action (see
Remark 4.4.3). If z = 1, we let V be represented by the k × n matrix (sr−1)1≤r≤k,1≤s≤n.
Otherwise, given ρ > 0, let V be represented by the k × n matrix with columns fk(θ), for
θ = 0, ρ, 2ρ, . . . , (n − 1)ρ. If ρ ≤ 2π

n−1
, then V ∈ Gr≥0

k,n by Lemma 4.2.1. On the other hand,

if ρ = 2|arg(z)|
k−1

, then (1, z, . . . , zn−1) ∈ V by (4.2.2). (Note that if ρ = 2π
n

, then V = Vk,n.)

Proof (of Lemma 4.2.4). Since V is real, defining θ := |arg(z)| and letting ε ∈ {1,−1} be
the sign of arg(z), we have

(cos(φ), |z| cos(θ + φ), . . . , |z|n−1 cos((n− 1)θ + φ))

=
eεiφ(1, z, . . . , zn−1) + eεiφ(1, z, . . . , zn−1)

2
∈ V

for all φ ∈ R. Note that for φ < π
2

sufficiently close to π
2
, the vector (cos(φ), |z| cos(θ +

φ), . . . , |z|n−1 cos((n− 1)θ+ φ)) changes sign at least (n−1)θ
π

times, whence (n−1)θ
π
≤ k− 1 by

Theorem 3.3.4(i). �

We introduce some notation in order to describe the fixed points of σ.

Definition 4.2.5. Given a k-subset S ⊆ C, define VS ∈ Grk,n(C) as the subspace with basis
{(1, z, . . . , zn−1) : z ∈ S}, which is well defined by Vandermonde’s determinantal identity.

We also denote the k-subset
{
e−i

(k−1)π
n , e−i

(k−3)π
n , . . . , ei

(k−3)π
n , ei

(k−1)π
n

}
of nth roots of (−1)k−1

closest to 1 on the unit circle by Sk,n. Note that by (4.2.2), we have Vk,n = VSk,n .
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Theorem 4.2.6. The map S 7→ VS is a bijection from the set of k-subsets of nth roots of
(−1)k−1 to the set of fixed points of σ. Therefore σ has exactly

(
n
k

)
fixed points. The unique

totally nonnegative fixed point is Vk,n, corresponding to the k-subset Sk,n.

Proof. First suppose that σ(V ) = V , and let A be a k × n matrix representing V . Write
out A in columns as [a(1) | · · · | a(n)]. Since σ(V ) = V , there exists g ∈ GLk(C) such that
gA = [a(2) | a(3) | · · · | a(n) | (−1)k−1a(1)]. Then

ga(s) = a(s+1) for 1 ≤ s ≤ n− 1, and ga(n) = (−1)k−1a(1).

In particular, gna(s) = (−1)k−1a(s) for 1 ≤ s ≤ n, and since the columns of A span Ck, we get
gn = (−1)k−1Ik. Therefore the minimal polynomial of g divides xn−(−1)k−1, whose complex
zeros are distinct. Hence g is diagonalizable over C, and its eigenvalues z1, . . . , zk ∈ C are
nth roots of (−1)k−1. Also, the matrix A uniquely determines g, so V determines g up
to conjugation by an element of GLk(C). Hence V uniquely determines the eigenvalues
z1, . . . , zk.

Now write hgh−1 = d for some h ∈ GLk(C), where d ∈ GLk(C) is the diagonal matrix
with diagonal entries z1, . . . , zk. Letting b := ha(1) ∈ Ck, we get

hA = [ha(1) |hga(1) | · · · |hgn−1a(1)] = [ha(1) | dha(1) | · · · | dn−1ha(1)] = [b | db | · · · | dn−1b].

We have br 6= 0 for all r ∈ {1, . . . , k}, since otherwise row r of hA would be zero, contradicting
the fact that rank(hA) = k. Multiplying hA on the left by the diagonal matrix in GLk(C)
with diagonal entries 1

b1
, . . . , 1

bk
(which commutes with d), we obtain the k×n matrix whose

rth row is (1, zr, . . . , z
n−1
r ). The rank of this matrix is k, so z1, . . . , zk are distinct. Hence

V = VS, where S := {z1, . . . , zk} is uniquely determined by V .
Conversely, suppose that S ⊆ C is a subset of k distinct nth roots of (−1)k−1. Since

σ(1, z, . . . , zn−1) = z(1, z, . . . , zn−1) for all z ∈ C with zn = (−1)k−1, we have σ(VS) =
VS. Suppose further that VS is totally nonnegative. Then by Lemma 4.2.4 we have S =
Sk,n, whence VS = Vk,n. (This also follows by a result of Rietsch; see Proposition 4.2.9 in
Section 4.2.) We already showed in (4.1.2) that Vk,n is totally positive. �

We conclude this section with two remarks surrounding Theorem 4.2.6.

Schur polynomials evaluated at roots of unity

The Schur polynomial of a partition λ = (λ1, . . . , λk) (where λ1 ≥ · · · ≥ λk ≥ 0) with at
most k parts is defined by

sλ(x1, . . . , xk) :=
det(x

λk+1−s+s−1
r )1≤r,s≤k

det(xs−1
r )1≤r,s≤k

. (4.2.7)
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In particular, let z1, . . . , zk ∈ C be distinct, S := {z1, . . . , zk}, and Pk,n denote the set of
partitions with at most k parts and parts at most n−k (i.e. partitions whose Young diagram
fits inside the k × (n− k) rectangle). Then we have

sλ(z1, . . . , zk) =
∆{λk+1,λk−1+2,...,λ1+k}(VS)

∆{1,...,k}(VS)
for all λ ∈ Pk,n. (4.2.8)

As a consequence of Lemma 4.2.4, we obtain the following result of Rietsch.

Proposition 4.2.9 (Theorem 8.4 of [Rie01]). Let 0 ≤ k < n, t ∈ C×, and z1, . . . , zk ∈ C be
distinct nth roots of t. Then sλ(z1, . . . , zk) ≥ 0 for all λ ∈ Pk,n if and only if {z1, . . . , zk} =
|t|1/nSk,n. In this case,

sλ(z1, . . . , zk) = |t||λ|/n
∏

1≤r<s≤k

sin
(
λr−λs+s−r

n
π
)

sin
(
s−r
n
π
) for all λ ∈ Pk,n. (4.2.10)

Proof. Suppose that sλ(z1, . . . , zk) ≥ 0 for all λ ∈ Pk,n. Then letting S := {z1, . . . , zk}, we
have VS ∈ Gr≥0

k,n. In particular, VS is real (see Definition 4.2.3), and so (1, z1, . . . , z1
n−1) ∈ VS,

giving VS∪{z1} ⊆ VS. Therefore z1 ∈ S (otherwise VS∪{z1} would have dimension k+1), whence
t is real. Now Lemma 4.2.4 implies S = |t|1/nSk,n, and (4.2.10) follows from (4.1.2). �

Rietsch proved this result in her study of the quantum cohomology of Grk,n(C). We give
the context of her work in Section 4.3, which is surprisingly different from ours, yet leads
to some of the same combinatorics. We remark that Rietsch’s proof of Proposition 4.2.9
uses orthogonality for Schur polynomials evaluated at roots of unity, whereas our argument
relies on the result of Gantmakher and Krein which we used to prove Lemma 4.2.4. Propo-
sition 4.2.9 provides an alternative way to conclude the proof of Theorem 4.2.6, rather than
using Lemma 4.2.4.

We also mention that in their study of symmetric group characters, Orellana and Zabrocki
[OZ] consider evaluations of symmetric polynomials at certain other k-multisubsets of roots
of unity (namely, those which are the eigenvalues of a k × k permutation matrix).

Arrangements of equal minors

Farber and Postnikov [FP16] studied the possible arrangements of equal and unequal Plücker
coordinates among totally positive elements of Grk,n(C). By (4.1.2), Vk,n has many pairs of
equal Plücker coordinates: if I and J are k-subsets of {1, . . . , n} which are cyclic shifts of
each other modulo n, then ∆I(Vk,n) = ∆J(Vk,n). (This does not hold for all V ∈ Grk,n(C)
fixed by σ. Indeed, we have σ(V ) = V if and only if there exists ζ ∈ C with ζn = 1 such that
∆{i1+j,...,ik+j}(V ) = ζj∆{i1,...,ik}(V ) for all j ∈ Z and distinct i1, . . . , ik modulo n.) We do not
know if the converse is true, i.e. if ∆I(Vk,n) = ∆J(Vk,n) implies that I and J are cyclic shifts
of each other modulo n.



CHAPTER 4. CYCLIC SYMMETRY 103

We expect that the minimum Plücker coordinates of Vk,n (after we have rescaled its
Plücker coordinates to all be positive real numbers) are indexed by {1, . . . , k} and its cyclic
shifts. In general, we expect that for a k-subset I ⊆ {1, . . . , n}, the Plücker coordinate
∆I(Vk,n) measures ‘how spread out’ are the elements of I modulo n.

4.3 Quantum cohomology of the Grassmannian

In this section we explain how the fixed points of the cyclic shift map σ appear in the theory
of quantum cohomology. The (small) quantum cohomology ring QH∗(Grk,n(C)) of Grk,n(C)
is a deformation of the cohomology ring H∗(Grk,n(C)) by an indeterminate q. Recall that
Pk,n is the set of partitions whose Young diagram fits inside the k × (n− k) rectangle. For
λ ∈ Pk,n, let λ∨ := (n − k − λk, n − k − λk−1, . . . , n − k − λ1) denote the partition whose
Young diagram (rotated by 180◦) is the complement of the Young diagram of λ inside the
k× (n−k) rectangle. Then H∗(Grk,n(C)) has the Schubert basis {σλ : λ ∈ Pk,n}, where σλ is
the cohomology class of the Schubert variety Xλ. Multiplication in QH∗(Grk,n(C)) is given
by

σλ · σµ :=
∑
d≥0

∑
ν∈Pk,n

〈Xλ, Xµ, Xν∨〉dqdσν ,

where 〈Xλ, Xµ, Xν∨〉d ∈ N is a Gromov-Witten invariant, which is a generalized intersection
number of the Schubert varieties Xλ, Xµ, and Xν∨ . If d = 0 then the Gromov-Witten
invariant is the usual intersection number given by the Littlewood-Richardson rule, and so
the specialization at q = 0 recovers the cup product in H∗(Grk,n(C)). Quantum Schubert
calculus involves the study of these Gromov-Witten invariants. See [Ber97] for more details.

In unpublished work, Peterson defined a subvariety Yk,n of GLn(C) whose coordinate ring
is isomorphic to QH∗(Grk,n(C)). This fact was proved by Rietsch [Rie01], who characterized
Yk,n as follows (see Lemma 3.7 of [Rie01]). For z1, . . . , zk ∈ C, define the Toeplitz matrix

uk,n(z1, . . . , zk) := (es−r(z1, . . . , zk))1≤r,s≤n ∈ GLn(C),

where ej(x1, . . . , xk) :=
∑

1≤i1<···<ij≤k xi1 · · ·xij is the jth elementary symmetric polynomial

for j ≥ 0, and ej(x1, . . . , xk) := 0 for j < 0. Then

Yk,n = {In} ∪ {uk,n(z1, . . . , zk) : z1, . . . , zk ∈ C are distinct and zn1 = · · · = znk} ⊆ GLn(C).

Rietsch’s isomorphism QH∗(Grk,n(C)) → C[Yk,n] sends the indeterminate q to the map
Yk,n → C given by q(In) = 0 and q(u(z1, . . . , zk)) = (−1)k−1zn1 for distinct z1, . . . , zk with
zn1 = · · · = znk . We can identify the specialization of QH∗(Grk,n(C)) at q = 1 with the ring
of C-valued functions on the fiber of Yk,n over q = 1, and this fiber equals

{u(z1, . . . , zk) : {z1, . . . , zk} is a k-subset of nth roots of (−1)k−1}

(see Section 11 of [Rie01]).
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We also have the map Yk,n → Grk,n(C) which sends g to the subspace V with Plücker
coordinates ∆I(V ) = det(g[n]\I,{k+1,k+2,...,n}) for all k-subsets I ⊆ {1, . . . , n}. (Explicitly,
V is orthogonal to the last n − k columns of g under the bilinear form 〈v, w〉 := v1w1 −
v2w2 + · · ·+ (−1)n−1vnwn on Cn; see Lemma 1.11(ii) of [Kar17] for a discussion of this fact.)
By the dual Jacobi-Trudi identity (see Corollary 7.16.2 of [Sta99]) and (4.2.8), this map
sends u(z1, . . . , zk) to V{z1,...,zk} (defined in Definition 4.2.5). Therefore we have the following
alternative description of the fixed points of the cyclic shift map σ.

Corollary 4.3.1. The set of fixed points of the cyclic shift map σ on Grk,n(C) corresponds
to the fiber of Yk,n over q = 1.

Another connection between the fixed points of σ and quantum cohomology is evident in
a formula of Bertram for the Gromov-Witten invariants 〈Xλ(1) , . . . , Xλ(l)〉d for Schubert vari-
eties (see Section 5 of [Ber97]). Bertram expressed his formula in terms of Schur polynomials
evaluated at roots of unity, which using (4.2.8) we can rewrite as follows.

Theorem 4.3.2 (Section 5 of [Ber97]). Let λ(1), . . . , λ(l) ∈ Pk,n and d ≥ 0. For 1 ≤ j ≤ l,

define Ij := {λ(j)
k +1, λ

(j)
k−1+2, . . . , λ

(j)
1 +k} ⊆ {1, . . . , n}. If |λ(1)|+· · ·+|λ(l)| = k(n−k)+dn,

then

〈Xλ(1) , . . . , Xλ(l)〉d =
1

nk

∑
S={z1,...,zk}

(z1 · · · zk)
∏
r 6=s

zr − zs
l∏

j=1

∆Ij(VS)

∆{1,...,k}(VS)
,

where the sum is over all k-subsets S ⊆ C of distinct nth roots of (−1)k−1, and VS is defined
in Definition 4.2.5. If |λ(1)|+ · · ·+ |λ(l)| 6= k(n− k) + dn, then 〈Xλ(1) , . . . , Xλ(l)〉d = 0.

This also makes manifest the so-called ‘hidden symmetry’ of these Gromov-Witten invariants,
i.e. they are invariant (up to an appropriate change of d) under the cyclic actions on each
of the partitions λ(j), which translates the set Ij modulo n. This hidden symmetry first
appeared in the work of Seidel [Sei97], and was further studied by Agnihotri and Woodward
(see Section 7 of [AW98]) and Postnikov (see Section 6.2 of [Pos05]).

Finally, we note that Rietsch used her result Proposition 4.2.9 to derive an explicit
description of the totally nonnegative part Y≥0

k,n of Yk,n, which is defined as the elements of
Yk,n whose submatrices all have a nonnegative determinant. Therefore, our argument for
Proposition 4.2.9 gives a different proof of this description.

Theorem 4.3.3 (Theorem 8.4 of [Rie01]). For distinct z1, . . . , zk ∈ C with zn1 = · · · = znk , we
have uk,n(z1, . . . , zk) ∈ Y≥0

k,n if and only if V{z1,...,zk} ∈ Gr≥0
k,n. Therefore by Proposition 4.2.9,

writing Sk,n = {y1, . . . , yk}, we have Y≥0
k,n = {In} ∪ {uk,n(ty1, . . . , tyk) : t > 0}.

The same ideas can be used to prove the result of Aissen, Schoenberg, and Whitney [ASW52]
that for any z1, . . . , zk ∈ C, we have z1, . . . , zk ≥ 0 if and only if uk,n(z1, . . . , zk) ∈ Y≥0

k,n

for all n > k (see also Section 8.3 of [Kar68]). In this context, one normally interprets the
matrix entries ej(z1, . . . , zk) of uk,n(z1, . . . , zk) as the coefficients of the polynomial with zeros



CHAPTER 4. CYCLIC SYMMETRY 105

− 1
z1
, . . . ,− 1

zk
. We also mention that Rietsch gives an explicit factorization of the element

uk,n(ty1, . . . , tyk) into elementary matrices (see Proposition 9.3 of [Rie01]).

Remark 4.3.4. Rietsch proves the following interesting inequality (Proposition 11.1 of
[Rie01]). For any distinct z1, . . . , zk ∈ C such that zn1 = · · · = znk and |z1| = 1, we have

|sλ(z1, . . . , zk)| ≤ sλ(Sk,n) =
∏

1≤r<s≤k

sin
(
λr−λs+s−r

n
π
)

sin
(
s−r
n
π
) for all λ ∈ Pk,n.

It would be interesting to find a common interpretation of such inequalities and the discrete
isoperimetric inequalities of Nudel’man we discussed in Remark 4.1.4.

4.4 Fixed points of the twist map

In this section we construct many fixed points of the twist map on Grk,n(C), which appears
in the study of the cluster-algebraic structure of the Grassmannian. We show that among
the fixed points we identify, there is a unique totally nonnegative one, namely Vk,n. We leave
open the problem of determining all fixed points of the twist map on Grk,n(C).

The twist map on Grk,n(C) was introduced by Marsh and Scott [MS16], as the Grass-
mannian analogue of the twist map on double Bruhat cells defined by Fomin and Zelevinsky
[FZ99]. It was later studied by Muller and Speyer [MS] using a slightly different definition.
It relates the A-cluster structure and X -cluster structure of Grk,n(C), and more generally, of
positroid varieties. We adopt here the conventions of Muller and Speyer. See Remark 4.4.6
for a discussion of how our results apply to Marsh and Scott’s twist map.

Definition 4.4.1. Let

Π◦k,n := {V ∈ Grk,n(C) : ∆{j,j+1,...,j+k−1}(V ) 6= 0 for 1 ≤ j ≤ n} ⊆ Grk,n(C),

where we read the indices modulo n.3 Given V ∈ Grk,n(C), let A = [a(1) | · · · | a(n)] be
a k × n matrix representing V . For 1 ≤ j ≤ n, we define the k × k matrix Aj :=
[a(j) | a(j+1) | · · · | a(j+k−1)], where we read the indices modulo n. The (right) twist τ : Π◦k,n →
Π◦k,n is defined such that τ(V ) is represented by the k × n matrix whose jth column (for

1 ≤ j ≤ n) equals the first column of (A−1
j )T . The twist τ is an automorphism of Π◦k,n,

and its inverse is the analogously defined left twist (see Corollary 6.8 of [MS]). (Muller and
Speyer in fact define τ on all of Grk,n(C), but we will only consider fixed points in Π◦k,n.)

3Π◦k,n is the top-dimensional stratum of the positroid stratification of Grk,n(C) studied by Knutson, Lam,
and Speyer [KLS13]. This is the projection to Grk,n(C) of the stratification of the complete flag variety into
intersections of opposite Schubert cells, which had first been considered by Lusztig [Lus94]. He conjectured,

and Rietsch proved [Rie98], that when restricted to Gr≥0k,n it gives a cell decomposition.
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Example 4.4.2. Let V ∈ Gr2,4(C) be represented by the matrix A =

[
1 1 0 −4
0 2 1 3

]
. Then

τ(V ) is represented by the matrix

[
1 1 3

4
0

−1
2

0 1 1
3

]
. ♦

Remark 4.4.3. Let the torus (C×)n act on Grk,n(C) by rescaling columns, i.e. given t ∈
(C×)n, we define t(V ) := {(t1v1, . . . , tnvn) : v ∈ V }. Then τ induces an automorphism on the
quotient Π◦k,n/(C×)n of order dividing 2n (see Section 4 of [MS16]). We are also interested
in determining the fixed points of the twist map on Π◦k,n/(C×)n, however, our methods do
not identify any fixed point in Π◦k,n/(C×)n which does not come from a fixed point in Π◦k,n.

Remark 4.4.4. The action of the subgroup {1,−1}n of (C×)n on Π◦k,n commutes with τ .
Therefore, if V ∈ Π◦k,n is fixed by τ , then so is t(V ) for any t ∈ {1,−1}n ⊆ (C×)n.

Theorem 4.4.5. Let S ⊆ C be a k-subset closed under inversion (i.e. S = {z−1 : z ∈ S}),
and ε ∈ {1,−1} such that zn = ε for all z ∈ S. Then VS (defined in Definition 4.2.5) is an
element of Π◦k,n fixed by the twist map τ , and moreover VS ∈ Gr≥0

k,n if and only if VS = Vk,n.

Note that all fixed points of τ we identify above are real (see Definition 4.2.3). Hence
Theorem 4.2.6 implies that all real fixed points of σ are also fixed by τ .

Proof. Write S = {z1, . . . , zk}, let A be the k × n matrix (zs−1
r )1≤r≤k,1≤s≤n, and for 1 ≤

j ≤ n define Bj := (zj+s−2
r )1≤r,s≤k. Since zn1 = · · · = znk = ε, we obtain Bj from Aj :=

[a(j) | a(j+1) | · · · | a(j+k−1)] by multiplying some subset of columns 2, . . . , k by ε. Hence the
first columns of (B−1

j )T and (A−1
j )T are equal. By the classical adjoint description of the

matrix inverse, and Vandermonde’s determinantal identity, the (p, 1) entry of (B−1
j )T equals

(−1)p−1

det(zj+s−2
r )r=1,...,p−1,p+1,...,k

s=2,...,k

det(zj+s−2
r )1≤r,s≤k

= (−1)p−1

(z1 · · · zk)jz−jp
∏

1≤r<s≤k,
r,s6=p

zs − zr

(z1 · · · zk)j−1
∏

1≤r<s≤k

zs − zr
=

(z1 · · · zk)z−jp∏
1≤s≤k,
s 6=p

zs − zp
.

This calculation also shows that det(Aj) (which equals ± det(Bj)) is nonzero, so VS is indeed
in Π◦k,n. By factoring out z1···zk

zp
∏

1≤s≤k,s6=p zs−zp
from row p for 1 ≤ p ≤ k, we see that τ(VS) is

represented by the k × n matrix (z
−(j−1)
p )1≤p≤k,1≤j≤n. Since S is closed under inversion, this

matrix has the same rows as A. Hence τ(VS) = VS. Finally, Lemma 4.2.4 implies VS ∈ Gr≥0
k,n

if and only if VS = Vk,n. �
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Remark 4.4.6. The twist map of Marsh and Scott restricted to Π◦k,n is defined as in Defini-

tion 4.4.1, except that in the definition we take the first column of ∆{j,j+1,...,j+k−1}(V )(A−1
j )T

rather than the first column of (A−1
j )T . An argument similar to the proof above shows that

if S ⊆ C is a subset of size k such that zn = (−1)k−1 for all z ∈ S and S = {
∏

z′∈S\{z} z
′ :

z ∈ S}, then VS is an element of Π◦k,n fixed by Marsh and Scott’s twist map. In particular,
Vk,n is such a fixed point.
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functions. Comm. Math. Phys., 341(3):821–884, 2016.

[Nud75] A. A. Nudel′man. Isoperimetric problems for the convex hulls of polygonal lines
and curves in higher-dimensional spaces. Mat. Sb. (N.S.), 96(138):294–313, 344,
1975.

[Oh11] Suho Oh. Positroids and Schubert matroids. J. Combin. Theory Ser. A,
118(8):2426–2435, 2011.

[Oxl11] James Oxley. Matroid theory, volume 21 of Oxford Graduate Texts in Mathe-
matics. Oxford University Press, Oxford, second edition, 2011.

[OZ] Rosa Orellana and Mike Zabrocki. Symmetric group characters as symmetric
functions. Preprint, http://arxiv.org/abs/1605.06672.

[Pin10] Allan Pinkus. Totally positive matrices, volume 181 of Cambridge Tracts in
Mathematics. Cambridge University Press, Cambridge, 2010.

[Pos] Alexander Postnikov. Total positivity, Grassmannians, and networks. Preprint,
http://math.mit.edu/~apost/papers/tpgrass.pdf.

[Pos05] Alexander Postnikov. Affine approach to quantum Schubert calculus. Duke
Math. J., 128(3):473–509, 2005.

[PSW09] Alexander Postnikov, David Speyer, and Lauren Williams. Matching polytopes,
toric geometry, and the totally non-negative Grassmannian. J. Algebraic Com-
bin., 30(2):173–191, 2009.
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