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A Fast MoM Solution for Large Arrays: Green’s
Function Interpolation With FFT

B. J. Fasenfest, Student Member, IEEE, F. Capolino, Senior Member, IEEE, D. R. Wilton, Fellow, IEEE,
D. R. Jackson, Fellow, IEEE, and N. J. Champagne, Senior Member, IEEE

Abstract—A new type of fast method of moments (MoM) solu-
tion scheme for large arrays is developed using standard basis func-
tions. Both fill and solve times are improved with respect to stan-
dard MoM solvers. The efficiency of the method relies on approx-
imating the Green’s function as a sum of separable interpolation
functions defined on a relatively sparse uniform grid, along with
use of the fast Fourier transform. The method permits the analysis
of arrays with arbitrary contours and/or missing elements. Prelim-
inary results show the effectiveness of the method for planar array
elements in free space.

Index Terms—Adaptive integral method, antenna arrays, fast
solvers.

I. INTRODUCTION

THE numerical modeling of large arrays remains a chal-
lenging problem, although much progress has been made

[1]–[5]. Large array problems solved by standard method of mo-
ments (MoM) procedures require huge fill and solve times, and
make large storage demands for the associated matrices.

Here, we present a new algorithm that combines the use
of Green’s function interpolation and fast Fourier transforms
(GIFFT). The method is similar to the adaptive integral method
(AIM) [3] in the sense that it projects the solution domain
onto a regular grid to enable use of the fast Fourier transform
(FFT) algorithm. The key difference is how the projections
are done. In AIM, radiating basis and testing functions are
replaced by a neighboring grid of approximately equivalent
monopole sources, and the usual Green’s function is used to
compute the interactions between these groups of equivalent
sources. In GIFFT, the Green’s function is approximated
on an interpolation grid, and the basis and testing function
integrations are done in the usual manner using the interpolated
Green’s function. The method is able to efficiently handle large
arrays while still maintaining the generality of standard MoM
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Fig. 1. Array mask describes the location of array elements within the array
boundary outline, which is in turn contained within a bounding box.

solvers with respect to excitations, array contour geometries,
missing or defective array elements, etc.

The efficiency of the GIFFT method is based on two key
steps. First, interactions between sufficiently separated array el-
ements may be performed via a relatively coarse interpolation of
the Green’s function on a uniform grid commensurate with the
array’s periodicity. The Green’s function is approximated over
the interpolation grid as a sum of separable functions. This al-
lows the system matrix to be filled efficiently. Second, since the
interpolatory coefficients in the Green’s function interpolation
are functions only of the separation between source and obser-
vation grid points they are of convolutional form and, hence,
an FFT may be used to efficiently calculate the matrix-vector
product in an iterative solver. The solution time for the GIFFT
method can be further improved by combining the method with
suitable preconditioners such as that introduced in [6], although
further details are omitted here.

II. GREEN’S FUNCTION INTERPOLATION WITH FFT

The GIFFT method shown in the following is applicable to
arrays with identical elements and arbitrary boundaries. The ap-
proach can also be used on large arbitrary scatterers (nonarray
problems), but without the advantage of array-cell reusability.

The array boundary is defined by specifying the vertices of
a closed, piecewise linear curve. An array mask is defined as a
matrix whose row and column dimensions equal, respectively,
the number of rows and columns of array elements that would fit
into its bounding box. Its entries indicate by the presence of a 1
or 0 whether an array element is present or not at that index loca-
tion. Typical array boundaries are represented in Fig. 1. The dis-
placement between the th and th array cells is

, where and are two arbitrary lattice vectors
lying in the plane. The vector , with ,
is in cell and is in cell .
The surface current on array elements within cells and are
discretized, for instance, using the basis functions of [7], with
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Fig. 2. Array cell index definitions and arbitrary skew lattice vectors. The
periodic grid on which the Green’s function is sampled is shown superimposed
on the array cells. Within an array cell, the Green’s function is evaluated on an
array of r � r � r points.

Fig. 3. Matrix mask for a hexagonal array is obtained by translating the array
mask about one array element of the array. The FFT domain is obtained by
padding to the next power of 2 the number of array cells (blocks) of the matrix
mask in both array directions.

primed and unprimed indexes denoting source and testing func-
tions, respectively (Fig. 2).

A. Array and Matrix Masks, and the FFT Domain

From the array mask, a matrix mask (Fig. 3) is synthesized
that indicates permissible cell index separations between
pairs of interacting elements in the array; it is the locus of el-
ements covered by all possible translations of the array mask
about a fixed element. Thus, the matrix mask tabulates all pos-
sible interactions between elements in the array mask in terms
of their allowable separation indexes; that is, it determines what
sample values of the Green’s function are needed for interpola-
tion. A nonzero matrix entry represents coupling between a pair
of array elements with the corresponding element index sepa-
ration. Also shown in Fig. 3 is the FFT domain, which is the
bounding box of the matrix mask padded to the next power of
two in each lattice dimension.

B. Electric Field Integration Equation (EFIE) Formulation

Since we deal here with conducting array elements in free
space, the MoM is constructed around the EFIE, written sym-
bolically in compact form as

(1)

where the integration domain represents all conducting ele-
ments over the entire finite array. This integral equation has the
discretized form

where and are, respectively, the basis and testing func-
tions of [7], and . The inner product symbol-
izes integration over both array source and observation domains.
In supermatrix form, the discretized EFIE may be written sym-
bolically as

(2)

with

(3)

C. Lagrange–Green’s Function Interpolation (GIFFT Filling
Acceleration)

For elements separated by at least one array cell, i.e., with
different and , we approximate the Green’s function

via Lagrange polynomial interpolation as

(4)
where the indexes on

denote sampled values of the coordinates and are
Lagrange interpolation polynomials defined on the inter-
polation points within a cell (c.f. Fig. 2). It is significant that in
the evaluation of the interaction between two array cells
and , the interpolation scheme generally requires many fewer
Green’s function evaluations than in the usual case where sub-
domain interactions are evaluated directly, or even, apparently,
than AIM usually requires. This becomes especially true as the
complexity of an array element increases. Furthermore, the sep-
arable nature of the Green’s function representation in (4) allows
for the matrix to be filled with many fewer inner product calcu-
lations than with standard MoM. This may be seen by writing
the element of the matrix block of (3), corresponding
to array cell and source cell , as

(5)

where the tilde denotes the approximated block. The fol-
lowing three important properties are then used to significantly
speed the computation.

1) Unless the grid point lies within the cell ,
vanishes since the Lagrange

polynomial associated with an interpolation point is
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nonzero only over the cell containing the interpolating
point. The same holds for .

2) Since and
are identical for each array

element, they need only be computed once. Furthermore,
for Galerkin’s method (i.e., when the basis and testing
functions are identical) the quantities are equal.

3) One need only compute for index pairs
appearing within the matrix mask of Fig. 3.

If there are basis functions per array element, then from prop-
erties 1) and 2), only distinct inner products
are required. In addition, sampled values of the Green’s func-
tion need only be calculated and stored on the interpolation grid,
which is relatively sparse.

D. GIFFT Solution Acceleration: Fast Computation of
Matrix-Vector Products

The approximated mutual coupling matrix (5) is inaccurate
if the cell (index) separation is not sufficiently large since low
order interpolation of the Green’s function is inaccurate near
the source point. To avoid this inaccuracy, the array element
self-block coupling and that between neighboring element
blocks is found by standard MoM, i.e., using standard integra-
tion rules and Green’s function evaluation for the interaction
between basis and test functions. With good accuracy, the
original discretized EFIE in (2) is thus rewritten as

(6)

where the block Toeplitz difference matrix
is taken as zero for elements satisfying and

is, hence, sparse. We also note that generally
when , in and , but this infinite
value can be replaced by any finite value with (6) remaining
valid. To evaluate the matrix/vector product, we note that the
product can be performed quickly since is
sparse, whereas is of convolutional form and can be
evaluated quickly using a two-dimensional FFT as follows:

(7)

where the double bars over a quantity indicate that its length is
extended so as to obtain a circular convolutional form and then
zero-padded to obtain vectors of length for applying the FFT

; denotes the inverse fast Fourier transform, and
is the array mask restricting the result to array elements

within the array boundary. The degree to which (6) approxi-
mates (2) depends on how many elements in (called
the strong interaction matrix) are set to zero, and on how many
interpolation points are used for . Numerical experiments
verify that setting to zero for elements more distant than
a wavelength provides good accuracy.

Fig. 4. Average error in dipole currents and time per iteration versus
interpolation order.

III. NUMERICAL RESULTS

To assess the interpolation accuracy, it is sufficient to test a
small array of 5 5 strip dipoles in free space, each discretized
using 24 triangles and the basis functions of [7]. The dipoles
are illuminated by a plane wave with the electric field polarized
along the dipole axis at a frequency . The dipoles
have length and width . The interac-
tions have been set to zero for array cell pairs separated
by more than one cell, i.e., for or .
The average percent error in the current at the center of each
dipole of the array is plotted versus the Lagrange polynomial
interpolation order in Fig. 4. The error at each element is cal-
culated relative to a reference solution using an element-by-el-
ement MoM scheme, and then averaged over all the elements.
The computation time per iteration taken by the BiCGstab itera-
tive method increases with interpolation order since more terms
are involved in each FFT matrix-vector multiplication.

The GIFFT method is next applied to an array of 25 25
square conducting patches in free space, illuminated by a plane
wave at 6 GHz from a direction perpendicular to the array plane.
The patches are 11.4 mm on a side with a spacing of 3.2 mm
between the edges of adjacent patches. A triangular meshing
of each patch creates unknowns per patch. The GIFFT
method uses fifth-order interpolating polynomials in both planar
directions and the block Toeplitz property to aid in filling the

matrix. The method’s performance is compared with a
standard MoM that also exploits the block Toeplitz properties.
GIFFT required the storage of only 25 Green’s function evalua-
tions per array element, whereas the MoM required
matrix entries per element. A dramatically reduced fill and solu-
tion time is also observed using GIFFT: The fill time for GIFFT
was 158 times faster than for the standard MoM, while the so-
lution time was 49 times faster. The GIFFT solution also agrees
well with the standard MoM solution: the average error in the
far field was 0.1% and average error of the currents on the plates
was 0.9%. The far field patterns for both methods are shown in
Fig. 5.

IV. CONCLUSION

The GIFFT method has been developed for arrays with arbi-
trary geometries. The method may be summarized as follows.
An array mask function is used to identify array boundaries and
to specify the domain over which the Green’s function is in-
terpolated using a separable representation involving Lagrange
polynomials; an FFT is then used to accelerate the matrix-vector
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Fig. 5. Far field pattern for scattered E-field for a 25� 25 array of conducting
patches in free space. The angle � indicates displacement from broadside (� =
0).

products in an iterative solver. Preliminary results show the ef-
fectiveness of the method for large array problems. The method
is similar to the AIM method, the main difference being that the
Green’s function—rather than the basis functions—is projected
onto a regular interpolation grid. The interpolation requires rel-
atively few interpolation points per cell, making the method at-
tractive for multi-layered media problems, for example, where
the cost for Green’s function evaluations is relatively high.

The initial investigations reported here are deliberately lim-
ited to cell sizes on the order of a half wavelength. Because the

accuracy of the Green’s function interpolation depends on the
number of interpolation points per wavelength, it is expected
that larger array cells would require higher-order interpolation.
However, electrically large array cells could also be split into
subcells over which low-order interpolation is used, possibly
even reducing the cost of computing near interactions.
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