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Evaluation of Breast Imaging Biomarkers for Breast Cancer Future Risk and Treatment
Response

Vignesh Arasu

Abstract

Imaging biomarkers are representations of an in vivo biological state and phenotype. The
incorporation of breast density in breast cancer risk models, as well as state-mandated reporting
of mammographic breast density to women, underscores the central role of imaging biomarkers
in risk assessment. In this dissertation, | evaluate breast imaging biomarkers from breast MRI
and mammaography in their role of future risk prediction and treatment response. The chapters,
ordered chronologically, show the evolution of my research interests from quantitative imaging
science within a well-controlled experimental trial (Chapter 1), to a population-based evaluation
of qualitative clinically derived imaging assessments in an observational cohort (Chapter 2), to
finally combining quantitative imaging science for comparative evaluations through a
population-based pragmatic assessment in a large managed health system (Chapter 3).

Chapters 1 and 2 focus on background parenchymal enhancement (BPE), which describes
the natural phenomenon observed on breast MRI in which normal breast tissue demonstrates
signal enhancement related to uptake of intravenous contrast. Biologically, BPE is believed to
represent tissue “activated” by endogenous hormones (primarily estrogen) and is dynamic in
appearance over time and distribution within a woman’s breast tissue. Chapter 1 focuses on
manually defined quantitative imaging biomarkers in the experimental I-SPY 2 trial, an on-going
multicenter prospective randomized clinical trial framework used to monitor treatment response

and assess novel investigational neoadjuvant chemotherapy (NAC) agents for breast cancer.
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Women with advanced HER2- breast cancer have limited treatment options. Breast MRI
functional tumor volume (FTV) is used to predict pathologic complete response (pCR) to
improve treatment efficacy. In addition to FTV, background parenchymal enhancement (BPE)
may predict response and was explored for HER2- patients in the ISPY-2 TRIAL. We found that
among women with HER2- cancer, BPE alone demonstrated association with pCR in women
with HR+HER2- breast cancer, with similar diagnostic performance to FTV. BPE predictors
remained significant in multivariate FTV models, but without added discrimination for pCR
prediction. This may be due to small sample size limiting ability to create subtype specific
multivariate models.

Chapter 2 extends BPE evaluation through comparative associations of qualitative BPE
and mammaographic breast density for future risk in a population-based assessment using the
Breast Cancer Surveillance Consortium (BCSC), involving 46 radiology facilities that participate
in one of six regional BCSC registries. Higher levels of BPE were found to be associated with
future invasive breast cancer risk independent of breast density. The combination of both high
BPE and high breast density was associated with higher risk than either factor alone. BPE also
demonstrates subtype specific associations with less aggressive disease, although the association
with aggressive disease was noted at moderate and marked levels.

Finally, Chapter 3 examines whether using computer vision artificial intelligence (Al)-
based computer vision algorithms, most of which are trained to extract features from
mammaograms to detect visible breast cancer, can also predict future risk using a population-
based case cohort from the Kaiser Permanente Northern California managed health system. We
found that all Al mammography algorithms evaluated had clinically and statistically significantly

higher discrimination than the BCSC clinical risk model for interval cancer and 5-year future
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cancer risk, indicating their usefulness. The combination of BCSC and Al further improves risk
prediction above Al alone, and decreases the gap in future risk performance between Al
algorithms. Training Al algorithms to predict longer-term outcomes may yield further

improvements, but the potential impact on clinical decisions requires further study.
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CHAPTER 1: Predictive value of breast MRI background parenchymal enhancement for

neoadjuvant treatment response among HER2- patients

ABSTRACT

Obijective

Women with advanced HER2- breast cancer have limited treatment options. Breast MRI
functional tumor volume (FTV) is used to predict pathologic complete response (pCR) to
improve treatment efficacy. In addition to FTV, background parenchymal enhancement (BPE)

may predict response and was explored for HER2- patients in the ISPY-2 TRIAL.

Methods

Women with HER2- stage Il or |11 breast cancer underwent prospective serial breast MRIs
during four neoadjuvant chemotherapy timepoints. BPE was quantitatively calculated using
whole breast manual segmentation. Logistic regression models were systematically explored

using pre-specified and optimized predictor selection based on BPE or combined with FTV.

Results

A total of 352 MRI examinations in 88 patients (29 with pCR, 59 non-pCR) were evaluated.
Women with HR+HER2- cancers who achieved pCR demonstrated a significantly greater
decrease in BPE from baseline to pre-surgery compared to non-pCR patients (OR 0.64, 95%ClI
0.39-0.92, p-value = 0.04). The associated BPE area under the curve (AUC) was 0.77 (95%ClI
0.56-0.98), comparable to the range of FTV AUC estimates. Among multi-predictor models, the

highest cross-validated AUC of 0.81 (95%CI 0.73-0.90) was achieved with combined FTV+HR



predictors, while adding BPE to FTV+HR models had an estimated AUC of 0.82 (95%CI 0.74-

0.92).

Conclusion

Among women with HER2- cancer, BPE alone demonstrated association with pCR in women
with HR+HER2- breast cancer, with similar diagnostic performance to FTV. BPE predictors
remained significant in multivariate FTV models, but without added discrimination for pCR
prediction. This may be due to small sample size limiting ability to create subtype specific

multivariate models.



INTRODUCTION

Women with advanced breast cancer (stage 2 and 3) have significant morbidity and mortality,
with a 5-year disease specific survival as low as 33%.! The neoadjuvant period provides the
opportunity to noninvasively monitor tumor response to therapy with breast MRI, and redirect
therapy for women who are not responding in hopes of improving their prognosis. Furthermore,
the surrogate outcome pathologic complete response (pCR) has a high association with survival,
accelerating the prediction of a woman’s outcome to months rather than years.? Women with
advanced HR+HER2- and HR-HER2- disease in particular have relatively lower rates of pCR as
compared to women HER2+ due to limited treatment options.® Improving prediction of pCR in
women with HER2- disease during the neoadjuvant period would provide opportunities to

improve treatment selection and potentially increase the pCR rate.

The I-SPY 2 TRIAL (Investigation of Serial Studies to Predict Your Therapeutic Response
through Imaging and Molecular Analysis 2, clinicalTrials.gov number NCT01042379) is an on-
going multicenter prospective randomized clinical trial framework used to monitor treatment
response and assess novel investigational neoadjuvant chemotherapy (NAC) agents for breast
cancer. The study uses quantitative measurement of magnetic resonance imaging (MRI)-derived
tumor volume (defined as functional tumor volume or FTV) to predict response. The prior ISPY-
1 trial demonstrated a significant association with both prediction of pCR* and recurrence-free
survival® outcomes, with area under the curve (AUC) estimates for FTV regression models

ranging 0.70-0.84 and 0.52-0.72 for each outcome type respectively.



Background parenchymal enhancement (BPE) describes the natural phenomenon observed on
breast MRI in which normal breast tissue demonstrates signal enhancement related to uptake of
intravenous contrast. Biologically, BPE is believed to represent tissue “activated” by endogenous
hormones (primarily estrogen), and is dynamic in appearance over time and distribution within a
woman’s breast tissue. This is demonstrated by histopathologic studies that have found BPE to
be correlated with increased microvascular density® and proliferative breast tissue’. Additionally,
single-center studies have found strong associations between BPE and subsequent primary breast
cancer, with odds ratios of 2-18.81° More recent studies have also demonstrated that BPE is a
surrogate outcome of treatment response to chemotherapy and chemoprevention agents*'-*4. BPE
signal intensity decreases with treatment, and the magnitude of this decrease is associated with
the degree of tumor response. The biological basis of these associations are unclear, but it has
been speculated that BPE characterizes “activated” breast stroma that is more susceptible to

malignant transformation but also to potential treatment responsiveness.®®

Tumor volume is a validated predictor of NAC response, but few MRI studies have evaluated the
adjunctive contribution of BPE to a tumor volume model. Most studies evaluate the association
of BPE alone with treatment response, but the more relevant clinical question is if BPE provides
additive improvement to the more established tumor volume model. Moreover, prior studies on
BPE in tumor response are based on retrospective observational studies from single institutions
or rely on a qualitative definition of BPE, which is prone to issues with inter-rater reliability and

measurement errort216,



The current study has several strengths that overcome limitations in prior studies: we analyze
data from a prospective study primarily designed to evaluate MR imaging biomarkers; our
patient cohort was evaluated for a clearly defined pathological endpoint for neoadjuvant
response; we had consistent MRI protocol with high quality control of acquisition. We evaluated
the primary effect of BPE as well as the additive effect of BPE to a FTV tumor volume model in
improving the prediction of pCR of women with HER2- advanced breast cancer enrolled in the

ISPY 2 trial.

METHODS

Patient Population

In this Health Insurance Portability and Accountability Act-compliant, Institutional Review
Board-approved study, women 18 years of age and older diagnosed with stage Il or 11l breast
cancer and with tumor size measured > 2.5 cm were eligible to enroll in the I-SPY 2 TRIALY.
Biomarker assessments based on hormone (estrogen and progesterone) receptors (HR+/-) and a
70-gene assay (MammaPrint, Agendia, Amsterdam, The Netherlands) were performed at
baseline and used for treatment randomization?’. Patients who had tumors that were designated
as hormone-receptor positive and low risk according to the 70-gene assay were excluded. All
patients provided written informed consent to participate in the study. A second consent was
obtained if the patient was randomized to an experimental treatment. Enrollment occurred

between 2010-2012.



Schema

Figure 1.1 shows the schema of the I-SPY 2 TRIAL. All breast cancers in these drug arms were
HER2 negative by nature of the drug mechanism of action. Participants received a weekly dose
of paclitaxel alone (control) or in combination with experimental NAC agents for 12 weekly
cycles, followed by four (every 2-3 weeks) cycles of anthracycline-cyclophosphamide (AC) prior
to surgery. MR1 was performed before the initiation of NAC or “baseline” (TO), after three
weeks of therapy or “early treatment” (T1), after twelve weeks of therapy at which patient is
transitioned from taxane-based regimen to AC-based regimen or “inter-regimen” (T2), and after

neoadjuvant therapy completion and prior to surgery or “pre-surgery” (T3).

Pathologic Assessment of Response

Pathologic complete response — defined as the absence of residual invasive cancer in the breast
or lymph nodes at the time of surgery — is the primary end point of the I-SPY 2 TRIAL. All
patients were classified as achieving pCR or not achieving pCR (non-pCR) at the time of
definitive surgery by a trained pathologist. Patients that withdrew from the trial in mid-study

were counted as non-pCR.

MRI Acquisition

MR imaging was performed using 1.5T or 3T scanners with a dedicated breast radiofrequency
coil, across a variety of vendor platforms and institutions. All MRI exams within a single patient
were performed using the same magnet configuration (manufacturer; field strength; breast coil
model). Bilateral dynamic contrast-enhanced (DCE) MRI images were acquired in the axial

orientation with the following parameters: TR = 4-10 ms, minimum TE, flip angle = 10-20



degrees, field of view (FOV) = 260—-360 mm to achieve full bilateral coverage, acquisition
matrix = 384-512 within-plane resolution < 1.4 mm, slice thickness < 2.5 mm, and slice gap = 0
mm. Gadolinium contrast agent was administrated intravenously at a dose of 0.1 mmol/kg body
weight, and at a rate of 2 mL/second, followed by a 20 mL saline flush. The same contrast agent
brand was used for all MRI exams for the same patient. Pre-contrast and multiple post-contrast
images were acquired using identical sequence parameters. There was no delay between contrast
injection and data acquisition. Post-contrast imaging continued for at least 8 minutes following

contrast agent injection.

Quantitative Image Analysis

FTV was calculated from each DCE-MRI examination using a previously described semi-
automated segmentation method (Figure 1.2)*8. BPE was assessed following manual whole
breast segmentation of the contralateral unaffected breast so that measurement would not be
confounded by adjacent disease. Subsequently, enhancement was determined on a per-voxel
basis using co-registered DCE sequences at two time points: pre-contrast (time 0) and the first
post-contrast acquisition between 2 minutes 15 seconds and 2 minutes 30 seconds post-contrast
at (time 1), with Sp and Sz representing the corresponding signal intensities at those times. BPE
was calculated as an average of early enhancement measured for all voxel of segmented

fibroglandular tissue, where early enhancement is defined as (S1 — So)/So.

For FTV measurements, the segmentation method calculated the volume of all tumor voxels that
exceeded an early enhancement threshold of 70%. Participating sites in I-SPY 2 TRIAL could

slightly adjust the early enhancement threshold to qualitatively reflect the extent of tumor, and to



account for unexpected variability in MRI systems and imaging parameters. However, the FTV
analysis had to be reviewed and approved by the designated breast radiologist at each site, and
all FTVs in I-SPY 2 TRIAL had to be visually approved by the Imaging Core Lab at the

University of California San Francisco.

Statistical Analysis

Univariate analyses were performed with logistic regression, using predictors of absolute values
of BPE and FTV at each treatment time point (e.g., absolute value of BPE at inter-regimen/T2 is
notated as “BPE_2") or relative change from baseline, and the treatment response outcome pCR.
Relative change was calculated as change from baseline divided by baseline value. For example,
relative change of BPE from baseline to early treatment (or T1) was calculated as (BPE_1 —
BPE_0)/BPE_0 and notated as %ABPEQ_1. All possible FTV or BPE predictors were evaluated
as individual univariate predictors of tumor response in models stratified by HR status. We
additionally estimated models including the following sets of multiple predictors: Model 1)
baseline FTV and relative FTV change for each treatment time point; Model 2) the same FTV
model with the corresponding baseline and BPE change variable. A final model was derived
which optimized AUC by exhaustively searching all possible linear combination of FTV
predictors and HR, without or with all possible BPE predictors (“Model 3” and “Model 4”,
respectively). For all models, an odds ratio (OR) are used to describe strength of association with
pCR. For the relative change measures ORs are reported for 10% relative change to aid
interpretability. The interpretation of the OR, for example an OR of 0.9 for a relative change
variable, is that for each 10% decrease in AFTV or ABPE, there is a 10% decrease in the odds of

non-pCR or corresponding 10% increase in the odds of pCR. Diagnostic performance was



assessed using area under the curve (AUC) for all models. To avoid overfitting, 10 times
repeated 5-fold cross-validation AUC (cvAUC) was used for multiple predictor models. All
statistical analysis was performed using the R statistical programming environment, version 3.3.3
(R Foundation for Statistical Computing, Vienna, Austria). A nominal p-value of < 0.05 was

considered to be statistically significant.

RESULTS

Of the 110 women who had enrolled and received at least one MRI examination in the initial
drug arms, a total of 88 women (29 with pCR, 59 with non-pCR) with 352 MRI examinations
were included. A total of 22 women were excluded for the following reasons: unable to calculate
BPE due to image quality issues (13 women), missing one or more MRI visits (8 women), and

missing demographic information (1 woman).

Patient characteristics

Table 1.1 describes the baseline characteristics of women included in this study. Women with
pCR as compared to women with non-pCR were slightly younger and more often Asian or
Black/African-American and pre-menopausal. Women with pCR were more commonly

HR+HER2- than women with non-PCR.

Univariate analysis of BPE
Figure 1.3 displays the average absolute values of BPE and FTV over time as treatment
progressed. Women who achieved pCR tended to have higher absolute BPE values at baseline,

which decreased more at later treatment time points than non-pCR patients (Figure 1.4). In



contrast, women who achieved pCR tended to have lower absolute FTV values at baseline,

which remained lower for all time points than non-pCR patients.

Table 1.2 summarizes our findings of the univariate regression analyses of all 88 women
included in this study stratified by HR status. Greater decreases in BPE from baseline to inter-
regimen treatment predicted a higher odds of pCR (%ABPEO_2; OR = 0.88 per 10% change in
%BPEO_2, 95% CI = 0.75 to 1.00, p-value = 0.08) or from baseline to pre-surgery (%ABPEO_3;
OR = 0.87 per 10% change in predictor, 95% CI = 0.74 to 1.00, p-value = 0.07) than non-pCR,
although the p-value and AUC did not reach statistical significance at the nominal « = 0.05
level for either predictor. Among the 43 women with HR+ breast cancer, the change in BPE from
baseline to pre-surgery was statistically significant (%ABPEO_3; OR = 0.64 per 10% change in
predictor, 95% CI = 0.39 to 0.92, p-value = 0.04), with a corresponding AUC of 0.77 (95% ClI
0.56 to 0.98). In comparison, FTV univariate AUCs ranged from 0.57-0.80 in this population

depending on the FTV predictor used.

Multiple predictor analysis of BPE and FTV

Table 1.3 describes the results of the multiple predictor analyses, which were used to assess the
additive effect of BPE to FTV-only multiple predictor models. FTV-only multiple predictor
analyses demonstrated statistically significant associations across subtypes in change parameters
only, with cvAUC remaining significant and estimates ranged from 0.61-0.72. Model 2 added

BPE to Model 1, which did not lead to improved overall performance based on cvAUC.
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Model 3 included all possible linear combination of FTV and HR predictors, which was then
optimized by selecting the highest cvAUC value, achieving a cvAUC of 0.81 (95% CI1 0.73 to
0.90) with %AFTV0_2 and HR status. Model 4 was based on any possible combination of BPE
predictors with FTV and HR predictors, which did not substantially change cvAUC of 0.82 (95%

C10.74 to 0.92) but retained multiple BPE predictors with significant associations with pCR.

DISCUSSION

In this study, we demonstrated that quantitative whole breast BPE alone was predictive of pCR
using change from baseline to later treatment time points in women with HR+HER2- breast
cancers who were undergoing taxane and anthracycline-based NAC regimen. Moreover, the
diagnostic accuracy as measured by AUC was comparable to the predictive performance of the
tumor volume measurement FTV. BPE predictors remaining significantly associated with pCR
when added to multivariate FTV models, however there was no substantial improvement in

discrimination.

We observed that BPE responds to neoadjuvant therapy as demonstrated by declining values as
treatment progressed. Moreover, BPE had a similar diagnostic accuracy for women with
HR+HER2- breast cancers as compared to FTV under univariate analysis. This is impressive in
so far as BPE is measured in the contralateral unaffected breast of presumably normal
fibroglandular tissue, whereas FTV is a direct measurement of the primary disease. This suggests
that the reaction of normal tissue to neoadjuvant therapy as measured by BPE may represent a
biomarker of treatment responsive phenotype, with higher sensitivity to HR+ tumors. This is

consistent with the theory of BPE being primarily modulated by estrogen, given higher values in
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pre-menopausal women and consistent decreases with hormone therapy**. Moreover, this is
consistent with multiple prior studies, which demonstrated changes in BPE in response to
chemotherapy for prediction of pCR®. However, the observed nature of subtype specific effect
has been mixed in prior studies, with some studies showing an effect of BPE only in HR+

subtypes'*#®, and some studies showing an effect in HR- subtypes?-%,

The additive value of BPE remains uncertain based on our multiple predictor results. While
retained BPE predictors had a significant association with pCR in multivariate FTV models,
there was overall no substantial improvement of the cvAUC (Table 1.3, Model 4). However, we
were unable to perform a stratified multivariate analysis within subtype due to limited sample
size, which would better mirror the neoadjuvant treatment approach. Our analysis improves on
prior literature by evaluating the most relevant clinical question of the additive value of BPE to
tumor measurements for predicting pCR, rather than evaluate the utility of BPE prediction alone
as most studies do. Changes in the primary tumor are the most direct and robust method for non-
invasive prediction of pCR,? and the benefit of BPE is therefore most relevant when
supplementing tumor models. The only prior study to evaluate the additive effect of BPE for
prediction of pCR?? found that while BPE predictors remained statistically significant in a
multiple predictor model, they did not report the extent to which the odds ratio or AUC changed

relative to a univariate model.

While BPE still has the potential to be an independent marker of response, our observation of

limited additive effect may be due to a variety of reasons. We had a relatively small sample size,

which may have caused a strong negative bias when performing cross-validation®*. There are
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also no accepted definitions of quantitative BPE measurement, and thus alternative quantitative
techniques (e.g. partial volume sampling or different kinetic parameterizations) should be
explored to assess if they have stronger prediction and additive value to FTV models. Finally,
given multiple comparisons, our statistically significant univariate BPE results may have been
arguably due to chance. However, the fact that we demonstrate a continued improvement in
magnitude and strength of BPE prediction with later time points in HR+ cancers indicates a

consistent pattern that reduces the likelihood of results being the product of random chance.

CONCLUSION

In conclusion, our results suggest BPE may have subtype specific association with pCR in
women with HR+HER2- breast cancer, achieving a similar diagnostic performance to univariate
prediction with FTV. However, we did not observe substantial additive improvement in
predictive performance when adding BPE to an FTV model in our current study. Additional
studies (with ideally larger cohorts) are necessary to replicate these effects, and further

understand potentially important additive effects as well as differential effects within subtypes.
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Table 1.1. Participant Characteristics.

Pathologic complete response  Non-pathologic complete response

(pCR) (non-pCR)
(N=29) (N =59)
Mean IQR Mean IQR
Age (years) 46.9 17.0 48.8 12.5
N % N %

Race

Asian 3 10% 2 3%

Black or African
American 6 21% 7 12%

White 20 69% 50 85%
Menopausal status*

Pre-menopausal 20 69% 35 59%

Peri/Post-
menopausal 9 31% 24 41%
Receptor subtype**

HR+HER2- 7 24% 36 61%

HR-HER2- 22 76% 23 39%

Abbreviations: IQR, inter-quartile range

Proportions calculated within each column

*There were 20 missing values, which were categorized as pre vs. peri/post-menopausal if age =< 55
**All patients represented were HER2 receptor negative

***All patients received paclitaxel (control) or in combination with an experimental agent for 12 weekly
cycles followed by four cycles of anthracycline-cyclophosphamide (AC) every 2-3 weeks prior to surgery
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Table 1.3. Comparison of pathologic complete response (pCR) prediction models based on functional

tumor volume (FTV) predictors only or adding background parenchymal enhancement (BPE)

predictors
Prediction Model Treatment phase Predictors OR (95% Cl) cvAUC
Model 1: Pre-specified Early treatment | %AFTVO_1 0.83 (0.71-0.95) 0.68
FTV variables only FTV_O 1.00 (0.98-1.01)
Inter-regimen %AFTVO_2 | 0.54 (0.31-0.80) 0.70
FTV_O 1.00 (0.98-1.01)
Pre-surgery %AFTVO_3 0.45 (0.20-0.81) 0.63
FTV_O 1.00 (0.98-1.01)
Model 2: Pre-specified Early treatment | %AFTVO_1 0.89 (0.67-0.93) 0.68
BPE & FTV variables only FTV_O 1.04 (0.98-1.01)
%ABPEO_1 | 1.11(0.94-1.33)
BPE_O 1.00 (1.00-1.08)
Inter-regimen %AFTVO_2 | 0.52 (0.28-0.80) 0.68
FTV_ 0 1.02 (0.98-1.01)
%ABPEO_2 | 0.97 (0.80-1.15)
BPE_O 1.00 (0.98-1.07)
Pre-surgery %AFTVO_3 | 0.46 (0.19-0.86) 0.61
FTV_ 0 1.01 (0.98-1.01)
%ABPEO_3 | 0.94 (0.77-1.13)
BPE_O 1.00 (0.97-1.06)
Model 3: Optimized Any phase %AFTVO_2 0.52 (0.29-0.78) 0.81
model using any possible of treatment HR + 0.16 (0.05-0.44)
FTV and HR predictors
Model 4: Optimized Any phase %AFTVO_2 | 0.49 (0.26-0.80) 0.82
model using any possible of treatment HR + 0.08 (0.02-0.29)
FTV, HR, BPE predictors BPE_O 1.22 (1.04-1.47)
BPE_1 0.83 (0.69-0.98)
%ABPEO_1 | 1.93 (1.14-3.53)
%ABPEO_3 0.86 (0.66-1.06)

Abbreviations: OR, odds ratio; CI, confidence interval; cvAUC, cross-validated area under the curve (10-
repeated 5-fold); HR, hormone receptor

Nomenclature of predictors: _0, absolute value at pretreatment; 0_1, change from baseline to early treatment;

0_2, change from baseline to inter-regimen; 0_3, change from baseline to pre-surgery

p < 0.05
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Anthracycline (4 cycles)

Paclitaxel (12 weekly cycles)

: Drug (12 weekly cycles) Anthracycline (4 cycles) |
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Baseline Early treatment Inter-regimen Pre-surgery

Figure 1.1. I-SPY2 TRIAL schema. I-SPY2 TRIAL study schema and adaptive randomization.
Breast MRI was obtained at 4 different time points (TO-T3) as described. Patients were
randomized to the control (Paclitaxel) or the experimental drug arm (Paclitaxel + Experimental
agent) for 12 weekly cycles followed by four (every 2-3 weeks) cycles of anthracycline-
cyclophosphamide (AC) prior to surgery. Pathologic complete response — defined as the
absence of residual cancer in the breast or lymph nodes at the time of surgery — is the primary
end point of the I-SPY 2 TRIAL.
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Figure 1.2. Process of quantitative background parenchymal enhancement (BPE)
calculation. A: Initially, manual segmentation of the contralateral (unaffected) breast was
performed. B: This is followed by deriving a mask classifying fibroglandular tissue and
removing non-breast elements using fuzzy c-means clustering. BPE is then calculated on per-
voxel basis (C), and an average value of all voxels is calculated to derive the final BPE estimate

(D).
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Figure 1.3. Plots of median values of background parenchymal enhancement (BPE) and
functional tumor volume (FTV) through phases of treatment (errors bars represent interquartile

range). Abbreviation: pCR, pathologic complete response
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Figure 1.4: Spectral maximum intensity projection breast MRI of an individual woman’s
background parenchymal enhancement (BPE) at neoadjuvant therapy treatment time points with
outcomes of pathologic complete response (pCR) (A) or non-pathologic complete response
(non-pCR)(B). Women who went on to have pCR (A) were more likely to demonstrate higher
baseline BPE that decreased with therapy, while women who have non-pCR (B) had lower
baseline BPE levels that decreased relatively less or did not change with therapy.
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CHAPTER 2: Population-Based Assessment of the Association between MRI Background

Parenchymal Enhancement and Future Primary Breast Cancer Risk

ABSTRACT

Purpose: To evaluate comparative associations of breast MRI background parenchymal
enhancement (BPE) and mammographic breast density with subsequent breast cancer risk.
Patients and Methods: We examined women undergoing breast MRI in the Breast Cancer
Surveillance Consortium (BCSC) from 2005-2015 (with one exam in 2000) using qualitative
BPE assessments of minimal, mild, moderate, or marked. Breast density was assessed on
mammography performed within 5 years of MRI. Among women diagnosed with breast cancer,
the first BPE assessment was included if >3 months before their first diagnosis. Breast cancer
risk associated with BPE was estimated using Cox proportional hazards regression.
Subsequently, an expanded cohort from 2005-2017 was utilized for further subtype evaluations
with hormone and Her2-neu tumor receptor in invasive disease, cancer stage, and composite
outcome of less favorable cancer defined as Stage Ilb or higher, tumor size greater than 15 mm,
or positive node status.

Results: Among the initial cohort of 4,247 women, 176 developed breast cancer (129 invasive,
47 ductal carcinoma in situ [DCIS]) over median follow-up of 2.8 years. Mild, moderate, or
marked BPE was more common in women with cancer (80%) than in cancer-free women (66%).
Compared to minimal BPE, increasing BPE levels were associated with significantly increased
cancer risk: mild (hazard ratio (HR)=1.80, 95% confidence interval (Cl)=1.12-2.87), moderate
(HR=2.42, 95% CI=1.51-3.86) and marked (HR=3.41, 95% CI1=2.05-5.66). Compared to

women with minimal BPE and almost entirely fatty or scattered fibroglandular breast density,

25



women with mild, moderate or marked BPE demonstrated elevated cancer risk if they had almost
entirely fatty or scattered fibroglandular breast density (HR=2.30, 95% C1=1.19-4.46) or
heterogeneous or extremely dense breasts (HR=2.61, 95% CI 1.44-4.72); there was no evidence
of interaction between BPE level and breast density (P=0.82). Combined mild, moderate or
marked BPE was associated with significantly increased risk of invasive cancer (HR=2.73, 95%
Cl=1.66-4.49), but not DCIS (HR=1.48, 95% CI1=0.72-3.05).

The expanded follow-up cohort included 4,944 women, although only 157 total breast
cancer cases were included due to withdrawal of data from a single site because of state
restrictions on data sharing. For subtype specific evaluations in the expanded cohort, similar
significant associations of combined mild, moderate or marked BPE were observed with
hormone positive invasive cancer (HR=2.13, 95% CI=1.29—3.54) and early stage (AJCC
anatomic stage I/11a) breast cancer (HR=1.86, 95% CI=1.12—3.10). The magnitude of
association increased when using an alternative definition of BPE combining moderate and
marked BPE, and statistical significance was also observed for advanced stage (AJCC stage I1b-
IV) disease (HR=2.73, 95% C1=1.01—7.38) and less favorable cancer (HR=2.31, 95%
ClI=1.34—3.97). The association with HER2+ and triple negative disease was not evaluated due
to the very limited number of events.

Conclusion: BPE is associated with future invasive breast cancer risk independent of breast
density. BPE demonstrates subtype specific associations with less aggressive disease. The
association with aggressive subtypes could not be fully evaluated due to sample size limitations,
although moderate or marked BPE levels were associated with less favorable disease. BPE

should be considered for risk-prediction models for women undergoing breast MRI.
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INTRODUCTION

Mammaographic breast density is now established as an imaging biomarker for breast
cancer risk.> 2 Imaging biomarkers are representations of an in vivo biological state and
phenotype. 4 The incorporation of breast density in breast cancer risk models,> ® as well as state-
mandated reporting’” of mammographic breast density to women, underscores the central role of
imaging biomarkers in risk assessment. Recent studies have explored the predictive value of
other breast imaging biomarkers, and accumulating evidence suggests elevated background
parenchymal enhancement (BPE) assessed on breast magnetic resonance imaging (MRI) may
predict primary breast cancer risk.310

BPE describes the phenomenon observed on breast MRI in which normal breast tissue
demonstrates signal enhancement related to uptake of gadolinium-based intravenous contrast,
which is used in routine MRI examinations.>* ! Biologically, BPE may represent increased
tissue microvascularity and/or permeability® 8 2 13 regulated by endogenous hormones
(primarily estrogen),” 1! and may represent tissue at risk of neoplasia.8% 1 It is dynamic and
variable in appearance and distribution within a woman’s breast tissue, and sensitive to the phase
of menstrual cycle and lactation, 2 > as well as in response to anti-hormonal therapy,® 4 16: 17

chemotherapy, & 101820 and radiotherapy.” ?* Similar to mammographic breast density, BPE is

qualitatively codified in the Breast Imaging-Reporting and Data System (BI-RADS®) atlas®1% 22
as four ordinal levels of increasing enhancement: minimal, mild, moderate, and marked. In
contrast to breast density, which is the relative quantity of fat and fibroglandular tissue assessed
on mammograms, BPE indicates overall breast tissue contrast enhancement assessed on MRI.
BPE is used clinically to report the level of potential masking of suspicious lesions on

MRI, which may impede diagnosis.3, 4, 11, 23, 24 In addition, recent single-center studies have
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demonstrated an association between high levels of BPE and increased breast cancer risk.5, 6, 8,
9, 12, 13, 25 In the current study, we evaluate We evaluated the association of BPE and future
breast cancer risk among a population-wide cohort of women undergoing breast MRI from
diverse practice settings in the US. We compared BPE risk prediction relative to and in
conjunction with mammaographic breast density. We also subsequently expanded this initial

cohort to further investigate subtype specific associations in a follow-up study.

METHODS
Study Setting and Data Sources

We included breast MRIs conducted at 46 radiology facilities that participate in one of
six regional Breast Cancer Surveillance Consortium (BCSC) registries (http://www.bcsc-
research.org): Carolina Mammography Registry, Kaiser Permanente Washington Registry,
Metro Chicago Breast Cancer Registry, New Hampshire Mammography Network, San Francisco
Mammography Registry, and Vermont Breast Cancer Surveillance System. BCSC registries link
woman-level risk factors and clinical information to breast imaging examinations collected from
community radiology facilities. Breast cancer diagnoses and tumor characteristics are obtained
by linking with pathology databases; regional Surveillance, Epidemiology, and End Results
programs; and state tumor registries.

BCSC registries and the Statistical Coordinating Center received Institutional Review
Board approval, and all procedures were Health Insurance Portability and Accountability Act

compliant.
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Participants and Examinations

We included all BPE measures from screening and diagnostic breast MRI examinations
performed on women without a history of breast cancer from 2005-2015 (with one exam in
2000). An expanded cohort from 2005-2017 was further utilized for follow-up study on subtype
specific associations. MRI indication was defined as screening or diagnostic by the interpreting
radiologist. MRIs were excluded if breast cancer was diagnosed within 3 months following the

MRI examination.

Measures and Definitions

For five of the BCSC registries, BPE was assessed clinically as minimal, mild, moderate
or marked at the time of MRI interpretation (N=116 radiologists). Although the concept of
degrees of parenchymal background enhancement was first published by Kuhl et al. in 2007*2
and BPE was codified formally in American College of Radiology BI-RADS in 2013, 122
awareness and recording of the proposed BI-RADS BPE categories existed before official
publication with the first recorded assessments in 2000 in our database. While most BPE
assessments were prospectively assessed, a single BCSC registry did not consistently measure
BPE clinically. Therefore, a radiologist (N.H.A.) blinded to cancer status retrospectively
measured BPE in a subcohort of women with breast cancer and up to 2 matched controls (N=271
MRIs total, of which 38 patients with 52 MRI examinations represented cancer cases). This site
had to be withdrawn in the follow-up subtype study due to state laws restricting data sharing.

We primarily dichotomized BPE into minimal vs. mild, moderate or marked BPE based
BPE into minimal vs. mild, moderate or marked BPE based on consensus among investigators

and prior literature.®1% 4 This dichotomized definition was intended to decrease known inter-
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reader variability??’ for BPE assessment. Breast density was dichotomized using “low density”
for almost entirely fatty or scattered fibroglandular densities and “high density” for
heterogeneous or extremely dense.

Breast density and risk factors were collected from the closest mammography
examination within 5 years of the MRI examination and prior to any breast cancer diagnosis.
Women completed a questionnaire at each mammography examination (which were usually
performed within 6 months of an MRI) to collect information on race and ethnicity; history of
first-degree relatives with breast cancer; menopausal status; and history of breast biopsy. Women
were considered postmenopausal if they reported removal of both ovaries, periods that had
stopped naturally or had not occurred for more than 365 days, current hormone therapy use, or
age 55 or older.2 Women were considered pre- or peri-menopausal if they reported currently
having periods, using oral contraceptives, or not knowing if their periods had stopped.?® Women
were considered to have “surgical menopause, other amenorrhea, or unknown” status if they
were under 55 years and reported hysterectomy without bilateral oophorectomy and no use of
hormone therapy; reported their periods stopped for “other reasons”; or if menopausal status
could not be determined based on available information. Prior diagnoses of benign breast disease
were collected from pathology databases and grouped into four categories: non-proliferative,
proliferative without atypia, proliferative with atypia, and lobular carcinoma in situ as described
previously.?3t BCSC (version 2.0) 5-year risk score was based on age, race/ethnicity, BI-RADS
breast density, first-degree family history, and history of breast biopsy and benign breast

disease.>®
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Primary, Secondary and Sensitivity Analysis

We described the participant population at baseline (i.e., first BPE measure) by breast
cancer status and BPE. Hazard ratios (HRs) and 95% confidence intervals (Cls) for breast cancer
risk were estimated using Cox proportional hazards regression using both ordinal and
dichotomized definitions of BPE. We modeled the data in two ways: (1) restricting to each
woman’s first BPE measure, and (2) including all eligible for each woman. to estimate the
impact of multiple measurements. The second model was fit using a robust sandwich estimator
for repeated measures survival data to account for multiple observations per woman.*? Women
were followed from 3 months after date of BPE measure to breast cancer diagnosis, death, or end
date of complete cancer capture. Models were adjusted for BCSC registry and MRI indication
(screening vs. diagnostic), and for number of MRIs in models with multiple measures through
stratification. All models were adjusted for age in years as a continuous variable.

BPE was further evaluated in secondary and sensitivity analyses. Associations of BPE
with risk were evaluated separately for ductal carcinoma in situ (DCIS) and invasive cancer.
Multiplicative interaction was tested by including product terms for BPE with breast density,
first-degree family history, menopausal status, MRI indication, and BCSC risk score.
Confounding was evaluated through adjustment using covariates from Table 2.1. For sensitivity
analyses, we refit the model for dichotomous BPE with the following conditions: 1) restricting to
breast cancer diagnoses at least one year after BPE measurement and starting follow-up from this
time; 2) restricting to BPE measurements assessed in 2010 or later; 3) restricting to non-
suspicious BI-RADS assessment categories 1, 2, and 3; and 4) excluding the single registry that

retrospectively evaluated BPE.
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Follow-up study: Subtype specific exploratory analysis

Similar definitions were used to categorize BPE and breast density, with further
exploration using an alternative dichotomized definition of minimal or mild vs. moderate or
marked BPE. Subtype specific analyses followed the same baseline and repeated measures
models as used in the initial study. The expanded cohort analysis focused on evaluation of
associations with hormone and Her2-neu tumor receptor in invasive disease, AJCC version 7
stage, and composite outcome of less favorable cancer defined as Stage Ilb or higher, tumor size
greater than 15 mm, or positive node status. For a specific subgroup (e.g. invasive cancer), the
other competing events (e.g. DCIS) are treated as censored, with the resultant Cox model hazard
ratio equivalent to the estimated cause-specific hazard function.

Analyses were performed in SAS® software, version 9.2 (SAS Institute, Cary, NC).) for
the initial study and the statistical software R, version 4.0.219 (R Foundation for Statistical

Computing, Vienna, Austria), for the follow-up subtype study.

RESULTS
Women and MRI Examination Characteristics

Initial analysis included 6,640 eligible breast MRI examinations conducted in 4,247
women (Table 2.1). Breast MRI examinations were performed for a screening indication in 2,833
women (67%) and a diagnostic indication in 1,414 women (33%). A total of 176 women
subsequently developed breast cancer, of whom 129 (73%) had invasive disease and 47 (27%)
had DCIS. Median follow-up was 2.1 years for cancer cases (interquartile range = 1.0-3.8 years)

and 2.8 years for non-cancer controls (interquartile range =1.4-4.3 years).

32



Overall, 82% of women were less than 60 years old and 81% were of white/non-Hispanic
race and ethnicity (Table 2.1). Women with breast cancer, compared to those without cancer,
were slightly more likely to be pre-menopausal (51% vs. 48%), have a first-degree family history
of breast cancer (64% vs. 59%), and have a greater >1.67% 5-year breast cancer risk by the
BCSC model (62% vs. 48%).

When comparing women without breast cancer by BPE group (Table 2.1), women with
mild, moderate, or marked BPE compared with minimal BPE were more likely to be less than 60
years old (85% vs. 76%), premenopausal (57% vs. 32%), and have a first-degree family history
of breast cancer (61% vs. 56%).

The expanded cohort included 8,167 eligible breast MRI examinations conducted in
4,944 women. Breast MRI examinations were performed for a screening indication in 3,470
women (70%) and a diagnostic indication in 1,474 women (30%). Of the 157 women
subsequently developed breast cancer, 114 (73%) had invasive disease and 43 (27%) had DCIS.
Although the overall cohort was large, cancer numbers were lower than in the initial study
sample due to withdrawal of data from the case control site due to state restrictions on data
sharing. Median follow-up was 2.4 years for cancer cases (interquartile range = 1.1-3.8 years)

and 3.2 years for non-cancer controls (interquartile range =1.7-5.4 years).

Association of BPE and Cancer

Cancer cases compared to non-cancer cases had a higher proportion of mild, moderate, or
marked BPE (80% vs. 66%; Table 2). In the primary analysis using baseline BPE measurement
with minimal BPE as reference, increasing levels of BPE demonstrated significantly increased

future breast cancer risk: mild (HR=1.80, 95% CI=1.12-2.87), moderate (HR=2.42, 95%
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Cl=1.51- 3.86), and marked (HR= 3.41, 95% CI1=2.05-5.66). Estimates from models using all
available BPE assessments for each woman were similar but slightly attenuated. Dichotomous
mild, moderate, or marked versus minimal BPE was associated with statistically significantly
increased cancer risk in a model using baseline BPE (HR= 2.28, 95% CI1=1.51-3.44) or repeated

measures of BPE (HR=1.88, 95% CI=1.33-2.65).

Comparative Association of BPE and Breast Density with Cancer

Elevated breast density was more common among women who developed breast cancer
(72%) than among women who remained cancer-free (65%; Table 2.3, Figure 2.1). Compared to
those with scattered fibroglandular tissue, women with extremely dense breasts demonstrated a
non-significant increased risk of breast cancer (HR=1.54, 95% C1=0.97-2.44; Table 2.3), which
was had decreased hazard ratio when using repeated measures of breast density.

Both mild, moderate, or marked BPE and high breast density were more common among
women who developed breast cancer (57%) than among women who remained cancer-free
(38%). Compared to women with low breast density and minimal BPE, women with high breast
density and minimal BPE did not have statistically significant increased risk (HR=1.25, 95% ClI
0.61-2.54). In contrast, women with low breast density and mild, moderate, or marked BPE had
significantly increased risk of breast cancer (HR=2.30, 95% CI 1.19-4.46). Having high breast
density with high BPE increased the risk of breast cancer beyond having either factor alone (HR
2.61, 95% CI 1.44-4.72). The test for interaction between dichotomized BPE and dichotomized
breast density was non-significant (P=0.82) and therefore in the absence of strong evidence for
the interaction we focus on the simpler model without it. Results for the repeated measures

model demonstrated similar but attenuated effects.
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Comparative Association of BPE and BCSC 5-Year Risk with Cancer

Women with a higher BPE and high BCSC 5-year risk score of >1.67% had a four-fold
increased hazard compared to women with minimal BPE and low risk score (HR=4.03, 95%
CI=1.88-8.63; Table 3). Risk was also elevated but to a lesser extent for higher BPE in the
absence of a high risk score (HR=2.91, 95% CI=1.34- 6.31) and marginally elevated for higher
risk score in the absence of higher BPE (HR=1.79, 95% C1=0.75-4.30). There was no evidence
of a multiplicative interaction between higher risk score and higher BPE on risk (P=0.58) and
therefore we did not include it. When including multiple examinations, similar statistically

significant associations were noted, although with attenuated magnitudes of effect.

Secondary Analyses

Secondary and sensitivity analyses are fully described in Table 4. Mild, moderate, or
marked BPE compared to minimal BPE was associated with a statistically significantly increased
risk of invasive cancer (HR=2.73, 95% CI1=1.66-4.49), but although increased for DCIS
(HR=1.48, 95% CI=0.72-3.05) the increase did not reach statistical significance. Higher BPE
was associated with an increased risk of breast cancer among women with a first-degree family
history (HR=3.55, 95% CI=1.93-6.53). Higher BPE was associated with only slightly increased
risk among women without a family history (HR=1.29, 95% C1=0.69-2.42), an association
which was not statistically significant. The test for interaction of family history and BPE
indicated the difference in the magnitude of the BPE association with breast cancer was unlikely

to be attributable to chance (P for interaction=0.02). When evaluating confounding through
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adjustment, BPE remained significantly associated with risk when adjusting for factors such as
breast density, family history, benign breast biopsies, and postmenopausal status.

Sensitivity analyses demonstrated that dichotomous BPE remained significantly
associated with cancer risk when restricting to cancer diagnoses made at least 1 year after BPE
assessment (HR=2.09, 95% Cl1=1.34-3.25); restricting to BPE assessments made in or after 2010
(HR=2.99, 95% CI=1.73-5.15); limiting to negative MRI assessments of BI-RADS 1, 2, or 3
(HR=2.14, 95% CI=1.32-3.45); or removing the BCSC registry that retrospectively assessed

BPE (HR=2.19, 95% CI=1.43-3.33).

Follow-up study: Subtype specific analysis

In the expanded cohort, associations with overall cancer were similar but slightly
attenuated compared to the initial study sample (table 5 and 6). Combined mild, moderate, and
marked BPE remained statistically significantly associated with HR+ invasive cancer (HR=2.13,
95% Cl=1.29—3.54), HER2- invasive cancer (HR=1.74, 95% CI=1.10—2.74), and early stage
I/11a breast cancer (HR=1.86, 95% CI=1.12—3.10). This association was strengthened when
using an alternative dichotomized definition of BPE combining moderate and marked BPE, and
statistical significance was also observed for advanced stage I1b-1V disease (HR=2.73, 95%
CI=1.01—7.38) and less favorable cancer (HR=2.31, 95% C1=1.34—3.97). The association with
HER2+ and triple negative disease was not evaluated due to the limited number of events. The
repeated measures model demonstrated the same trends as the baseline BPE model, but with

slightly reduced hazard ratio
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DISCUSSION

In this population-based assessment of BPE, we demonstrate that among women
undergoing screening or diagnostic breast MR, elevated levels of BPE predict both clinically
and statistically significantly higher risk of developing primary invasive breast cancer. BPE had
a higher magnitude of hazard association with breast cancer risk than breast density in this
population. Moreover, BPE was independent of breast density in risk prediction, and the
combination of BPE and breast density increased the overall risk for breast cancer more than
either factor alone. Our results strengthen the findings of smaller, single-institution, retrospective
studies,® ® 2° and further validate the use of BPE as an imaging biomarker for primary breast
cancer risk.

We also demonstrated BPE to have a strong association with invasive cancer, suggesting
it is a relevant biomarker for predicting clinically important breast cancer. Furthermore, BPE risk
prediction remained significant when adjusting for other factors associated with increased breast
cancer risk including increased age, family history, benign breast biopsies, and postmenopausal
status. Our population represents a predominantly high-risk group with 49% of women at
intermediate-to-high 5-year risk (compared with 38% in a general screened population),® which
is the primary indication for screening breast MR1.3* However, in a subset of women of low or
average risk (defined by a 5-year BCSC risk score of <1.67%), BPE continued to indicate a
significantly increased breast cancer risk. Collectively, these findings suggest that BPE is a
robust imaging biomarker for breast cancer risk that is independent of many established factors
used in validated risk models.

Our study used the largest longitudinal, population-based cohort to date to confirm the

association of BPE with primary breast cancer risk. The validity and robustness of this result is
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strengthened by our use of rigorously collected individual-level imaging and pathology data, the
majority of which was prospectively obtained from diverse academic and community facilities
across the United States. Our findings also validate prior single-institution studies. King et al.®
initially found moderate or marked BPE was associated with a significantly increased odds for
cancer, with an odds ratio of 10.1 (95% CI=2.9-35.3). However, this association may be biased
because BPE was measured from MRIs that concurrently displayed enhancing cancer. Dontchos
et al.® used BPE measurements that preceded cancer diagnosis, and found that mild, moderate or
marked BPE was associated with an elevated cancer odds ratio of 9.0 (95% C1=1.1-71.0). All
studies including ours found that the significant associations between elevated BPE and breast
cancer were greater than associations between breast density and cancer. However, only our
study evaluated the interaction between breast density and BPE. While breast density and BPE
has been shown to not be correlated among healthy women, we demonstrated that breast cancer
risk was independently predicted by breast density and BPE.

In our follow-up study exploring subtype specific associations using an expanded cohort,
we continued to show similar patterns of associations of BPE as the initial cohort analysis (table
5 and 6). Additionally, we demonstrated clinically and statistically significant associations with
cancers having good prognosis such as HR+ invasive cancer and early stage I/l1a breast cancer.
We were limited in our evaluations of more aggressive HER2+ and triple negative subtypes due
to the limited sample size in terms of number of events and therefore did not pursue those
comparisons. However, using an alternative definition of BPE combining moderate and marked
BPE, we demonstrate associations with advanced stage cancer and cancer with less favorable
characteristics. Further evaluation with larger cohort size may further elucidate the relationship

of BPE to underlying tumor biology and prognosis.
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Limitations of using BPE as an imaging biomarker for risk parallel the limitations of
breast density. BPE is a qualitative assessment that is prone to interobserver and intraobserver
differences that are comparable to or worse than assessment of breast density.?® 2" BPE has
physiological variability, creating sources of measurement error and variation that tend to bias
findings towards a null result, which may explain our attenuated results with a repeated measures
model. Despite these limitations, BPE was significantly predictive of cancer. Breast density did
not significantly predict breast cancer risk despite being an established risk marker; however, this
result may be due to higher likelihood of selection of women with dense breast for breast MRI
(either for increased individual risk or dense tissue masking), while women with lower breast
density selected for breast MRI only for individual risk. To this point, we observe 68% of
women in our study had dense breasts, compared to 52% in the general screening population.3®
Importantly, the 95% CI for heterogeneous and extreme density was predominately associated
with a clinically significant effect. Finally, BPE prediction remained robust through adjustment
for confounders, and sensitivity analyses to remove potential biases related to suspicious
assessments on MRI, proximity in time of BPE assessment to cancer diagnosis, and evolving
definitions of BPE.

The clinical applicability of BPE as a risk marker is limited to select populations who
undergo MRI.34 Approximately 1-5% of all U.S. women who have received breast imaging have
undergone a breast MR, although this modality may be inappropriately used for some and
underutilized for others.®”-* The indications for and utilization of breast MRI may increase,*
particularly as it is a potential choice of supplemental screening for women with dense breasts,*"
42 and/or with recent developments in abbreviated MRI protocols.*® 4 Information gained with

BPE could be helpful for some women in future efforts to better define breast cancer risk and
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tailor supplemental screening strategies. For example, if an average-risk woman undergoes
diagnostic MRI and demonstrates elevated BPE, her risk may be reassessed to determine if her
absolute risk is sufficiently high to warrant screening MRI. Alternatively, high-risk women
identified by standard risk-prediction models who undergo screening MRI may demonstrate
reduced risk if low BPE levels are considered in conjunction with standard risk models; these
women may no longer require routine MRI screening.

In conclusion, we found BPE to be a strong predictor of future breast cancer risk, which was
independent of breast density and other established risk factors. BPE demonstrates subtype
specific associations with less aggressive disease, evaluation for association with aggressive
disease was limited due to sample size and was only clearly noted at moderate and marked
levels. BPE should be considered for incorporation into risk-prediction models for women

undergoing MRI.
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Figure 2.1. Distribution of MRI background parenchymal enhancement (BPE) and
mammographic breast density. Red, cancer cases; blue, non-cancer cases. Cancer cases
compared to non-cancer cases had a higher proportion of mild, moderate, or marked BPE (80%
Vvs. 66%), and of heterogeneously or extremely dense breasts (72% vs. 65%). When combining
BPE and density, cancer cases had higher proportion of both mild, moderate, or marked BPE and
heterogeneously or extremely dense breasts (57% vs. 38%).
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Table 2.4. Secondary and sensitivity analyses of mild, moderate, or marked versus
minimal MRI background parenchymal enhancement (BPE) on breast cancer risk.

Baseline BPE
Hazard Ratio* (95% CI) P-value for
interaction
Cancer type
DCIS 1.48 (0.72-3.05)
Invasive 2.73 (1.66-4.49)
First-degree family history
No family history 1.29 (0.69-2.42) 0.02
Family history 3.55 (1.93-6.53)
Menopausal status
Pre-menopausal 3.01 (1.27-7.10) 0.77
Post-menopausal 2.58 (1.43-4.64)
MRI indication
Screening MRI 2.58 (1.57-4.25) 0.22
Diagnostic MRI 1.59 (0.84-2.99)
Adjusted covariates
Breast density 2.22 (1.42-3.47)
Family history 2.34 (1.50-3.65)
Benign breast disease (BBD) 2.21 (1.42-3.43)
Family history and BBD 2.29 (1.45-3.61)
Menopausal status 2.63 (1.56-4.44)
Family history, menopausal status, and BBD 2.53 (1.49-4.28)
Sensitivity analyses
Cancer diagnoses 1 year after BPE only 2.09 (1.34-3.25)
MRI examinations 2010 or later only 2.99 (1.73-5.15)
BI-RADS 1, 2, or 3 exams only 2.14 (1.32-3.45)
Remove site with retrospective BPE assessment 2.19 (1.43-3.33)

*Hazards ratios estimated from Cox proportional hazards model stratified by BCSC registry and MRI indication,
and adjusted for age at BPE measurement.

BBD, benign breast disease; BI-RADS, Breast Imaging-Reporting and Data System; BPE: background
parenchymal enhancement; CI, confidence intervals; DCIS, ductal carcinoma in situ; MMM BPE, mild, moderate,
or marked BPE; MRI, magnetic resonance imaging

Bolded values represent significant results.
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Table 2.5a. Cancer subgroup analysis by baseline BPE and/or breast density

Cancer category All Cancers Invasive DCIS
(sample size) (n=157) Cancer (n=43)
(n=114)
Hazard ratio* Hazard ratio*  Hazard ratio*
(95% ClI) (95% ClI) (95% ClI)
BI-RADS BPE (4 categories)
Minimal Reference Reference Reference
Mild 1.35(0.79 to 0.99 (0.44 to
1.23(0.79 t0 1.91) 2.29) 2.22)
Moderate - 2.35(1.4to0 1.03 (0.42 to
1.9 (1.22 t0 2.96) 3.95) 2.54)
Marked 2.99 (1.87 to 3.06 (1.73 to 2.85(1.23 to
4.79)* 5.42)* 6.58)*
BPE (dichotomous)
Minimal Reference Reference Reference
Mild, moderate, or marked - 1.94 (1.25to 1.29 (0.67 to
1.73 (1.2 t0 2.49) 3.02) 251)
BPE (dichotomous)
Minimal or Mild Reference Reference Reference
Moderate or marked 2.05(1.48 to 2.24 (1.53to 1.62 (0.87 to
2.84)* 3.28)* 3.03)
BI-RADS breast density
Almost entirely fat 0.98 (0.4 t0 2.19) 1.393(;){.3(;1 to Inf
tissi(;attered fibroglandular Reference Reference Reference
Heterogeneously dense 1.02 (0.63 to 0.57 (0.24 to
0.89 (0.59 to 1.35) 1.65) 1.36)
Extremely dense 1.25(0.73 to 1.88 (0.85to
1.4 (0.9t0 2.18) 213) 4.18)
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Table 2.6a. Cancer subgroup analysis by multiple BPE and/or multiple breast density

measurements

Cancer category All Cancers Invasive Cancer DCIS
(sample size) (n =243) (n=187) (n =56)
Hazard ratio* Hazard ratio*  Hazard ratio*
(95% CI) (95% CI) (95% CI)
BI-RADS BPE (4 categories)
Minimal Reference Reference Reference
Mild 1.39 (0.87 to 0.88 (0.44 to
1.25 (0.84 to 1.86) 221) 18)
Moderate 1.57 (1.02 to 1.79 (1.13 to 1.02 (0.34 to
2.44)* 2.85)* 3.08)
Marked 2.62 (1.63to 2.68 (1.55to 2.41(0.92to
4.21)* 4.63)* 6.29)
BPE (dichotomous)
Minimal Reference Reference Reference
Mild, moderate, or marked 1.59 (1.12 to 1.74 (1.18 to 1.19 (0.58 to
2.24)* 2.56)* 2.43)
BPE (dichotomous)
Minimal or Mild Reference Reference Reference
Moderate or marked 1.74 (1.23 to 1.79 (1.21 to 1.59 (0.72 to
2.47)* 2.64)* 3.51)
BI-RADS breast density
Almost entirely fat 2.18 (1.02 to 0.3 (0.04 to
1.64 (0.8 to 3.38) 4.66) 2.09)
tiss:é:attered Laneg EmalE Reference Reference Reference
Heterogeneously dense 0.99 (0.62 to 0.45(0.18to
0.83 (0.54 t0 1.27) 1.58) 1.12)
Extremely dense 1.17 (0.69 to 1.54 (0.65 to
1.23 (0.78 to 1.94) 1.98) 3.65)
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CHAPTER 3: Comparison of Mammaography Artificial Intelligence Algorithms for 5-year

Breast Cancer Risk Prediction

ABSTRACT

Importance: Predicting future risk of breast cancer can inform screening and prevention
strategies.

Objective: To examine whether mammaography artificial intelligence (Al)—based computer
vision algorithms, most of which are trained to detect visible breast cancer, can also predict
future risk.

Design: Case-cohort study.

Setting: Kaiser Permanente Northern California.

Participants: Women who had a screening mammogram with no evidence of cancer on final
imaging assessment in 2016, were followed until 2021. Women with prior breast cancer or
highly penetrant gene mutation were excluded. A random subcohort of 13,881 (4.2%) was
selected from 329,814 eligible women, of whom 197 had incident cancer. All 4,475 additional
incident cases among eligible women were also included.

Exposure: Five available Al algorithms were compared with the clinical risk model developed
by the Breast Cancer Surveillance Consortium (BCSC v2). Continuous Al scores were generated
from algorithms using the index 2016 mammogram.

Main Outcome and Measures: Risk estimates for the main outcome, incident breast cancer
within 0 to 5 years after the index mammogram, were generated using the Kaplan-Meier method

and time-varying area under the curve [AUC(t)].
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Results: For incident cancers at 0-1 year (interval cancer risk), BCSC demonstrated an AUC(t)
of 0.62 (95%Cl, 0.58-0.66), and Al algorithms had AUC(t)s of 0.66-0.71 that were all
statistically significantly higher (p < 0.05). For incident cancers at 1 to 5 years (5-year future
cancer risk), BCSC demonstrated an AUC(t) of 0.61 (95% CI, 0.60-0.62), and all Al algorithms
had significantly higher AUC(t)s of 0.63-0.67. Combined models using BCSC and Al gave
AUC(t)s for interval cancer risk of 0.67-0.73 that was significantly higher for 2 of 5 models
compared to Al alone, and gave 5-year future cancer risk of 0.65-0.68 that were significantly
higher for all models.

Conclusion and Relevance: All mammography Al algorithms had significantly higher
discrimination than the BCSC clinical risk model for interval cancer and 5-year future cancer
risk. Combined Al and BCSC models significantly improved performance than Al alone for

most comparisons and should be considered for incorporation in future breast cancer models.
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INTRODUCTION

Breast cancer risk prediction models are used to evaluate and guide a range of clinical
considerations, including hereditary risk, supplemental screening, and risk-reducing
medications.! Risk models are also under active investigation for broader population
management, such as risk-based personalized screening®® or capacity management.* Several
models have been developed to assess the risk for breast cancer in the general population,
including Breast Cancer Risk Assessment Tool (BCRAT, also known as Gail),> Breast Cancer
Surveillance Consortium (BCSC),%’ and International Breast Cancer Intervention Study (also
known as Tyrer-Cuzick).® Beyond age, these models include clinical factors (eg, family history
of breast cancer, race/ethnicity, prior benign breast biopsy), genetic factors, and mammographic
breast density. However, these models have moderate discrimination for predicting either 5 or
10-year risk of breast cancer, with areas under the curve (AUC) ranging from 0.62 to 0.66.
Computer vision—based artificial intelligence (Al) models have the potential to improve risk
prediction beyond clinical risk factors. These models quantitatively extract imaging biomarkers
that represent underlying pathophysiologic mechanisms and phenotypes.® Breast density is a
single imaging biomarker most commonly incorporated into clinical risk models, but recent
advances in Al deep-learning®® provide the ability to extract hundreds to thousands of additional
mammographic features beyond breast density alone. However, most mammography-based Al
algorithms have been explicitly trained to assist a radiologist with detecting cancer visible on
screening mammography (i.e. a short time horizon) and not trained to help predict future risk
several years after the time of examination.!! A few studies have evaluated future risk
performance for Al algorithms explicitly trained for this task; these studies suggest substantial

improvements over clinical risk models alone.'?'3 However, it is unknown if Al trained for

62



detection at shorter time horizons, which comprise the majority of mammography Al algorithms
and primarily used in clinical practice, also carries longer term predictive performance.

We evaluated 5 commercial and academic mammaography Al algorithms, variously trained for
short to long time horizons, for the predictive performance of a 5-year time horizon following a
negative mammogram in a large, community-based US cohort from the Kaiser Permanente
Northern California (KPNC) integrated health system. We compared Al performance to the well-
validated BCSC clinical risk model and explored whether combining Al and BCSC clinical risk

models can further improve risk prediction above either model type alone.

Methods

Study Design, Setting, and Population

We performed a retrospective case-cohort study of women who had a bilateral screening
mammogram in 2016 at KPNC (ie, index mammogram), without evidence of cancer on final
imaging assessment either at the time of screening are after diagnostic work-up of positive
screening findings. Women were excluded if they had a prior history of breast cancer or a high-
penetrance breast cancer susceptibility gene as defined by the National Comprehensive Cancer
Network guidelines.!* Of 329,814 women who met these criteria, a random subcohort of 13,881
women (4.2%) containing 197 cases were selected for analyses, plus all 4,475 additional incident
cases diagnosed within 5 years of the index 2016 mammogram (4,672 total or 100% of cases;
Figure 1). This sample size was based on the maximum cohort size feasible for Al algorithm
evaluation. Our study was reviewed and approved by our regional institutional review board for
HIPAA compliance. The study followed the Strengthening the Reporting of Observational

Studies in Epidemiology (STROBE) and case-cohort—specific reporting guidelines.'>®
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Primary Outcome Ascertainment: Breast Cancer

The primary outcome was incident breast cancer defined as pathologically confirmed invasive
carcinoma or ductal carcinoma in situ (DCIS). Cancers were ascertained from the KPNC Breast
Cancer Tracking System®’ quality assurance program, which has a 99.8% concordance with the
KPNC tumor registry that reports to the National Cancer Institute’s Surveillance, Epidemiology,
and End Results (SEER) Program, but the KPNC Breast Cancer Tracking System identifies
incident cancers more rapidly (within 1 month of diagnosis) with manual verification. Women
were followed from their index mammogram to date of breast cancer diagnosis; death; health
plan disenrollment (allowing up to a 3-month gap in health plan enrollment); or August 31, 2021,

whichever occurred first.

Primary Predictor Data Source: Negative Screening Mammograms from 2016

Screening mammograms in 2016 were identified by a Current Procedural Terminology
examination code of 77057. A screening mammogram was considered to have no evidence of
cancer on final imaging assessment based on Breast Imaging Reporting and Data System (BI-
RADS) assessment category 1 or 2 on the screening mammogram, BI-RADS 0 on the screening
mammogram and BI-RADS 1 or 2 on the diagnostic mammogram within 90 days, or BI-RADS 0
on the screening mammogram and BI-RADS 4 or 5 on the diagnostic mammogram with
concordant benign biopsy within 90 days. The mammograms were evaluated in their archived
processed form and were predominately acquired on Hologic stations (87%), followed by
General Electric (13%). Inthe KPNC health system, most average-risk women start screening
mammography at age 50 with a screening frequency of every 2 years, although women are given

the option to screen starting at age 40 or to screen annually.
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Primary Predictor Measurement: Al Risk Score Derived from Screening Mammogram

Al scores were generated from 5 academic and commercial deep-learning computer vision
algorithms that take the screening mammogram images as their input, and output patient-level
predicted scores. Candidate algorithms were chosen from an ongoing institutional Al operational
evaluation. We evaluated 2 academic algorithms freely available for research, the Mirai
algorithm (Massachusetts Institute of Technology, Boston, Massachusetts;
https://www.github.com/yala/Mirai)** and the Globally Aware Multiple Instance Classifier
(GMIC) algorithm (New York University, New York City, New York;
https://www.github.com/nyukat/gmic). The 3 commercial vendor identities were anonymized
due to confidentiality, and labeled VVendor A, Vendor B, and Vendor D. All algorithms were
trained for time horizons between 3 months to 5 years, but we evaluated the extent to which all
algorithm’s predicted score can predict future risk up to 5 years. Further details of the software
architecture for each algorithm are provided in the supplement. Because the Mirai algorithm was
also calibrated to provide predicted absolute risk scores, further evaluation of calibration was
performed for the Mirai algorithm and the BCSC risk score. When any algorithm failed to
process an individual mammogram, this missing score was imputed using the algorithm’s
specific overall median score (missingness by algorithm is detailed in Table 3.1; evaluation by

scored cases only is provided in Table 3.2).

Comparative Predictor Ascertainment: Clinical Risk Score
The BCSC clinical 5-year risk prediction model version 258 was used as the comparative
predictor to the Al models. The BCSC model predicts risk for women without a history of breast

cancer based on age, race/ethnicity, first-degree family history of breast cancer, prior benign
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breast biopsy, and mammaographic breast density. Risk factors were obtained in the KPNC
electronic health record for risk score generation. Clinical risk factor data were obtained at or
before the index date of the first screening mammogram in 2016, regardless of prior membership
in the KPNC health system to reflect the underlying population. Breast density was based on the
index mammogram using the BI-RADS classification system and from assessments done as part
of routine care by radiologists at the time of interpretation. Data completeness for family history
and prior history of breast cancer was dependent on patient responses to clinic intake forms or
recorded by the provider during routine care; our data structure does not distinguish a woman
with no family history from a woman with missing data. Breast biopsy data were available if
obtained while the woman was enrolled in the KPNC health plan. Although our biopsy database
prospectively classifies atypia and lobular carcinoma in situ, it does not distinguish proliferative
benign pathology from otherwise benign pathology, so these benign outcomes were
conservatively classified as non-proliferative lesions. Although the Mirai algorithm can input
clinical variables for a combined risk score, at the time of evaluation this feature was not useable

because it did not allow a variable amount of missing risk factors.

Statistical Analysis

The statistical software R, version 4.0.2%°, was used for all statistical analyses. All statistical tests
were 2-sided, with the level for statistical significance set at a =.05. We evaluated the ability of
the measures to predict breast cancer occurring within three time periods following
mammography: “interval cancer risk” as incident cancers at diagnosed between 0 to 1 years,
“future cancer risk” as incident cancers diagnosed between 1 to 5 years, and “overall 5-year risk”

as incident cancers diagnosed between 0 to 5 years.
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Kaplan-Meier estimators were used to estimate the overall 5-year cumulative incidence
of breast cancer within strata of each risk score (lowest percentile, middle 80%, highest
percentile); design weights were included to account for the case-cohort sampling.
Discrimination was evaluated through the time-dependent area under the curve [AUC(t)], which
accounts for the dynamic definition of cases and non-cases when handling time-to-event
outcomes,?® for time horizons of 1, 2, 3, 4, and 5 years. We implemented the estimator that
accounts for the censoring and sampling distribution using inverse probability of censoring
weights and the case-cohort sampling?* and obtained corresponding 95% confidence intervals
(CIs) using bootstrapping with 1000 bootstrap samples.?? To compare AUC(t) estimates from 2
separate risk scores (eg, BCSC vs. Mirai), we calculated the difference in estimates and
corresponding bootstrapped 95% Cls; a Cl that does not contain 0 indicates that the difference in
AUC(t) estimates is statistically significant at the .05 level.?®

A Cox model was fit to predict 5-year risk by using the combined screening
mammogram—derived Al predicted score and the clinical BCSC risk score. The Cox models
accounted for the case-cohort sampling through design weights and included both the Al score
and clinical risk score flexibly using restricted cubic splines with 4 knots.?*?> We used 5-fold
cross-validation (CV) to estimate the AUC(t) estimator described above?! and present the
average value across the 5-folds. We obtained corresponding 95% Cls for the average CV-
AUC(t) through bootstrapping with 1000 bootstrap samples.

Calibration was estimated for just the Mirai algorithm and BCSC clinical risk model
because these are the only models that generate absolute risk estimates. We assessed the
calibration of risk scores within prespecified strata of 5-year risk (0 to <1.67%, 1.67 to <3%,

>3%) based on thresholds established by the BCSC. We compared the observed number of cases
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over the 5-year study period with the expected number of cases, calculated as the sum of the
cumulative hazard estimates over all individuals in the study.?® We report the ratio of observed to
expected cases with exact 95% Cls.?” We calculated the incidence rates (IRs; cases per 1000
person-years) and IR ratios (IRRs) with 95% Cls based on a Poisson distribution.?® All expected

incidence estimates incorporated design weights that account for the case-cohort sampling.

Results

Patient Characteristics

The overall baseline patient characteristics are described in Table 3.3. Although our population
was predominately older and non-Hispanic white women, we had a substantial proportion of
women who were younger than age 50 (23%) or of non-White race/ethnicity (48%). Women had
5.0 median years of follow-up (interquartile range 4.7 to 5.3 years). Women were censored due

to end of follow-up (92%), disenrollment (6%), or death (2%).

Cumulative Incidence Rates of BCSC Clinical Risk Model and Al algorithm scores

Figure 2 describes the cumulative incidence rates for breast cancer over 5 years by each risk
model. The BCSC average cumulative IR at 5 years in women with >90% percentile of risk was
30.3 per 1000 (95% Cl, 28.0-32.9 per 1000), with middle 80% risk the IR was 15.0 per 1000
(95% ClI, 14.5-15.7 per 1000), and with <10% percentile of risk the IR was 6.1 per 1000 (95%
Cl,5.1-7.2 per 1000). The IRR of the highest to lowest percentile of risk was 5.4. Women with a
>90% percentile BCSC risk predicted 21% of all cancers by 5 years, while women with <10%

percentile risk predicted 3% of all cancers.
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For Al algorithms, the average cumulative IR at 5 years in women with >90% percentile
risk ranged from 31.3 to 40.9 per 1000; in women with middle 80% percentile risk, from 13.7 to
15.0 per 1000; and with <10% percentile risk from 6.4 to 7.4 per 1000. The IRR of the highest to
lowest percentile of risk ranged between 5.3 and 7.3. Women with >90% percentile Al risk
predicted 20% to 27% of all cancers by 5 years, whereas women with <10% percentile risk

predicted approximately 2% to 4% of cancers across all Al algorithms.

Discrimination and Calibration of BCSC Clinical Risk Model and Al algorithm scores

When evaluating discrimination (Table 3.4) for incident cancers at 0-1 year (interval cancer
risk), BCSC demonstrated an AUC(t) of 0.62 (95% CI, 0.58-0.66). In comparison, all Al
algorithms demonstrated an interval cancer risk between 0.66 and 0.71 that was statistically
significantly higher than BCSC (P < .05). For incident cancers at 1 to 5 years (5-year future
cancer risk), BCSC demonstrated an AUC(t) of 0.61 (95% CI, 0.60-0.62). In comparison, 5-year
future cancer risk Al algorithms ranged from 0.61 to 0.67 with all algorithms statistically
significantly higher than BCSC (P < .05).

When evaluating combined Al and BCSC risk models, we initially created linear
combination of these predictors. However, all models violated the proportional hazards
assumption and were therefore modeled as restricted cubic splines. Combined models
demonstrated an AUC(t) for interval cancer risk that ranged from 0.67 to 0.73 (Table 3.5), that
was only significantly higher than the corresponding Al algorithm alone for Mirai and GMIC.
The combined model 5-year future cancer risk AUC(t) ranged from 0.65 to 0.68 and was

significantly higher for all models.
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Additional subgroup analyses (supplementary Tables 3.2, 3.6-3.10) demonstrate
comparable discrimination to Table 3.4 when restricting to women with invasive breast cancer
only, complete scores available across all models only, BI-RADS 1 or 2 on screening
mammograms only, and mammograms acquired on Hologic equipment only. Discrimination was
mixed for women with BI-RADS 0 on screening mammograms only and mammaograms acquired
on GE equipment only.

Comparing calibration of the BCSC risk model and the Mirai algorithm (Table 3.11), the
5-year calibration of the BCSC ranged from 1.02 to 1.07 depending on the prespecified risk

threshold ranges, whereas that of the Mirai algorithm ranged from 0.49 to 0.76.

DISCUSSION

In this comparative assessment of breast cancer risk models, all Al algorithms had significantly
higher discrimination than the BCSC clinical risk model for predicting 5-year risk. This
difference was most pronounced for interval cancer risk at 0 to 1 year. Furthermore, we
demonstrate that Al algorithms mostly trained for short time horizons can predict future risk of
cancer up to 5 years when no cancer is detected on mammography. The combination of BCSC
clinical risk and Al further improves risk prediction above Al alone, and decreases the gap in
future risk performance between Al algorithms.

Mammography Al algorithms provide a new approach for improving breast cancer risk
prediction beyond classical clinical variables such as age, family history, or the traditional
imaging risk biomarker of breast density. The absolute increase in the AUC for the best
mammography Al relative to BCSC was 0.09 for interval cancer risk and 0.06 for overall 5-year

risk, which suggests that mammography Al provides 2-4 times new and independent predictors
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than clinical risk factors in the BCSC model.?° Improved interval cancer risk prediction is
expected given most Al are trained for short time horizons, to aid radiologists from missing
cancers. However, continued strong predictive performance up to 5 years is surprising and
suggests Al is no longer identifying missed cancers, but imaging features of true underlying risk.
This is analogous to breast density predicting interval cancer risk due primarily to tissue
masking, but also predicting future risk where masking is no less contributory®. We demonstrate
that Al provides prediction better than and additive with breast density, which is part of the
BCSC model.

Creating a combined Al and clinical risk model demonstrated a significant, albeit slight
improvement in performance compared with any Al model alone. This incremental improvement
was also noted in other studies combining mammography Al and clinical risk.*>*® The combined
model also decreased overall differences in discrimination between Al algorithms. Larger gains
in improvement may be derived by combining clinical risk and mammography Al with single
nucleotide polymorphism polygenic risk scores,*? which we intend to evaluate in a future study.
We evaluated risk at different time horizons because each has distinct clinical implications. Al
algorithms particularly excel at predicting high risk of interval cancer, which is associated with
aggressive cancers®®3! and may lead to second reading of mammogram, supplementary screening
(eg, with breast MRI), or short-interval follow-up. Al algorithms also predict elevated future
risk, which may lead to more frequent and intensive screening or risk counseling for primary
prevention.

The BCSC model prediction was calibrated to US national SEER cancer incidence rates
and remained well calibrated in our cohort, confirming that our population is likely

representative of community-based populations. In contrast, the Mirai model overestimated
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cancer risk by a factor of 2 across all risk strata. The Mirai predicted risk was originally
calibrated using women from a tertiary referral setting who likely had a higher cancer rate than
the women in our health system. Although calibration does not affect the observed discriminative
performance, it is critical when clinical decisions are based on prespecified risk model
thresholds. However, given its systematic overestimation, the Mirai model may be recalibrated
for these purposes.

Beyond improved performance, mammography-based Al risk models provide practical
advantages over traditional clinical risk models. Al uses a single data source (the screening
mammogram) that is available for most women for whom breast cancer risk prediction is
relevant. As a result, risk scores can be generated consistently and efficiently for all women in a
large population. Mammaography Al risk models overcome certain barriers for risk models such
as time and cost for combining multiple data elements from potentially different sources, as well
as dependence on patient-reported history, and susceptibility to missing data or recall bias.
However, mammography Al risk models also entail their own challenges in terms of potential
costs (eg, new software or graphics processing hardware) and other new technical and workflow
considerations for implementation. Some breast imaging practices may already incorporate
mammography Al trained for aiding immediate image detection, and the score that is generated
can simultaneously be used for future risk stratification. However, before Al is applied, it should
be evaluated in specific populations to evaluate hidden biases that may create health equity
disparities in certain groups.32

We evaluated our results using a community-based, diverse cohort, using a rigorous
design and methods to evaluate Al under both pragmatic and optimal conditions. Our observed

discrimination was consistent with prior publications for the Mirai Al algorithm?3 and the BCSC
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clinical risk model.®"32 Our results are not an endorsement of any one Al algorithm, but a
demonstration of the inherent predictive power in mammography-based deep-learning using a
sample of 5 Al algorithms. It is beyond the scope of our study to evaluate the hundreds of
mammography Al algorithms available at this time,** but similar results may be seen in
algorithms not evaluated in our study.

Our study was limited due to retrospective ascertainment of BCSC clinical risk model
inputs for family history and prior breast biopsies. We are unable to assess the extent to which
these data are missing, particularly for breast biopsies performed prior to enrollment in our
health plan. Although family history data were comparable to BCSC estimates, breast biopsy
history was 10-15% lower than previously reported,” which may contribute to underestimation of
BCSC performance. Additionally, COVID shelter-in-place orders likely decreased baseline
cancer incidence in the final year of our study due to decreased screening.

Our results imply that mammography Al alone may be a powerful, step-wise
improvement over clinical risk models at early time horizons, with further improved prediction
when both Al and clinical risk models are combined. Although Al performance declines with
longer time horizons, most of the algorithms evaluated have not been yet trained to predict
longer-term outcomes, suggesting a rich opportunity for further improvement. Moreover, Al
provides an especially powerful way to stratify women for clinical considerations that necessitate
shorter time horizons, such as risk-based screening and supplemental imaging. The impact on
clinical decisions requiring longer-term data, such as for chemoprevention or hereditary genetic

screening, requires further study in cohorts with longer follow-up.
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Table 3.3: Patient characteristics

Women in Women with All eligible
subcohort, breast cancer, | women,
n (%) n (%) n (%)
Total women 13 881 (100) 4672 (100) 329 814 (100)
Age, years
<40 84 (1) 19 (<1) 2011 (1)
40-49 3149 (23) 735 (16) 74 887 (21)
50-59 4792 (35) 1331 (28) 114 780 (33)
60-69 4215 (30) 1809 (39) 99 341 (32)
>70 1641 (12) 778 (17) 38 795 (13)
Race/Ethnicity
Black, non-Hispanic 976 (7) 329 (7) 1257 (7)
Asian or Pacific Islander 2672 (19) 897 (19) 3426 (20)
Hispanic 2401 (17) 572 (12) 2921 (16)
Multiracial 504 (4) 163 (3) 657 (4)
Native American 53 (<1) 18 (<1) 69 (<1)
White, non-Hispanic 7037 (51) 2676 (57) 9383 (52)
Missing 238 (2) 17 (<1) 268 (1)
First-degree family history
0 12 150 (88) 3750 (80) 275 535 (85)
1 1639 (12) 866 (19) 44901 (14)
>2 92 (1) 56 (1) 2854 (1)
Previous benign breast biopsies
0 13119 (95) 4160 (89) 16 774 (93)
>1 762 (5) 512 (11) 1198 (7)
BI-RADS breast density
Almost entirely fat 1405 (10) 250 (5) 1552 (9)
Scattered fibroglandular 6387 (46) 2014 (43) 8143 (46)
densities
Heterogeneously dense 5341 (38) 2117 (45) 7194 (40)
Extremely dense 748 (5) 251 (5) 997 (6)
Missing 65 (<1) 40 (1) 95 (<1)
Cancer type
Invasive 152 (77) 3850 (82) 3850 (82)
DCIS 45 (23) 822 (18) 822 (18)
Median follow-up interval, years 50(4.7t05.3) | 2.8(20to4.1) |5.0(4.7to
(interquartile range) 5.3)
Median healthcare enrollment 17.9 (9.7 to 18.9 (10.7 to 17.6 (9.2 to
prior to index date, years 19.4) 19.5) 19.4)

(interquartile range)
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Figure 3.1: Case cohort selection
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aNo imaging evidence of cancer: Screening examination BI-RADS 1 or 2 OR Screening
BI-RADS 0 and diagnostic BI-RADS 1 or 2 in < 90 days OR Screening BI-RADS 0 and
diagnostic BI-RADS 4 or 5 and benign biopsy in < 90 days
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Figure 3.2: Cumulative risk of breast cancer by Al score score at 5 years
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Appendix 3.1: Description of Artificial Algorithms

Survey questions were submitted to algorithm developers to further describe the underlying
training, data, and architecture.

Globally-Aware Multiple Instance Classifier (GMIC, NYU):

1. Briefly describe the demographic and platform-specific composition of the data used
for training: Total training sample size? Does the data contain non-white patients?
Are the mammograms from multiple imaging platforms?

We used NYU Breast Cancer Screening Dataset to develop our model. This dataset
contains 229,426 exams (1,001,093 images) from 141,472 patients who imaged at NYU
Langone Health between 2010 and 2017. The dataset contains non-white patients. You can
find more information in this tech report.

2. Briefly describe the types or combination of the types of deep learning algorithms
used by your model: e.g., CNN, DNN, GAN, etc.? Does your model utilize pretrained
models or transfer learning (e.g., resnet, inception, etc.)?

The primary methodologies applied in this paper: CNN, weakly supervised learning. We used
ResNet pretraining weights from ImageNet.

3. Briefly describe the core technologies and/or framework(s) used by your model (e.g.,
Python, Java/JVM, TensorFlow, Pytorch, Caffe, etc.)

PyTorch

4. Can your model process mammography studies beyond standard 4 views (e.g.,
unilateral only, more than 4 views, implant)?

Yes. It doesn't make any assumption on the view.

5. How were the positive and negative labels of training images defined (e.qg., specify the
time interval from image to diagnosis, pathologically confirmed invasive cancer or
DCIS, benign lesions included among negatives or as a third outcome, no known breast
cancer diagnosis within 5 years, one or two subsequent negative screening exams)?

A breast was defined as cancer-positive if there was at least one pathology report confirming
the presence of malignant lesion within 120 days of the time when the mammography images
were acquired. DCIS was considered as malignant. Benign findings such as cyst and
fibroadenoma were treated as another class. Cancer negative exams include exams with
benign/normal findings or exams that weren't escalated for biopsy. Please find more
information in the tech report (referenced below) of this dataset.
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6. Briefly describe your model’s input requirement (e.g., DICOM, PNG, “for
presentation” or “for processing” view). Is any preprocessing required?

The implementation published on GitHub takes in a 2D / 3D matrix representation of a
mammography image. The user needs to extract the image data from DICOM. Image pre-
processing is included as part of the git repo.

7. Briefly describe your model’s output (e.g., does it represent the probability of cancer
or can it be converted to a probability?). Does the output include anything else, such as
bounding boxes or lesion segmentation?

The model outputs two probability scores on the presence of any benign and malignant lesion
in a mammography image. The model also returns saliency maps which highlight the areas
on the images that could correspond to a benign/malignant lesion. See Figure 7 of our paper
as an example.

8. How does your model generate breast-level or patient-level predictions?

Breast-level predictions were calculated as the simple average over all image-level
predictions.

9. Does your model employ any inference-time techniques, such as model ensemble or
data augmentation?

We use model ensembling and test time data augmentation. See more details in Section 3.3.1
of our paper.

10. Is your model able to consider any prior exams?
No

11. Relevant citations?
1. The paper: https://www.sciencedirect.com/science/article/pii/S1361841520302723
2. NYU Breast Cancer Screening Dataset: https://cs.nyu.edu/~kgeras/reports/datavl.0.pdf

3. The original version of our model: https://link.springer.com/chapter/10.1007/978-3-030-
32692-0_3
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Mirai (MIT):

1. Briefly describe the demographic and platform-specific composition of the data used
for training: Total training sample size? Does the data contain non-white patients?
Are the mammograms from multiple imaging platforms?

The full demographics of our training set are in table 3 of the paper.

2. Briefly describe the types or combination of the types of deep learning algorithms
used by your model: e.g., CNN, DNN, GAN, etc.? Does your model utilize pretrained
models or transfer learning (e.g., resnet, inception, etc.)?

This is detailed in our paper.

Mirai leverages a ResNet to encode individual views, and a Transformer to combine multiple
view representations into a patient level representation. The model was trained to predict
multiple time-points simultaneously using our Additive Hazard layer, to predict traditional
clinical risk factors (e.g. age) from the image. To make our model consistent across
different mammography machines in our dataset, we used conditional adversarial training.

3. Briefly describe the core technologies and/or framework(s) used by your model (e.g.,
Python, Java/JVM, TensorFlow, Pytorch, Caffe, etc.)
Mirai was built in PyTorch and Python

4. Can your model process mammography studies beyond standard 4 views (e.g.,
unilateral only, more than 4 views, implant)?
Our model requires all four standard views (R CC, R MLO, L CC, L MLO)

5. How were the positive and negative labels of training images defined (e.g., specify the
time interval from image to diagnosis, pathologically confirmed invasive cancer or
DCIS, benign lesions included among negatives or as a third outcome, no known breast
cancer diagnosis within 5 years, one or two subsequent negative screening exams)?

We trained our model to predict cancer across multiple timepoints. A patient was considered
"positive” for cancer within three years if they had a pathologically confirmed invasive
cancer or DCIS diagnosis within three years of their mammogram. A patient was

considered "negative™ for cancer within three years if they had at least three years of
screening followup without such a diagnosis. We didn't exclude benign lesions.

6. Briefly describe your model’s input requirement (e.g., DICOM, PNG, “for
presentation” or “for processing” view). Is any preprocessing required?

Our code assumes For Presentation dicoms, and will convert them to pngs using the
DCMTK library
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7. Briefly describe your model’s output (e.g., does it represent the probability of cancer
or can it be converted to a probability?). Does the output include anything else, such as
bounding boxes or lesion segmentation?

The model outputs the probability of a cancer diagnosis within one to five years. This is
represented as a 5 dimensional probability array.

8. How does your model generate breast-level or patient-level predictions?
The model generates patient-level predictions.

9. Does your model employ any inference-time techniques, such as model ensemble or
data augmentation?

We do not apply model ensembling or test-time data augmentation.

10. Is your model able to consider any prior exams?

The model does not leverage prior mammograms in its predictions.

11. Relevant citations?

Yala A, Mikhael PG, Strand F, et al. Toward robust mammography-based models for breast
cancer risk. Sci Transl Med. 2021;13(578):eaba4373. doi:10.1126/scitransimed.aba4373

Vendor A:

1. Briefly describe the demographic and platform-specific composition of the data used
for training: Total training sample size? Does the data contain non-white patients?
Are the mammograms from multiple imaging platforms?

We collected and curated a dataset of 1.3M images originating from Europe (France, UK)
and the USA. It covers a wide range of imaging platforms, the most prominent being:
Hologic, GE, Fuji, Giotto, Siemens, Philips. Images are a mixture of FFDM, DBT and 2DSM
(synthetic mammography). We know from the collected centers that non-white patients are
included without being able to determine precisely how many.

Briefly describe the types or combination of the types of deep learning algorithms used

by your model: e.g., CNN, DNN, GAN, etc.? Does your model utilize pretrained models

or transfer learning (e.g., resnet, inception, etc.)?
We use a mixture of 5 families of convolutional neural networks (CNN), each having a
specific purpose. A first type of CNN takes a whole mammographic view as input and outputs
its likelihood of malignancy. A second type of CNN extends the first one by leveraging the
(lack of) symmetry between a view and its symmetrical counterpart. A third CNN is
specialized in detecting all anomalies in a view, regardless of their likelihood of malignancy.
A fourth CNN, further extended by a final CNN leveraging the (lack of) symmetry, takes as
input high-resolution patches around detections obtained by the previous CNN and
characterizes their level of suspicion. The final output of the algorithm consists in a set of
positions (coordinates) within each breast view with their consolidated likelihood of
malignancy obtained by fusing the image-wise and patch-wise predictions. Each model
family comes with 10 instances trained by cross-validation, making a total of 50 CNNs
executed on each view of each mammogram. Findings in cranial and lateral views of the
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same laterality are finally paired using iconic and geometrical heuristics for a more
consistent output.

3. Briefly describe the core technologies and/or framework(s) used by your model (e.g.,
Python, Java/JVM, TensorFlow, Pytorch, Caffe, etc.)

The primary programming language is Python. The deep learning framework used is
TensorFlow version 2. Additional machine learning methods from scikit-learn and XGBoost
are also used.

4. Can your model process mammography studies beyond standard 4 views (e.g.,
unilateral only, more than 4 views, implant)?

We currently support a maximum of 4 views per mammogram, but we do support less
(though off-label). Unilateral mammograms (e.g., L-CC and L-MLO) are supported
(symmetric models are disabled in this case). Unique views (e.g., L-CC and R-CC) are also
supported. Additional screening views such as ML, LM, XCC are also supported. In case of
duplicated views (e.g., two L-CC), the most recent image is selected (we hypothesize that in
case of duplicated views the most recent is a reshoot due to bad quality of the older version).

5. How were the positive and negative labels of training images defined (e.g., specify
the time interval from image to diagnosis, pathologically confirmed invasive cancer
or DCIS, benign lesions included among negatives or as a third outcome, no known
breast cancer diagnosis within 5 years, one or two subsequent negative screening
exams)?

Positive cases were confirmed by a positive biopsy (either invasive cancer of DCIS) within

24 months from screening date. For each mammogram, the cancer presence was confirmed

(annotated) by an expert radiologist to avoid injecting interval cancers in the training set.

Regarding negative cases, those were confirmed by a negative or benign screening exam

within 24 months after the screening date. Cases with benign lesions (as confirmed after a

diagnostic mammogram or a biopsy) were included in the same group as negative cases.

Cases with known history of breast cancer (regardless of when it happened) and breast

surgery were excluded.

. Briefly describe your model’s input requirement (e.g., DICOM, PNG, “for

presentation” or “for processing” view). Is any preprocessing required?

We use the FOR PRESENTATION DICOM images for the Al analysis. No additional

preprocessing is required. Images are normalized internally (i.e., by the algorithm) to make

them look similar across vendors. The normalization procedure is not disclosed.

. Briefly describe your model’s output (e.g., does it represent the probability of cancer
or can it be converted to a probability?). Does the output include anything else, such as
bounding boxes or lesion segmentation?

[Vendor A algorithm] outputs 2 scores: a raw score, ranging between 0 and 1, and a

discretized score on a 1-10 scale to ease its interpretation. The score was calibrated on a

screening distribution with a cancer prevalence of 5:1000 so it can directly be interpreted as

a probability. Additionally, [Vendor A algorithm] returns the detection bounding boxes. No

pixelic lesion segmentation is performed.
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8. How does your model generate breast-level or patient-level predictions?
The breast-level score is obtained as the highest score of the detected lesions in the breast.
The patient-level score is the highest score of the left and right breast. Therefore, it is always
possible to connect the score at any level to a specific lesion in a specific view, which eases
interpretability.

9. Does your model employ any inference-time techniques, such as model ensemble or
data augmentation?
Given the multiplicity of our CNN, we extensively use ensembling techniques (bagging). Each
model family has 10 instances, which are combined (averaged) to form a unique prediction
for that family. No test-time augmentation is done.

10. Is your model able to consider any prior exams?
The use of prior examinations is currently under development. We have very promising
preliminary results on certain model families, and are currently extending it to other
families.

Vendor B:

1. Briefly describe the demographic and platform-specific composition of the data used
for training: Total training sample size? Does the data contain non-white patients? Are
the mammograms from multiple imaging platforms?

In construction of the model we utilized data from four primary vendors: Hologic, GE,
Giotto, and Siemens. The model has been trained on >4M images. The dataset contains
Caucasian, Asian, Hispanic, and African American demographics.

2. Briefly describe the types or combination of the types of deep learning algorithms
used by your model: e.g., CNN, DNN, GAN, etc.? Does your model utilize pretrained
models or transfer learning (e.g., resnet, inception, etc.)?

Our models include convolutional neural networks comprising several customized
architectures. We also construct an ensemble of several of these models with various training
parameters to construct the final model. We use transfer learning on internal data to make
our optimization process more efficient. We don't use any publicly pretrained models to
avoid potential bias.

3. Briefly describe the core technologies and/or framework(s) used by your model (e.g.,
Python, Java/JVM, TensorFlow, Pytorch, Caffe, etc.)

The product is built as a JVM service-based tool using decmtk to directly interface to DICOM
compatible devices. The model is built using TensorFlow as the primary framework for deep
learning, with several proprietary customizations to improve the performance of our models.
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4. Can your model process mammography studies beyond standard 4 views (e.g.,
unilateral only, more than 4 views, implant)?

Mia assesses 4 standard view images [CC-L, CC-R, MLO-L, MLO-R]. When the 4 standard
views are a subset of more than 4 images in a case, Mia utilizes a custom image selection
heuristic to determine an overall result based on the appropriate 4-image subset. The
heuristic can be customized to fit local processes. We believe it is critical that our
deployments are executed with understanding of how each local site works (e.g. how the
images are produced). This information is then used to ensure Mia is optimally deployed.
Versions of this heuristic have already been used successfully in independent analyses.

5. How were the positive and negative labels of training images defined (e.g., specify
the time interval from image to diagnosis, pathologically confirmed invasive cancer or
DCIS, benign lesions included among negatives or as a third outcome, no known breast
cancer diagnosis within 5 years, one or two subsequent negative screening exams)?

Our positive definition is based on pathology or surgical follow up within 6 months or 12
months as proof of malignancy. Our negative definition has a requirement of negative at
screening plus 24 to 36 months follow up with a negative result.

6. Briefly describe your model’s input requirement (e.g., DICOM, PNG, “for
presentation” or “for processing” view). Is any preprocessing required?

We only report on diagnosis-grade "For Presentation™ Images as described in the DICOM
standard. No preprocessing is required.

7. Briefly describe your model’s output (e.g., does it represent the probability of
cancer or can it be converted to a probability?). Does the output include anything else,
such as bounding boxes or lesion segmentation?

We provide a binary decision of Recall or No Recall based on a calibration step with each
provider's local data environment. Included in a recall decision would be side-wise (L/R) and
view-wise (MLO/CC) details. We also provide an explanatory ROI for informing the logic
behind the recall decision. We can provide a score, however it is our belief that the score is
not reflective of the probability of cancer.

8. How does your model generate breast-level or patient-level predictions?

We generate a prediction at the image level across an ensemble of models and then apply a

reduction heuristic to achieve the final result. The recall decision includes a case-wise, side-
wise and view-wise output.

9. Does your model employ any inference-time techniques, such as model ensemble or
data augmentation?

We use a varied ensemble of ML models. We found that, with our models, inference-time
techniques such as test time augmentation were not needed to achieve very good
performance. This allows us to be time and cost efficient at inference time.

10. Is your model able to consider any prior exams?

Some of our internal models have been trained using priors and we have seen strong
performance improvements. The production model doesn't not consider any prior exams at
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inference-time yet but this feature is actively being worked on and is expected to be released
in 2022.

Vendor D:

1. Briefly describe the demographic and platform-specific composition of the data used
for training: Total training sample size? Does the data contain non-white patients?
Are the mammograms from multiple imaging platforms?

Predominantly Caucasian women were included in the training. Approximately one
thousand breast cancer cases and ten thousand controls were used from multiple
mammography machine vendors.

2. Briefly describe the types or combination of the types of deep learning algorithms
used by your model: e.g., CNN, DNN, GAN, etc.? Does your model utilize pretrained
models or transfer learning (e.g., resnet, inception, etc.)?

The deep learning algorithm is based on a combination of inception-based convolutional

neural networks and U-Net. Transfer learning techniques and regularization were also used

during model training.

3. Briefly describe the core technologies and/or framework(s) used by your model (e.g.,
Python, Java/JVM, TensorFlow, Pytorch, Caffe, etc.)
Caffe and Tensorflow are used for model training and deployment.

4. Can your model process mammography studies beyond standard 4 views (e.g.,
unilateral only, more than 4 views, implant)?
The model processes 4 standard views with and without implants.

5. How were the positive and negative labels of training images defined (e.g., specify
the time interval from image to diagnosis, pathologically confirmed invasive cancer
or DCIS, benign lesions included among negatives or as a third outcome, no known
breast cancer diagnosis within 5 years, one or two subsequent negative screening
exams)?

The time from mammogram to diagnosis or end of follow-up was up to 4 years based on

pathology confirmed invasive and in-situ cancers. Benign lesions were included for controls.

The proportions of invasive, in-situ, benign lesions, normals matched a European screening

population.

6. Briefly describe your model’s input requirement (e.g., DICOM, PNG, “for
presentation” or “for processing” view). Is any preprocessing required?
The model requires for presentation DICOM images and age from the image tags.

7. Briefly describe your model’s output (e.g., does it represent the probability of
cancer or can it be converted to a probability?). Does the output include anything
else, such as bounding boxes or lesion segmentation?

The model outputs absolute risk of breast cancer in the population adjusted for age of the

woman. The model also outputs the average risk of women at the same age.
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8. How does your model generate breast-level or patient-level predictions?

Artificial intelligence analyses four images and image feature relationships between the four
images. The model further uses breast cancer incidence rates and competing risks from the
general population when predicting population based absolute risk of breast cancer for the
woman.

9. Does your model employ any inference-time techniques, such as model ensemble or
data augmentation?

The model uses ensemble techniques, and the model uses a time-to-event model with

adjustment for competing risks.

10. Is your model able to consider any prior exams?

The model is designed for analyzing images prior to breast cancer. It analyzes images at one
time point.
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