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ABSTRACT OF THE DISSERTATION 

 

Resistance to Programmed Death Protein 1 Blockade  

Mediated by Somatic JAK1/2 Mutations 

 

by 

 

Daniel Sanghoon Shin 

Doctor of Philosophy in Molecular, Cellular and Integrative Physiology 

University of California, Los Angeles, 2017 

Professor Antoni Ribas, Chair 

 

Blocking programmed death protein 1 (PD-1) negative immune receptor has produced 

remarkable progress in treating patients with advanced cancers, such as melanoma, lung, head 

and neck, kidney, bladder, Hodgkin’s disease, mismatch repair deficient colon cancer, liver and 

ovarian cancer with high mutational burden, etc. However, only subset of patients are 

benefitting from this therapy and substantial portion of patients have relapsed after long durable 

response. Therefore, it is critical to understand its resistance mechanisms to improve 

therapeutic efficacy and select right patients for checkpoint blockade immunotherapy. We have 

identified mutations associated with acquired resistance among 4 patients with advanced 

melanoma, including JAK1/2 that resulted in loss of adaptive programmed death protein ligand 

1 (PD-L1). We reasoned that this could occur among patients with primary resistance. JAK1/2 

inactivating mutations were found in tumor biopsies of 1 of 23 patients with melanoma and in 1 

of 16 patients with mismatch repair deficient colon cancer treated with PD-1 blockade. Two out 

of 48 human melanoma cell lines had JAK1/2 mutations led to loss of PD-L1 expression upon 

interferon gamma exposure mediated by disabled interferon gamma receptor signaling pathway. 



	 iii	

JAK1/2 loss-of-function alterations in TCGA confer adverse outcomes in patients. sh-RNA 

screening and chromatin immunoprecipitation approach on interferon signaling genes for 

selected melanoma cell lines revealed JAK1/2, STAT1/2/3 and IRF-1 are the key molecules 

involved in PD-L1 expression. RNA-seq analyses for tumors enriched with these genes were 

associated with clinical response to PD-1 blockade. Therefore, we propose that JAK1/2 loss-of-

function mutations are a genetic mechanism of lack of reactive PD-L1 expression and response 

to interferon gamma, leading to primary or acquired resistance to PD-1 blockade therapy.  
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1.1 Cancer immunotherapy targeting immune checkpoint 

Systemic chemotherapy has been main therapeutic armamentarium for patients with advanced 

cancers since 1940’s when Sydney Farber introduced anti-folate agent to treat pediatric 

leukemia patients. Many decades of trials and fails, some of the cancers, especially hematologic 

malignancies could be cured by various combination of systemic chemotherapeutic agents. 

However, it comes with significant toxicities with marginal benefit for most of patients with 

advanced solid malignancies. More recently, field of oncology had major advancement to treat 

patients with targeted agents. Some of cancers, such as BRAF mutated melanoma or EGFR 

mutated non-small cell lung cancer have somatic mutations or overexpression on tyrosine 

kinases that driving cancer cells to grow (1-3). Over a decade of studies, targeted agents have 

shown improved response rate and survival and now these agents are readily available in the 

clinic. However, the majority of patients will develop resistance to these targeted agents with 

limited duration of response (4-7).  

 

The concept of utilizing our immune system to fight cancer was introduced more than a century 

ago when Dr. Coley observed tumor regression with infection after surgery. Since then, efforts 

to activate the immune system to treat patients with advanced cancers largely had been 

unsuccessful until the first immune checkpoint blockade agent, anti-Cytotoxic T lymphocyte 

Antigen 4 (CTLA4) antibody (ipilimumab), was approved for patients with advanced melanoma 

in 2011 (Figure 1) (8, 9).  Shortly after anti-CTLA4 antibody was approved, programmed death 

protein 1 (PD-1) blocking antibodies (pembrolizumab and nivolumab) were approved for  
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patients with advanced melanoma and non-small cell lung cancer in 2014 and its indication has 

been grown to bladder, head and neck, Hodgkin disease, kidney, mismatch repair deficient 

colorectal cancer and it continues to growing (10-15). It is considered a major breakthrough in 

cancer therapeutics given unprecedented durable response rate for patients (Figure 2 and 

Figure 3) (16, 17) with various types of advanced cancers.  Even with this remarkable success, 

only subset of patients benefitting from this therapy and the field has been putting tremendous 

efforts to identify biomarker to predict response and improve therapeutic efficacy with various 

combinatorial strategies (18).  

 

1.2 Blockade of PD-1/PD-L1 axis 

	
	
Figure 1. T cell activation in the lymph node. Two immunologic signals are required for T cell activation in the 
lymph node: stimulation of the T cell receptor (TCR) by the MHC (immunologic signal 1), and stimulation of 
CD28 by the B7 costimulatory molecule (immunologic signal 2). However, binding of the B7 costimulatory 
molecules to CTLA-4 blocks immunologic signal 2, and therefore blocks T cell activation. Antibody blockader of 
CTLA-4, for example, by ipilimumab, derepresses signals by CD28, permitting T cell activation. Ribas A, N Eng 
J Med 2015;	373:1490-1492	
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A. Biology 

PD-1 (also known as CD279) 

is a type I transmembrane 

receptor protein consisted of 

268 amino acids, belongs to 

the immunoglobulin 

superfamily (19). It is a co-

inhibitory immune checkpoint 

molecule expressed at the 

surface of T cells during 

thymic development and 

several types of 

hematopoietic cells following 

T cell receptor (TCR) 

signaling and cytokine 

stimulation (20, 21). 

Persistent PD-1 expression 

on T cells may result in T cell 

exhaustion that 

characterized by inability to 

secret cytolytic molecules, such as perforin/granzyme and pro-inflammatory cytokines, such as 

interferon gamma (IFN-γ), interleukin-2 (IL-2) and tumor necrosis factor alpha (TNF-α) (22-25).  

 

PD-1 has two binding ligands, PD-L1 (B7-H1, CD274) and PD-L2 (B7-DC, CD273), with PD-L1 

being better characterized in regulation (25, 26). PD-L1 is inducibly expressed on both 

hematopoietic cells and non-hematopoietic cells with specific stimulation (20). Cytokines, such  

	
	
Figure 2. Kaplan-Meier Estimates of progression-free and overall 
survival. Shown are rates of progression-free survival as of September 3, 
2014 (Panel A), and overall survival as of March 3, 2015 (Panel B), in the 
intention-to-treat population among patients receiving pembrolizumab 
every 2 weeks (Q2W) or every 3 weeks (Q3W) or ipilimumab. Robert C et 
al. N Eng J Med. 2015 Jun 25;372(26):2521-32.  
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as IFN-γ or TNF-α can induce 

its expression on T cells, B 

cells, endothelial cells and 

epithelial cells that involved in 

maintenance of peripheral 

tolerance. Inducible PD-L2 

expression is somewhat limited 

to dendritic cells (DCs), 

macrophage, mast cells and 

some B cells with IL-4 and 

interferons.  

 

 

B. Regulation of PD-1 and its ligands in human malignancy 

Persistent expression of PD-1 on T cells is highly suggestive of T cell exhaustion that 

associated with decreased function or so called ‘anergic state’. This has been observed in many 

types of tumor infiltrating lymphocytes (TILs) that potentially associated with poor prognosis (27-

30). It signifies the important role of PD-1 molecule in mediating anti-tumor activity. PD-L1/L2 

expression also showed its prognostic role in some cancers (31-34), PD-L1 being the major 

ligand that associated with tumor size, lymph node involvement and overall survival. As 

discussed above, tumor PD-L1 can be expressed with cytokine stimulation, especially IFN-γ, 

which is particularly important in tumor microenvironment that is most likely associated with T 

cell infiltration. This is the mechanistic rationale to target PD-1/PD-L1 axis that will be discussed 

below. PD-L1 also can be expressed with various oncogenic processes (36-40) and its 

expression without T cell association is unknown significance yet in the context of PD-1 

blockade immunotherapy.   

	
	
Figure 3. Maximum Percentage of Change From Baseline in Sum of 
the Longest Diameter of Each Target Lesion in the Full Analysis 
Set. Reports maximum percentage change from baseline in the sum of 
the longest diameter of each target lesion, as assessed by RECIST v1.1 
by independent central review for patients who had measurable disease 
at baseline by the same and at least 1 postbaseline tumor assessment 
(full analysis set, N = 510). Target lesions were defined as all measurable 
lesions up to a maximum of 2 lesions per organ and 5 lesions in total. 
Changes greater than 100% were truncated at 100%. Ribas A et al, 2016 
JAMA Apr 19;315(15):1600-9 
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C. Mechanism of action of PD-1 blockade 

As discussed above, up-regulation of PD-L1/L2 expression in the presence of activated T cells 

results in immunosuppressive tumor microenvironment (so called ‘adaptive immune resistance’) 

that is the mechanistic basis of targeting PD-1/PD-L1 axis (Figure 4) (9). Binding of PD-L1/L2 to 

PD-1 receptor leads to phosphorylation of the cytoplasmic domain tyrosines and recruitment of 

Src homology 2- containing tyrosine phosphatase (SHP-2) to ITSM (Immunoreceptor Tyrosine-

based Switch Motif). SHP-2 dephosphorylates TCR-associated CD3ζ and ZAP70 that result in 

inhibition of downstream signaling, including PI3K and AKT activity that disrupts glucose 

metabolism and IL-2 and other cytokine secretion (24, 41).  

 

Monoclonal antibodies targeting PD-1/PD-L1 axis to enhance T cell function have been tested in 

the clinic and produced the unprecedented clinical activity as discussed above. Tumeh et al 

reported how PD-1 blockade works in patients with advanced melanoma by evaluating tumor 

biopsies at baseline and on treatment. It showed the density of tumor infiltrating CD8+ T cell at 

	
	
Figure 4. T cell activation in tumor milieu. During long-term antigen exposure, such as occurs in the tumor 
mileu, the programmed death 1 (PD-1) inhibitor receptor is expressed by T cells (Panel A); it suppresses the 
effect of TCR on T cell activation. Blockade of PD-1 or its ligand (Panel B) (e.g., pembrolizumab or nivolumab) 
depresses TCR signaling, thereby permitting T cell activation. Ribas A, N Eng J Med 2015; 373:1490-1492 
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the tumor invasive margin was strongly predictive to clinical response (42). It demonstrates that 

PD-1 blockade induces responses by inhibiting adaptive immune resistance that is consistent 

with scientific rationale to target this axis.  

 

1.3 Biomarker/Patient selection for PD-1/PD-L1 blockade 

Identifying who would be likely responding to PD-1 blockade therapy has been important subject 

over the past several years. Yet, there is no defined maker that can robustly predict response. 

Tumor baseline PD-L1 expression has been pursued as a potential marker to select patient 

based on high correlation between its clinical responses. Non-small cell lung cancer 

incorporates PD-L1 expression level for one of the PD-1 antibodies (pembrolizumab) based on 

its clinical data. However, clinical responses have been observed among patients who were 

labeled as negative for PD-L1 expression in tumor biopsies prior to therapy (42, 43). This 

implies PD-L1 expression is dynamic and tumor heterogeneity that cannot be captured within 

one biopsy. This also implies complex interaction between many other players in tumor 

microenvironment, including immune cells (lymphoid and myeloid cells), tumor cells and stromal 

element as well (44, 45). Non-standardized PD-L1 staining also makes it hard to compare its 

expression level cross the many clinical trials. Many efforts are underway to define better way to 

identify patients who would response or not response to PD-1 blockade by taking into accounts 

this complex equation in tumor microenvironment.  

 

1.4 Resistance mechanisms to PD-1 blockade 

Along with biomarker search endeavor, identifying resistance mechanism has been prime 

importance to overcome the resistance with better therapeutic strategies and patient selection 

as well. As Tumeh et al showed, T cell infiltration into tumor microenvironment is important 

factor to predict response. In other words, if the tumor microenvironment is devoid of T cells, the 

chances of having response from this therapy is low. Spranger et al provided the mechanistic 

7



insight why some cancers are devoid of T cells, via increased WNT/ß-catenin signaling that 

results in down regulation of CCL4 expression which is the main chemotactic cytokine (46). 

Hugo et al studied transcriptome data from patients with advanced melanoma who participated 

anti-PD-1 clinical trial. This study showed that tumors with innate resistance to PD-1 therapy 

display a transcriptional signature indicating concurrent up regulation of genes involved in the 

regulation of mesenchymal transition, cell adhesion, extracellular matrix remodeling etc (47).  

 

We are now beginning to understand resistance mechanisms with these studies and clinical 

studies are already addressing how we can overcome the T cell exclusion in tumor 

microenvironment by testing various combinatorial treatment with PD-1 blockade. I started 

projects with the aims to understand the biology of PD-L1 expression in melanoma cell lines to 

define its role in mediating response and resistance to PD-1 blockade by utilizing clinical 

samples from anti-PD-1 antibody clinical trial and cell lines panels established in our laboratory.  
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5.1 Conclusion 

Our studies have shown the significant role of interferon signaling in mediating anti-tumor 

activity to immune check point immunotherapy. Interferon gamma signaling has pleotropic 

effects on cancer cell, including increased MHC (Major Histocompatibility Complex) class I and 

proteasome expressions, increased chemokine expression and growth inhibition/apoptosis. 

Benefit of inducible PD-L1 expression in response to interferon (T cell attack) outweighs other 

negative effects (immune sensitizing effects) on cancer cell survival. However, this selective 

pressure is flipped when the PD-1/PD-L1 axis is blocked by therapeutic application (acquired 

resistance) or immunoediting processes before therapeutic application (primary resistance). 

When cancer cell loses its adaptive 

Pd-L1 expression by disabled 

interferon signaling, we may think 

T cells may have better anti-tumor 

activity due to absence of PD-

1/PD-L1 interaction. However, as 

Figure 1 showed, when cancer cell 

loses its interferon signaling, 

cancer cells become insensitive to 

T cell attacks (T cell ignorance). 

Therefore, treat those tumors with 

anti-PD-1/L1 antibodies would be 

ineffective and we propose that 

JAK1/2 loss of function mutations 

are a genetic mechanism of loss of 

adaptive PD-L1 expression that 

	
 
Figure 1. Impact of JAK mutations on IFNγ signaling. A, The 
binding of IFNγ to the interferon gamma receptor 
(IFNGR1/IFNGR2) activates downstream signaling via JAK1 and 
JAK2. Upon phosphorylation, a specific transcription profile will be 
initiated by a homodimer of the transcription factor STAT1, which 
will bind to the GAS promoter to induce the expression of IFN-
stimulated genes. This transcription profile will result in cell-cycle 
arrest and an upregulation of MHC-I molecules and PD-L1 to the 
cancer cell outer membrane. B, Loss-of-function mutations of JAK1 
or JAK2 can impair IFNγ downstream signaling and therefore allow 
for cancer cell proliferation, T-cell ignaorance by lack of MHC-I 
upregulation, and inefficacy of anti–PD-1/PD–L1 therapy due to 
absence of PD-L1 expression. 
Aurelien Marabelle et al. Cancer Discov 2017;7:128-130 
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leads to primary or acquired resistance to PD-1 blockade.  

 

5.2 Future direction 

As we have shown, the genetic alteration of JAK1/2 that leads to loss of adaptive PD-L1 

expression and loss of interferon response is low.  However, the frequency of loss of interferon 

signaling in cancer cell is likely under-appreciated considering epigenetic alteration as Bob 

Schreiber and his colleague showed that epigenetic inactivation of JAK1 or JAK2 allowed 

experimental carcinogen-induced cancers and some established human cell lines, especially in 

one of prostate cancer cell lines, to avoid immune response (1-3). Epigenetic modification is 

now increasingly recognized as one of the complex adaptations of cancer cells use to evade 

immune attack. Currently the strategy to prime cancer cells with epigenetic modifiers before 

immunotherapy, in particular with TCR engineered adoptive T cell transfer and checkpoint 

blockade, is being 

tested in the clinic 

(NCT01928576). 

Epigenetic modifiers 

appear to induce 

tumor antigen 

expression and recent 

studies show that it 

induces endogenous 

retroviral double 

strand RNA 

expression that 

triggers interferon 

	
 
Figure 2. PD-L1 response to interferon gamma. Arrows represent average 
change from baseline upon interferon gamma exposure. Shades show the full 
range of measured values (n=2 or 3). Red stars indicate cell lines with no response 
and black stars indicate cell lines with poor response to interferons. Red: BRAF 
mutated; blue: NRAS mutated; green: BRAF and NRAS mutated; black: BRAF wild 
type, NRAS wild type. M395 harbored JAK1 loss of function mutation, M368 
harbored JAK2 loss of function mutation, M412B did not harbor mutations in 
interferon signaling genes. (Shin, et al, Cancer Discover, 2016)	
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response in cancer cell (4, 5). Epigenetic modifiers also induce PD-L1 expression (6, 7). Our 

screening on 48 human melanoma cell lines showed variable degrees of PD-L1 up-regulation in 

response to interferon gamma, categorized into good (80%), poor (10-15%) and non-responding 

cell lines. Among 3 of the non-responding cell lines, we reported JAK1 or JAK2 loss of function 

mutations, and the third cell line did not have any loss of function mutations on JAK-STAT 

signaling genes, yet it did not up-regulate PD-L1 expression at all. These data indicate the 

potential role of epigenetics in regulating interferon response to those poorly responding and 

non-responding cell lines without genetic alterations.  

 

With these observation, I am currently undertaking epigenetic profiling of melanoma cell lines 

based on its adaptive PD-L1 expression in response to interferon by utilizing cutting edge 

methodologies, such as ATAC (Assay for Transposase-Accessible Chromatin)-seq and 

fractionated RNA-seq (chromatin associated RNA), etc. These will be particularly useful to 

interrogate the active transcriptional programs along with accessible genome in each melanoma 

cell line in response to interferons. This ongoing work has great potential to characterize how 

cancer cells react to interferons which is a central question needs to be answered in order to 

understand response and resistance to immunotherapy.  
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