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ABSTRACT OF THE DISSERTATION 

 

Gene regulation in the human brain and the biological mechanisms  

underlying psychiatric disorders 

 

by 

  

Minsoo Kim 

Doctor of Philosophy in Human Genetics 

University of California, Los Angeles, 2022 

Professor Michael Jeffrey Gandal, Chair 

 

Large-scale genome-wide association studies (GWAS) have successfully identified hundreds of 

common variants associated with psychiatric disorders. Meanwhile, large-scale whole exome 

sequencing (WES) studies that test rare variants in aggregate have identified hundreds of genes for 

which loss-of-function is associated with increased risk of neurodevelopmental disorders. To 

understand the exact biological mechanisms in the human brain through which these genetic risk 

factors impart risk for disease, the first step in post-GWAS analyses is to identify genes that are 

regulated by disease-associated variants. Thereafter, the functional roles of disease genes from 

either GWAS or WES studies can be studied in an appropriate experimental system adequately 

recapitulating the disease-relevant context. In this dissertation, we primarily focus on this two-

stage process of identifying genes and understanding their biological functions (herein referred to 

as the “variant-to-gene-to-function” problem). We approach this problem by integrating existing, 
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large-scale genotype array and postmortem human brain RNA-seq data from PsychENCODE. The 

first chapter focuses on proof-of-concept isoform-resolution expression analyses, where we fine-

map the most significant GWAS locus for autism spectrum disorder and implicate reduced 

expression of a specific isoform of the XRN2 gene as the underlying driver of GWAS signal. In 

this chapter, we also jointly model constituent isoforms of a given gene with multivariate variance 

components linear mixed models, enabling systematic dissection of the genetic architecture of 

isoform-level expression in the human brain, for the first time. The second chapter shifts its focus 

to characterizing the functional role of the high-confidence schizophrenia risk gene C4A in the 

human brain by investigating the effect of complex structural variation of C4 genes on gene 

expression and co-expression. By annotating changes in C4A co-expression, we find putative 

molecular correlates of synaptic pruning and convergence of schizophrenia polygenic effects in 

synaptic processes, indicating that neuronal and synaptic pathways are the driving force conferring 

schizophrenia risk. Altogether, this dissertation aims to refine and advance our understanding of 

mental illnesses by characterizing the neurobiological mechanisms through which known genetic 

risk factors contribute to psychiatric disorders. 
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CHAPTER 1 

Introduction 

 

Large-scale psychiatric genetics studies have identified hundreds of genetic risk factors associated 

with increased risk of common, but complex neuropsychiatric disorders such as autism spectrum 

disorder (ASD) and schizophrenia (SCZ). For example, genome-wide association studies (GWAS) 

that survey common variants have identified hundreds of genomic regions associated with SCZ 

(Trubetskoy et al. 2022) as well as dozens for ASD (Grove et al. 2019), bipolar disorder (BD) 

(Mullins et al. 2021), and major depressive disorder (MDD) (Wray et al. 2018). At the same time, 

whole-exome sequencing (WES) studies that survey rare variants have identified hundreds of 

genes for which loss-of-function is implicated in ASD (Satterstrom et al. 2020), SCZ (Singh et al. 

2022), and developmental delay disorders (DDD) (Kaplanis et al. 2020). Understanding how these 

genetic risk factors combined with environmental factors converge at the level of disorder-relevant 

biological pathways within larger brain circuitry is critical for gaining insights into disease 

pathophysiology and identifying novel targets for therapeutic development (Gandal et al. 2016). 

However, the road to translating genetic findings is hampered by the “variant-to-gene-to-function” 

problem, which we define below and can be decomposed further into two separate problems—the 

“variant-to-gene” problem and the “gene-to-function” problem. 

 

The variant-to-gene problem applies to GWAS, in which a single genetic variation is tested at a 

time, resulting in in all variation that is correlated with the causal variant(s) harboring a significant 

association. As such, within a GWAS locus, it is unclear which of the many associated variants 

are the true causal variant(s).  Furthermore, because most genetic variants are non-coding, even if 
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the causal variants are identified, it is often unclear which genes are regulated by disease-

associated genetic variants. One common bioinformatic approach to address this problem is to first 

identify variants associated with changes in different molecular phenotypes (e.g. gene expression, 

local splicing, RNA editing, DNA methylation status, and protein/metabolite levels) (Aygün et al. 

2021; Breen et al. 2019; Collado-Torres et al. 2019; Cui et al. 2021; Fromer et al. 2016; Gandal et 

al. 2018b; Garrido-Martín et al. 2021; GTEx Consortium et al. 2017; GTEx Consortium 2020; 

Hannon et al. 2016; Jaffe et al. 2018; Li et al. 2019; Lopes et al. 2022; Mittleman et al. 2020; Ng 

et al. 2017; O’Brien et al. 2018; Panyard et al. 2021; Park et al. 2021; Raj et al. 2018; Sng et al. 

2019; Takata et al. 2017; Walker et al. 2019; Wang et al. 2018; Wingo et al. 2021; Xiong et al. 

2021; Yang et al. 2021; Zhang et al. 2020a; Zhang et al. 2020b) and then statistically evaluate their 

relationship to known GWAS signals (Giambartolomei et al. 2014; Gusev et al. 2016; Zhu et al. 

2016). Another common approach is to fine-map the GWAS locus first and then investigate the 

effect of candidate causal variants on molecular phenotypes. We note that this latter approach is 

susceptible to the issues of unobserved genetic variation. That is, most (if not all) fine-mapping 

methods (Schaid et al. 2018) start with an underlying assumption that the causal variant is present 

in association statistics, which may not be the case when unobserved SNP genotypes or structural 

variations—such as deletion, duplication (Scott et al. 2021), multiallelic copy number variation 

(Sekar et al. 2016), inversion (Boettger et al. 2012), translocation, and mobile element insertion 

(Sekar et al. 2016)—reflect the true underlying signals. These issues can be alleviated by 

cataloguing all common genetic variation including structural variation and using dense genotype 

array. Additionally, there are high-throughput experimental methods to identify causal variants 

and their cognate genes (e.g. massively parallel reporter assays), but this approach can also suffer 

from the above issues related to unobserved genetic variation. 
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Figure 1.1: A close look at the APOE locus using GeneticsMakie.jl. GWAS results for 56 complex phenotypes are 
shown, which span autoimmune, endocrine, psychiatric, cardiovascular disorders, and cancer. Index SNPs for 
phenotypes harboring GWAS hits are labeled and corresponding linkage disequilibrium (LD) between other SNPs are 
displayed with the intensity of red color. Purple line denotes genome-wide significance (P = 5 × 10-8), and yellow 
lines denote gene start and end sites for APOE gene. Note that -log10 P values for Alzheimer disease are clamped to 
308, since their P values cannot be represented by the smallest floating-point number. ADHD (attention-
deficit/hyperactivity disorder), ALS (amyotrophic lateral sclerosis), AMD (age-related macular degeneration), BD 
(bipolar disorder), CAD (coronary artery disease), CKD (chronic kidney disease), IBD (inflammatory bowel disease), 
RBC (red blood cell), SCZ (schizophrenia). 
 

Compared to GWAS, WES studies provide a list of robust disease genes, which makes them more 

interpretable and bypass the variant-to-gene problem. However, the prioritized genes from both 

GWAS and WES studies still need to confront the gene-to-function problem, where the precise 

functional role of these genes in disease-relevant tissue/cells and developmental time periods must 

be elucidated. Naturally, this requires an experimental system that adequately recapitulates the 

disease-relevant context, which is difficult for most human diseases, particularly brain-related 

disorders. Due to the rapid pace of gene discovery, for example from WES studies (Kaplanis et al. 

2020; Satterstrom et al. 2020; Singh et al. 2022), this problem has essentially become the rate-

limiting step. A classic example that illustrates the immense difficulty of the gene-to-function 

problem is APOE gene. It has been almost thirty years since the initial discovery of the strong 

association between APOE gene and Alzheimer disease (Figure 1.1), where two copies of the e4 

allele increase the risk of disease by more than ten-fold. However, how the e4 allele drives 

development and progression of Alzheimer disease is very much unknown. There are biologically 

plausible speculations, but the exact mechanisms remain nebulous. 

 

Along these lines, the overarching theme of this dissertation is to tackle the variant-to-gene-to-

function problem—discovering high-confidence risk genes and corresponding biological 

mechanisms that contribute to disease risk—through integration and analysis of large-scale 

genome-wide genotype array and next-generation RNA-seq data. 
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In chapter 2, we describe an open source, high-performance Julia package GeneticsMakie.jl for 

visualizing high-dimensional, multivariate genetic and genomic data (Figure 1.1). The goal of this 

package is to facilitate exploratory data analyses and generation of novel hypotheses. Visual 

inspection of the underlying data is often more powerful than any type of statistics, even more so 

when appropriate statistical and computational methods are not available. A suite of functions 

provided by GeneticsMakie.jl is heavily used in subsequent chapters for data visualization. 

 

In chapter 3, we highlight the potential of leveraging isoform-level expression in prioritizing 

candidate causal genes in GWAS loci. Conventionally, bulk-level RNA-seq analyses have focused 

on gene-level expression (Hernandez et al. 2021) and local splicing patterns (Katz et al. 2010; Li 

et al. 2018b; Shen et al. 2014; Vaquero-Garcia et al. 2016), when isoforms in fact are the 

fundamental biological units that are expressed in cells. This is mainly because the human 

transcriptome annotation is incomplete, and as a result probabilistically assigning multi-mapped 

short-read RNA-seq reads by maximizing the log-likelihood function with the expectation-

maximization (EM) algorithm can yield biased estimates (Bray et al. 2016; Li and Dewey 2011; 

Sterne-Weiler et al. 2018). In the simplest scenario, RNA-seq reads that belong to an “unknown 

isoform” might get erroneously assigned to different isoforms that are present in the input 

transcriptome annotation. This means that with more complete transcriptome annotations, we can 

acquire more accurate estimates of isoform-level expression even with short-read RNA-seq 

(Sterne-Weiler et al. 2018). In chapter 3, despite this important caveat to accurately assessing 

isoform abundances, we partake in an intellectual endeavor to quantify the degree of polygenicity 

and pleiotropy among isoforms by jointly modeling isoform expression of a given gene with 

multivariate variance components linear mixed models. To fit these multivariate variance 
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components models, we share another Julia package that implements the minorization-

maximization (MM) algorithm (Zhou et al. 2019). We partition genetic variances and covariances 

between cis- and trans-SNPs, and hence we estimate heritability attributable to cis- and trans-

SNPs as well as two separate genetic correlation parameters among cis- and trans-SNPs. This is a 

proof-of-concept analysis that lays the groundwork for future with improved transcriptome 

annotations or higher-quality long-read data. Subsequently, we focus on several concrete examples 

of changes in isoform-level expression that drive GWAS signals, highlighting the importance of 

isoform-resolution analyses. The most notable example is XRN2 gene, a specific isoform of which 

colocalizes strongly with one of top two GWAS loci for ASD (Grove et al. 2019).  

 

In chapter 4, we confront the gene-to-function problem, focusing on the C4A gene. The most 

significant GWAS signal for SCZ lies within the MHC region (Trubetskoy et al. 2022), which has 

been shown to partly reflect common but complex structural variation of the C4 locus (Sekar et al. 

2016). Specifically, this locus harbors multiallelic copy number variation, where human C4 

encoded by two genes—C4A and C4B—can exist in different combinations of copy numbers. 

Previous work demonstrated that increased C4A copy number and resulting elevated C4A 

expression is associated with SCZ risk (Sekar et al. 2016). The strength and novelty of the C4A 

association has prompted speculation that C4A and the broader complement system may represent 

a key disease pathway in SCZ pathophysiology. In chapter 4, we directly test this hypothesis by 

characterizing co-expression partners of C4A that are either positively or negatively correlated 

with C4A expression across varying C4A genomic copy numbers, annotating their cell-type and 

pathway contributions as well as their relation to established SCZ genetic risk factors. This type 

of “seeded” network approach can provide an unbiased functional annotation for a poorly 
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understood gene by capturing coherent biological processes that covary across samples (Parikshak 

et al. 2015). We identify a putative transcriptomic signature of C4A-mediated synaptic pruning, 

reinforcing the idea that over-pruning likely contributes to SCZ pathogenesis and/or progression 

(Feinberg 1982; Sekar et al. 2016). More importantly, we find that negatively correlated genes 

with C4A are over-represented for neuronal and synapse-related pathways, which in turn are 

enriched for SCZ genetic signals, suggesting that synaptic pathways are the key biological 

pathways underlying risk for mental illnesses. While both chapters 3 and 4 are broadly concerned 

with understanding the molecular effects of genetic variation, chapter 3 focuses on molecular 

effects on gene and isoform expression, whereas chapter 4 takes one step further and focuses on 

molecular effects of genetic variation on gene co-expression (Lea et al. 2019; van der Wijst et al. 

2018). 

 

Of note, each chapter is self-contained in terms of abbreviations and flow of the material, although 

the references are combined and presented at the end. We also note that no new data have been 

generated as part of this dissertation, since we leverage existing resources, particularly the results 

of a mega-analysis of ~2,000 postmortem human brain samples from PsychENCODE. The 

PsychENCODE consortium has previously aggregated and uniformly processed large numbers of 

samples across different studies to maximize sample size and hence power to detect biological 

signals (Gandal et al. 2018b, Wang et al. 2018). Rigorous quality control (QC) has been previously 

applied to both genetic (SNP array) and transcriptomic (RNA-seq) data to account for batch effects, 

technical artifacts, and other unwanted sources of variation. 
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CHAPTER 2 

GeneticsMakie.jl: A versatile and scalable toolkit for visualizing locus-level  

genetic and genomic data 

 

2.1   Abstract 

With the continued deluge of results from genome-wide association and functional genomic 

studies, it has become increasingly imperative to quickly combine and visualize different layers of 

genetic and genomic data within a given locus to facilitate exploratory and integrative data 

analyses. While several tools have been developed to visualize locus-level genetic results, the 

limited speed, scalability, and flexibility of current approaches remains a significant 

bottleneck. Here, we present a Julia package for high-performance genetics and genomics-related 

data visualization that enables fast, simultaneous plotting of hundreds of association results along 

with multiple relevant genomic annotations. Leveraging the powerful plotting and layout utilities 

from Makie.jl facilitates the customization and extensibility of every component of a plot, enabling 

generation of publication-ready figures. The GeneticsMakie.jl package is open source and 

distributed under the MIT license via GitHub (https://github.com/mmkim1210/GeneticsMakie.jl). 

The GitHub repository contains installation instructions as well as examples and documentation 

for built-in functions. 

 

2.2   Introduction 

The last decade has seen an exponential increase in the volume of large-scale genetic association 

results such as those from genome-wide association studies (GWAS) and phenome-wide 

association studies (PheWAS). The rapid advancements in high-throughput sequencing 
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technologies have further led to an increase in the volume and diversity of molecular genomic 

readouts, such as 3D genome contacts, ChIP-seq, and ATAC-seq. As these efforts continue to scale, 

it is becoming increasingly critical to develop efficient ways for simultaneous visualization and 

integration of multiple such datasets to develop an intuitive understanding of potential underlying 

biological relationships. 

 

Several tools have been developed to visualize genetic association results within a specific locus 

along with corresponding genomic annotations, exemplified by the original “LocusZoom” style 

plots (Pruim et al. 2010). Multiple extensions to these LocusZoom style plots have since been built, 

spanning a wide array of programming languages, including JavaScript, Python, and R  (Boughton 

et al. 2021; Dadaev et al. 2016; Jorgenson et al. 2009; Juliusdottir et al. 2018; Kramer et al. 2022; 

Machiela and Chanock 2015, 2018; Schilder et al. 2021). However, efficient customization and 

extension is limited with these tools, and in general they are not suitable for parallel visualization 

of large numbers of data points. For example, only a certain genomic range can be shown or a 

certain number of genes can be plotted (see Figure 2.1 for more complete comparisons). Certain 

packages have a lot of dependencies which can further lead to decreased flexibility.  

 

Ideally, one would be able to visualize GWAS loci across multiple phenotypes and multiple 

ancestries simultaneously, with layered visualization of molecular QTL results across multiple 

tissues/cells with ease and speed. The Julia programming language is an optimal platform to 

achieve this goal (Bezanson et al. 2017) by providing performance of a low-level language while 

retaining the readability and ease-of-use of a high-level language. Makie.jl (Danisch and 

Krumbiegel 2021) is a Julia plotting package that provides powerful plotting utilities and recipes 
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that can be easily extended to visualize most (if not all) genomic data. Although Makie.jl is one of 

many Julia plotting packages, it is particularly performant, and it is distinguished from other 

plotting packages (and their extensions) in that it comes with advanced layout tools. In fact, using 

Makie.jl’s flexible layout tools, it can be also almost effortless to combine and plot various genetic 

and genomic data with complex layouts. 

 
Figure 2.1: Comparison of functionalities provided by different programming environments for creating 
LocusZoom plots. Shown in parentheses are the names of packages that are suited for a particular function. We note 
that plotting functions not provided by the current version of GeneticsMakie.jl can be easily added in the future. 
 

2.3   Plotting phenome-scale LocusZoom plots 

Here, we present the Julia package GeneticsMakie.jl, which builds upon and extends Makie.jl’s 

plotting tools to generate publication-quality figures visualizing multiple genetic and genomic data 

modalities on different layers, as shown for the GCKR locus (Figure 2.2). To ease this process, 

we provide functions for munging GWAS (or other association) summary statistics, which can 

come in various formats (Bulik-Sullivan et al. 2015; Lyon et al. 2021; Murphy et al. 2021) and 

therefore require harmonization. Once the summary statistics are munged, we recommend storing 

them as memory friendly Arrow files (using Arrow.jl package), since loading hundreds of genetic 
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Figure 2.2: A close look at the known pleiotropic GCKR locus using GeneticsMakie.jl. GWAS results for 41 
complex phenotypes are shown, which span autoimmune, endocrine, psychiatric, cardiovascular disorders, and cancer. 
GCKR locus is one of the most pleiotropic loci in the human genome along with MHC, FADS1, and ABO regions. 
Index SNPs for phenotypes harboring GWAS hits are labeled and corresponding linkage disequilibrium (LD) between 
other SNPs are displayed with the intensity of red color. Purple line denotes genome-wide significance (P = 5 × 10-8), 
and yellow lines denote gene start and end sites for GCKR gene. ADHD (attention-deficit/hyperactivity disorder), 
ALS (amyotrophic lateral sclerosis), AMD (age-related macular degeneration), BD (bipolar disorder), CAD (coronary 
artery disease), CKD (chronic kidney disease), IBD (inflammatory bowel disease), SCZ (schizophrenia). 
 

association results simultaneously is memory intensive and infeasible. Then one can iterate 

through arbitrary genomic regions of interest. For example, GeneticsMakie.jl conveniently 

provides functions for identifying GWAS loci and their closest (protein-coding) genes so that one 

can iterate through either GWAS loci or their cognate genes. To color SNPs by linkage 

disequilibrium (LD) with a designated SNP of interest (e.g. index SNP), any custom reference 

panel can be loaded using SnpArrays.jl package (Zhou et al. 2020) and LD is computed on the fly. 

Additionally, genes and isoforms with constituent exons and introns can be plotted with any 

custom transcriptome annotation file in GTF format. These functionalities form the backbone of 

LocusZoom plots and other functional genomic data can be added as separate layers as needed. It 

is worth nothing that all these functions can be customized or extended very easily with minimal 

loss of performance, which is an inherent strength of the Julia programming language.  

 

To further showcase the power of GeneticsMakie.jl, we share phenome-wide LocusZoom plots for 

239 GWAS loci for schizophrenia (Trubetskoy et al. 2022) which are defined as non-overlapping 

±1 Mb windows around the most significantly associated SNPs. We also share such LocusZoom 

plots for genomic regions known to harbor long-range LD (Anderson et al. 2010), which includes 

the major histocompatibility complex (MHC) region (Figure 2.3). Finally, we share LocusZoom 
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Figure 2.3: A close look at the extended MHC region using GeneticsMakie.jl. GWAS results for 41 complex 
phenotypes are shown. The extended MHC region is ~10 Mb long with essentially every phenotype harboring a 
GWAS hit. Although the entire genes that reside within this region can be added as a separate layer/track using 
GeneticsMakie.jl, that information is omitted due to space constraints. As a sanity check, one can observe that the 
most strongly associated SNP for age-related macular degeneration lies within the class III region near CFB, C2 genes. 
Index SNPs for phenotypes harboring GWAS hits are labeled and corresponding LD between other SNPs are displayed 
with the intensity of red color. Purple line denotes genome-wide significance (P = 5 × 10-8), and yellow lines denote 
gene start and end sites for C4A gene. ADHD (attention-deficit/hyperactivity disorder), ALS (amyotrophic lateral 
sclerosis), AMD (age-related macular degeneration), BD (bipolar disorder), CAD (coronary artery disease), CKD 
(chronic kidney disease), IBD (inflammatory bowel disease), SCZ (schizophrenia). 
 

plots for high-confidence neuropsychiatric risk genes, which loss-of-function is implicated in 

increased risk for schizophrenia (Singh et al. 2022), autism spectrum disorder (Satterstrom et al. 

2020), and developmental delay disorder (Kaplanis et al. 2020). This permits qualitative 

assessment of convergence of common variant and rare variant signals for neurodevelopmental 

and neuropsychiatric disorders. 

 

2.4   Notable findings from LocusZoom plots 

Here, we share some emerging patterns from visual inspection of thousands of genomic regions 

phenome-wide. We first note that the probability of an arbitrary 2 Mb window harboring at least 

one genome-wide significant hit across 50 phenotypes is much higher than the probability of none 

of these phenotypes harboring any significant association. In other words, it is rarely the case that 

we do not detect any significant GWAS signal when looking at an arbitrary 2 Mb genomic window 

across 50 phenotypes. This observation suggests that genetic variation occurring throughout the 

human genome is structured and that it serves a purpose. Second, in a large-scale GWAS that is 

reaching saturation such as the one for height, it is common to observe allelic heterogeneity, where 

multiple non-correlated sets of variants are associated with the same phenotype within a given 

locus. These variants could affect either the same gene or different genes depending on the locus, 

and when affecting the same gene, they presumably play different biological roles. 
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Figure 2.4: A close look at the GRIN2A locus using GeneticsMakie.jl. GWAS results for 41 complex phenotypes 
are shown. Index SNPs for phenotypes harboring GWAS hits are labeled and corresponding LD between other SNPs 
are displayed with the intensity of red color. Purple line denotes genome-wide significance (P = 5 × 10-8), and yellow 
lines denote gene start and end sites for GRIN2A gene. ADHD (attention-deficit/hyperactivity disorder), ALS 
(amyotrophic lateral sclerosis), AMD (age-related macular degeneration), BD (bipolar disorder), CAD (coronary 
artery disease), CKD (chronic kidney disease), IBD (inflammatory bowel disease), SCZ (schizophrenia). 
 

Third, examples of allelic series abound phenome-wide, where different sets of variants of a given 

gene are associated with different phenotypes. One example is GRIN2A gene, which is a high-

confidence schizophrenia risk gene (Singh et al. 2022) that harbors a GWAS signal in the 3’ end 

for schizophrenia and bipolar disorder and other distinct GWAS signals in the 5’ end for cognitive 

performance and educational attainment (Figure 2.4). This type of observation is likely missed by 

PheWAS plots, where association results for only a single variant across multiple phenotypes are 

visualized, and hence missing other GWAS signals nearby. Another example is XPO7 gene, which 

is again a high-confidence schizophrenia risk gene (Singh et al. 2022) that harbors GWAS signals 

for atrial fibrillation and height (Figure 2.5). As can be seen in the XPO7 locus (Figure 2.5), the 

LD blocks oftentimes tightly hug the gene boundaries (McVean et al. 2004). Note that the LD 

blocks can hug more than a single gene and hugging multiple genes is quite frequent. Finally, there 

is huge variability in gene density and LD complexity across different genomic regions, which 

lends to a conclusion that it might be better to focus our initial gene prioritization efforts on the 

low complexity regions first, and then start to tackle more complex regions. 

 

2.5   Cautions in interpreting LocusZoom plots  

Oftentimes, GWAS loci can harbor extremely small P values, in which cases the P values cannot 

be represented by a floating-point number and hence set to zero. GeneticsMakie.jl mitigates this 

issue by clamping P values of such SNPs to the smallest floating-point number, when munging 

summary statistics. Such cases tend to be more common in phenotypes that are reaching saturation 
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Figure 2.5: A close look at the XPO7 locus using GeneticsMakie.jl. GWAS results for 41 complex phenotypes are 
shown. Index SNPs for phenotypes harboring GWAS hits are labeled and corresponding LD between other SNPs are 
displayed with the intensity of red color. Purple line denotes genome-wide significance (P = 5 × 10-8), and yellow 
lines denote gene start and end sites for XPO7 gene. ADHD (attention-deficit/hyperactivity disorder), ALS 
(amyotrophic lateral sclerosis), AMD (age-related macular degeneration), BD (bipolar disorder), CAD (coronary 
artery disease), CKD (chronic kidney disease), IBD (inflammatory bowel disease), SCZ (schizophrenia). 
 

in terms of GWAS discovery such as height and weight. In Figure 2.3, rheumatoid arthritis suffers 

from this case. To fundamentally address this issue, the P values in GWAS summary statistics 

need to be shared in a -log10 scale or it might be more appropriate to plot alternative measures of 

strength of association such as Z scores. Next, the gene names and SNP rsIDs frequently change 

over time, so one needs to be cognizant about using the appropriate gene names or rsIDs when 

drawing LocusZoom plots. For example, within the MHC region, the index SNP in a previous 

iteration of schizophrenia GWAS no longer has the same rsID in the most recent GWAS (Figure 

2.6). As another example, KIZ gene has a different gene name of PLK1S1 in previous versions of 

Gencode annotation (e.g. Gencode v19). To circumvent this issue, SNPs can be queried based on 

genomic positions with or without matching alleles, and the past gene names can be looked up in 

databases such as GeneCards (genecards.org). Lastly, GWAS summary statistics are extremely 

heterogeneous in the number of SNPs that they contain. In the KANSL1 locus, several phenotypes 

such as stroke, height, and weight are missing a substantial proportion of SNPs (Figure 2.7). This 

has important consequences in that the direct comparison of GWAS results across phenotypes may 

be difficult for certain loci. Moreover, in the context of fine-mapping candidate causal SNPs, the 

assumption that the causal variant is present in the summary statistics (whether be it typed or 

imputed) is unrealistic and highly likely to be violated. One way of addressing this issue is to 

utilize and visualize GWAS results from biobank data, which are much more homogeneous in its 

SNP content. However, leveraging biobank data comes with its own limitations such as not having 

enough ascertained cases, in particular for psychiatric disorders. 
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Figure 2.6: MHC association for schizophrenia with increasing sample size. Top, index SNPs for each GWAS are 
labeled and corresponding LD between other SNPs are displayed. Bottom, rs115329265 is used as a reference to 
calculate LD for all GWAS results. Note that rsID for rs115329265 is switched to rs1233578 in later versions of 
dbSNP and hence in subsequent GWAS results as well. Purple line denotes genome-wide significance (P = 5 × 10-8), 
and yellow lines denote gene start and end sites for C4A gene. 
 

2.6   Other usage 

GeneticsMakie.jl further supports efficient generation of Manhattan plots and corresponding QQ 

plots for GWAS summary statistics. In addition, it can be used to visualize gene-level association 

results such as transcriptome-wide association studies (TWAS). GeneticsMakie.jl was written with 
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Figure 2.7: A close look at the KANSL1 locus using GeneticsMakie.jl. GWAS results for 41 complex phenotypes 
are shown. This genomic region is characterized by 1 Mb inversion and other complex structural variation that affects 
multiple genes (Boettger et al. 2012). Index SNPs for phenotypes harboring GWAS hits are labeled and corresponding 
LD between other SNPs are displayed with the intensity of red color. Purple line denotes genome-wide significance 
(P = 5 × 10-8), and yellow lines denote gene start and end sites for KANSL1 gene. ADHD (attention-
deficit/hyperactivity disorder), ALS (amyotrophic lateral sclerosis), AMD (age-related macular degeneration), BD 
(bipolar disorder), CAD (coronary artery disease), CKD (chronic kidney disease), IBD (inflammatory bowel disease), 
SCZ (schizophrenia). 
 

plotting multiple phenotypes in mind such that direct comparison of genetic results across different 

phenotypes is possible. Visualizing LD blocks as well as plotting correlation results as typically 

done for reporting genetic correlation is also possible (Bulik-Sullivan et al. 2015). Other ways of 

reporting genetic correlation results such as forest plots can be easily drawn using existing plotting 

functions provided by Makie.jl. Along the same line, colocalization plots (Liu et al. 2019) or circos 

plots can also be drawn using Makie.jl, which we leave as an exercise to the readers. 

 

2.7   Discussion 

In summary, GeneticsMakie.jl allows scalable and flexible visual display of genetic and genomic 

data within the Julia ecosystem, taking LocusZoom plots to the next level. It produces high-quality, 

publication-ready figures by default. In the future, we envision other data modalities being plotted 

on top of what we already have implemented in GeneticsMakie.jl to provide better interpretation 

of underlying genetic association, hence facilitating the exploratory data analyses (EDA) and 

generation of novel hypotheses. This includes visualizing PheWAS results (Carroll et al. 2014; 

Gagliano Taliun et al. 2020) as well as other molecular readouts (Boix et al. 2021; Granja et al. 

2021). It would be also worthwhile to implement interactive plots as usually provided by web 

browser-based tools (Geihs et al. 2015; Kwong et al. 2021). 
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CHAPTER 3 

Multivariate analysis of genetic influences on brain isoform expression 

uncovers novel psychiatric disease mechanisms 

 

3.1   Abstract 

The intricate molecular mechanisms occurring within the human brain are under tight genetic 

control. Existing work has examined genetic influences mainly at the gene-level and thus the extent 

to which the potentially large number of distinct isoforms derived from each gene is under (shared) 

genetic influences remains unexplored. This is important as isoforms are particularly diverse in 

the human brain and the disruption in their gene regulation may contribute to the pathogenesis of 

psychiatric disorders. Here, we investigate the genetic architecture of brain isoform expression by 

jointly modeling them with multivariate variance components linear mixed models. We find a 

significant proportion of isoforms to be under genetic control with substantial shared genetic 

influences among local (or cis-) genetic variants. Importantly, a significant proportion of brain-

expressed genes are found heritable only at the isoform-level. By integrating these isoform-specific 

genetic signals with psychiatric GWAS signals, we uncover previously hidden psychiatric disease 

mechanisms. In particular, we implicate reduced expression of a specific XRN2 isoform as the 

underlying driver of the strongest GWAS signal for autism spectrum disorder. 

 

3.2   Introduction 

A single gene can give rise to multiple distinct mRNA molecules or isoforms through the process 

of alternative splicing. This mechanism has been recognized as an important factor in generating 

the molecular and functional complexity and diversity in human tissues with ~95% of multi-exonic 
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genes in humans subject to alternative splicing  (Lieberman 2018). Aberrant splicing can have 

substantial effects on human health and is the pathogenic mechanism underlying a number of 

highly debilitating diseases, including spinal muscular atrophy (SMA) and Duchenne muscular 

dystrophy (DMD). Furthermore, alternative splicing and resulting isoform expression is often 

tissue-specific, and the human brain particularly exhibits a high degree of alternative splicing 

(GTEx Consortium 2020; Raj and Blencowe 2015; Südhof 2018) with brain-expressed genes 

tending to being longer and harboring more exons and isoforms than other genes (Choi and An 

2021). Such ubiquitous and intricate nature of alternative splicing in the human brain hints at the 

integral role it plays in normal brain function as well as its potential to cause brain-related 

disorders. 

 

Genome-wide association studies (GWAS) have identified hundreds of genomic regions 

associated with increased risk of neuropsychiatric disorders (Grove et al. 2019; Mullins et al. 2021; 

Trubetskoy et al. 2022), but prioritizing candidate causal genes that are regulated by disease-

associated variants remains a challenge. One common bioinformatic approach is to first identify 

variants associated with changes in different molecular phenotypes such as gene-level expression 

and local splicing patterns (Katz et al. 2010; Li et al. 2018b; Shen et al. 2014; Vaquero-Garcia et 

al. 2016) and then statistically evaluate their relationship to known GWAS signals 

(Giambartolomei et al. 2014; Gusev et al. 2016; Zhu et al. 2016). For example, previous studies 

have identified expression or splicing quantitative trait loci (i.e. eQTL or sQTL) and compared 

them with GWAS signals to identify putative disease genes.  
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Even though isoforms are the fundamental biological units expressed in cells, to date, no large-

scale isoform-level genetic analyses have been undertaken. This critical gap likely reflects the 

difficulty in accurately quantifying isoform-level expression from short-read RNA-seq data. The 

state-of-the-art isoform quantification methods (Bray et al. 2016; Li and Dewey 2011) address this 

issue by maximizing the log-likelihood function of the underlying statistical model with the 

expectation-maximization (EM) algorithm, thereby probabilistically  assigning multi-mapped 

RNA-seq reads. Unfortunately, this approach holds valid only when all isoforms of a given 

transcriptome are known (Sterne-Weiler et al. 2018). For example, when the transcriptome 

annotation is incomplete, multi-mapped RNA-seq reads that belong to an “unknown isoform” 

might get erroneously assigned to different isoforms that are present in the input transcriptome 

annotation, yielding biased estimates. However, this also means that with more complete 

transcriptome annotations, the accuracy of isoform-level expression and subsequently gene-level 

expression will likely increase even with short-read RNA-seq data. 

 

Despite this important limitation in accurately quantifying isoform-level abundances, to begin to 

understand how isoform expression changes in the human brain could mediate psychiatric GWAS 

signals, we leverage the PsychENCODE dataset (Gandal et al. 2018b; Wang et al. 2018) composed 

of 855 unrelated European individuals to assess the genetic architecture of brain gene and isoform 

expression. Although genetic influences on gene expression have been investigated in  peripheral 

blood samples (Lloyd-Jones et al. 2017; Ouwens et al. 2020; Wheeler et al. 2016; Wright et al. 

2014), similar estimates are missing for isoform expression, let alone in brain samples. 

Additionally, while several studies have jointly estimated shared genetic influences pairs of gene 

expression (Liu et al. 2017; Lukowski et al. 2017; Price et al. 2011), similar bivariate or 
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multivariate analyses are missing for isoform expression. Therefore, we quantify the degree of 

polygenicity and pleiotropy for 24,905 gene and 93,293 isoform expression in the human brain. 

We model isoform expression jointly for the first time by using multivariate variance components 

linear mixed models. This contrasts with pairwise bivariate models that are commonly 

implemented in human genetics settings (Bulik-Sullivan et al. 2015; Cross-Disorder Group of the 

Psychiatric Genomics Consortium et al. 2013; Lee et al. 2012; Yang et al. 2011). We find genetic 

variants local to the gene or isoform in question (herein referred to as cis-SNPs) have a large effect 

on expression, whereas distal genetic variants (i.e. trans-SNPs) have individually small effects but 

collectively substantial effect on expression. By partitioning expression covariances among cis- 

and trans-SNPs, and residual effects, we find that there are substantial shared genetic influenced 

among cis-SNPs for isoform expression. Importantly, we find isoform-level analyses to lead to 

discovery of many more genetic signals that were not present at the gene-level. Some of these 

isoform-specific genetic signals were significantly associated with increased risk for brain-related 

disorders such as autism spectrum disorder (ASD). These findings indicate that isoform-resolution 

analyses have the potential to uncover novel disease genes and aid in interpreting GWAS results. 

Overall, we present a comprehensive dissection of genetic influences on brain gene and isoform 

expression and their relation to brain-related disorders.  
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3.3   Results 

3.3.1   Overview of h2SNP and rg analyses for brain gene and isoform expression 

The genetic contribution to phenotypes of interest (i.e. SNP-based heritability or h2SNP) and the 

extent to which they are shared (i.e. genetic correlation or rg) can be quantified through variance 

components linear mixed models. Under the variance components model, when there are no mean 

effects or there is only the intercept term, phenotypic (or expression) variance and covariance can 

be partitioned into the sum of variance components parameters (Methods). The simplest variance 

components model assumes two variance components, one of which captures aggregate genome-

wide genetic effects. However, this model is likely misspecified for either gene or isoform 

expression, since SNPs in the vicinity of a gene (i.e. cis-SNPs) tend to exert stronger effects on its 

expression than distal SNPs (i.e. trans-SNPs). Similarly, the simplest multivariate variance 

components model looks at phenotypes pairwise and assumes two variance components, one of 

which captures the aggregate degree of pleiotropy among genome-wide SNPs. This model is likely 

inadequate for isoform-level expression, since the degree of genetic correlation can differ among 

different sets of SNPs (i.e. cis- and trans-SNPs).  

 

Hence, in the present study, for all variance components models, whether be it univariate, pairwise 

bivariate, or multivariate, we specified three variance components that include cis- and trans-SNP 

effects, and residual effects. This model specification corresponds to an assumption that cis- and 

trans-SNP effects are realized from different distributions of effect sizes. Hereafter, we refer to 

the variance components parameters corresponding to either cis- or trans-SNP effects as genetic 

variances and genetic covariances. We defined cis-SNPs as those within ±1 Mb window of gene 
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start and gene end sites and trans-SNPs as all other SNPs (Figure 3.1). Indeed, other definitions 

are possible, and we tested varying windows as part of sensitivity analyses.  

 

Unfortunately, fitting the most general form of multivariate variance components models with 

more than two phenotypes and more than two variance components still remains a significant 

computational challenge. To address this critical gap, we implemented the minorization-

maximization (MM) algorithm for estimation in variance components linear mixed models (Zhou 

et al. 2019), using the Julia programming language (Bezanson et al. 2017). We refer to the Methods 

for a comprehensive summary of optimization methods for tackling variance components models, 

but we note here that the major advantages of the MM algorithm include numerical stability, fast 

convergence, and graceful adaptation to the positive semidefinite constraint of variance 

components parameters (Zhou et al. 2019). 

 

We present estimates from the MM algorithm and restricted (or residual) maximum likelihood 

(REML) estimation, unless otherwise stated. The standard errors for variance components 

estimates were calculated from the Fisher information matrix (Methods). Inference on variance 

components parameters in the univariate case was done using a variation of the likelihood ratio 

test (LRT) (Molenberghs and Verbeke 2007; Yang et al. 2011). In the multivariate setting, 

inference on the off-diagonal elements of the variance components parameters was done using the 

Wald test (Methods). 

 

We first estimated h2SNP and assessed its significance by fitting the univariate variance components 

model. Since we specified two separate variance components parameters for cis- and trans-SNPs, 
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h2SNP could be decomposed into h2cis and h2trans (i.e. h2SNP = h2cis + h2trans). To avoid estimating too 

many parameters in multivariate models, for each gene, we focused on isoforms with significant 

h2SNP at P < 0.05 in the univariate model. Since we partitioned expression covariances among cis- 

and trans-SNPs, and residual effects, there were two genetic correlation parameters (rg’s) that 

correspond to aggregate degree of pleiotropy among cis-SNPs (rg,cis) and aggregate degree of 

pleiotropy among trans-SNPs (rg,trans) (Figure 3.1). There was also residual correlation (re) which 

captures correlation due to biological and technical factors such as shared gene regulation and 

measurement error (Methods). It is important to note that rg is not the sum of rg,cis and rg,trans, since 

these parameters are on a normalized scale. Finally, we conducted cis-eQTL analyses in parallel 

with the same set of cis-SNPs (Delaneau et al. 2017) to validate h2SNP results as a positive control 

and to link isoform-specific signals with GWAS signals (Figure 3.1). 

 
Figure 3.1: Overview of isoform-centric h2SNP, rg, and cis-eQTL analyses. For a given gene and its constituent 
isoforms, cis-SNPs are defined as SNPs within ±1 Mb window of (collapsed) gene start and end sites, while trans-
SNPs are defined as all other SNPs. Expression variances and covariances are partitioned among cis- and trans-SNPs 
for each gene and its constituent isoforms by fitting univariate, pairwise bivariate, and multivariate variance 
components linear mixed models (Zhou et al. 2019). The same sets of cis-SNPs are used for cis-eQTL analyses 
(Delaneau et al. 2017), results of which are compared to heritability and genetic correlation analyses. This schematic 
figure is based on the real data for ten isoforms belonging to the KLHL24 gene. 
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3.3.2   Polygenicity of brain gene and isoform expression 

We started with 24,905 genes and 93,293 isoforms in PsychENCODE. On average, each gene had 

four isoforms, but some genes had as many as 64 brain-expressed isoforms (Supplementary 

Figure 3.1). Of these, 22,965 genes and 89,926 isoforms had converged h2SNP estimates in the 

univariate model. Median h2SNP estimates were 0.31 and 0.35 for gene and isoform expression, 

respectively (Figure 3.2a), and median h2cis estimates were 0.01 and 0.01 for gene and isoform 

expression, respectively. 2,822 genes had significant h2SNP at Bonferroni-adjusted P value < 0.05, 

while 3,557 genes had at least one isoform which h2SNP was significantly different from zero at 

Bonferroni-adjusted P value < 0.05. With more lenient threshold at P < 0.05, 7,239 and 10,139 

genes were heritable at the gene- and isoform-level, respectively. This increase in the number of 

heritable genes reflects added granularity with isoform-level analyses. It is standard practice when 

fitting linear mixed models to compare REML and maximum likelihood (ML) estimates, since 

REML estimates tend to be less biased, while ML estimates can have lower mean squared error 

(MSE). For the univariate variance components model, we found strong concordance between 

REML and ML estimates (Supplementary Figure 3.2). We note that h2trans and h2SNP estimates 

exhibit larger standard errors than h2cis estimates (Supplementary Figure 3.2), which is in line 

with expectation (Visscher et al. 2014), so we caution the readers in interpreting these h2trans and 

h2SNP estimates. 

 

To make sure that our estimates were robust, we compared gene- and isoform-level h2SNP estimates 

for genes with a single isoform (n = 7,246 genes). We found that they were highly concordant 

(Supplementary Figure 3.3) despite gene- and isoform-level expression data being processed 

separately. When we fit a univariate variance components model with two variance components 
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that only specifies cis-genetic effects, we observed concordant estimates for h2cis (data not shown), 

although the estimates for the two variance components model were slightly inflated over the three 

variance components model, indicating the importance of correct model specification. Finally, we 

ran cis-eQTL analyses for gene- and isoform-level expression using QTLtools and found that most 

(if not all) heritable genes and isoforms harbor a significant eQTL (Supplementary Figure 3.4).  

 

Using QTLtools, we identified 8,981 genes and 17,174 isoforms that harbor cis-eQTL at FDR < 

0.05. The top associated SNP or index eQTL explained about 70% of variance from h2cis 

(Supplementary Figure 3.5). Conditional analyses using QTLtools found that most genes and 

isoforms have a single cis-eQTL signal, suggesting sparse and large genetic effects among cis-

SNPs. We note that the number of independent cis-eQTL will likely increase with an increase in 

sample size, but in the present study, only 25% of genes and 15% of isoforms harbored more than 

one significant eQTL. 

 

Next, we sought to investigate the polygenicity of trans-SNPs by partitioning genetic variances 

among 22 autosomal chromosomes. Since these estimates were noisy due to the limited sample 

size of PsychENCODE, we fit a penalized model with lasso penalty (Kim et al. 2021; Methods), 

which had an effect of shrinking variance components estimates and hence prioritizing the most 

important SNP effects. We found that the chromosome a given gene or isoform belongs to almost 

always had non-zero estimates, indicating substantial cis-SNP effects, while the rest of the 

chromosomes had non-zero estimates in proportion to their number of SNPs, suggesting polygenic 

effects. Altogether, cis-SNP effects were sparse but large, and trans-SNP effects were polygenic. 
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3.3.3   Pleiotropy among brain isoform expression 

Given their genomic proximity and co-regulation, we hypothesized that isoforms are under shared 

genetic influences. To address this question, for genes with multiple heritable isoforms, we jointly 

modeled isoform expression using the multivariate variance components models, which allowed 

us to estimate h2SNP and rg together. Of note, 3,801 genes had at least two isoforms heritable, and 

1,743 genes had at least three isoforms heritable at P < 0.05. This led to modeling from two to as 

many as 23 isoforms jointly. We observed concordant variance components (Figure 3.2b) and 

h2SNP estimates (Figure 3.2c) between the univariate and multivariate models, although we note 

that h2trans and h2SNP estimates were slightly deflated for multivariate models compared to 

univariate models. The distribution of rg,cis was bimodal with the two extremes (Figure 3.2d) and 

a median estimate of 0.31, suggesting that cis-SNPs tend to affect or co-regulate nearby isoforms 

together. The negative rg,cis estimates close to -1 are characteristic of isoform switching events. 

Meanwhile, rg,trans and re estimates followed unimodal distributions with their medians shifted right 

from zero (Figure 3.2d). This makes biological sense in that the distal genetic regulators and other 

biological factors tend to influence transcription of nearby isoforms together. 

 

Next, we sought to understand if fitting pairwise bivariate or multivariate models lead to any 

meaningful differences. This question is relevant for not only molecular readouts such as isoform 

expression, but also for complex traits and diseases in general, because most of the genetic 

correlation estimates are based on fitting pairwise bivariate models (Bulik-Sullivan et al. 2015; 

Cross-Disorder Group of the Psychiatric Genomics Consortium et al. 2013; Lee et al. 2012; Yang 

et al. 2011). As for isoform expression, covariance terms in variance components estimates were 

concordant (Figure 3.2e), while rg estimates were slightly inflated for pairwise bivariate models 
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compared to multivariate models (Figure 3.2f). Further, we observed numerous cases where the 

signs of rg estimates flipped between these two models. Based on these findings and previous 

observations that pairwise bivariate models tend to yield estimates that do not respect the positive 

semidefinite constraint of variance components parameters (de Vlaming et al. 2021), we construe 

that multivariate estimates are generally more accurate than pairwise bivariate estimates.  

 

Previous work demonstrated that genetic correlation mimics phenotypic correlation in the direction 

of effect (Bitner-Mathé and Klaczko 1999; Cheverud 1988; van Rheenen et al. 2019; Searle 1961; 

Sodini et al. 2018; Vattikuti et al. 2012; Waitt and Levin 1998), and thus motivating the use of 

phenotypic correlation as a proxy for genetic correlation. We sought to test this hypothesis for 

isoform expression and we observed that genetic correlation (both rg,cis and rg,trans) generally 

recapitulates phenotypic correlation (or co-expression) in the direction of effect with rg,cis being 

overall larger in magnitude than phenotypic correlation (Figure 3.2g). This is consistent with 

previous studies and our own observation that the isoforms of a given gene are under substantial 

shared genetic influences, particularly among cis-SNPs (Figure 3.2d). 
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Figure 3.2: Comparison of h2SNP and rg estimates from different variance components models. a, Shown are the 
distributions of h2SNP estimates for gene and isoform expression from fitting a univariate variance components model 
(22,965 genes + 89,926 isoforms). Note that h2SNP = h2cis + h2trans. b, Shown are variance components estimates from 
fitting univariate and multivariate variance components models. c, Shown are h2SNP estimates from univariate and 
multivariate variance components models. d, Shown is the distribution of rg estimates from fitting a multivariate 
variance components model. Note that rg,cis captures aggregate degree of pleiotropy among cis-SNPs, while rg,trans 
captures aggregate degree of pleiotropy among trans-SNPs. re captures residual correlation due to (unknown) 
biological and technological factors. The bimodal distribution of rg,cis with two modes in the extremes suggests that 
there are substantial shared genetic influences among cis-SNPs. e, Shown are (co)variance components estimates from 
pairwise bivariate and multivariate variance components models. f, Shown are rg estimates from pairwise bivariate 
and multivariate variance components models. g, Shown are rg estimates from a multivariate variance components 
model and expression (phenotypic) correlation (rp). The same rp values are plotted on the x-axis. All estimates are 
from REML estimation. The red lines are the diagonal lines, while the yellow lines denote the lines from linear 
regression.  
 

3.3.4   ATP9B gene as a case study for h2SNP and rg analyses 

We now focus on ATP9B gene to make our h2SNP and rg results more concrete (Figure 3.3). In 

Gencode v19, ATP9B had 27 annotated isoforms, 17 of which were determined to be brain-

expressed in PsychENCODE based on the criteria TPM > 0.1 in at least 25% of samples (Gandal 

et al. 2018b). Nine of these isoforms were found heritable at P < 0.05 after fitting the univariate 

variance components model (Figure 3.3a). Pairwise bivariate and multivariate models were fit for 
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the nine heritable isoforms, which resulted in concordant h2SNP estimates with similar magnitudes 

(Figure 3.3b). Standard errors for h2SNP estimates were comparable across univariate, pairwise 

bivariate, and multivariate models, while standard errors for h2trans were consistently larger than 

those of h2cis. Because we modeled nine isoforms, we note that there were eight pairwise bivariate 

estimates for each h2SNP parameter (Figure 3.3b). For rg parameter, pairwise bivariate and 

multivariate models yielded estimates that were concordant in direction of effect, but less so in 

magnitude. That is, pairwise bivariate estimates were relatively inflated compared to multivariate 

estimates for both rg,cis and rg,trans (Figure 3.3c). Meanwhile, for both pairwise bivariate and 

multivariate models, rg,cis estimates were substantially larger than rg,trans estimates, suggesting that 

there were shared genetic influences, particularly among cis-SNPs. Not to mention, rg,cis and rg,trans 

estimates were generally larger than re estimates. Further comparison of rg and re estimates with 

rp estimates revealed that phenotypic correlation resembled residual correlation most closely 

(Figure 3.3d), indicating that for this particular gene ATP9B, residual (e.g. biological and 

technological) factors overall exert larger effects than genetic factors (i.e. cis- and trans-SNPs). 

We note that one might be confused by this observation of high rg,cis estimates but little 

resemblance between rg,cis and rp estimates. This is possible because rg and re estimates are on a 

standardized scale, and hence the magnitude of residual variance-covariance can be larger than 

genetic variance-covariance while re is smaller than rg (van Rheenen et al. 2019). Finally, upon 

visual inspection of eQTL results, we found that there were distinct isoform-level eQTL signals 

(Figure 3.3e). For ATP9B, gene-level expression was also heritable and harbored strong eQTL 

signals (Figure 3.3e) unlike in subsequent examples (Figure 3.4). 
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Figure 3.3: ATP9B as an example gene in h2SNP, rg, and cis-eQTL analyses. a, Shown are ATP9B isoforms that are 
present in Gencode v19. Nine isoforms that are found heritable in a univariate variance components model with a 
variation of the likelihood ratio test (LRT) (Molenberghs and Verbeke 2007) are highlighted in red, and eight isoforms 
that are determined to be brain-expressed (Gandal et al. 2018b) but not heritable are highlighted in blue. b, h2cis and 
h2trans estimates are shown in top and bottom rows, respectively. Colors encode estimates from univariate, pairwise 
bivariate, and multivariate variance components models. Because there are nine isoforms that are modeled jointly, 
there are eight pairwise bivariate estimates. All error bars denote ± one standard errors calculated from the Fisher 
information matrix. c, Shown are rg,cis, rg,trans, re estimates from pairwise bivariate and multivariate variance 
components models for ATP9B. The lower triangular elements represent multivariate estimates, while the upper 
triangular elements represent pairwise bivariate estimates. Asterisks denote significance from the Wald test at P < 
0.05. d, Alike panel c, except that the upper triangular elements now represent phenotypic correlations (rp). The same 
rp values are plotted. e, LocusZoom plot for ATP9B gene and isoform expression. Top row shows gene-level results. 
Index SNPs for features passing P = 5 × 10-8 threshold are shown and corresponding LD between other SNPs are 
displayed with the intensity of red color. Purple line denotes significance of P = 5 × 10-8, and yellow lines denote gene 
start and end sites for ATP9B gene. LD is calculated with individuals of European ancestry in the 1000 Genomes 
Project reference panel. 



 

 36 

3.3.5   Isoform-level eQTL signals prioritize candidate causal genes in GWAS loci 

We next sought to understand whether isoform-resolution analyses could help prioritize disease 

genes in GWAS loci. Here, as a proof of concept, we nominate and share four such cases. The first 

is XRN2 gene, which resides in one of two GWAS loci for autism spectrum disorder (ASD) (Grove 

et al. 2019). Of note, the other ASD GWAS locus is a pleiotropic genomic region characterized by 

long-range, complex LD (Anderson et al. 2010; Supplementary Figure 3.7), which complicates 

fine-mapping and gene prioritization efforts. For XRN2, there were three brain-expressed isoforms, 

one of which was significantly heritable (ENST00000430571; h2cis = 0.07, h2trans = 0.46, P = 5.3 × 

10-13). eQTL signal of this isoform colocalized strongly with the ASD GWAS signal (Figure 3.4a; 

Supplementary Figures 3.8-3.9), suggesting that this isoform might be the causal isoform 

underlying the ASD GWAS signal. The second example is SYNE1 gene, a SFARI ASD risk gene, 

of which five isoforms were heritable (Supplementary Figure 3.10). Three of these isoforms 

harbored strong and distinct eQTL signals, one of which colocalized with a well-known bipolar 

disorder (BD) GWAS signal (Mullins et al. 2021; Figure 3.4b; Supplementary Figures 3.11-

3.12). The third example is TBL1XR1 gene, another SFARI gene, for which loss-of-function is 

implicated in increased risk for ASD and developmental delay disorder (DDD) (Kaplanis et al. 

2020; Satterstrom et al. 2020). Two TBL1XR1 isoforms were found heritable, and they harbored 

distinct isoform-level eQTL signals, one of which colocalized with a SCZ GWAS signal (Figure 

3.4c; Supplementary Figures 3.13-3.14). The last example is SYT1 gene, which is another SFARI 

gene and a high-confidence DDD risk gene (Kaplanis et al. 2020). Three SYT1 isoforms were 

found heritable (Supplementary Figure 3.15), two of which colocalized with an educational 

attainment (EA) GWAS signal (Okbay et al. 2022; Figure 3.4d; Supplementary Figures 3.16-

3.17). Given the strong implication of these example genes in neurodevelopmental disorders and  
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Figure 3.4: Isoform-level eQTL signals prioritize candidate causal genes in established GWAS loci. Shown are 
LocusZoom plots for a, ATP9B, b, SYNE1, c, TBL1XR1, and d, SYT1 genes along with several complex phenotypes. 
Select isoforms that are included in LocusZoom plots are highlighted in red, while all other isoforms that are brain-
expressed are highlighted in blue. Due to space constraints, isoforms that are present in Gencode v19 but not found 
brain-expressed are omitted. Index SNPs for features passing P = 5 × 10-8 threshold are shown and corresponding LD 
between other SNPs are displayed with the intensity of red color. Purple line denotes significance of P = 5 × 10-8, and 
yellow lines denote gene start and end sites. LD is calculated with individuals of European ancestry in the 1000 
Genomes Project reference panel. 
 

their proximity to corresponding GWAS signals, these genes are likely the true causal genes 

driving the GWAS signals. Relatively straightforward patterns of linkage disequilibrium (LD) and 

reasonable gene densities also help in reaching this conclusion (Figure 3.4). It is important to note 

that all these example genes were missing gene-level eQTL signals, while harboring isoform-level 

eQTL signals, which highlights the potential of isoform-level analyses. Due to incomplete isoform 

annotations, the isoforms we identify may not be the true causal isoforms driving the GWAS 

signals, but with much more refined and complete transcriptome annotations along with more 

accurate quantifications of isoform-level expression (e.g. from long-read RNA sequencing), we 

hypothesize that we would gain more fine-grained resolution in both gene- and isoform-level 

expression and thereby uncover more disease genes in GWAS loci. 

 

3.3.6   Replication of XRN2 isoform-level eQTL signals in the developing human brain with 

improved isoform annotations 

As another proof of concept, we next sought to definitely fine-map the XRN2 locus for ASD with 

improved isoform annotations. This was partly motivated by its relatively simple gene structure, 

for example, compared to that of SYNE1 (Figures 3.4b). In Gencode v19, there were three 

isoforms for this gene, all of which were determined to be brain-expressed. Upon close inspection 

of XRN2 exons, we observed that the only difference between the ASD-associated isoform 

ENST00000430571 and the canonical isoform ENST00000377191 was skipped exon 2. On the 
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contrary, the difference between the remaining isoform ENST00000539513 and the canonical 

isoform was a different exon 1 and the rest of the sequence was the same. Interestingly, we then 

noticed that all isoforms except the canonical isoform had been removed in subsequent Gencode 

versions past v19 due to low transcript support level. To ensure that our isoform is expressed and 

to improve the transcriptome annotation of the human brain, we combined the latest Gencode v40 

annotation with existing long-read data from six studies (Leung et al. 2021; Palmer et al. 2021; 

Glinos et al. 2021; Methods). The data for these studies were mostly generated from fetal and adult 

human brain samples. To compile a list of high-confidence isoforms, we filtered for isoforms that 

were found in at least two or three different sources. Remarkably, we recovered all three XRN2 

isoforms in Gencode v19 with ENST00000377191, ENST00000430571, and ENST00000539513 

found in six, four, and two studies, respectively (Figure 3.5a). Given that ASD genetic risk factors 

are known to converge in cell-types and biological pathways during brain development (Parikshak 

et al. 2013; Walker et al. 2019; Willsey et al. 2013), we then sought to replicate our adult brain 

isoform-level eQTL findings in fetal brain samples (O’Brien et al. 2018). The previous work 

(O’Brien et al. 2018) performed isoform-level eQTL analyses with Gencode v23 and did not detect 

any significant association for XRN2, presumably because ENST00000377191 is the only isoform 

present in that version of Gencode. In contrast, when we re-quantified fetal brain RNA-seq data, 

using Salmon (Patro et al. 2017) with the updated transcriptome annotation, and repeated isoform-

level cis-eQTL analyses, we observed a strong and specific eQTL signal for ENST00000430571 

(or TCONS_00530677 equivalently) (Figure 3.5b). Further, the index SNP for ASD GWAS result 

(rs910805) and its risk increasing (minor) allele G was associated with reduced expression of 

ENST00000430571 (Figure 3.5c), which direction of effect is consistent with the adult brain 

findings (Figure 3.4a). As another sanity check, we tested all genes within ±0.5 Mb window of  
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Figure 3.5: Fine-mapping of top ASD GWAS locus with isoform-level eQTL signals in an independent fetal 
human brain dataset. a, Shown are high-confidence, credible XRN2 isoforms compiled from six existing long-read 
studies (Leung et al. 2021; Palmer et al. 2021; Glinos et al. 2021). Isoforms are colored with respect to the number of 
studies each isoform is found in. TCONS_00530677, TCONS_00525094, and TCONS_00541475 correspond to 
ENST00000430571, ENST00000377191, and ENST00000539513 in Gencode v19, respectively. The skipped exon 2 
in TCONS_00530677 is shaded in grey. We subsequently filtered for isoforms found in at least three different studies 
and updated the transcriptome accordingly. b, Shown is LocusZoom plot for XRN2 gene and its isoform expression 
based on the updated transcriptome annotation. Isoform expression was quantified in fetal human brain samples 
(O’Brien et al. 2018). c, Index SNP for ASD GWAS (rs910805) and its risk increasing allele G was associated with 
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reduced expression of TCONS_00530677. Note that G is also the minor allele. d, Shown is a heatmap of eQTL signals 
for both gene- and isoform-level expression for features within ±0.5 Mb window of (collapsed) gene start and end 
sites for XRN2 gene. Although eQTL analyses were conducted for a total of 30 genes within this region and all their 
isoforms, we only plot the results of features with minimum P values less than 10-4 for visual clarity. For isoforms, 
their cognate genes are shown in parentheses. LD is calculated with 86 individuals of European ancestry in O’Brien 
et al. 2018, which are the same individuals used for eQTL analyses. These analyses were conducted using the GRCh38 
human genome build, which leads to slightly different genomic coordinates relative to previous figures that were 
based on the hg19 reference genome. 
 

XRN2 and their constituent isoforms from the updated transcriptome annotation and observed that 

no other gene- or isoform-level expression harbored eQTL signals that colocalized with the ASD 

GWAS signal (Figure 3.5d). Altogether, we replicated our adult brain XRN2 findings with more 

complete isoform annotations in an independent fetal brain dataset and confidently narrowed down 

expression changes in ENST00000430571 as the causal signal for the ASD GWAS signal. 

 

The XRN2 isoform ENST00000430571 has exon 2 skipped, which in theory should be uncovered 

by annotation-free methods that detect local splicing patterns (Li et al. 2018b). Indeed, the intron 

that corresponds to the end of exon 1 and the start of exon 3 were shown to harbor a significant 

splicing QTL (sQTL) in previous studies (Aygün et al. 2021; Li et al. 2019; Walker et al. 2019). 

However, several other studies failed to detect a significant sQTL (Raj et al. 2018; GTEx 

Consortium 2020). We suspect that this discrepancy is due to a combination of low level of 

expression for ENST00000430571 and differences in RNA-seq library preparation across studies 

with polyA selection methods being more susceptible to 3’ bias than rRNA depletion methods. 

Indeed, changes in splicing patterns between rs910805 genotypes were subtle (Supplementary 

Figure 3.18), which could be overshadowed by polyA selection methods that induce 3’ bias. 
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3.4   Discussion 

In this study, we leveraged large-scale genetic and transcriptomic datasets from PsychENCODE 

(Gandal et al. 2018b; Wang et al. 2018) to dissect the genetic influences (i.e. h2SNP and rg) on 

human brain gene and isoform expression. We find a substantial proportion of the human brain 

transcriptome to be under genetic control. We find cis-SNP effects to be sparse and large 

individually, while trans-SNP effects to be polygenic and large in aggregate. We jointly model 

isoform expression— for the first time, to the best of our knowledge—with multivariate variance 

components linear mixed models by implementing the MM algorithm (Zhou et al. 2019). We 

conclude that the isoforms of a given gene are under shared genetic influences, particularly among 

cis-SNPs. By comparing pairwise bivariate to multivariate models, we empirically show that 

multivariate models yield more accurate estimates. Finally, several genes are found heritable only 

at the isoform-level and their genetic signals colocalize strongly with GWAS signals, suggesting 

that isoform expression changes might be the underlying drivers of these GWAS signals. One 

notable example is XRN2, a specific isoform of which we prioritize for increasing ASD risk with 

reduced expression. Overall, the present study thoroughly partakes in an intellectual endeavor of 

estimating genetic parameters for brain gene and isoform expression and highlights the utility of 

conducting isoform-resolution analyses. 

 

We first note a major and important caveat of isoform-level analyses: the underlying generative 

model for the state-of-the-art short-read RNA-seq quantification tools (Bray et al. 2016; Li and 

Dewey 2011; Sterne-Weiler et al. 2018) start with an assumption that all expressed isoforms of a 

given transcriptome are known. But the human transcriptome annotation is far from complete, 

especially for the brain, which can result in inaccurate isoform quantifications and hence 

inaccurate downstream analyses. However, this also means that with more complete transcriptome 



 

 43 

annotations, we can obtain more accurate estimates of isoform-level expression even with short-

read RNA-seq data (Sterne-Weiler et al. 2018). Obviously, it is impossible to account for all 

possible (known and unknown) sample- and isoform-specific biases when resolving multi-mapped 

short-read RNA-seq reads and estimating isoform-level expression, but the current methods and 

their statistical models (Bray et al. 2016; Li and Dewey 2011) offer a reasonable starting point. 

With extensive efforts to comprehensively catalog all brain-expressed isoforms (Clark et al. 2020; 

Flaherty et al. 2019; Leung et al. 2021; Palmer et al. 2021; Glinos et al. 2021), we foresee that the 

accuracy of isoform-level quantification will improve for short-read RNA-seq data. 

 

The current study is limited by its sample size. This is evident by relatively large standard errors 

in our estimates, particularly for trans-SNP effects (Visscher et al. 2014). Hence with larger sample 

sizes, we expect to uncover more genes and isoforms that are genetically regulated. We also note 

that the PsychENCODE dataset is an output of mega-analysis of six different studies, which can 

lead to decreased signal-to-noise ratio from heterogeneity and various technical artifacts. We 

envision increased genetic discovery with more homogenous genotype and RNA-seq data that 

have sufficient sample sizes. Moreover, the choice of RNA-seq normalization methods can have 

an impact on h2SNP and rg estimates. The PsychENCODE expression data was processed in log2-

CPM-TMM scale, which better accounts for differences in library composition between samples 

in a large mega-analysis dataset such as PsychENCODE, but complicates the relationship between 

gene and isoform-level expression, including h2SNP estimates (Methods). In the main text, we only 

highlight a handful of genes which isoform expression changes seem to drive GWAS signals such 

as XRN2, SYNE1, TBL1XR1, and SYT1. Whether isoform-level genetic signals are more broadly 

enriched for disease risk and how many additional putative disease genes we can prioritize from 
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isoform-resolution analyses remains to be further investigated (Giambartolomei et al. 2014; Gusev 

et al. 2016; Zhu et al. 2016). 

 

Several important questions remain regarding the genetic architecture of brain gene and isoform 

expression. First, other sources of genetic variance-covariance (e.g. epistasis and dominance) have 

not been explored, as we focus on additive effects from cis- and trans-SNPs. Although we look at 

the degree of pleiotropy among constituent isoforms of a given gene, nearby genes can be 

influenced by the same genetic factors as well (Ribeiro et al. 2021; Wainberg et al. 2019). The 

relationship between effect size and minor allele frequency is not similarly addressed in the present 

study. Finally, sources of variance-covariance in gene and isoform expression are multifactorial 

with many non-genetic factors playing a role. It was not feasible to quantify the effects of such 

factors in this study due to the limited availability of relevant metadata. 

 

The XRN2 gene encodes an RNA-binding protein that possesses 5’-3’ exoribonuclease activity. It 

is known to promote termination of transcription by degrading RNA to resolve R-loops. XRN2 is 

mildly constrained (pLI = 0.35, LOEUF = 0.35), shows peak expression in the fetal brain (Li et al. 

2018a), and is enriched in neuronal cell-types (Polioudakis et al. 2019; Wang et al. 2018). 

Interestingly, visual inspection of phenome-scale LocusZoom plots reveals that there are two 

distinct GWAS signals within the XRN2 locus, one for ASD and the other for blood cell-related 

phenotypes (Supplementary Figure 3.19). Note that the same GWAS signal for ASD reached 

genome-wide significance in the latest GWAS for ADHD. We find that at the gene-level, XRN2 is 

not heritable and does not harbor a significant eQTL, but at the isoform-level, one specific XRN2 

isoform is heritable and harbors a significant eQTL that colocalizes with the ASD GWAS signal. 
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As a result of the skipping of the second exon, this isoform is missing 76 amino acids in the 5’ end 

compared to the canonical XRN2 isoform. Structural and biological consequences of such changes 

in protein sequences need to be studied in the future. We note that the prioritized and canonical 

isoforms belong in different brain WGCNA modules (isoM23 and isoM35; Gandal et al. 2018b), 

which capture known neurobiological pathways and cell-types, potentially suggesting that the two 

isoforms might be involved in different biological pathways in the human brain. 

 

In sum, we advocate for running isoform-level analyses in conjunction with traditional gene-level 

analyses, since regulation of gene expression is far more complex than previously thought and 

isoform-level analyses can provide additional granularity. In comparison to usual sQTL analyses 

(Aygün et al. 2021; Garrido-Martín et al. 2021; GTEx Consortium 2020; Gusev et al. 2018; Li et 

al. 2018b; Li et al. 2019; Raj et al. 2018; Takata et al. 2017; Walker et al. 2019; Zhang et al. 2020a), 

isoform-level analyses are more interpretable in that they can pinpoint specific isoforms that are 

influenced by genetic variation. Furthermore, preliminary analyses in the fetal brain suggest that 

isoform-level eQTL signals recapitulate most, if not all, sQTL signals (data not shown), 

highlighting the informativeness of these analyses despite their limitations as discussed above.  



 

 46 

3.5   Methods 

The PsychENCODE genotype dataset 

Genotype array and frontal cortex RNA-seq data from Freeze 1 and 2 of PsychENCODE were 

obtained from www.doi.org/10.7303/syn12080241. This consisted of uniformly processed data 

from six studies: BipSeq, LIBD_szControl, CMC-HBCC, CommonMind, BrainGVEX, and 

UCLA-ASD (see Table S1 and Fig. S33 in Wang et al. 2018). Genotype data for these individual 

studies were previously harmonized through phasing and imputation with the Haplotype Reference 

Consortium (HRC) reference panel. We focused on 860 unique European individuals with 

matching genotype and frontal cortex RNA-seq data. We started with 5,312,508 HRC imputed 

SNPs and filtered for SNPs with minor allele frequency (MAF) > 0.01, genotype and individual 

missingness rate < 0.05, and Hardy-Weinberg equilibrium P values > 1e-6. Five pairs of 

individuals had classic genetic relationship matrix (GRM) values > 0.05 when using all filtered 

SNPs, while 647 pairs of individuals had GRM values > 0.025. We kept one individual from each 

of five pairs and only SNPs belonging to autosomal chromosomes, resulting in a total of 855 

unrelated European individuals and 4,685,674 SNPs for downstream analyses. 

 

The PsychENCODE RNA-seq dataset 

We used post-QC RNA-seq data that were fully processed, filtered, and normalized (see 

Materials/Methods and Fig. S3 in Gandal et al. 2018b). Of note, RNA-seq reads were previously 

aligned to the hg19 reference genome with STAR 2.4.2a and gene and isoform-level 

quantifications calculated using RSEM v1.2.29. Genes and isoforms were filtered to include those 

with TPM > 0.1 in at least 25% of samples. Gene and isoform expression were separately 

normalized using TMM normalization in edgeR and log2-transformed. The same set of known 
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biological and technical covariates were used for mean or fixed effects, which include age, age2, 

study, sex, diagnosis, RNA integrity number (RIN), RIN2, post-mortem interval (PMI), 24 

sequencing principal components (PCs), and 5 genetic PCs. RNA-seq data was also restricted to 

frontal cortex samples from European individuals as well as genes and isoforms belonging to 

autosomal chromosomes, resulting in a total of 24,905 genes and 93,293 isoforms based on 

Gencode v19 annotations. The same expression data was used for all downstream analyses unless 

otherwise stated. We note that we did not correct for latent factors for the main analyses such as 

hidden covariates with prior (HCP) (Mostafavi et al. 2013), given that we are modeling cis- and 

trans-SNP effects simultaneously and we risk removing trans effects by adjusting for such latent 

factors (Dahl et al. 2019). 

 

Multiple variance components linear mixed model for univariate response 

Given an 𝑛 × 1 response vector 𝐲 and 𝑛 × 𝑝 predictor matrix 𝐗, the variance components linear 

mixed model assumes 𝐲 ∼ 𝑁(𝐗𝛃,𝛀), where 

𝛀 =/𝜎!"
#

!$%

𝐕! , 

and 𝐕%, … , 𝐕# are 𝑚 known positive semidefinite matrices. The parameters of the model include 

mean effects (𝛃) and variance components (𝜎%", … , 𝜎#" ). 𝛀 is assumed to be positive definite. The 

simplest heritability and GWAS model assumes two variance components, where 𝐕% is a kinship 

matrix and 𝐕" = 𝐈. This model is misspecified for gene expression, since SNPs in the vicinity of a 

gene (i.e. cis-SNPs) are known to exert stronger effects on its expression. Therefore, for gene and 

isoform expression, we specified three variance components, where 

𝛀 = 𝜎%"𝐕% + 𝜎""𝐕" + 𝜎&"𝐈, 
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and 𝐕% and 𝐕" are empirical kinship matrices constructed from cis- and all other SNPs (i.e. trans-

SNPs), respectively, such that 𝜎%" and 𝜎"" capture aggregate genetic effects of corresponding sets 

of SNPs. The classic genetic relationship matrix (GRM) was used for both empirical kinship 

matrices, under which %
'(%

E[𝐲)(𝐈 − %
'
𝟏𝟏))𝐲] ≈ '

'(%
(𝜎%" + 𝜎"") + 𝜎&" +

%
'(%

𝛃)𝐗)(𝐈 − %
'
𝟏𝟏))𝐗𝛃. 

This equality is approximate, since the diagonal elements of GRM are not exactly one. When there 

are no mean effects or there is only the intercept term, the overall variance can be decomposed 

into the sum of variance components as above, so it makes natural sense to define SNP-based 

heritability as 

ℎSNP" : =
𝜎%" + 𝜎""

𝜎%" + 𝜎"" + 𝜎&"
. 

 

Multiple variance components linear mixed model for multivariate response 

The multivariate response variance components model assumes an 𝑛 × 𝑑 response matrix 𝐘 with 

vec	𝐘 ∼ 𝑁(vec(𝐗𝐁), 𝛀), where 

𝛀 =/𝚪!

#

!$%

⊗𝐕! . 

vec	𝐘 creates an 𝑛𝑑 × 1 vector from 𝐘 by stacking its columns and ⊗ denotes the Kronecker 

product. The parameters of the model include 𝑝 × 𝑑  mean effects 𝐁  and 𝑑 × 𝑑  variance 

components (𝚪%, … , 𝚪#) that are positive semidefinite. 𝛀 is assumed to be positive definite. The 

univariate response model is subsumed under the multivariate response model when there is only 

a single phenotype. The simplest genetic correlation model looks at phenotypes pairwise and 

assumes two variance components. However, this model is likely inadequate for isoform-level 
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expression, so for constituent isoforms of a given gene, we modeled them jointly and specified 

three variance components such that 

𝛀 = 𝚪%⊗𝐕% + 𝚪"⊗𝐕" + 𝚪& ⊗ 𝐈. 

Corresponding to the univariate response model, 𝚪% captures genetic variances and covariances 

among cis-SNPs, while 𝚪"  captures genetic variances and covariances among trans-SNPs. Let 

(𝐘)⋅+  denote the 𝑗 th column of 𝐘  and (𝐘)+,  the (𝑗, 𝑘) th element of 𝐘 . Then %
'(%

E[(𝐘)⋅+) (𝐈 −

%
'
𝟏𝟏))(𝐘)⋅,] ≈

'
'(%

[(𝚪%)+, + (𝚪")+,] + (𝚪&)+, +
%

'(%
(𝐁)⋅+)𝐗)(𝐈 −

%
'
𝟏𝟏))𝐗(𝐁)⋅,. In other words, 

just as the overall variance could be decomposed into the sum of genetic variances and residual 

variance, the overall covariance can be decomposed into the sum of genetic covariances and 

residual covariance following this model. Genetic correlation is defined as genetic covariance 

divided by the product of square root of corresponding genetic variances. For example, genetic 

correlation for 𝑗, 𝑘th isoforms among cis-SNPs is (𝚪!)"#
0(𝚪!)""(𝚪!)##

. It is worthwhile to note that the 

magnitude of genetic covariance or genetic correlation can differ between cis- and trans-SNPs. 

 

Residual variance could be further decomposed into 𝚪& = 𝚪1 + 𝚪2, where 𝚪1 captures covariance 

from sampling error and measurement error from shared transcript structures among isoforms, 

while 𝚪2  captures covariance arising from other biological factors. In practice, these two are 

indistinguishable from one another, but one could make use of bootstrap samples (i.e. also known 

as technical replicates) from Kallisto (Bray et al. 2016) or Salmon (Patro et al. 2017) to estimate 

𝚪1. Then we can let 𝚪F2 = 𝚪F& − 𝚪F1. 
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Relationship between gene and isoform expression 𝒉SNP𝟐  

Gene-level expression in unit of transcripts per million (TPM) is conventionally assumed to be the 

sum of expression of its constituent isoforms in TPM. Suppose there are 𝑑 isoforms for a given 

gene, then 

𝐘𝟏4 ∼ 𝑁(𝐗𝐁𝟏4 ,/𝟏4)
"

!$%

𝚪!𝟏4𝐕! + 𝟏4)𝚪&𝟏4𝐈). 

As a result, the overall variance in gene expression is approximately equal to 𝟏4)𝚪%𝟏4 + 𝟏4)𝚪"𝟏4 +

𝟏4)𝚪&𝟏4 and gene-level SNP-based heritability becomes 

ℎSNP" : =
𝟏4)𝚪%𝟏4 + 𝟏4)𝚪"𝟏4

𝟏4)𝚪%𝟏4 + 𝟏4)𝚪"𝟏4 + 𝟏4)𝚪&𝟏4
. 

Four scenarios are possible based on the above equation: 1. both gene and isoforms are not 

heritable, 2. both gene and (a subset of) isoforms are heritable, 3. only gene is heritable, 4. only (a 

subset of) isoforms are heritable. 

 

In practice, gene and isoform-level expression are log"-transformed, which leads to the distortion 

of the above-mentioned relationship, where log"(∑ TPM+
4
+$% ) ≥ %

4
∑ log"
4
+$% (𝑑 ⋅ TPM+) =

log"𝑑 +
%
4
∑ log"
4
+$% (TPM+). The PsychENCODE expression data was further processed not in 

TPM but instead in log" -CPM-TMM, which normalization better accounts for differences in 

library composition across samples in a large mega-analysis dataset such as PsychENCODE, but 

complicates the relationship between gene and isoform-level expression. 
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Estimation and inference in variance components model 

We consider both maximum likelihood (ML) and restricted (or residual) maximum likelihood 

(REML) approaches. REML estimates tend to give less biased estimates of variance components, 

while ML estimates can still have smaller mean squared error (MSE) and are useful for the 

likelihood ratio test (LRT). For the univariate response model, the log-likelihood function is 

ℒ(𝛃, 𝛔") = −
𝑛
2 ln(2𝜋) −

1
2 lndet(𝛀) −

1
2 (𝐲 − 𝐗𝛃)

)𝛀(%(𝐲 − 𝐗𝛃), 

where 𝛔" = (𝜎%", … , 𝜎#" ). The corresponding score (gradient) vector is 

𝛻𝛃ℒ = 𝐗)𝛀(%(𝐲 − 𝐗𝛃)
𝜕
𝜕𝜎!"

ℒ = −
1
2

tr(𝛀(%𝐕!) +
1
2
(𝐲 − 𝐗𝛃))𝛀(%𝐕!𝛀(%(𝐲 − 𝐗𝛃).

 

The observed information matrix has elements 

−𝛻𝛃"ℒ = 𝐗)𝛀(%𝐗

−
𝜕

𝜕𝜎!"𝜕𝛃
ℒ = 𝐗)𝛀(%𝐕!𝛀(%(𝐲 − 𝐗𝛃)

−
𝜕

𝜕𝜎!"𝜕𝜎+"
ℒ = −

1
2

tr(𝛀(%𝐕+𝛀(%𝐕!) + (𝐲 − 𝐗𝛃))𝛀(%𝐕+𝛀(%𝐕!𝛀(%(𝐲 − 𝐗𝛃).

 

The expected (Fisher) information matrix has elements 

EQ−𝛻𝛃"ℒR = 𝐗)𝛀(%𝐗

E S−
𝜕

𝜕𝜎!"𝜕𝛃
ℒT = 𝟎

E S−
𝜕

𝜕𝜎!"𝜕𝜎+"
ℒT =

1
2 tr(𝛀(%𝐕+𝛀(%𝐕!).

 

Suppose rank(𝐗) = 𝑟  and columns of 𝐀 ∈ ℝ'×('(7)  span the null space of 𝐗) , then the log-

likelihood function for REML estimation is  

ℒ(𝛔") = −
𝑛 − 𝑟
2

ln(2𝜋) −
1
2

lndet(𝐀)𝛀𝐀) −
1
2
𝐲)𝐀(𝐀)𝛀𝐀)(%𝐀)𝐲

= −
𝑛 − 𝑟
2

ln(2𝜋) −
1
2

lndet(𝐀)𝛀𝐀) −
1
2
𝐲)𝐏𝐲,
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where 𝐏 = 𝛀(% −𝛀(%𝐗(𝐗)𝛀(%𝐗)(𝐗)𝛀(% . Due to the uniqueness of 𝐏 , we can choose the 

columns of 𝐀 to form an orthogonal basis such that 𝐀)𝐀 = 𝐈. The score vector, observed and 

Fisher information matrices for this residual log-likelihood are similar to the above with 𝛀 

replaced by 𝐀)𝛀𝐀, 𝐕! by 𝐀)𝐕!𝐀 for 𝑖 = 1,… ,𝑚, and 𝐲 by 𝐀)𝐲, and hence 

𝜕
𝜕𝜎!"

ℒ = −
1
2 tr(𝐏𝐕!) +

1
2 𝐲

)𝐏𝐕!𝐏𝐲

−
𝜕

𝜕𝜎!"𝜕𝜎+"
ℒ = −

1
2

tr(𝐏𝐕+𝐏𝐕!) + 𝐲)𝐏𝐕+𝐏𝐕!𝐏𝐲

E S−
𝜕

𝜕𝜎!"𝜕𝜎+"
ℒT = 	

1
2 tr(𝐏𝐕+𝐏𝐕!).

 

For the multivariate response model, the log-likelihood function is 

ℒ(𝐁, 𝚪) = −
𝑛𝑑
2

ln(2𝜋) −
1
2

lndet(𝛀) −
1
2

vec(𝐘 − 𝐗𝐁))𝛀(%vec(𝐘 − 𝐗𝐁), 

where 𝚪 = (𝚪%, … , 𝚪#) . To ensure that 𝚪!  is positive semidefinite, we reparametrize with its 

Cholesky factor 𝐋! such that 𝚪! = 𝐋!𝐋!) for 𝑖 = 1,… ,𝑚. Then the score vector is 

Dvec	𝐁ℒ = vec(𝐘 − 𝐗𝐁))𝛀(%(𝐈4 ⊗𝐗)
Dvech	𝐋$ℒ

		=
1
2 [vec(𝛀(%vec(𝐘 − 𝐗𝐁)vec(𝐘 − 𝐗𝐁))𝛀(%) − vec	𝛀(%])

 × (𝐈4 ⊗𝐊'4 ⊗ 𝐈')([(𝐈4% + 𝐊44)(𝐋! ⊗ 𝐈4)] ⊗ vec	𝐕!)𝐃4 ,

 

where 𝐊'4  is the 𝑛𝑑 × 𝑛𝑑 commutation matrix and 𝐃4  the 𝑑" × 4(4;%)
"

 duplication matrix. Let 

𝐖! = (𝐈4 ⊗𝐊'4 ⊗ 𝐈')([(𝐈4% + 𝐊44)(𝐋! ⊗ 𝐈4)] ⊗ vec	𝐕!)𝐃4  and 𝐑  be the 𝑛 × 𝑑  matrix 

satisfying vec	𝐑 = 𝛀(%vec(𝐘 − 𝐗𝐁). Then the observed information matrix has elements 
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−
𝜕"

𝜕(vec	𝐁))𝜕(vec	𝐁) ℒ

  = (𝐈4 ⊗𝐗))𝛀(%(𝐈4 ⊗𝐗)

−
𝜕"

𝜕(vech	𝐋!))𝜕(vec	𝐁)
ℒ

  = (vec	𝐑) ⊗ [(𝐈4 ⊗𝐗))𝛀(%])𝐖!

−
𝜕"

𝜕(vech	𝐋+))𝜕(vech	𝐋!)
ℒ

  = −
1
2
𝐖!

)[𝛀(%⊗𝛀(% − (vec	𝐑vec	𝐑)) ⊗ 𝛀(%

   −𝛀(%⊗ (vec	𝐑vec	𝐑))]𝐖+ .

 

The expected (Fisher) information matrix has elements 

E S−
𝜕"

𝜕(vec	𝐁))𝜕(vec	𝐁)
ℒT = (𝐈4 ⊗𝐗))𝛀(%(𝐈4 ⊗𝐗)

E S−
𝜕"

𝜕(vech	𝐋!))𝜕(vec	𝐁) ℒ
T = 𝟎

E S−
𝜕"

𝜕(vech	𝐋+))𝜕(vech	𝐋!)
ℒT =

1
2𝐖!

)(𝛀(%⊗𝛀(%)𝐖+ .

 

As a sanity check, one can observe that the above Fisher information boils down to the Fisher 

information for the univariate response model when 𝑑 = 1 . For REML estimation in the 

multivariate response model, the log-likelihood function is 

ℒ(𝚪) = −
(𝑛 − 𝑟)𝑑

2 ln(2𝜋) −
1
2 lndet(𝛀b) −

1
2 vec(𝐀)𝐘))𝛀b(%vec(𝐀)𝐘), 

where 𝛀b = ∑ 𝚪!#
!$% ⊗ (𝐀)𝐕!𝐀) . Let 𝐕b! = 𝐀)𝐕!𝐀  and 𝐖b ! = (𝐈4 ⊗𝐊('(7)4 ⊗ 𝐈'(7)([(𝐈4% +

𝐊44)(𝐋! ⊗ 𝐈4)] ⊗ vec	𝐕b!)𝐃4 , then the corresponding score vector, observed and Fisher 

information matrices are 
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Dvech𝐋$ℒ

 =
1
2 vec(𝛀b(%[vec(𝐀)𝐘)vec(𝐀)𝐘)) −𝛀b]𝛀b(%))𝐖b !

−
𝜕"

𝜕(vech𝐋+))𝜕(vech𝐋!)
ℒ

 = −
1
2𝐖
b !)[𝛀b(%⊗𝛀b(% − (𝛀b(%vec(𝐀)𝐘)vec(𝐀)𝐘))𝛀b(%) ⊗ 𝛀b(%

  −𝛀b(%⊗ (𝛀b(%vec(𝐀)𝐘)vec(𝐀)𝐘))𝛀b(%)]𝐖b+

E S−
𝜕"

𝜕(vech𝐋+))𝜕(vech𝐋!)
ℒT

 =
1
2𝐖
b!)(𝛀b(%⊗𝛀b(%)𝐖b+ .

 

Variance components parameters are usually estimated using an iterative algorithm such as Fisher 

scoring and expectation-maximization (EM) algorithms. Fisher scoring uses the expected 

information matrix derived above instead of the observed information matrix in Newton’s method. 

To derive the EM algorithm, we let 𝛀! = 𝚪! ⊗𝐕! , 𝑟! = rank(𝐕!), 𝑠! = rank(𝚪!), and det;(𝚪!) 

denote the pseudo-determinant of 𝚪!  and 𝚪!;  the pseudo-inverse of 𝚪! . Additionally, if we let 

vec	𝐑(<) = 𝛀((<)vec(𝐘 − 𝐗𝐁(<)) , then 𝑄 -function for the EM algorithm in the multivariate 

response model is 

𝑄(𝚪 ∣ 𝐁(<), 𝚪(<))

 =/f−
𝑛𝑑
2 ln(2𝜋) −

𝑟!
2 lndet;(𝚪!) −

𝑠!
2 lndet;(𝐕!)g

#

!$%

  −/
1
2

#

!$%

vec	𝐑(<)&(𝚪!
(<)𝚪!;𝚪!

(<)⊗𝐕!)vec	𝐑(<)

  −/
1
2

#

!$%

tr(𝚪!
(<)𝚪!;⊗𝐕!𝐕!;)

  +/
1
2

#

!$%

tr[(𝚪!
(<)𝚪!;𝚪!

(<)⊗𝐕!)𝛀((<)]
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 =/f−
𝑛𝑑
2 ln(2𝜋) −

𝑟!
2 lndet;(𝚪!) −

𝑠!
2 lndet;(𝐕!)g

#

!$%

  −/
1
2

#

!$%

tr(𝐑(<)&𝐕!𝐑(<)𝚪!
(<)𝚪!;𝚪!

(<)) −/
𝑟!
2

#

!$%

tr(𝚪!
(<)𝚪!;)

  +/
1
2

#

!$%

tr[h𝐈4 ⊗𝟏'))Q(𝟏4𝟏4) ⊗𝐕!) ⊙ 𝛀((<)R(𝐈4 ⊗𝟏')𝚪!
(<)𝚪!;𝚪!

(<)j,

 

where ⊙ denotes the Hadamard (elementwise) product. Hence, the ECM updates are 

vec	𝐁(<)
 = [(𝐈4 ⊗𝐗))𝛀((<)(𝐈4 ⊗𝐗)](%(𝐈4 ⊗𝐗))𝛀((<)vec	𝐘
𝚪!
(<;%)

 =
1
𝑟!
𝚪!
(<)[𝐑(<)&𝐕!𝐑(<) − (𝐈4 ⊗𝟏'))[(𝟏4𝟏4) ⊗𝐕!) ⊙ 𝛀((<)](𝐈4 ⊗𝟏')]𝚪!

(<) + 𝚪!
(<).

 

The EM algorithm is a special case of the minorization-maximization (MM) algorithm. A different 

formulation of the MM algorithm implements a block ascent strategy by alternatively updating 𝛃 

and 𝛔" (Zhou et al. 2019) such that 

𝛃(<) = (𝐗)𝛀((<)𝐗)(%𝐗)𝛀((<)𝐲

𝜎!
"(<;%) = 𝜎!

"(<)k
(𝐲 − 𝐗𝛃(<)))𝛀((<)𝐕!𝛀((<)(𝐲 − 𝐗𝛃(<))

tr(𝛀((<)𝐕!)
.
 

For the multivariate response model, the updates are 

vec	𝐁(<)
 = [(𝐈4 ⊗𝐗))𝛀((<)(𝐈4 ⊗𝐗)](%(𝐈4 ⊗𝐗))𝛀((<)vec	𝐘
𝚪!
(<;%)

 = 𝐋!
((<))[𝐋!

(<))(𝚪!
(<)𝐑(<))𝐕!𝐑(<)𝚪!

(<))𝐋!
(<)]%/"𝐋!

((<),

 

where 𝐋! is the Cholesky factor of (𝐈4 ⊗𝟏'))[(𝟏4𝟏4) ⊗𝐕!) ⊙ 𝛀((<)](𝐈4 ⊗𝟏') and vec	𝐑(<) =

𝛀((<)vec(𝐘 − 𝐗𝐁(<)). As another sanity check, one can see that the above updates become the 

updates for the univariate response model when 𝑑 = 1. For complete derivation, please see Zhou 

et al. 2019 and for REML estimation, the updates are basically of the same form. Compared to 
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Newton’s method or Fisher scoring, the MM algorithm is numerically stable and computationally 

efficient. Although the number of iterations it takes is usually longer than Fisher scoring, the 

computational burden is smaller in each iteration. The MM algorithm also gracefully respects the 

nonnegativity (or positive semidefinite) constraint of variance components. Compared to the EM 

algorithm, the MM updates converge more quickly, since the surrogate function hugs the log-

likelihood function more tightly (Zhou et al. 2019). In the simplest heritability and GWAS model 

where there are two variance components, repeated matrix inversion can be avoided by the 

generalized eigenvalue decomposition of the two kernel matrices (Zhou et al. 2019). When there 

are more than two variance components, a matrix inversion is inevitable in each update, so the 

MM algorithm is not scalable to biobank-level data, and we recommend applying this method for 

datasets of size up to 𝑛 × 𝑑 = 50000. In this study, we take advantage of the aforementioned MM 

algorithm in estimating parameters in variance components models. 

 

Univariate variance components linear mixed models were fit for gene and isoform-level 

expression with the above-mentioned mean effects covariates. We specified three variance 

components, two of which capture cis- and trans-SNP genetic effects. We defined cis-SNPs as 

those within 1 Mb window of gene start and gene end sites, and trans-SNPs as all the other SNPs. 

Based on this definition, 24,754 genes and 93,030 isoform had non-zero cis-SNPs. The same set 

of cis-SNPs was used for a given gene and its constituent isoforms for direct comparison. The 

mean number of cis-SNPs were 3,264 and 3,274 for these genes and isoforms, respectively. 

Variance components parameters were estimated using both ML and REML. The maximum 

number of iterations was set to 3,000. In total, 22,965 genes and 89,926 isoforms had converged 
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estimates. In most (if not all) cases where the estimates failed to converge, ML estimation was the 

issue. 

 

As part of sensitivity analyses, we fit additional univariate models, including three variance 

components models with different definitions of cis-SNP windows (i.e. ±250 kb window and the 

entire chromosome), two variance components model with a single parameter capturing the entire 

genetic effects, and two variance components model with only cis-SNP effects (1 Mb window). In 

theory, model selection that best fits the data using a statistical criterion such as AIC metric is 

possible, but we did not conduct such analyses. 

 

Multivariate variance components linear mixed models were fit for isoform-level expression. We 

specified three variance components, one of which captures cis-SNP genetic effects and the other 

trans effects. We used the same set of cis-SNPs that were used for univariate models. To reduce 

computational burden and the number of variance components parameters that need to be 

estimated, given limited sample size of the PsychENCODE dataset, we ran the multivariate model 

for isoforms with significant heritability estimates in a univariate model at P < 0.05. For isoforms 

that are perfectly correlated in expression, we included only one isoform of the two. Variance 

components parameters were estimated using REML. Note that the MM algorithm is numerically 

stable to fit even the non-heritable isoforms, but we chose not to. Lastly, pairwise bivariate 

variance components models were fit with the same scheme as multivariate models. For each gene 

with at least two heritable isoforms, the model was fit to all pairwise combinations of isoforms. 

 



 

 58 

Inference on variance components parameters was done using a variation of the likelihood ratio 

test (LRT). Here, we tested the null hypothesis that both variance components corresponding to 

cis- and trans-SNP genetic effects are zero by fitting a null model with only a single residual 

variance components parameter. Then we compared the log-likelihood from ML estimation, which 

difference times two is assumed to follow a mixture of 𝜒" distributions (Molenberghs and Verbeke 

2007) as 

2(ℒ − ℒ>) ∼
1
4𝜒>

" +
1
2𝜒%

" +
1
4𝜒"

". 

Standard errors for both genetic variances and genetic covariances were estimated using the 

Fisher information matrix, where  

E S−
𝜕"

𝜕(vech	𝚪+))𝜕(vech	𝚪!)
ℒT =

1
2𝐔!

)(𝛀(%⊗𝛀(%)𝐔+ 

and 𝐔! = (𝐈4 ⊗𝐊'4 ⊗ 𝐈')(𝐈4% ⊗ vec	𝐕!)𝐃4. Note that this form is slightly different from the 

one shown earlier with 𝐔! replaced by 𝐖!. This is because we previously imposed the positive 

semidefinite constraint by reparametrizing 𝚪! = 𝐋!𝐋!). Then by using the vec-transpose operator, 

𝐔! = 𝐈4 ⊗ (𝐊'4 ⊗ 𝐈')(𝐈4 ⊗ vec	𝐕!)𝐃4
= 𝐈4 ⊗ (𝐊'4 ⊗ 𝐈')(𝐈4 ⊗𝐕!

('))𝐃4
= 𝐈4 ⊗ (𝐊'4 ⊗ 𝐈')(𝐈4 ⊗𝐕!)(')𝐃4
= 𝐈4 ⊗ [(𝐈4 ⊗𝐕!)𝐊4'](')𝐃4 .

 

Naïve computation of the Fisher information matrix is not computationally feasible for even 

reasonable 𝑛𝑑, so we must take advantage of the structure inherent in 𝐔! . Standard errors for 

heritability and genetic correlation estimates were subsequently calculated using the delta method. 

Inference on genetic covariance or genetic correlation parameters was done using the Wald test 

for both bivariate and multivariate models. 
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Penalization of variance components 

To investigate the polygenicity of gene and isoform expression, we also fit a univariate, 23 

variance components model with separate SNP effects from each autosome such that 

𝐲 ∼ 𝑁(𝐗𝛃,/𝜎!"
""

!$%

𝐕! + 𝜎&"𝐈). 

However, due to the limited sample size of PsychENCODE, these estimates were noisy and hence 

we instead minimized the lasso-penalized negative log-likelihood function (Kim et al. 2021). One 

of the advantages of the MM algorithm is that it separates the parameters of a problem such that 

penalized estimation is conducive (Kim et al. 2021; Zhai et al. 2018). For each chromosome, we 

focused on heritable genes and isoforms (P < 0.05) that reside in that chromosome, and for these 

features, we calculated the number of times each chromosome appeared in the solution path. 

 

Different starting point for the MM algorithm 

Due to the non-concavity of the log-likelihood, our estimates can get stuck in a local maximum, 

which we can mitigate by trying different starting points. For example, we could use a method of 

moments estimator for variance components parameters (𝚪%, 𝚪", ⋯ , 𝚪#) by minimizing the least 

squares criterion 

min
𝚪!,𝚪%,⋯,𝚪'

∥ vec(𝐘 − 𝐗𝐁s)vec(𝐘 − 𝐗𝐁s)) −𝛀 ∥F", 

where 𝐁s is the ordinary least squares estimate. Suppose 𝐑 = 𝐘 − 𝐗𝐁s and 𝑓 =∥ vec	𝐑	vec	𝐑) −

𝛀 ∥F", then 
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𝑓 = tr([vec	𝐑	vec	𝐑) −𝛀])[vec	𝐑	vec	𝐑) −𝛀])
= tr(vec	𝐑	vec	𝐑)vec	𝐑	vec	𝐑)

 −2vec	𝐑)𝛀vec	𝐑	 +//𝚪!

#

!$%

#

+$%

𝚪+ ⊗𝐕!𝐕+)

= tr(vec	𝐑	vec	𝐑)vec	𝐑	vec	𝐑))

 −2vec	𝐑)𝛀vec	𝐑	 +// tr
#

!$%

#

+$%

(𝚪!𝚪+)tr(𝐕!𝐕+)

 

Then if we differentiate with respect to 𝚪!, 

d𝑓 = −2tr(𝐑)𝐕!𝐑d𝚪!) + 2/ tr
#

+$%

(𝐕!𝐕+)tr(𝚪+d𝚪!)

∴
𝜕
𝜕𝚪!

𝑓 = −2𝐑)𝐕!𝐑 + 2/ tr
#

+$%

(𝐕!𝐕+)𝚪+

→/ tr
#

+$%

(𝐕!𝐕+)𝚪+ = 𝐑)𝐕!𝐑.

 

This leads to 𝑚 system of linear equations, which can be solved easily. The estimator derived here 

boils down to the same estimators previously derived for simpler variance components linear 

mixed models. For example, the following estimator for multivariate, two variance components 

models was used in Ge et al. 2016, which is the same as the above. 

𝚪A =
1

tr(𝐀")𝑛 − tr(𝐀)"
𝐘)[𝑛𝐀 − tr(𝐀)𝐈']𝐘,

𝚪& =
1

tr(𝐀")𝑛 − tr(𝐀)"
𝐘)[tr(𝐀)"𝐈' − tr(𝐀)𝐀]𝐘.

 

The same estimator was previously derived in Ge et al. 2017 and Wu and Sankararaman 2018 for 

univariate, two variance components models, Pazokitoroudi et al. 2020 for univariate, multiple 

variance components models, and Wu et al. 2022 for bivariate, two variance components models. 
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cis-eQTL analyses 

We ran eQTL analyses with the same cis-SNPs used in variance components models for each gene 

and isoform using a linear model as implemented in QTLtools (Delaneau et al. 2017). To account 

for linkage disequilibrium (LD), sample labels were permuted 1,000 times, and each iteration the 

most significantly associated P value was saved. Such a null distribution of P values was then fit 

to a beta distribution and the observed P value was subsequently adjusted to give an empirical P 

value. To account for multiple testing, empirical P values transcriptome-wide were FDR corrected. 

Conditional analyses were further performed through QTLtools to discover independently 

associated eQTL signals for gene and isoform expression. The top associated eQTL SNP for each 

gene and isoform was then used to calculate 𝑅" or variance explained by index SNPs. 

 

Targeted long-read sequencing of XRN2 and isoform quantification in short-read bulk RNA-

seq data 

To better complete the human brain transcriptome annotation, we compiled long-read sequencing 

data of the human brain from six different studies (Leung et al. 2021; Palmer et al. 2021; Glinos 

et al. 2021). This included in-house fetal brain single-cell Iso-Seq data and two adult human brain 

data shared by PacBio (https://www.pacb.com/connect/datasets/). Note that Glinos et al. 2021 

includes data from non-brain tissues, while other studies are strictly from the adult or developing 

human brain. We started with finalized (e.g. filtered and merged) GTF files from each study, 

harmonized genomic coordinates via liftover to the GRCh38 human genome build, ran gffcompare 

v0.12.6 with Gencode v40 as a reference, and filtered for isoforms found in at least two or three 

studies. gffcompare searches for identical matches for internal exons, while it implements fuzzy 

matches for terminal exons, which is appropriate here since these exons can be sequenced to 
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different lengths. We subsequently used the above two filtered/munged GTF files to re-quantify 

O’Brien et al. 2018 fetal brain bulk RNA-seq data using Salmon v1.8.0. Gene-level expression 

was calculated to be the sum of its constituent isoform TPM. To repeat gene-level and isoform-

level eQTL analyses, genotype data for O’Brien et al. 2018 was filtered for typed variants with 

individual call rate (> 0.95), minor allele frequency (> 0.01), Hardy-Weinberg equilibrium (HWE) 

P value (> 10-6) and individuals based on genotype call rate (> 0.9) using PLINK 1.9. Genotype 

data was then phased and imputed with the TOPMed freeze 5 reference panel on the Michigan 

Imputation Server. After removing SNPs with low imputation quality (R2 < 0.3) and subsetting to 

86 individuals of European ancestry, we again filtered SNPs based on individual call rate (> 0.95), 

minor allele frequency (> 0.05), HWE P value (> 10-6) and individuals based on genotype call rate 

(> 0.95). For eQTL analyses, we modeled either TPM or log2TPM with age, sex, 4 genetic PCs, 

RIN, and 21 sequencing PCs from sequencing metrics generated from PicardTools as covariates. 

 

Data availability 

PsychENCODE raw data are available at www.doi.org/10.7303/syn12080241 and processed 

summary-level data are available at Resource.PsychENCODE.org. 

 
Code availability 

The code used to perform bioinformatic analyses are available at 

https://github.com/mmkim1210/isoforms-genetics. All plots were generated programmatically 

using Makie.jl (Danisch and Krumbiegel 2021) and GeneticsMakie.jl (Kim et al. 2022).  

The Julia implementation of the MM algorithm is available at  

https://github.com/Hua-Zhou/MultiResponseVarianceComponentModels.jl.  
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3.6   Supplementary Figures 

 
Supplementary Figure 3.1: Distribution of the number of isoforms for 24,905 genes in PsychENCODE. The 
maximum number of isoforms is 64. 
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Supplementary Figure 3.2: Comparison of REML and ML estimates in the univariate variance components 
models. REML and ML estimates were highly concordant for h2cis and to a lesser degree for h2trans and h2SNP. Error 
bars denote ± one standard errors. Note higher standard errors for h2trans and h2SNP relative to h2cis. Standard errors are 
calculated using the Fisher information matrix and the Delta method. 
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Supplementary Figure 3.3: Comparison of heritability estimates for genes with a single isoform. h2cis estimates 
were highly concordant, while more variability was observed for h2trans and h2SNP estimates.  
 
 
 

 
Supplementary Figure 3.4: Comparison between heritability and cis-eQTL results. Shown is Venn diagram of 
overlap between heritable genes and genes harboring eQTL at FDR < 0.05.  
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Supplementary Figure 3.5: Sparsity of cis-SNP effects. Left, comparison between h2cis estimates and variance 
explained by top associated eQTL SNPs for heritable genes. Right, the same comparison but for heritable isoforms. 
 
  



 

 67 

 

 
Supplementary Figure 3.6: Polygenicity of trans-SNP effects. We fit a univariate penalized variance components 
model with 23 variance components parameters that capture genetic effects from each autosome and lasso penalty. 
Top, shown are results for genes. Bottom, shown are results for isoforms. For each chromosome, we focus on heritable 
genes and isoforms (P < 0.05) that reside in that chromosome, and for these features, we calculate the number of times 
each chromosome appeared in the solution path (Kim et al. 2021). The chromosome the feature is from almost always 
appeared in the solution path (i.e. yellow lines have the highest proportions), while the rest of the chromosomes 
appeared in proportion to their number of SNPs. Chromosomes are listed in descending order of the number of SNPs 
on the x-axis. 
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Supplementary Figure 3.7: A close look at the ASD GWAS locus in chromosome 8. GWAS results for 56 complex 
phenotypes are shown, which span autoimmune, endocrine, psychiatric, cardiovascular disorders, and cancer. Index 
SNPs for phenotypes harboring GWAS hits are labeled and corresponding LD between other SNPs are displayed with 
the intensity of red color. Purple line denotes genome-wide significance (P = 5 × 10-8), and yellow lines denote gene 
start and end sites for SOX7 gene. LD is calculated with individuals of European ancestry in the 1000 Genomes Project 
reference panel. ADHD (attention-deficit/hyperactivity disorder), ALS (amyotrophic lateral sclerosis), AMD (age-
related macular degeneration), BD (bipolar disorder), CAD (coronary artery disease), CKD (chronic kidney disease), 
IBD (inflammatory bowel disease), RBC (red blood cell), SCZ (schizophrenia). 
 
 
 

 
Supplementary Figure 3.8: Colocalization between XRN2 isoform-level eQTL and ASD GWAS results. Left, 
LD is colored with respect to the index SNP for ASD GWAS. Right, LD is colored with respect to the index SNP for 
ENST00000430571 eQTL. LD is calculated with individuals of European ancestry in PsychENCODE. 



 

 70 

 



 

 71 

Supplementary Figure 3.9: Absence of colocalization for all other features within the XRN2 locus for the ASD 
GWAS signal. Shown is LocusZoom of eQTL signals for both gene- and isoform-level expression for all features 
within ±1 Mb window of (collapsed) gene start and end sites for XRN2 gene. Gene names are shown in parentheses. 
LD is colored with respect to the index SNP for ASD GWAS (rs910805). LD is calculated with individuals of 
European ancestry in the 1000 Genomes Project reference panel. 
 
 
 

 
Supplementary Figure 3.10: h2SNP, rg, and cis-eQTL results for SYNE1 gene. Follows the same outline as Figure 
3.3 in the main text. 
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Supplementary Figure 3.11: Colocalization between SYNE1 isoform-level eQTL and BD GWAS results. Left, 
LD is colored with respect to the index SNP for BD GWAS. Right, LD is colored with respect to the index SNP for 
ENST00000466159 eQTL. LD is calculated with individuals of European ancestry in PsychENCODE. 
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Supplementary Figure 3.12: Absence of colocalization for all other features within the SYNE1 locus for the BD 
GWAS signal. Shown is LocusZoom of eQTL signals for both gene- and isoform-level expression for all features 
within ±1 Mb window of (collapsed) gene start and end sites for SYNE1 gene. Gene names are shown in parentheses. 
LD is colored with respect to the index SNP for BD GWAS (rs4331993). LD is calculated with individuals of 
European ancestry in the 1000 Genomes Project reference panel. 

 

 
Supplementary Figure 3.13: Colocalization between TBL1XR1 isoform-level eQTL and SCZ GWAS results. 
Left, LD is colored with respect to the index SNP for SCZ GWAS. Right, LD is colored with respect to the index SNP 
for ENST00000474363 eQTL. LD is calculated with individuals of European ancestry in PsychENCODE. 
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Supplementary Figure 3.14: Absence of colocalization for all other features within the TBL1XR1 locus for the 
SCZ GWAS signal. Shown is LocusZoom of eQTL signals for both gene- and isoform-level expression for all 
features within ±1 Mb window of (collapsed) gene start and end sites for TBL1XR1 gene. Gene names are shown in 
parentheses. LD is colored with respect to the index SNP for SCZ GWAS (rs7609876). LD is calculated with 
individuals of European ancestry in the 1000 Genomes Project reference panel. 
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Supplementary Figure 3.15: h2SNP, rg, and cis-eQTL results for SYT1 gene. Follows the same outline as Figure 
3.3 in the main text. 

 



 

 78 

 
Supplementary Figure 3.16: Colocalization between SYT1 isoform-level eQTL and EA GWAS results. Left, LD 
is colored with respect to the index SNP for EA GWAS. Right, LD is colored with respect to the index SNP for 
corresponding isoform-level eQTL. LD is calculated with individuals of European ancestry in PsychENCODE. 
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Supplementary Figure 3.17: Absence of colocalization for all other features within the SYT1 locus for the EA 
GWAS signal. Shown is LocusZoom of eQTL signals for both gene- and isoform-level expression for all features 
within ±1 Mb window of (collapsed) gene start and end sites for SYT1 gene. Gene names are shown in parentheses. 
LD is colored with respect to the index SNP for EA GWAS (rs1245829). LD is calculated with individuals of European 
ancestry in the 1000 Genomes Project reference panel. 
 

 

 

Supplementary Figure 3.18: Local splicing events in the XRN2 gene body across rs910805 genotypes. Five RNA-
seq samples (O’Brien et al. 2018) with approximately equal library (or read) depths are plotted for each rs910805 
genotype. As above, the increase in the number of 1st to 3rd exon junction reads in the 5’ end with respect to the A 
major allele was subtle. This plot was generated with ggsashimi GitHub repository 
(https://github.com/guigolab/ggsashimi). 
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Supplementary Figure 3.19: A close look at the pleiotropic XRN2 locus. GWAS results for 56 complex phenotypes 
are shown, which span autoimmune, endocrine, psychiatric, cardiovascular disorders, and cancer. Index SNPs for 
phenotypes harboring GWAS hits are labeled and corresponding LD between other SNPs are displayed with the 
intensity of red color. Purple line denotes genome-wide significance (P = 5 × 10-8), and yellow lines denote gene start 
and end sites for XRN2 gene. LD is calculated with individuals of European ancestry in the 1000 Genomes Project 
reference panel. ADHD (attention-deficit/hyperactivity disorder), ALS (amyotrophic lateral sclerosis), AMD (age-
related macular degeneration), BD (bipolar disorder), CAD (coronary artery disease), CKD (chronic kidney disease), 
IBD (inflammatory bowel disease), RBC (red blood cell), SCZ (schizophrenia). 
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CHAPTER 4 

Brain gene co-expression networks link complement signaling with 

convergent synaptic pathology in schizophrenia 

 

4.1   Abstract 

The most significant common variant association for schizophrenia (SCZ) reflects increased 

expression of the complement component 4A (C4A). Yet, it remains unclear how C4A interacts 

with other SCZ risk genes and whether the complement system is more broadly implicated in SCZ 

pathogenesis. Here, we integrate several existing, large-scale genetic and transcriptomic datasets 

to interrogate the functional role of the complement system and C4A in the human brain. 

Surprisingly, we find no significant genetic enrichment among known complement system genes 

for SCZ. Conversely, brain co-expression network analyses using C4A as a seed gene revealed that 

genes down-regulated when C4A expression increased exhibit strong and specific genetic 

enrichment for SCZ risk. This convergent genomic signal reflected neuronal, synaptic processes 

and was sexually dimorphic and most prominent in frontal cortical brain regions. Overall, these 

results indicate that synaptic pathways—rather than the complement system—are the driving force 

conferring SCZ risk. 

 

4.2   Introduction 

SCZ is a highly heritable and disabling neurodevelopmental, psychiatric disorder that affects ~1% 

of the general population (Gandal et al. 2016; Sullivan et al. 2003). Despite its immense 

contribution to public health burden worldwide, there have been no fundamental advances in the 

treatment of SCZ since the 1980s, due in large part to the lack of novel, robust therapeutic targets. 
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The recent success of genome-wide association studies (GWAS) (Pardiñas et al. 2018; 

Schizophrenia Working Group of the Psychiatric Genomics Consortium 2014; Visscher et al. 

2017) brings hope that genetics can provide novel insights into underlying disease mechanisms 

and identify new biological pathways for intervention. However, the transition from GWAS to 

mechanistic insights is challenged by daunting levels of polygenicity and small effect sizes of 

associated variants (Gandal et al. 2016; Hyman 2018). One potential solution has been to 

incorporate GWAS results within the context of known molecular and cellular pathways, 

leveraging prior knowledge that genes do not act in isolation, to identify biological processes 

exhibiting robust genetic convergence (Network and Pathway Analysis Subgroup of Psychiatric 

Genomics Consortium 2015; Parikshak et al. 2013; Willsey et al. 2013). 

 

The strongest and first-identified GWAS signal for SCZ lies in the major histocompatibility 

complex (MHC) region, traditionally known for its role in immunity. This association was 

subsequently shown to reflect in part complex genetic variation within the C4 locus (Sekar et al. 

2016), where human C4 is encoded by two genes—C4A and C4B—which exist in different 

combinations of copy numbers, commonly ranging from zero to four copies of each gene per 

individual. Previous work demonstrated that such multiallelic copy number variation (mCNV) of 

C4 influences gene expression and that elevated expression of C4A, but not C4B, confers SCZ risk 

(Sekar et al. 2016). C4A encodes an early component of the classical complement pathway, a part 

of the innate immune system that serves to clear cellular debris and provide the first line of 

antimicrobial defense. The strength and novelty of this association has prompted speculation that 

C4A—and the complement system more broadly—may represent a novel therapeutic target for 

SCZ. However, apart from C4A, surprisingly little is known about the broader relevance of the 
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complement system in SCZ pathogenesis. Furthermore, it remains unclear whether C4A interacts 

with other established risk factors.  

 

Within the brain, the complement system plays a distinct, non-inflammatory role as a mediator of 

synaptic pruning (Coulthard et al. 2018; Sekar et al. 2016; Stephan et al. 2012), where it tags 

synapses for microglia-dependent elimination. Intriguingly, excessive pruning has long been 

hypothesized in SCZ (Feinberg 1982; Glantz and Lewis 2000; Keshavan et al. 1994) and thought 

to reflect reduced cortical thickness (van Erp et al. 2018) as well as dendritic spine abnormalities 

(MacDonald et al. 2017) observed in SCZ cases. However, these links have yet to be proven or 

tied to a concrete genetic mechanism. Complicating matters, the lack of evolutionary conservation 

of C4A has hindered direct investigation in model organisms. Whereas human stem cell-based 

assays have been used to study aspects of synapse elimination relevant to SCZ (Sellgren et al. 

2019), these systems fail to recapitulate the complete range of neuronal-glial interactions present 

in the human brain, nor have they been shown to reach postnatal levels of maturity (Stein et al. 

2014) when pruning largely occurs. As such, we reasoned that direct assessment in the human 

brain is an important first step to elucidate the specific molecular processes through which C4A 

increases risk for disease. 

 

In this study, we integrated large-scale genetic and brain transcriptomic datasets from 

PsychENCODE (Gandal et al. 2018b; Wang et al. 2018) and GTEx (GTEx Consortium et al. 2017) 

to interrogate the functional role of C4A in the human brain and its relation to other SCZ risk 

factors. We used gene co-expression networks to capture coherent biological processes that covary 

across samples (Parikshak et al. 2015) and hence provide an unbiased functional annotation for 
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C4A. We took a seeded approach, identifying genes whose expression is either positively or 

negatively correlated with C4A expression. Genes positively correlated with C4A captured the 

known complement components as well as astrocyte, microglial, and NFkB signaling pathways, 

but they showed no genetic enrichment for SCZ. In contrast, genes negatively correlated with C4A 

reflected neuronal and synaptic pathways and exhibited strong convergent enrichment for SCZ 

genetic risk. Altogether, these results highlight the human brain-specific function of C4A and 

provide evidence for complex interplay between C4A and synaptic processes to confer SCZ risk.  

 

4.3   Results 

4.3.1   Limited evidence for SCZ genetic association within the known complement system 

We first sought to determine whether genetic evidence supported SCZ association for any of the 

57 genes annotated within the complement system (Methods). As GWAS loci are difficult to 

definitively map to causal genes, we assessed several lines of evidence supporting a putative 

association (Figure 4.1a). We first evaluated the proximity of these genes to SCZ GWAS loci 

(Pardiñas et al. 2018; Schizophrenia Working Group of the Psychiatric Genomics Consortium 

2014). Outside the MHC region, nine genes were within 1 Mb of genome-wide significant loci 

(Figure 4.1a). Of these, three were not considered brain-expressed in PsychENCODE (Gandal et 

al. 2018b), and several were within the same genomic region. Three genes—CD46, CSMD1, and 

CLU—were the closest gene to their respective index single-nucleotide polymorphism (SNP). 

CSMD1 and CD46 had support from Hi-C interactions in fetal and adult brain (Mah and Won, 

2019), and CLU and CD46 had additional support from summary-data-based Mendelian 

randomization (SMR) (Zhu et al. 2016) at FDR < 0.05 and PHEIDI > 0.05 (Figure 4.1a). Altogether, 
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these findings provided a moderate level of evidence supporting SCZ association for up to four 

genes within the complement system. 

 

To determine whether this putative association of four complement system genes is greater than 

expected by chance, and to test whether the complement system as a whole is broadly enriched for 

SCZ GWAS signals, we used stratified LD score regression (sLDSC) (Finucane et al. 2018). We 

found no significant enrichment of SNP-based heritability in SCZ, despite testing a range of 

window sizes around each gene (Figure 4.1b). A similar lack of enrichment was found using a 

second method, MAGMA (de Leeuw et al. 2015) (Figure 4.1c). To account for the small number 

of genes in this pathway, we further expanded the annotation to include high-confidence protein-

protein interactions (PPIs) (Li et al. 2017) for the complement system and still observed no 

significant enrichment. Finally, we tested whether any of these gene sets were enriched for genes 

implicated in SCZ through rare variant association studies, again finding no evidence of 

enrichment (Figure 4.1d). These included genes within the eight recurrent CNV regions associated 

with SCZ (Marshall et al. 2017) and genes harboring an excess of rare, likely gene-disrupting 

(LGD) variants in SCZ probands (Genovese et al. 2016; Singh et al. 2022). Together, these results 

do not support broad genetic association for SCZ within the complement system. 
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Figure 4.1: Limited evidence for broad genetic enrichment within the complement system. a, The complement 
system is composed of 57 genes which function together in a cascade to clear cellular debris, opsonize microbes, and 
mediate synaptic pruning. Here, we plot genes annotated within the complement system and corresponding evidence 
for SCZ genetic association, based on proximity to GWAS loci, support from SMR (summary-data-based Mendelian 
randomization), and Hi-C interactions in fetal and adult brain. No enrichment of SCZ GWAS signals was observed 
for the complement system or an expanded annotation including high-confidence PPIs (InWeb3; n = 545 genes), using 
b, sLDSC or c, MAGMA with varying window sizes around each gene. All error bars denote standard errors of 
estimates of heritability enrichment, where the enrichment is defined as the proportion of SNP-based heritability over 
proportion of SNPs. Dashed lines denote enrichment of one and significance at P < 0.05. d, The complement system 
did not show enrichment for SCZ risk genes from rare variant studies. 
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Figure 4.2: C4A-seeded co-expression networks capture convergent genetic risk for SCZ. a, Overview of the 
generation of C4A-seeded networks, using control samples from PsychENCODE and GTEx. Node size is proportional 
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to |correlation| with C4A expression and edges represent gene-gene co-expression. Shown in red labels are SCZ risk 
genes from SCHEMA reaching FDR or exome-wide (bold) significance. b, C4A-positive and C4A-negative genes 
showed enrichment for distinct GWAS signals, where C4A-negative, but not C4A-positive, genes showed enrichment 
for SNP-based heritability in SCZ. Results replicated in the independent GTEx dataset. The black line denotes 
Bonferroni-adjusted P value at 0.05/80. ADHD (attention-deficit/hyperactivity disorder), ALS (amyotrophic lateral 
sclerosis), ALZ (Alzheimer disease), AMD (age-related macular degeneration), ASD (autism spectrum disorder), BD 
(bipolar disorder), EA (educational attainment), IBD (inflammatory bowel disease), MDD (major depressive 
disorder), MS (multiple sclerosis), OCD (obsessive-compulsive disorder), PD (Parkinson’s disease), RA (rheumatoid 
arthritis), SLE (systemic lupus erythematosus), SWB (subjective well-being), T2D (type 2 diabetes). 
 

4.3.2   Seeded co-expression networks provide brain-specific functional annotation for C4A  

The previous analyses relied on known gene set annotations which are often incomplete, especially 

for biological processes occurring in the human brain (Koopmans et al. 2019). Additionally, the 

non-inflammatory role of C4A—and the complement system—as an effector of synaptic pruning 

may not be fully reflected in these annotations. To address this, we turned to gene co-expression 

network analyses, which can provide an orthogonal, unbiased functional annotation based on 

correlated gene expression patterns across samples (Parikshak et al. 2015). Here, we took a 

‘seeded’ approach, identifying genes either positively or negatively correlated with C4A 

expression and using such ‘guilt-by-association’ to draw biological inference. 

 

We first constructed a C4A-seeded co-expression network from frontal cortex samples of non-

psychiatric controls in PsychENCODE (Gandal et al. 2018b; Wang et al. 2018) (Figure 4.2a). To 

mitigate the potential influence of germline mCNV, we imputed C4 structural alleles from nearby 

SNP genotypes (Sekar et al. 2016) in individuals of European ancestry (N = 812; Supplementary 

Figure 4.1). We then selected control samples with high-quality imputation results carrying the 

most common diploid C4A copy number (CN = 2, N = 145; Supplementary Figure 4.2; Methods). 

Using these samples, we identified 3,021 genes co-expressed with C4A at FDR < 0.05. These 

included 1,869 positively co-expressed genes as well as 1,152 negatively co-expressed genes 

(herein referred to as “C4A-positive” and “C4A-negative” genes). As a positive control, the known 
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complement signaling pathway was overrepresented among C4A-positive genes (odds ratio (OR) 

= 17.2, P < 10-16), but not C4A-negative genes (OR = 0, P = 1). In addition, C4A-positive genes 

were most strongly enriched for “immune effector process” and “response to cytokine” Gene 

Ontology (GO) terms (FDR’s < 10-41), whereas C4A-negative genes were most strongly enriched 

for “anterograde trans-synaptic signaling” and “chemical synaptic transmission” GO terms (FDR’s 

< 10-12). 

 

For replication, we generated an analogous seeded network in the independent GTEx dataset 

(GTEx Consortium et al. 2017). We observed highly significant overlap among C4A-positive and 

C4A-negative genes across these datasets (OR’s = 19 and 16, P’s < 10-16, respectively; 

Supplementary Figure 4.3). As an additional control, we generated 10,000 seeded networks using 

randomly sampled seed genes (Methods). The original C4A-positive network showed greater 

enrichment for the known complement components than 98% of all other networks generated in 

this manner (Supplementary Figure 4.4a). 

 

4.3.3   C4A-negative, but not C4A-positive, genes show strong SCZ genetic enrichment  

We next sought to determine whether this network-based, brain-specific functional annotation for 

C4A better captured convergent genetic risk for SCZ. Consistent with our results above, we did 

not find enrichment of SNP-based heritability for SCZ among C4A-positive genes (Figure 4.2b). 

These were instead associated with autoimmune and chronic inflammatory conditions, such as 

inflammatory bowel disease (IBD), rheumatoid arthritis (RA), and lupus (SLE). In contrast, C4A-

negative genes were strongly enriched for SNP-based heritability in SCZ and in several other 

neuropsychiatric disorders, to a lesser degree (Figure 4.2b). These findings were replicated in 
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GTEx, so we subsequently combined both networks from PsychENCODE and GTEx to yield a 

high-confidence seeded network (Methods). Notably, in this network, among the ten genes 

harboring rare loss-of-function variants in SCZ probands at exome-wide significance (Singh et al. 

2022), eight were negatively co-expressed with C4A at FDR < 0.1 (TRIO, GRIN2A, XPO7, CUL1, 

GRIA3, HERC1, RB1CC1, and CACNA1G), suggesting convergence of polygenic effects across 

the allelic spectrum (logistic regression, FDR = 9.0 × 10-4; Figure 4.2a and Supplementary 

Figure 4.4b; Methods). The remaining two genes (SETD1A, SP4) show peak expression in the 

fetal brain, suggesting alternative developmental mechanisms (Li et al. 2018a). 

 

4.3.4   Network expansion with increased C4A copy number 

C4A expression is likely influenced by both genetic and environmental factors. In PsychENCODE, 

we observed that ~22% of the variation in C4A expression can be explained by germline mCNV 

(Supplementary Figure 4.5). However, it remains unknown what effect these genetic factors have 

on C4A co-expression. To address this, we stratified all PsychENCODE samples with high-quality 

imputation results (N = 552) into three CNV groups based on diploid C4A copy number of < 2, 2, 

and > 2, representing a gradient of increasing genetic risk for SCZ (Supplementary Figure 4.2; 

Methods). We then generated C4A-seeded networks for each group, using bootstrap to match the 

sample size (100 samples + 10,000 iterations). Remarkably, we observed a large increase in 

network size as C4A copy number increased (Figure 4.3a). With increased genomic copy number, 

the number of both C4A-positive and C4A-negative genes was substantially larger, indicating that 

C4A is more strongly connected and likely plays more of a driver role (Supplementary Figure 

4.6). This network expansion was preserved across a range of correlation and FDR thresholds 

(Figure 4.3b) and was not associated with technical factors such as postmortem interval (PMI) or 
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RIN. Furthermore, this network expansion was not observed for C4B-seeded networks, 

demonstrating the specificity of this association (Figure 4.3c and Supplementary Figure 4.7; 

Methods). Together, these results indicate that genotypes conferring increased risk for SCZ are 

associated with strong and specific remodeling of brain gene co-expression networks, providing 

novel means to characterize the molecular processes underlying SCZ risk. 

 

 

Figure 4.3: Strong network expansion with increased C4A copy number. a, C4A-seeded co-expression networks 
were generated following stratification of the PsychENCODE dataset by imputed C4A copy number. A substantial 
network expansion was observed with increased C4A copy number. Each network was generated via bootstrap (100 
samples, 10,000 iterations) for robustness. Edges represent Pearson’s correlation coefficient (PCC) > 0.5 and edge 
weights represent the strength of the correlation. Probable SCZ risk genes implicated by common or rare variant 
studies are highlighted in bold. b, C4A-seeded networks expanded in size regardless of the applied PCC threshold. c, 
The nonlinear network expansion was specific to C4A as a seed gene, and not observed for C4B. Two genes, GRIA3 
and MVP, are shown to illustrate this specificity. Shown are fitted linear models with 95% confidence bands. 
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4.3.5   Seeded networks capture C4A-associated pathways and cell-types 

We then sought to understand the biological pathways and cell-types captured by these C4A-

seeded networks. As above, C4A-positive and C4A-negative genes were enriched for distinct GO 

terms: C4A-positive genes for inflammatory pathways and C4A-negative genes for synapse-related 

pathways (Supplementary Figure 4.8). Overlap of these genes with a set of previously 

characterized brain co-expression modules (Gandal et al. 2018b) confirmed their broad 

relationship to inflammatory and synaptic function, respectively (Figure 4.4a and Supplementary 

Figure 4.9).  

 

Notably, C4A-positive genes were strongly enriched for co-expression modules previously shown 

to represent astrocyte, microglial, and NFkB signaling pathway genes. These included several 

canonical markers of astrocytes (e.g. GFAP, AQP4) and microglia (e.g. FCGR3A, TYROBP); 

critical components of the NFkB signaling pathway (e.g. NFKB2, IL4R, RELA); as well as known 

members of the classical complement pathway (e.g. C1R, C1S). Conversely, C4A-negative genes 

showed enrichment for multiple neuronal and synaptic processes, stronger at higher copy number 

(Figure 4.4a and Supplementary Figure 4.9). These included several glutamate receptors (e.g. 

GRIN2A, GRM1, GRIA3), calcium regulators (e.g. CAMK4, CAMTA1, CAMKK2), and potassium 

channels (e.g. KCNK1, KCNQ5, KCNIP3). Other notable C4A-negative genes included the 

serotonin receptor HTR2A, the dopamine receptor DRD1, the major neuronal splicing regulator 

NOVA1, and the zinc transporter SLC39A10. These C4A-positive and C4A-negative genes were 

also strongly enriched for genes up- and down-regulated in SCZ brain (Collado-Torres et al. 2019; 

Gandal et al. 2018b), respectively (Figure 4.4b), further connecting C4A expression to 

dysregulated molecular pathways in SCZ brain. 
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Figure 4.4: C4A-seeded co-expression networks identify transcriptional correlates of synaptic pruning. a, The 
top C4A-positive and C4A-negative genes showed distinct enrichments for neurobiological pathways and cell-types. 
With increasing C4A copy number, C4A-positive genes showed greater enrichment for microglia and NFkB pathways, 
while C4A-negative genes showed greater enrichment for neuron- and synapse-related modules. OR = odds ratio from 
two-sided Fisher’s exact test. Asterisks denote significance at Bonferroni-corrected P < 0.05. b, C4A-positive and 
C4A-negative genes were enriched for differentially expressed genes in SCZ brain from PsychENCODE and LIBD 
BrainSeq (Collado-Torres et al. 2019). Asterisks denote significance from Fisher’s exact test at nominal P < 0.05. c, 
C4A-positive and C4A-negative genes were expressed in distinct cell-types. Expression-weighted cell-type enrichment 
(EWCE) was performed using mouse cortical/subcortical single-cell RNA-seq data (Skene et al. 2018) and human 
cortical single-nucleus RNA-seq data (Wang et al. 2018). Asterisks denote significance at FDR < 0.05. C4A-positive 
and C4A-negative genes are shown in red and blue, respectively. 
 

To further refine the cell-types associated with these networks, we evaluated whether C4A-positive 

and C4A-negative genes were expressed in specific cell-types defined by single-cell/nucleus RNA-

seq (Skene and Grant 2016). At low copy number (i.e. CN < 2), C4A-positive genes showed the 
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strongest association in astrocytes, but with subsequently higher copy number, they became more 

broadly associated with microglia and endothelial cells (Figure 4.4c). In contrast, C4A-negative 

genes were most highly expressed in five neuronal cell-types—cortical interneurons, pyramidal 

(hippocampus CA1), pyramidal (somatosensory cortex), medium spiny neurons, and striatal 

interneurons. Remarkably, these cell-types have all been previously shown to be enriched for SCZ 

GWAS signals (Skene et al. 2018) (Figure 4.4c and Supplementary Figure 4.10). These findings 

were replicated across multiple other single-cell/nucleus RNA-seq datasets from either mouse or 

human brain (Figure 4.4c and Supplementary Figure 4.11). Taken together, these results indicate 

that higher C4A copy number is associated with brain co-expression changes leading to down-

regulation of neuronal, synaptic genes—a putative transcriptomic signature of synaptic pruning.  

 

4.3.6   Sexual dimorphism of C4A effects in the human brain 

SCZ is more prevalent in males compared with females, and recent work has identified larger 

effect sizes of C4 alleles in males compared with females (Kamitaki et al. 2020). Although no sex 

differences in C4A expression were reported in GTEx, protein levels of C3 and C4 were elevated 

in cerebrospinal fluid (CSF) from males (Kamitaki et al. 2020). Here, in the independent 

PsychENCODE dataset, we replicated these findings, finding no sex differences in C4A expression 

in the brain (Figure 4.5a). Notably, however, we observed a significant increase in C4A network 

size in males, consistent with larger effects in males (Figure 4.5b; Methods). Females showed a 

reduction in the number of both C4A-positive and C4A-negative genes, indicating broad sex-

specific effects (Supplementary Figure 4.12a).  
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Figure 4.5: Sex differences in C4A co-expression highlight male-accentuated effects on mTOR signaling and 
neuronal cilia. a, Overall expression levels of C4A did not differ between sexes in PsychENCODE (N = 98 and 37 
for male and female samples, respectively; two-sided Welch’s t-test, P = 0.42). b, Conversely, C4A co-expression 
network size was much larger in males (N = 98, 37 for males and females; permutation test, P < 10-5). Bootstrapped 
distributions were generated to match for sample size between sexes. c, To identify biological pathways and cell-types 
reflected by these sex-specific C4A co-expression patterns, we performed gene set enrichment analysis (GSEA). Genes 
were ranked by their C4A co-expression magnitude in male and female networks separately, and resulting enrichments 
were compared. Left, sex-concordant terms included positively associated complement activation. Right, sex-
discordant terms included lipid and mTOR signaling genes as well as excitatory neuron markers and cilia-related 
pathways. Enrichment differences that were significant when compared to a null distribution of 10,000 random seed 
genes are highlighted in red. All boxplots show median and interquartile range (IQR) with whiskers denoting 1.5 × 
IQR.  
 

To more systematically interrogate the neurobiological mechanisms contributing to these sexually 

dimorphic effects, we next sought to identify the specific pathways and cell-types that were 

differentially co-expressed with C4A across sexes. To do so, we ranked genes by the magnitude of 

C4A co-expression in males and females separately, performed gene set enrichment analysis 

(GSEA) on this ranked list, and compared the resulting enrichments (Methods). To ensure the 

robustness of these results, we further generated an empirical null distribution of enrichment 

differences between males and females with 10,000 randomly sampled seed genes 

(Supplementary Figure 4.13; Methods). As a positive control, complement-related pathways 

showed concordant enrichment among C4A-positive genes across both sexes (Figure 4.5c). In 

contrast, several pathways and cell-types showed significantly discordant effects across sexes. In 

males, C4A-positive genes were strongly associated with lipid and mTOR signaling genes, while 
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these enrichments were absent in females or even showed the opposite direction of effect. Likewise, 

strong sex-discordant effects were observed for upper layer excitatory neuron markers (Lake et al. 

2018) (e.g. Ex1 and Ex2) and several cilia-related pathways among C4A-negative genes. Together, 

these results suggest that heightened effects of C4A in males may reflect distinct activation of 

mTOR signaling and disruption of primary cilia-related processes in excitatory neurons.  

 

4.3.7   Spatiotemporal profiles highlight frontal cortex-predominant C4A effects  

Many biological processes occurring in the human brain are region-specific and developmentally 

regulated (Neniskyte and Gross 2017).  To determine whether certain regions are more susceptible 

to the effects of C4A, we next compared C4A network size across eight distinct brain regions from 

GTEx. Remarkably, we observed large regional differences with frontal and anterior cingulate 

cortex exhibiting the greatest degree of C4A co-expression (Figure 4.6a; Methods). This result 

was robust to different threshold metrics (Supplementary Figure 4.12b) and was not driven by 

differences in expression level across brain regions (Figure 4.6b). These results indicate that 

frontal cortical regions may be particularly vulnerable to C4A-mediated neurobiological processes. 

 

We next leveraged the fact that PsychENCODE contains the largest collection of uniformly 

processed brain samples from individuals with SCZ (N = 531) as well as neurotypical controls (N 

= 895) across the adult lifespan. To confer temporal resolution, we stratified samples into 

overlapping time windows, while controlling for C4A copy number, sex, and diagnosis (Methods). 

C4A co-expression reached its peak in the 50- to 80-year-old period for neurotypical controls. In 

comparison, a leftward age shift in co-expression peak was observed in SCZ cases (Figure 4.6c 
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and Supplementary Figure 4.12c). These findings are distinct from the temporal trajectory of 

C4A expression, which increased monotonically with age (Figure 4.6d). 

Figure 4.6: Spatiotemporal patterns of C4A co-expression implicate frontal cortical regions and early adult 
timepoints in SCZ. a, C4A exhibited the greatest degree of co-expression in frontal cortical brain areas. The plot 
shows the bootstrapped distribution of the number of co-expressed genes with C4A at FDR < 0.05 across eight different 
brain regions in GTEx (N = 36, 38, 45, 47, 39, 45, 39, and 45 for frontal cortex, anterior cingulate cortex, hippocampus, 
caudate, putamen, cerebellum, hypothalamus, and nucleus accumbens, respectively ). All pairwise comparisons were 
statistically significant (permutation test, P < 10-5). b, In contrast with co-expression patterns, frontal cortical regions 
did not show greater C4A expression. The plot shows C4A expression in GTEx samples used for the bootstrap (N = 
36, 38, 45, 47, 39, 45, 39, and 45 for frontal cortex, anterior cingulate cortex, hippocampus, caudate, putamen, 
cerebellum, hypothalamus, and nucleus accumbens, respectively). c, The temporal peak of C4A co-expression was 
earlier in SCZ cases (30- to 60-year-old window) compared to controls (50- to 80-year-old window). Bootstrapped 
distributions were generated across overlapping time windows using samples from PsychENCODE (N = 30, 42, 57, 
68, 47, and 32 for control samples in each age bin; N = 36, 46, 55, 45, and 47 for SCZ samples). Asterisks denote 
significant differences in the network size between SCZ cases and controls (permutation test, P < 10-5). d, In contrast 
with co-expression patterns, C4A showed monotonically increasing expression across age in frontal cortex samples 
from PsychENCODE (N = 1730). Shown is a LOESS smooth curve with 95% confidence bands. All boxplots show 
median and interquartile range (IQR) with whiskers denoting 1.5 × IQR. 
 

4.3.8   Genetic and environmental drivers of C4A expression alteration in SCZ brain 

Finally, we sought to determine the extent to which C4 mCNV could explain C4A expression 

alteration in SCZ brain, using frontal cortex RNA-seq data from individuals with SCZ (N = 531) 

and non-psychiatric controls (N = 895). As previously reported (Gandal et al. 2018b), we identified 



 

 100 

strong up-regulation of C4A consistent with previous independent literature (Gandal et al. 2018a; 

Sekar et al. 2016). When we adjusted for C4A copy number, we continued to observe differential 

expression for C4A (Figure 4.7a and Supplementary Figure 4.14), suggesting that additional 

factors contribute to overexpression of C4A in SCZ (Sekar et al. 2016; Sellgren et al. 2019). Similar 

results were observed for several other complement system genes previously found (Gandal et al. 

2018b) to be differentially expressed in SCZ (Figure 4.7a and Supplementary Figure 4.14).  

 

To assess the specificity of these findings for SCZ, we performed an analogous analysis using 

frontal cortex data from individuals with bipolar disorder (BD; N = 217) and the same controls 

(Supplementary Figure 4.14). Despite strong genetic and transcriptomic correlations between 

SCZ and BD (Gandal et al. 2018a), C4A expression was not altered in BD, and the broader 

complement system exhibited minimal differential expression. This notable contrast between SCZ 

and BD remained when downsampling to the same number of subjects, indicating that the SCZ-

BD differences were not driven by statistical power (Supplementary Figure 4.14). Additionally, 

brain samples from individuals with SCZ and BD were of similar quality with respect to PMI or 

RIN (Welch’s t-test, P > 0.5) and many of the same neuroleptic medications are used to treat both 

conditions, indicating that these factors are unlikely to be key drivers of observed differences.  

 

This additional component of C4A up-regulation in SCZ brain could be driven by other genetic 

factors (e.g. trans-eQTL) and environmental influences, or may simply represent a consequence 

of disease. To begin to identify potential non-genetic contributors, we turned to GTEx which has 

systematically compiled donor medical history. In addition to C4A copy number, we identified 

several covariates that were significantly associated with increased brain C4A expression—namely, 
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age, smoking status, and a history of liver disease (Figure 4.7b). This is notable given the 

substantially elevated rate of smoking in individuals with SCZ and some epidemiological evidence 

that smoking may increase risk for SCZ (Kendler et al. 2015). Altogether, these data support 

potential convergent effects of genetic (i.e. C4 variation) and environmental (i.e. smoking) risk 

factors in disease risk. 

 

Figure 4.7: Broad, bimodal differential expression of genes within the classical complement pathway in 
postmortem brains from individuals with SCZ. a, Differential gene expression (DGE) in SCZ is shown for genes 
within the classical complement pathway. Early components were mostly up-regulated, whereas late components were 
down-regulated in SCZ. Genes are colored by DGE t-statistic on the left and t-statistic obtained while adjusting for 
C4A copy number on the right. Asterisks denote significance at FDR < 0.1. Bottom, cell-type specificity of 
complement receptors was calculated using snRNA-seq data from Hodge et al. 2019. Oligo (oligodendrocyte), OPC 
(oligodendrocyte progenitor cell), Astro (astrocyte), Endo (endothelial), Micro (microglia), GABA (interneuron), Ex 
(excitatory neuron). b, In GTEx, we characterized the effect of documented medical comorbidities and other relevant 
biological covariates on brain C4A expression. In addition to C4A copy number, age, smoking, and a history of liver 
disease showed significant positive associations (likelihood ratio test). 
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4.4   Discussion 

In this study, we integrated multiple existing, large-scale genetic and transcriptomic datasets to 

interrogate the functional role of C4A—and the complement system more broadly—in the human 

brain and their relation to underlying core pathophysiology of SCZ. We find no evidence that the 

known complement system and its protein interactors are enriched for SCZ genetic signals. Using 

C4A-seeded co-expression networks, we again find that genes positively co-expressed with C4A 

show no appreciable enrichment for SCZ risk, whereas genes negatively co-expressed with C4A 

exhibit strong and specific enrichment for SCZ risk, identifying for the first time, a convergent 

genomic signal. These C4A-positive genes were associated with glial and inflammatory pathways, 

while C4A-negative genes were associated with neuronal and synaptic pathways, which is 

consistent with their interpretation as putative molecular correlates of synaptic pruning (Coulthard 

et al. 2018; MacDonald et al. 2017; Sekar et al. 2016; Sellgren et al. 2019; Stephan et al. 2012). 

Additionally, the seeded networks expanded in size with increased genomic copy number and 

exhibited sexual dimorphism and spatiotemporal specificity, suggesting potential vulnerability of 

the adult male frontal cortex to the effects of C4A. Overall, these results highlight convergence of 

SCZ polygenic effects and indicate that synaptic processes—rather than the complement system—

are the driving force conferring SCZ risk (Figure 4.8). 

 

We first observed that SCZ genetic risk is not enriched among complement system genes—despite 

testing multiple classes of genetic variation (i.e. GWAS, rare variants, large recurrent CNVs), 

using multiple statistical methods with varying genomic window sizes, and expanding the 

annotation to include high-confidence PPIs or C4A-positive genes. This was surprising given the 

integral role of C4A in the complement system (Stephan et al. 2012), the strength of the C4A 
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Figure 4.8: A model of the functional role of C4A in SCZ pathogenesis. mCNV of C4 genes as well non-genetic 
factors such as smoking influence C4A expression. C4A expression is positively associated with glial and 
inflammatory processes and negatively associated with neuronal and synaptic processes, which in turn are enriched 
for SCZ genetic signals. Shown are the five most common C4 structure alleles segregating in the general population 
(Sekar et al. 2016; Kamitaki et al. 2020): BS, haplotype carrying the short form of C4B; AL, haplotype carrying the 
long form of C4A; AL-BS, haplotype carrying one copy of the long form of C4A and one copy of the short form 
of C4B; AL-BL, haplotype carrying one copy of the long form of C4A and one copy of the long form of C4B; AL-
AL, haplotype carrying two copies of the long form of C4A. 
 

association (Sekar et al. 2016), and the high level of polygenicity observed in SCZ (Pardiñas et al. 

2018; Schizophrenia Working Group of the Psychiatric Genomics Consortium 2014). This does, 

however, comport with recent East Asian SCZ GWAS results (Lam et al. 2019), which did not 

observe an MHC association (Supplementary Figure 4.15), despite a genetic correlation of 0.98 

with European GWAS results. These findings imply that dysregulation of the complement system 

is neither necessary nor sufficient for the development of SCZ and fit with an alternative 

explanation that C4A may be more associated with the progression or severity of illness. Moreover, 

the logical extension of these observations predicts that drugs targeting this pathway are unlikely 

to be a panacea. 
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How then does C4A impart risk for SCZ? We reasoned that the functional role of C4A in the human 

brain may not be well captured by manually curated gene sets and pathway annotations, which are 

often incomplete. To address this, we leveraged co-expression networks and subsequent guilt-by-

association to generate an unbiased, human brain-relevant functional annotation for C4A. As 

expected, C4A-positive genes capture the known complement system and reflect inflammatory 

processes, including astrocyte, microglial, and NFkB signaling pathways—all of which are 

dysregulated in SCZ brain (Gandal et al. 2018b), but none of which show an appreciable 

enrichment for genetic risk. Similar changes have been observed in other neuropsychiatric 

disorders (Gandal et al. 2018a; Gandal et al. 2018b) and may reflect environmental influences (e.g. 

smoking) or represent the consequence of a more proximal (e.g. synaptic) pathology. In contrast, 

C4A-negative genes reflect dysregulated neuronal and synaptic pathways, exhibiting strong 

genetic enrichment for SCZ. Notably, the network size and connectivity expand substantially with 

increased C4A copy number, indicating that C4A plays more of a driver role with increasing 

genetic risk for SCZ. 

 

We find that C4A CNV is strongly associated with—but does not fully explain—the observed C4A 

up-regulation in SCZ brain. Similarly, although our results suggest that C4A-mediated SCZ risk 

occurs through synaptic mechanisms rather than complement signaling, several additional 

complement system genes exhibit differential expression in SCZ, even when controlling for C4A 

copy number. This included up-regulation of early components (e.g. C1R, C1S), but also 

significant down-regulation of downstream components including known complement receptors 

(e.g. ITGAM, ITGAX, C3AR1, C5AR2). We hypothesize that some of these observed 

transcriptomic alterations reflect a compensatory response to synaptic dysfunction, as C4A up-
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regulation has also been observed in ASD brain (Gandal et al. 2018b), despite not being considered 

a genetic risk factor. Additionally, we find that brain C4A expression is elevated with smoking. 

Intriguingly, smoking is associated with diffuse, dose-dependent cortical thinning (Karama et al. 

2015) and there is epidemiological evidence supporting a directional effect of smoking on SCZ 

risk (Kendler et al. 2015), although confounding factors (e.g. cannabis use) likely also contribute 

(Jones et al. 2018). Overall, these results highlight a neurobiological mechanism through which 

genetic and environmental risk factors converge and contribute to SCZ risk. 

  

Finally, comparison of the network size provided additional insights into the spatiotemporal and 

sex-specific effects of C4A. Males showed greater degree of C4A co-expression, despite 

comparable C4A expression level across sexes, which is consistent with larger effects of C4A 

alleles in males relative to females (Kamitaki et al. 2020). Compared to its female counterpart, 

male C4A-seeded network showed greater activation of lipid and mTOR signaling pathways as 

well as greater disruption of cilia-related processes and excitatory neuron markers (Figure 4.8). 

Both mTOR signaling and primary cilia are known to be critical regulators of neurogenesis and 

synaptic pruning (Foerster et al. 2017; Han et al. 2008; Tang et al. 2014; Wang et al. 2015). Primary 

cilia, the solitary microtubule-based structure present in most neurons, glia, and their progenitors, 

also serve as a major hub for signaling pathways, including mTOR, Sonic hedgehog (Shh), Wnt, 

autophagy, and ubiquitin-proteasome system (Park et al. 2019; Wiegering et al. 2019), several of 

which have intriguing links to SCZ and other neurodevelopmental disorders (Marley and von 

Zastrow 2012; Singh et al. 2022) that warrant further experimental investigation. Together, these 

findings highlight several potential mechanisms underlying greater disease vulnerability in males. 
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Importantly, these observations are only evident through analysis of co-expression, rather than 

expression patterns alone, demonstrating the importance of this approach.  

 

We note that several important questions remain for C4A in relation to SCZ. Although we identify 

C4A-specific interaction with C4A copy number variation, C4A and C4B co-expression partners 

are highly similar in general, making it difficult to disambiguate the effects of C4A from C4B. 

Further work in characterizing the biochemical properties of C4 proteins in the human brain is 

necessary to fully elucidate the mechanism through which C4A exerts larger effects in SCZ. In 

addition, human cell-types that express C4A in either physiology or pathophysiology remain 

unclear, due to dropout events in single-cell/nucleus RNA-seq. Although C4A-positive genes at 

low copy number (i.e. CN < 2) show strong and selective enrichment for astrocytes, and expression 

specificity of C4A is similarly the highest in astrocytes according to various mouse single-cell 

RNA-seq datasets (Skene et al. 2018), this remains to be validated for humans in future studies. 

Spatiotemporal resolution is also relatively restricted in this study, since the scope of our analyses 

is inherently limited to the range of available functional genomic resources, and our use of post-

mortem samples is limited to retrospective analyses which cannot directly infer causal 

relationships. As larger and more diverse samples spanning all SCZ-relevant regions (e.g. striatum) 

and developmental time points become available, spatiotemporal specificity will undoubtedly 

improve. Likewise, as human brain genomic panels increase in size, we anticipate additional 

insights to be gained from distal genetic regulators (e.g. trans-eQTL) of C4A. Lastly, model 

systems capable of fully recapitulating postnatal neuronal-glial interactions in the human frontal 

cortex will be necessary for experimental validation (Forsingdal et al. 2018). 
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4.5   Methods 

Annotation of the complement system and its protein-protein interactions (PPIs) 

We compiled a list of 57 genes annotated as part of the complement system in the HUGO Gene 

Nomenclature Committee (HGNC) database (genenames.org). Of these, 42 genes were found to 

be expressed in the PsychENCODE RNA-seq data, after filtering for genes with TPM > 0.1 in at 

least 25% of samples (Gandal et al. 2018b). Those missing (n = 15 genes) due to low expression 

included: C6, C8A, C8B, C9, FCN2, MBL2, C4BPA, C4BPB, CFHR1, CFHR2, CFHR3, CFHR4, 

CFHR5, F2, and CR2. The annotation was also expanded by including high-confidence human 

PPIs for the complement system with score > 0.7 from the InWeb3 database (Li et al. 2017) (n = 

57 + 488 = 545 genes). 

 

Evaluation of the complement system for common variant association 

We evaluated the proximity of the complement components to genome-wide significant loci from 

two recent SCZ GWAS studies (Pardiñas et al. 2018; Schizophrenia Working Group of the 

Psychiatric Genomics Consortium 2014). Four genes (C4A, C4B, CFB, C2) were within the MHC 

region. Excluding the MHC, nine genes (SERPING1, CLU, CSMD1, CD46, CD55, CR1, CR2, 

C4BPA, and F2) were within 1 Mb of GWAS loci. These genes were subsequently assessed for 

Hi-C interactions in fetal and adult brain (Mah and Won 2019) and significance from SMR method 

using brain and whole blood eQTL panels from PsychENCODE (Gandal et al. 2018b) and 

eQTLGen (Võsa et al. 2018), respectively.  
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Stratified LD score regression (sLDSC) 

sLDSC (Finucane et al. 2018) was used to test whether a gene set of interest is enriched for SNP-

based heritability in various phenotypes (i.e. diseases and traits) (Bentham et al. 2015; Demontis 

et al. 2019; Fritsche et al. 2016; Grove et al. 2019; International Multiple Sclerosis Genetics 

Consortium (IMSGC) et al. 2013; International Obsessive Compulsive Disorder Foundation 

Genetics Collaborative (IOCDF-GC) and OCD Collaborative Genetics Association Studies 

(OCGAS) 2018; Jansen et al. 2019; Lee et al. 2018; Liu et al. 2015; Morris et al. 2012; Nalls et al. 

2014; Okada et al. 2014; Okbay et al. 2016; Pardiñas et al. 2018; van Rheenen et al. 2016; Savage 

et al. 2018; Stahl et al. 2019; Willer et al. 2013; Wray et al. 2018). SNPs were assigned to custom 

gene categories if they fell within ±100 kb of a gene in the set. For the complement system, we 

also tested a range of window sizes (±1 kb to 1 Mb) around each gene. These categories were then 

added to a full baseline model that includes 53 functional categories capturing a broad set of 

genomic annotations. The MHC region was excluded from all analyses by default. Enrichment 

was calculated as the proportion of SNP-based heritability accounted for by each category divided 

by the proportion of total SNPs within the category. Significance was assessed using a block 

jackknife procedure, followed by Bonferroni correction for the number of phenotypes tested. 

 

MAGMA  

MAGMA (v1.07b) (de Leeuw et al. 2015) was used to assess enrichment of SCZ GWAS signals 

among the complement system. An annotation step was first performed in which SNPs in a 

specified window surrounding each gene were combined, while accounting for linkage 

disequilibrium (LD). We tested several window sizes ranging from ±0 kb to 100 kb, and LD was 

calculated using the European panel of 1000 Genomes Project (1000 Genomes Project Consortium 
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et al. 2015). A competitive gene-level analysis was then performed using the complement 

annotations defined above. 

 

Rare variant enrichment 

Multiple gene sets were assessed for enrichment of rare variants identified in neurodevelopmental 

disorders. These included: ~100 high-confidence autism spectrum disorder (ASD) risk genes 

harboring rare de novo variants (Sanders et al. 2015; Satterstrom et al. 2020); ASD risk genes 

harboring rare inherited variants (Ruzzo et al. 2019); genes harboring recurrent de novo copy 

number variants associated with ASD or SCZ, as compiled in Gandal et al. 2018a; genes harboring 

an excess of rare exonic variants in ASD, SCZ, intellectual disability (ID), developmental delay 

(DD), and epilepsy as assessed through an extended version of transmission and de novo 

association test (extTADA) (Nguyen et al. 2017); syndromic and highly ranked (1 and 2) genes 

from SFARI Gene database; genes harboring disruptive and damaging ultra-rare variants (dURVs) 

in SCZ cases (Genovese et al. 2016); a list of high-confidence epilepsy risk genes compiled in 

Polioudakis et al. 2019; risk genes for developmental disorders harboring rare de novo variants 

(Kaplanis et al. 2020); and ten high-confidence SCZ risk genes harboring rare exonic variants as 

identified by the SCHEMA consortium (Singh et al. 2022). For binary gene sets, statistical 

enrichment analyses were performed using logistic regression, correcting for linear- and log-

transformed gene and transcript lengths as well as GC content. For dURVs, a two-step procedure 

was used, first creating a logistic regression model for genes harboring dURVs in controls and a 

second model for those affected in cases and controls. The likelihood ratio test (LRT) was used to 

assess significance. For SCHEMA and extTADA gene sets, the -log10-transformed P value and 
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posterior-probability (PP) was used, respectively, in place of binary annotation in the above 

logistic regression model. All results were FDR-corrected for multiple comparisons. 

 

The PsychENCODE brain genomic dataset 

Genotype array and frontal cortex RNA-seq data from Freeze 1 and 2 of PsychENCODE were 

obtained from www.doi.org/10.7303/syn12080241. This consisted of uniformly processed data 

from six studies: BipSeq, LIBD_szControl, CMC-HBCC, CommonMind, BrainGVEX, and 

UCLA-ASD (see Table S1 and Fig. S33 in Wang et al. 2018). Genotype data for these individual 

studies were previously harmonized (Wang et al. 2018) through phasing and imputation with the 

Haplotype Reference Consortium (HRC) reference panel. We used post-QC RNA-seq data that 

were fully processed, filtered, normalized, and extensively corrected for all known biological and 

technical covariates except the diagnosis status (see Materials/Methods and Fig. S3 in Gandal et 

al. 2018b). Of note, RNA-seq reads were previously aligned to the hg19 reference genome with 

STAR 2.4.2a and gene-level quantifications calculated using RSEM v1.2.29. Genes were filtered 

to include those with TPM > 0.1 in at least 25% of samples (Gandal et al. 2018b). The same 

expression data were used for all downstream analyses unless otherwise stated. 

 

Imputation of C4 structural alleles 

The C4 locus harbors multiallelic CNV (mCNV), where human C4 encoded by two genes (C4A 

and C4B) can exist in different combinations of copy numbers. The two paralogs are defined based 

on four amino acid residues in exon 26, which are thought to alter binding affinities for distinct 

molecular targets. Either paralog can also contain a human endogenous retroviral insertion (C4-

HERV) in intron 9, which then functions as an enhancer and preferentially increases C4A 
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expression (Sekar et al. 2016). Recent work demonstrated that four common C4 structural alleles 

are in linkage disequilibrium (LD) with nearby SNPs (Sekar et al. 2016) and hence can be 

accurately imputed from genotype array data. Accordingly, we imputed C4 alleles in six studies 

from PsychENCODE separately using Beagle4.1 (Browning and Browning 2016) with a custom 

HapMap3 CEU reference panel as described (Sekar et al. 2016). We began with the HRC imputed 

genotype data and filtered for high-quality SNPs by setting the R2 > 0.3 threshold from Minimac3. 

We restricted imputation and subsequent downstream analyses to samples of European ancestry 

(N = 812) based on genetic principal component analysis with the 1000 Genomes Project reference 

panel (1000 Genomes Project Consortium et al. 2015) (Supplementary Figure 4.1). There was 

an overlap of individuals in BipSeq, LIBD_szControl, and CMC_HBCC studies, which used 

different SNP genotyping platforms (see Table S1 in Wang et al. 2018). For these duplicate 

samples, the concordance rate of imputation result was high (N = 181/204 individuals with 

matching result), indicating robust C4 imputation. For 23 samples with discordant imputation 

results, we calculated the average dosage for each structural allele and inferred the most likely pair 

of structural alleles.  

 

Effect of C4 variation on gene expression 

Inferred copy number of C4 structural elements (C4A, C4B, and C4-HERV) based on the imputed 

C4 alleles was associated with C4A and C4B RNA expression using a linear model. Both best-

guess copy number and probabilistic dosage were tested for association, which yielded an 

analogous result. As shown previously (Gandal et al. 2018b; Sekar et al. 2016; Handsaker et al. 

2015), C4A expression was strongly associated with C4A copy number (R = 0.37, P = 2.8 × 10-27) 

and C4-HERV copy number (R = 0.33, P = 7.9 × 10-22), but not with C4B copy number (R = -
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0.03, P = 0.39; Supplementary Figure 4.5). Likewise for C4B, expression was associated with 

corresponding gene dosage (R = 0.12, P = 3.8 × 10-4), but not with C4A copy number (R = -0.05, 

P = 0.15) or C4-HERV copy number (R = -0.05, P = 0.17). 

 

Construction of C4A-seeded networks 

To ensure imputation quality and thereby draw robust biological inference, we restricted our 

network analyses to samples with average imputed probabilistic dosage > 0.7 (N = 552/812). Most 

studies had high probabilistic dosage, except BrainGVEX and UCLA-ASD. In the case of 

BrainGVEX, this was because there were many missing SNPs in the vicinity of C4 locus. This 

filtering step hence removed most samples with low-quality imputation from BrainGVEX and 

UCLA-ASD. Neurotypical control samples with diploid C4A CN = 2 (N = 145/552) 

(Supplementary Figure 4.2) were then used to generate a C4A-seeded network by calculating 

pairwise PCC between C4A and 25,774 features, which included 16,541 protein-coding and 9,233 

noncoding genes based on Gencode v19 annotations. To test whether this network is enriched for 

the known complement components than can be expected by chance, we randomly sampled 10,000 

seed genes and generated 10,000 seeded networks. For each network, genes positively correlated 

with the seed gene at FDR < 0.05 were assessed for overlap with the annotated complement system 

(n = 57 genes), while genes negatively correlated with the seed gene at FDR < 0.05 were assessed 

for overlap with genes annotated within the SynGo database (Koopmans et al. 2019) (n = 1,103 

genes; Supplementary Figure 4.4).  

 

To capture broad genetic effects of C4A CNV on C4A co-expression, we stratified PsychENCODE 

samples into three CNV groups (i.e. CN < 2, CN = 2, and CN > 2). For control samples, there were 
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at least 54 samples in each group (Supplementary Figure 4.2). To account for uneven sample 

sizes, we used 10,000 bootstrapping replicates to downsample to 50 samples across each group. 

We calculated PCC in every iteration as above and eventually took the median PCC and its 

corresponding P value. Generated using only the control samples, these networks were not 

influenced by case-control status and disease-associated confounding factors (e.g. medication and 

RNA degradation effects). Additionally, the control samples were balanced in covariates such as 

age, RIN, postmortem interval (PMI), brain pH, and sex (Supplementary Figure 4.16).  

 

To maximize sample size and hence power to detect significant co-expression, particularly for 

rarer C4A CNV groups (i.e. CN < 2 and CN > 2), we also constructed the seeded networks by 

using every sample that passed the above quality control (N = 552). Combining all samples 

irrespective of the diagnosis status led to a minimum of 109 samples in each CNV group 

(Supplementary Figure 4.2), allowing us to generate the networks with bootstrap by 

downsampling to 100 samples. Such all-sample networks yielded analogous results to control-only 

networks in terms of the network expansion with respect to C4A CNV, effect sizes of C4A co-

expression, and the patterns of pathway, cell-type, and genetic enrichments (Supplementary 

Figure 4.17). Given the robustness of these network findings, we present results from all-sample 

networks. For visualization of the C4A-seeded networks, a hard-threshold of PCC > 0.5 and FDR 

< 0.05 was applied. All network plots were drawn using igraph and ggplot2 packages in R.  

 

The GTEx brain genomic dataset 

GTEx v7 was used for external replication (GTEx Consortium et al. 2017). We downloaded the 

GTEx genotype data from dbGaP (accession phs000424.v7.p2) and imputed C4 alleles in samples 
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of European ancestry according to genetic principal component analysis. We obtained transcript-

level counts from www.gtexportal.org and derived gene-level counts using tximport package in R. 

Briefly, RNA-seq reads were aligned to the hg19 reference genome with STAR 2.4.2a and 

transcript-level counts quantified with RSEM v1.2.22. We started with samples and features that 

were used for GTEx eQTL analyses. We then dropped samples from non-brain tissues and tissues 

with different sample preparation (i.e. cortex and cerebellar hemisphere). We also dropped samples 

with a history of disease possibly affecting the brain prior to filtering for features with CPM > 0.1 

in at least 25% of samples. Gene-level counts were then normalized using TMM normalization in 

edgeR and log2-transformed to match PsychENCODE. Each brain region was then assessed for 

outlier samples, defined as those with standardized sample network connectivity Z scores < -3, 

which were removed. These quality control steps resulted in 20,765 features based on Gencode 

v19 annotations and 920 samples across ten brain regions, out of which 540 samples were imputed 

for C4 alleles. 

 

We next regressed out biological and technical covariates except region and subject terms using a 

linear mixed model via lme4 package in R. We entered region, age, sex, 13 seqPCs (top 13 

principal components of sequencing QC metrics from RNA-SeQC), RIN, ischemic time, interval 

of onset to death for immediate cause, Hardy Scale, body refrigeration status as fixed effects and 

subject as a random intercept term. To evaluate the relationship between several non-genetic 

factors and C4A gene expression, we added 3 genetic PCs, brain pH, and a covariate of interest 

(e.g. BMI, height, weight, smoking status, or drinking status) as fixed effects to the above model. 

Significance was assessed by the likelihood ratio test (LRT) of the full model with the effect in 

question against the null model without the effect in question. 
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Due to the relatively limited sample size of GTEx (i.e. less than 10 samples for CN < 2 and CN > 

2 in each brain region), we focused on samples with two C4A copy number in subsequent analyses. 

We constructed a C4A-seeded network using frontal cortical samples (N = 36) and combined this 

with the above PsychENCODE control-only network (N = 145) using the Olkin-Pratt (OP) fixed-

effect meta-analytical approach as implemented in metacor R package. 

 

Interaction of C4A copy number with C4A expression 

The specificity of the C4A-seeded network expansion with respect to C4A CNV was evaluated 

statistically via multiple linear regression. We tested for an interaction term between C4A copy 

number variation and C4A gene expression on other gene targets transcriptome-wide (i.e. 25,774 

brain-expressed genes). Given that C4A copy number and C4B copy number are negatively 

correlated with one another (Pearson’s R = -0.41, P = 1.3 × 10-23), both terms were included in our 

regression. The model we tested was: genej ~ (C4A CN + C4B CN) × C4A expr, where the subscript 

j refers to the expression of gene j (Supplementary Figure 4.7). To determine how these results 

compare to what would be expected by chance, we replaced C4A expression in the above model 

by a randomly selected gene and calculated the number of times the interaction term was 

significant. We repeated this until we had randomly sampled 10,000 genes, and the empirical P 

values for C4A and C4B expression were subsequently calculated (P = 10-4 and 0.11, respectively). 

 

Pathway enrichment 

For pathway enrichment, we focused on genes co-expressed with C4A at FDR < 0.05. Enrichment 

for GO terms was performed using gProfileR v0.6.7 package in R with strong hierarchical filtering 

(Supplementary Figure 4.8). Only pathways containing less than 1,000 genes and more than 10 
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genes were assessed. Background was restricted to brain-expressed genes and an ordered query 

was used, ranking genes by correlation with C4A. Overlap with PsychENCODE WGCNA modules 

(Gandal et al. 2018b) was assessed using Fisher’s exact test, followed by Bonferroni correction for 

multiple testing (Supplementary Figure 4.9). The same gene sets were finally assessed for 

overlap with differentially expressed genes (DEG) in SCZ brain from PsychENCODE (Gandal et 

al. 2018b) and LIBD BrainSeq Phase II (Collado-Torres et al. 2019). For PsychENCODE, DEG 

at FDR < 0.05 were tested, while for LIBD BrainSeq, DEG at FDR < 0.1 were tested. 

 

Expression-weighted cell-type enrichment (EWCE) 

We used 10,000 bootstrapping replicates for EWCE with genes co-expressed with C4A at various 

FDR thresholds (Supplementary Figures 4.10-4.11). Briefly, EWCE statistically evaluates 

whether a gene set of interest is expressed highly in a given cell-type than can be expected by 

chance. Z-score is estimated by the distance of the mean expression of the target gene set from the 

mean expression of bootstrapping replicates (Skene and Grant 2016). We downloaded pre-

computed expression specificity values for several single-cell/nucleus RNA-seq data from 

http://www.hjerling-leffler-lab.org/data/scz_singlecell/. For independent single-nucleus RNA-seq 

datasets from Wang et al. 2018 and Hodge et al. 2019, we processed and computed the expression 

specificity metric of each gene as described (Skene and Grant 2016; Skene et al. 2018). 

 

Sex differences in C4A co-expression 

As there were fewer female than male samples in PsychENCODE, we combined the control 

samples with two C4A copy number in the 12- to 80-year-old period for each sex separately. The 

resulting samples were balanced in age (Welch’s t-test, P = 0.70; Wilcoxon rank-sum test, P = 
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0.54). We then tested for sex differences in C4A co-expression using bootstrapping to match the 

sample size (37 samples + 10,000 iterations). To identify pathways and cell-types differentially 

co-expressed with C4A across sex, we ranked genes by the magnitude of C4A co-expression in 

male and female samples separately. This ranked list was then used for gene set enrichment 

analysis (GSEA) (Subramanian et al. 2005) using the clusterProfiler R package. The union of GO 

and Hallmark gene sets from the MSigDB collections (C5 + H v7.1) (Liberzon et al. 2015), gene 

sets from SynGO (Koopmans et al. 2019), and the human brain cell-type markers defined in Lake 

et al. 2018 were tested for enrichment. To assess significance of GSEA results, we randomly 

sampled 10,000 seed genes. For each seed gene, we calculated male and female-specific co-

expression and performed GSEA as above. The difference in normalized enrichment score (NES) 

between sexes was used as the test statistic. The empirical P value for each gene set was 

subsequently calculated by comparing the rank of this difference for C4A to the empirical null 

distribution of the test statistic from randomly sampled seed genes (Supplementary Figure 4.13). 

 

Spatial resolution of C4A co-expression 

To ensure the robustness of co-expression results, we focused on eight brain tissues from GTEx 

that had at least 35 samples with two C4A copy number (Ballouz et al. 2015; Iancu et al. 2012). 

As the number of samples varied across brain regions (i.e. N = 36, 38, 45, 47, 39, 45, 39, and 45 

for frontal cortex, anterior cingulate cortex, hippocampus, caudate, putamen, cerebellum, 

hypothalamus, and nucleus accumbens, respectively), we used 10,000 bootstrapping replicates to 

downsample to 36 samples. In each iteration, we calculated PCC between C4A and every other 

gene and estimated the number of significantly co-expressed genes at FDR < 0.05. Other threshold 

metrics were tested as well, which gave similar results (Supplementary Figure 4.12). We did not 
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control for other biological covariates such as age and sex to maximize sample size and also 

because they were not significantly different across brain regions (one-way ANOVA, P = 0.99; 

Fisher’s exact test, P = 0.95).  

 

Temporal resolution of C4A co-expression 

As our analyses suggest that C4A copy number variation exhibits strong genetic effects on C4A 

co-expression, we controlled for C4A copy number by focusing on samples with two C4A copy 

number in PsychENCODE. In order to reduce other sources of bias such as sex and diagnosis, we 

only used male samples and performed separate analyses for controls and SCZ cases. We divided 

the samples by six overlapping time windows and calculated the number of co-expressed genes 

for C4A in each time period with bootstrap (30 samples + 10,000 iterations). Here, we note 

relatively limited sample size and crude time windows post-stratification of the PsychENCODE 

dataset in order to control for potential confounding factors. 

 

Differential expression of the complement system 

Differential gene expression of the complement was calculated using a linear mixed model via 

nlme package in R as previously reported (Gandal et al. 2018b). We repeated this analysis by 

randomly downsampling SCZ samples to match the sample size of BD. We additionally performed 

several conditional analyses by adjusting for C4A expression and/or C4A copy number 

(Supplementary Figure 4.14). As C4 alleles were imputed in only the samples of European 

ancestry, a subset of PsychENCODE was used for such conditional analyses. 
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Statistics and reproducibility 

No statistical methods were used to pre-determine sample sizes, but our study makes use of the 

largest publicly available genomic dataset of postmortem human brains. Even after stratifying 

samples by imputed C4A copy number, this sample size was sufficient (Ballouz et al. 2015; Iancu 

et al. 2012) to detect significant gene co-expression, as we observed. Randomization and blinding 

were not possible due to the study being retrospective and observational. Accordingly, subject-

level covariates were used to account for variation in gene expression as well as to remove 

unwanted confounding effects. We downloaded and uniformly processed the independent data 

from the GTEx project for external replication of PsychENCODE findings. Overall co-expression 

pattern and subsequent cell-type, pathway, and genetic enrichment results were replicated. We did 

not attempt to replicate the network expansion findings due to the small sample size of GTEx for 

rare copy number variant groups. For differential expression analyses across sex and case-control 

status, normalized gene expression was assumed to follow normal distribution, but this was not 

formally tested. Effects of genetic and environmental factors on gene expression were also 

assessed using a linear model. Additional details for statistical analyses are provided in relevant 

sub-sections of the Methods.  

 

Data availability 

PsychENCODE raw genotype and RNA-seq data that support the findings of this study are 

available at www.doi.org/10.7303/syn12080241. Processed PsychENCODE summary-level data 

are available at Resource.PsychENCODE.org. GTEx genotype and RNA-seq data used for the 

analyses described in this manuscript were obtained from: the GTEx Portal (www.gtexportal.org)  

and dbGaP accession number phs000424.v7.p2.  
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Code availability 

The code used to perform bioinformatic analyses are available at: 

https://github.com/gandallab/C4A-network. 
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4.6   Supplementary Figures  

 
Supplementary Figure 4.1: Ancestry of PsychENCODE subjects. Principal component analysis was performed 
using PLINK after merging the PsychENCODE genotype data with the 1000 Genomes Project reference panel. The 
PsychENCODE genotype data was available for a total 1,864 subjects to begin with. Each point represents an 
individual and points are color-coded by corresponding ethnicity. Global ancestry was inferred by k-nearest neighbors 
algorithm with the first five principal components. Downstream analyses were restricted to samples of European 
ancestry (N = 812).  
 

Supplementary Figure 4.2: Number of PsychENCODE samples with high-quality C4 imputation. Total 552 
samples had average imputed probabilistic dosage > 0.7. These samples were subsequently used to generate C4A-
seeded networks.  
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Supplementary Figure 4.3: Replication of PsychENCODE seeded network in GTEx. a, Shown are Venn diagrams 
of the number of overlapping C4A-positive and C4A-negative genes in PsychENCODE and GTEx (OR’s = 19 and 16, 
P’s < 10-16, respectively). These networks were constructed from frontal cortex samples of non-psychiatric controls 
with C4A CN = 2. b, Shown is correlation of effect sizes (i.e. PCC) of each gene that is shared between the two 
networks (R = 0.68, P < 10-16). 
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Supplementary Figure 4.4: Enrichment for complement components among C4A-positive genes and synaptic 
components as well as neurodevelopmental risk genes among C4A-negative genes. a, Seed genes were permuted 
10,000 times and corresponding seeded networks were tested for enrichment of the complement system (n = 57 genes) 
and synaptic components (n = 1,103 genes) from SynGo. Shown is distribution of the odds ratio from Fisher’s exact 
test. b, C4A-positive and C4A-negative genes at FDR < 0.05 from the meta-analysis of PsychENCODE and GTEx 
were used for rare variant analyses (logistic regression with significance assessed through likelihood ratio test). The 
black line denotes FDR-adjusted P value at 0.05.  
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Supplementary Figure 4.5: Relationship between C4 structural variation and C4 gene expression. Residualized 
C4 gene expression (i.e. normalized and corrected for all known biological and technical covariates except the 
diagnosis status) was associated strongly with corresponding gene copy number (total N = 812; N = 20, 114, 367, and 
311 for ASD, BD, CTL, and SCZ samples, respectively). Adjusted R2 values are shown for significant correlations. 
Of note, the best linear models for C4A and C4B expression explained up to 22% and 2.7% of variation in expression, 
respectively.  
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Supplementary Figure 4.6: Larger number of C4A-positive and C4A-negative genes with increased C4A copy 
number. Shown are Venn diagrams of the number of overlapping C4A-positive and C4A-negative genes across three 
CNV groups. Note that the sum of positive and negative genes is equal to the total number of co-expressed genes. The 
size of the circle is approximately proportional to the number of genes.  
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Supplementary Figure 4.7: C4A-specific interaction with C4A copy number. Multiple regression was performed 
with interaction terms between C4 copy numbers and C4 gene expression. Significant interaction effect was present 
only between C4A copy number and C4A expression. Several genes are highlighted to demonstrate this interaction.  
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Supplementary Figure 4.8: Enrichment for distinct GO terms among C4A-positive and C4A-negative genes. 
Gene sets obtained from the seeded networks at FDR < 0.05 were used for pathway enrichment analyses. Top five 
GO terms with the highest enrichment are shown. The red dotted line denotes FDR-adjusted P value at 0.05.  
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Supplementary Figure 4.9: Enrichment for distinct WGCNA modules among C4A-positive and C4A-negative 
genes. Gene sets obtained from the seeded networks at FDR < 0.05 were tested for overlap with PsychENCODE 
WGCNA modules, which capture neurobiological pathways and cell-types. Out of 34 gene-level (geneM) modules, 
for C4A-positive genes, the strongest enrichment was observed for astrocyte module (geneM3) at low copy number 
and for NFkB module (geneM5) at subsequently higher copy number. Microglial (geneM6) and interferon-response 
(geneM32) modules also showed stronger enrichment at higher copy number. Meanwhile for C4A-negative genes, we 
observed the strongest enrichment for synapse- and neuron-related modules. Text shows odds ratio from two-sided 
Fisher’s exact test. Bonferroni-significant results are marked with black borders.  
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Supplementary Figure 4.10: Expression of C4A-positive and C4A-negative genes in distinct mouse and human 
cell-types. Gene sets obtained from the seeded networks were used for EWCE in mouse and human single-cell/nucleus 
RNA-seq data. All available major cell-types from either mouse or human brain were tested. Note that there were no 
cell-types from subcortical brain regions in the human dataset. To ensure that the observed enrichment pattern is 
preserved on a more global and systems-scale, gene sets obtained with more permissive FDR thresholds were also 
tested. C4A-positive and C4A-negative genes are shown in red and blue, respectively. Asterisks denote significance 
at FDR < 0.05.  
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Supplementary Figure 4.11: EWCE analyses in other single-cell/nucleus RNA-seq datasets. C4A-negative 
genes obtained from high CNV group (i.e. CN > 2) at different FDR thresholds were used for EWCE in multiple 
single-cell/nucleus RNA-seq data. The results were consistent with previous analyses, where C4A-negative genes 
implicate neuronal and synaptic genes. Asterisks denote significance at FDR < 0.05.  
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Supplementary Figure 4.12: Sex and spatiotemporal differences in C4A co-expression. a, Three different 
thresholds were tested, namely the number of total co-expressed genes at PCC > 0.4 and the number of C4A-positive 
and C4A-negative genes at FDR < 0.05. Males had more co-expressed genes than females regardless of the threshold 
metric used (permutation test, P < 10-5). b, Similarly, frontal and anterior cingulate cortex were the two most connected 
regions for C4A regardless of the threshold metric used (permutation test, P < 10-5). c, Leftward shift in co-expression 
peak was observed in SCZ cases compared to neurotypical controls across different threshold metrics. All boxplots 
show median and interquartile range (IQR) with whiskers denoting 1.5 × IQR. 
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Supplementary Figure 4.13: Pathways exhibiting differential co-expression in males and females. Shown are 
GSEA enrichments for C4A compared to 10,000 random seed genes. Genes were ranked by the magnitude of co-
expression in male and female networks separately, and the corresponding gene list was used for GSEA. Several 
pathways showed the opposite direction of effect. 
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Supplementary Figure 4.14: Differential gene expression of the complement system in SCZ and BD. Differential 
expression (DE) for brain-expressed complement system genes (n = 42) was assessed in SCZ (N = 531) and BD (N = 
217) compared to controls (N = 895). DE was repeated for SCZ after randomly downsampling to match the sample 
size of BD. DE was also repeated for SCZ while adjusting for C4A expression and/or C4A copy number. Since C4A 
copy number was only imputed for samples of European ancestry, a subset of PsychENCODE samples was used for 
such conditional analyses (N = 311 and 367 for SCZ and controls, respectively). Text shows log2FC. Asterisks denote 
significance at FDR < 0.1. 
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Supplementary Figure 4.15: MHC association for SCZ in European and East Asian samples. There was no sign 
of MHC association in East Asian population (Lam et al. 2019). Purple line denotes genome-wide significance, and 
yellow lines denote gene start and end sites for C4A gene. 
 
 
 
 

Supplementary Figure 4.16: Baseline characteristics of control samples in PsychENCODE. Age, RIN, 
postmortem interval (PMI), brain pH, and sex were balanced across the control samples (N = 78, 145, and 54 for CN 
< 2, CN = 2, and CN > 2, respectively). All boxplots show median and interquartile range (IQR) with whiskers 
denoting 1.5 × IQR.  
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Supplementary Figure 4.17: Characteristics of control-only C4A-seeded networks. a, Networks constructed using 
only the control samples in PsychENCODE expanded in size irrespective of Pearson’s correlation coefficient (PCC) 
threshold. b, Correlation of effect sizes (i.e. PCC) from all-sample (All) and control-only (Control) networks were the 
highest in pairs with equal copy numbers. c, Distinct pathways were enriched for C4A-positive and C4A-negative 
genes (top 500 genes each ranked by PCC) from control-only networks. d, Similarly, distinct cell-types were enriched 
for C4A-positive and C4A-negative genes (top 500) from control-only networks. 
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CHAPTER 5 

CONCLUSION 

 

In summary, this dissertation aims to elucidate the neurobiological mechanisms through which 

established genetic risk factors contribute to the development and progression of mental illnesses. 

The second chapter shares a high-performance Julia package GeneticsMakie.jl (Kim et al. 2022) 

for visualizing high-dimensional genetic and genomic data. As the volume and diversity of 

molecular readouts as well as genetic association results continue to increase, trans-phenotype, 

trans-tissue, trans-cell-type, trans-ethnic, and trans-omic analyses that consider multiple layers of 

data will become ever more important. We envision GeneticsMakie.jl facilitating these types of 

multivariate analyses by enabling fast and seamless data visualization within the larger Julia data 

science and OpenMendel ecosystems (Zhou et al. 2020). Moreover, Makie.jl (Danisch and 

Krumbiegel 2021) permits visualization of millions of data points with ease (Figure 5.1), and its 

layout tools allows generation of scientific figures with very complex layouts (Figures 3.1-3.5). 

Reproducible scientific research involves being able to entirely reproduce its figures, which can 

be easily attained by using GeneticsMakie.jl along with Makie.jl. 

 

The next two chapters tackle the variant-to-gene-to-function problem, specifically the variant-to-

gene problem and gene-to-function problem in chapters 3 and 4, respectively. In chapter 3, we 

systematically dissect the genetic influences on brain gene and isoform expression, partitioning 

genetic variances and covariances among cis- and trans-SNPs. Given that statistical tools for 

fitting multivariate, multiple variance components are currently not available, we implement the 

minorization-maximization (MM) algorithm in Julia for maximum likelihood (ML) and restricted 
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maximum likelihood (REML) estimation (Zhou et al. 2019), which benefit from numerical 

stability and fast convergence while gracefully respecting the positive semidefinite constraint of 

the variance components parameters. In the future, we plan to improve this Julia package by 

implementing other optimization algorithms such as Fisher scoring, quasi-Newton, and EM 

algorithms, dealing with unbalanced or missing data, handling phenotypes with different sets of 

covariates, and handling phenotypes without residual covariance (Lee et al. 2012; Yang et al. 2011). 

We could deal with two variance components cases in a more computationally efficient manner as 

well with the generalized eigenvalue decomposition of kinship matrices (Lee and van der Werf 

2016; Zhou et al. 2019). Finally, we can try to impose biologically plausible constraints on the 

variance components parameters—for example, a low-rank constraint under the assumption that 

cis or trans genetic effects on a particular gene and its constituent isoforms are structured. This 

can aid in estimation step, especially when there are many phenotypes to be modeled jointly, by 

providing additional information. 

 

In chapter 3, although we quantify the degree of polygenicity and pleiotropy for brain gene and 

isoform expression, we do not quantify contributions from other sources of variance-covariance 

such as dominance effects (Hivert et al. 2021; Pazokitoroudi et al. 2021; Zhu et al. 2015), gene-

gene interaction (e.g. epistasis), gene-environment interaction, gene-environment correlation, and 

shared environment, among others. These contributions are assessed by variance components 

models but with larger sample sizes than PsychENCODE and/or pedigree-based designs. We also 

do not investigate the relationship between minor allele frequency (MAF) and effect size, which 

is one of themes the keyword “genetic architecture” is broadly concerned with. On the contrary, 

by connecting isoform-level eQTL to known GWAS signals, we illustrate the potential of 
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identifying candidate causal genes with isoform-resolution analyses (i.e. variant-to-gene or more 

aptly named variant-to-isoform-to-gene problem). By formally comparing these isoform-level and 

GWAS signals transcriptome-wide—for example, through colocalization (Giambartolomei et al. 

2014), transcriptome-wide association studies (TWAS) (Gusev et al. 2016), and summary-data-

based Mendelian randomization (SMR) (Zhu et al. 2016)—we hypothesize that we would uncover 

many more disease genes. In fact, there are multiple high-confidence psychiatric risk genes that 

are currently missing gene-level eQTL as well as other molecular QTL signals. Such genes include 

CACNA1C, NRXN1, RBFOX1, GRIN2A, SP4, FAM120A, STAG1, DRD2, and KMT2E, among 

others. Based on the XRN2 example in chapter 3, we suspect that such missing eQTL information 

 

Figure 5.1: LD structure in the MHC region. The strength of LD (r2) is shown as a heatmap for ~66,000 SNPs in 
the MHC region. LD is calculated from individuals of European ancestry in the 1000 Genomes Project reference panel. 
The heatmap contains ~2.2 billion distinct data points. To the best of our knowledge, Makie.jl is the only plotting 
package where it is possible to visualize the entire LD matrix for the MHC region. The red lines delineate flanking 
regions, extended MHC regions, and class I, II, III regions (Horton et al. 2004). The two biggest squares on the 
diagonal correspond to class I and II regions, which are known to be extremely polymorphic. 
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Figure 5.2: A close look at the CSMD1 locus using GeneticsMakie.jl. GWAS results for 56 complex phenotypes 
are shown, which span autoimmune, endocrine, psychiatric, cardiovascular disorders, and cancer. Index SNPs for 
phenotypes harboring GWAS hits are labeled and corresponding LD between other SNPs are displayed with the 
intensity of red color. Purple line denotes genome-wide significance (P = 5 × 10-8), and yellow lines denote gene start 
and end sites for CSMD1 gene. ADHD (attention-deficit/hyperactivity disorder), ALS (amyotrophic lateral sclerosis), 
AMD (age-related macular degeneration), BD (bipolar disorder), CAD (coronary artery disease), CKD (chronic 
kidney disease), IBD (inflammatory bowel disease), RBC (red blood cell), SCZ (schizophrenia). 

 

could be retrieved by looking at isoform-level expression with improved transcriptome annotations, 

such as those generated from long-read RNA sequencing.  

 

In chapter 4, we investigate the functional role of C4A in the human brain and its relation to 

schizophrenia (SCZ) genetic risk factors by characterizing the effect of C4A copy number variation 

(CNV) on gene expression and gene co-expression at the level of bulk tissue (Kim et al. 2021). 

We find that synaptic pathways rather than the complement system are the key SCZ-relevant 

pathways. The effect of genetic variation on gene co-expression is conceptually equivalent to co-

expression QTL (Lea et al. 2019; van der Wijst et al. 2018), which do not have a clear biological 

meaning yet, and therefore needs to stand the test of time or undergo experimental validation. 

Although the complement signaling pathway is not enriched for SCZ genetic risk, there is evidence 

that several individual genes within the complement system other than C4A harbor SCZ GWAS 

signals, namely CSMD1, CLU, and CD46 genes. Interestingly, the CSMD1 locus exhibits allelic 

series with distinct GWAS signals from multiple phenotypes such as age at menarche, educational 

attainment, neuroticism, height, and weight in addition to SCZ. (Figure 5.2). The CLU locus is a 

well-known locus that harbors Alzheimer disease association (Pouget 2018), which we find to be 

distinct from SCZ association (Figure 5.3). Despite reaching genome-wide significance in some 

SCZ GWAS, CD46 did not pass genome-wide threshold in subsequent GWAS with larger sample 

sizes (Figure 5.4), which indicates that this region may not be a bona fide disease-associated locus.  
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Figure 5.3: A close look at the CLU locus using GeneticsMakie.jl. GWAS results for 56 complex phenotypes are 
shown. Index SNPs for phenotypes harboring GWAS hits are labeled and corresponding LD between other SNPs are 
displayed with the intensity of red color. Purple line denotes genome-wide significance (P = 5 × 10-8), and yellow 
lines denote gene start and end sites for CLU gene. ADHD (attention-deficit/hyperactivity disorder), ALS 
(amyotrophic lateral sclerosis), AMD (age-related macular degeneration), BD (bipolar disorder), CAD (coronary 
artery disease), CKD (chronic kidney disease), IBD (inflammatory bowel disease), RBC (red blood cell), SCZ 
(schizophrenia). 
 

For CSMD1 and CLU loci, the variant-to-gene-to-function problem needs to be addressed more 

thoroughly in the future. 

 

We also find that differential expression of C4A between SCZ cases and neurotypical controls 

cannot be completely explained by C4A CNV, suggesting that other (potentially genetic) factors 

contribute to overexpression of C4A in SCZ. Elucidating these genetic and/or environmental 

factors that influence C4A and other differentially expressed genes in SCZ will be crucial for 

interpreting differential expression findings. Next, the MHC region remains to be further fine-

mapped, since C4 structural variation drives only a part of the association signal (Figure 5.5). In 

fact, there seems to be at least three distinct signals (Sekar et al. 2016), one of which is C4 structural 

alleles. Meanwhile, it is unclear why there is a lack of significant association in the MHC region 

for SCZ in East Asian population (Lam et al. 2019). Plausible explanations include differences in 

case ascertainment and gene-environment interaction. Aside from gene expression and co-

expression, there have been efforts to identify intermediate phenotypes associated with C4A CNV 

in biobank-scale data such as UK Biobank and the Adolescent Brain Cognitive Development 

(ABCD) study. The focus has been largely on brain imaging measures, given that C4A and the 

complement system could mediate synaptic pruning in disease-susceptible brain regions and alter 

brain structure (e.g. cortical thinning), but the strength of evidence has been so far underwhelming. 

Multiple factors can lead to either weak or absence of association: we may not be looking at the  
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relevant developmental time points, particularly adolescence when mental illnesses usually emerge; 

we might not be testing the right intermediate phenotypes; we may not have sufficient sample size 

and hence power to detect the underlying signal; and variation in C4A expression may only induce 

fine-scale changes at the level of local brain circuitry, in which case we may not observe gross 

changes at the level of brain structure and behavior.  

 
Figure 5.4: CD46 locus for schizophrenia with increasing sample size. The second to last row shows GWAS result 
in East Asian population. All GWAS results did not reach genome-wide significance. Purple line denotes genome-
wide significance (P = 5 × 10-8), and yellow lines denote gene start and end sites for CD46 gene. 
 

Looking forward, by expanding upon the results and approaches covered in this dissertation, we 

hope that we can deliver the promise of human genetics, identifying novel disease genes and 

biological pathways for intervention, and ultimately nominating robust therapeutic targets for 

psychiatric disorders. 
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Figure 5.5: MHC association for schizophrenia and its relation to predicted C4 expression. Top, squared 
correlation (r2) with predicted C4A expression is displayed with the intensity of red color. Bottom, r2 with predicted 
C4B expression is displayed. We imputed C4 structural alleles for individuals of European ancestry in the 1000 
Genomes Project reference panel. C4 gene expression was predicted with previously derived expression weights 
(Sekar et al. 2016). Correlation between C4 gene expression and other SNP genotypes in the MHC region was 
subsequently calculated. Note that GWAS SNPs are mildly correlated with predicted C4A but not predicted C4B 
expression with the strength of correlation increasing in the vicinity of C4 genes. This observation indicates that there 
are GWAS signals independent from C4A expression that remain to be fine-mapped. Alternative approaches such as 
conditional analyses using summary statistics (Yang et al. 2012) to adjust for predicted C4 expression is also possible, 
but appropriate C4 association statistics are unfortunately not available. Purple line denotes genome-wide significance 
(P = 5 × 10-8), and yellow lines denote gene start and end sites for C4A gene. 
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