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Abstract

We present the on-demand link vector (OLIVE) protocol,
a routing protocol for ad-hoc networks based on link-
state information that is free of routing loops and supports
destination-based packet forwarding. Routers exchange
routing information reactively for each destination in the
form of complete paths, and each node creates a labeled
source graph based on the paths advertised by its neigh-
bors. A node originates a broadcast route request to ob-
tain a route for a destination for which a complete path
does not exist in its source graph. When the original path
breaks, a node can select an alternative path based on in-
formation reported by neighbors, and a node can send a
unicast route request to verify that the route is still active.
A node that cannot find any alternate path to a destination
sends route errors reliably to those neighbors that were
using it as next hop to the destination. Using simulation
experiments in ns2, OLIVE is shown to outperform DSR,
AODV, OLSR and TBRPE, in terms of control overhead,
throughput, and average network delay, while maintain-
ing loop-free routing with no need for source routes.

1 Introduction

Several on-demand routing protocols have been pro-
posed to maintain routing tables efficiently in ad hoc net-
works [2], [3], [4], [S]. Two key features of on-demand
routing protocols are that routing information is main-
tained at a given router for only those destinations to
which data must be sent, and the paths to such destina-
tions need not be optimum. The basic differences among
on-demand routing protocols are how they communicate
routing information to obtain paths to destinations, how
they use and maintain this information and the manner
in which data packets are routed. Maintaining loop-free
routes at every instant becomes a necessity in ad hoc net-
works with dynamic topologies, because routing loops in-
crease packet-delivery latencies and reduce the number
of packets delivered to the intended destinations. Current
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on-demand routing protocols adopt different techniques
to prevent temporary loops.

The dynamic source routing (DSR) protocol [1], [2] is
an example of protocols that attain loop-free routing using
source routes. In DSR, a route request (RREQ) sent to
find a given destination records its traversed route, and
a route reply (RREP) sent by a node in response to the
RREQ specifies the complete route between the node and
the destination. Routers store the discovered routes in a
route cache. The basic scheme in DSR is for the header
of every data packet to specify the source routes to their
intended destinations.

The ad-hoc on-demand distance vector (AODV) pro-
tocol [3] is an example that supports incremental packet
forwarding and maintains loop-free routing by using a se-
quence number for each destination. When node A needs
to establish a route to a destination D, it broadcasts a
RREQ to its neighbors. The RREQ specifies a sequence
number for the destination that A increases after loosing
its route to D. A node receiving the RREQ can send back
a unicast route reply along its shortest path to node A only
if it has a valid route to node D and the sequence num-
ber stored for node D is no less than the sequence num-
ber in the route request. Otherwise, the node receiving
the route request must forward the route request. Increas-
ing the sequence number for a destination when routes
must be changed prevents several nodes with valid and
shorter paths to the destination from being used, and in
many cases makes the destination the only node that can
answer the route requests.

The temporally-ordered routing algorithm (TORA) [4]
uses a link-reversal algorithm [6] to maintain loop-free
multipaths that are created by a query-reply process sim-
ilar to that used in DSR and AODV. The limitation with
TORA and similar approaches is that they require reli-
able exchanges among neighbors and coordination among
nodes over multiple hops, which incurs more signaling
overhead compared to AODV and DSR.

Several routing protocols have been proposed in which
a node receives partial or complete link-state information
from its neighbors, stores that information in a topol-
ogy graph, and computes a shortest path routing tree
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from such a graph using a shortest-path algorithm locally.
The topology broadcast based on reverse-path forwarding
(TBRPF) [7] and the optimized link state routing protocol
(OLSR) [8] disseminate complete topology information
to all routers, which in turn can compute routes to each
destination using a local shortest-path algorithm. None of
these protocols eliminates temporary routing loops.

The source tree on-demand adaptive routing (SOAR)
protocol [5] was the first to use link-state information
on demand. Each router provides its neighbors with a
“source tree” consisting of preferred paths to destinations
for which the router has traffic. However, SOAR requires
data packets to carry the path traversed by the packet in
order to avoid routing loops, which incurs as much over-
head as the basic source routing scheme of DSR.

This paper presents the on-demand link vector
(OLIVE) protocol, which is an on-demand routing pro-
tocol based on partial link-state information that supports
loop-free hop-by-hop (incremental) routing. Sec. 2 pro-
vides a detailed description of OLIVE and illustrates its
operation. OLIVE does not need internodal synchro-
nization spanning multiple hops, the use of any packet-
header information other than the destination for loop-
free packet forwarding, or the use of destination-based
sequence numbers. Like other on-demand routing proto-
cols, route requests and route replies in OLIVE are sent
for initial path set up. Routers running OLIVE exchange
path information and the paths received at a node from
all its neighbors combine to give a partial network topol-
ogy. The paths advertised are used for active route set-up,
while the network topology is used to compute plausible
paths that become useful when the original paths break.

Sec. 3 demonstrates that OLIVE is loop free at every
instant, and that it is safe and live, i.e., that routers find the
paths to destinations within a finite time if the network is
not partitioned. Loop-freedom is ensured by maintaining
an up-to-date list of predecessors at every node for each
destination and by informing the predecessors of the route
failures reliably. Intermediate nodes between the source
and destination can locally repair paths without informing
the predecessors.

Sec. 4 compares the performance of OLIVE with the
performance of DSR, AODV, TBRPF, and OLSR, which
are the four routing protocols for ad hoc networks be-
ing considered in the IETF MANET working group. The
experiments consider the effect that traffic load and mo-
bility has on the performance of the protocols, and also
the role that looping plays. The results of our experi-
ments show that OLIVE provides the most attractive per-
formance based on the metrics we analyze. Sec. 5 con-
cludes our paper.

2 OLIVE

2.1 Motivation

c)
©) \ (© :
( (b) a %

Fig. 1. Network topology known by node a.

In proactive routing protocols based on link-state in-
formation, it is straightforward to compute paths at a
router by first aggregating all link-state information re-
ceived from its neighbors, and then running a shortest-
path algorithm locally (e.g., Dijkstra’s shortest path first).
The aggregation of those paths is a tree, which is re-
ferred to as source tree”. However, similar steps cannot
be taken in on-demand routing protocols based on link-
state information, because it is not true that every router
maintains paths to every destination. Fig. 1 shows the
network topology as known to node a based on inputs
from neighbors b and ¢. Neighbor b has advertised paths
{b,a},{b,d, g}, while node c has advertised paths {c,a},
{c,e, f,g,h} and {c, d}. The links in each of those paths
aggregate to form the topology as given in Fig. 1. A
node deletes information of a link if it is of finite cost
and all neighbors have removed it from their advertised
paths. Links with infinite cost are never deleted to reduce
communication overhead. The label set of each link in
any node’s network topology indicates the list of neigh-
bors that have advertised that link to that node. For ex-
ample, the label set of link (g, h) is {c}, which implies
that neighbor ¢ has advertised link (g, h). Using Dijk-
stra’s SPF algorithm, the shortest path for destination h
would be abdgh, i.e., node a would pick node b as the
next hop to reach destination h. However, this leads to
a routing error; upon receiving a data packet destined to
node h, node b would drop the data packet, because node
b does not have a route to destination h.

Intuitively, the best node a can do to compute a “source
tree” subject to the on-demand constraint is trying to ob-
tain a source tree that renders the minimum number of
routing errors. However, it can be shown that this results
in an NP-complete problem [13] and cannot be imple-
mented efficiently. The design of OLIVE is motivated
by the need for an approach to attain loop-free routing
using link-state information on-demand, allowing local
route repairs, and requiring no source routes or flow iden-
tifiers in the headers of data packets.
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2.2 Principles of Operation

In OLIVE, the source of a data packet that has no route
for the destination broadcasts a route request (RREQs)
to its neighbors. The destination or nodes having ac-
tive routes to the destination respond with route replies
(RREPs). RREPs contain paths for destinations and are
sent back towards the originator of the RREQ, very much
as in DSR. The aggregate of path information obtained
in RREPs constitutes a node’s labeled network topology.
Each path stored in the topology is considered to be ac-
tive for a finite lifetime, which is renewed when the path
is used to forward data. Link-based sequence numbers
are used to select the most recent information in case of
conflicts.

active destinations
atnode a

b’s advertised paths

= = 7 d’s advertised paths
=== ¢’s advertised paths

SOURCE GRAPH
ATNODE a

—— paths for active destination]
- = - paths for other destinations

Fig. 2. Figure showing how path selections are done in OLIVE

If a router needs to change its current route for a des-
tination after an input event, it first tries to select the
shortest path among those complete paths for the desti-
nation advertised by its neighbors that are still active. Let
pfj be the path for destination j advertised to node ¢ by
neighbor k&, pfj (cost) be the cost of that path, and N; be
the set of neighbors of node 7. The path-selection algo-
rithm is very simple: Path p;? is chosen if p;’(cost) =
Min{p}” (cost) | n € N;}.

Fig. 2 illustrates the way in which the path selection
algorithm operates. Fig. 2(a) shows the network topol-
ogy formed by combining paths advertised by neighbors
b, c, and d. Node a has active flows with nodes g, f and
k and, therefore, needs to set up routes for them. For
destination g, the advertised paths are aceg and adg, of
which the path adg is chosen because it has a smaller
cost. Similarly, among the paths advertised for destina-
tion k, namely adfik and acegjk, path abfik is chosen.
For destination f, the only path available is ad f. Using
only complete paths reported by neighbors avoids packet
forwarding to nodes with no paths to destinations, the

problem discussed in previous section in relation to on-
demand routing. As shown in Fig. 2(b), the aggregate of
the selected paths form the labeled source graph at node
a.

To reduce the overhead incurred with RREQs, a node
also makes use of plausible paths. A plausible path
through a neighbor is either (a) a non-active path adver-
tised by the neighbor, or (b) a path that has not been ad-
vertised by the neighbor but that can be computed from
the topology using a local path-selection algorithm. For
example in Fig. 2, no path has been advertised for non-
active destination j at node . However, the plausible path
adgj can be computed using Dijkstra’s SPF algorithm,
which comprises of links that belong to paths advertised
for other destinations g and k. The plausible paths are al-
ways validated using control messages before the actual
data packet forwarding. When a node needs to change or
create a route for a destination for which there is no active
path in the labeled source graph, the node looks for plau-
sible paths to the destination. Before a node installs in its
routing table a route corresponding to a plausible path, it
unicasts a forced route request (FRREQ) to the next hop
of the path to verify that the path exists. A node that re-
ceives the FRREQ and has an active route to the destina-
tion replies with a forced route reply (FRREP) that spec-
ifies an active path to the destination. A node that does
not have any path to the destination of a FRREQ replies
with a FRREP stating an empty active path. Other nodes
will forward the FRREQ to the next hop of the plausible
path. FRREPs are sent back to the origin of the FRREQ
along the reverse path taken by the FRREQs. When the
originator of a FRREQ receives a reply, an alternate path
to a destination is selected only if it has the same or lower
cost than the path that the node announced to its prede-
cessors. If the node has no predecessors for a destination,
it can pick an alternate path of any length. In case no al-
ternate path is possible, the predecessors are informed of
route failures through router error (RERR) packets sent
reliably. Because each node either informs all its prede-
cessors that it lost its path to a destination through reliable
RERRSs, or picks alternate routes that are shorter than the
route that it advertised to its predecessors, instantaneous
loop-freedom can be maintained when every node knows
its predecessors.

2.3 Detailed Description

The operation of OLIVE can be classified into three
phases: (a) route discovery for setting up new paths, (b)
local route repair for finding alternate paths when the
original breaks, and (c) route failure notification for up-
dating neighbors of route failures.
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Fig. 3. Figure showing the route discovery and route repair methods in OLIVE

2.3.1 Route Discovery

Route requests (RREQ) are used to discover routes for
unknown destinations, while RREPSs carry routing infor-
mation. The route discovery process is always initiated
by the source of data packets when it does not have ac-
tive or plausible routes for a destination for which it has
an active flow. RREQs by the source are either limited to
neighbors or sent throughout the network with some lim-
ited scope. When a node receives a RREQ, it forwards it
only if: (a) it has no valid route for the destination, (b) no
RREQ initiated by the same source has been forwarded
recently, and (c) the RREQ has not traversed beyond the
zone within which the route search has to be limited.

Route replies (RREP) are sent in response to RREQs
and carry path information for a destination. To reduce
duplicate RREPs, a RREP sent in response to a RREQ is
broadcast to all neighbors. A destination node waits for a
back-off time proportional to the node’s distance from the
target before sending a broadcast RREP, and cancels its
RREP if it receives a broadcast RREP from another node
in response to the same RREQ. RREPs are forwarded us-
ing unicast packets. Before a node forwards a RREP to a
neighbor, it ensures that the neighbor is part of the prede-
cessor list for the destination of the original RREQ.

An acknowledgment RREP (RREPACK) signifies that
the neighbor has selected the route through this node for
data forwarding. Hence, if no RREPACK is received from
a neighbor within a specified time period, it is removed
from the predecessor list.

The lifetime for a route is active_route_timeout while

the lifetime of a predecessor entry is 2 X active_route_timeout

and the entries get refreshed during data packet forward-
ing.
2.3.2 Local Route Repair

Communication overhead can be reduced drastically by
localizing the impact of route failures. In OLIVE, local

route repair is done using the plausible paths computed
with the local link-state information. When the original
path to a destination breaks, plausible paths of equal or
lower cost than the cost of the original path are computed
using the information in the network topology available
locally. However, before data packets are sent over such
paths, forced route requests (FRREQ) are sent along those
plausible paths to check their viability.

Each FRREQ carries information about the plausible
path to the destination, such that each node on the path
having an active route can compare the path with its cur-
rent route for the destination. The node either forwards
the FRREQ if it only has plausible paths to the desti-
nation, or responds with a forced route reply (FRREP),
which either contains a valid route for the destination or
contains no route. If a FRREP carries no path informa-
tion, it specifies the first link in the plausible path of the
FRREQ that has infinite cost such that the original sender
can update its topology. When FRREQs do not yield any
response within a certain time interval, the alternate paths
are assumed to be non-existent and RERRs are sent to
predecessors.

2.3.3 Route Failure Notification

Route errors (RERR) and RERR acknowledgments
(RERRACK) are used for reliable transfer of route fail-
ure information and updating predecessor lists. A node
sends a RERR to its predecessors to a given destination
under any of four conditions: (a) A MAC- or network-
layer mechanism states that the link to the next hop of its
path to the destination failed, (b) a RERR is received from
a neighbor for a destination for which the router is a relay
and the router has no paths to the destination, (c) the ac-
tive route to a destination expires and the router is unable
to find alternate paths, and a RREP is received specifying
a path with invalid links.

A node sends a RERRACK in response to a RERR to
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notify the sender of the RERR that it has stopped using
the node as a successor to a given destination. The sender
of a RERRACK is no longer considered a predecessor to
the destination indicated in the RERR.

2.4 Neighbor Relationship

A node considers the link to a neighbor to be up when
any one of the following conditions happen: (a) The node
receives a control packet from the neighbor for the first
time, (b) it receives the first network-layer hello message
from the neighbor, or (c) a neighbor protocol at the link
layer advertises the presence of a new neighbor.

A node decides that its link with a neighbor is down
when any of the following conditions is true: (a) The
router receives link-layer notification caused by the fail-
ure to deliver data packets across the link, (b) network-
level hello messages are missed several consecutive
times, (c) the link layer declares the link to be down either
through the action of a neighbor protocol, or after sev-
eral retransmissions, (d) acknowledgments for data pack-
ets are not received after repeated network-level retrans-
missions, and (e) no data or control packet has been re-
ceived for a certain time interval.

If no network-layer hello mechanism is available for
neighbor discovery, and a neighbor is silent for a certain
time (i.e., the router has not received any data packet or
control packet from it for that period of time), in OLIVE
a neighbor is assumed to be down and all link entries ad-
vertised by it are declared to be invalid.

2.5 Handling Link Sequence Numbers

Only the head node of a link can assign or change the
sequence number of the link and reports of links with
higher sequence numbers are trusted over reports of the
same links with lower sequence numbers. If there is no
entry for a link, then the router trusts the first link-state
entry that it receives. Link sequence numbers can be
avoided by having nodes trust the link-state value reported
by the neighbor with the shortest path to the head of the
link.

2.6 Example of OLIVE Operation

Fig. 3(a) shows an ad-hoc network of seven nodes. Let
us assume that node ¢ has data packets for node j and
has to set up a route for it, and only nodes a and b have
valid routes for node j. Therefore, when node ¢ sends
a single-hop RREQ for j to its neighbors, it receives no
RREP. Then it sends a network-wide RREQ, as shown
in Fig. 3(a). Fig. 3(b) shows how the RREPs and the
RREPACKSs are exchanged between routers for the path
set-up from node ¢ to node j. When nodes a and b receive
a RREQ, they responds with a RREP containing a path
for node j. Node a’s RREP is meant for node d, while

node b’s RREP is sent to node ¢. When node a sends
its RREP to node d reporting its active route for node j,
it will include node d in its predecessor list for destina-
tion j, such that node d can be notified when the route for
node j changes. When node d selects its route for node
j through node a, it sends a RREPACK to node a. Sim-
ilar messages are also exchanged between nodes ¢ and b.
At node e, RREPs with paths to node j are received from
nodes ¢ and d. Both paths are of equal cost; therefore,
node e accepts the route it first receives.

Let us assume that node e hears the RREP from node
c first. then node e sends a RREPACK to node ¢ only
and not to node d. When node d does not receive any
RREPACK from node e within a certain time interval, it
removes node e from its list of predecessors. An entry
for the advertised route of neighbor d will be maintained
at node e and this information will be helpful to set up
plausible paths when the original route breaks. Node e
sends a RREP to node ¢, which sends a RREPACK back
to node e after it selects the final path, ecbj.

Fig. 3(c) and Fig. 3(d) illustrate how alternate paths are
created when original paths break. Assume that link (e, ¢)
fails. Because node e’s successor for destination j (i.e.,
node c¢) is not reachable, node e removes the route for
node j from its routing table. It then attempts a local
route repair based on its information. Node e computes
the plausible path edaj for destination j using Dijkstra’s
SPF algorithm. However, node e is not the current pre-
decessor of node d for destination j. Therefore, it might
not receive updates regarding destination j from node d.
Hence, node e sends a FRREQ, which is forwarded along
the path edaj, and node a, which has an active route to j,
replies with a FRREP, which traces back from a to d, and
then to node e, setting up the new route edaj.

3 OLIVE Correctness

The following two conditions have to be satisfied for
OLIVE to be correct:

Safety Property : Given a network G = (V, E), and
a destination j € V, the successor graph for destination
jSGy= (V,E'), where E' = {(i,s]) | i € V and s! is
the successor for j at node i}, is a directed acyclic graph
at every instant.

Liveness Property : Within a finite time following an
arbitrary number of changes in network conditions and
flows, all nodes in the network have correct paths for each
reachable destination, to which they have active flows.

The above conditions leave open the possibility of
nodes trying to find persistently paths to destinations be-
longing to the partitioned network. In practice, the rout-
ing protocol can infer that a destination appears to be un-
reachable after a few failed attempts, and it is up to the
higher-level protocol or application to determine whether
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or not to continue looking for paths to unreachable desti-
nations.

To show that OLIVE is correct, we assume that all
information is stored correctly and routers operate ac-
cording to the specifications of OLIVE. Also changes in
status of adjacent links are notified within a finite time
and the links are bi-directional. Furthermore, Theorem
1 below assumes that, after an arbitrary sequence of link
cost changes, topology changes, and traffic flow changes,
there is a sufficiently long time for OLIVE to stop com-
puting routes to active destinations.

The instantaneous loop freedom in OLIVE can be
proven based on two important properties. First, when
a node needs to adopt a new route of higher cost than its
previous route, the node reports an infinite distance to its
predecessors and adopts its new route only after its pre-
decessors have removed it as their successor. Second, a
node sets up a route for a destination only if the selection
of the new route results from a path specified in a FRREP
or RREP.

The above means that, at any instant of time ¢ if
PRED!(t) is the set of predecessors for destination j

as known to node i and PRED (t) is the set of nodes
at time ¢ who have selected node ¢ as successor to
reach node j according to an omniscient observer, then
PRED] (t) C PREDI(t).

We can show by contradiction that loops can never
form in OLIVE if the above two conditions are always
satisfied.

Let a, b, c......, z be the nodes that form a loop for des-
tination j. Let the next hop for node x be node a, the
next hop for node a be node b, and so on. Let P;(t)/
be the path at node 7 for destination j at time ¢. Let
us assume that node a is the node in the loop whose
length of the path for node j is maximum at time t.
Therefore, P,(t)?(cost) > P,(t)?(cost). Assume that
the last change in successor occurred at time t' < ¢,
when node x chooses node a as the next hop. Therefore,
P,(t)i (cost) = P,(t')/(cost) > P,(t")(cost), where
P, (") (cost) is the cost of the path advertised by a in
its RREP or FRREP at time ¢’ < t' < t. This im-
plies that P,(t)7 (cost) > P,(t)?(cost) = P,(t')?(cost)
> P,(t")I(cost), which means that node a has experi-
enced an increase in the cost of its path to node j in the
interval (¢”, ¢]. In that case, node a must send a RERR to
node z advertising an infinite cost, and node x must there-
fore release node a as its next hop at time ¢, < ¢. Hence, a
loop cannot form, which contradicts our assumption that
there is a loop at time ¢.

Loop freedom in OLIVE relies on the reliable exchange
of RERRs between a node and its predecessor for a desti-
nation. However, when the link between a node = and its
predecessor y for a given destination fails due to mobility

or other effects, node = must avoid accepting a new route
to the destination before node y has stopped using z as
a successor. To be safe, node  must apply a hold-down
time after detecting a broken link to node y, such that no
packets to the destination for which y is a predecessor are
forwarded until the hold-down time expires. The length
of the hold-down time that node x must apply depends on
how quickly nodes can detect link changes. If a neighbor
protocol exists at the link layer, predecessor and succes-
sor can detect the broken link very quickly. However, de-
tecting a broken link based on acknowledgments to data
packets at the network level can take much longer due to
queuing delays.

Theorem 1: Within a finite time after the last change in
network conditions and traffic flows, all nodes which are
sources of data packets have correct paths to the destina-
tions.

Summary of Proof: As described above, OLIVE ensures
that the successor graph as visible to an omniscient ob-
server, SGj, does not contain any transient loops. Let
S; C V be the set of sources that have active flows for
destination j, and I2; C V be the set of nodes acting as
relays. Let ¢, be a time when SG is correct and loop-
free, and assume an arbitrary but finite sequence of link-
state and traffic-flow changes. Let £> be the time when the
last link or traffic-flow change occurs. The proof needs
to show that the routing tables for destination .J at every
node converge to correct values within a finite time after
t2. In this context, the active graph AGyj is formed by the
links (v, sY) for each v € Sj or v € R, where s] is the
successor for node j at node v. Because AG; C SGj,
AG; is guaranteed to be a DAG.

Assume that the theorem is not true, then AGj must be
a forest, because OLIVE is loop free. We need to consider
two cases: a source node located in the same connected
component as j, and a node with no physical path to node
j. We note that link sequence numbers cannot change
after time ¢».

Consider first the case of a source node in the same
connected component as j. A source node v € S; with
an active flow for j in a connected component containing
node 5 must either (1) have a path that reaches j, (2) have
a path that ends in a node with no path for j, or (3) not
have a path for j.

By induction on the number of hops away from the
head of any given link, all the links in a path to j reported
in a RREP sent within a finite time after time 5 are as-
signed their last sequence number, given that OLIVE re-
quires a node to correct a neighbor advertising an older
link sequence number. Given that RREQs, RREPs, FR-
REQs and FRREPs traverse loop-free paths, it follows
that a source node with a path to j must have a correct
path after some finite time ¢ > 5.
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Consider a node a that has no path to j at time ¢ > to.
If node b uses node a as successor to reach j, it implies
that node a has reported a path of finite distance for node
j to node b and has node b as a predecessor for the route
to node j. Hence, node a must have had an active path
to node j and it must have reported the loss of its path to
node b through reliable RERRs a finite time after ¢», and
node b must receive such RERRs, because no more link
changes can happen after time ¢,. Accordingly, node b
must stop using node a as its next hop within a finite time
after ¢t,. By induction on the number of hops away from
any node without a path to j, it is easy to show that any
source node ¢ € S; can have no path to destination j that
ends at a node without a valid path to j.

A source node s that never attains a valid path to j after
time ¢ must generate RREQs an infinite number of times.
However, the connected component where j and s are lo-
cated is finite and RREQs and RREPs traverse loop-free
paths only, because they specify the paths they traverse.
Furthermore, as pointed out before, a finite time after ¢
any link communicated in a RREP must have its final se-
quence number (and correct state). Hence, because no
link changes can occur after time ¢,, source s must re-
ceive some of the RREPs being generated and they must
contain correct paths. Therefore, node s cannot generate
an infinite number of RREQs after time ¢5.

A similar approach can be used to show that, within
a finite time after time ¢-, no source node in a different
component than node j’s component can have an active
path to j.

Q.E.D

4 Performance Comparison

We have compared the performance of OLIVE with
the on-demand routing protocols (DSR [2], AODV [3])
and proactive routing protocols (TBRPF [7], OLSR [8])
that have been proposed for standardization in the IETF
working group on mobile ad-hoc networks (MANET).
The performance evaluation has been done in the ns2
simulation platform [9], using the code of DSR, AODV
and TBRPF provided with the simulator. The TBRPF
code conforms to version 4 of IETF draft of TBRPFE. For
OLSR, we have used the code available from INRIA [10]
and have added the code for handling link-layer notifi-
cations of adjacent link-failures. The specifications of the
OLSR code match those in version 3 of OLSR IETF draft.
The constants used for DSR, AODV and TBRPF are the
same as in the original code, while the constants given in
Table 1 have been used for OLIVE. The AODV and DSR
codes conform to their latest implementations available in
ns2 [9].

The link layer implements the IEEE 802.11 distributed
co-ordination function (DCF) for wireless LANs. The

TABLE 1
CONSTANTS OF OLIVE

Constants Value
active_route_timeout 50s
predecessor_lifetime 2 X active_route_timeout

olive_rreq_gap_time 04s
olive_rrep_gap_time 04s
rerr_ack_wait 0.5s
reply_ack_wait Is

one_hop_traversal 0.1s

frreq_time_out_value | 2Xone_hop_traversal X tot_hops

broadcast packets are sent unreliably and are prone to
collisions. The physical layer approximates a two-Mbps
DSSS radio interface The radio range is 250m and for all
the simulations the run length is 600 seconds.

TBRPF, DSR, AODYV, OLSR and OLIVE use link layer
indications about the failure of links when data packets
cannot be delivered along a particular link. Except for the
notification of the link layer about links going down, none
of the protocols has any other interaction with the lower
layer. In particular, promiscuous listening was disabled
for both DSR and OLIVE. ARP has also been disabled
and, for the sake of simplicity, the IP addresses of the
nodes are used as the MAC addresses.

For our simulations we have 50 nodes moving over a
rectangular area of 1500mx300m. The movement of the
nodes in the simulation is according to the random way-
point model [11]. Values of pause time used are O, 15,
30, 60, 120 and 300 seconds.

Each flow is a peer-to-peer constant bit rate (CBR) flow
and the data packet size is kept constant at 512 bytes.
Each flow continues for 200 seconds and after the termi-
nation of the flow, within 1 second, the source randomly
chooses another destination and starts another flow, which
again lasts for 200 seconds.

The following six metrics are used to compare the per-
formance of the routing protocols:

Packet delivery ratio: The ratio between the number of
packets sent out by the sender application and the number
of packets correctly received by the target destinations.

Control packet overhead: The total number of control
packets sent out during the simulation. Each broadcast
packet is counted as a single packet.

Control byte overhead: The total number of control
bytes used in the control packets.

Total number of MAC packets: The total number of
packets sent at the link-layer for exchange of routing in-
formation. They include RTS, CTS, the control packets
and the ACKSs.

Optimality of paths: Ratio of the actual number of hops
to the optimal number of hops possible based on the given
topology.

Average end-to-end delay: The end-to-end delay mea-
sures the delay a packet suffers after leaving the sender
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Fig. 4. Performance in a 50-node network with 0 second pause time and 20 sources with varying packet load

and then arriving at the receiver application. This includes
delays due to route discovery, queueing at IP and MAC
layers, and propagation in the channel.

4.1 Effect of Traffic Load

Fig. 4 shows the results of each protocol under varying
packet loads when the number of sources is 20 and nodes
are constantly moving.

The control overhead of OLIVE remains unchanged
with the increase of load. DSR, TBRPF and OLSR ex-
hibit similar behavior. However, AODV’s control over-
head increases with load. Even when nodes are phys-
ically close, links are assumed to fail when data pack-
ets cannot be delivered along those links. Such per-
ceived link failures affect AODV drastically, because it
generates network-wide RREQs with increased sequence
numbers that in many cases have to be resolved by the
destinations. The number of MAC-level control pack-
ets increases slightly for DSR throughout all scenarios
while for OLIVE it increases only when the network load
is maximum (41 kbps/source or 10 packets/sec/source).
This is because of the increased number of broadcast
RTSs, for which there is no collision avoidance mecha-
nism. Hello packets form the major percentage of packets
for TBRPF or OLSR, and their control overheads remains
are constant and very similar.

In terms of application-oriented metrics, like through-

put or network delay (Fig. 4(d) and Fig. 4(e)), the perfor-
mance of OLIVE is the best and is almost unaffected by
network load. On the other hand, the performance of DSR
and AODV degrade significantly. This can be attributed
to the opportunistic use of plausible paths in OLIVE. In
TBRPF, DSR or OLSR, when original paths break, pack-
ets are rescheduled along alternate paths, without ascer-
taining their feasibility. This leads to higher waiting times
in queues and more congestion. In contrast, OLIVE uses
FRREQs and FRREPs when active routes are broken to
test the viability of alternate paths, and data packets are
forwarded only if new paths are usable.

OLIVE has a high range of delay values, like DSR,
TBRPF, OLSR or AODV, which implies that data packets
in OLIVE also have long waiting times at the link-layer
interface. However, its 95 percentile delay value is far
lower than that of DSR, OLSR, AODV or TBRPF, which
shows that it has better average delay performance. Net-
work topology information in OLIVE also helps in find-
ing shorter paths (Fig. 4(f)).

For TBRPF, data packets are always re-scheduled
along alternate routes, when the original paths break.
Therefore, they get circulated throughout the network and
there is considerable packet loss due to looping and TTL
timeout. In TBRPF, all the control packets are broadcast.
Therefore, for sending any TBRPF control packet, no ex-
tra MAC layer handshake is necessary. However, because
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the case for OLSR, whose proactive mechanism of route
maintenance is almost similar to that of TBRPE. This is
also true for AODYV, where broadcast RREQs constitute
the majority of its signaling.

4.2 Effect of Mobility

Fig. 5 and Fig. 6 show the performance of the proto-
cols under varying mobility of network nodes for a 50-
node network with 10 sources and 20 sources, respec-
tively, with each source generating packets at the rate of
4 packets per second.

Control overhead in OLIVE, DSR, and AODV de-
creases with lesser node mobility. Higher mobility im-
plies higher rate of route failure leading to higher control
overhead. For TBRPF and OLSR, the control overhead
remains almost unchanged with mobility, because they
rely on periodic hello packets sent independently of the
reliability of links. For 10 and 20 sources, the control
overhead of OLIVE in terms of both bytes and packets is
less than DSR, AODV, TBRPF or OLSR.

Again, because the majority of control packets in
AODYV is broadcast RREQs that do not use RTS/CTS
handshakes, the difference between AODV and OLIVE
in terms of MAC layer control packets (Fig. 5(c) and
Fig. 6(c)) is not as significant as the difference in the num-
ber of network-level control packets.

In general, when the number of sources is ten, the on-
demand routing protocols use fewer network layer control
packets compared to proactive routing protocols, while
for the high mobility scenarios with higher number of
sources proactive routing protocols start performing bet-
ter. In all scenarios, OLIVE has less control overhead
than DSR or AODV.

The number of data packets delivered is similar in
OLIVE, TBRPF, and AODV (Fig. 5(d) and Fig. 6(d)).
DSR suffers a higher loss of data packets in all scenar-
ios, because of the use of stale routing information in the
RREPs. OLSR suffers considerable loss of data packets
due to routing loops and TTL timeouts.

In terms of path optimality (Fig. 5(f) and Fig. 6(f)),
OLIVE is best among all the on-demand routing proto-
cols. However, because TBRPF uses hello packets, it can
learn about nodes that have moved before the on-demand
protocols that depend on reception of control packets to
detect neighbor connectivity.

In all our experiments we have found that the paths in
DSR tend to be longer than the paths in AODV, contrary
to the results in [11], [12]. The reason is likely to be the
absence of promiscuous listening in DSR.

In terms of delay (Fig. 5(e) and Fig. 6(e)), OLIVE per-
forms better or equal to the other protocols. Queueing at
the link layer is the main cause for the delay experienced
by data packets in each of the routing protocols.

4.3 Bandwidth Lost to Routing Loops

We quantify the amount of bandwidth wasted in each
routing protocol due to packets going in loops or staying
in the network for a considerable time. The experiment is
done for low to heavy load scenarios when the number of
sources is 20.

Fig. 7 shows the number of packets that have been ei-
ther sent along a loop, or dropped due to TTL timeouts or
or loop detection. Loops can be detected in two ways in
any routing protocol in which no traversed path informa-
tion is present in the packet headers: (a) the source finds
that the data packet has come back to it, and (b) a forward-
ing node detects that it is passing the packet to a node that
has actually forwarded the data packet.

In our experiments, packet traces are used to detect the
number of packets that have gone in loops. From Fig. 7,
we see that bandwidth is wasted in TBRPF and OLSR due
to looping and the effect becomes more pronounced at
heavier loads. This is because neither OLSR nor TBRPF
ensures instantaneous loop freedom, and exchange un-
reliable control packets that renders longer convergence
times. These two routing protocols have very few packets
dropped due to non-availability of routes, which implies
that the topology information always helps data packets to
be re-scheduled along alternate paths. However, in heavy-
load scenarios, when the links fail frequently due to con-
gestion, alternate paths are not always the correct choices.

The control packet exchanges in OLIVE and AODV
ensure instantaneous loop freedom. In DSR, the source
routes carry information about path traversed and the path
to be traversed; therefore, loops can be easily detected.
Under high load, some data packets go into loops in DSR
when data packets are salvaged at intermediate nodes.
When an intermediate node in DSR finds that the next
link in the source route is no longer available, it salvages
the data packets by re-routing the packet using its own
cached routing information. Because path traversal infor-
mation is not checked for re-routing, loops can form.

Though AODV and OLIVE maintain instantaneous
loop freedom of routing tables in the simulations we ran,
looping of packets can still occur during the transient
states of the routing tables due to inconsistent views of
neighboring links. However, this effect is not persistent,
and is unavoidable in order to deliver packets to their des-
tinations.

5 Conclusions

We have presented the on-demand link-vector (OLIVE)
protocol, which is the first protocol to ensure loop-
freedom at every instant using link-state information on
demand, while allowing destination-based hop-by-hop
routing instead of requiring source-routed data packets.

We have shown that selecting paths on-demand cannot
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be approached based on the “source trees” used in proac-
tive routing protocols. Therefore, routers in OLIVE ex-
change path information and these paths combine to give
a partial network topology. A path selection algorithm is
then run to compute paths to destinations and these paths
aggregate to form source graphs. Source graphs are re-
ported incrementally in the form of separate paths.

OLIVE has been shown to be loop-free at every instant
and to find correct paths to destinations in finite time.
Loop-freedom is attained in OLIVE by ensuring that a
node always knows which nodes use it as next hop to
an active destination, called predecessors for that desti-
nation, and by allowing localized route repairs using al-
ternate paths whose length is not longer than the paths an-
nounced to its predecessors for the destination. To ensure
that routes are installed corresponding to obsolete alter-
nate paths, a node unicasts route requests along an alter-
nate path, so that its validity can be verified by a route
reply.

Our simulation results show that OLIVE performs
much better than the routing protocols being discussed
for standardization in the IETF MANET working group,
in terms of control overhead, throughput, and delay.
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