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Abstract Levee failures during Hurricane Katrina left 85% of New Orleans flooded,
1,500 dead, and about 400,000 homeless. Three separate investigations into the
levee failures have been concluded, yet none of these studies conclusively
determined why the St Bernard polder flooded so deeply, despite Team Louisiana’s
conclusion regarding early failure of the Mississippi River Gulf Outlet (MRGO)
levees. Detailed wave and hydrodynamic modeling reported here reveals the cause
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of extensive breaching of the MRGO levees and how that created a very efficient
conduit of surge water into the heart of the city.

Keywords Hurricane Katrina . Man-made catastrophe . Hydrodynamic modeling .

Surge and wave impacts . Levee failures

Introduction

Hurricane Katrina

Hurricane Katrina made landfall in southeast Louisiana as a fast-moving Category 3
hurricane at 6:10 am on Monday 29th of August, 2005. Of the populated areas that
constitute Greater New Orleans (GNO), 80% of Orleans Parish, 99% of St. Bernard
Parish, and approximately 40% of Jefferson Parish were flooded, in some cases for
weeks. This flooding cost the lives of more than 1,500 residents. Over 100,000
families were rendered homeless, the great majority of whom had heeded evacuation
orders. Many observers have noted similarities between the patterns of surge-
induced flooding that occurred during Katrina and the previous storm of record,
Hurricane Betsy in 1965 (van Heerden 2007). The GNO hurricane protection system
(HPS) was, in fact, intended to prevent a repeat of the Betsy disaster, but this system
failed during Katrina with a twenty-fold increase in loss of life.

The MRGO channel

The 76-mile MRGO project links the heart of New Orleans to the Gulf of Mexico and
was approved by the U.S. Congress under the Rivers and Harbor Act of 1956 (PL 84-
455). The U.S. Army Corps of Engineers (USACE) began construction of this project
in 1958 and completed it in 1968 at a cost of approximately $92 million. In the
process, they dredged more earth than was moved during construction of the Panama
Canal and directly destroyed thousands of acres of swamps and marshes (Shaffer et al.
2009). The MRGO was authorized with a 36 foot controlling depth, 500 feet wide at
the bottom and 650 feet wide at the top, with a somewhat larger cross-section (Fig. 1)
across the shallow waters of Breton Sound (USACE 1999). By 2005 the channel had
opened to up to 3,000 feet in some locations and had been dredged annually. Salt-
water intrusion associated with the construction of the channel had killed thousands of
acres of surge reducing fresh water marshes and cypress swamp.

The MRGO “Funnel”

The geography of the MRGO funnel includes the pre-existing GIWW canal along
the northern margin, the enlarged portion of the GIWW referred to as MRGO
Reach 1 that serves as an outlet to the IHNC; the MRGO Reach 2 channel along
the south margin, and levee embankments paralleling all of the artificial channels
on the inland side (Figs. 1 and 2). The funnel also contains natural features
including the southern half of Lake Borgne, and thousands of acres of wetlands
both on the inboard and outboard sides of the hurricane protection structures. Lake
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Borgne, a very large shallow bay elongated along a southwest to northeast axis,
providing more than 40 miles of open water in this direction—a very long “fetch”
over which hurricane winds can build surge and waves (Fig. 1). The inboard
swatch of tidal marsh, the nearly 32,000 acre Central Wetlands Unit (CWU) is
located between the main federal levees along the south bank of the MRGO and a

Fig. 1 Graphic created by the
New Orleans Time-Picayune
newspaper to explain the role of
the MRGO funnel in the flood-
ing of New Orleans during
Hurricane Katrina

GIWW

IHN
MRGO reach 1 / 
GIWW 

MRGO        
reach 2 

Lake 
Borgne 

Fig. 2 FINEL model computational domain outlined in solid line. Urban area bounded on west with
dashed line
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lower state-built levee known as the 40 Arpent Levee (Fitzgerald et al. 2008).
Three drained and developed polders surround the Lake Borgne funnel, including
New Orleans East to the north, the Orleans Metro area to the west, and the
combined Lower 9th Ward and St. Bernard Parish neighborhoods to the south. The
developed and drained portion of the St. Bernard polder lies south of the 40 Arpent
Levee. All of these developed polders received floodwaters from the MRGO
channel and funnel.

The CWU used to be dominated by 2.4 to 3.0 miles of fresh water bald cypress
(Taxodium distichum)—water tupelo (Nyssa aquatica) swamp that have become
intermediate to salt marshes and open water ponds since the construction of the
MRGO (Fitzgerald et al. 2008). Pump stations located along the 40 Arpent levee
discharge storm drainage into these wetlands and this limited freshwater introduction
has preserved a few stands of the once more extensive swamp forest that covered
this area prior to construction of the MRGO (Fitzgerald et al. 2008). St. Bernard has
some of the highest land on the East Bank of New Orleans, following as it does the
natural levee of the Mississippi River and some of its abandoned distributaries
(Fig. 1). Despite being relatively high by local standards, the St. Bernard polder
experienced the most violent, spatially expansive and deepest flooding in the entire
metro area during the Katrina event (Fig. 3). Except for a limited contribution from
rainfall, all flooding of the St. Bernard polder was caused by water that passed
through or across one or more reaches of the MRGO. This water entered the
developed area as a result of catastrophic floodwall failures along the IHNC on the
western margin, by overtopping of levees on MRGO Reach 1, and by flow through
breaches in the federally built levees along the MRGO Reach 2. The interior 40
Arpent Levee was protected by over two miles of the Central Wetlands Unit and was
relatively undamaged, but it averaged only 6.5 feet high and was completely
overtopped when floodwaters from the MRGO filled the Central Wetlands Unit
beyond this level.

Fig. 3 Comparison of mean maximum floodwater elevation with average elevation of flooded land in
three New Orleans polders (van Heerden et al. 2007)
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Study objectives

The research described herein was undertaken to develop a greater understanding of
the MRGO levee failure mechanisms and a detailed interpretation of the conveyance
contribution of the MRGO to flooding. Additionally, the study compared the Katrina
levee failures and associated flooding to a hypothetical scenario in which there was
no MRGO channel and associated wetland loss; a “Neutral MRGO.” The “Neutral
MRGO” analyses are based on the rationale that the USACE had a Congressionally
directed responsibility to manage the MRGO navigation project so that it caused no
added, unmitigated impact on the ability of the hurricane protection project to also
fulfill its mission—also Congressionally mandated—to protect the City of New
Orleans and St. Bernard Parish from hurricane-induced flooding.

Computer models used to reconstruct surge and waves

In order to fully understand the Katrina hydrodynamics, reliance on computer
models to reconstruct the surge and wave dynamics that were in play during the
passage of this storm, is essential.

ADCIRC storm surge model

The S08 version of ADCIRC (described in detail in van Heerden and Bryan 2006)
was used primarily to provide boundary conditions for the FINEL hydrodynamic
model (Fig. 2).

FINEL hydrodynamic model

The numerical model FINEL is a two-dimensional, depth averaged, hydrodynamic
model running on an unstructured grid using the finite element method and was
developed by Svašek Hydraulics and the Fluid Mechanics Section of the Civil
Engineering faculty of TUDelft (de Wit et al. 2008). This model was set up with
far more detail in the bathymetry and topography than has been available to date in
any ADCIRC version in part to better study the effects of bottom friction
differences between open water and various wetland types. Bays and channels tend
to provide less resistance to flow than do marshes and particularly swamp
wetlands. FINEL provides the flexibility necessary to examine incrementally the
effects of adding, removing, or modifying channels, wetlands and flood protection
elements within the landscape to gain a greater understanding of how each
contributed to surge dynamics (Fig. 2). It should be noted that because of time
constraints, the FINEL model domain does not include the New Orleans East and
Orleans Metro polders, and therefore does not directly simulate overtopping into
these regions (de Wit et al. 2008). While it faithfully replicates surveyed overbank,
floodwall and levee elevations as they existed prior to Katrina along the north bank
of GIWW/MRGO Reach 1 and the IHNC, it also does not consider the effects of
breaches that occurred during that storm in the southern portion of the IHNC
between the MRGO junction and the lock (Fig. 1). This means that it is expected to
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over-predict surge elevations actually observed in the southern part of the IHNC,
and, consequently, overtopping into the Lower 9th Ward and Central Wetlands
Unit just to the north. These limitations were addressed by added analyses of
overtopping potential, using a 1D weir model for the polders not explicitly
included in the model domain (de Wit et al. 2008).

SWAN wave model

The SWAN wave model is a third-generation wave model and represents the current
state of the art for wave simulation. Svašek Hydraulics and TUDelft were involved
in its development and were particularly qualified to simulate the wave climate along
MRGO Reach 2 during Katrina (Gautier et al. 2008). SWAN uses a grid to compute
how waves generate, dissipate and propagate under the influence of wind,
bathymetry, vegetation type, water levels, currents and incoming waves (Fig. 4).
This is a finite-difference model built, unlike ADCIRC or FINEL, of equal-sized
rectilinear cells, that achieves greater resolution through the use of nested grids, in
which larger grids provide boundary conditions for smaller ones. We applied SWAN
to study the Katrina storm scenarios with and without the MRGO project, and with
and without the marshes and swamps that it destroyed (Gautier et al. 2008). As is
true for the steady and unsteady flows that contribute to surge, vegetation type
profoundly affects the rate of wave energy dissipation that ultimately determines the
size and character of the waves that attack man-made structures like the levees. The
SWAN model is well set up to investigate such interactions, including the unique
attributes of a wetland swamp canopy to separate the winds that build waves from
the water surface, leading to a more rapid loss of wave height and energy than can be
attributed to bottom friction effects (Gautier et al. 2008).

Fig. 4 SWAN Nested Grids A-G positioned over bathymetry and topography
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Analytical approach

Influence of vegetation

The effect of even low-lying marsh vegetation to retard and attenuate storm surge
also has been known for as long as the MRGO has existed and was, in fact, one
criterion for the original Chalmette levee design (USACE 1963; USACE 1967). One
of the major adverse impacts of the MRGO project was to change marshes to open
water and swamp to marshes (Fitzgerald et al. 2008; Shaffer et al. 2009).
Accordingly, it has been very important to incorporate the effects of these MRGO-
induced changes on surge and wave dynamics experienced during Hurricane
Katrina, and then to assess whether the presence or absence of swamp and marsh
affected the timing and severity of flooding of populated areas.

Scenarios modeled

Two different scenarios were modeled. Scenario 1—“MRGO As-Is” modeled the
actual Katrina storm conditions as accurately as possible (Table 1). To assess the
impacts of the MRGO channel; how it exacerbated surge conveyance and the wind
wave field facing the Reach 2 levees, a hypothetical Scenario 2C—a “no MRGO”
setting with 1958 wetlands intact also was modeled. This scenario can be
considered a “Neutral” MRGO setting. The MRGO Reach 2 Channel was modeled
in two configurations (Table 1). The greatly expanded channel 2,000 to 3,000 feet
wide and more than 40 feet deep that existed in front of the Reach 2 levees before
Katrina occurs only in Scenario 1; this channel reach is completely absent in
Scenario 2C. The MRGO Reach 1 Channel was also modeled in two
configurations (Table 1). The 1,000 foot wide channel that provided the outlet
from the funnel to the IHNC during Katrina occurs only in Scenario 1 and is
reduced to the pre-MRGO dimensions of the antecedent GIWW barge channel in
Scenario 2C, about 10% of its current cross-section.

A merger of ADCIRC output and high water mark data was used to provide
boundary conditions for FINEL, as we sought a higher level of accuracy than could
be obtained from any of the ADCIRC versions now in use (Gautier et al. 2008).
FINEL was then calibrated to provide benchmark surge hydrographs at specific read-

Table 1 Katrina Simulation Scenarios for characterization of MRGO Reach 1 and Reach 2 surge, current,
and wave characteristics

Scenario MRGO MRGO/
GIWW

Reach 2
Levees

Reach 1
Levees

40 Arpent
Levee

Vegetation

Reach 2
channel

Reach 1
channel

1 Existing
8/2005

Existing
8/2005

Existing
8/2005

Existing
8/2005

Existing
8/2005

Existing
8/2005

2C Neutral
MRGO

None Pre MRGO Existing
8/2005

Existing
8/2005

Existing
8/2005

Pre MRGO
1958
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out locations (Fig. 5). FINEL was also used to generate a surge surface at hourly
intervals beginning at 0400 on the morning of August 29, 2005. SWAN was then run
over the surge surface generated by FINEL to provide hourly snapshots of wave
characteristics (Fig. 6).

The MRGO funnel and its effect on surge

FINEL analysis of funnel effects

Scenario 1 or Katrina-As-Is

FINEL predicts that the maximum surge is transmitted through MRGO Reach 1 with
little decrease to the south end of the IHNC. Overtopping of flood protection
structures occurs where the surge is highest south of Lake Borgne, and where levee
and floodwall crowns are lowest, along MRGO Reach 1 and at the southern end of
the IHNC. But because the structures do not breach in the model, the Central
Wetlands Unit storage area is not filled by the end of the sequence (Fig. 7). Under
the modeled conditions for the flood protection structures, flooding of developed
areas of the St. Bernard polder through overtopping of the 6.5 foot 40 Arpent Levee
would not have occurred except at the western margin into the Lower 9th Ward.
There, overtopping would have lasted less than 3 h, and would have been less than
2 h on the MRGO levees south of Lake Borgne.

What is most apparent in the velocity plots is that the larger dimensions of the channels
constructed or enlarged as part of the MRGO project are carrying a disproportional share

Fig. 5 Locations for FINEL time-series output of water level, current direction and velocity
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of flow. The channel from about Bayou Bienvenue all the way into the IHNC looks like a
major river in the velocity maps (Fig. 7). It can be seen that velocities in MRGO Reach
1 are only slightly higher than in Reach 2 between the Bayou Bienvenue control
structure and the turn at the junction with the GIWW. This suggests that the vast
majority of flow entering Reach 1 is coming from Reach 2 (Fig. 7), and that this flow is
being efficiently conveyed by the Reach 1 channel all the way into the IHNC.

Neutral MRGO Scenario 2C

In this scenario surge along the shores of Lake Borgne is simulated to be
representative of the conditions before the construction of the MRGO, conditions

Fig. 6 Evolution of significant wave heights (feet) in eastern lobe of Lake Borgne predicted by SWAN
from 0600 (top left), 0700 (top right), 0800 (bottom left) and 0900 (bottom right) (Gautier et al. 2008)
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that essentially would have persisted to the present if there had been no channel
(Shaffer et al. 2009). Surge hydrographs were prepared at the same output locations
as shown for the earlier scenarios, but also at additional points along the 40 Arpent
Levee (Fig. 5). The replacement of the MRGO channel by marsh had a minor effect
on the surge hydrographs at locations along the MRGO levee alignment toward the
east side of the funnel, but a progressive lowering of the peak surge and a time-lag
becomes more prominent at locations farther west (Fig. 8). This is particularly true
for the locations inside the GIWW and IHNC so that at the lock on the south side of
the IHNC the surge is about 3.0 feet lower than for the Katrina-As-Is condition. The
answer is that the apparently minor increases in peak surge elevation and duration
that the ADCIRC and FINEL models allow us to attribute to the MRGO project have
a disproportionate impact on overtopping caused flooding across the adjacent levee
structures because in many places the crown elevations are not much lower than the
surge elevation. Because the length of these structures extend for several miles, even
a minor increase in the overtopping rate per linear foot results in much larger
volumes of water overtopping the structure.

MRGO channel reach discharge analysis

To further understand surge behavior in a funnel situation (de Wit et al. 2008),
discharge estimates were developed at cross-sections laid across the MRGO Reach 1
and Reach 2 channels (Fig. 9). The cross-sectional area for each of these traverses
with an assumed +16 foot (NAVD88) water elevation is given in Table 2, and the
discharges for each cross-section and each scenario is provided at hourly intervals in
Table 3. The Scenario 2C cross-section of Reach 1 is roughly half that of the
Katrina-As-Is section because about half of the total cross-sectional area of Reach 1
for Scenario 1 is above the overbank when the water level is at + 16 feet (Table 2).

Fig. 7 Flow velocities and direction in MRGO Reaches 1, 2 and IHNC at 0800 for Katrina-As-Is
scenario, showing overtopping across south levee of MRGO Reach 1. Maximum velocities in Reach 1 and
IHNC are 8 and 11 feet per second (fps on scale), respectively (de Wit et al. 2008). Arrow indicates Bayou
Bienvenue
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These discharges are very large, ranging for MRGO Reach 1 in the Katrina-As-Is
scenario from 173,000 to 430,000 cfs over the course of five hours (Table 3). The
Reach 1 channel entrains water in addition to that contributed by Reach 2 from the
GIWW channel and from across the remaining wetlands. This added water becomes
more significant at the 0800 surge peak. At peak surge, the volume contributed from
outside of Reach 2 rises from about 25 to 40% and continues to increase to 70% at
0900 as the discharge in Reach 2 drops precipitously when the wind shifts.

As might be expected, discharge through the Reach 1 section is greatly
diminished when the ship channel is removed as is the case in Scenario 2C. Flow
then is largely overland even if it is constrained by levees or berms, as under
scenario 2C. Peak discharge for this scenario in Reach 1 is only slightly more than a
third of the Katrina-As-Is discharge (Table 3). The Reach 2 discharge across the
unbroken marsh at the Bayou Bienvenue cross-section is less than 20 % of its value
when the fully enlarged channel section is available. The direction of flow reverses

Fig. 9 Cross-sections for which surge discharge was calculated using FINEL (deWit et al. 2008 expert report)

Fig. 8 FINEL generated Katrina hydrographs for test scenarios (de Wit et al. 2008). Scenario 2C, the grey
dashed line is of interest and is lower than the Katrina-As-Is run, scenario 1, at this location (Fig. 5), with a
pronounced lag and much shorter duration
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to the east at this location by 0900 as the winds shift. When a channel is absent in
Reach 2, there is little reason to think that this cross-section should contribute much
more flow to Reach 1 than any other marsh traverse of similar length, but it does,
roughly 30%, at least until the winds shift. This occurs in all likelihood because as
the surge piles up on the MRGO levees along the south margin of the funnel, flow is
deflected preferentially along the levee face toward the entrance to Reach 1. Because
the water is incompressible and cannot escape, changes made to the geometry in one
place propagate throughout the system either as surge elevation increases or
decreases, or as delays in surge rise or fall.

Levee overtopping analysis

Locations were selected for calculation of structure overtopping using the FINEL
surge output as the upstream input and considering the surveyed elevation of the
structure crown in the pre-Katrina condition (Fig. 10). Knowing the elevation
difference between the water level in FINEL and the levee crest, a time line of the
overtopping rate can be calculated for each selected location (Figs. 11 and 12). The
Orleans Metro and New Orleans East polders are not included in the model grid so
overtopping into those bowls, as well as breaching, do not occur in the FINEL
model. So the FINEL hydrographs in the IHNC and MRGO Reach 1 will be a little
higher than what actually would occur in each scenario, as was discussed in the
calibration section (de Wit et al. 2008). Overtopping rates in the MRGO Reach 1 and
to a greater degree in the IHNC must therefore be considered an upper bound. The
surge peak on structures within Lake Borgne will be more realistic estimates when
no breaching occurs, because the surge in Lake Borgne is unaffected by overtopping
(de Wit et al. 2008).

Table 2 Cross-sectional area for each traverse in Fig. 9 at a uniform elevation of +16 feet (NAVD88)
from de Wit et al. 2008 expert report appendix

Cross-sectional area (ft2)

Scenario 1 MRGO Reach 1 67,000

MRGO Reach 2 75,000

Scenario 2C MRGO Reach 1 38,000

MRGO Reach 2 36,000

Table 3 Discharge to the west across the test cross-sections in cubic feet per second (cfs) predicted by
FINEL for scenarios 1 and 2C at hourly intervals for Katrina surge (de Wit et al. 2008)

4:00 am 5:00 am 6:00 am 7:00 am 8:00 am 9:00 am

Scenario 1 MRGO Reach 1 173,000 202,000 236,000 293,000 430,000 234,000

MRGO Reach 2 149,000 161,000 179,000 211,000 264,000 72,000

Scenario 2C MRGO Reach 1 44,000 63,000 86,000 117,000 157,000 114,000

MRGO Reach 2 14,000 20,000 28,000 39,000 48,000 −4,000
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Fig. 10 Output locations for overtopping volume analysis (de Wit et al. 2008)

Fig. 11 Overtopping rates calculated for test scenarios at the Citrus Back Levee (de Wit et al. 2008). See
Fig. 10 for location
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While we know that FINEL is over predicting surge in the IHNC and to a lesser
degree in MRGO Reach 1, and that this results in higher overtopping rates over
the structures along these channels, this is true across the board for all scenarios.
The point by point comparison acts to normalize these effects, rendering the

Fig. 12 Overtopping rates calculated for Scenarios 1 and 2C at location 3 on the Lower 9th Ward
floodwall (top) and location 4 on the IHNC West floodwall (de Wit et al. 2008)
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comparisons meaningful. The first observation is that the Katrina-As-Is scenario
caused more overtopping at all locations where common points could be
compared. The best overall performance was achieved in Scenario 2C by
returning the landscape to its pre-MRGO condition, but with the MRGO hurricane
protection levees in place as they were before Katrina. This resulted in a fairly
uniform reduction in overtopping volume of 80 to 85% at points discharging into
all three of the developed polders. Comparison of Scenarios 1 and 2C showed that
enlargement of the GIWW to create MRGO Reach 1 provided a much greater
potential for conveyance of Lake Borgne surge into New Orleans particularly after
the cypress forests were destroyed.

The Reach 2 channel posed less of a problem, however, for enhancing storm
surge than Reach 1 until, the surge funnel geometry was worsened by construction
of the levees along the its south bank. First, the levees took ‘offline’ the significant
amount of storage afforded by the 32,000 acre Central Wetlands Unit. Second, the
levee project introduced a new and very dangerous dynamic in the hydraulic
feedback between the ship channel and the adjacent berms. After the hurricane
protection was constructed surge could then build up on the slopes of the MRGO
levees and drive added flow through the adjacent deep channel toward Reach 1, an
interaction that would not have occurred if one or the other of these projects had not
been built in the close conjunction that they were. In the ‘Neutral MRGO’ condition
the surge elevation was reduced slightly and the rise was delayed almost everywhere
around the margins of the funnel, but more so toward the west. Even slight
reductions in peak surge elevation or delays in peak onset could combine to
significantly reduce overtopping of the levee flood protection structures throughout
the funnel (Fig. 12). When both reaches of the MRGO were removed, overtopping
was reduced by about 80% for all of the three developed polders that experienced
catastrophic flood damage on August 29, 2005.

Fig. 13 Scenario 1 and Scenario 2 C SWAN results Hs [ft] and wave direction, 8:00 am LT. Note how the
waves in the MRGO channel are almost twice as high in Scenario 1 as compared to Scenario 2C
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Effects of MRGO reach 2 on waves

Wind speeds over the Lake Borgne-Chandeleur Sound complex ranged up to a
maximum of about 90 knots. The prevailing wind direction over Lake Borgne was
from the northeast, almost perfectly aligned with the long axis of the Lake from
04:00 to 09:00 on the morning of August 29, 2005 (Gautier et al. 2008). The
Scenario 1 Katrina data show that significant wave heights build in the channel up to
a maximum of about 9 feet along the whole of Reach 2 in front of the levees (Fig. 6).
Significant wave heights drop appreciably as the surge maximum passes, as can be
seen in the 09:00 image (Fig. 6). The growth of the waves as they cross the 2,000 to
3,000 foot wide channel is apparent.

Figure 13 shows the peak wave heights for both Scenarios 1 and 2C. What is very
evident is that the very wide MRGO channel at the time Katrina hit amplified the
waves from a maximum of 5.5 feet with no channel to 9.2 feet with the channel. This
is what made the difference for these fragile structures, and for the early onset of the
flooding in St. Bernard. This characteristic of the MRGO channel of wave
amplification was not considered in the design of the Reach 2 levees. In fact the
original design did not account for the presence of the MRGO at all.

Utilizing the wave data discussed here Bea (2009) has estimated that
“approximately 35% of the levees along the Reach 2 alignment were breached due
to attack by waves, 47% were breached by a combination of wave attack and surge
overtopping—backside erosion (including sheet pile repair breaches), and 18 % were
overtopped but did not breach (intact sheet pile repair sections, Dupre and
Bienvenue navigation structures).”

Summary and conclusions

The MRGO channel increased conveyance into the city and created larger waves that
destroyed many levee reaches early in the storm. These impacts, while apparently
understood by USACE employees were never included in any design memorandums
or analyses. Additionally, all analyses to date have missed the significance of
channel widening on the energy of waves impacting the Reach 2 levees because they
have underestimated both the potential for waves to reform in the channel and of the
effects of wetland and foreshore erosion to increase the wave energy to which they
were exposed during Katrina.

In January 2009 the USCAE started the process to seal the MRGO at the Bayou
La Loutre ridge, a process that will take about a year.
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