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ABSTRACT OF THE DISSERTATION

Connecting the dots between DNA, proteins, and disease:
Identifying genetic variants and proteins relevant for studying venous
thromboembolism

by

Terry Solomon

Doctor of Philosophy in Biomedical Science

University of California, San Diego, 2018

Professor Kelly Frazer, Chair

In order to prospectively identify individuals at risk for disease, it is important

to identify markers that can be reliably measured and to understand the relation of

these markers to the disease. For venous thromboembolism (VTE), large-scale

genetic studies have had limited success identifying genetic variants and proteins

XViii



that contribute to disease risk. An alternative method is to focus on the intermediate
steps between genetics and disease, such as protein levels. In this dissertation, we
set out to identify genetic variants that contribute to blood protein levels and then
identify blood proteins that can be used as biomarkers for venous
thromboembolism. For the whole dissertation, we utilize the Tromsg Study, a single-
center, prospective, study of the inhabitants of Tromsg, Norway. These individuals
allow us to identify genetic variants and proteins that are associated with VTE before
any symptoms of the disease start, which is key when trying to pre-emptively identify
and treat individuals that are at risk for developing VTE. In chapter two, we measure
cardiovascular-relevant serum proteins using enzyme-linked immunosorbent
assays. We then identify common and rare genetic variation that is associated with
the levels of these proteins. In chapter three, we measure the plasma proteome
using tandem-mass-tagged mass spectrometry. We then identify common and rare
genetic variation that is associated with the levels of these proteins. We further
investigate the underlying mechanisms of how genetic variation regulates levels of
plasma proteins. In chapter four, we utilize the same plasma proteome that was
measured in chapter three in order to identify proteins that are associated with risk
of venous thromboembolism. Together, this work advances our understanding of
how genetic variants ultimately result in diseases, via their effects on intermediate

protein levels.
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Chapter 1: Introduction

Chapter 1.1: Background and Introduction

Venous thromboembolism (VTE) is comprised of deep vein thrombosis,
where blood clots form in the deep veins, and pulmonary embolism, where these
clots travel to the lungs, obstruct blood flow, and can result in death. VTE has an
annual incidence rate of 1-2 per 1000 persons. Treatment involves prescribing blood
thinners to prevent clotting, although this can lead to complications such as internal
bleeding. Therefore, it is highly important to stratify individuals based on their
molecular risk for VTE in order to decrease the economic, health, and morbidity
burden that this disease has on society.

Often, stratifying high-risk patients is done by identifying protein relevant for
the disease. In venous thromboembolism, the key proteins known to be involved are
part of the coagulation cascade, a step-wise enzymatic procedure that results in the
formation of a fibrin clot (Figure 1.1). The enzymes, cofactors, and activators of this
pathway all circulate in the bloodstream inactive until an injury is sensed and the
entire cascade is set into motion. Beyond the proteins involved in coagulation, there
are only a few other proteins known to be involved in the etiology of VTE, such as
GDF-15 and D-Dimer that have been identified as predictive biomarkers. Previous
efforts to identify biomarker have been limited by the number of proteins tested and

the limited number of studies that prospectively study VTE.
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Figure 1.1 Coagulation Cascade from (Adams & Bird, 2009)

An alternative to regularly drawing blood in order to identify individuals with
a high-risk for VTE is to identify genetic risk factors. This would enable patients to
get genotyped for predictive variants once, and then based on their results, be
stratified into high-, medium-, or low-risk categories that determine biomarker
measurement and treatment schedules. Traditionally, large-scale studies such as
genome-wide association studies (GWAS) have been performed to identify any

genetic variants that are associated with having VTE. To date, 23 genetic variants



that are located in 15 loci have been found to be associated with VTE risk (Tregouet
& Morange, 2018). From the largest VTE GWAS to date (7,500 cases and 50,000
controls), Germain et al. identified 8 of these loci that had common genetic variants
associated with VTE (Germain et al., 2015). It is thought that it would take vastly
larger studies and variants with large effect sizes to be able to find associations
using a GWAS approach (Tregouet et al.,, 2016). Thus, researchers should

complement GWAS studies with other study types to identify risks for VTE.

One method that requires fewer samples is to study an intermediate
phenotype instead of the final phenotype of venous thromboembolism. This
technique enables researchers to study the genetic regulation of the underlying
mechanisms of the disease, such as gene expression, protein levels, and biomarker
or pathway-level impacts. Investigating these intermediate traits can be done
utilizing quantitative trait loci (QTL) studies. There has been a flood of studies that
focus on the effects of genetic variants on gene expression (expression quantitative
trait loci — eQTLs) due to the relative ease of measuring the entire transcriptome.
Recently, there have been a handful of studies that focus instead on blood protein
levels, a step closer to disease than gene expression while still retaining the
advantages of QTL studies. These type of studies have been limited by the relative

difficulty in measuring a vast amount of proteins in a fiscally feasible manner.

The work of this dissertation focuses on the genetic regulation and disease
contributions of serum and plasma proteins. In the second chapter, | investigate how

genetic variation contributes to the serum levels of cardiovascular-related proteins.



In the third chapter, | investigate how genetic variation contributes to levels of the
entire plasma proteome and the mechanisms by which these genetic variants are
acting. In the fourth chapter, | identify plasma proteins that are biomarkers for
venous thromboembolism risk. Together this work advances our understanding of
how genetic variants ultimately result in diseases, via their effects on intermediate

protein levels.
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Chapter 2: Associations between common and rare exonic genetic variants and
serum levels of twenty cardiovascular-related proteins - the Tromsg Study
Chapter 2.1: Abstract

Background: Genetic variation can be used to study causal relationships between
biomarkers and diseases. Here, we identify new common and rare genetic variants
associated with cardiovascular-related protein levels (protein quantitative trait loci,
pQTLs). We functionally annotate these pQTLs, predict and experimentally confirm a
novel molecular interaction and determine which pQTLs are associated with diseases and
physiological phenotypes.

Methods and results: As part of a larger case/control study of VTE, serum levels
of 51 proteins implicated in cardiovascular diseases were measured in 330 individuals
from the Tromsg Study. Exonic genetic variation near each protein’s respective gene (cis)
was identified using sequencing and arrays. Using single site and gene-based tests, we
identified 27 genetic associations between pQTLs and the serum levels of 20 proteins:
14 associated with common variation in cis, of which six are novel (i.e. not previously
reported); seven associations with rare variants in cis, of which four are novel; and six
associations in trans. Of the 20 proteins, 15 were associated with single sites and seven
with rare variants. cis-pQTLs for kallikrein and F12 also show trans associations for
proteins (UPAR, kininogen) known to be cleaved by kallikrein as well as with NTproBNP.
We experimentally demonstrate that kallikrein can cleave proBNP (NTproBNP precursor)
in vitro. Nine of the pQTLs have previously identified associations with 17 diseases and/or

physiological phenotypes.



Conclusions: We have identified cis and trans genetic variation associated with the
serum levels of 20 proteins and utilized these pQTLs to study molecular mechanisms

underlying diseases and/or physiological phenotypes.

Chapter 2.2 Clinical Perspective

Cardiovascular diseases, including coronary artery disease and venous
thromboembolism, are the leading cause of death worldwide. Biomarkers are important
tools to diagnose or measure risk of disease, but the causal relationship between
biomarkers and diseases is often not clear. Genetic variants that affect levels of protein
biomarkers could be used to examine causal relationships between biomarkers and
diseases and to provide mechanistic insight into disease. In this study, we investigated
whether genetic variants were associated with the levels of 51 serum proteins, 17 of which
we had previously identified as predictors for myocardial infarction in the Tromsg Study.
We analyzed genotype data from exome sequencing and exome arrays and investigated
whether common and rare genetic variation located near the gene (cis) that coded for
each protein was associated with protein levels. We identified 13 proteins associated with
common cis variants and 7 proteins associated with rare cis variation; 8 of these proteins
we had previously identified as biomarkers. To identify pathway-level regulation, we
tested whether these significantly associated cis variants were also associated in trans
with the levels of the other 50 proteins in this study. We identified that genetic variation
affecting the levels of kallikrein, a protease involved in coagulation, also affect the levels
of NTproBNP, a known biomarker for heart failure. We experimentally show that kallikrein

can cleave proBNP into NTproBNP and BNP. Our study shows that identifying genetic



variants that affect protein levels can provide novel insights and expand our knowledge

of the mechanisms of disease.

Chapter 2.3: Introduction

Recent advances in genetics have yielded an unprecedented number of loci
associated with disease and are beginning to yield mechanistic insight, such as with the
IRX3/5 association with BMI, which revealed brown adipose as an important regulator of
body weight (Claussnitzer et al., 2015). Genetic variation underlying molecular
phenotypes, such as proteins and transcript expression levels, can be important tools in
constructing the effects of genetic variations into pathways, ultimately resulting in
physiological understanding of diseases (Schadt, 2009). Protein levels in particular may
be more informative for understanding disease because there is often a poor correlation
between transcript and protein levels (Anderson & Seilhamer, 1997). Several prior studies
(Johansson et al., 2013; Lourdusamy et al., 2012; Melzer et al., 2008) have systematically
identified genetic variations associated with protein levels and isoforms (protein
guantitative trait loci or pQTLsS). While most studies have focused on common variation
(minor allele frequency 25%), rare variants, which can show strong loss of function
effects, can be useful in understanding causality and pinpointing drug targets, such as
deletion mutations in PSCK9 that abolish the PSCK9 protein and reduce LDL cholesterol
levels (Cohen, Boerwinkle, Mosley, & Hobbs, 2006). Systematic screening for rare

variation influencing a wide variety of proteins, however, has not yet been performed.

Genetic variation is also useful in identifying causal relationships between

biomarkers and diseases using tools such as Mendelian randomization (Lawlor, Harbord,



Sterne, Timpson, & Davey Smith, 2008) and could be used to ascertain how risk factors
differentially affect various diseases, as well as trace causal pathways between risk loci
and disease. We are investigating risk factors for cardiovascular diseases, including
myocardial infarction (MI) and venous thromboembolism (VTE) in the Tromsg Study
(Jacobsen, Eggen, Mathiesen, Wilsgaard, & Njglstad, 2012), a longitudinal prospective
cohort study. We previously assayed 51 cardiovascular-related proteins in 419 first-ever
MI cases and 398 controls in serum collected years prior to the MI event (Wilsgaard et
al., 2015). Of the proteins measured, 17 were predictors for Ml when considered
individually after adjusting for traditional risk factors. Genetic variation associated with
these protein levels could be used to study underlying mechanisms of cardiovascular

diseases.

Here, using whole exome sequencing data and HumanCoreExome BeadChips,
we investigate if genetic variants are associated with the serum levels of the same 51
cardiovascular-related proteins in 330 individuals chosen from the Tromsg Study because
they did or did not go on to develop VTE during the 18 years of follow-up (mean time to
VTE of 9 years). The serum samples were collected at study entry enabling us to identify
pQTLs associated with baseline protein levels. We perform both common and rare
variation association analyses in order to identify cis-pQTLs. Further characterization of
the cis-pQTLs to determine if they also act as trans-pQTLs with any of the other 51
cardiovascular-related proteins, recapitulated well-established physiological relationships
between F12, kallikrein, uPAR, kininogen, and a recent genetic association with
NTproBNP. We experimentally confirmed an inferred physiological interaction from the

trans-pQTLs by showing that kallikrein cleaves proBNP in vitro. We then examine genetic



associations from genome-wide association studies on coronary artery disease (CAD)

and VTE as well as published literature to identify physiological and disease associations.

Chapter 2.4: Methods
Chapter 2.4.1: The Tromsg Study

The Tromsg Study is a prospective, single-site, cohort study of the inhabitants of
Tromsg, Norway. In 1994-1995, 27,158 individuals filled out epidemiological surveys and
donated (non-fasting) blood to the National CONOR Biobank (Jacobsen et al., 2012).
These individuals were followed until 2013, with repeated surveys and identified in
national registries that report various diseases and causes of death. In 2013, we identified
individuals who between 1995 and 2013 had had an incident of VTE or death due to VTE,
regardless of other comorbidities. We chose age and sex-matched controls randomly
from the cohort. These samples were chosen for a currently ongoing case/control study

of VTE. DNA and protein levels were ascertained from the blood collected in 1994.

For this specific study, blood and non-fasting serum samples were collected from
330 healthy individuals (166 males, 164 females) aged 45-75 (Supplemental Table 2.1).
There were 196 individuals diagnosed with VTE between study entry (1994-'95) and the
eighteen-year follow-up period (2013) and 134 controls without development of VTE
during this period. Aspirin usage and other medication information were not collected for
the Tromsg study. DNA was isolated from the blood for genotyping and serum samples

were used to assay protein levels. The regional committee for medical and health



research ethics in North Norway approved the study, and all participants gave informed

written consent.

Chapter 2.4.2: Protein Quantification

Protein levels were quantified using the same methods and at the same time as
our previous Ml study (Wilsgaard et al., 2015), but the samples from people that went on
to develop VTE were not included in that study. Briefly, the literature was searched to
create a list of over 900 cardiovascular-related proteins that might be potential biomarkers
for myocardial infarction and atherosclerosis. This list was then prioritized to 165
candidate proteins, of which 51 had sufficient commercially available reagents (two
antibodies and purified protein for control) in order for Tethys Bioscience, Inc (Emeryville,
CA) to perform successful sandwich ELISAs (Supplemental Table 2.2). Normal Human
Serum from VWR (Radnor, PA), a pool made from 10-16% of Tromsg study samples,
and dilution buffer were used as controls. Each anti-protein antibody was either directly
conjugated to an AlexaFluor 647 or was biotinylated and detected with a streptavidin-
conjugated AlexaFluor 647. Each protein underwent 8 serial dilutions. All samples were
performed in triplicate. The eight-point standard curve was measured in six replicates per
plate. The AlexaFluor 647-labeled antibodies were detected using the Erenna System
(Singulex, Inc., Alameda, CA). Emission from each labeled antibody is measured with a
photon detector. The photon detector transmits an electronic pulse for each photon
detected, and pulses are counted in 1-ms bins. Binned pulses that exceed a six standard
deviation threshold above background are counted. Pulses are recorded as

photons/minute. For each protein, it must be detected in >70% of samples, there must be
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more than 2 logs of standard curve linear range in the ELISA, and there was less than
20% of variance between within-plate replicates for the assay to be considered
successful. All protein levels were quantile normalized and mapped to the normal

distribution using gnorm in R and significance was tested using Z-scores.

Chapter 2.4.3: Variant Identification and Annotation

Genotypes were determined using either the Illumina Infinium HD HumanExome
BeadChip (N=87) or whole-exome sequencing (N=243) using Agilent SureSelect 50 Mb
or V4 capture kits and Illumina TruSeq paired-end 100bp cluster kits. Sequence reads
were mapped to the reference human genome (hg19) using BWA (version 0.7.10-r789)
(Li & Durbin, 2009) with default parameters and then processed using Picard (version
1.115, tool Mark Duplicates) (http://broadinstitute.github.io/picard) and GATK (version
3.3-0, tools RealignerTargetCreator, IndelRealigner, BaseRecalibrator, PrintReads, and
HaplotypeCaller) (Van der Auwera et al., 2013). We previously showed that the
concordance of the exome sequencing and array genotyping data used in this study is
99.33%?2, therefore we felt confident that we could combine the genotypes from both
platforms. Using the array data or information from both on and off-target reads? from the
sequencing data, genotypes were imputed to the whole genome using Beagle (version
4.0, r1398) (Browning & Browning, 2016) and haplotypes from unrelated individuals from
the European (EUR) and East Asian (EAS) superpopulations of the 1000 Genomes

Project Phase 3 (Abecasis et al., 2012) for sites with a combined MAF >1%. Due to the
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difference in coverage and imputation quality between sites that were exome sequenced
or assayed by array, we only used sites that had a call rate of >90% in their respective
datasets, and then added in additional imputation sites passing QC thresholds (allelic r?
of >0.3). These two datasets were combined to get a final VCF with imputed and
genotyped sites for both exome sequenced and exome genotyped individuals. Because
the Tromsg Study is a population-based cohort study, it naturally includes some
proportion of related individuals. Of the 330 individuals assayed, 20 were related to
another individual in the study at an identity-by-descent value of 0.1 for exome sequenced
individuals or 0.2 for arrayed individuals, based on genome-wide data.

All significant common variants were annotated for functional effects using variant
effect predictor (VEP)®, RefSeq genes, the hgl9 reference genome, GeneVisible
(http://genevisible.com/search) and ROADMAPS® data of the 28-state chromHMM for Liver
(E066), HepG2 (E118), and Monocyte (E029) cells. All rare variants (MAF<5%) were

annotated using VEP, RefSeq, and hg19.

Chapter 2.4.4: Statistical Analysis

Associations were performed using EPACTS software (Hyuan Min Kang, 2014).
We used sex, age at study entry, BMI at study entry, genotyping platform, and VTE
case/control status as covariates. Three covariates (age at serum collection, sex and BMI
at serum collection) were associated respectively with ten, ten, and thirteen of the
phenotypes (the 51 protein serum levels) when performing linear regressions, defined as

having an FDR-adjusted P-value <0.05, and were included for consistency.
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For common variants (MAF=1%) we used EMMAX (H. M. Kang et al., 2010) (a
mixed model implemented in the EPACTS software package (Hyuan Min Kang, 2014)),
using g.emmax to test for single-site association. For cis associations we included any
imputed common variants located within the interval surrounding and including the gene
(+/- 500kb from transcript start and stop positions) that encodes the protein(s) being
tested (C3 and C3b share the same locus). For cis-acting-in-trans associations we tested
all significantly associated common cis variants against each of the other 50 phenotypes.
For trans associations we tested the 100,378 common variants found in the 50 intervals

against each of the 51 phenotypes (Figure 2.1).

SKAT-O (Lee, Wu, & Lin, 2012) was used to test clusters of rare variants
(MAF<5%) for association as implemented in EPACTS, using the skat-o version of the
mmskat test. Rare variants were classified in three ways: 1) MAF<5%: all rare variants
located within the gene body and 2kb upstream; 2) Deleterious: all rare variants located
in the gene body and the 2kb upstream region that were annotated as stop-gain, stop-
loss, start-loss, essential splice site disruption, frame-shift causing, or nonsynonymous
using VEP annotations; and 3) CADD-score: all rare variants in the gene or the 2kb
upstream region with a PHRED-scaled c-score >10, as determined by Kircher et al.

(Kircher et al., 2014).

We corrected for multiple testing by permuting the phenotype-genotype
relationship 1000 times and for each permutation performing all variant-phenotype tests
for each association type separately (e.g. cis, cis-acting-in-trans, or trans) (Hirschhorn &
Daly, 2005). We obtained the lowest P-value from each permutation across all

phenotypes and created a null distribution of minimum P-values. An association was
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considered significant (family-wise P<0.05) if the nominal P-value was smaller than 95%

of the null distribution (Supplemental Table 2.3).

To test for multiple, independent variants in the same locus, the top variant was
included as a covariate until there was no longer a significant association (family-wise

P<0.05) detected for that protein.

A. cis B. cis-acting-in-trans C. trans

Locus 1 Locus 2 Locus 3

Figure 2.1 Overview of the three stages of association analyses

A) cis: for each of the 51 phenotypes (protein levels), we tested the variants located in the cis
gene loci for associations with their respective protein level, B) cis-acting-in-trans: we tested the
significant cis-pQTLs from stage 1 for trans effects against each of the 50 other protein levels,
and C) trans: we tested all variants in the 50 cis loci (C3 and C3b share the same locus) for
association with each of the 51 protein levels.

Chapter 2.4.5: Power Calculations

We calculated power using an equation from the Abecasis laboratory
(http://genome.sph.umich.edu/wiki/Power_Calculations: _Quantitative Traits) for
common variants and the SKAT R package (Wu et al., 2011) for rare variants. Power for
the common variant analyses was calculated using a sample size of 300 individuals, a
phenotypic variance (R2) from 0.0 to 1.0, and alpha levels of 6.97 x 10-7 for the cis
association, 7.29 x 10-5 for the cis-acting-in-trans analysis, and 1.25 x 10-8 for the trans
analysis (Supplemental Table 2.4, Supplemental Figure 2.1). Power for the rare variant

analysis was calculated using a sample size of 300 individuals, an effect size (B in
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standard deviations) from 0.0 to 5.0, the default haplotypes (European) for the SKAT
package, a causal MAF cutoff of 5%, a sampling subregion length of 3kb, and alpha levels
of 3.72 x 10-4 for the cis association, 5.30 x 10-5 for the cis-acting-in-trans, and 9.21 x
10-6 for the trans associations (Supplemental Table 2.4, Supplemental Figure 2.2). We
had 80% power to detect effects (R?) down to 0.113 for the cis, common variant analysis
and effects (beta) of 1.25 for the cis, rare variant analysis (assuming that 50% of the
variants are causal), which is comparable to other pQTL studies (Garge et al., 2010;

Johansson et al., 2013; Kim et al., 2013; Lourdusamy et al., 2012; Melzer et al., 2008).

Chapter 2.4.6: Clinical and Molecular Phenotype Association

Significant pQTLs from this study were queried against the eQTLs found by Schadt
et al. (Schadt et al., 2008) in liver cells and the GTEx database (Consortium, 2013)
(version 4, build 200, accessed at http://www.gtexportal.org/home/) for all tissue types.
Additionally, we determined if they (or a variant in LD) overlapped any of the variants
identified as pQTLs in five similarly-sized independent studies that investigated protein
levels in serum (Melzer et al., 2008) or plasma (Johansson et al., 2013; Kim et al., 2013;
Liu et al., 2015; Lourdusamy et al., 2012; Melzer et al., 2008). We examined pQTLs for
clinical significance by determining if the variant has been previously identified and
submitted to OMIM (Hamosh, Scott, Amberger, Bocchini, & McKusick, 2005), the GWAS
Catalog (Welter et al., 2014), or GRASP v2.0 (Eicher et al., 2015). We identified pQTLs
that were also significant in large meta-analyses of individuals of European descent for
CAD or VTE. Data on CAD was downloaded from www.cardiogramplusc4d.org. For this

analysis, we only used the CARDIOGRAM GWAS results (Schunkert et al., 2011), as
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these individuals are of European descent. Data on VTE was shared by the INVENT

consortium (Germain et al., 2015).

Chapter 2.4.7: In Vitro Assay of proBNP Cleavage

We obtained native kallikrein from human plasma from EMD-Millipore (Darmstadt,
Germany; cat no. 420307); recombinant proBNP from Abcam (Cambridge, Ma; cat no.
ab151881); the kallikrein inhibitor, PPACK Il, from Santa Cruz Biotechnology (Dallas, Tx;
cat no. sc-203215). 354ng (374 nM) of kallikrein was incubated with 80ng (606 nM) of
proBNP with and without 26.5ng (36.4 M) of PPACK Il for 30min, 60min, and 90min at
37°C. The reactions were stopped by adding 4X LDS sample buffer and DTT, and heating
them for 2min at 85°C. The proteins were run on a Tricine-SDS-page gel from
ThermoFisher (Waltham, Ma), and either detected using the SilverQuest™ Silver Staining
Kit from ThermoFisher (Waltham, Ma) or transferred to a PVDF membrane and detected
using an anti-BNP antibody from Novus Biologicals (Littleton, Co; cat no. NB100-62133)

and chemiluminescence.

Chapter 2.5: Results
Chapter 2.5.1: Study Overview

The subjects were chosen as a sub-study from an ongoing case-control study
examining the genetics of VTE, and include 196 individuals that developed VTE during
the 18 year follow-up and 134 individuals that did not (Supplemental Table 2.1). Serum

was assayed for the levels of 51 proteins using ELISAs (Supplemental Table 2.2). On
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average, we obtained high quality protein measurements for 311 individuals per
phenotype. We investigated if any of the protein levels were associated with VTE
case/control status and found no significant associations. Knowing that the protein levels
weren’t statistically associated with VTE enabled us to combine the VTE cases and

controls in order to explore the effects of genetic variation on baseline protein levels.

We performed high coverage (~100X) exome sequencing on DNA from blood
samples for 243 individuals and assayed an additional 87 with HumanCoreExome
Beadchips. We identified 158,137 variants (direct genotyping and imputation) in the 50
intervals that encode the 51 proteins (Supplemental Table 2.5). The majority of imputed
variants were intergenic or intronic because these were variants not already captured by
the genotyping array or were outside of the exome-sequencing target regions
(Supplemental Table 2.6). There was an average of 1,122 variants per locus with the
AGER locus having the most variants (3,523) and the CD40LG locus having the fewest

(441) (Supplemental Table 2.2).

Chapter 2.5.2: Identifying cis-pQTLs from Common Variants

To identify genetic variation associated with serum protein levels, we tested for
association between variants within the gene’s cis locus and the normalized protein level
for each of the 51 protein levels, adjusting for sample relatedness and population
structure using a kinship matrix and including age, sex, BMI, genotype platform, and
subsequent VTE status as covariates. Because of the high likelihood of linkage

disequilibrium at the cis loci and slight correlations among protein levels, we accounted
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for multiple testing by performing permutations to obtain a family-wise error rate. We
identified significant associations (adjusted P<0.05, nominal P<6.97x10) (Table 2.1,
Figure 2.2) for thirteen of the 51 phenotypes. To test for multiple, independent
associations we performed sequential conditioning on the most highly associated variant,
and found two independent cis associations for LP(a). Of the fourteen cis-pQTLs that we
report, we have replicated eight known pQTLs and identified six novel pQTLs. The same
variant or a variant in LD (r>>0.5 in EUR) has been previously reported for eight proteins
with the same direction of effect that we found: AGT (Kim et al., 2013), C3 (Johansson et
al., 2013), C3b (Johansson et al., 2013), CHIT1 (Lourdusamy et al., 2012), F12 (Liu et
al., 2015; Lourdusamy et al., 2012), LBP (Lourdusamy et al., 2012), one of the variants
for LP(a) (Kyriakou et al., 2014), and MMP3 (Zhu, Odeberg, Hamsten, & Eriksson, 2006)
(Supplemental Table 2.7). Of the six novel pQTLs that we identified, four proteins have
not previously been reported to have a cis-pQTL (a2-AP, ANG, KLKB1, and MMP8) and
two proteins have been previously associated with a pQTL, but the variant identified here
is not in LD with the previous variant (KNG1 (Liu et al., 2015), (Lourdusamy et al., 2012)
and LP(a) (Kyriakou et al., 2014)). rs3373402 in KLKB1 was previously reported to affect
KLKB1 binding with kininogen (KNG1) but not affect KLKB1 levels in plasma (Katsuda,
Maruyama, Ezaki, Sawamura, & Ichihara, 2007); therefore while this variant has been
previously functionally characterized this is a novel pQTL. We annotated the 14 pQTLs
for functional effects and identified their chromatin state in the tissue that they are most
highly expressed in (Supplemental Table 2.8). Ten of the thirteen proteins are
predominantly secreted by the liver. Five of the top variants are missense variants, three

are in the UTR regions and five lie in predicted regulatory regions based on chromatin
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state annotations. These analyses suggest possible mechanisms of action for some of

the cis-pQTLs.

Table 2.1 Significant cis-pQTLs from the common variant analysis.

Position Alleles Alt Allele Nominal Adjusted

Protein Gene Top Variant Chr (b37) (b37) (Ref/Alt) Frequency PValue PValue B R?

a2-AP SERPINF2 rs8077638 17 1640793 C/T 0.19 5.4x10-%7 <0.001 -1.15 0.42
AGT AGT rs4762 1 230845977 G/A 0.14 4.4x10-% <0.001 1.08 0.25
ANG ANG 3748338 14 21167576 AT 0.11 1.9x10-"2 <0.001 0.86 0.16
C3 c3 1s11569415 19 6716279 G/A 0.15 6.9x10-™ <0.001 -0.63 0.13
C3B c3 1s2230199 19 6718387 G/C 0.23 1.2x10-"2 <0.001 -0.65 0.16
CHITA CHIT1 152486951 1 203174921 AG 0.18 3.7x107% <0.001 -1.01 0.26
F12 F12 rs1801020 5 176836532 NG 0.76 2.5x10-% <0.001 0.99 0.38
KLKB1 KLKB1 13733402 4 187158034 G/A 0.53 4.4x10"2 <0.001 —-0.51 0.15
KNG1 KNGT 166479 3 186443250 T/C 0.41 1.7x10-™ <0.001 —-0.46 0.13
LBP LBP 1s2232613 20 36997655 (Vi) 0.10 2.2x10-% <0.001 -1.20 0.27
LP(a)* APOA rs41272114 6 161006077 C/T 0.030 3.1x10°® 0.002 -1.27 0.10
LP(a)* APOA 56393506 6 161089307 C/T 0.083 1.7x107 0.011 0.66 0.08
MMP3 MMP3 17926920 11 102698724 G/A 0.35 2.4x10™ <0.001 -0.41 017
MMP8 MMP8 35231465 11 102584135 G/A 0.036 1.9x10”7 0.012 -1.10 0.09

p indicates effect size of association in standard deviation units per each copy of the alternate allele; Alt, alternate; pQTLs, protein quantitative trait loci; R?, amount
of phenotypic variation explained by the variant; and Ref, reference.

*LP(a) has 2 independent cis-pQTLs. rs56393506 was identified as an independent pQTL for LP(a) by performing the association analysis using genotypes from the
top variant (rs41272114) as a covariate.
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Figure 2.2 Association of cis variants with protein levels.

Modified Manhattan plot showing the —log10 P-values for association between variants in each
cis locus (interval encoding protein +/- 500kb) and the respective protein levels. The red dashed
line indicates the study-wide significant P-value cutoff when only examining cis regions (6.9x10-
7) for a FWER <0.05.
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Chapter 2.5.3: Identifying cis-pQTLs from Rare Variation

We next tested whether the combination of multiple rare variants at each cis-locus
was associated with protein levels. There were 3,675 rare variants identified across all 50
loci. For rare variation association analyses, rare variants are grouped according to
frequency or function and then jointly tested for association. Because functional prediction
methods vary and it is currently unknown what method is superior (Santorico & Hendricks,
2016), we used three different classifications (MAF, Deleterious, and CADD-score — see
Methods). Across all loci there was a range of 1 to 90 variants used for each method, with
the MAF method having the most rare variants and CADD scores having the fewest. To
account for multiple testing, we tested all three classifications in each round of
permutations to determine the family-wise error rate P-value cutoff. We performed a
SKAT-O association test using the same covariates as for the common variant
association. We identified eight cis-pQTLs that were significant using one or more
classifications (adjusted P<0.05, nominal P<3.72x104) (Table 2.2, Supplemental Table
2.9). Of these, cis rare variation has been associated with AGER (Hudson et al., 2008),
Fetuin A (Yuasa & Umetsu, 1988), and LP(a) levels (Kyriakou et al., 2014); to our

knowledge the other five associations are novel.

Of the eight proteins associated with rare variation, three were also associated
with a common pQTL (CHIT1, LP(a), and MMP8). For LP(a) and MMP8, a common pQTL
(with a MAF<5%) was also present on the list of rare variants and removal of these from
the rare variant analysis made the rare association non-significant (CADD nominal P-
value 0.148 and 0.469, respectively). For CHIT1, the common pQTL had a MAF of 18%

and although not on the list of rare variants, when we included this variant as a covariate
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in the rare variant analysis the association was nullified (nominal P-value 0.147). These
results suggest that the rare variants in the CHIT1 locus were associated with CHIT1
serum levels due to linkage disequilibrium with the common pQTL. Because the driving
variant was common, we do not consider the CHIT1 association to be valid, resulting in

seven proteins associated with rare variants.

Table 2.2 Rare variant cis-pQTLs that are significant using at least 1 of the 3 grouping
methods.

MAF<5% Deleterious CADD10

Protein Nominal PValue Adjusted PValue Nominal P Value Adjusted PValue Nominal PValue Adjusted P Value
AGER 3.2x10* 0.041 0.003 n.s. 0.006 n.s.
CD40L 0.042 n.s. 9.8x10-° 0.009 0.003 n.s.
CHIT1* 4.3x107® <0.001 0.108 ns. 0.127 n.s.
Fetuin A 2.5x10* 0.026 1.5x10-* 0.002 2.4x10° <0.001
LP(a) 1.1x10-° 0.002 2.6>10*° <0.001 4.4x107 <0.001
MMP8 0.247 ns. 7.7x10* ns. 6.3x10-° 0.002

TAFI 0.014 n.s. 5.2>10- 0.003 0.002 n.s.
TIMP4 0.050 ns. 2.4x10+ 0.026 1.7x10* 0.018

n.s. indicates not significant; and pQTLs, protein quantitative trait loci.
*Not significant after adjusting for the common pQTL (rs2486951).

Chapter 2.5.4: Identifying trans-pQTLs

To characterize potential downstream effects of cis-pQTLs, we investigated
whether any of the common cis-pQTLs might also have trans effects (cis-acting-in-trans)
on any of the other 50 protein levels. After permutation to obtain adjusted P-values, we
identified two cis-acting-in-trans loci, each of which was significantly associated with three
proteins (adjusted P<0.05, nominal P<7.29x10°) (Table 2.3). There was significant
overlap in the proteins associated with the two loci and the associations were consistent
with known physiological relationships between F12, KLKB1, KNG1, and uPAR, and the
recently reported genetic relationship with NTproBNP (Musani et al., 2015) (Figure 2.3),

despite none of the protein levels being strongly correlated (Supplemental Figure 2.3 and
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Supplemental Table 2.10). We did not observe an association between the cis-pQTL for
KLKB1 and F12 protein levels despite the known physiological relationships of KLKB1
and F12 (Figure 2.3). Importantly, the genetic associations of KLKB1 and F12 with
NTproBNP suggest that KLKB1 may physiologically cleave proBNP (the NTproBNP
precursor). These findings illustrate how genetic variation can be used to identify

potentially novel physiological relationships among proteins.

We further performed a full pairwise association (trans) between any of the variants
located in the 50 regions encoding the proteins used in this study and all 51 protein levels.
After permutation adjusting (adjusted P<0.05, nominal P<1.25x10-) we did not find any
additional trans associations and none of the cis-acting-in-trans associations remained

significant; however 11 of the 14 cis associations remained significant.

Using a similar approach to the common variants, we tested if any of the rare
variant cis-pQTLs were associated with any of the other 50 protein levels and did not
observe any significant associations (adjusted P<0.05, nominal P<5.30x107).
Additionally, we tested all 50 cis regions against all 51 protein levels in a pairwise manner,
but did not identify additional associations (adjusted P<0.05, nominal P<9.21x10°),
although four of the eight rare cis associations were still significant at the more stringent

threshold.
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Table 2.3 cis-pQTLs that also act as trans-pQTLs

Variant Protein Nominal PValue Adjusted P Value B s
rs1801020 in the F72 locus F12 2.5x10-% <0.001 0.985 0.382
KLKB1 5.4x10°* <0.001 —-0.488 0.092
KNG1 1.1x107 <0.001 —-0.479 0.097
NTproBNP 1.2x10°® 0.002 -0.380 0.061
rs3733402 in the KLKB1 locus KLKB1 4.4x1071 <0.001 -0.506 0.152
KNG1 5.2x107° 0.034 —-0.309 0.049
NTproBNP 4.2x107* <0.001 —-0.393 0.098
uPAR 4.4x107° <0.001 -0.401 0.097

[ indicates effect size of association in standard deviation units; pQTLs, protein quantitative trait loci; and A2, amount of phenotypic
variation explained by the variant.

5.2x10°
1.1x10”
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4.2x10%

0.63

. 4.4x10°8

Figure 2.3 Schematic showing proteins with identified trans associations and their nominal
associations with SNPs in F12 and KLKB1.

Previously known (solid) and proposed in this study (dashed) cleavage reactions are represented
with arrows. Nominal P-values for the associations between protein levels and rs3733402 in the
KLKBL1 locus and rs1801020 in the F12 locus are shown respectively in orange and purple boxes
next to the protein of interest.
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Chapter 2.5.5: The Role of Kallikrein in proBNP Maturation

We experimentally tested the cis-acting-in-trans associations suggesting that
kallikrein (KLKB1) may physiologically cleave proBNP. ProBNP is produced as a pro-
peptide that may be cleaved intracellularly into BNP and NTproBNP, two biomarkers for
heart failure (Clerico, Fontana, Zyw, Passino, & Emdin, 2007), before being secreted by
cardiomyocytes in response to cardiac stress. Intracellularly, it is thought that furin or corin
cleave proBNP (Semenov et al., 2010), but it is unclear which enzyme cleaves proBNP
extracellularly when it is secreted intact (Tonne et al., 2011). To test whether kallikrein
can cleave proBNP in vitro, we incubated increasing concentrations of kallikrein (74.8nM,
374nM, 748nM, and 1497nM) with proBNP for 1 hour at body temperature (37°C) and
saw progressive depletion of proBNP levels (Supplemental Figure 2.4). This depletion
was prevented with the addition of PPACK II, a kallikrein-specific inhibitor. From this, we
chose to incubate 374 nM of kallikrein with proBNP for 30, 60 or 90 minutes and again,
we saw that the levels of proBNP decreased (Figure 2.4). These results suggest that

kallikrein has the ability to cleave proBNP in vivo.
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A time O 30min 60min 90min

proBNP  + + + + + + + + + +
kallikrein - - + + - + + - + +
PPACKIl - - - + - - + - - +
45kDa - —
34kDa
23kDa
16kDa _—
B time O 30min 60min 90min
proBNP  + + + + + + + + + +
kallikrein - - + + - + + - + +
PPACKII - - - + - - + - - +
16kDa

. —— T — L— -

Figure 2.4 Kallikrein cleaves proBNP in vitro.

A) A silver stain of recombinant proBNP and kallikrein incubated together for 30, 60, and 90
minutes with and without a kallikrein-specific inhibitor (PPACK II) and B) a western blot of an
identical experimental setup using an anti-BNP antibody. The silver stain binds all protein present
and is a more sensitive procedure than using the anti-BNP antibody for the western blot. We
believe that this explains why the amount of proBNP in the +/+/- wells visually appears to be
different between the silver stain and western blot.

Chapter 2.5.6: Annotation of pQTLs Using Existing Databases and GWAS

We investigated whether the 14 common pQTLs that we identified were previously
associated with gene expression levels (Supplemental Table 2.7) using eQTLs from the
GTEx database (Consortium, 2013) as well as Schadt et al. (Schadt et al., 2008) to
include additional data from liver samples, as many of the proteins studied are expressed

in liver. In the GTEx database, the AGT pQTL was identified as an eQTL in ten tissues
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(P-values from of 2.0x10 to 1.3x107%3), the CHIT1 pQTL is an eQTL in whole blood (P-
value 4.2x108), the F12 pQTL is an eQTL in liver (P-value 2.3x101°) and the pQTL in the
SERPINF2 locus (a2-AP protein) is an eQTL in six tissues (P-values from 5.3x107 to
8.8x10%8). Additionally, the pQTLs for a2-AP, AGT, CHIT1, F12, KLKB1, and MMP3 were
also identified as eQTLs for other nearby genes. In the Schadt dataset rs3748338 in the
ANG locusis in LD (r?=0.24) with an eQTL for ANG (rs8008440). Thus, of the 14 common
pQTLs, two have previously been identified as an eQTL for the cis gene, three as an
eQTL for both the cis gene and other nearby genes, and three as an eQTL for nearby

gene(s).

We also looked up whether there are any known disease associations with the
fourteen pQTLs that we identified using the GWAS catalog (Welter et al., 2014). GRASP
(Eicher et al., 2015), and OMIM (Hamosh et al., 2005) (Supplemental Table 2.7). The 8
known pQTLs along with the kallikrein pQTL are associated with a variety of phenotypes,
including age-related macular degeneration (C3b), activated partial thromboplastin times
(F12), serum metabolites (KLKB1), binding of LBP to LPS (LBP), and plasma
plasminogen levels (LP(a)). In total, nine pQTLs (eight known and KLKB1) have been

associated with 17 disease and/or physiological phenotypes.

Finally, to investigate if the pQTLs identified here are associated with VTE or CAD,
we examined the results of two previously published meta-analyses. The INVENT
(Germain et al., 2015) study is a large meta-analysis of 7,507 cases and 52,632 controls
to identify variants associated with VTE. The CARDIOGRAM (Schunkert et al., 2011)
study is a large meta-analysis of 22,233 cases and 64,762 controls designed to identify

variants associated with CAD, which is predominantly comprised of MI. Of 14 common
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pQTLs, ten (71.4%) could be tested in the INVENT and CARDIOGRAM datasets
(Supplemental Table 2.11). The KLKB1 pQTL (rs3733402) is significantly associated with
VTE; however this association becomes non-significant when the analysis is conditioned
on the top six SNPs associated with VTE from the literature. The KLKB1 pQTL
(rs3733402) is also nominally associated with CAD (P=0.0086). The KNG1 pQTL
(rs166479) had a nominal P-value <0.05 in the INVENT consortium. While one of the
pQTLs for LP(a) (rs41272114) has previously been associated with CAD (Kyriakou et al.,
2014), it was not present in either dataset. Additionally, among the 17 protein biomarkers
that we previously identified as being associated with first Ml (Wilsgaard et al., 2015), we
identified common cis-pQTLs for six (C3, C3b, KLKB1, LP(a), MMP3, MMP8) and rare
cis-pQTLs for five (LP(a), MMP8, TAFI, and TIMP4). While we found pQTLs for these Ml
biomarkers, they weren't associated with CAD in the CARDIOGRAM study, which could
indicate that the biomarkers are not causally related to CAD, but may also be a result of
the relatively small sample size in the GWAS compared to typical Mendelian
randomization studies. Thus, while CAD and VTE were not significantly associated with
pQTLs, these loci could be used in further larger studies to elucidate functional

mechanisms underlying disease.

Chapter 2.6: Discussion

Using a combination of exome sequencing and exome arrays in 330 individuals,
we identified 27 genetic associations between pQTLs and the serum levels of 20 proteins:
14 associated with common variation in cis, of which six are novel and have not been

previously reported; seven associations with rare variants in cis, of which four are novel,
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and six associations in trans. Ultimately, 15 proteins were associated with single sites
and seven were associated with rare variants. The strongest associations were identified
for cis variation near the gene locus, but by directly testing the cis-pQTLs, we also
identified two that acted in trans. Despite the limitations of our study (including a relatively
small sample size and lack of a formal replication cohort) the presence of robust
associations suggest that exome analysis is an effective tool to identify genetic variation
associated with serum protein levels and that larger sample sizes would likely capture

additional trans effects.

This is the first study, to the best of our knowledge, that uses exome data to
investigate the effects of both common and rare variation on more than 50 protein levels
and thus, provides insight into rare-variant association methods. For rare-variant analysis
we used three different methods for grouping variants within a gene and accounted for
the additional testing through permutation. Some associations were consistent across all
three methods, such as LP(a), which carried a large number of variants (Supplemental
Table 2.9) and for which rare variation has previously been associated with the protein
level in the blood (Clarke et al., 2009). Others were only significant in one test, such as
MMP8 when variants were grouped based on CADD score, which could be due to few
variants with weak effects and would benefit from larger sample sizes to include more
predicted functional sites. Variants with a MAF between 1% and 5% were tested in both
the common and rare variant analyses. In two cases (LP(a) and MMP8) adjusting for the
top common pQTL (with a MAF<5%) nullified the association. Additionally, for CHIT1,

common variation (MAF>5%) was associated with rare variants through cryptic LD and
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adjusting for the common variant also nullified the association. These data suggest that

significant common and rare single sites may drive gene-based rare-variant associations.

Of the fourteen common pQTLs, four are missense variants in the relevant gene.
Of the ten other variants, three are intronic, two are in the exons of nearby genes, and
five lie in regions that are predicted to have regulatory functions, such as interrupting
protein-binding sites or splicing (Supplemental Table 2.8). Analysis of the function of
sequences harboring the pQTL can elucidate the mechanism of the variant. For example,
it has been shown that rs1801020 in the 3’ UTR of the F12 locus prevents translation of
F12 (Kanaji et al., 1998). The mechanisms of the other four regulatory pQTLs are not yet
understood, but the results shown here point to plausible mechanisms. For instance, ANG
and RNASE4 are isoforms of the same gene with different functions and differential
expression patterns that are influenced by CTCF (Sheng et al., 2014). The ANG pQTL is
in the last exon of RNASE4, near a CTCF binding site which affects isoform expression
levels (Sheng et al.,, 2014). This, and other potentially regulatory pQTLs, could be
functionally tested using in vitro and in vivo assays for changes in gene or isoform
expression. Thus, although we focused on exome sequences to generate genotypes for
this analysis, imputation enabled us to identify many pQTLs with predicted regulatory

effects.

pQTLs can be used to understand the relationship between proteins and disease,
either through tracing molecular impacts through pathways or through studies of
Mendelian randomization. By examining potential trans associations with cis-pQTLs, we
recapitulated known and recently reported relationships between these proteins. The

relationships between F12, kallikrein, and kininogen comprise the start of the intrinsic
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coagulation pathway (Bhoola, Figueroa, & Worthy, 1992), the association between
kallikrein and uPAR has been previously explored (Portelli et al., 2014), and the genetic
relationship between kallikrein and NTproBNP was identified in a recent GWAS (Musani
et al., 2015). We show that kallikrein is able to cleave proBNP in vitro using purified
reagents, suggesting that extracellularly, kallikrein could be responsible for cleaving
proBNP into NTproBNP and BNP, although further experiments are necessary to verify
that this reaction occurs naturally in plasma. We also identified 17 reported disease and
physiological phenotype associations with nine of the pQTLs (eight previously known and
one novel). Interestingly, five of the six novel pQTLs were not implicated in GWAS studies.
This could reflect a bias in GWAS phenotypes studied or candidate proteins chosen for
pQTL studies and supports further work identifying downstream effects of these loci. We
observed a nominal association between KLKB1 and CAD, which we previously identified
as a biomarker for MlI, supporting further examination of this relationship in larger studies.
Overall, these findings support the use of pQTLs to identify molecular and phenotypic

effects of proteins and help to elucidate underlying mechanisms of disease.
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Chapter 2.10: Supplemental Tables

Supplemental Table 2.1 Cohort statistics

N
Sex N Age BMI Exome N Exome Arrayed

Sequenced

Females 64 65.29 (50-74) 26.40 (17.6-38.6) 45 (70%) 19 (30%)
VTE Controls
Males 70 64.14 (46-74) 25.85(20.3-34.6) 52 (74%) 18 (26%)
Females 100 63.71 (50-75) 27.21 (18.6-41.8) 74 (74%) 26 (26%)
VTE Cases
Males 96 63.45 (45-74) 26.94 (19.7-36.4) 72 (75%) 24 (25%)
Total 330 64.03 (45-75) 26.69 (17.6-41.8) 243 (74%) 87 (26%)
N. number

Supplemental Table 2.2 The fifty-one proteins and 50 loci (C3 and C3b derive from the
same gene and locus, but are considered two proteins here) used in this study.
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Supplemental Table 2.2 The fifty-one proteins and 50 loci (C3 and C3b derive from the
same gene and locus, but are considered two proteins here) used in this study,
continued.
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Supplemental Table 2.3 Number of tests performed for each type of association analysis
and the P-value cutoffs using Bonferroni correction or permutations for a FWER < 0.05.

Variant Class Analysis Number of tests Bonferroni cutoff Permutation cutoff
Cis 100.378 4.98x107 6.91x107
Common, single site Cis-acting-in-trans 663 7.40x10° 7.29x10°
trans 5,119,278 9.77x10” 1.25x10°8
Cis 153 3.21x10™ 3.72x10™
Rare, collapsed Cis-acting-in-frans 918 5.34x10° 5.30x10°
frans 7.803 6.16x10° 9.21x10°
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Supplemental Table 2.4 Amount of phenotypic variance explained (R?) and effect size (B)

detected for the various analyses when there is 80% power.

Variant Class Analysis Alpha Variance Explained (Rz)
cis 6.91x107 0.113
Common, single-site cis-as-frans 7.29x10° 0.078
trans 1.25x10°% 0.143
Variant Class Analysis Alpha Effect Size (p)
cis 372x 10" 0.80
Rare. collapsed [100% causal] cis-as-trans 5.3|0 x 107 0.90
trans 9.21x 107 1.0
cis 372x 10" 1.25
Rare, collapsed [50% causal] cis-as-frans 530x 107 1.45
trans 9.21x10° 1.75

Supplemental Table 2.5 Number of variants that were directly genotyped or imputed for

the exome sequenced and exome arrayed individuals.

Exome Sequenced (N = 243) Exome Arrayed (N = 87) Combined
Genotyped 24.008 2.563 24915
Imputed 129.502 56.195 138.415
Total 153,510 58.758 158.137

N. number of individuals

Supplemental Table 2.6 Type of variants that were directly genotyped or imputed for the

exome sequenced and exome arrayed individuals.

Exome Exome Exome Exome % of total Exome % of total Exome
Variant type Sequenced Arrayed Sequenced Arrayed Sequenced variants that ~ Arrayed variants that
(Genotyped) (Genotyped) (Imputed) (Tmputed) were imputed were imputed
Intergenic 1161 355 66432 25886 98.3% 98.6%
Non-coding RNA 694 30 783 470 53.0% 94.0%
Intronic 14700 459 59702 27640 80.2% 98.4%
UTR variant 1323 53 2017 1168 60.4% 95.7%
Synonymous 2488 73 203 600 7.5% 89.2%
Missense 3378 1568 313 380 19.5%
Coding sequence indels 192 0 16 34 100.0%
start or stop related 7 25 5 g 8.0 24205
variants
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Supplemental Table 2.7 Reported disease associations of the significant cis-pQTLs.
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Supplemental Table 2.8 Functional annotations of the 14 significant cis-pQTLs using
GeneVisble, variant effect predictor (VEP) and ROADMAP data of the 28-state chromHMM
for Monocyte (E029), Liver (E066) and HepG2 (E118) cells.
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Supplemental Table 2.9 List of rare variants that comprise each significant rare cis-pQTL
association and their P-values from the single-site associations.
An X means that the variant was used in the indicated clustering method. Gray regions mean that
the collapsed region was not significant using that clustering method.

43



X VN I++00°0 J/L ECTO6LEEST 0FC8e€98I 3
X VN ccooo /L ) 0CEBEE9BI £
X VN ccooo Vo SLTTOEVBISI TL8LE€981 3
X VN ccooo J/L OFI6I86F1sI OFLLEE98T 3
X I[1eS°0 Z9LTI00 Vi 950919t F 153 SFCSEE98I £
X X X ¥955°0 199000 Vo 068LCBOFISI 9505£€981 13
X VN ccooo o/v ) Ce6hee98I 3
X VN 7000 /L [TLLVLGLSE EFEVECOST £
X VN ccooo ¥/ ) 8LEEEEOBT 13
X VN 1£200°0 20 66CTEE981 3
X VN 1€C000 2V 86CTEE98T 3
X VN ccooo LD SOSTE900T1sI SFCTee98l 3
X X 89.5°0 651100 Lo LTE98FOSTST SelTee98I 3
X VN #0000 VI/L ) 6ITTEE98T 3
X VN I++00°0 VD £880£¢981 3
X 129% 0 ¥80£0°0 Vi ES6ISTFITISE 8C6CE981 3 ¥ urmj2 g
X VN ccooo LD 8O9TIISTISI C88ISTCE 9
X VN ccooo VD ) GECISTZE 9
X VN $91000 Vi TTTBTBIT IS 6F£960085% BEFISTICE 9
X 1L8T00°0 96£0°0 LD LYSLLIFTIST0090L0TST EFFISICE 9
X VN ccooo VD ) CL80STZE 9
X VN ccooo 2/L £CS0STCE 9
X VN ccooo J/L POOSEEFPIST £0E0STCE 9
X VN ccooo L/OHVOLILIVIOOOODOVHOL ) LOTOSTZE 9
X VN ¥0L000 LD OT9OLTLLSE LFO0STCE 9
X £IFT0 L6200 Lo 9ZOFEEOTISI066+0TSI £886FICE 9
X CI1e00 112200 Lo STOSTSOTISICSRIGEGST T086¥ICE 9
X 165100 CCe1oo ¥/ ) TLS6FICE 9
X VN ccooo VD 0Z0F9SHITsT TL¥6eFICE 9
X VN 859000 Lo T€69LTESE oFI6rIce 9
X VN #0000 LD OT8TIBIBISI S906FIce 9
X VN S91000 2/OLD CETSLETOTST 6068FICE 9
X VN ccooo D/VOVOVOOVOVIVILODD ) vI8SFICE 9
X L0680 SCIr00 LD LSEBLBFTTISIFOVOLTTIFST FCLBFICE 9
X 850000 SOrEQ 0 20 CEE0THIT TSI BT6BITIPST LETLFICE 9
X [TL5000°0 LLFED0 V/OVV FOLTO8THISE FFOLFICE 9 JIOV
_ R anjea-4
0IaayD  snoLRPERJ %> IVIN AVIA IR ). | arst s 10D urao.1g

AB-EUWS

44



i

i I B B

e

POOPG PG PG PPN PG PG PG PGP PO P PO PG G PO P P PG P PP PG P PG PG PP P P P G R

X
X

LF06°0
SFE8 0
L8880
VN
N
N
N
5CT 0
¥N
£I0T0°0
aLoF 0
N
[C0L0
N
82650
£505°0
I1-36¢°6
I1-31T6
STLE0
N
8CIC0
¥N
¥N
£505°0
£505°0
60-dCE'1
FLe0
88760
985E0
05+ 0
e[H9FE
66T 0
956T00

FELTOO

£319°0
£99°0
[85C0
ISTTO
£L8T0
tLBT0
8tEI000
VN
£186°0
O0d38F 1

+08T00
M5T00
SEST00
ccono
T+00°0
ccono
ccooo
8U800°0
coooo
86100
CETOD
EE00D
86100
000
LLFTO0
S06E0°0
9ToF00
SOFF00
188000
6000
eeloo
£E000
#0000
S06E0°0
SO5E0°0
SOFFO0
19900°0
EFOT00
688000
cCeloo
9TorF00
FOEED D
TI1e00
199000
CITTo0
901100
HLE0D
£FOC00
W80
9800
o100
coooo
crel10o
1T810°0

JIVIDOOVLIDL
VOVVODI02IDLIOOLIVIIOD
2/

IV
LD
Vi
2L
¥
Y
Vi
LD
LI

8568001151
O1ToE001 132

0CTBELEST

G08LOTTHST
LOSLOTTESE
BEOEIFOBIST
ELTCTOELST
18E00CT#3T
88C6ELTLST
T09SE00SST
1L098FTSS
0L098FTsT
L850T60TsT
BSTEBFLBIST
GEBGBEQT IS
LOOTEBLETST

OTFSPSFEIST
FEQOFEOF ST
89098F TSt

LFOSBETSIST
OTBTISLSE
OE8TETOLST
G5698FTsT
650606FL51
EETO6FOLST

LTFBOETFSS

CFFCESLTSE
CI0T#C08sT
6F80F6sI
COrs10Css
ECIPOSEFIST

EQO0FSTIST
0STLEPEEST

0LETO600T
BOLTO6001
Q0ETO600T
061T96091
S8ITO609T
IST1C96091
STTTO609T
LETTO600T
68096001
CFOESO00T
OI8TS6001
0BLTS6001
£99T56001
1COCE6001
96586T1£0C
CFR96T1E0C
OLFO61E0C
68956TE0C
BoECOTE0C
orIs61E0C
Q00561E0C
FESFOTEOC
889F61£0C
SPEFOTEOC
FroFOTE0C
FETEGTEOC
BISTOTE0C
FOFTOTEOC
FOGIGTE0C
LTETOTEOC
FEQOSTEOC
0SE6STEOC
£6068TE0T

GLESSTEOC

Q0008T£0C
OCTFOSTEOC
SITS8TE0C
FLOFSTEOC
SI0FSTEOC
STBEBTEOT
EFFIFLSELD
SLTTFLSET
GO8SEEOSI
FOCBEEOST

()d1

LIIHD

2T0rdd

‘panunuod ‘s710d-s19 1ued1JIubIS ayl 10 SUORIDOSSe aseasip palloday 'z a|qel [eiuswa|ddng

45



PP

Cel

el

LITTO
VN
VN
VN

8060
TN
TN

80FE000
VN
LIFO
N
TN
O0-dETF
£CE8°0
£99T°0
N
L6FS000
N
TN
TN
80-H50°1
VN
N

9000
N
VN

90+0'0

9000

SOBLO

SOBLO
VN
VN
VN

EFIT0

EFIT0
VN

8L0T0

68LS0
VN

80t 0

VN
89870
VN
VN
¥

e R i R il R R e R R e R e h R

CFEI00
TTT000
T£T00°0
coooo
F80E0D
SSF00°0
coooo
000070
TTT000
19900°0
ccooo
coooo
1011070
£9900°0
101100
T¥#F00°0
SI8I00
ccooo
$OT100°0
T#F00°0
L6TO0
1¢T000
1TT000
CEQTO0
ccooo
T#00°0
CEQTO0
CEQTO0
S6F0°0
S6r00
#0070
CrP000
1¢T000
SO6E0°0
SO6E0°0
ccooo
£TFCO0
FR0END
coooo
C86l00
So1000
1990070
#0070
coooo
1ET00°0

SEOLBSFFIST

CLOFLTLTTSE

SLETLO9BTSE
FFI6STIHFSE

B660LTIFST

OEOTLTIFSE
80T8SEFFIST
SBSFEERLST
STBLOTIFSE
TLBSSFOISTE

CITCLTTFSE
S LFFT19.LST
+FLTCLTTFS
OTITLTIFST

GOF0ELESST

LOTC000LST
FRELIOFLST
8LTGLOBTTSE
CITEDSHLSTE
OTEEBLEFISE
EOEQTCOFTST
QSTTLERSTS!

L06THFTOsSE
006THFTOSE
EFCOBESFISE
TLBBOLFSE
FFEFOTTFST
SFEFOTTFST
FO8FLSEFISE
CLOSFIGETS!
0toSOTIFsTE
FLOSOTIFSTE
SOLOTE95E
OFaSOTTHFST

0eFLTOTOT
L8TLTOTOT
95TLTOTOT
0529T0191
LeToT0191
C8LETOTOT
80TCTOT91
LOTTTOTOT
008TCOTOT
TESOTOTOT
9Cs0To191
FIFOTOTOT
[OESTOTOT
COTTIO91
LOGTTOTOT
OFS0T0191
811010191
LFOLO0TOT
S0T900191
¥80000191
LLD900T9T
806500191
868500191
019500191
EF1866091
50866091
STTL66091
OTS586091
BEFSBA091T
LOTS86091T
0808L6091
0LT8LE09T
FIo9L6091
SOBELB09T
O8TTLE09T
E11696091
260696091
§L0696091
896896091
£08896091
655906091
SETFOO09T
FOoE96091
BFOE0609T
QL5E0600T

OO OOoOOOYOoYOoYOoooooooooooo oo o ooion oo oo oo o oo oW oo

‘panunuod ‘s710d-s19 1ued1JIubIS ayl 10 SUORIDOSSe aseasip palloday 'z a|qel [eiuswa|ddng

46



PP PG PGP P

PP

e R B e

PAPIPO PO PO PO PO P P P PP PG R

VN
N
VN
N
VN
ARNY
N
VN
LOF00
LFLEODD
6FoT 0
SBLLO
VN
N
L0980
LEFEQD
£602070
VN
N
VN
N
VN
N
VN
N
VN
VN
N
CoE600
N
16610
VN
N
VN
¥N

120000
122000
000
122000
122000
901100
122000
2000
$6¥00°0
99000
£6600°0
199000
991000
+2200°0
TH9E00
TTEI00
188000
2000
2000
2000
$O100'0
2000
2000
2000
1#+00°0
TT000
HH000
57000
¢ITz00
122000
901100
120000
19+00°0
L5H000
2000

"STSATETE 2TET AT UT PUE SISATEUE UOTIIIOD 3T 104 U P21S3) SEM JUETIEA =

YOVL1
I
Y2
5D
¥
1D
Vi
oV
5D
¥
1D
LD
LVL
LV

COOTTO0FTSE

0660+HF1S
CO6LO0SFTSI
SG68BTITITSI
88CT001IsT
6LLESLTOST

*SOFTECSEST
0+CT090T81

OCLEFOLTTS

CBFT6H00TST

ECOCO0CTITSE
ECEEOBBLST
08886CIS 1S
OEErELITS

F00S506.L5T

G9T00TTI
G1T00TTT
OTZ00TTI
10Z00TCT
G8886ICI
099561C1
LETSOTLT
6199599F
Go08+00F
TOLLTO9F
00TE65T0T
00TT65C0T
CHI985C01
QETSBET0T
SEIFBSL0T
CLELBOTOT
80£L80191
QEE/BOTIT
SEOTLOTOT
S19TL0191

OLFTLOTOT

6C1950191
166550191
896550191
TFE5S0TOT
088550191
OL8550191
F8SC0TOT
LoFCE01O1
ETFCEOTOT
TOFCEOIOT
GOECEOTOT
LOTTEOTOT
S6BLTOIOT
TT8.LC019T

£

MDD MDD MDD MDD MDD WD MDD MDD D D DD D DD

FdINIL

LIVL

"panunuod ‘s71Od-s10 uediiubis ayl Jo suoleID0SSe aseasip palioday /g a|gel [eluswajddng

47



Supplemental Table 2.10 Pearson’s correlation between the proteins that were identified
in the trans-pQTL analysis.

F12 KLKB1 KNG1 NTproBNP uPAR
F12 1.0 -0.18 0.09 -0.11 -0.06
KIL.KB1 -0.18 1.0 0.29 0.16 0.20
KNG1 0.09 0.29 1.0 0.09 0.32
NTproBNP -0.11 0.16 0.09 1.0 0.28
uPAR -0.06 0.20 0.32 0.28 1.0
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Supplemental Table 2.11 Lookup of common cis-pQTLs for their associations in the
CARDIOGRAM and INVENT meta-analyses.

CARDIoGRANM INVENT
Coronary Artery Venous
Protein Variant Chr Start Ref/Alt Disease Thromboembolism
P-value p SE P-value p SE
a2-AP  1s8077638% 17 1640793 CIT 03399 0156 0.017 Not in INVENT

al-AP  1sB8065251% 17 1637458 G/A 0.3552 0015 0.017 03298 -0.028 0.029

AGT rs4762

b

230845977 G/A 05018  -0.143 0.021 01694 -0.048 0.035

ANG 1s3748338 14 21167576 AT 04549  0.020 0027 09519 0.002 0.039

C3/C3b  1s22301997 19 6718387 G/C 0.1045 0050 0.031 07668 0.010 0.034

CHIT1 rs2486951 1 203174921 A/G 0.7288 -0.006 0.017 08562 -0.005 0.028

Fi2 rs1801020 5 176836532 A/G 0.5115 -0.016 0246 06957  0.011 0.028

KLKBI*  rs3733402 4 187158034 G/A  0.0086 0040 0015 s8.2x10? -0.159 0.023

KNG rsl66479 3 186443250 T/C 0.1692 0020 0014 00436 -0046 0023

LBP 1s2232613 20 36997655 C/T 03624 0025 0.028 03531 0.050 0.054

MMP3 157926920 11 102698724 G/A 0.1016 0023 0.014 07347 0008 0.023

Bolded mndicates a nominal P-value of <0.05. B, effect size. SE, standard error

* 138077638 was not present in the INVENT dataset, so the next most significant variant (rs8065251) was looked up
in both studies as well.

T The top variant for C3 (rs11569415) was not present in either CARDIoGRAM or INVENT so the next most
significant variant (rs2230199) was used.

1 The association with VTE was no longer significant after adjustment that included rs4253417.

No significant variants for LP(a) or MMP8 were present in either study.
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Chapter 2.11: Supplemental Figures

A. cis B. cis-acting-in-frans C. trans
Q_I— ] ; <
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Supplemental Figure 2.1 Power to detect common variation pQTLs with varying effect
sizes in the three stages of analysis.

A) Power curve for cis-pQTLs using the permutation cutoff of 6.91x10-7 as the alpha. B) Power
curve for testing the cis-pQTLs acting-in-trans using the permutation cutoff of 7.29x10-5 as the
alpha. C) Power curve for trans-pQTLs using the permutation cutoff of 1.25x10-8. The x-axis is
measuring the amount of variance of the phenotype that a variant explains (R?).
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A. cis B. cis-acting-in-trans C. trans
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Supplemental Figure 2.2 Power to detect rare variation pQTLs with varying effect sizes in
the three stages of analysis.

Effect size is measured in standard deviations (). The top row assumes that all variants have an
equal effect and that all variants are causal. The bottom row assumes that all variants have an
equal effect and that half of the variants tested are causal. A) power to detect cis associations,
alpha = 3.72 x 10*, B) power to detect cis-acting-in-trans pQTLs, alpha = 5.30 x 10°; C) power
to detect trans associations, alpha = 9.21 x 10°. The x-axis is measuring the effect size (B) in
standard deviations.
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Supplemental Figure 2.3 Pearson’s correlation of the protein levels.

Dendrogram shows clustering based on correlation. Black lines are outlining the proteins
identified in the cis-acting-in-trans analysis: F12, KLKB1, KNG1, NTproBNP, uPAR;
corresponding values can be found in Supplemental Table 2.10.
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kallikrein conc. 74.8nM 374nM 748nM 1497nM

proBNP  + + - - - -+ - - +
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34kDa S — - —
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Supplemental Figure 2.4 Silver stain of proBNP incubated for 1 hour with varying
concentrations of kallikrein, with and without a kallikrein-specific inhibitor, PPACK II.
Kallikrein concentrations are 74.8nM, 374nM, 748nM, and 1497nM. The upper bands are the light
and heavy chains of kallikrein. The lower band is proBNP. 374nM of kallikrein was chosen to
perform the silver stain and western blot in Figure 2.4 of the paper.
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Chapter 3: Identification of common and rare genetic variation associated with
plasma protein levels using whole exome sequencing and mass spectrometry

Chapter 3.1 Abstract

Background: ldentifying genetic variation associated with plasma protein levels,
and the mechanisms by which they act, could provide insight into alterable processes
involved in regulation of protein levels. Genome sequencing has enabled the interrogation
of common and rare genetic variants that affect protein levels, and advances in protein
guantification (i.e. mass spectrometry) could reduce bias during protein quantification,
and allow for the delineation of true associations from technical artifacts. Combining these
techniques could enable the identification of common and rare genetic variation
associated with plasma protein levels.

Methods and Results: We utilized TMT-mass spectrometry to measure the levels
of 664 proteins in blood plasma from 165 participants of the Tromsg Study. Integrating
whole exome sequencing data, we identified 110 independent, significant associations
between common and rare genetic variation with peptide and protein levels. We then
leveraged genotype data to identify technical artifacts, and excluded 50 of these
associations. We describe rare variation associated with the complement pathway and
platelet degranulation. We then use literature and database searches to identify putative
functional variants for each pQTL, and show that, pQTLs act through diverse molecular
mechanisms that affect both RNA and protein metabolism.

Conclusions: We show that, while the majority of pQTLs exert their effects by
modulating a gene’s RNA, many affect protein levels directly. Our work demonstrates the

extent by which pQTL studies are affected by technical artifacts, and highlights how
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identifying the functional variant in pQTL studies can lead to insights into the molecular

steps by which the protein is regulated.

Chapter 3.2 Introduction

Blood plasma is comprised of proteins generated from cells involved in diverse
processes including thrombosis, hemostasis, immunity, and hematopoiesis. As it contains
proteins from a wide variety of cells, blood plasma is a source for many potential
biomarkers (Jacobs et al., 2005), which if causally related to disease, may provide novel
drug targets (Ong et al., 2009). Genetic variation that affects proteins can be used to
assess the casual relationship between a particular biomarker and disease (Burgess,
Timpson, Ebrahim, & Davey Smith, 2015), and the molecular function of the variant can
provide insight into processes important to the protein’s abundance. In particular, rare
variation has proved to be an effective route to identifying drug targets (Cohen,
Boerwinkle, Mosley, & Hobbs, 2006) as rare variants can have larger, wide reaching
effects. By examining the effects of variants associated with a particular protein on the
levels of other proteins (MacKeigan et al., 2003), it may be possible to identify the
pathways the protein is involved in. Additionally, examining whether these genetic
variants act by modulating RNA or protein levels, and identifying the specific molecular
mechanisms by which they act, could provide insight into alterable processes involved in

regulation of protein levels, thus elucidating insights into targeted therapeutics.

Recent advances in protein and genotype measurement, have enabled the
interrogation of genetic variants that affect protein levels (protein quantitative trait loci,

pQTLs) (Johansson et al., 2013; Kim et al., 2013; Liu et al., 2015; Melzer et al., 2008).
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This advance has resulted in the identification of hundreds of plasma pQTLs in human
samples, and is leading to insights into the proteomic consequences of risk for
cardiovascular disease (Folkersen et al., 2017; Suhre et al., 2017). Previous pQTLs
studies (Johansson et al., 2013; Kim et al., 2013; Liu et al., 2015; Melzer et al., 2008;
Suhre et al., 2017), however, have been limited by utilizing assays which do not measure
an entire protein (i.e. aptamer or antibody methods that only measure a single epitope),
or by the range of genetic variation that they test (genotype arrays vs. sequencing).
Additionally, these protein measurement methods can be affected by the presence of
genetic variation that does not alter the protein’s level, but rather affects the assay’s
guantification ability. By measuring the levels of multiple peptides in a protein through
assays such as mass spectrometry, and identifying genotype data that includes complete
coding information through exome sequencing, it could be possible to exclude pQTLs that
are driven by artefactual associations and better identify potential underlying causal

variants.

In this study, we utilized TMT-mass spectrometry to measure plasma levels of 664
proteins in 165 participants of the Tromsg Study who have high depth exome sequence
data available. We identified 110 independent, significant associations between common
and rare genetic variation with peptide and protein levels. Our subsequent analyses
determined that while 60 of these were true associations, 50 were driven by previously
unreported technical artifacts associated with the presence of genetic variation in coding
exons. We examined common and rare associations for downstream effects on other
proteins, and identified associations affecting the complement pathway and platelet

degranulation. Using a combination of literature and database annotations, we identified
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and described putative functional variants for each locus. We show that approximately
half of the pQTLs could be explained by variants previously experimentally shown to
influence the associated protein’s level. Causal variants most often affected RNA
metabolism, however, many affected protein metabolism and would therefore not be
detected in studies that solely examined gene expression. These results illustrate the
potential for pQTL studies to characterize the effects of rare variation, and highlight a
need for high throughput studies of protein levels to take into account technical artifacts

caused by exonic genetic variation.

Chapter 3.3 Methods
Chapter 3.3.1 Data Sharing

The Regional Committee of Medical and Health Research Ethics in North Norway
approved this study, and all subjects gave their informed written consent to participate.
The whole exome sequence and mass spectrometry data described in this study will not
be made available, as the consent signed by the study participants does not allow the

public release of these data.

Chapter 3.3.2 The Tromsg Study

The Tromsg Study (Jacobsen, Eggen, Mathiesen, Wilsgaard, & Njolstad, 2012) is
a single-center, population-based cohort study of the inhabitants of Tromsg, Norway.
27,158 individuals participated in the fourth survey of the Tromsg Study between 1994-

1995; baseline characteristics were collected using self-reported questionnaires, physical
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examinations, and blood samples. Non-fasting blood was drawn from an antecubital vein
to gather plasma and whole blood. Plasma was collected in 5ml vacutainer tubes
containing EDTA as an anticoagulant, processed within 1 hour by centrifugation at 3,000g
for 10 min, and collected and frozen at -70°C. Whole blood was used to prepare archive
guality DNA, and was stored at the HUNT Biobank in Levanger, Norway. In the immediate
4-12 weeks following the initial visit, 7,965 participants were invited for a follow-up for a

more in-depth examination and additional blood sampling.

All 27,158 participants were followed from the date of enrollment through
December 31, 2012. All cohort members that experienced an incident venous
thromboembolism (VTE) during the study period were identified by searching the hospital
discharge diagnosis registry, the autopsy registry, and the radiology procedure registry at
the University Hospital of North Norway, the sole hospital in the Tromsg municipality
(Braekkan et al., 2008). The VTE events were thoroughly validated by review of medical
records as previously described in detail (Braekkan et al., 2008). Out of the 710 incident
VTE cases that were identified, 100 cases were sampled for this study such that the time
of blood collection occurred prior to incident VTE (range of time to VTE: 1 month to 7
years; average: 3.72 years). For each case, a paired control, matched on age and sex,

was randomly sampled from the cohort.

Chapter 3.3.3 Sample Preparation and Mass Spectrometry
Plasma samples for this study were analyzed through TMT-multiplexed mass

spectrometry by Proteome Sciences (London, England). Samples were visually inspected
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for hemolysis, protein concentrations were determined using the Bradford assay, and
samples were visualized on Coomassie stained SDS-PAGE 4-20% gradient gels. 25uL
of each sample underwent albumin and IgG depletion using Qproteome Spin Columns
from Qiagen (Hilden, Germany), with 100mM triethylammonium bicarbonate (TEAB)
substituted for the buffer provided in the kit. Protein concentration was measured using a
Bradford assay, and 17 samples were visualized on Coomassie stained SDS-PAGE 4-
20% gradient gels for quality control purposes. Samples were run as 25 separate TMT10-
plexes, with each 10-plex including: 1) four cases, 2) the respective four age- and sex-
matched controls, and 3) two reference pools comprised of equal portions of all 100 cases
or 100 controls, respectively. Specifically, 60 pg of protein from each depleted sample
were brought to 0.1% SDS in 100 mM TEAB, reduced using tris(2-
carboxyethyl)phosphine, alkylated with iodoacetamide, and trypsin digested to produce
peptides. Peptides were then mixed with their respective TMT10-plex reagent (Thermo
Fisher, Massachusetts, USA) and the reaction was terminated using hydroxylamine.
Samples were pooled into their TMT10-plexes and diluted to an acetonitrile concentration
of less than 5% before being purified via Oasis HLB cartridges. 300 pg of each TMT10-
plex was fractionated into 8 fractions using HPLC (Waters Alliance 2695), desalted on
Oasis HLB cartridges, and dried. Each fraction was run in duplicate for LC-MS/MS using
an EASY-nLC 1000 system coupled to an Orbitrap Fusion Tribrid Mass Spectrometer
(Thermo Fisher). Resuspended peptides were loaded onto a nanoViper C18 Acclaim
PepMap 100 pre-column (Thermo Scientific), and resolved using an increasing gradient
of 0.1% Formic acid in ACN through a 50 cm PepMap RSLC analytical column at a flow

rate of 200 nL/min. Peptide mass spectra were acquired throughout the entire
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chromatographic run (180 minutes), with FTMS scans at 120,000 resolving power at 400
m/z followed by a top 10 high collision induced dissociation (CID) method for FTMS2
scans at 30,000 resolving power at 400 m/z. For quantification, synchronous precursor
selection was enabled, MS2 peaks were fragmented with higher energy collisional
dissociation (HCD), and the TMT reporter ions were measured at 30,000 resolving power

in the Orbitrap.

For initial quality control analysis, peptides and proteins were identified using
Proteome Discoverer (PD) v1.4 (Thermo Scientific). The 400 raw data files (200 samples,
each performed in duplicate) were submitted to PD v1.4 using the Spectrum Files node.
Spectrum selector was set to default, while SEQUEST HT was set to search against the
human FASTA UniProt-KB/Swiss-Prot database (August 2015). Spectra were identified
in PD with the settings: 1% FDR; one Rank 1 peptide per protein. Processing,
normalization, and filtering were done by Proteome Science using their in-house software.
To identify batch effects, samples were hierarchically clustered using Spearman's
correlations. It was observed that participants with plasma samples from the initial sample
donation clustered together (N=176), while participants with plasma samples from the
follow-up visit clustered together (N=24) (Jensen). The top proteins that had differential
levels of expression between the two clusters were associated with blood clotting in a
gene ontology analysis, suggesting the batch effect could be due to variation in plasma
preparation between the first and second visit; thus, these 24 participants were removed

from any further analysis.
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Chapter 3.3.4 Peptide and Protein Identification

Peptide identification was performed on the 176 plasma samples collected from
participants in the initial visit using Proteome Discoverer (PD) v2.1 (Thermo Fisher
Scientific). MS2 data were searched against Gencode 19 (corresponding to Ensembl 75)
(Harrow et al., 2012) and mapped to GRCh37 using the Sequest algorithm (Eng,
McCormack, & Yates, 1994). A decoy search was also conducted with sequences in
reverse order (Elias & Gygi, 2007). For the search, a precursor mass tolerance of 50 ppm
was specified, and a 0.6 Da tolerance for MS2 fragments was specified. Static
modifications of TMT10-plex tags on lysines, peptide n-termini (+299.162932 Da), and
carbamidomethylation of cysteines (+57.02146 Da) were specified. Variable oxidation of
methionine (+15.99492) was also specified in the search parameters. Data were filtered
to 1% peptide and protein level false discovery rates using percolator (Kall, Canterbury,

Weston, Noble, & MacCoss, 2007; Spivak, Weston, Bottou, Kall, & Noble, 2009).

TMT reporter ion intensities were extracted from MS3 spectra for quantitative
analysis, and signal-to-noise ratios were used for quantification. Spectra were filtered out
if they had either above 25% isolation interference, or an average signal-to-noise ratio
across samples in a TMTplex of less than 10. Protein level quantification values were
calculated by summing signal-to-noise ratios for all remaining peptides belonging to a
given protein. Data were first normalized in a multi-step process as previously described
(Lapek, Lewinski, Wozniak, Guatelli, & Gonzalez, 2017), following which they were
guantile normalized to a standard normal distribution. In summary, for each sample,

peptide levels were calculated as the normalized signal-to-noise ratios for each peptide,
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and protein levels were calculated as the normalized sum of signal-to-noise ratios for all

of the peptides belonging to the protein.

Chapter 3.3.5 Variant Identification and Annotation

Of the 176 participants who donated plasma during the first visit, 165 had genotype
data available from whole exome sequencing generated as part of an ongoing study of
the genetics of VTE (Carson et al., 2014). The samples used in this study were sequenced
using the Agilent SureSelect 50Mb capture kit and the Illumina TruSeq paired-end 100bp
cluster kit to an approximate depth of 100X on an lllumina HiSeq 2000. As previously
described for 39 of these 165 exomes (Solomon et al., 2016), sequence reads were
mapped to the reference human genome (hg19) using BWA (Li & Durbin, 2009) (version
0.7.10-r789) with default parameters, and processed using Picard (version 1.115)
(http://broadinstitute.github.io/picard) and GATK (Van der Auwera et al., 2013) (version
3.3-0). Using the information from both on and off-target reads (Pasaniuc et al., 2012)
from the sequencing data, genotypes were imputed to the whole genome using Beagle
(Browning & Browning, 2016) (version 4.0, r1398) with reference haplotypes from the
unrelated individuals in the European (EUR) and East Asian (EAS) superpopulations of
the 1000 Genomes Project (Abecasis et al., 2012) Phase 3, at sites with a combined MAF
> 1%. To obtain the final genotypes for this study, we: 1) preferentially used genotypes
that had a call rate >90%, and 2) used imputation genotypes with a Beagle QC threshold
allelic r? > 0.7. Finally, variants with a Hardy-Weinburg equilibrium p-value > 1x107 (as
calculated in VCFtools (Danecek et al., 2011)) were included in the analysis. Variants

were annotated using SNPEff v4.1 (Cingolani et al., 2012) and the highest impact

66



annotation reported for the canonical transcript was chosen. These annotations were then
manually collapsed into larger categories (eg. stop-gain, stop-lost, and stop retained
variant were all grouped into stop site) based on the first annotation listed per variant.
Annotations of missense, synonymous, non-coding exonic, splice site, frameshift, stop
site, and start site were considered to be exonic variants, while annotations of 3’'UTR and

5 UTR were considered UTR variants.

Chapter 3.3.6 Genetic Associations

Associations between common genetic variants (MAF > 1%) and protein or peptide
levels were calculated using EMMAX (H. M. Kang et al., 2010) from the EPACTS software
package (Hyuan Min Kang, 2014). EMMAX is a linear mixed model which accounts for
family relatedness and population stratification by including a kinship matrix. For common
cis associations, genetic variants within 200kb +/- of the gene start and stop were tested
for association with the protein encoded by that gene. While 8 subjects with
peptide/protein quantifications and genotypes were required to obtain association
statistics, significant associations were only observed with >70 measurements.
Additionally, we modeled age, sex, BMI, smoking status, cancer status at the time of
sample collection, VTE case-control status, and the TMT-multiplex experiment as
covariates. Associations were considered significant if they had a peptide p-value less
than 1.91x102 (0.05/ (466 variants per locus on average * 5608 peptides)) or a protein p-
value less than 1.62x107 (0.05 / (466 variants per locus on average * 664 proteins)). For
common trans associations, all genetic variants were tested against each peptide and

protein level. Rare genetic variation (MAF < 5%) association was calculated using SKAT-
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O (Lee, Wu, & Lin, 2012) from the EPACTS software package. SKAT-O collapses rare
variants within a specified interval and performs both a burden test, and a kernel
association test. Rare variants were collapsed using three methods: 1) MAF < 5%: all
variants within the interval from 2kb upstream of the protein-coding gene to the
transcription end of the gene; 2) Deleterious: all MAF <5% variants that were annotated
using SNPEff v4.1 (Cingolani et al., 2012) as having a high or moderate effect impact;
and 3) CADD-score: all MAF <5% variants with a PHRED-scaled CADD (Kircher et al.,
2014) score greater than 10. For rare cis associations, rare variants were collapsed using
all three methods, and tested for association with the level of the protein encoded by that
gene. Associations were considered significant if they had a peptide p-value less than
2.97x10% (0.05 / (5608 peptides x 1 gene x 3 methods)) or a protein p-value less than
2.51x10° (0.05 / (664 proteins x 1 gene x 3 methods)). For common trans associations,
associations were considered significant if they had a peptide p-value less than 8.91x10
12 (5 x 108 / 5608 peptides) or a protein p-value less than 7.53x10'! (5 x 10® / 664
proteins). For rare trans associations, rare variants were collapsed using all three
methods for every gene that encodes one of the parent proteins, and were tested for
association (Bonferroni corrected p < 0.05) with all peptide and protein levels.
Associations were considered significant if they had a peptide p-value less than 4.02x10
8 (0.05/ (5608 peptides x 654 genes x 3 methods)) or a protein p-value less than 3.78x10-
8 (0.05 / (664 proteins x 654 genes x 3 methods)). Multiple independent associations
occurring at a locus were identified by repeating the analysis with the top variant as a
covariate. This process was repeated, including all independent associations as

covariates, until no new significant associations were identified.
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Chapter 3.3.7 Identification of pQTLs that were Technical Artifacts

Current mass spectrometry quantification techniques are limited to searching
databases of known peptides (Wang & Zhang, 2013) that do not always contain alternate
peptide sequences due to genetic variation. Therefore, genetic variants that alter peptide
sequences could result in spectra that no longer match the database, and their absence
could result in a false pQTL association. To identify pQTLs that were likely technical
artifacts, we examined the exome sequence data to determine if the most strongly
associated pQTL variant (sentinel variant), or variants in LD with the sentinel variant,
resulted in a missense amino acid change in or near the associated peptide in our
population. We then examined the impact of the missense variant and classified the
artifact into three groups: homologue, digestion, or missense (Supplemental Table 3.1).
If the missense amino acid change resulted in a peptide that was identical to a
homologous protein through a BLASTp (Altschul, Gish, Miller, Myers, & Lipman, 1990)
search, it was classified as a homologue artifact. If the missense amino acid flanked or
fell within the digestion site of the peptide (1-4 amino acids from the peptide), it was
classified as a digestion artifact. The remaining missense variants that disrupted the

peptide itself were classified as missense artifacts.

Chapter 3.3.8 Putative Functional Variant Identification
To identify putative functional variants (PFVs) at each pQTL, we examined
databases and published literature to find established research that linked protein levels

to a variant in linkage disequilibrium (LD) with the sentinel variant through a specific
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proposed or validated molecular mechanism (Supplemental Figure 3.1). For each PFV,
we categorized the supporting evidence into three categories, which were based on
whether the published evidence was experimentally validated through biological assays,
associated statistically, or predicted based on functional characteristics (e.g. the variant

was located in a promoter region):

1. known - the PFV had been experimentally shown to affect the parent protein’s level
through a particular molecular mechanism (Supplemental Figure 3.1A)

2. likely — either the PFV had been experimentally validated to have a molecular
mechanism that was predicted to affect the parent protein’s level, or the PFV was
predicted to have a mechanism that had been experimentally shown to affect the
parent protein’s level (Supplemental Figure 3.1B).

3. suggestive - either the PFV was predicted to act through a specific molecular
mechanism, and the PFV had been associated with the parent protein’s level; the
PFV was associated with the parent protein’s level and a molecular mechanism
had been previously predicted to affect the parent protein’s level; or the PFV was
predicted to act through a molecular mechanism, and the proposed mechanism

had been associated with the parent protein’s level (Supplemental Figure 3.1C)

To obtain this information, we performed sequential database and literature
searches. First, we identified all variants in LD r2>0.2 with the lead variant via HaploReg
(version 4.1) (Ward & Kellis, 2012). We then examined whether any of these variants
were documented in OMIM (Hamosh, Scott, Amberger, Bocchini, & McKusick, 2005), and

whether the missense variants had been previously reported as associated with the
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protein level (searching for the dbSNP identifier, the protein name, and the phrase “level”).
For each protein, if there was at least one variant with mechanistic supporting evidence
meeting “known” or “likely” criteria, we chose the variant with the most experimental
evidence and labeled it the PFV. If no PFVs were identified for the protein, we next
examined all missense, synonymous, 5 UTR, and 3’ UTR variants. Using information
from OMIM, genomic annotations from the UCSC Genome Browser (Kent et al., 2002),
protein annotations from UniProt (The UniProt, 2017), and information regarding the
position of the associated peptides relative to the protein from this study, we identified
potential mechanisms by which the variant might act. We then performed literature
searches of the dbSNP identifier, the protein name, and the potential mechanisms
(alternative splicing, isoform, glycosylation, degradation, miRNA, promoter, enhancer,
gene expression, maturation, cleavage, protein stability, or protein folding). Literature
suggesting an established association was further investigated to determine the strength
of the evidence. Within each protein, we labeled the variant with the best supporting
evidence as the PFV, and categorized the strength of the evidence according to the three
categories above. In the case where little or no mechanistic evidence had been
established we labelled the sentinel variant as the PFV, and created a new category for
this lack of evidence: “unknown”. We then annotated the PFVs with their variant type (e.g.
missense, intergenic) using SnpEff v4.1 (Cingolani et al., 2012), and determined if the
PFV was an expression quantitative trait locus (eQTL) in the GTEx (Consortium, 2013)
Portal (accessed 03/08/2018). An eQTL was considered to be in the “same” tissue if it
was identified in the tissue with the highest expression level of the associated gene, and

in an “other” tissue if the eQTL was identified in a different tissue. Finally, the mechanism
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of each PFV was classified based on the evidence gathered above into the following
categories: 1) affecting RNA metabolism (promoter, isoform expression, nonsense-
mediated decay, gene deletion, and miRNA processing), or 2) affecting protein

metabolism (protein degradation, glycosylation, and secretion).

Chapter 3.4 Results
Chapter 3.4.1 Data Generation

We examined peptide and protein levels from plasma, and genotype data from
whole exome sequencing of blood DNA, from 165 individuals from the Tromsg Study
(Figure 3.1A). These individuals and data were part of an effort to identify predictive
biomarkers for venous thromboembolism (Jensen et al., in preparation). To assess
peptide and protein levels, we performed TMT-multiplexed mass spectrometry on blood
plasma, identifying 5,608 peptides, corresponding to 664 proteins and 655 genes. Of the
5,608 peptides, 1,430 (25%) were present in all samples, 3,394 (61%) were identified in
at least 50% (82 individuals), and 5,052 were identified in at least 5% (N=8, the minimum
number required to perform genetic analysis) (Figure 3.2A). The identified peptides had
an average length of 14.5 amino acids (range: 6 to 43) (Supplemental Figure 3.2A). We
observed an average of 8.5 peptides mapping to each protein (range: 1 to 291) (Figure
3.2B); protein levels were calculated by summing these peptide measures. The functions
of the proteins that were measured were consistent with their role in plasma, with the
most enriched pathways (Reactome (Fabregat et al., 2018) pathway analysis FDR < 0.05)
including the immune system and hemostasis (Figure 3.2C & Supplemental Figure 3.2B).

From the whole exome sequencing data, we identified 501,682 genetic variants directly,
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and an additional 2,647,181 variants through imputation. Of the 3,148,863 total variants,
2,624,979 were evaluated in common variant analyses (minor allele frequency (MAF) =
1%), and 1,690,437 were evaluated in rare variant analyses (MAF <5%) (Figure 3.2D).
While most variants were noncoding (intergenic or intronic) regions, a total of 182,828
(5.8%) were located in UTR and exonic regions (Figure 3.2E). Overall, these analyses

generated information on 664 proteins and 3,148,863 variants for genetic association

analyses.
The Samples collected Molecular Assays Genetic and
Tromse Study at study entry Proteomic Data
m U ndl T LI ML d 5608 Peptides
' 664 Proteins
Single center, Proteins from TMT 10plex Mass
prospective cohort < Plasma Spectrometry
study ‘
165 participants — 3,148,863
followed from DNA ==  Whole exome ™= Nariants
1994-2013 from blood sequencing (100X)

and imputation

Figure 3.1 Study overview.

165 individuals from The Tromsg Study were followed from 1994-2013. Between 1994 and 1995,
blood plasma and whole blood were collected; blood plasma and whole blood were processed
and subsequently used for protein quantification by mass spectrometry and whole exome
sequencing, respectively. These analyses identified 5,608 peptides and 664 proteins from
plasma, and 3,148,863 variants from whole blood, across all individuals.
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Figure 3.2 Description of protein and genotype data

(A) Cumulative distribution plot showing the number of peptides identified in at least N samples.
5,052 peptides were identified in at least 8 samples (blue), 3,394 peptides were identified in at
least 82 samples (red), and 1,430 peptides were identified in all 165 samples (green). (B)
Histogram showing the number of peptides identified for each of the 664 parent proteins. A mean
of 8.45 peptides per parent protein were identified (dotted line). (C) Bar plot showing the g-values
from Reactome pathway analysis that were enriched for plasma proteins. The significance
threshold of —log10(0.05) is shown by the red dotted line. (D) Histogram of the minor allele
frequencies in this study for all 3,148,863 genetic variants identified across individuals. (E) Bar
plot of the number of identified genetic variants within each SnpEff annotation. The number of
variants with each annotation is also listed next to each bar.

Chapter 3.4.2 Identification of Peptide and Protein cis pQTLs
We first identified cis pQTLS, i.e. those located near the gene encoding the plasma
peptide and/or protein. We identified all variation within +/- 200 kb of the corresponding

gene for each of the 5,608 peptides and 664 proteins. We tested for association between
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genetic variants and peptide or protein levels using EMMAX, a linear mixed model that
includes a kinship matrix to account for population structure and family relatedness.
Additionally, we modeled age, sex, BMI, smoking status, cancer status at the time of
sample collection, VTE case-control status, and the TMT-multiplex experiment as
covariates (see Methods). We identified 148 peptides and 31 proteins with significant
associations (Bonferroni adjusted p < 0.05) with 80 and 31 cis genetic variants,
respectively. Next, we identified additional independent significant pQTLs for each of the
148 peptides and 31 proteins by performing a step-wise analysis conditioned on the most
significant variant, and found six peptides and two proteins that had a second cis genetic
variant. In total, we identified 33 pQTLs associated with the levels of 31 proteins and 154

pQTLs associated with the levels of 148 peptides (Supplemental Table 3.1).

Chapter 3.4.3 Integration of Peptide and Protein pQTLs

As we expected that the peptide pQTLs would also be protein QTLs for the parent
protein, we investigated if differences between peptide and protein pQTLs could reflect
technical artifacts introduced by genetic variants affecting the quantification
process/pipeline. To examine the concordance between peptide and protein pQTLS, we
determined the parent protein for all 154 peptide pQTLs and 33 protein pQTLs. We
identified 67 unique parent proteins, of which 24 were associated with both a peptide
pQTL and protein pQTL, 36 were only associated with peptide pQTL(s), and 7 were only
associated with protein pQTL(s). For the 24 parent proteins with both peptide and protein
pQTLs, we identified independent pQTL signals by examining whether the variants were

the same or in linkage disequilibrium (LD; r2> 0.2). We created three classifications for

75



each independent pQTL: 1) those only associated with peptide levels (peptide-only
pQTL), 2) those only associated with protein levels (protein-only pQTL), or 3) those
associated with both peptide and protein levels (both pQTL). From this process, we
obtained 91 independent pQTLs: 58 peptide-only pQTLs (43 parent proteins), 10 protein-
only pQTLs, and 23 both pQTLs (22 parent proteins) (Supplemental Table 3.1). Using the
exome sequencing data, we examined whether the peptides that were associated with
the pQTLs (either directly or indirectly through LD with a polymorphic variant) affected the
guantification process either by: 1) altering the sequence of the peptide, 2) altering the
effectiveness of the trypsin digestion site, or 3) resulting in the association with a
homologous protein (rather than the original parent protein). In total, 43 of the 91
independent pQTLs affected the quantification process by one of these three
mechanisms and appeared to be technical artifacts. The majority of artifact pQTLs were
peptide-only pQTLs (39 of the 43), however, we also found one protein-only pQTL, and
three both pQTLs, to be technical artifacts. After removing these technical artifacts, the
resulting data set had 48 independent associations: 9 protein-only pQTLs, 19 peptide-
only pQTLs, and 20 both pQTLs. Of note, 32 of these associations were novel pQTLs
(Johansson et al., 2013; Kim et al., 2013; Liu et al., 2015; Lourdusamy et al., 2012; Suhre

et al., 2017; Sun et al., 2017) (Supplementary Table 3.1).

Chapter 3.4.4 Collapsing Variants to Identify Rare-variant cis pQTLs
To identify rare variants associated with protein levels, we tested the cumulative
effects of sets of rare variants on peptide and protein levels. We collapsed rare variants

using three different criteria: 1) MAF < 5%: all variants within the interval from 2kb
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upstream of the protein-coding gene to the transcription end of the gene with a minor
allele frequency <5%; 2) Deleterious: all MAF <5% variants that were annotated using
SNPEff(Cingolani et al., 2012) as having an effect impact of high or moderate; and 3)
CADD-score: all MAF <5% variants that have a PHRED-scaled CADD (Kircher et al.,
2014) score greater than 10. For each peptide or protein measured, after collapsing the
rare cis variants for their corresponding gene, we identified associations between the
peptide, or protein, and rare variation using the optimal unified test SKAT-O (Lee et al.,
2012) that combines a kernel test with a burden test. We identified 16 rare cis pQTLs (12
associations with peptides and 4 associations with proteins), of which 10 were
independent: 6 peptide-only, 2 protein-only, and 2 both rare pQTLs (Supplemental Table
3.2). As with common variation, we examined the associations for technical artifacts, and
found that all of the peptide-only pQTLs overlapped a rare missense mutation; they were
therefore excluded. As the threshold used for identifying common variation was MAF >
1%, some variants were included in both common and rare tests; we removed these
associations, resulting in a total of 3 independent rare cis pQTLs, of which 2 were
previously reported (Brantly, Courtney, & Crystal, 1988; Stengaard-Pedersen et al.,
2003). Thus, while genetic variation was associated with substantial artefactual pQTLs in
cis rare variant analysis, the associations identified after filtering corresponded to

established protein-level associations.

Chapter 3.4.5 Trans Associations
To identify downstream targets and pathways associated with pQTLs, and gain

insight into the functional mechanism of the identified pQTLs, we tested for association in
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trans. We first tested all 2.6 million variants with MAF >1% genome wide for association
(trans pQTLs) with each of the 5,608 peptides and 664 proteins; this method did not find
any trans pQTLs at genome-wide significance (peptide P < 8.91x10'?; protein P <
7.54x1011). To increase our power, at each of the 655 loci encoding the measured
proteins of this study, we performed association analyses using each of the three rare
collapsing criteria to identify trans association with any of the peptides or proteins
encoded at the other 654 loci. We identified 9 associations between rare variation and
peptide levels (i.e. rare peptide-only trans-pQTLS) (Supplemental Table 3.3). One of the
associations was a rare peptide-only trans-QTL between variation in FCN3, and levels of
a peptide in the complement component C8 beta chain (C8B). FCN3 is an activator of the
lectin complement pathway, and its pathway includes C8 in its final stages (Garred,
Honore, Ma, Munthe-Fog, & Hummelshoj, 2009). Notably, this variation was just below
the significance threshold for being a rare peptide-only cis QTL for FCN3 (Figure 3.3A).
We therefore examined the full established pathway of the lectin complement (Garred et
al., 2009). We observed that rare variation in FCN3 was associated with 8 other members
of the lectin complement pathway at a nominal P < 0.05: C4a, C4b, C4BPa, C5, C6, C8b,
C8a, and C8g (Supplemental Table 3.4), suggesting that the rare variation in FCN3 was
broadly associated with the levels of proteins in the complement pathway. We next
examined the other rare trans pQTLs, and identified five loci associated with levels of
SERPINAL (alpha-1-antitrypsin): CD109, CFL1, CLU, HYOUL, and RARRES2 (Figure
3.3B). Of the five genes, four encode proteins involved in platelet degranulation
(Reactome (Fabregat et al., 2018) enrichment FDR = 7.2x10). As alpha-1-antitrypsin is

secreted into the plasma via platelet degranulation, these results suggest that rare
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variation in proteins associated with platelet degranulation could be important modulators
of alpha-1-antitrypsin levels. The fifth gene, HYOUL, has not been implicated in platelet
degranulation, but is upregulated in response to hypoxia (Schofield & Ratcliffe, 2004), an
important risk factor for blood clotting (Reitsma, Versteeg, & Middeldorp, 2012). Overall,
these results suggest that rare variation in proteins can be associated with protein levels

of downstream targets.

Hy oL = knsowan interacton from curated database
= gy perimentally detenmined known interaction

- x == pg-pxpression
Limi2 p=17x10 ﬁ bewt mnlng
s

rodedm b |
SERPINA1 S

p=3ax10"
RARRESZ

s p=31x10"

+
= cD109
N

HEPSOE p=21x10°

Figure 3.3 Pathways identified from rare variation analyses

(A) An overview of the lectin complement pathway showing the relationship between FCN3
(Ficolin 3; teal) and the complement pathway. Nominal p-values are shown for the association
between rare variation at the FCN3 locus and levels of the complement pathway proteins. C4,
C3, C5, C8, and C6 were associated at P < 0.05 (purple), C2, C9, C7, or C5b were not associated
(gray). (B) STRING database diagram of the five proteins associated with rare SERPINAL
variation (each labeled with their nominal association p-value). Connections between proteins are
colored based on their evidence (see legend and STRING documentation).
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Chapter 3.4.6 Identifying Putative Functional Variants

Due to linkage disequilibrium (LD), the most strongly associated variant (sentinel
variant) may not be the causal variant. To enable the examination of the distribution of
functional mechanisms underlying the common pQTL associations, it is therefore
necessary to examine variants in LD with the sentinel variant to identify the variants that
could be driving the association (putative functional variants (PFVs)). Across all pQTLs,
we observed an average of 151 variants in LD with the sentinel variant. Next, using a
combination of database and literature searches, we identified candidate variants at each
pQTL locus (Figure 3.4A; see methods). We categorized the strength of published
evidence supporting a specific proposed or validated molecular mechanism according to
four categories ordered by strength: 1) known; 2) likely; 3) suggestive; or 4) unknown (see
methods). We selected the PFV at each locus as the variant with the strongest functional
evidence (Supplemental Table 3.5). In total, we found 18 known, 5 likely, 5 suggestive,
and 20 unknown PFVs; notably, 14 of the 23 PFVs with at least known or likely evidence
were not the sentinel variant. Additionally, while a large proportion of the sentinel variants
were intronic, the PFV annotations showed a redistribution to intergenic and coding
annotations (Supplemental Figure 3.3A). Thus, approximately half of the pQTLs could be
explained by variants previously experimentally shown to influence the associated

protein’s level.

80



5 UTR Intron Exon 3 UTR Intergenic
® o o [ . . SEESEEEENEENE
X 5'UTR Splice site Missense J'UTR Intergenic
Variant Intrenic Synonymous
Annotation Indel
Isoform
Isoform isoform Promoter
Mechanism Promoter sacreti("-\ miRNA
Glycosylation
Degradation
3 pQTLs are deletions of the entire gene and not pictured above
B D
NMD = Same Tissus
o= 83 Other T=sues
= |soform RNA &2 Deletion
= Secretion . No eCTL
= Glycosylation 20.=
= Degradation
= miRNA ;
= Promoter Protein
= Deletion
1 I 1 15 —
0 5 10 15 20 @
Number of Variants § .
c b
S 10 4
e hsmssense T
= Synonymous
= |ndel g
= Deletion — z
=5 UTR rolein 5
= 3 UTR
= In:rergenic
= Intronic
= Splice site Kikncen
T

Protel
10 15 20 RNA rotein Urknown

Number of Variants

(=]
w“

Figure 3.4 Putative functional variant analyses

(A) Cartoon illustrating the genomic locations of variants with particular annotations and
mechanisms, relative to the gene body of the pQTL. For example, Indel annotated variants were
only located within gene exons, but variants that have an underlying mechanism of “isoform” could
be found in introns, exons, or the 3’ UTR. The three pQTLs where the PFV was a large genic
deletion arae not illustrated. (B) Stacked barplot of the number of PFVs associated with each
mechanism, subset by whether the mechanism affects the RNA molecule, or the protein directly.
(C) Stacked barplot of the number of PFVs with each SnpEff annotation, subset by whether the
PFVs’ mechanism affects the RNA molecule, the protein directly, or is unknown. (D) Stacked
barplot of the number of PFVs that were eQTLs in GETX, subset by whether the PFVs’ mechanism
affects the RNA molecule, the protein directly, or is unknown.



Chapter 3.4.7 Examining the Functionality of PFVs

To examine the relative role of different stages of protein level regulation — from
gene expression to post-translational modifications — we further classified the PFVs by
their molecular mechanism of action using the mechanism linked to the variant during
PFV identification. We found the 28 PFVs with suggestive or better evidence to affect a
wide range of processes, including 19 (68%) involved in RNA metabolism (7 affected the
promoter, 4 affected isoform expression, 1 created a transcript that underwent nonsense-
mediated decay, 3 resulted in gene deletions, and 4 affected miRNA processing), and 9
(32%) involved in protein metabolism (6 associated with protein degradation, 2 altered
glycosylation, and 1 affected secretion) (Figure 3.4B; Supplemental Figure 3.3B). We next
examined if the functional annotation of the variant was correlated with whether the
mechanism influenced RNA or protein levels. We observed that PFVs associated with
protein levels directly were more often missense variants, whereas PFVs that affected
RNA levels were primarily located in non-coding regions (Figure 3.4C). The PFVs that did
not have an established mechanism (unknown) were annotated as both missense and
noncoding variants, suggesting that some of the unknown PFVs affect protein levels
directly, whereas others affect RNA. As variants associated with RNA metabolism would
also be expected to show association as an expression QTL (eQTL), we also examined
whether these were more often identified in GTEx. We observed that PFVs which affected
RNA levels, and were not deletions, were more likely to have been identified as an eQTL
(69%, 11/16) than protein PFVs (22%, 2/9) (Figure 3.4D). The unknown PFVs were
identified as eQTLs at an intermediate level (40%, 8/20), consistent with this group

affecting both RNA and protein levels. These results suggest that, while variants that
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affect protein levels often work through mechanisms associated with RNA, and therefore
can be detected through eQTL analyses, many variants affect protein levels without
affecting RNA levels, and act through molecular mechanisms that are more challenging

to measure with current high throughput methods.

Chapter 3.5 Discussion

In this study, we leveraged TMT mass-spectrometry and deep whole exome
sequencing data to identify 60 pQTLs (48 common cis, 3 rare cis, and 9 rare trans)
associated with 96 unique peptides and 30 proteins across the genome (Supplemental
Table 3.6). We then utilized published papers and public databases to examine
established molecular mechanisms underlying these pQTLs, and examine how often the
mechanisms affected RNA or protein metabolism. We showed that, while the majority of
pQTLs exert their effects by modulating the gene’s RNA, many affect the protein directly
through processes such as degradation, glycosylation, and translation. Our work thus not
only shows the importance of identifying functional variation by directly assaying protein
levels, but also highlights how identifying the functional variant in pQTL studies can lead
to insights into the molecular steps by which the protein is regulated. Based on the types
of protein mechanisms that have been described, these results suggest that improved
high throughput methods to assess variants that affect protein translation, modification,

and degradation are needed.

It is currently unclear how often high throughput protein assays have technical

artifacts resulting from genetic variants that affect the ability to correctly quantify peptide
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levels due to alterations of coding sequence through missense changes, isoform usage,
or cleavage patterns. By integrating the individuals' genotypes within coding sequences
with standard TMT mass-spectrometry quantification techniques, we were able to identify
pQTLs that were driven by genotype induced technical artifacts and exclude them. We
observed the largest impact at the level of peptide-only associations, with the majority of
independent associations (67%) being driven by technical artifacts. The majority of
independent associations at the protein level (88% of both pQTLs and protein-only
pQTLs), however, were unaffected. These findings illustrate the importance of filtering
variants that affect peptide quantification, and using quantification techniques that
measure proteins at multiple locations and are therefore are more resilient to peptide

based quantification artifacts.

Rare variation is likely to be an important contributor to variation in protein levels.
By focusing on the proteins that we measured, we identified trans associations between
rare variation in FCN3 and the complement cascade. An individual who was homozygous
for a rare frameshift variant in FCN3 has been reported to have a deficiency in
complement activation (Munthe-Fog et al., 2009); however, this variant was not reported
in our study. Our finding thus provides additional evidence that rare variation in FCN3 is
associated with variation in levels of the complement pathway proteins in the general
population. Additionally, we identified five protein loci with rare variation associated with
levels of alpha-1 antitrypsin. Four of the proteins have been characterized as being
involved in platelet degranulation, while the fifth, HYOUL1, has been shown to act as an
oxygen-inducible chaperone for proteins in the endoplasmic reticulum of macrophages

(Ozawa et al., 2001). Alpha-1 antitrypsin deficiency is a well-established genetic condition
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that predisposes an individual to chronic obstructive pulmonary disease, liver cirrhosis,
and hepatocellular carcinoma (Stoller & Aboussouan, 2012). While over 120 alleles of the
SERPINAL gene have been implicated in alpha-1 antitrypsin deficiency, variation in
genes other than SERPINA1 have not yet been described (Stoller & Aboussouan, 2012).
While the individuals in this study have not been found to have alpha-1 antitrypsin
deficiency, the finding that rare variation in many genes can contribute to alpha-1
antitrypsin plasma levels could have implications for the genetic architecture of the

disorder.

Due to the fact that our analyses are based on high throughput data, the novel
associations that we identified should be further validated by replication in an independent
data set. As many of our findings were consistent with previous work, we expect that the
majority of the novel associations will be replicated in future studies. Additionally, the
annotation of PFVs may have been biased for finding missense variants, as we relied on
published literature and databases, and past protein research may have focused on
studying missense variation. However, as the majority of the PFVs that we identified were
regulatory in nature, and the class of unknown variants showed annotations consistent
with them affecting both RNA and protein metabolism, we believe that PFV annotations

were likely not strongly biased for previously characterized missense variants.

Chapter 3.6 Acknowledgements
The authors would like to thank Margaret K. R. Donovan for assistance with figure

generation.

85



Chapter 3, in full, is currently being prepared for submission for publication. Terry
Solomon, John Lapek, Sgren Beck Jensen, Hiroko Matsui, Kristian Hindberg, William
Greenwald, Nadezhda Latysheva, Sigrid Braekkan, David Gonzalez, Kelly A. Frazer, Erin
Smith, John-Bjarne Hansen. The dissertation author was the primary investigator and

author of this paper.

Chapter 3.7 Funding Sources

This work was supported by an independent grant from Stiftelsen Kristian Gerhard
Jebsen in Norway. T. Solomon was supported by an institutional award to the UCSD
Genetics Training Program from the National Institute for General Medical Sciences, T32
GMO008666. This work was supported by the Ray Thomas Edwards Foundation and the
University of California Office of the President (D.J.G.). J.D.L. is an IRACDA fellow

supported by NIGMS/NIH (K12GM068524).

Chapter 3.8 Supplemental Tables

(see downloadable file for Chapter 3 Supplemental Tables)

Supplemental Table 3.1 Single-site association of cis genetic variants with peptides
and/or proteins.

Protein Name corresponds to the gene name. Ensembl ID is the GRCh37 Ensembl ID for the
transcript tested. Peptide Sequence is the amino acid sequence of the peptide tested. This is N/A
if the association was at the protein level. Sentinel Variant is the rsID for the most significantly
associated genetic variant. P-value is the p-value of that variant’'s association with the tested
peptide or protein. Beta is the effect on the normalized peptide or protein level that corresponds
to each additional copy of the effect allele for the most significant variant. R2 is the amount of
variance in the peptide or protein level that is explained by the most significant variant. Number
of Samples lists the number of individuals that the association was calculated in. pQTL Type is
whether the association was for a peptide or protein. Number of Peptides Collapsed into
Measurement for proteins lists the number of peptides that were summed together to get the
protein level. This is N/A for peptides. Conditional Association Result is primary for the first
significant variant identified in a locus and secondary if there was an additional variant associated
when the first was taken into account. Integrated pQTL Class is whether the association is a
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peptide-only pQTL, protein-only pQTL, or both pQTL. LD Between Peptide pQTL and Protein
pQTL is whether the sentinel variant was identified or was in LD (R2) with another variant that
was identified in this study as a pQTL for that Protein Name. As multiple peptides or proteins can
correspond to the same variant, the independent pQTL column is 1 for each independent pQTL
and O for each repeat. The Artifact column is 1 if the pQTL was deemed an artifact and O if not.
The Artifact Type lists the evidence supporting whether the variant was deemed an artifact. The
In Final Analysis column gives a 1 if the pQTL was an independent pQTL and not an artifact and
was thus kept for further analysis. Previously Reported cites the pQTL paper that has previously
published this association. [sort table by Protein Name, Integrated pQTL Class, In Final Analysis
for clarity]

Supplemental Table 3.2 Grouped association for cis genetic variants with peptides and/or
proteins.

Protein Name corresponds to the gene name. Ensembl ID is the GRCh37 Ensembl ID for the
transcript tested. Peptide Sequence is the amino acid sequence of the peptide tested. This is N/A
if the association was at the protein level. Rare variant criteria is whether the association was
found using the MAF < 5%, Deleterious, or CADD-score grouping criteria. P-value column shows
the p-value of that region’s association with the tested peptide or protein. Number of Samples
lists the number of individuals that the association was calculated in. Integrated pQTL Class is
whether the association is a peptide-only pQTL, protein-only pQTL, or both pQTL. Rare Variants
in Peptide determines whether one of the rare variants tested fell within the peptide sequence
and is thus likely an artifact. The Artifact column is 1 if the pQTL was deemed an artifact and O if
not. Significant in Cis Single-site Analysis column is a 1 if an association was already seen for
that peptide or protein in the single-site analysis. The In Final Analysis column gives a 1 if the
pQTL was not significant in the cis single-site analysis and not an artifact and was thus kept for
further analysis. Previously Reported Citation lists the PubMed ID of any papers that describes
an association between one of the underlying rare variants and levels of the protein.

Supplemental Table 3.3 Grouped association for trans genetic variants with peptides.
Protein Name corresponds to the gene name. Ensembl ID is the GRCh37 Ensembl ID for the
transcript tested. Peptide Sequence is the amino acid sequence of the peptide tested. Locus is
the genetic locus that was associated with the peptide. Rare variant criteria is whether the
association was found using the MAF < 5%, Deleterious, or CADD-score grouping criteria. P-
value column shows the p-value of that region’s association with the tested peptide or protein.
Number of Samples lists the number of individuals that the association was calculated in.

Supplemental Table 3.4 Association of variants in FCN3 with proteins in the Lectin
complement pathway.

Protein Name corresponds to the gene name. Ensembl ID is the GRCh37 Ensembl ID for the
transcript tested. Peptide Sequence is the amino acid sequence of the peptide tested. Rare
variant criteria is whether the association was found using the MAF < 5%, Deleterious, or CADD-
score grouping criteria. P-value column shows the p-value of that region’s association with the
tested peptide.

Supplemental Table 3.5 Annotation of all pQTLs.

Protein Name corresponds to the gene name. Putative Functional Variant (PFV) is the rsID of the
proposed functional variant. Sentinel Variant is the rsID of the pQTL. Level is whether the
association is a peptide-only pQTL, protein-only pQTL, or both pQTL. LD between PFV and
Sentinel lists the r2 between the two variants from HaploReg. Sentinel P-Value lists the lowest p-
value of a peptide or protein found with the sentinel variant. PFV P-value lists the corresponding
p-value between the PFV and the same peptide or protein measured for the Sentinel P-value.
PFV in OMIM lists the OMIM ID if the PFV was reported in OMIM. Sentinel SNPEff Annotation
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lists the functional annotation from SNPEff for the sentinel variant. PFV HaploReg Annotation lists
the functional annotation and gene locus from HaploReg for the PFV. PFV SNPEff Annotation
lists the functional annotation from SNPEff for the PFV. Tissue is the tissue with the highest
expression of the protein according to GTEx. PFV eQTL Tissue lists whether the PFV was an
eQTL in GTEX in the same tissue as the Tissue column (“Same”), a different tissue (“Other”), or
was not an eQTL (“none”). Strength is whether the evidence supporting the mechanism was
classified as “known”, “likely”, “suggestive”, or “unknown”. Mechanism lists the category of the
mechanism of action. Affected Molecule lists whether the PFV affects RNA levels, Protein levels,
or unknown. PMIDs lists the papers with evidence supporting the mechanism.

Supplemental Table 3.6 All pQTLs identified in this study.

Type of Association is which analysis the pQTL was identified in. Protein Name corresponds to
the gene name. Ensembl ID is the GRCh37 Ensembl ID for the transcript tested. Associated
Protein is the ensemble ID if the pQTL was identified at the protein level. Associated Peptides
lists the amino acid sequences of all peptides that were associated with that variant. Sentinel
Variant is the rsID of the pQTL or the name of the gene locus if this was a rare pQTL. Integrated
pQTL Class is whether the association is a peptide-only pQTL, protein-only pQTL, or both pQTL.
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Chapter 3.7 Supplemental Figures
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Supplemental Figure 3.1 Schematic showing the categories of strength of supporting
evidence for PFV classification

(A) Known: the PFV had been experimentally shown to affect the protein’s level through a
particular molecular mechanism. (B) Likely: either the PFV had been experimentally validated to
have a molecular mechanism that was predicted to affect the protein’s level, and the variant was
previously associated with the protein’s level (top), or the PFV was predicted to have a mechanism
that had been experimentally shown to affect protein’s level, and the variant was previously
associated with the protein’s level (bottom). (C) Suggestive: either the PFV was predicted to act
through a specific molecular mechanism, and the PFV was previously associated with the
protein’s level (top), the PFV was associated with the protein’s level and a molecular mechanism
had been previously predicted to affect the protein’s level (middle), or the PFV was predicted to
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act through a molecular mechanism, and the proposed mechanism had been associated with the
protein’s level (bottom).
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Supplemental Figure 3.2 Data characterization of the plasma peptides and proteins

(A) Histogram of the distribution of the number of amino acids within each of the 5,608 quantified
peptides, with the mean of 14.5 amino acids indicated by the dotted black line. (B) Bar plot of the
top 25 pathways from Reactome pathway analysis. Dotted line indicates significance at FDR q <
0.05.
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Supplemental Figure 3.2 Characterization of putative functional variants
(A) Barplot showing the number of sentinel variants (blue) or PFVs (red) in each SnpEff
annotation. (B) Barplot of the number of PFVs with each mechanism.
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Chapter 4: Discovery of novel plasma biomarkers for future incident venous
thromboembolism by untargeted SPS-MS? proteomics.
Chapter 4.1 Abstract

Objective: Prophylactic anticoagulant treatment may substantially reduce the
incidence of venous thromboembolism (VTE) but entails considerable risk of severe
bleeding. Identification of individuals at high risk of VTE through the use of predictive
biomarkers is desirable in order to achieve a favorable benefit-to-harm ratio.

Therefore, we aimed to identify predictive protein biomarker candidates of VTE.

Approach and Results: We performed a case-control study of 200 individuals
that participated in the Tromsg Study, a population-based cohort, where blood
samples were collected before the VTE events occurred. Untargeted TMT-SPS-
MS3-based (tandem mass tag-synchronous precursor selection-mass
spectrometry) proteomic profiling was used to study the plasma proteomes of each
individual. Of the 501 proteins detected in a sufficient number of samples to allow
multivariate analysis, 46 proteins were associated with VTE case-control status with
p-values below the 0.05 significance threshold. The strongest predictive biomarker
candidates, assessed by statistical significance, were transthyretin, vitamin K-

dependent protein Z, and protein/nucleic acid deglycase DJ-1.

Conclusions: Our untargeted approach of plasma proteome profiling
revealed novel predictive biomarker candidates of VTE and confirmed previously
reported candidates, thereby providing conceptual support to the validity of the

study. A larger nested case-control study will be conducted to validate our findings.
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Chapter 4.2 Introduction

Venous thromboembolism (VTE), a collective term for deep vein thrombosis
and pulmonary embolism, has an annual incidence rate of 1-2 per 1000 persons
(Heit, 2015). The health burden caused by VTE is immense, and it is expected to
grow with the aging of the population and the increasing prevalence of major risk
factors for VTE such as obesity and cancer (Afshin et al., 2017; Ferlay J, 2012; W.
Huang, Goldberg, Anderson, Kiefe, & Spencer, 2014; "Thrombosis: a major
contributor to the global disease burden,” 2014). Prophylactic anticoagulant
treatment in situations of high VTE risk provides an effective strategy for VTE
prevention but entails a substantial risk of severe bleeding (Cohen et al., 2008;
Mayer, Streiff, Hobson, Halpert, & Berenholtz, 2011). Thromboprophylaxis with
anticoagulants should therefore be targeted towards individuals with the highest

VTE risk in order to achieve a favorable benefit-to-harm ratio.

VTE is a complex disease that occurs as a result of interactions between
inherited and acquired factors (Rosendaal, 1999). Several genetic variants and the
levels of numerous plasma proteins, mostly with roles in coagulation or fibrinolysis,
have been shown to be associated with VTE (Bruzelius et al., 2016; Christiansen et
al., 2006; Fashanu et al., 2017; Germain et al., 2015; Heit, 2015; Karasu, Baglin,
Luddington, Baglin, & van Hylckama Vlieg, 2016; Meltzer et al., 2010; Norgaard,
Nielsen, & Nordestgaard, 2016; Puurunen et al., 2016; Reitsma & Rosendaal, 2004;

Ridker, Cushman, Stampfer, Tracy, & Hennekens, 1997; Tsai et al., 2002; van
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Hylckama Vlieg et al., 2015; van Montfoort et al., 2013). However, few prospective
studies have successfully shown associations between protein biomarker levels at
baseline and risk of future incident VTE (Christiansen et al., 2006; Fashanu et al.,
2017; Puurunen et al., 2016; Ridker et al., 1997; Tsai et al., 2002). The discovery of
novel biomarkers for risk prediction of incident VTE in the general population is
therefore warranted. Furthermore, the identification of individuals at high risk of VTE
is challenging, as it requires integration of both clinical risk factors and biomarkers.
Current risk prediction models for VTE are often restricted to patient subgroups and
they have shown limited predictive power, particularly in validation studies
(Bruzelius et al., 2015; de Haan et al., 2012; Folsom et al., 2016; Greene et al.,
2016; Mahan, Burnett, Fletcher, & Spyropoulos, 2017; Park et al., 2017; Pepin et

al., 2016; Puurunen et al., 2016; van Es et al., 2017).

The proteomic profile of blood plasma is influenced by both genetic and
environmental factors that may affect the risk of VTE. Combined with the minimal
invasiveness and cost of blood sampling, blood plasma is a clinically attractive and
relevant specimen for the discovery of novel biomarkers for VTE. Recent advances
in mass spectrometry technology have increased the feasibility of mass
spectrometry (MS)-based biomarker discovery studies. Improved accuracy in
relative protein quantification combined with the development of sample
multiplexing protocols have made MS an attractive technology for plasma biomarker
discovery (Cominetti et al., 2016; Dayon, Nunez Galindo, Corthesy, Cominetti, &

Kussmann, 2014; McAlister et al., 2014, Ting, Rad, Gygi, & Haas, 2011).
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This study was designed to identify novel plasma protein biomarkers for
future incident VTE. We combined Tandem-Mass-Tag (TMT)10-plexing with
synchronous precursor selection (SPS)-MS (MS3) to generate untargeted
proteomic profiles (McAlister et al., 2014). Our study included 100 individuals who
developed VTE and 100 age and sex-matched control individuals selected from a
population-based cohort where plasma samples were collected before the VTE
events occurred. To our knowledge, this study is the first to employ untargeted
plasma proteomic profiling with the objective to discover predictive biomarkers for
incident VTE, and is the first to take advantage of the improved accuracy of MS3 in
a larger plasma proteomic study. We identified a panel of 46 biomarker candidates

worthy of further investigation and validation.

Chapter 4.3 Materials and Methods
Chapter 4.3.1 Source Population

Participants were recruited from the fourth survey of the Tromsg Study
conducted in 1994-95, where all inhabitants of Tromsg (Norway) older than 24 years
of age were invited to participate in a prospective health survey (Jacobsen, Eggen,
Mathiesen, Wilsgaard, & Njolstad, 2012). The participation rate was 77% with
27,158 individuals attending the first visit. Additionally, a subset of the participants
was invited for a more extensive examination, and 7,965 individuals participated in
the second visit. Those who did not consent to medical research (n=300), who were

not officially registered as inhabitants of the municipality of Tromsg at baseline
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(n=43), and those with a known pre-baseline history of VTE (n=47) were excluded
from the study. The remaining participants (n=26,768) were followed from the date
of enrollment until September 1, 2007. All first lifetime events of VTE occurring
among the participants during follow-up were identified from the discharge diagnosis
registry, the autopsy registry, and the radiology procedure registry at the University
Hospital of North Norway, which is the sole hospital in the Tromsg region. Trained
personnel adjudicated each VTE by extensive medical records review. A VTE was
adjudicated if the presence of signs and symptoms of deep vein thrombosis or
pulmonary embolism were combined with objective confirmation by radiological
procedures, which resulted in treatment initiation (unless contraindications were
specified) as previously described (Braekkan et al., 2010). In total, 462 VTE events

occurred in the follow-up period.

Chapter 4.3.2 The Study Population

From the source population, we established a case-control study of 100 VTE
cases and 100 controls. For each VTE case, an age- and sex-matched control was
randomly sampled from the source cohort. Cases were prioritized according to the
shortest time from blood sampling to VTE, and the first 100 case-control pairs where
both plasma samples passed quality control (as described below) were included to

form our case-control study.
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Chapter 4.3.3 Ethics Approval
All  participants provided informed written consent to participate in
accordance with the declaration of Helsinki. The study was approved by the

Regional Committee of Medical and Health Research Ethics.

Chapter 4.3.4 Plasma Collection and Base Line Characteristics

Baseline characteristics including age, sex, and anthropometrics were
collected by physical examination at study enrollment. Height and weight were
measured with subjects wearing light clothing and no shoes. BMI (Body mass index)
was calculated as the weight in kilograms divided by the square of height in meters
(kg/m2). Non-fasting blood samples were drawn from an antecubital vein into 5 mL
vacutainer tubes containing EDTA (Ethylenediaminetetraacetic acid) as an
anticoagulant (K3-EDTA 40 pL, 0.37 mol/L per tube). Blood samples were
processed within 1 hour by centrifugation at 3000 g for 10 min at 22°C, and plasma
was collected and frozen in 1 mL aliquots. The plasma samples were stored at -

70°C until analysis.

Chapter 4.3.5 Quality Control
The plasma samples obtained from the Tromsg Study were inspected
visually for signs of hemolysis and the protein content was determined by Bradford

assay (Biorad, Hercules, CA, USA). Signs of sample protein degradation were
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assessed by Coomassie Blue visualization of 10 pg of protein from each sample
separated by sodium dodecyl sulfate polyacrylamide gel electrophoresis on a 4-20%
Criterion, gradient gel (Biorad, Hercules, CA, USA). The first 100 sample-pairs
where both case- and control samples passed quality control as assessed by
hemolysis, protein concentration (mean = 2 standard deviations), and sodium
dodecyl sulfate polyacrylamide gel electrophoresis band pattern were included in
the study. After albumin and 1gG depletion, 17 samples were picked randomly for
quality control on sodium dodecyl sulfate polyacrylamide gel electrophoresis as

described above and passed quality control (Supplementary Figure 4.1).

Chapter 4.3.6 Sample Preparation, Digestion, Labeling, and Multiplexing

Plasma samples were depleted for albumin and IgG on Q-proteome spin
columns (Qiagen, Hilden, Germany, Cat#: 37521) following the manufacturer's
instruction replacing the kit buffer with 100 mM triethylammonium bicarbonate. From
each depleted plasma sample, 60 pg of protein was brought to 0.1% sodium dodecyl
sulfate in 100 mM triethylammonium bicarbonate, reduced (tris(2-
carboxyethyl)phosphine), alkylated (iodoacetamide) and digested with trypsin. TMT-
labeling was performed by mixing the tryptic peptides with their relevant TMT-10plex
reagent in accordance with a labeling plan that randomized each sample pair to 25
multiplexed experimental samples. Labeling reactions were terminated with
hydroxylamine before each of the 25 multiplexed samples were combined from their

respective labeled peptides according to the labeling plan. Multiplexed samples
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were diluted to an acetonitrile concentration below 5% before solid phase
purification on Oasis HLB-cartridges (Waters, Saint-Quentin, France) was

performed and samples were eluted according to manufacturer’s instructions.

Chapter 4.3.7 Sample Fractionation, Liquid Chromatography and Mass
Spectrometry

Strong cation exchange chromatography on a polySULFOETHYL-A column
(PolyLC, Columbia, MD, USA) on a high-performance liquid chromatography
system from Waters Alliance (2695) (Saint-Quentin, France) was used to separate
300 ug of peptide from each experimental sample into eight fractions. The fractions
were desalted on Oasis HLB cartridges and dried (Waters, Saint-Quentin, France).
Each peptide fraction was re-suspended and analyzed in duplicate by liquid
chromatography-MS3 using an EASY-nLC 1000 system coupled to an Orbitrap
Fusion Tribrid mass spectrometer (Thermo Fisher Scientific, Waltham, MA, USA).
Re-suspended peptides were loaded onto a nanoViper C18 Acclaim PepMap 100
pre-column (Thermo Fischer Scientific) and resolved using an increasing gradient
of 0.1% Formic acid in acetonitril through a 50 cm PepMap RSLC analytical column
(Thermo Fisher Scientific, Waltham, MA, USA) at a 200 nL/min flow rate. Peptide
mass spectra were acquired throughout the chromatographic run of 180 min using
a top 10 high-energy collision induced dissociation method for Fourier Transform-
MS2 scans following each Fourier Transform-MS scan. SPS of several MS2

fragment ions followed by higher energy collisional dissociation fragmentation
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released the reporter ions, which were detected in the Orbitrap at a resolving power
of 30000 at 400 m/z (McAlister et al., 2012). Proteomic Sciences (Cobham, United
Kingdom) performed the plasma sample quality control and subsequent steps for

the generation of 400 raw-data files.

Chapter 4.3.8 Mass Spectrometry Data Analysis

Proteome Discoverer v2.1 (Thermo Scientific) was used as a data processing
interface for all raw files, which were processed together to yield an accurate false
discovery rate (Savitski, Wilhelm, Hahne, Kuster, & Bantscheff, 2015). The false
discovery rate was set to 1% for both peptide and protein levels using a reverse
database strategy (Elias & Gygi, 2007).We used spectrum selector default settings
and SequestHT to identify peptides mapping to the Genecode human proteins
sequence database (Gencode 19) (Eng, McCormack, & Yates, 1994). Oxidized
methionine was included as a variable modification. Carbamidomethylation of
cysteine, and 10-plex TMT-labels on peptide amino-termini and lysines were
included as fixed modifications. Trypsin was selected as proteolytic enzyme and a
maximum of three potential missed cleavages was allowed. Reporter ion signal-to-
noise ratios were extracted with the reporter ions quantifier node in Proteome

Discoverer were exported for relative quantification.
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Chapter 4.3.9 Data Processing and Analysis

Peptide level filtering excluded peptides with isolation interference greater
than 25% or average reporter ion signal-to-noise ratios below 10. Peptide level
signal-to-noise ratios were summed to estimate protein abundances enforcing the
principle of parsimony. Values from technical duplicates were averaged if both
values were available, otherwise non-missing values were used. Data was
normalized in a two-step process as previously described (Lapek, Lewinski,

Wozniak, Guatelli, & Gonzalez, 2017).

Chapter 4.3.10 Post Normalization Data Quality Control

Proteins with measurements in all samples were used in unsupervised
hierarchical clustering of Spearman’s correlations between individual samples, and
the heatmap.2 function in R was used to visually identify batch effects from TMT-

label, experimental sample number, or Tromsg survey visit number.

Chapter 4.3.11 Statistical Analysis

Univariate and multivariate linear regression adjusting for age, sex, and BMI
were performed to identify VTE-biomarker candidates with significantly different
protein expression levels between cases and controls. To stabilize estimates in the
multivariate linear regression, 10 measurements were required per explanatory

variable, i.e. only proteins with valid measurements in at least 40 samples were
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analyzed. Regression coefficients were standardized according to the standard
deviation of the control group. We used a significance threshold of p < 0.05. All

analysis were performed in R (version 3.3.3) using standard packages.

Chapter 4.4 Results

We established a case-control study of 100 VTE cases and 100 controls
matched for age and sex with plasma samples available from the Tromsg Study that
passed quality control procedures (Figure 4.1) (baseline characteristics in
Supplementary Table 4.1). TMT10-multiplexing and liquid chromography-MS3 was
used to generate plasma proteomic profiles of each individual sample in 25
multiplexed mass spectrometry experiments. We identified and performed relative
guantification of 6,117 peptides mapping to 681 proteins in 200 human plasma
samples (Figure 4.2A). Of the 681 proteins identified, 287 proteins (42%) were
measured in all samples and 431 proteins (63%) were measured in more than half
of the samples (Figure 4.2B). Of the 681 proteins, 488 proteins (71%) were identified
by more than one peptide and a median of three peptides per protein were used for
identification (Figure 4.2C). A two-step normalization was performed to account for
slight differences in pipetting and TMT-labeling efficiency, and to allow comparison
of relative protein levels across all samples in the study (Supplementary Figure 4.2A
and 2B). A heatmap of Spearman’s correlations revealed two clusters of highly
correlated samples. These clusters contained almost exclusively samples collected

at the second visit of the Tromsg survey, and only a single sample collected at the
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second visit was not found in these two clusters (Supplementary Figure 4.2C).
Therefore, the 24 samples collected at the second visit were removed from the
analysis. Additionally, eight samples obtained from participants with active cancer
at the time of blood sampling were removed (i.e. individuals diagnosed with cancer
within 5 years before to 1 year after blood sampling). Baseline characteristics of the
study participants after the removal of these 32 samples are summarized in Table
4.1. Data normalization and clustering analysis were re-performed. Clustering
analysis revealed no batch effects of MS experiment number or TMT-label and
indicated appropriate data normalization (Figure 4.2D). The normalized protein
estimates from two technical replicates showed high correlations (range [0.80-0.98],

median 0.91).
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Number of peptides (red) and proteins (black) identified in each multiplex sample.
The sum of identifications in two technical replicates is shown (A). The number of
proteins identified in a given number of multiplexed experiments. The dashed lines
indicate identification in half of the TMT reactions (B). The number of proteins
identified by a given number of peptides. For each protein, the sum of peptides
across the dataset is provided (C). Heatmap of Spearman'’s correlation clustering
for the study summarized in Table 4.1. Colors on axis indicate TMT-label (vertical)
and multiplex sample number (horizontal) (D).
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Table 4.1 Baseline characteristics of the study after removal of Tromsg Study
second visit samples and participants with active cancer.

Abbreviations: Deep vein thrombosis (DVT), pulmonary embolism (PE).

Cases Controls
Participants 80 86

Median age, y [range] 65 [28-83] 65 [28-83]

Sex, male 32 (40%) 39 (45%)

BMI, kg/m? (mean + SD) 27.0£4.1 24.7£3.5

Years to VTE, mean [range] 3.82[0.09-6.85]

DVT 55 (69%)
PE 25 (31%)
Cancer (at event) 17 (31%)
Unprovoked 34 (43%)

The normalized relative protein levels were regressed on age, sex, BMI, and
VTE status in a multivariate linear model. To yield stable estimates we required a
minimum of 40 measurements for a protein to be considered. The obtained p-value
for the association with VTE status was used to evaluate the biomarker potential for
each protein. Out of the 501 proteins tested in the multivariate analysis, 46 proteins
had p-values below the 0.05 significance threshold (Figure 4.3 and Supplementary
Table 4.2). For the proteins that were identified in too few samples to be considered

in multivariate analysis, univariate statistics are provided in Supplementary Table

4.2.
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Figure 4.3 Volcano plot of plasma proteins identified in 40 or more samples.
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log (p-value). The multivariate model 10 included age, sex, and BMI as covariates. The
black dashed line indicates a p-value of 0.05. The three candidates with lowest pvalues are
indicated by their protein name. ProZ: Vitamine K-dependent protein Z, DJ-1:
Protein/nucleic acid deglycase DJ-1

Based on statistical probability, the strongest biomarker candidate identified
in this study was transthyretin with a nominal p-value of 0.00015 (Figure 4.3). We
also found vitamin K-dependent protein Z (ProZ) to be overexpressed in cases
although with a less extreme p-value of 0.0018 (Figure 4.3). Interestingly, the third
lowest p-value was obtained for protein/nucleic acid deglycase DJ-1 (DJ-1) (p =

0.0055), which is also the candidate with the largest effect size (Figure 4.3). Figure
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4.4 shows the relative protein estimates for cases and controls for each of the three

aforementioned biomarker candidates.
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Figure 4.4 Boxplot of the relative plasma protein levels of transthyretin (A), DJ-1 (B),
and ProZ (C) in cases and controls.
The regression line for VTE status is shown in blue. AU = arbitrary units.
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We found a significant inverse correlation (Pearson’s R = -0.41, p-value =
0.0046) between the plasma levels of transthyretin and DJ-1 (Figure 4.5). Sequence
analysis revealed that the proposed optimal target sequence for DJ-1-mediated
proteolysis is closely resembled by the 34-37th amino acids in transthyretin and may
suggest that DJ-1-mediates cleavage of transthyretin after position V36 (Mitsugi et

al., 2013).

& = F o Cases
& Controls

300

250

150

Protein‘nucleic acid deglycase DJ-1 [AU]
200

Tranathyratin [AU]

Figure 4.5 Scatter plot of relative transthyretin levels versus DJ-1 levels
Controls are shown in blue and cases in red, with corresponding regression lines. The black
regression line is created with respect to all samples. AU = arbitrary units.

In our panel of predictive biomarker candidates, we found coagulation factor
IX, galectin-3-binding protein, and both subunits of the heterodimeric S100A8/9

(correlation between subunits R? = 0.96) to be differentially expressed in cases and

113



controls (Supplementary Figure 4.3A-C and Supplementary Table 4.2). These
biomarker candidates have previously been linked to VTE in retrospective case-
control studies (Heikal et al., 2013; van Hylckama Vlieg, van der Linden, Bertina, &
Rosendaal, 2000) or in animal models of VTE (DeRoo et al., 2015; Wang et al.,
2017). Moreover, our candidate list included proteins related to the complement
system and the ProZ-dependent protease inhibitor. The previously described
predictive VTE biomarker von Willebrand factor showed differences in expression
levels in the expected direction (i.e. overexpressed in VTE cases) without reaching
statistical significance (p-value = 0.16) (Smith et al., 2010; Tsai et al., 2002).

(Supplementary Figure 4.3D and Supplementary Table 4.2).
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Chapter 4.5 Discussion

In this study, we present a large-scale MS3-based plasma proteomic profiling
with the objective to discover novel biomarker candidates with the potential to
predict incident VTE in the general population. We identified a panel of 46 biomarker
candidates that included transthyretin, ProZ, and DJ-1 as the most promising
candidates. Moreover, we revealed a negative correlation between transthyretin and
DJ-1 that might suggest a mechanistic implication of these biomarkers in the
pathogenesis of VTE. Finally, we support the concept that the proteins galectin-3-
binding protein and S100A8/S100A9, previously reported to be involved in VTE
pathogenesis using mouse models, are predictive biomarker candidates in humans.
Moreover, the identification of galectin-3-binding protein and S100A8/9 as
biomarker candidates, and the expected direction of difference in von Willebrand

factor expression, lend conceptual support to the validity of this study.

Of the 681 proteins identified, 501 proteins were detected in a sufficient
number of samples to allow multivariate analysis. We chose to present all proteins
with p-values below 0.05 as biomarker candidates. This resulted in a panel of 46
proteins. When 501 statistical tests are conducted at a 0.05 significance threshold,
25 type | errors are expected. In a discovery study, the aim is to identify as many
promising candidates as possible. Therefore, we omit control of the study-wide type
| error rate since limitation hereof will increases the chance of type Il error. Inflation

of the type Il error will erode the objective of a discovery study when followed up by
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a validation study. Therefore, we promoted all candidates with p-values below 0.05

to our future validation study.

As we identified a high number of candidate plasma proteins associated with
VTE, it is possible that many proteins act together to increase risk. The associations
of VTE with elevated thrombin potential and hypofibrinolytic capacity support this
notion (Karasu et al., 2016; Meltzer et al., 2010; van Hylckama Vlieg et al., 2015).
Indeed, knowledge about non-linear interactions between single risk factors, such
as the non-additive effects of prothrombin mutation 20210A and factor V Leiden
(Simone et al., 2013), will be of pivotal importance to meet the challenge of VTE
prediction and suggests a need for the development of panels of cooperating

biomarkers (Demler, Pencina, & D'Agostino, 2013).

The strongest plasma biomarker candidate that we identified, transthyretin,
forms a homotetramer that has two binding sites for thyroxine (Pettersson,
Carlstrom, & Jornvall, 1987). Transthyretin misfolding can lead to amyloidosis,
which affect as much as 25% of the elderly population, and may be linked to VTE
through low-grade inflammation (Saghazadeh & Rezaei, 2016; Tanskanen et al.,
2008). Interestingly, the inverse correlation between transthyretin and DJ-1
identified in this study is consistent with a previously reported proteolytic role for DJ-
1 towards transthyretin reported in a study that also found an association between
transthyretin amyloidosis and the secretion of an inactive form of DJ-1 (Koide-
Yoshida et al., 2007). An alternative mechanistic explanation to DJ-1-mediated

protection against VTE could be a reduction of advanced glycation end-products
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that may contribute to VTE development (Richarme et al., 2015; Wautier & Wautier,

2013).

This study showed an upregulation of ProZ in subjects who later developed
VTE, which might be surprising given its regulatory role in coagulation. Deficiency
in ProZ has previously been associated with increased risk of VTE in retrospective
studies (Al-Shangeeti, van Hylckama Vlieg, Berntorp, Rosendaal, & Broze, 2005;
Bafunno, Santacroce, & Margaglione, 2011; Sofi et al., 2010). However, in these
studies blood was sampled after the occurrence of VTE entailing the risk of reverse
causation. We note that plasma levels of ProZ are known to be affected by warfarin
treatment and oral contraceptive use, and that a more controversial inverse
relationship with interleukin-6 levels has been described (Al-Shangeeti et al., 2005;
Bafunno et al., 2011; Miletich & Broze, 1987). In plasma, ProZ is bound to a
stoichiometric excess of protein Z-dependent protease inhibitor and promotes its
inhibition of coagulation factor Xa (Han, Fiehler, & Broze, 1998). However, ProZ
also impairs antithrombin mediated inhibition of coagulation factor Xa, which in
combination with the vulnerability of protein Z-dependent protease inhibitor function
to lipid oxidation may result in a procoagulant effect of ProZ in microenvironments
with high levels of oxidative stress (Han et al., 1998; X. Huang et al., 2017). Our
study is the first prospective study to assess the association between ProZ plasma

levels and risk of future incident VTE.

The strength of our study lies in the combination of an epidemiological study

design with the hypothesis free discovery approach offered by MS3-based
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proteomics. The source cohort is recruited form a single-centered survey of the
general population with a 77% participation rate that limits selection bias. Important
to the discovery of predictive biomarkers, blood samples were drawn years before
the VTE events occurred, and the VTE-events were well validated without
knowledge on the proteome status. Additionally, we exploited the improved
guantitative accuracy of MS3 and obtained individual untargeted plasma proteomic

profiles (Ting et al., 2011).

In general, an important limitation of the data-dependent MS approach is the
decreasing detectability of proteins with their decreasing abundancy. For example,
we detected candidates like DJ-1, structural maintenance of chromosomes protein
5, and complement component Clqg receptor in just enough samples to allow
multivariate assessment. The statistical significance of these candidates was driven
by large effect size, which may suggest these candidates to be the stronger
predictive biomarkers for VTE. We offered univariate statistics for proteins that were

detected in too few samples to yield stable estimates.

In conclusion, we present a large-scale MS3-based plasma proteomic
profiling study designed to discover biomarker candidates with the potential to
predict incident VTE in the general population. In a prospective case-control design
with a discovery approach, we identified a panel of 46 biomarker candidates
including transthyretin, ProZ and DJ-1. The biomarker candidates will be further

validated in a larger, nested case-control study.
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Supplemental Figure 4.1 Comassie Blue stain of SDS-PAGE-separated proteins
from 17 randomly picked samples.

After sample depletion, 10 pg of protein was analyzed in each lane. The fraction of protein
recovered after depletion is given as a percentage of the initial protein content above each
lane.
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Supplemental Figure 4.2 Boxplots of raw (A) and median normalized (B) relative
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(used for illustration). Heatmap of unsupervised clustering of Spearman’s correlations of all
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visit in black). VTE-status is indicated to the left of the heatmap (cases in red, controls in
green) (C). SNR = signal-to-noise ratio.
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Supplemental Figure 4.3 Boxplot of the relative plasma protein levels of coagulation
factor IX (A), galectin-3-binding protein (B), S100A8 (C), and von Willebrand factor
(D) in cases and controls.

The regression line for VTE status is shown in blue. AU = arbitrary units.
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Chapter 4.8: Supplemental Tables

Supplemental Table 4.1 Baseline characteristics of full case-control sample set.
DVT = deep vein thrombosis, PE = pulmonary embolism

Cases Controls
Participants 100 100
Median age [range] 65 [28-83] 65 [28-83]
Sex (male) 43 43
BMI (meanxSD) 27.0+4.1 24.8+3.6

Years to VTE (mean & [range]) 3.82 [0.09-6.85]

DVT 70
PE 30
Cancer (at event) 23
Unprovoked 40
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(see downloadable file for Supplemental Table 4.2)

Supplemental Table 4.2 Transcript identifier for all identified proteins

Transcript identifier for all identified proteins is given with the number of peptides used for
identification. For each protein, the number of detections in case- and control samples is
provided. The standardized regression coefficients and p-values for VTE-status are
provided for multivariable linear regression with adjustment for age, sex, and BMI and for
univariate linear regression. Corresponding Uniprot protein or Ensemble gene descriptions
are provided.
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