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The Statistical Strength of Nonlocality Proofs
Wim van Dam, Richard D. Gill, and Peter D. Grünwald

Abstract—There exist numerous proofs of Bell’s theorem, stating
that quantum mechanics is incompatible with local realistic theo-
ries of nature. Here the strength of such nonlocality proofs is de-
fined in terms of the amount of evidence against local realism pro-
vided by the corresponding experiments. Statistical considerations
show that the amount of evidence should be measured by the Kull-
back–Leibler (KL) or relative entropy divergence.

The statistical strength of the following proofs is determined:
Bell’s original proof and Peres’ optimized variant of it, and proofs
by Clauser, Horne, Shimony, and Holt (CHSH), Hardy, Mermin,
and Greenberger, Horne, and Zeilinger (GHZ). The GHZ proof is
at least four and a half times stronger than all other proofs, while
of the two-party proofs, the one of CHSH is the strongest.

Index Terms—Bell’s theorem, Kullback–Leibler (KL) diver-
gence, nonlocality, quantum correlations.

I. INTRODUCTION

APLETHORA of proofs exist of Bell’s theorem (“quantum
mechanics violates local realism”) encapsulated in in-

equalities and equalities of which the most celebrated are those
of Bell [5], Clauser, Horne, Shimony, and Holt (CHSH) [9],
Greenberger, Horne, and Zeilinger (GHZ) [15], Hardy [20],
and Mermin [25]. Competing claims exist that one proof is
stronger than another. For instance, a proof in which quantum
predictions having probabilities or only are involved, is
often said to be stronger than a proof that involves quantum
predictions of probabilities between and . Other researchers
argue that one should compare the absolute differences between
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the probabilities that quantum mechanics predicts and those that
are allowed by local theories, and so on. The main aim of this
paper is to settle such questions once and for all: we formally
define the strength of a nonlocality proof and we argue that our
definition is the only one compatible with generally accepted
notions in information theory and theoretical statistics.

To see the connection with statistics, note first that a mathe-
matical nonlocality proof shows that the predicted probabilities
of quantum theory are incompatible with local realism. Such
a proof can be implemented as an experimental proof showing
that physical reality conforms to those predictions and hence
too is incompatible with local realism. We are interested in the
strength of such experimental proofs, which should be measured
in statistical terms: how sure do we become that a certain theory
is false, after observing a certain violation from that theory, in a
certain number of experiments.

A. Our Game

We analyze the statistics of nonlocality proofs in terms of a
two-player game. The two players are the pro-quantum theory
experimenter QM, and a pro-local realism theoretician LR. The
experimenter QM is armed with a specific proof of Bell’s the-
orem. A given proof—BELL, CHSH, HARDY, MERMIN, GHZ—
involves a collection of equalities and inequalities between var-
ious experimentally accessible probabilities. The proof speci-
fies a given quantum state (of a collection of entangled qubits,
for instance) and experimental settings (orientations of polar-
ization filters or Stern–Gerlach devices). All local realistic the-
ories of LR will obey the (in)equalities, while the observations
that QM will make when performing the experiment (assuming
that quantum mechanics is true) will violate these (in)equalities.
The experimenter QM still has a choice of the probabilities with
which the different combinations of settings will be applied, in
a long sequence of independent trials. In other words, he must
still decide how to allocate his resources over the different com-
binations of settings. At the same time, the LR can come up with
all kinds of different local realistic theories, predicting different
probabilities for the outcomes given the settings. She might put
forward different theories in response to different specific exper-
iments. Thus, the quantum experimenter will choose that prob-
ability distribution over his settings for which the best local re-
alistic model explains the data worst, when compared with the
true (quantum-mechanical) description.

B. Quantifying Statistical Strength—Past Approaches

How should we measure the statistical strength of a given
experimental setup? In the past it was often simply said that
the largest deviation in the Bell inequality is attained with such
and such filter settings, and hence the experiment which is done
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with these settings gives (potentially) the strongest proof of non-
locality. The argument is however not very convincing. One
should take account of the statistical variability in finite sam-
ples. The experiment that might confirm the largest absolute
deviation from local realistic theories might be subject to the
largest standard errors, and therefore be less convincing than an
experiment where a much smaller deviation can be proportion-
ally much more accurately determined.

Alternatively, the argument has just been that with a large
enough sample size, even the smallest deviation between two
theories can be made firm enough. For instance, [25] has said in
the context of a particular example

“… to produce the conundrum it is necessary to run the
experiment sufficiently many times to establish with over-
whelming probability that the observed frequencies (which
will be close to 25% and 75%) are not chance fluctuations
away from expected frequencies of 33% and 66%. (A mil-
lion runs is more than enough for this purpose)…”

We want to replace the words “sufficiently, ”“overwhelming,”
“more than enough” with something more scientific. (See Ex-
ample 4 for our conclusion with respect to this.) And as exper-
iments are carried out that are harder and harder to prepare, it
becomes important to design them so that they give conclusive
results with the smallest possible sample sizes. Initial work in
this direction has been done by Peres [28]. Our approach is com-
patible with his, and extends it in a number of directions—see
Section VII-B.

C. Quantifying Statistical Strength—Our Approach

We measure statistical strength using an information-theo-
retic quantification, namely the Kullback–Leibler (KL) diver-
gence (also known as information deficiency or relative entropy
[10]). We show (Appendix III) that for large samples, all rea-
sonable definitions of statistical strength that can be found in the
statistical and information-theoretic literature essentially coin-
cide with our measure. For a given type of experiment, we con-
sider the game in which the experimenter wants to maximize
the divergence while the local theorist looks for theories that
minimize it. The experimenter’s game space is the collection of
probability distributions over joint settings, which we call in the
sequel, for short, “setting distributions.” (More properly, these
are “joint setting distributions.”) The LR’s game space is the
space of local realistic theories. This game defines an experi-
ment, such that each trial (assuming quantum mechanics is true)
provides, on average, the maximal support for quantum theory
against the best explanation that local realism can provide, at
that setting distribution.

D. Our Results—Numerical

We determined the statistical strength of five two-party
proofs: Bell’s original proof and Peres’ optimized variant of it,
and the proofs of CHSH, Hardy, and Mermin. Among these,
CHSH turns out to be the strongest by far. We also determined
the strength of the three-party GHZ proof. Contrary to what
has sometimes been claimed (see Section VII), even the GHZ
experiment has to be repeated a fair number of times before a
substantial violation of local realism is likely to be observed.

Nevertheless, it is about 4.5 times stronger than the CHSH
experiment, meaning that, in order to observe the same support
for QM and against LR, the CHSH experiment has to be run
about 4.5 times as often as the GHZ experiment—we provide
precise numbers in Section VI.

E. Our Results—Mathematical

To find the (joint) setting distribution that optimizes the
strength of a nonlocality proof is a highly nontrivial com-
putation. In the second part of this paper, we prove several
mathematical properties of our notion of statistical strength.
These provide insights in the relation between LR and quantum
distributions that are interesting in their own right. They also
imply that determining statistical strength of a given nonlocality
proof may be viewed as a convex optimization problem that
can be solved numerically. We also provide a game-theoretic
analysis involving minimax and maximin KL divergences.
This analysis allows us to shortcut the computations in some
important special cases.

F. Organization of This Paper

Section II gives a formal definition of what we mean by a
nonlocality proof and the corresponding experiment, as well as
the notation that we will use throughout the paper. The kinds of
nonlocality proofs that this paper analyzes are described in Sec-
tion III, using the CHSH proof as a specific example; the other
proofs are described in more detail in Appendices I and II. The
definition of the “statistical strength of a nonlocality proof” in
terms of the KL divergence is presented in Section IV, along
with some standard facts about KL divergence and its role in
hypothesis testing. The strength of a nonlocality proof is now
well defined, but it it is not yet clear how to compute it. In Sec-
tion V, we develop the mathematical techniques needed to per-
form the computations efficiently: we establish topological, an-
alytical, and game-theoretic properties of statistical strength on
which our (mostly numerical, but sometimes exact) calculations
are based. This technical section may be skipped, since it is not
crucial for understanding of the remainder of the paper. Sec-
tion VI lists the results of our calculations of statistical strength
for six well-known proofs (with additional details again in Ap-
pendix II). The results are interpreted, discussed, and compared
in Section VII. In Section VIII, we present five conjectures that
are suggested by our results.

We defer all issues that require knowledge of the mathemat-
ical aspects of quantum mechanics to the appendices. There,
we provide more detailed information about the nonlocality
proofs we analyzed, the relation of KL divergence to hypothesis
testing, and the proofs of the theorems we present in the main
text.

II. FORMAL SETUP

A basic nonlocality proof (“quantum mechanics violates local
realism”) has the following ingredients. There are two parties

and , who can each do a measurement on one of two en-
tangled qubits. They may each choose from two different mea-
surement settings. In each trial of the experiment, and ran-
domly sample from the four different joint settings and each
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observe one of two different binary outcomes, say “ ” (false)
and “ ” (true). Quantum mechanics enables us to compute the
joint probability distribution of the outcomes as a function of the
measurement settings and of the joint state of the two qubits.
Thus, possible design choices are: the state of the qubits, the
values of the settings; and the probability distribution over the
settings. More complicated experiments may involve more par-
ties, more settings, and more outcomes. (We formalized the gen-
eral setup in [11]). In this text, we focus primarily on the basic

case, which stands for “two parties two mea-
surement settings per party two outcomes per measurement
setting.” In what follows, we introduce notation for all ingredi-
ents involved in nonlocality proofs.

A. Distribution of Settings

The random variable denotes the measurement setting of
party and the random variable denotes the measurement
setting of party . Both and take values in . The
experimenter QM will decide on the distribution of ,
giving the probabilities (and, after many trials of the experiment,
the frequencies) with which each (joint) measurement setting is
sampled. This setting distribution is identified with its prob-
ability vector , and is the unit
simplex in defined by

for all

We use to denote the set of vectors representing uncor-
related distributions in . Formally, if and only if

for all .

B. Measurement Outcomes

The random variable denotes the measurement outcome of
party and the random variable denotes that of party . Both

and take values in , where means “false” and
means “true.” Thus, the statement “ , ” describes
the event that party observed and party observed .

The distribution of depends on the chosen setting
. The state of the entangled qubits together with

the measurement settings determines four conditional distribu-
tions , , , for , one for each joint mea-
surement setting, where is the distribution of given
that measurement setting has been chosen. For example,

, abbreviated to , denotes the
probability that party observes and party observes ,
given that the device of is in setting and the device of is
in setting . According to QM, the total outcome
of a single trial is then distributed as , defined by

C. Definition of a Nonlocality Proof and Corresponding
Nonlocality Experiments

A nonlocality proof for two parties, two measurement set-
tings per party, and two outcomes per measurement is identi-
fied with an entangled quantum state of two qubits (realized,

by, e.g., two photons) and two measurement devices (e.g., po-
larization filters) which each can be used in one of two dif-
ferent measurement settings (polarization angles). Everything
about the quantum state, the measurement devices, and their
settings that is relevant for the probability distribution of out-
comes of the corresponding experiment can be summarized by
the four distributions of , one for each (joint) set-
ting . Henceforth, we will simply identify a

nonlocality proof with the vector of distributions
.

This definition can easily be extended in an entirely straight-
forward manner to a situation with more than two parties, two
settings per party, or two outcomes per setting [11].

We call a nonlocality proof
proper if and only if it violates local realism, i.e., if there
exists no LR distribution (as defined below) such that

for all .
For the corresponding nonlocality experiment

we have to specify the setting distribution with which the
experimenter QM samples the different settings . Thus,
for a single nonlocality proof , QM can use different experi-
ments (different in ) to verify Nature’s nonlocality. Each exper-
iment consists of a series of trials, where—per trial—the event

occurs with probability as defined in the pre-
vious section.

D. LR Theories

The LR may provide any “local” theory she likes to explain
the results of the experiments.

Under such a theory it is possible to talk about “the outcome
that would have observed, if she had used setting ,” indepen-
dently of which setting was used by and indeed of whether or
not actually did use setting or . Thus, we have four binary
random variables, which we will call , , , and . As
before, variables named correspond to ’s observations, and
variables named correspond to ’s observations. According
to LR, each experiment determines values for the four random
variables . For , de-
notes the outcome that party would have observed if the mea-
surement setting of had been . Similarly, for ,

denotes the outcome that party would have ob-
served if the measurement setting of had been .

A local theory may be viewed as a probability distribution
for . Formally, we define as a 16-dimensional
probability vector with indices . By
definition,

For example, denotes LR’s probability that, in all possible
measurement settings, and would both have observed .
The set of local theories can thus be identified with the unit
simplex in , which we will denote by .

As discussed earlier, the quantum state of the entangled
qubits determines four distributions over measurement out-
comes , one for each joint setting

. Similarly, each LR theory determines
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four distributions . These are the distri-
butions, according to the LR theory , of the random variables

given that setting has been chosen. Thus, the
value is defined as the sum of four terms

We suppose that LR does not dispute the actual setting distri-
bution which is used in the experiment, she only disputes the
probability distributions of the measurement outcomes given the
settings. According to LR therefore, the outcome of a single trial
is distributed as defined by

III. THE NONLOCALITY PROOFS

In this paper, we compute statistical strength for five (or six,
since we have two versions of Bell’s proof) celebrated nonlo-
cality proofs. In this section, we describe the general type of rea-
soning by which these nonlocality proofs are established, using
CHSH as a concrete example. Details on the other proofs can be
found in Appendices I and II.

Let us interpret the measurement outcomes and in terms
of Boolean logic, i.e., is “false” and is “true.” We can then
use Boolean expressions such as , which evaluates to
true whenever both and evaluate to “true,” i.e., when both

and . We derive the proofs by applying the rule
that if the event implies the event (in short
“ ”), then . In a similar vein, we will
use rules like

and

As an aside, we want to mention that the proofs of Bell,
CHSH, and Hardy all contain the following argument, which
can be traced back to the 19th century logician George Boole
(1815–1864) [8]. Consider four events such that

Then it follows that . And from this, it fol-
lows that . In the CHSH ar-
gument and the Bell argument, the events concern the equality
or inequality of one of the with one of the . In the Hardy
argument, the events concern the joint equality or inequality of
one of the , one of the , and a specific value or .

Example 1 (The CHSH Argument): For the CHSH argument
one notes that the implication

is logically true, and hence,

holds. As a result, local realism implies the following “CHSH
inequality:”

(1)

which can be violated by many choices of settings and states
under quantum theory. As a specific example, CHSH identi-
fied quantum states and settings such that the first probability
equals (approximately) while the three probabilities on
the right are each (approximately) , thus clearly violating
(1). In full detail, the probability distribution that corresponds to
CHSH’s proof is as follows:

(2)

In Appendix II-C, we explain how to arrive at this table. The
table lists the four conditional distributions

defined in Section II-C, and thus uniquely determines the non-
locality proof . As an example of how to read the table, note
that is given by

showing that the expression on the left in (1) is approximately
. That on the right evaluates to approximately .

The other nonlocality proofs are derived in a similar manner:
one shows that according to any and all LR theories, the random
variables , , , must satisfy certain logical constraints
and hence probabilistic (in)equalities. One then shows that these
constraints or (in)equalities can be violated by certain quantum-
mechanical states and settings corresponding to a table of prob-
abilities of observations similar to (2). Details on the (in)equal-
ities that must hold under local realism are given in Appendix I.
Details about the entangled quantum states that give rise to the
violations of the various (in)equalities are given in Appendix II.

IV. KL DIVERGENCE AND STATISTICAL STRENGTH

A. KL Divergence

In this section, we formally define our notion of “statistical
strength of a nonlocality proof.” The notion will be based on
the KL divergence, an information-theoretic quantity which we
now introduce. Let be an arbitrary finite set. For a distribu-
tion over , denotes the probability of event . For
two (arbitrary) distributions and defined over , the KL
divergence from to is defined as

where the logarithm is taken here, as in the rest of the paper, to
base . We use the conventions that, for , ,
and .
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The KL divergence is also known as relative entropy, cross-
entropy, information deficiency or -divergence. Introduced in
[22], KL divergence has become a central notion in information
theory, statistics, and large-deviation theory. A good reference is
[10]. It is straightforward to show (using concavity of the loga-
rithm and Jensen’s inequality) that with equality
if and only if ; in this sense, KL divergence behaves
like a distance. However, in general , so
formally is not a distance. In Appendix III, we explain
at length why KL divergence can be interpreted as a measure
of statistical closeness, and what exactly that means. Here we
merely give a very short and informal explanation.

1) KL Divergence and Statistical Strength in Simple Hypoth-
esis Testing: Let be a sequence of random variables
independently generated either by some distribution or by
some distribution with . Suppose we are given a
sample (sequence of outcomes) . We want to perform
a statistical test in order to find out whether the sample is from

or . Suppose that the sample is, in fact, generated by (“
is true”). Then, given enough data, the data will with very high
( -) probability be overwhelmingly more likely according to
than according to . That is, the data strongly suggest that they
were sampled from rather than . The “statistical distance”
between and indicates how strongly or, equivalently, how
convincingly data that are generated by will prove that they
are from rather than . It turns out that this notion of “statis-
tical distance” between two distributions is precisely captured
by the KL divergence , which can be interpreted as the
average amount of support in favor of and against per trial.
The larger the KL divergence, the larger the amount of support
per trial. In Appendix III, we explain at length what this means.
For now we merely give an example: suppose
for some , and we sample from times. Then we will
observe a sample that strongly indicates that it is very unlikely
that generated the data. How unlikely? With ( -) probability
very close to , our sample will make about as unlikely as the
hypothesis that a coin is fair if, after throws, it has landed
“heads” all the time—see Example 4.

2) KL Divergence and Statistical Strength in Composite Hy-
pothesis Testing: Trying to infer whether a sample was gen-
erated by or is called hypothesis testing in the statistical
literature. A hypothesis is simple if it consists of a single prob-
ability distribution. A hypothesis is called composite if it con-
sists of a set of distributions. The composite hypothesis “ ”
should be interpreted as “there exists a that generated
the data.” Earlier, we related the KL divergence to statistical
strength when testing two simple hypotheses against each other.
In this paper, the aim is to test two hypotheses, at least one
of which is composite. For concreteness, suppose we want to
test the distribution against the set of distributions . In
this case, under some regularity conditions on and , the
element that is closest in statistical divergence to
determines the statistical strength of the best test of against

. Therefore, for a set of distributions on we define (as
is customary, [10])

Analogously to , may be interpreted as the
average amount of support in favor of and against per trial,
if data are generated according to .

In our case, QM claims that data are generated by the distri-
bution . LR claims that data are generated by some ,
where . Here corresponds to a non-
locality proof equipped with setting distribution , and is
the set of probability distributions of all possible local theories
with the same —see Section II. QM and LR agree to test the
hypothesis against . QM, who knows that data are really
generated according to , wants to select in such a way that
the average amount of support in favor of and against is
maximized. Let denote the set of all settings that
QM is allowed to choose from. The previous discussion sug-
gests that QM should pick the that maximizes statis-
tical strength . In Appendix III, we show that this is
(in some sense) also the optimal choice according to statistical
theory.

B. Formal Definition of Statistical Strength

We define “the statistical strength of nonlocality proof ” in
three different manners, depending on the freedom that we allow
QM in determining the sampling probabilities of the different
measurement settings.

Definition 1 (Strength, Uniform Settings): When each mea-
surement setting is sampled with equal probability, the resulting
strength is defined by

where denotes the uniform distribution over the settings.

Definition 2 (Strength, Uncorrelated Settings): When the ex-
perimenter QM is allowed to choose any distribution on mea-
surement settings, as long as the distribution for each party is
uncorrelated with the distributions of the other parties, the re-
sulting strength is defined by

where denotes the use of uncorrelated settings.

Definition 3 (Strength, Correlated Settings): When the ex-
perimenter QM is allowed to choose any distribution on mea-
surement settings (including correlated distributions), the re-
sulting strength is defined by

where denoted the use of correlated settings.

Throughout the remainder of the paper, we sometimes abbre-
viate the subscript to , and to . As we
explain in Section VII, we regard the definition allowing
maximization over uncorrelated distributions as the “right” one.
Henceforth, whenever we speak of “statistical strength” without
further qualification, we refer to . Nevertheless, to facilitate
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comparisons, in Section VI we list our results also for the two
alternative definitions of statistical strength.

We have now completed our formal definition of statistical
strength. The paper now branches into two parts, which can be
read separately: Section V is the mathematical part of this paper.
Here we list some essential topological, analytical and game-
theoretic properties of our three notions of strength, needed for
computing statistical strength in practice. The other part con-
sists of Section VI and all sections thereafter. In Section VI, we
calculate statistical strength for various nonlocality proofs. The
only mathematical result from Section V that is needed in Sec-
tion VI and all sections thereafter is the following reassuring
fact (Theorem 1, Section V-A, part 2 c)).

Fact 1: . Moreover, if and
only if is a proper nonlocality proof.

V. MATHEMATICAL AND COMPUTATIONAL PROPERTIES OF

STATISTICAL STRENGTH

In this section, we prove several mathematical properties of
our three variations of statistical strength. Some of these are
interesting in their own right, giving new insights into the re-
lation between distributions predicted by quantum theory and
LR approximations of it. But their main purpose is to help us
compute . We first establish some basic properties of our
three notions of strength (Section V-A). Section V-B provides
a game-theoretic analysis which will help to compute very
efficiently in certain special cases. Finally, in Section V-C, we
explicitly explain how to compute in practice.

A. Basic Properties

We proceed to list some essential properties of , ,
and . We say that “nonlocality proof is absolutely con-
tinuous [12] with respect to LR theory ” if and only if for all

, , it holds that if then
.

Theorem 1: Let be a given (not necessarily )
nonlocality proof and the (corresponding) set of LR theories.

1) Let , then we have the fol-
lowing.

a) For a proof, we have that

(3)

Hence, the KL divergence may alter-
natively be viewed as the average KL divergence be-
tween the conditional distributions of given
the setting , where the average is over the set-
ting. For a generalized nonlocality proof, the anal-
ogous generalization of (3) holds.

b) For fixed , is convex and lower semicon-
tinuous on , and continuous and differentiable on
the interior of .

c) If is absolutely continuous with respect to some
fixed , then is linear in .

2) Let

(4)

then
a) For all , the infimum in (4) is achieved for

some .
b) The function is nonnegative, bounded, con-

cave, and continuous on .
c) If is not a proper nonlocality proof, then for all

, . If is a proper nonlocality
proof, then for all in the interior of .

d) For a two-party, two measurement settings per party
nonlocality proof, we further have that, even if is
proper, then still for all on the boundary
of .

3) Suppose that is in the interior of , then we have the
following.

a) Let be a nonlocality proof. Suppose
that is nontrivial in the sense that, for some , ,

is not a point mass (i.e.,
for some , ). Then achieves the infimum
in (4) if and only if the following 16 (in)equalities
hold:

(5)

for all with
and

(6)

for all with
.

For generalized nonlocality proofs, the theory
achieves (4) if and only if the corresponding

analogs of (5) and (6) both hold.
b) Suppose that and both achieve the infimum in

(4). Then for all , with
, we have

In words, and coincide in every measure-
ment setting for every measurement outcome that
has positive probability according to , and is
absolutely continuous with respect to and .

The proof of this theorem is given in Appendix IV-B.
In general, may be achieved for several, dif-

ferent . By part 2) of the theorem, these must induce the same
four marginal distributions . It also follows directly from
part 2) of the theorem that, for proofs

is achieved for some , where for all
.
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B. Game-Theoretic Considerations

The following considerations will enable us to compute
very efficiently in some special cases, most notably the CHSH
proof.

We consider the following variation of our basic scenario.
Suppose that, before the experiments are actually conducted, LR
has to decide on a single local theory (rather than the set ) as
an explanation of the outcomes that will be observed. QM then
gets to see this and can choose depending on the that has
been chosen. Since QM wants to maximize the strength of the
experiment, he will pick the achieving .
In such a scenario, the “best” LR theory, minimizing statistical
strength, is the LR theory that minimizes, over ,

. Thus, in this slightly different setup, the
statistical strength is determined by

rather than

Below we show that . As we already argued in Sec-
tion VII, we consider the definition to be preferable over

. Nevertheless, it is useful to investigate under what condi-

tions . Von Neumann’s famous minimax theorem
of game theory [26] suggests that

(7)

if is a convex subset of . Indeed, Theorem 2 below shows
that (7) holds if we take . Unfortunately, is not
convex, and (7) does not hold in general for , whence
in general . Nevertheless, Theorem 3 provides some
conditions under which (7) does hold with . In Sec-
tion V-C, we put this fact to use in computing for the CHSH
nonlocality proof. But before presenting Theorems 2 and 3, we
first need to introduce some game-theoretic terminology.

1) Game-Theoretic Definitions:

Definition 4 (Statistical Game [13]): A statistical game is
a triplet where and are arbitrary sets and

is a loss function. If

we say that the game has value with

If for some we have

For all

For all

then we call a saddle point of the game. It is
easily seen (Proposition 1, Appendix IV) that, if achieves

and achieves ,

and the game has value , then is a saddle point and
.

Definition 5 (Correlated Game): With each nonlocality
proof we associate a corresponding correlated game, which is
just the statistical game defined by the triple , where

is defined by

By the definition above, if this game has a value then it is equal
to defined by

We call the game correlated because we allow distributions
over measurement settings to be such that the probability that
party is in setting is correlated with (is dependent on) the
setting of party . The fact that each correlated game has a
well-defined value is made specific in Theorem 2 below.

Definition 6 (Uncorrelated Game): Recall that we use
to denote the set of vectors representing uncorrelated distribu-
tions in . With each nonlocality proof we can associate the
game which we call the corresponding uncorre-
lated game.

2) Game-Theoretic, Saddle Point Theorems:

Theorem 2 (Saddle Point, Correlated Settings): For every
(generalized) nonlocality proof, the correlated game
corresponding to it has a finite value, i.e., there exist a

with .
The infimum on the left is achieved for some ; the
supremum on the right is achieved for some in , so that

is a saddle point.

The proof of this theorem is in Appendix IV-C-II.
In the information-theoretic literature, several well-known

minimax and saddle point theorems involving the KL diver-
gence exist; we mention [21], [33]. However, all these deal with
settings that are substantially different from ours.

In the case where there are two parties and two measurement
settings per party, we can say a lot more.

Theorem 3 (Saddle Point, Nonlocality Proofs):
Fix any proper nonlocality proof based on two parties with

two measurement settings per party and let and
be the corresponding correlated and uncorrelated

games, then we have the following.

1) The correlated game has a saddle point with value .
Moreover

(8)

(9)

2) Let

achieves

achieves
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then
a) is nonempty,
b) ,
c) all are “equalizer strategies,” i.e., for all

we have the equality .
3) The uncorrelated game has a saddle point if and only if

there exists , with , such that
a) achieves ,
b) is an equalizer strategy.

If such exists, it is a saddle point.
The proof of this theorem is in Appendix IV-C3.

C. Computing Statistical Strength

We are now armed with the mathematical tools needed to
compute statistical strength. By convexity of in , we
see that for fixed , determining
is a convex optimization problem, which suggests that numer-
ical optimization is computationally feasible. Interestingly, it
turns out that computing is formally equivalent to
computing the maximum likelihood in a well-known statistical
missing data problem. Indeed, we obtained our results by using a
“vertex direction algorithm” [16], a clever numerical optimiza-
tion algorithm specifically designed for such problems.

By concavity of as defined in Theorem 1, we see that
determining is a concave optimization problem. Thus,
numerical optimization can again be performed. There are some
difficulties in computing the measure , since the set
over which we maximize is not convex. Nevertheless, for the
small problems (few parties, particles, measurement settings)
we consider here it can be done.

In some special cases, including CHSH, we can do all the
calculations by hand and do not have to resort to numerical
optimization. We do this by making an educated guess of the
achieving , and then verify our guess using
Theorem 1 and the game-theoretic tools developed in The-
orem 3. This can best be illustrated using CHSH as an example.

Example 2 (CHSH, Continued): Consider the CHSH nonlo-
cality argument. The quantum distributions , given in the table
in Section III have traditionally been compared with the local
theory defined by

and otherwise. This gives rise to the following
probability table:

(10)

There exists no local theory that has uniformly smaller
absolute deviations from the quantum probabilities in all four
tables. Even though, in general, absolute deviations are not a

TABLE I
STRENGTHS OF VARIOUS NONLOCALITY PROOFS

good indicator of statistical strength, based on the fact that all
four tables “look the same,” we may still guess that, in this
particular case, for uniform measurement settings ,

, the optimal LR theory is given by the defined
above. We can now use Theorem 1, part 3 a) to check our
guess. Checking the 16 (in)equalities (5) and (6) shows that
our guess was correct: achieves for the uniform
measurement settings . It is clear that is an equalizer strategy
and that is uncorrelated. But now Theorem 3, part 3) tells
us that is a saddle point in the uncorrelated game. This
shows that achieves . Therefore,
the statistical strength of the CHSH nonlocality proof must be
given by

which is straightforward to evaluate.

VI. THE RESULTS

Table I summarizes the statistical strengths of the nonlocality
proofs of Bell, CHSH, Hardy, Mermin, and GHZ. For each proof
we consider the three possibilities for the measurement settings,
which can be uniform, uncorrelated, or correlated as explained
in Section IV-B. Note that the numbers in the middle column
correspond to the “right” definition , which optimizes over
measurement settings that are uncorrelated from each other. The
data that underlies the strengths of the table are described in
Appendix II; here we will highlight the most important cases.

Example 3 (The Strength of CHSH): To help interpret
Table I, we continue our Examples 1 and 2 on CHSH. See the
table (2) or, equivalently, Table XIV for the probabilities of
this nonlocality proof that uses two parties, two measurement
settings, and two possible measurement outcomes (see Sec-
tion II-C for details). The entry in the first (“uniform”) column
for the CHSH proof in Table I was obtained as follows. The
distribution of the measurement settings was set to the uni-
form distribution . Together with
the probabilities of the nonlocality proof this results in a joint
distribution on measurement settings and outcomes. This

was used to determine the optimal local theory
that obtains the minimum in

The resulting can be found numerically and it, together with
the corresponding distributions, turns out to be the same
as the local theory given in Example 2. The KL divergence be-
tween and can now be calculated: It is equal to

, as can be seen from the leftmost entry in Table I
in the CHSH row.
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To get the rightmost entry in this row, we performed the
same computation for all (we will explain later how
to do this efficiently). We found that the resulting KL diver-
gence (where depends on ) was, in fact,
maximized for : there was no gain in trying any other
value for . Thus, the rightmost column is equal to the leftmost
column. Finally, Fact 1, listed at the end of Section IV, implies
that the middle column entry must be between the leftmost and
the rightmost, explaining the entry in the middle column. In
this highly symmetric case, it is actually possible to calculate
the strengths analytically, giving

for the CHSH proof.
The corresponding analyses for the other nonlocality proofs

are done in Appendix II, which also gives the quantum states and
measurements that each proof utilizes. Unlike the CHSH case,
the other nonlocality proofs have different strengths depending
on the allowed measurement settings (uniform, uncorrelated, or
correlated). All this results in a rather long list of tables of opti-
mized distributions, which we will not duplicate in this section.

How to interpret and compare the values of the strengths of
the nonlocality proofs is probably best explained in the fol-
lowing example.

Example 4 (Mermin’s “A Million Runs”): We recall
Mermin’s quote from the Introduction where he says that “a
million runs” of his experiment should be enough to convince
us that “the observed frequencies are not chance fluctua-
tions.” We now can put numbers to this.

Assuming that we perform Mermin’s experiment with the
optimized, uncorrelated settings, we should get a strength of

. This means that after
the million runs of the experiment, the likelihood of local re-
alism still being true is comparable with the likelihood of a coin
being fair after 19 150 tosses when the outcome was “tails” all
the time.

From Table I we see that in the two-party setting, the non-
locality proof of CHSH is much stronger than those of Bell,
Hardy, or Mermin, and that this optimal strength is obtained for
uniform measurement settings. Furthermore it is clear that the
three-party proof of GHZ is four and a half times stronger than
all the two-party proofs.

We also note that the nonlocality proof of Mermin—in the
case of nonuniform settings—is equally strong as the optimized
version of Bell’s proof. The setting distributions tables in Ap-
pendix II-E shows why this is the case: the optimal setting dis-
tribution for Mermin exclude one setting on ’s side, and one
setting on ’s side, thus reducing Mermin’s proof to that of Bell.

One can view this is as an example of how a proof that is easier
to understand (Mermin) is not necessarily stronger than one that
has more subtle arguments (Bell).

We also see that in general, except for CHSH’s proof, uniform
setting distributions do not give the optimal strength of a non-
locality proof. Rather, the experimenter obtains more evidence
for the nonlocality of nature by employing sampling frequen-
cies that are biased toward those settings that are more relevant
for the nonlocality proof.

VII. INTERPRETATION AND DISCUSSION

A. Is Our Definition of Statistical Strength the Right One?

We can think of two objections against our definition of sta-
tistical strength. First, we may wonder whether the KL diver-
gence is really the right measure to use. Second, assuming that
KL divergence is the right measure, is our game-theoretic setup
justified? We treat both issues in turn.

1) Is KL Divergence Justified?: We can see two possible
objections against KL divergence: 1) different statistical
paradigms such as the “Bayesian” and “frequentist” paradigms
define “amount of support” in different manners (Appendix III);
2) “asymptopia”: KL divergence is an inherently asymptotic
notion.

These two objections are inextricably intertwined: there ex-
ists no nonasymptotic measure which would a) be acceptable
to all statisticians; b) would not depend on prior considerations,
such as a “prior distribution” for the distributions involved in
the Bayesian framework, and a preset significance level in the
frequentist framework. Thus, since we consider it most impor-
tant to arrive at a generally acceptable and objective measure,
we decided to opt for the KL divergence. We add here that even
though this notion is asymptotic, it can be used to provide nu-
merical bounds on the actual, nonasymptotic amount of support
provided on each trial, both in Bayesian and in frequentist terms.
We have not pursued this option any further here.

2) Game-Theoretic Justification: There remains the ques-
tion of whether to prefer , or, as we do, . The
problem with is that, for any given combination of nonlo-
cality proof and local theory , some settings may provide, on
average, more information about the nonlocality of nature than
others. This is evident from Table I. We see no reason for the
experimenter not to exploit this.

On the other hand, allowing QM to use correlated distribu-
tions makes QM’s case much weaker: LR might now argue that
there is some hidden communication between the parties. Since
QM’s goal is to provide an experiment that is as convincing as
possible to LR, we do not allow for this situation. Thus, among
the three definitions considered, seems to be the most rea-
sonable one. Nevertheless, one may still argue that none of the
three definitions of strength are correct: they all seem unfavor-
able to QM, since we allow LR to adjust his theory to whatever
frequency of measurement settings QM is going to use. In con-
trast, our definition does not allow QM to adjust his setting dis-
tribution to LR’s choice (which would lead to strength defined
as rather than , Section V-B). The reason why
we favor LR in this way is that the quantum experimenters QM
should try to convince LR that nature is nonlocal in a setting
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about which LR cannot complain. Thus, if LR wants to enter-
tain several local theories at the same time, or wants to have a
look at the probabilities before the experiment is conducted,
QM should allow him to do so—he will still be able to con-
vince LR, even though he may need to repeat the experiment
a few more times. Nevertheless, in developing clever strategies
for computing , it turns out to be useful to investigate the

scenario in more detail. This was done in Section V-B.
Summarizing, our approach is highly nonsymmetric be-

tween quantum mechanics and local realism. There is only one
quantum theory, and QM believes in it, but he must arm himself
against any and all LRs.1

B. Related Work by Peres

Earlier work in our direction has been done by Peres [28] who
adopts a Bayesian approach. Peres implicitly uses the same def-
inition of strength of nonlocality proofs as we do here, after
merging equal probability joint outcomes of the experiment.
Our work extends his in several ways; most importantly, we
allow the experimentalist to optimize her experimental settings,
whereas Peres assumes particular (usually uniform) distribu-
tions over the settings. Peres determines LR’s best theory by
an inspired guess. The proofs he considers have so many sym-
metries, that the best LR theory has the same equal probability
joint outcomes as the QM experiment, the reduced experiment
is binary, and his guess always gives the right answer. But his
strategy would not work for, e.g., the Hardy proof, which is less
symmetric.

Peres starts out with a nonlocality proof to be tested
against local theory , for some fixed distribution . Peres
then defines the confidence depressing factor for trials. In
fact, Peres rediscovers the notion of KL divergence, since a
straightforward calculation shows that for large

(confidence depressing factor) (11)

For any given large , the larger the confidence depressing factor
for , the more evidence against we are likely to get on the
basis of trials. Thus, when comparing a fixed quantum ex-
periment (with fixed ) to a fixed local theory , Peres’
notion of strength is equivalent to ours. Peres then goes on to
say that, when comparing a fixed quantum experiment to
the corresponding set of all local theories , we may expect
that LR will choose the local theory with the least confidence
depressing factor, i.e., the smallest KL divergence to . Thus,
whenever Peres chooses uniform , his notion of strength cor-
responds to our , represented in the first column of Table I.
In practice, Peres chooses an intuitive , which is usually, but

1Some readers might wonder what would happen if one would replace the
D(QkP ) in our analysis by D(PkQ). In short, D(PkQ) quantifies how
strongly the predictions of quantum mechanics disagree with the outcomes
of a classical system P . Hence, such an analysis would be useful if one had
to prove that the statistics of a local realistic experiment (say, a network of
classically communicating computers) were not in correspondence with certain
predictions of quantum mechanics. The minimax solution of the game based
on D(PkQ) provides a value of Q which QM should specify as part of a
challenge to LR to reproduce quantum predictions with LR’s theory. With this
challenge, the computer simulation using LR’s theory can be run in as short as
possible amount of time, before giving sufficient evidence that LR has failed.

not always, uniform in our sense. For example, in the GHZ sce-
nario, Peres implicitly assumes that only those measurement set-
tings are used that correspond to the probabilities (all or ) ap-
pearing in the GHZ inequality (12), Appendix I-D. Thus, his ex-
periment corresponds to a uniform distribution on those four set-
tings. Interestingly, such a distribution on settings is not allowed
under our definition of strength , since it makes the proba-
bility of the setting at party A dependent on (correlated with) the
other settings. This explains that Peres obtains a larger strength
for GHZ than we do: he obtains ,
which corresponds to our : the uniform distribution on the
restricted set of settings appearing in the GHZ proof turns out to
be the optimum over all distributions on measurement settings.

Our approach may be viewed as an extension of Peres’ in sev-
eral ways. First, we relate his confidence depressing factor to
the KL divergence and we argue that this is the right measure to
use not just from a Bayesian point of view, but also from an in-
formation-theoretic point of view and the standard, “orthodox”
frequentist statistics point of view. Second, we extend his anal-
ysis to nonuniform distributions over measurement settings
and show that in some cases, substantial statistical strength can
be gained if QM uses nonuniform sampling distributions. Third,
we give a game-theoretic treatment of the maximization of and
develop the necessary mathematical tools to enable fast com-
putations of statistical strength. Fourth, whereas Peres finds the
best LR theory by cleverly guessing, we show the search for this
theory can be performed automatically.

C. Which Nonlocality Proof is Strongest and What Does it
Mean?

1) Caveat: Statistical Strength is Not the Whole Story: First
of all, we stress that statistical strength is by no means the only
factor in determining the “goodness” of a nonlocality proof and
its corresponding experiment. Various other aspects also come
into play, such as: how easy is it to prepare certain types of par-
ticles in certain states? Can we arrange to have the time and
spatial separations which are necessary to make the results con-
vincing? Can we implement the necessary random changes, in
settings per trial, quickly enough? Our notion of strength ne-
glects all these important practical aspects.

2) Comparing GHZ and CHSH: GHZ is the clear winner
among all proofs that we investigated, being about 4.5 times
stronger than CHSH, the strongest two-party proof that we
found. This means that, to obtain a given level of support
for QM and against LR, the optimal CHSH experiment has
to be repeated about 4.5 times as often as the optimal GHZ
experiment.

On the other hand, the GHZ proof is much harder to prepare
experimentally. In light of the reasoning above, and assuming
that both CHSH and GHZ can be given a convincing experi-
mental implementation, it may be the case that repeating the
CHSH experiment times is much cheaper than repeating
GHZ times.

3) Nonlocality “Without Inequality”?: The GHZ proof was
the first of a new class of proofs of Bell’s theorem, “without
inequalities.” It specifies a state and collection of settings, such
that all QM probabilities are zero or one, while this is impossible
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under LR. The QM probabilities involved are just the probabil-
ities of the four events in (12), Appendix I-D. The fact that all
these must be either or has led some to claim that the corre-
sponding experiment has to be performed only once in order to
rule out local realism.2 As has been observed before [28], this is
not the case. This can be seen immediately if we let LR adopt
the uniform distribution on all possible observations. Then, al-
though QM is correct, no matter how often the experiment is
repeated, the resulting sequence of observations does not have
zero probability under LR’s local theory—simply because no
sequence of observations has probability under LR’s theory.
We can only decide that LR is wrong on a statistical basis: the
observations are much more likely under QM than under LR.
This happens even if, instead of using the uniform distribution,
LR uses the local theory that is closest in KL divergence to the

induced by the GHZ scenario. The reason is that there exists
a positive such that any LR theory which comes within of all
the equalities but one, is forced to deviate by more than in the
last. Thus, accompanying the GHZ style proof without inequal-
ities, is an implied inequality, and it is this latter inequality that
can be tested experimentally.

VIII. FUTURE EXTENSIONS AND CONJECTURES

The purpose of our paper has been to objectively compare
the statistical strength of existing proofs of Bell’s theorem. The
tools we have developed can be used in many further ways.

First, one can take a given quantum state and ask the fol-
lowing question: what is the best experiment which can be done
with it? This leads to a measure of statistical nonlocality of a
given joint state, whereby one is optimizing (in the outer op-
timization) not just over setting distributions, but also over the
settings themselves, and even over the number of settings.

Second, one can take a given experimental type, for instance:
the type, and ask what is the best state, settings,
and setting distribution for that type of experiment? This comes
down to replacing the outer optimization over setting distribu-
tions, with an optimization over states, settings, and setting dis-
tribution.

Using numerical optimization, we were able to analyze a
number of situations, leading to the following conjectures.

Conjecture 1: Among all proofs, and allowing
correlated setting distributions, CHSH is best.

Conjecture 2: Among all proofs, and allowing
correlated setting distributions, GHZ is best.

Conjecture 3: The best experiment with the Bell singlet state
is the CHSH experiment.

In [1], Acín et al. investigated the natural generalization of
CHSH type experiments to qutrits. Their main interest was the
resistance of a given experiment to noise, and to their surprise
they discovered in the case, that a less entangled state
was more resistant to noise than the maximally entangled state.
After some preliminary investigations, we found that a similar

2Quoting [28], “The list of authors [claiming that a single experiment is suf-
ficient to invalidate local realism] is too long to be given explicitly, and it would
be unfair to give only a partial list.”

experiment with an even less entangled state gives a stronger
nonlocality experiment.

Conjecture 4: The strongest possible nonlocality
proof has statistical strength , and it uses the bipartite state

If true, this conjecture is in remarkable contrast with what
appears to be the strongest possible nonlocality proof
that uses the maximally entangled state

which has a statistical strength of only .
Conjecture 4 suggests that it is not always the case that a

quantum state with more “entropy of entanglement” [6] will
always give a stronger nonlocality proof. Rather, it seems that
entanglement and statistical nonlocality are different quantities.
One possibility, however, is that the counterintuitive results just
mentioned would disappear if one could do joint measurements
on several pairs of entangled qubits, qutrits, or whatever. A reg-
ularized measure of nonlocality of a given state would be the
limit, for , of the strength of the best experiment based
on copies of the state (where the parties are allowed to make
joint measurements on systems at the same time), divided by

. One may conjecture, for instance, that the best experiment
based on two copies of the Bell singlet state is more than twice as
good as the best experiment based on single states. That would
be a form of “superadditivity of nonlocality,” quite in line with
other forms of superadditivity which is known to follow from
entanglement.

Conjecture 5: There is an experiment on pairs of Bell sin-
glets, of the type, more than twice as strong as CHSH,
and involving joint measurements on the pairs.

APPENDIX I
THE NONLOCALITY ARGUMENTS

In this appendix, we present the inequalities and logical con-
straints that must hold under local realism yet can be violated
under quantum mechanics. The specific quantum states chosen
to violate these inequalities, as well as the closest possible (in
the KL divergence sense) local theories are listed in Appendix II.

A. Arguments of Bell and CHSH

CHSH’s argument was described in Example 1. By exactly
the same line of reasoning as used in obtaining the CHSH in-
equality (1), one also obtains Bell’s inequality

See Sections II-A and B for how this inequality can be violated.

B. Hardy’s Argument

Hardy noted the following: if is true, and
is true, and is true, then is true.

Thus, implies: or or
. Therefore,
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On the other hand, according to quantum mechanics it is pos-
sible that the first probability is positive, in particular, equals

, while the three other probabilities here are all zero. See
Section II-D for the precise probabilities.

C. Mermin’s Argument

Mermin’s argument uses three settings on both sides
of the two parties, thus giving the set of six events

. First, observe that the three equal-
ities in imply at least
one of the three statements in

. By the
standard arguments that we used before, we see that

and that

As a result we have the “Mermin inequality”

which gets violated by a state and measurement setting that has
probabilities

and

for (see Appendix II-E).

D. GHZ’s Argument

Starting with [15], GHZ’s proofs against local realism have
been based on systems of three or more qubits, on systems of
higher dimensional quantum systems, and on larger sets of mea-
surements (settings) per particle. Each time we are allowed to
search over a wider space we may be able to obtain stronger
nonlocality proofs, though each time the actual experiment may
become harder to set up in the laboratory.

Let denote the exclusive or operation such that is
true if and only if . Then the following implication must
hold:

Now, by considering the contrapositive, we get

And because , this gives
us GHZ ’s inequality

(12)

This inequality can be violated by a three-way entangled state
and measurement settings that give and

.
The details of this proof are in Appendix II-F.

APPENDIX II
THE NONLOCALITY PROOFS, THEIR OPTIMAL SETTING

DISTRIBUTIONS, AND BEST CLASSICAL THEORIES

In this appendix, we list the nonlocality proofs of Bell, an op-
timized version of Bell, CHSH, Hardy, Mermin, and GHZ and
their solutions. The proofs themselves are described by a mul-
tipartite quantum state and the measurement bases of the
parties. Because all bases are two dimensional in the following
proofs, it is sufficient to only describe the vector , where it
is understood that the other basis vector is the orthog-
onal one. Because of its frequent use, we define for the whole
appendix the rotated vector . A
measurement setting refers to the bases that parties use during a
trial of the experiment. All proofs, except Mermin’s, have two
different settings per party (in MERMIN they have three).

Given the state and the measurement bases, the proof is sum-
marized in a table of probabilities of the possible measurement
outcomes. Here we list these probabilities conditionally on the
specific measurement settings. For example, for Bell’s original
nonlocality proof, which uses the state

and the measurement vectors and
, we list the probability

in the table.
As discussed in Section IV-B, the strength of a nonlocality

proof will depend on the probabilities with which the par-
ties use the different measurement settings. Recall that we de-
fined three different notions of strength, depending on how these
probabilities are determined: uniform settings , uncorre-
lated settings , and correlated settings . For both
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TABLE II
QUANTUM PREDICTIONS ORIGINAL BELL

TABLE III
BEST CLASSICAL THEORY FOR UNIFORM SETTINGS ORIGINAL BELL. KL DISTANCE: 0:0141597409

TABLE IV
OPTIMIZED UNCORRELATED SETTING DISTRIBUTION ORIGINAL BELL

TABLE V
BEST CLASSICAL THEORY FOR UNCORRELATED SETTINGS ORIGINAL BELL. KL DISTANCE: 0:0158003672

the correlated and the uncorrelated settings, the parties can opti-
mize their setting distributions to get the strongest possible sta-
tistics to prove the nonlocality of their measurement outcomes.
We list these optimal distributions below where, for example,

stands for the probability that party
uses the measurement basis
and is the probability that uses the
basis while uses the basis

, etc.
Associated with these optimal distributions there is an op-

timal LR theory (see Section IV-B). We do not list the
-probabilities for such optimal classical theories as this would

be too cumbersome and not very enlightening. Instead, we show
the corresponding probabilities , which should be com-
pared with the -tables of the nonlocality proofs. Combining
these data tables for each proof and each scenario we obtain the
strengths that were listed in Section VI.

A. Original Bell

For Bell’s proof of nonlocality we have to make a distinction
between the original version, which Bell described [5], and the
optimized version, which is described by Peres in [27].

First, we discuss Bell’s original proof. Take the bipartite state
, and the measurement settings

and

TABLE VI
OPTIMIZED CORRELATED SETTING DISTRIBUTION ORIGINAL BELL

and

With these settings, quantum mechanics predicts the
conditional probabilities of Table II (where

and ).
1) Uniform Settings, Original Bell: When the two parties

use uniform distributions for their settings, the optimal classical
theory is the one described in Table III. The corresponding KL
divergence is .

2) Uncorrelated Settings, Original Bell: The optimized, un-
correlated setting distribution is described in Table IV. The prob-
abilities of the best classical theory for this uncorrelated set-
ting distribution are those in Table V. The KL divergence for
Bell’s original proof, with uncorrelated measurement settings
is .

3) Correlated Settings, Original Bell: The optimized,
correlated setting distribution is described in Table VI. The
probabilities of the best classical theory for this distribution are
described in Table VII. The corresponding KL divergence is

.
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TABLE VII
BEST CLASSICAL THEORY FOR CORRELATED SETTINGS ORIGINAL BELL. KL DISTANCE: 0:0169800305

TABLE VIII
QUANTUM PREDICTIONS OPTIMIZED BELL

TABLE IX
BEST CLASSICAL THEORY FOR UNIFORM SETTINGS OPTIMIZED BELL. KL DISTANCE: 0:0177632822

TABLE X
OPTIMIZED UNCORRELATED SETTING DISTRIBUTION OPTIMIZED BELL

TABLE XI
BEST CLASSICAL THEORY FOR UNCORRELATED SETTINGS OPTIMIZED BELL. KL DISTANCE: 0:0191506613

B. Optimized Bell

Take the bipartite state , and the mea-
surement settings

and

and

With these settings, quantum mechanics predicts the condi-
tional probabilities of Table VIII.

1) Uniform Settings, Optimized Bell: For the uniform set-
ting distribution the best classical approximation is given in
Table IX, which gives a KL divergence of .

2) Uncorrelated Settings, Optimized Bell: The optimal, un-
correlated setting distribution is given in Table X. The probabil-
ities of the best classical theory for this distribution are those of
Table XI. The corresponding KL divergence is .

3) Correlated Settings, Optimized Bell: The optimal corre-
lated setting distribution is given in Table XII. The probabili-
ties of the best classical theory for this distribution is given in
Table XIII. The corresponding KL divergence is .

TABLE XII
OPTIMIZED CORRELATED SETTING DISTRIBUTION OPTIMIZED BELL

C. CHSH

The bipartite state . ’s and ’s mea-
surement settings are

and

and

With these settings, quantum mechanics predicts the conditional
probabilities of Table XIV (with and

).
Uniform, Uncorrelated, and Correlated Settings, CHSH:
The optimal measurement settings is the uniform settings,

where both and use one of the two measurements with prob-
ability (that is, )
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TABLE XIII
BEST CLASSICAL THEORY FOR CORRELATED SETTINGS OPTIMIZED BELL. KL DISTANCE: 0:0211293952

TABLE XIV
QUANTUM PREDICTIONS CHSH

TABLE XV
BEST CLASSICAL THEORY FOR UNIFORM SETTINGS CHSH. KL DISTANCE: 0:0462738469

TABLE XVI
QUANTUM PREDICTIONS HARDY

TABLE XVII
BEST CLASSICAL THEORY FOR UNIFORM SETTINGS HARDY. KL DISTANCE: 0.0278585182

The optimal classical theory in this scenario has the probabil-
ities of Table XV.

D. Hardy

The bipartite state , with

and

(such that indeed ). ’s and ’s measurement
settings are now identical and given by

With these settings, quantum mechanics predicts the conditional
probabilities of Table XVI.

1) Uniform Settings, Hardy: For uniform measurement set-
tings, the best classical theory to describe the quantum me-
chanical statistics is given in Table XVII, with KL divergence:

.
2) Uncorrelated Settings, Hardy: The optimized uncorre-

lated setting distribution is given in Table XVIII. The proba-
bilities of the best classical theory for this distribution are in
Table XIX. The corresponding KL divergence is .

3) Correlated Settings, Hardy: The optimized correlated
setting distribution is given in Table XX. The probabilities of
the best classical theory for this distribution are described in
Table XXI. The corresponding KL divergence is .

E. Mermin

In [25], we find the following nonlocality proof with two par-
ties, three measurement settings, and two possible outcomes.
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TABLE XVIII
OPTIMIZED UNCORRELATED SETTING DISTRIBUTION HARDY

TABLE XIX
BEST CLASSICAL THEORY FOR UNCORRELATED SETTINGS HARDY. KL DISTANCE: 0:0279816333

TABLE XX
OPTIMIZED CORRELATED SETTING DISTRIBUTION HARDY

Let the entangled state be , and the mea-
surement settings:

With these settings, quantum mechanics predicts the conditional
probabilities of Table XXII.

1) Uniform Settings, Mermin: The probabilities of the best
classical theory for the uniform measurement settings is give in
Table XXIII.

2) Uncorrelated Settings, Mermin: The optimal uncor-
related setting distribution is given in Table XXIV. The
probabilities of the best classical theory for this distribution is
in Table XXV.

3) Correlated Settings, Mermin: The optimal correlated
setting distribution is given in Table XXVI (note that there
are also other optimal distributions). The probabilities of
the best classical theory for this specific distribution are de-
scribed in Table XXVII. The corresponding KL divergence is

.

F. GHZ

The tripartite state . The set-
tings for all three parties are identical

With these settings, quantum mechanics predicts the conditional
probabilities of Table XXVIII.

1) Uniform and Uncorrelated Settings, GHZ: For all three
settings, the best possible classical statistics that approximate

the GHZ experiment is that of Table XXIX. The optimal uncor-
related setting is the uniform settings that samples all eight mea-
surement settings with equal probability. The corresponding KL
divergence is .

2) Correlated Settings, GHZ: The optimal correlated setting
samples with equal probability those four settings that yield the

outcome probabilities (those are the settings where
an even number of the measurements are measuring along the

axis). The KL divergence in this setting is twice that of the
previous uniform setting: .

APPENDIX III
THE KL DIVERGENCE AND STATISTICAL STRENGTH

This appendix provides in-depth information about the KL
divergence and its relation to statistical strength. The KL diver-
gence was defined in Section IV as

We immediately see that the KL divergence expresses some-
thing like the average disbelief in , when observing random
outcomes from . Thus, occasionally (with respect to )
one observes an outcome that is more (log-) likely under

than , but on average (with respect to ), the outcomes
are more likely under than , expressed by the fact that

. Apart from this intuitive meaning, KL diver-
gence has several different concrete interpretations and appli-
cations. Here we focus on the interpretation we are concerned
with in this paper: KL divergence as a measure of “statistical
distance” in the context of statistical hypothesis testing. We first
(in Appendix III-A) give an intuitive explanation of “statistical
strength” and “statistical distance.” Although there exist at least
three different approaches to measure statistical distance, in Ap-
pendix III-B–D, we show that for large samples, KL divergence
is the appropriate measure according to all three of them. In [11],
we provide a more extensive treatment, listing several properties
and examples of the KL divergence. There we also explain why
any reasonable notion of “statistical distance” must be asym-
metric, and, related to that, why other common distance mea-
sures such as absolute deviations between probabilities are not
well suited for this purpose.
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TABLE XXI
BEST CLASSICAL THEORY FOR CORRELATED SETTINGS HARDY. KL DISTANCE: 0:0280347655

TABLE XXII
QUANTUM PREDICTIONS MERMIN

TABLE XXIII
BEST CLASSICAL THEORY FOR UNIFORM SETTINGS MERMIN. KL DIVERGENCE: 0:0157895843

TABLE XXIV
OPTIMIZED UNCORRELATED SETTING DISTRIBUTION MERMIN

A. Interpreting “Statistical Strength”

Consider the scenario of Section IV-A1: are inde-
pendently generated either by some distribution or by some
distribution with . We are given a sample (sequence
of outcomes) . We want to perform a statistical test in
order to find out whether the sample is from or . Suppose
that the sample is, in fact, generated by (“ is true”). Then
we get the following results.

1) For a fixed sample size , the larger , the more
support there will be in the sample for versus

(with high probability under ).
2) For a predetermined fixed level of support in favor of

against (equivalently, level of “confidence” in ,
level of “convincingness” of ), we have that the larger

, the smaller the sample size before this level of
support is achieved (with high probability under ).

3) If, based on observed data , an experimenter de-
cides that rather than must have generated the data,
then the larger , the larger the confidence the ex-
perimenter should have in this decision (with high proba-
bility under ).

What exactly do we mean by “level of support or convincing-
ness”? Different approaches to statistical inference define this
notion in a different manner. Nevertheless, for large samples, all

definitions of support one finds in the literature become essen-
tially equivalent, and are determined by the KL divergence up to
lower order terms in the exponent. We consider three methods
for statistical hypothesis testing: frequentist hypothesis testing
[30], Bayesian hypothesis testing [23], and information-theo-
retic hypothesis testing [24], [31]. Nearly all state-of-the-art,
theoretically motivated statistical methodology falls in either
the Bayesian or the frequentist categories. Frequentist hypoth-
esis testing is the most common, the most taught in statistics
classes, and is the standard method in, for example, the med-
ical sciences. Bayesian hypothesis testing is becoming more and
more popular in, for example, econometrics and biological ap-
plications. While theoretically important, the information-theo-
retic methods are less used in practice and are discussed mainly
because they lead to a very concrete interpretation of statistical
strength in terms of bits of information.

We illustrate below that in all three approaches the KL di-
vergence indeed captures the notion of “statistical strength.” We
consider the general situation with a sample , with the

independent and identically distributed according to some
, being some distribution over some finite set . For each

, the first outcomes are distributed according to the -fold
product distribution of , which we shall also refer to as .
Hence, . The independence as-
sumption also induces a distribution over the set of all infi-
nite sequences3 which we shall also refer to as .

We test against a set of distributions . Thus, and
may, but do not necessarily refer to quantum and LR theo-

ries—the statements below hold more generally.

3Readers familiar with measure theory should note that throughout this paper,
we tacitly assume that Z is endowed with a suitable �-algebra such that all
sets mentioned in this paper become measurable.
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TABLE XXV
BEST CLASSICAL THEORY FOR UNCORRELATED SETTINGS MERMIN. KL DISTANCE: 0:0191506613

TABLE XXVI
OPTIMIZED CORRELATED SETTING DISTRIBUTION MERMIN

B. Frequentist Justification

In frequentist hypothesis testing, is called the null-hypoth-
esis and the alternative hypothesis. Frequentist hypothesis
testing can be implemented in a number of different ways, de-
pending on what statistical test one adopts. A statistical test is
a procedure that, when input an arbitrary sample of arbitrary
length, outputs a decision. The decision is either “ generated
the data” or “ generated the data.” Each test is defined rela-
tive to some test statistic and critical value . A test statistic

is a function defined on samples of arbitrary length, that for
each sample outputs a real number. Intuitively, large values of
the test statistic indicate that something has happened which is
much more unlikely under any of the distributions in the null-hy-
pothesis than under the alternative hypothesis. A function that
is often used as a test statistic is the likelihood ratio

(13)

but many other choices are possible as well.
The critical value determines the threshold for the test’s

decision: if, for the observed data , it holds that
, the test says “ generates the data”; if

, the test says “ generated the data.”
The confidence in a given decision is determined by a quantity

known as the -value. This is a function of the data that was actu-
ally observed in the statistical experiment. It only depends on the
observed value of the test statistic .
It is defined as

-value (14)

Here the are distributed according to and thus do
not refer to the data that was actually observed in the experi-
ment. Thus, the -value is the maximum probability, under any
distribution in , that the test statistic takes on a value that is at
least as extreme as its actually observed outcome. Typically, the
test is defined such that the critical value depends on sample
size . It is set to the value such that the test outputs “ ” iff
the -value is smaller than some predefined significance level,
typically .

Large -values mean small confidence: for example, suppose
the test outputs whenever the -value is smaller than .
Suppose further that data are observed with a -value of .
Then the test says “ ” but since the -value is large, this is not
that convincing to someone who considers the possibility that
some has generated the data: the large -value indicates
that the test may very well have given the wrong answer. On the
other hand, if data are observed with a -value of , this
gives a lot more confidence in the decision output by the test.

We call a test statistic asymptotically optimal for identifying
if, under the assumption that generated the data, the

-value goes to at the fastest possible rate. Now let us assume
that generates the data, and an optimal test is used. A well-
known result due to Bahadur [2, Theorem 1] says that, under
some regularity conditions on and , with -probability

, for all large ,

-value (15)

where . We say “the -value is determined,
to first order in the exponent, by .” Note that what
we called the “actually observed test statistic ” in (14)
has become a random variable in (15), distributed according to

. It turns out that the regularity conditions, needed for (15)
to hold, apply when is instantiated to a quantum theory
with measurement setting distributions , and is instantiated
to the corresponding set of LR theories as defined in Section II.

Now imagine that QM, who knows that generates the
data, wonders whether to use the experimental setup corre-
sponding to or . Suppose that

It follows from (15) that if the experiment corresponding to
is performed, the -value will go to exponentially faster (in
the number of trials) than if the experiment corresponding to
is performed. It therefore makes sense to say that “the statistical
strength of the experiment corresponding to is larger than
the strength of .” This provides a frequentist justification of
adopting as an indicator of statistical strength.

Remark: Bahadur [2, Theorem 2] also provides a variation of
(15), which (roughly speaking) says the following: suppose
generates the data. For , let be the minimum number of
observations such that, for all , the test rejects (if
is not rejected for infinitely many , then is defined to be infi-
nite). Suppose that an optimal (in the sense we used previously)
test is used. Then, for small , is inversely proportional to

: with -probability , the smaller , the
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TABLE XXVII
BEST CLASSICAL THEORY FOR CORRELATED SETTINGS MERMIN. KL DISTANCE: 0:0211293952

TABLE XXVIII
QUANTUM PREDICTIONS GHZ

TABLE XXIX
BEST CLASSICAL THEORY FOR UNIFORM SETTINGS GHZ. KL DISTANCE: 0:2075187496

larger . If a “nonoptimal” test is used, then can only be
larger, never smaller.

The rate at which the -value of a test converges to is known
in statistics as Bahadur efficiency. For an overview of the area,
see [17]. For an easy introduction to the main ideas, focusing
on “Stein’s lemma” (a theorem related to Bahadur’s), see [4,
Ch. 12, Sec. 8]. For an introduction to Stein’s lemma with a
physicist audience in mind, see [3].

C. Bayesian Justification

In the Bayesian approach to hypothesis testing [7], [23], when
testing against , we must first determine an a priori prob-
ability distribution over and . This distribution over dis-
tributions is usually just called “the prior.” It can be interpreted

as indicating the prior (i.e., before seeing the data) “degree of
belief” in versus . It is often used to incorporate prior
knowledge into the statistical decision process. In order to set
up the test as fairly as possible, QM and LR may agree to use
the prior

(this should be read as “the prior probability that obtains
is equal to the prior probability that some obtains”).
Yet as long as and there is a smooth and positive
probability density for , the specific values for the
priors will be irrelevant for the following result.

For given prior probabilities and a given sample ,
Bayesian statistics provides a method to compute the posterior
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probabilities of the two hypotheses, conditioned on the observed
data: is transformed into . Simi-
larly, is transformed to . One then
adopts the hypothesis with the larger posterior
probability . The confidence in this decision
is given by the posterior odds of against , defined, for
given sample , as

post-odds

The larger post-odds, the larger the confidence. Now suppose
that data are distributed according to . It can be shown that,
under some regularity conditions on and , with -prob-
ability

post-odds (16)

In our previously introduced terminology, “the Bayesian con-
fidence (posterior odds) is determined by , up to
first order in the exponent.” We may now reason exactly as in
the frequentist case to conclude that it makes sense to adopt

as an indicator of statistical strength, and that it
makes sense for QM to choose the setting probabilities so as
to maximize .

Equation (16) is a “folklore result” which “usually” holds. In
[11], we show that it does indeed hold with and defined
as nonlocality proofs and LR theories, respectively.

D. Information-Theoretic Justification

There exist several approaches to information-theoretic or
compression-based hypothesis testing; see, for example, [4],
[24]. The most influential of these is the so-called Minimum
Description Length Principle [31]. The basic idea is always that
the more one can compress a given sequence of data, the more
regularity one has extracted from the data, and thus, the better
one has captured the “underlying regularities in the data.” Thus,
the hypothesis that allows for the maximum compression of the
data should be adopted.

Let us first consider testing a simple hypothesis against
another simple hypothesis . Two basic facts of coding theory
say the following.

1) There exists a uniquely decodable code with lengths
that satisfy, for all

The code with lengths is called the Shannon–Fano
code, and its existence follows from the so-called Kraft
inequality, [10].

2) If data are independent and identically dis-
tributed , then among all uniquely decodable codes,
the code with length function has the shortest expected
code length. That is, let be the length function of any
uniquely decodable code over outcomes, then

Thus, under the assumption that generated the data, the
optimal (maximally compressing) code to use will be the
Shannon–Fano code with lengths (here, as in the
remainder of this appendix, we ignored the integer requirement
for code lengths). Similarly, under the assumption that some

with generated the data the optimal code will be the code
with lengths . Thus, from the information-theoretic
point of view, if one wants to find out whether or better ex-
plains the data, one should check whether the optimal code under

or the optimal code under allows for more compression of
the data. That is, one should look at the difference

bit-diff (17)

If bit-diff , then one decides that better explains the data.
The confidence in this decision is given by the magnitude of
bit-dif: the larger bit-dif, the more extra bits one needs to encode
the data under rather than , thus, the larger the confidence
in .

Now suppose that actually generates the data. The expected
code-length difference, measured in bits, between coding the
data using the optimal code for and coding using the optimal
code for , is given by

Thus, the KL divergence can be interpreted as the expected ad-
ditional number of bits needed to encode outcomes generated by

, if outcomes are encoded using a code that is optimal for
rather than for . Thus, the natural “unit” of is the “bit,”
and may be viewed as “average amount of informa-
tion about that is lost if is wrongfully regarded as being
distributed by rather than .” By the law of large numbers,
(17) implies that, with -probability , as

bit-diff (18)

Thus, if generates the data, then the information-theoretic
confidence bit-dif in decision “ explains the data better than

” is, up to first order, determined by the KL divergence be-
tween and : the larger , the larger the confidence.
This gives an information-theoretic justification of the use of
the KL divergence as an indicator of statistical strength for
simple hypothesis testing. We now turn to composite hypothesis
testing.

Composite Hypothesis Testing: If one compares against
a set of hypotheses , then one has to associate with a code
that is “optimal under the assumption that some gen-
erated the data.” It turns out that there exist codes with lengths

satisfying, for all

An example of such a code is given in [11]. The code is op-
timal, up to logarithmic terms, for whatever distribution
that might actually generate data. The information-theoretic ap-
proach to hypothesis testing now tells us that, to test against

, we should compute the difference in code lengths

bit-diff

The larger this difference, the larger the confidence that
rather than generated the data. The article [11] shows that,
in analogy to (18), as

bit-diff (19)

Thus, up to sublinear terms, the information-theoretic confi-
dence in is given by . This provides an infor-
mation-theoretic justification of adopting as an in-
dicator of statistical strength.



2832 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 51, NO. 8, AUGUST 2005

APPENDIX IV
PROOFS OF THEOREMS 1, 2, AND 3

A. Preparation

The proof of Theorem 1 uses the following lemma, which is
of some independent interest.

Lemma 1: Let be the game corresponding to an
arbitrary two party, two measurement settings per party nonlo-
cality proof. For any , there exists a
such that for all we have

. Thus, for any three of the four measurement settings, the
probability distribution on outcomes can be perfectly explained
by an LR theory.

Proof: We give a detailed proof for the case that the mea-
surement outcomes are two values ; the general case can
be proved in a similar way.

Without loss of generality, let . Now we
must prove that the equation holds for the three
settings . Every triple of distribu-
tions for these three settings may be represented by a table
of the form:

with and the normalization restrictions

Given any table of this form, we say that the LR distribution
corresponds to the -table if ,

, etc., for all .
The no-signaling restriction implies that the realized mea-

surement setting on ’s side should not influence the proba-
bility on ’s side and vice versa. Hence, for example,

which gives . In total there are four such
no-signaling restrictions

We call a table with , that obeys the normaliza-
tion restriction on the subtables and that satisfies (20), a -table.
We already showed that each triple of conditional LR distri-
butions may be represented as a -table. In exactly the same
way one shows that each triple of conditional quantum exper-
imentalist distributions , , can be represented as a

-table. It therefore suffices if we can show that every -table
corresponds to some LR theory . We show this by considering
the 16 possible deterministic theories . Here
is defined as the theory with

Each deterministic theory corresponds to a specific
-table denoted by . For example, the theory

gives the following -table:

We will prove that the set of -tables is in fact the convex
hull of the 16 tables corresponding to deterministic
theories. This shows that any -table can be reproduced by a
mixture of deterministic theories. Since every LR theory
can be written as such a mixture, this proves the lemma.

First we observe that a -table with all entries or has to be
one of the 16 deterministic theories. Given a -table that is not
a deterministic theory, we focus on its smallest nonzero entry

. By the restrictions of (20), there exists a deter-
ministic theory such that the table has no
negative entries. For example, suppose that the smallest element
in corresponds to (denoted as in
the first table above). By the restrictions of (20), either the table

(where is shown above) or one of
the three tables , ,

has only nonnegative entries.
Let where is chosen such that

has no negative entries. Clearly, either describes a determin-
istic theory with entries and , or is a -table with number
of nonzero entries one less than that of . Hence, by applying
the above procedure at most 16 times, we obtain a decomposi-
tion , which shows that lies in the
convex hull of the -tables corresponding to deterministic the-
ories. Hence, any such can be described as an LR theory.

For measurement settings with more than two outcomes, the
proof can be generalized in a straightforward manner.

B. Proof of Theorem 1

We only give proofs for the case; extension to the
general case is entirely straightforward. We define

(20)

Note that can be written as

Part 1: Equation (3) follows directly from the additivity
property of KL divergence, see [11, Appendix IV-B] or [10].
Convexity is immediate by Jensen’s inequality applied to
the logarithm in (20) and the fact that is linear
in for each . If lies
in the interior of , then for
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so that is finite. Continuity and differentiability are
then immediate by continuity and differentiability of
for . Lower semicontinuity of on is implied
by the fact that, on general spaces, is jointly lower
semicontinuous in and in the weak topology, as proved by
Posner [29, Theorem 2]. Part 1 c) is immediate.

Part 2: We have already shown that for fixed , is
lower semicontinuous on . Lower semicontinuous functions
achieve their infimum on a compact domain (see for example
[13, p. 84]), so that for each , (4) is achieved for some . This
proves part a). To prove part b), note that nonnegativity of
is immediate by nonnegativity of the KL divergence. Bounded-
ness of follows by considering the uniform distribution

, with, for all , , , , . is in ,
so that

where is the Shannon entropy of the distribution .
Boundedness of now follows from the fact that
for every distribution , which is a standard result (see, e.g.,
[10]).

Let be in the interior of and let achieve
. Since is bounded, is absolutely contin-

uous with respect to (otherwise, , a contradic-
tion). Thus, satisfies

(21)

where means that is absolutely continuous with re-
spect to . We already proved that if is absolutely con-
tinuous with respect to , then is linear in . Thus,
by (21), is an infimum of linear functions, which (by a
standard result of convex analysis, see, e.g., [32]) is concave. A
concave and bounded function with a convex domain must be
continuous on the interior of this domain (see, e.g., [32]). It re-
mains to show that is continuous at boundary points of .
Showing this is straightforward (but tedious) by taking limits.
We omit the details.

Now for part c). If is not a proper nonlocality proof, then
by definition there exists a such that, for ,
we have and hence, for all .

Now suppose is a proper nonlocality proof. Let be in the
interior of . is achieved for some . Suppose, by
means of contradiction, that . Since for

, we must have for . But
then is not a proper nonlocality proof; that is a contradiction.
For part d), if is on the boundary of , then for some , ,

. It then follows from Lemma 1 and the fact that, for all
, that .

Part 3: Part a). The condition that is not a point mass for
some , implies that all that achieve the infimum must have

for all , , , (otherwise, ,
which is a contradiction). Thus, we assume that , with

the set of ’s that satisfy this “ ” restriction.
For , let

In this way, each vector with at least one nonzero component
uniquely defines a local theory , and

and

Let be such that achieves the infimum in (4). Then is
absolutely continuous with respect to . One can now show
that for each , the partial derivative

evaluated at exists (even if
). Since achieves the infimum, it follows

that, for each , we must have that
evaluated at is not less than , or,

equivalently

(22)

with equality if . Straightforward evaluation of
(22) gives (5) and (6). This shows that each achieving (4) sat-
isfies (5) and (6). On the other hand, each corresponding to a

with such that (22) holds for each
must achieve a local minimum of (viewed as

a function of ), Since is convex, must achieve the
infimum of (4).

For part b), suppose, by way of contradiction, that for at least
one , with ,
we have . For each

, , we can write

(23)

for some depending on , , , . Here each is of
the form with . Now consider

. Clearly, . By Jensen’s inequality applied
to the logarithm and using (23), we have for

where the inequality is strict if , , , and
. But then for

which for must be strict. By assumption,
. But that implies

and we have arrived at the desired contradiction.
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C. Proofs of Game-Theoretic Theorems

1) Game-Theoretic Preliminaries: Proposition 1 gives a few
standard game-theoretic results (partially copied from [13]). We
will use these results at several stages in later proofs.

Proposition 1: Let and be arbitrary sets and let
be an arbitrary function on .

We have the following.

1) .
2) Suppose the following conditions hold.

a) The game has a value ,
that is

b) There is that achieves .
c) There is that achieves .

Then is a saddle point and .
3) Suppose there exists a pair such that

a) achieves and
b) is an equalizer strategy, that is, there exists a

with for all ,
Then the game has value , i.e.,

and is a saddle point.
Proof: Equation (1). For all

Therefore,

Equation (2). Under our assumptions

so

and

Equation (3). To show that the game has a value, by (1) it is
sufficient to show that

But this is indeed the case

where the first equalities follow because is an equalizer
strategy. Thus, the game has a value equal to . Since

achieves . Since

achieves . Therefore, is a
saddle point.

Proof of Theorem 2, the Saddle Point Theorem For Corre-
lated Settings, and Generalized Nonlocality Proofs: We use the
following well-known minimax theorem due to Ferguson. The
form in which we state it is a straightforward combination of
Ferguson’s [13, Theorem 1, p. 78 and Theorem 2.1, p. 85], spe-
cialized to the Euclidean topology.

Theorem 4 (Ferguson [13]): Let be a statistical
game where is a finite set, is a convex compact subset of

for some , and is such that for all .

1) is a convex function of .
2) is lower semicontinuous in .

Let be the set of distributions on and define, for ,

Then the game has a value , i.e.,

and a minimax achieving
exists.

By Theorem 1, part 1), is lower
semicontinuous in for all . Let us now focus on the
case of a game. We can apply Theorem 4 with

, , and . It follows that
the game has a value , and
is achieved for some . By Theorem 1, part 2),

, and, since is continuous in , there exists some
achieving .

The proof for generalized nonlocality proofs is completely
analogous; we omit details.

Proof of Theorem 3, Saddle Points and Equalizer Strategies
for Nonlocality Proofs: The correlated game has
a value by Theorem 2 and by Theorem 1. Inequality
(8) is immediate. Let be defined as in the proof of
Theorem 1, (20). To prove (9), note that for every

Thus, (9) and part 2 b) of the theorem follow. Part 2 a) is imme-
diate from Theorem 2. To prove part 2 c), suppose, by way of
contradiction, that there exists a that is not an equalizer
strategy. Then the set

has less than four elements. By Theorem 2, there exists a
such that is a saddle point in the correlated game.

Since achieves , it follows that for some
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, . But then lies on the boundary
of . By Theorem 1, part 2 d), this is impossible, and we have
arrived at the desired contradiction.

It remains to prove part 3). Part 3) “if” follows directly
from Proposition 1. To prove part 3) “only if,” suppose the
uncorrelated game has saddle point . It is clear that
achieves . We have already shown above that
is an equalizer strategy.
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