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Abstract 

transPROSB is a comprehensive research project in­
vestigating techniques for transporting programs securely 
over potentially insecure channels. The central focus of 
this project is the development of a blueprint for a next­
generation mobile-code distribution format. A problem of 
previous approaches to mobile-code security has been that 
the additional provisions for security lead to a loss of ef­
ficiency, often to the extent of making an otherwise virtu­
ous security scheme unusable for all but trivial programs. 
Project transPROSB strives to deviatefrom the common ap­
proach of studying security in isolation and instead focuses 
simultaneously on multiple aspects of mobile-code qual­
ity. Besides security, such aspects include encoding density, 
speed of dynamic code generation, and the eventual execu­
tion peiformance. This paper gives a high-level overview of 
project trans PROSE and presents initial results. 

*Effort sponsored by the Defense Advanced Research Projects Agency 
(DARPA) and Air Force Research Laboratory, Air Force Materiel Com­
mand, USAF, underagreementnumberF30602-99-1-0536. The U.S. Gov­
ernment is authorized to reproduce and distribute reprints for Governmen­
tal purposes notwithstanding any copyright annotation thereon. The Views 
and conclusions contained herein are those of the authors and should not 
be interpreted as necessarily representing the official policies or endorse­
ments, either expressed or implied, of the Defense Advanced Research 
Projects Agency (DARPA), the Air Force Research Laboratory, or the U.S. 
Government. 

1 Introduction 

The ability to send mobile code from one machine to an­
other is one of the most important enabling technologies of 
the Internet age. Mobile code, especially forms of mobile 
code that are target machine-independent, greatly alleviate 
many previously existing problems of software distribution, 
version control, and maintenance. Mobile code also pro­
vides the means for entirely new approaches, such as "exe­
cutable content" within documents. 

Unfortunately, using mobile code is fraught with risks. 
If an adversary succeeds in deceiving us into executing a 
malicious program supplied by him or her, this may have 
catastrophic consequences and may lead to loss of confiden­
tiality, loss of information integrity, loss of the information 
itself, or a combination of these outcomes. Hence, we must 
at all costs avoid executing programs that can potentially 
cause such harm. 

The first line of defense against such incidents is to shield 
all computer systems, all communications among them, as 
well as all of the information itself against intruders using 
physical and logical access controls. 

A second line of defense is to use cryptographic authen­
tication mechanisms to detect mobile code that hasn't orig­
inated with a known and trusted code provider or that has 
been tampered with in transit. 

Project transPROSB concerns itself with a third line of 
defense that is independent of and complementary to the 
first two mentioned above: Assume that an intruder has 
successfully managed to penetrate our system (breaking de­
fense #1) and is able to present us with a mobile program 



that falsely authenticates itself as being uncompromised and 
originating from a trusted party (circumventing defense #2), 
how do we nevertheless prevent it from causing any dam­
age? 

To answer this question, we have been studying a partic­
ular class ofrepresentations for target-machine independent 
mobile programs that can provably encode only legal pro­
grams. Hence, there is no way an adversary can substitute 
a malicious program that can corrupt its host computer sys­
tem: Every well-formed mobile program that is expressible 
in such an encoding is guaranteed to map back to a source 
program that is deemed legal in the original source context, 
and mobile programs that are not well-formed can be re­
jected trivially. Further, such an encoding can be designed 
to guarantee not only referential integrity and type-safety 
within a single distribution module, but also to enforce these 
properties across compilation-unit boundaries. 

A problem of previous approaches to mobile-code secu­
rity has been that the additional provisions for security lead 
to a loss of efficiency, often to the extent of making an oth­
erwise virtuous security scheme unusable for all but trivial 
programs. Conversely, project transPROSE from the outset 
has been striving to deviate from the common approach of 
studying security in isolation, and instead has focused on 
satisfying multiple goals of mobile-code quality simultane­
ously. Some such additional qualities to consider are the 
mobile code format's encoding density (an important factor 
for transfer over wireless networks) and the ease with which 
high-quality native code can be generated by a just-in-time 
compiler at the eventual target site. 

The remainder of this paper outlines various facets of 
project transPROsE, starting with definitions and scope of 
the project and its architecture, and then presenting some 
preliminary results. 

2 Definitions and Scope 

We understand the term mobile code from a compiler 
construction perspective as any intermediate representation 
that fulfills the following criteria: 

• Completeness: The intermediate representation has 
an executable semantics independent of external infor­
mation. 

• Portability: The intermediate representation is free 
of assumptions about the eventual execution platform 
(processor family, operating system). 

• Security: The intermediate representation can be 
shipped safely over unsecure channels without the po­
tential for compromising the execution platform. 
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• Density: The intermediate representation can be en­
coded in a compact form to minimize the impact of 
bandwidth-limited channels. 

• Efficiency: The intermediate representation is well­
suited for generating efficient, directly executable ob­
ject code using just-in-time compilation techniques. 

Apart from these fundamental criteria, the following prop­
erties are also desirable: 

• Extensibility: The intermediate representation should 
be general enough to allow multiple source languages 
to be transported effectively. 

• Pipelinability: The intermediate representation 
should enable pipelining of decoding (decompression) 
and code-generation. 

Within the transPROSE project, we are developing an in­
frastructure for a mobile-code transportation standard. This 
infrastructure takes the form of a well-documented extensi­
ble component framework. The architecture of this frame­
work is similar to the architecture of a modern compiler, 
however it is usually deployed in a distributed fashion: 

• Code producers use compilers for various source lan­
guages, which could be called "front-ends" of the 
architecture, to compile applications into the mobile 
code intermediate representation. 

• Code consumers use compilers for this intermediate 
representation, which could he called "back-ends" of 
the architecture, to generate native object code suitable 
for execution on their machines. 

Code producers and code consumers are separated in time 
and/or space, and mobile code is shipped from producers to 
consumers using a variety of channels. 

Within the design space bounded by these requirements, 
we have made the following fundamental design decisions: 

• Cryptographic approaches to security are orthogonal 
to our project. Such techniques rely on trust relation­
ships between code producers and code consumers. 
While they enable the producer of malicious code to 
be identified, they do not protect the execution plat­
form against being compromised. 

• Compilation time requirements are more stringent 
at the code consumer's site than at the code pro­
ducer's site. It is therefore beneficial to off-load time­
consuming compilation tasks to the code producer, 
provided that the computed information can be shipped 
compactly and in a tamper-proof manner. 



• Compressing mobile code is viable if the time for 
transmission and decompression is lower than the 
transmission time of uncompressed code. The overall 
transmission speed is that of the slowest link along the 
path from producer to consumer, which in many im­
portant emerging application areas (including military 
ones) is often a low-bandwidth wireless one. 

Given these definitions and scope, one immediately won­
ders how this compares to the currently dominant industry 
solution, the Java Virtual Machine (NM). The NM has 
quickly become the de-facto standard for encoding mobile 
programs for transport across the Internet. Unfortunately, 
the solution embodied by Java fails to deliver the execution 
efficiency of native code at reasonable levels of dynamic 
compilation effort. 

The main reason for this deficiency is that the NM's 
instruction format is not very capable in transporting the 
results of program analyses and optimizations. As a con­
sequence, when Java byte-code is transmitted to another 
site, each recipient must repeat most of the analyses and 
optimizations that could have been performed just once 
at the origin. Java also fails in preserving programmer­
specified parallelism when transporting programs written in 
languages such as Fortran-95, leading to loss of information 
that is essential for optimizations and that cannot be com­
pletely reconstructed at the code recipient's site. 

The main reason why Java byte-code has these deficien­
cies is to allow verification by the recipient. Untrusted mo­
bile code needs to be verified prior to execution to protect 
the host system from potential damage. The most funda­
mental validation step is to ascertain that an arriving mo­
bile program is type-safe, since a breach of the type system 
can be used to subvert any other security policy. The use 
of a type-safe source language does not by itself remove 
the necessity of verification. This is because barring any 
additional authentication mechanism, it cannot be guaran­
teed that any given piece of mobile code ever originated in 
a valid source program in the first place-it might instead 
have been explicitly hand-crafted to corrupt its host. 

Verifying the type-safety of a piece of Java virtual­
machine code is a non-trivial and time-consuming activ­
ity. Interestingly enough, and as we elaborate below, in the 
course of the trans PROSE project we have identified certain 
mobile-program representations that not only remove the 
need for verification altogether, but that can also transport, 
in a tamper-proof manner, the results of program analyses 
benefiting code generation on the eventual target machine. 
As already hinted at in the introduction, the key idea for do­
ing away with verification is to use a representation that can 
provably encode only legal programs in the first place. 
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3 Policy Assumptions and Guarantees 

Security in our approach is based on type safety, using 
the typing model of the source language (but not restricted 
to any particular language's type-safety model). A type­
safe source language is a requirement. The underlying idea 
is then the following: 

A security guarantee exists at the source language 
level; just preserve it through all stages of code 
transportation. 

The requirements for a mobile-code transportation sys­
tem thereby become: 

• all mobile programs need to be programmed in a type­
safe language 

• each host system needs to publish its policies in terms 
of a type-safe API 

The mobile-code transportation system then guarantees 
type safety throughout: all of the host's library routines 
are guaranteed to be called with parameters of the correct 
type(s) by the mobile program. Also, capabilities (object 
pointers) owned by the host can be manipulated by the mo­
bile client application only as specified in the host's inter­
face definition (for example, using visibility modifiers such 
as private, protected, ... ), and they cannot be forged or al­
tered. 

For example, the host's file system interface might have 
a procedure 

Open( ... ): File 

that returns an abstract file object. A type-safety based se­
curity scheme is able to guarantee that the mobile client pro­
gram cannot alter such a file object in any way prohibited by 
its specification, or access its contents unless this is allowed 
by explicit visibility modifiers. Conversely, additional secu­
rity policies such as "mobile program X can open files only 
in directory Y" need to be implemented on the host's side. 

Hence, the semantics of such a transportation scheme 
are identical to "sending source code", which incidentally 
is the model that almost all programmers (falsely) assume 
anyway. Note that, for efficiency reasons and to guard trade 
secrets embedded in the mobile code, the approach of actu­
ally sending source code is usually not an option. 

As a consequence, subtle problems arise whenever the 
semantics of the intermediate language are different from 
those of the source language; for example, there are pro­
grams that can be expressed using the Java Virtual Ma­
chine's byte-code language that have no equivalent at the 
Java source language level. Situations like these should be 
avoided. 



3.1 Is Type Safety Sufficient? 

Interestingly enough, the model of "transporting the 
equivalent of source code" enables automatic support for 
any future user-specified security policy that can be cast into 
a language construct. 

Take for example Andrew Myers Java Information Flow 
language [28]. This language provides an additional modi­
fier (an additional dimension in the type space) to variables 
that specifies a security attribute of the variable's owner. In­
formation flow can then be restricted statically among com­
ponents to occur only from low security to high security, but 
not vice versa. 

Clearly, this is a new security property that is not 
supported by current mobile code transportation schemes. 
However, this property and any other property that can be 
mapped onto a language construct can easily be supported 
by grammar-based mobile-code transportation schemes 
such as the one developed in the transPROSE. The key is to 
use an approach that completely preserves the type seman­
tics of the underlying source language. 

4 Encoding Only Legal Programs 

We have been investigating a class of encoding schemes 
for mobile programs that rely on semantic information to 
guarantee that only legal programs (under the syntactic and 
typing rules of some underlying grammar) can be encoded 
in the first place. This is essentially achieved by constantly 
adjusting the "language" used in the encoding to reflect the 
semantic entities that are legally available under the afore­
mentioned rules at any given point in the encoding process. 
A program encoded in this manner cannot be tampered 
with to yield a program that violates these rules. Rather, 
any modification in transit can in the worst case only re­
sult in the creation of another legal program that is guaran­
teed to conform to the original rules. Because the encoding 
schemes we are exploring are related to data compression, 
they also yield exceptionally high encoding densities as a 
side-effect. 

4.1 Example: Probabilistic Encoding 

As a concrete example of an encoding that has the prop­
erty of being able to encode only legal programs, consider a 
probabilistic encoding mechanism that parses the interme­
diate abstract syntax tree representation of a program and 
encodes it based on the intermediate representation's gram­
mar and a continuously adapted probabilistic model. 

At each step in the encoding, the alternatives that can 
possibly occur at this point are enumerated. For each type 
of grammatical class, there is a different probability distri­
bution, and both the encoder and the decoder keep track 
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of these distributions. For example, a statement can be ei­
ther of (assignment, if-statement, while-statement, ... ), and 
the probability of it being an assignment is usually highest. 
Similarly, if it is indeed an assignment, then the left hand 
side can either be a local variable, or a global or external 
variable, or an array access, or a pointer access, etc. If it is 
a local variable, the choices are limited by the declarations 
in the program, and their relative probability can be based 
on past history. 

An encoding can then be found using a form of arith­
metic coding. The probabilities of the various occurring 
constructs define sub-intervals of the range [0-1), and the 
bit-pattern that represents the encoding corresponds to the 
real number designating the sub-interval. For example, if 
assignment has a probability of 1/2, we would designate the 
interval [0-0.5) to represent assignment. Assume that with 
probability of0.8, the target of an assignment is a local vari­
able, this would lead to [0-0.4) to stand for "assign to local". 
If we had three local variables i, j, and k, and assignment 
to them had equal probability, these assignments could now 
be represented as [0-0.1333), [0.1333-0.2666), and [0.2666-
0.4) and so on. At each step, the interval is narrowed down 
in such a manner that highly probable events contribute less 
information than less probable ones. Any real number in the 
final interval represents the encoded construct. The prob­
abilities themselves are constantly adjusted as the encod­
ing proceeds. As a consequence, individual constructs con­
tribute just a fraction of a bit to the final encoding in pro­
grams that ex_hibit a high degree of self-similarity. Note that 
the bit pattern that is ultimately emitted needn't be buffered 
indefinitely, but instead can be output progressively, by re­
scaling the interval appropriately. 

Note that this encoding can provably encode only le­
gal programs, because elements that are forbidden at any 
given point have zero probability and hence cannot be rep­
resented. On the other hand, any given bit-pattern maps 
back onto a legal program according to the original rules, 
because the corresponding real number falls into some in­
terval. Also note that performance-enhancing (but semanti­
cally irrelevant) annotations can easily be superimposed on 
the encoding stream simply by incorporating them into the 
probabilistic model. 

4.2 Technical Approach 

Our technique is an improvement on the earlier "Slim 
Binary" method [ 17], a dictionary-based encoding scheme 
for syntax trees. In the Slim Binary scheme, a dictionary is 
grown speculatively and at any given time contains all sub­
expressions that have previously occurred and whose con­
stituent semantic entities (variables, data members, ... ) are 
still visible according to the source-language scoping rules. 
The encoding schemes we have been investigating under the 



transPROSE project exert a much finer control over the en­
coding dictionary (or more general context), at each step 
temporarily removing from it all sub-expressions that aren't 
applicable. Our research in this direction is elaborated in a 
separate section entitled "Compression of Abstract Syntax 
Trees". 

Unlike the Slim Binary method, we have also investi­
gated applying the encoding to richer and more compiler­
related starting representations than syntax trees. For exam­
ple, the encoding could be applied to programs represented 
in a variant of Static Single Assignment (SSA) form, after 
performing common sub-expression elimination and copy 
propagation. Such an SSA-based encoding disambiguates 
between different values of the same variable and not only 
simplifies the generation of high-quality native code at the 
receiver's site, but also leads to fewer alternatives at each 
encoding step and consequently to a still denser encoding. 
Our work on encoding SSA has led to a genuinely new inter­
mediate representation called SafeTSA which is described 
in a further separate section below. 

An alternative is to instead use a "bottleneck interface". 
The core calculus approach is somewhat separate from our 
other research and presented in a separate section below. 

5 Core Calculus 

A source program generally goes through several differ­
ent internal representations within the different stages of a 
compiler: 

1. Strings of source program text 

2. Streams of lexical tokens 

3. Abstract syntax trees (ASTs) generated during the 
parsing process 

4. A "medium-level" internal representation, which the 
compiler uses to analyze the source and transform it for 
optimization. To improve the retargetability of compil­
ers, this representation is normally independent of the 
final compilation target. 

5. A "low-level" internal representation, which makes ex­
plicit the actual machine instructions to be used. This 
representation is dependent on the compilation target, 
and is designed to allow scheduling, resource alloca­
tion, and additional target-dependent optimizations. 

6. A machine-language representation, containing the ac­
tual bits to be executed by the target machine. 

If a program is to be transported somehow from a code 
producer to a code consumer, any of these representation 
levels may be used. Several tradeoffs may influence the 
choice of representation: 
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• Higher representation levels allow the program to be 
portable to a wider range of targets. 

• Similarly, higher representation levels make it easier to 
optimize the program for specific target characteristics. 
This may be critical for good performance on modern 
architectures [24, 4]. 

• Higher representation levels make it easier for the con­
sumer to prove or disprove the type safety of the pro­
gram. 

• Correspondingly, higher representation levels require 
more work on the part of the consumer, increasing the 
time required (and the energy required in embedded 
applications) before the program can be executed. 

• Lower representation levels make the program more 
independent of the programming language in which 
the program is written. 

• Lower representation levels increase the difficulty of 
reverse-engineering the program. 

The representation level of Java Bytecodes is somewhat 
mixed, containing many features that are specific to the Java 
language, as well as some features more typical of a low­
level encoding. Overall it has proven to be adequate for 
transporting code in a number of source languages to a vari­
ety of popular machine architectures (as well as direct inter­
pretation),~ while allowing validation by the code consumer. 

However, mismatches in the representation level and the 
semantics of the representation can result in bad perfor­
mance for languages other than Java. Potential sources for 
problems include insufficient flexibility for object storage 
(resulting in inefficient use of space); differences in these­
mantics of subtyping, object dispatch or primitive opera­
tions; and lack of support for parallelism or other special­
ized language constructs. 

Shortly after the NM was introduced, Shivers and 
Fahlman [33] proposed solving this problem by providing 
a mechanism for extending the Java Virtual Machine. The 
mechanism would allow new language-specific instructions 
to be added to the NM for use by compilers. The new in­
structions would be described using a low-level format such 
as a Register-Transfer Language (RTL). Due to the unsafe, 
low-level nature of the extension language, extension pro­
grams would become part of the trusted computing base on 
the code consumer's side, and would therefore require some 
sort of cryptographic authentication mechanism. This pro­
posal was never implemented, and so there is still no ad­
equate transport mechanism for mobile code in many ad­
vanced programming languages. 

An alternative method of solving this problem is used by 
the transPROSE core calculus approach. In the base ap-



proach, prorgrams are encoded using a high-level interme­
diate representation based on the source-language specific 
Abstract Syntax Tree (AST), just as with the Slim Bina.:. 
ries system. In addition to transporting the encoding AST, 
which has proven to be a good target for compression, a 
mapping is transported, giving the semantics of the source 
language AST in terms of a core calculus. · · . 

Programs are transmitted using this approach as follows: 
the code producer uses a traditional compiler front-end to 
produce an abstract syntax tree for the source program, and 
then directly encodes this tree for transmission. A map­
ping describing the semantics of the source language is 
also transmitted, or obtained from a library of mappings for 
common languages. The code consumer decodes the orig­
inal abstract syntax tree and the mapping, then applies the 
mapping to obtain the original program represented in the 
core calculus. The consumer then compiles the program 
from this representation to machine code on the target ar­
chitecture. 

To ensure the safety of this scheme, it is necessary for the 
core calculus to be a type-preserving one. One possibility 
would be to use the SafeTSA described later in this paper, 
though language-specific aspects of SafeTSA might result 
in some of the same problems described earlier for the Java 
Virtual Machine. 

The representation we have chosen in this line of re­
search is to use the typed lambda calculus, System Fw. This 
representation is has been studied extensively by the pro­
gramming language community, and is amenable to com­
piler analysis using well-known techniques. 

Advantages of this scheme include: 

• The high-level representation makes it possible to 
compress the code effeciently. 

• Source languages can be added ad hoc without user 
intervention or increasing the size of the trusted com­
puting base. 

• Because it is easier to write a mapping file than to de­
velop a full compiler back-end, the system can serve 
as part of a "language design workbench." 

• Because programs are transmitted at a high level, and 
almost all of the compilation machinery is present at 
the code consumer, it becomes possible to provide a 
convenient API for code-writing programs. 

• Because the source program is transmitted using a 
high-level representation, it remains possible to use a 
(potentially more efficient) language-specific compiler 
backend for more commonly used languages. 

The system as described so far places the burden of work 
on the code consumer. If the mapping is changed to map a 
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lower-level code to the core calculus, however, it becomes 
possible to do variable amounts of optimization before the 
code is transmitted. This allows the flexibility to choose the 
best place in the continuum of representation levels for the 
application at hand. 

6 Compression of Abstract Syntax Trees 

Among the major approaches to mobile code compres­
sion are (a) schemes that use code factoring compiler op­
timizations to reduce code size while leaving the code di­
rectly executable [12], (b) schemes that compress object 
code by exploiting certain statistical properties of the un­
derlying instruction format [14, 18, 25, 31], and (c) schemes 
that compress the abstract syntax tree (AST) of a program 
by using either statistical [7, 13] or dictionary-based ap­
proaches [ 17]. 

Our approach falls into the last category. The source 
code (modulo comments, layout, and names of internal 
identifiers) can easily be regenerated from an AST. Since 
the AST is composed according to a given abstract gram­
mar (AG), we are using domain knowledge about the under­
lying language to achieve a more compact encoding than a 
general-purpose compressor could achieve. 

Our compression framework applies to different kinds 
of code. It is convenient to think of our compression al­
gorithm as being applied to some source language, which 
-after decompression at the code receiver site- is com­
piled into native code. But generally, our scheme applies 
to all code formats, which can be expressed in form of a 
grammar. Theoretically, this includes all forms of code: 
source code, intermediate representations (e.g., byte code), 
and object code. Our prototype implementation compresses 
Java source programs, which can then be compiled to native 
code, thereby circumventing compilation into byte code and 
execution on the JVM. 

We chose the compression of Java programs (as opposed 
to other languages) as a proof-of-concept because a sizeable 
body of work on the compression of Java programs exists 
already, especially Pugh's work on jar file compression 
[31]. This gives us a viable yardstick to gauge our results 
against. 

Our c;mpression scheme does not assume that source 
code will be re-generated at the code consumer's site. In 
fact, in our current implementation the decompressor inter­
faces directly to the GCC backend. 

In our framework, source code is required in order to 
generate a compressed AST and, inversely, a compressed 
AST posesses the intrinsic capability to regenerate the 
source code (deprived of comments and internal identifier 
names). These two facts position our encoding as the ideal 
distribution format1 for Open Source Software. Files in our 

1 Of course, our format is only meant as replacement for the binary dis-



format are more compact and span several architectures, 
thereby reducing the maintainance effort for packaging. 

Since our compression format contains all the informa­
tion provided by the programmer at source language level, 
the runtime system at the code consumer site can handily 
use this information to provide optimizations and services 
based on source language guarantees.2 Kistler [23] uses the 
availability of the AST to make dynamic re-compilation at 
runtime feasible. Furthermore, distributing code in source 
language-equivalent form provides the runtime system with 
the choice of a platform-tailored intermediate representa­
tion. The success ofTransmeta's code morphing technology 
shows that this is a viable approach, even when starting with 
an unsuitable intermediate representation at a much lower 
abstraction level. 

Lastly, high-level encoding of programs protects the 
code consumer against all kinds of attacks based on low­
level instructions, which are hard to control and verify. Our 
encoding also has the desirable characteristic that even after 
malicious manipulation it can only generate ASTs which 
adhere to the abstract grammar (and additional semantic 
constraints), thereby providing some degree of safety by 
construction. This is in contrast to byte code programs, 
which have to go through an expensive verification process 
prior to execution. 

6.1 Compression Techniques for ASTs 

Computer program sources are phrases of formal lan­
guages represented as character strings. But programs 
proper are not really character strings, in much the sense 
that natural numbers are not digit strings but abstract en­
tities. Conventional context-free grammars, i.e., concrete 
grammars, mix necessary information about the nature of 
programs with irrelevant information catering to human 
(and machine) readability. An AST is a tree repesenting 
a source program abstracting away concrete details, e.g., 
which symbols are used to open/close a block of statements. 
Therefore it constitutes the ideal starting point for com­
pressing a program. Note also that properties like prece­
dence and different forms of nesting are already implicit in 
the AST' s tree structure. (Due to their equivalence we often 
use the terms AST and source program interchangeably.) 

6.1.1 Abstract Grammars 

Every AST complies with an abstract grammar (AG) just 
as every source program complies with a concrete gram-

tribution of Open Source Software. Since the right to modify the source 
and documentation is integral part of the Open Source philosophy our for­
mat is no alternative to the fully commented source text. 

2 As _an example, note that the Java language provides much more re­
strictive control flow than Java byte code, which allows almost arbitrary 
branches. 
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mar. AGs give a succinct describtion of syntactically3 cor­
rect programs by eliminating semantically superfluous de­
tails of the source program. 

AGs consist of rules (also called productions) defin­
ing symbols much like concrete grammars define (non­
)terminals [26]. Whereas phrases of languages defined by 
concrete grammars are character strings, phrases of lan­
guages defined by AGs are ASTs. Each AST node corre­
sponds to a rule, which we will often refer to as the kind 
of node. For the purpose of a simple presentation, we will 
discuss only three forms of rules, which suffice to specify 
sensible AGs. (These three rules are a subset of the rules 
used in our framework.) 

The first two rules are compound rules defining symbols 
corresponding to the well-known non-terminals of concrete 
grammars. An aggregate rule defines AST nodes (aggre­
gate nodes) with a fixed number of children. For example, 
the rule for the while-loop statement defines a WhileStmt 
node with two children of kind Expression and Statement. 

WhileStmt Expression; Statement 

The second form of compound rule is the choice rule, 
which defines AST nodes (choice nodes) with exactly one 
child. The kind of child node can be chosen from a fixed 
number of alternatives. The following (simplified) rule says 
that a Statement node has either an Assignment, IfStmt, 
or WhileStmt child, i.e., a statement is either one of these 
three. 

Statement Assignment I IfStmt I WhileStmt 

The last kind of rule is the string rule, which defines 
string nodes. The right hand side of a string rule is the pre­
defined STRING symbol. String rules define the equivalent 
of terminals in concrete grammars. String nodes contain 
an arbitrary string and they are the leaf nodes of the AST. 
To define the !dent node to be a string node we write the 
following. 

!dent A STRING 

User-defined symbols of AGs must be defined by exactly 
one rule with the exception of the predefined STRING sym­
bol. As usual, one symbol is marked as the start symbol of 
the AG. 

6.1.2 Encoding ASTs 

In order to encode (i.e., store or transport) ASTs they need 
to be serialized. ASTs can be serialized by writing out well­
defined traversals. We serialize an AST by generating its 
preorder representation. Such a traversal provides a lin­
earization of the tree structure only. In order to encode the 

3Here the term "syntactically" refers by convention to the context-free 
nature of the grammar. 



information stored at the nodes several mechanisms exist. 
The most common technique pre-scans the tree for node 
attributes, stores them in separately maintained lists, and 
augment the tree representation with indices into these lists. 
For now we ignore the problem of efficiently compressing 
strings (our only node attributes) for the sake of simplicity 
and assume that strings are directly encoded whenever they 
appear. 

The actual tree representation can make effective use of 
the AG. Given the AG, much information in the preorder 
encoding is redundant. In particular, the order and the kind 
of children of aggregate nodes is already known. Therefore 
the encoding boils down to noting the choices made at each 
choice node. Since the order of alternatives in choice nodes 
is fixed, it suffices to encode only the position (1, 2, 3, ... ) 
of the chosen alternative. Of course, if only one alternative 
is given there is "no choice" and therefore nothing needs to 
be encoded. 

6.1.3 Arithmetic Coding 

So far we reduced the serialization of compound rules to 
encoding the choice made at each choice node as an integer 
c E { 1, 2, ... , n}, where n depends on the kind of choice 
node and is equal to the number of given alternatives. We 
want to use as few bits as possible for encoding the choice 
c. The two options are to use Huffman coding or arithmetic 
coding. Using Huffman code as discussed in Stone [35] is 
very fast, but is much less flexible compared to or arithmetic 
coding. Cameron [7] shows that arithmetic coding is more 
appropriate for good compression results. 

An arithmetic coder is the best means to encode a num­
ber of choices if each alternative i E { 1, 2, ... , n} has a 
certain probability Pi, where 2:7=1 Pi = 1 and n is given by 
the kind of choice node. The tuple M = (P1, P2, ... , Pn) 
is called the model M for the arithmetic coder. When en­
coding, an arithmetic coder takes a sequence of choices Cj 

along with their respective models Mj as argument and out­
puts a sequence of bits B. From this information, the arith­
metic coder produces the most compact encoding of the se­
quence of choices c1 , c2 , .... When decoding, an arithmetic 
coder takes the sequence of bits B and the above sequence 
of models Mi, M 2 , ••. as arguments. For each given model 
Mj it then reproduces the next choice Cj. It is important to 
note that the model Mj can depend on all previous choices 
c1, c2, ... , Cj-1 · The choice of models determines the com­
pression ratio. If the probabilities are picked in an "optimal" 
fashion (i.e., taking "all" available information into account 
and adapting the probabilities appropriately) then the en­
coding has maximal entropy. 

A simple and fast way to chose the models is to fix the 
probability distributions for each kind of node. Good static 
models can be determined based on statistics over a repre-
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sentative set of programs. 

6.1.4 Prediction by Partial Match 

Prediction by Partial Match (PPM) [9] is a statistical, pre­
dictive text compression algorithm. PPM and its variations 
have consistently outperformed dictionary-based methods 
as well as other statistical methods for text compression. 
PPM maintains a list of already seen string prefixes, conven­
tionally called contexts. For each such context it keeps track 
of the occurrences of the following characters. For example, 
after processing the string ababc, the contexts are the empty 
context, a, b, c, ab, ba, be, aba, bab, abc, abab, babe, and 
ababc. The length of contextes is also called their order. 
The counted subsequent characters for, say, ab are a and c 
both with one occurrence. Normally, efficient implemen­
tations of PPM maintain contexts dynamically in a context 
trie [8]. A context trie is a tree with characters as nodes and 
where any path from the root to a node represents the con­
text formed by concatenating the characters along this path. 
The root node does not contain any character and represents 
the empty context (i.e., no prefix). In a context trie, children 
of a node constitute all characters that have been seen after 
its context. In order to keep track of the number of times 
that a certain character followed a given context, the num­
ber of its occurrences is noted along each edge. Based on 
this information PPM can assign probabilities to potentially 
subsequent characters. 

Adapting PPM for ASTs We have adapted the un­
bounded variant of the PPM algorithm (PPM*) [8] to work 
on ASTs instead of text. When applying PPM to trees 
the first problem to solve is the definition of contexts for 
ASTs. The context of an AST node N is defined as the con­
catenation of nodes from the root to N, exclusively. This 
means our modified PPM algorithm treats AST nodes like 
the original PPM algorithm treats characters. Our alphabet 
corresponds therefore to the symbols/rules of the AG.4 The 
PPM* algorithm is applied to the sequences of nodes as they 
appear while traversing the AST in depth-first order. 

However, above changes by itself are not sufficient to 
adapt PPM to ASTs. The maintenance procedure of the 
context trie needs to be augmented too, since the input seen 
by the modified PPM does not consist of contiguous charac­
ters anymore. No change is needed when the tree traversal 
descents to a child node. This corresponds to the famil­
iar addition to the current context. But what happens if the 
traversal ascends from subtrees thereby annihilating the cur­
rent context? This necessitates some enhanced context trie 
functionality: PPM* maintains a set of nodes in the context 

4Note that if an aggregate node has several children of the same kind 
then their position is relevant for the context. Since this does not happen 
that often, we have not implemented this refinement yet. 



trie called active nodes. Active nodes mark the positions 
where the current contexts end. The root of the trie, repre­
senting the empty prefix, is always active. 

New nodes in the context trie are always created as chil­
dren of active nodes. However, in our adaptation of PPM, 
unlike regular PPM, whenever we come to the end of a path 
in the abstract syntax tree (a leaf node), we pop the con­
text, i.e., all nodes marked as active (except the root) in the 
context trie are moved up one node to their parents. This 
ensures that all children of a node N in the AST appear as 
children of N in the context trie too. This works because we 
traverse the AST in depth first order while building up con­
texts. A desirable consequence of this technique is that the 
depth of the context tree is at most the depth of the abstract 
syntax tree which we are compressing. 

Weighing Strategies In order to generate the model for 
the next encoding/decoding step, we look up the counts of 
symbols seen after the current context in the context trie. 
Since the active nodes, to which we have direct pointers, 
correspond to the last seen symbol, this is a fast lookup and 
does not involve traversing the trie. These counts can be 
used in several ways to build the model. Normally the con­
text trie contains counts for contexts of various orders. We 
have to decide how to weigh these to get a suitable model. 
There is a tradeoff here : shorter contexts occur more of­
ten, but fail to capture the specificity and sureness of longer 
contexts (if the same symbol occurs many times after a very 
long context, then the chance of it occurring again after that 
same long context is very high), and longer contexts do not 
occur often enough for all symbols to give good predic­
tions. Note that the characteristics of AST contexts differ 
from text contexts.5 We tried various weighing strategies, 
and our experiments indicate that ignoring predictions made 
by order 0 contexts (which are simply occurrence counts of 
symbols, and form the first level of the context trie) and 
weighing all other predictions equally yields the best com­
pression. 

6.1.5 Compressing Constants 

A sizable part of an average program consists of constants 
like integers, floating-point numbers, and, most of all, string 
constants. String constants in this sense encompass not only 
the usual string Ii terals like 11 He 11 o Wo r 1 d ! 11 but also 
type names (e.g., j ava. lang. Object), field names and 
more. In our simplified definition of AGs, we used the pre­
defined STRING symbol to embody the case of constants 
within ASTs. 

5 AST contexts are bound by the depth of the AST and tend towards 
more repetitions since the prefixes of nodes for a given subtree are always 
the same. 
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Each string node is attributed with an arbitrary string. 
However, when observing the use of strings in AS Ts of typ­
ical programs, it is apparent that many strings are used mul­
tiple times. Therefore it saves space to encode the different 
strings once and refer to them at later occurrences. Such a 
reference is an index into a list of strings. The higher the 
number of strings is, the more bits are needed to encode the 
corresponding index. By distinguishing different kinds of 
strings (e.g., type names, field names, and method names) 
different lists of strings can be created. The split lists are 
each smaller than a global list. Given that the context deter­
mines which list to access, references to strings in split lists 
require less space to encode. As these considerations show, 
context-sensitive (as opposed to context-free) information 
such as symbol tables can be encoded and compressed at 
varying degrees of sophistication.6 

6.2 Preliminary Results 

Our current implementation is a prototype written in 
Python consisting of roughly 40 modules handling gram­
mars, syntax trees, and their encoding/decoding. Our fron­
tend is written in Java and uses Barat [5] for parsing Java 
programs. All information necessary to specify the AST's 
encoding and compression is condensed into one configura­
tion file. The configuration file contains the AG augmented 
with additional information, e.g., on how to compress the 
symbol table. Given the availablity of our framework at 
the code producer and consumer sites, the only additional 
requirement for each supported language is that identical 
copies of the configuration file are present at both sites. 

We chose primarily Pugh's compression scheme for 
comparison (see Table 1) because, to our knowledge, it pro­
vides the best compression ratio for Java class files and it's 
freely available for educational purposes. The other compa­
rable compression scheme is syntax-oriented coding [13]. 
But for this scheme there are no detailed compression num­
bers available, only an indication that the average compres­
sion ration is 1 : 6.5 between their format and regular class 
files. 

It should be noted that Pugh actually designed his com­
pression scheme for jar files, which are collections of class 
files. His algorithm therefore does not perform as well on 
small files as it does on bigger ones. We assume that is 
mostly due to the overhead caused by the fact that sev­
eral small streams of data are compressed separately by the 
zlib library. We use the evaluation version 0.8.0 of Pugh's 
Java Packing tool. 

We furthermore compare our results with two widely 
available general purpose compression algorithms, gzip and 
bzip2. Since Pugh's compression tool works on Java jar 

6Note that conventional symbol tables can conveniently be expressed 
as some kind of AST with the appropriate string nodes. 



Name Class File Tar Gzip Tar Bzip Jar Pugh PPM PPM/Pugh 
Error Message 388 430 437 838 350 105 0.30 
Compiler Member 1321 841 850 1242 537 230 0.43 
BatchParser 5437 2526 2631 2926 1366 1069 0.78 
Main 13474 7336 7631 7713 3594 3295 0.92 
SourceMember 15764 7436 7493 7836 3742 2988 0.80 
SourceClass 37884 18659 18653 19236 9004 7849 0.87 

Table 1. File sizes of compressed files for some classes from j avac (all numbers in bytes). 

files, and not individual class files, we first make a jar file 
from an individual class files and then compress the resul­
tant jar file using Pugh's tool. Thus, in order to make a fair 
comparison, we tar the class files before running bzip2 
or gzip on them. For reference purposes we also include 
the size of the original class file. 

Our choice of single classes tries to be representative of 
the sizes of classes in the jvm98 suite [34]. We use j avac, 
the official Java compiler package, to compare our results 
to others since it is available in source form. Table 1 shows 
that our compression scheme improves compression by 13-
70% over Pugh's results. 

Our experience shows that PPM adapts fast enough to 
each program's peculiarities that efforts to improve com­
pression by initially using statistically determined probabil­
ities did not yield any significant gains in compression. 

6.3 Related Work on Compression 

The initial research on syntax-directed compression was 
conducted in the 1980's primarily in order to reduce the 
storage requirements for source text files. Contla [10, 11] 
describes a coding technique essentially equivalent to the 
technique described in section 6.1.2. This reduces the size 
of Pascal source to at least 44% of its original size. Kata­
jainen et. al. [22] achieve similar results with automatically 
generated encoders and decoders. Al-Hussaini [2] imple­
mented another compression system based on probabilis­
tic grammars and LR parsing. Cameron [7] introduces a 
combination of arithmetic coding with the encoding scheme 
from section 6.1.2. He statically assigns probabilities to al­
ternatives appearing in the grammar and uses these proba­
bilities to arithmetically encode the preorder representation 
of ASTs. Furthermore, he uses different pools of strings to 
encode symbol tables for variable, function, procedure, and 
type names. Deploying all these (even non-context-free) 
techniques he achieves a compression of Pascal sources to 
10-17% of their original size. Katajainen and Makinen 
[21] present a survey of tree compression in general and 
the above methods in particular. Tarhio [36] suggests the 
application of PPM to drive the arithmetic coder in a fash­
ion similar to ours. He reports increases in compression of 
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Pascal ASTs (excluding constants) by 20% compared to a 
technique close to Cameron's.7 

All of these techniques are concerned only with com­
pressing and preserving the source text of a program in a 
compact form and do not attempt to represent the program's 
semantic content in a way that is well-suited for further pro­
cessing such as dynamic code generation or interpretation 
([22] even reflects incorrect semantics in their tree). Franz 
[ 16, 17] was the first to use a tree encoding for (executable) 
mobile code. 

Java, currently the most prominent mobile code plat­
form, attracted much attention with respect to compres­
sion. Horspool and Corless [19] compress Java class files 
to roughly 36% of their original size using a compression 
scheme specifically tailored towards Java class files. In a 
follow-up paper Bradley, Horspool, and Vitek [6] further 
improve the compression ratio of their scheme and extend 
its applicability to Java packages (jar files). A better com­
pression scheme for jar files was proposed by Pugh [31]. 
His format is typically 1/2 to 1/5 of the size of the corre­
sponding compressed jar file (1/4 to 1/10 the size of the 
original class files). Pugh offers his tool for free evalu­
ation. All of the above Java compression schemes start 
out with the byte code of Java class files, in contrast to 
the source program written in the Java programming lan­
guage. Eck, Changsong, and Matzner [13] employ a com­
pression scheme similar to Cameron's and apply it to Java 
sources. They report compression to around 15% of the 
original source file, although more detailed information is 
needed to assess their approach. In contrast to Pugh, they 
make no ~valuation tools available. 

7 The SafeTSA Representation 

The Java Virtual Machine's bytecode format (JVM­
code) has become the de facto standard for transporting mo­
bile code across the Internet. However, it is generally ac­
knowledged that JVM-code is far from being an ideal mo­
bile code representation-a considerable amount of prepro-

7Unfortunately, we learned of Cameron's and Tarhio's work only after 
we developed our solution independently of both. 



cessing is required to convert JVM-code into a represen­
tation more amenable to an optimizing compiler, and in a 
dynamic compilation context this preprocessing takes place 
while the user is waiting. Further, due to the need to verify 
the code's safety upon arrival at the target machine, and also 
due to the specific semantics of JVM' s particular security 
scheme, many possible optimizations cannot be performed 
in the source-to-JVM-code compiler, but can only be done 
at the eventual target machine-or at least they would be 
very cumbersome to perform at the code producer's site. 

For example, information about the redundancy of a type 
check may often be present in the front-end (because the 
compiler can prove that the value in question is of the cor­
rect type on every path leading to the check), but this fact 
cannot be communicated safely in the JVM-code stream 
and hence needs to be re-discovered in the just-in-time com­
piler. By "communicated safely", we mean in such a way 
that a malicious third party cannot construct a mobile pro­
gram that falsely claims that such a check is redundant. Or 
take common subexpression elimination: a compiler gen­
erating JVM could in principle perform CSE and store the 
resulting expressions in additional, compiler-created local 
variables, but this approach is clumsy at best. 

The approach taken with SafeTSA developed under 
the transPROSE project is radically different from JVM's 
stack-based virtual machine. The SafeTSA representation 
is a genuine static single assignment variant in that it differ­
entiates not between variables of the original program, but 
only between unique values of these variables. SafeTSA 
contains no assignments or register moves, but encodes 
the equivalent information in phi-instructions that model 
dataflow. Unlike straightforward SSA representations, how­
ever, SafeTSA provides intrinsic and tamper-proof referen­
tial integrity as a well-formedness property of the encoding 
itself. 

Another key idea of SafeTSA is "type separation": val­
ues of different types are kept separate in such a manner that 
even a hand-crafted malicious program cannot undermine 
type safety and concomitant memory integrity. Interestingly 
enough, type separation also enables the elimination of type 
and range checks on the code producer's side in a manner 
that cannot be falsified. 

Finally, SafeTSA programs are transmitted after com­
mon subexpression elimination, which removes redundan­
cies, leading to smaller and more efficient programs. 

7 .1 Referential Integrity 

A program in SSA form contains no assignments or reg­
ister moves; instead, each instruction operand refers directly 
to the definition or to a "phi" function which models the 
merging of multiple values based on the control flow. How­
ever, straightforward SSA is unsuitable for application do-
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mains that require verification of referential integrity in a 
context of possibly malicious code suppliers. This is be­
cause SSA contains an unusually large amount of references 
needing to be verified, far more than the original source pro­
gram, making the verification process very expensive. 

As an example, consider the program in Figure l(a). The 
left side shows a source program fragment and the right side 
a sketch of how this might look translated into SSA form. 
Each line in the SSA representation corresponds to an in­
struction that produces a value. The individual instructions 
(and thereby implicitly the values they generate) are labeled 
by integer numbers assigned consecutively; in this illustra­
tion, an arrow to the left of each instruction points to a label 
that designates the specific target register implicitly speci­
fied by each instruction. References to previously computed 
values in other instructions are denoted by enclosing the la­
bel of the previous value in parentheses - in our depiction, 
we have used (i) and (j) as placeholders for the instructions 
that compute the initial values of i and j. Since there are 
no uses of uninitialized variables in Java, such instructions 
must always exist-in most cases, these would correspond 
to values propagated from the constant pool. 

The problem with this representation lies in verifying the 
correctness of all the references. For example, value (10) 
must not be referenced anywhere following the phi-function 
in (12), and may only be used as the first parameter but not 
as the second parameter of this phi-function. A malicious 
code supplier might want to provide us with an illegal pro­
gram in wbich instruction (13) references instruction (10) 
while the program takes the path through (11)-this would 
undermine referential integrity and must be prevented. 

The solution is based on the insight that in SSA, an in­
struction may only reference values that dominate it, i.e., 
that lie on the path ~eading from the entry point to the refer­
encing instruction. This leads to a representation in which 
references to prior instructions are represented by a pair (Z­
r), in which l denotes a basic block expressed in the num­
ber of levels that it is removed from the current basic block 
in the dominator tree hierarchy, and in which r denotes a 
relative instruction number in that basic block. For phi­
instructions, an I-index of 0 denotes the appropriate preced­
ing block along the control flow graph (with the nth argu­
ment of the phi function corresponding to the nth incom­
ing branch), and higher numbers refer to that block's dom­
inators. The corresponding transformation of the program 
from Figure l(a) is given in Figure l(b). 

The resulting representation using such (l-r) value­
references provides referential integrity intrinsically with­
out requiring any additional verification besides the trivial 
one of ensuring that each relative instruction number r does 
not exceed the permissible maximum. The latter fact can 
actually be exploited when encoding the (l-r) pair space­
efficiently. 



i=i+I; 
j=J+l; 
if(i<=j) 

i=i+i; 
else 

i=i-1; 
J=J+i; 

int-D-0 

(a) in SSA Form (b) in Reference-Safe SSA 
Form 

(c) in Typed Reference-Safe SSA 
Form 

Figure 1. An Example Program 

7.2 Type Separation 

The second major idea of our representation is type sep­
aration. While the "implied machine model" of ordinary 
SSA is one with an unlimited number of registers (=val­
ues), SafeTSA uses a model in which there is a separate 
register plane for every type (disregarding, for a moment, 
the added complication of using a two-part (l-r) naming for 
the individual registers, and also temporarily disregarding 
type polymorphism in the Java language-both of these are 
supported by our format, as explained below). The register 
planes are created implicitly, taking into account the prede­
fined types, imported types, and local types occurring in the 
mobile program. 

Type safety is achieved by turning the selection of the ap­
propriate register plane into an implied part of the operation 
rather than making it explicit (and thereby corruptible). In 
SafeTSA, every instruction automatically selects the ap­
propriate plane for the source and destination registers; 
the operands of the instruction merely specify the particular 
register numbers on the thereby selected planes. Moreover, 
the destination register on the appropriate destination regis­
ter plane is also chosen implicitly-on each plane, registers 
are simply filled in ascending order. 

For example, the operation integer-addition takes two 
register numbers as its parameters, srcl and src2. It will im­
plicitly fetch its two source operands from register integer­
srcl, integer-src2, and deposit its result in the next available 
integer register (i.e., the register on the integer plane, hav­
ing an I-index of zero and an r-index that is 1 greater than 
the last integer result produced in this basic block). There 
is no way a malicious adversary can change integer addi­
tion to operate on operands other than integers, or generate 
a result other than an integer, or even cause "holes" in the 
value numbering scheme for any basic block. To give a sec­
ond example, the operation integer-compare takes its two 
source operands from the integer register plane and will de­
posit its result in the next available register on the Boolean 
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register plane. 
SafeTSA combines this type separation with the con­

cept of referential integrity discussed in the previous sec­
tion. Hence, beyond having a separate register plane for 
every type, we additionally have one such complete two­
dimensional register set for every basic block. The results 
of applying both type separation and reference safe num­
bering to the program fragment of Figure l(a) are shown in 
Figure l(c). 

7.3 Construction of Memory Safety 

For every reference type ref, our "machine model" pro­
vides a matching type safe-ref that implies that the corre­
sponding value has been null-checked. Similarly, for ev­
ery array arr we provide a matching type safe-index-arr 
whose instances may assume only values that are index val­
ues within legal range8 

Null-checking then becomes an operation that takes an 
explicit ref source type and an explicit register number on 
the corresponding register plane. If the check succeeds, the 
ref value is copied to an implicitly given register (the next 
available) on the plane of the corresponding safe-ref type, 
otherwise an exception will be generated. Similarly, the 
index-check operation will take an array and the number 
of an integer register, check that the integer value is within 
bounds, arid if the check succeeds, copy the integer value to 
the appropriate safe-index register plane. 

The beauty of this approach is that it enables the trans­
port of null-checked and index-checked values across phi­
joins. Phi-functions are strictly type-separated: all operands 
of a phi-function, as well as its result, always reside on the 
same register plane. Whenever it is necessary to combine 
a ref-type and the corresponding safe-ref type in a single 
phi-operation, the safe-ref type needs to be downcast to the 

8Because of the need to support dynamically-sized arrays, safe-index 
types are actually bound to array reference values rather than to their static 
types. 



corresponding unsafe ref type first. The downcast operation 
is a modeling function of SafeTSA and will not result in any 
actual code on the eventual target machine. 

Null-checking and index-checking can be generalized to 
include all type-cast operations: an upcast operation in­
volves a dynamic check and will cause an exception if it 
fails. In the case of success, it will copy the value being cast 
to the next available free register on the plane of the target 
type (only the dynamic check will result in actual code at 
the target machine, but not the copy operation). The down­
cast operation never fails and will never result in any actual 
target code. 

All memory operations in SafeTSA require that the stor­
age designator is already in the safe state; i.e., these oper­
ations will take operands only from the register plane of a 
safe-ref or safe-index type, but not from the corresponding 
unsafe types. For example, the primitive for data member 
write access is 

setfield ref-type object field value 

where ref-type denotes a reference type in the type table, 
object designates a register number on the plane of the cor­
responding safe-ref type, field is a symbolic reference to 
a data member of ref-type, and value designates a register 
number on the plane corresponding to the type of .field. 

The set.field operation and the corresponding setelt for 
arrays are the only ones that may modify memory, and they 
do this in accordance with the type declarations in the type 
table. This is the key to type safety: most of the entries in 
this type table are not actually taken from the mobile pro­
gram itself and hence cannot be corrupted by a malicious 
code provider. While the pertinent information may be in­
cluded in a mobile code distribution unit to ensure safe link­
ing, those parts of the type table that refer to primitive types 
of the underlying language or to types imported from the 
host environment's libraries are always generated implicitly 
and are thereby tamper-proof. 

This suffices in guaranteeing memory-safety of the host 
in the presence of malicious mobile code. In' particular, in 
the case of Java programs, SafeTSA is able to provide the 
identical safety semantics as if Java source code were being 
transported to the target machine and compiled and linked 
locally. Our prototype compiler is capable of encoding all 
of this information in approximately the same space as the 
equivalent Java bytecode instructions 

7.4 Preliminary Results 

We have been building a system consisting of a com­
piler that takes Java source files and translates them to the 
SafeTSA representation, and a dynamic class loader that 
takes SafeTSA code distribution units and executes them 
on SPARC using on-the-fly code generation. 
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Currently our compiler can process programs written in 
the complete Java language and produce SafeTSA interme­
diate code. The class loader and dynamic code generator do 
not yet produce competitive results, but work on them has 
progressed sufficiently that we are confident of the correct­
ness of our approach. 

SafeTSA provides a safe mechanism for the transporta­
tion of optimized code. We take advantage of this fact to 
perform optimizations that will reduce the size and eventu­
ally the execution time of the transmitted code. As a proof 
of concept, we currently implement constant propagation, 
common subexpression elimination and dead code elimina­
tion at a local level. 

In the following measurements we compare the size 
and number of instructions for programs compiled to Java 
byte-code, SafeTSA, and optimized SafeTSA. As bench­
marks, we use programs from the Sun Java Development 
Kit. These include classes from the Java compiler, javac, 
the Java interpreter, java, as well as some classes from the 
Math and Linpack packages. The latter classes are used 
to demonstrate reductions of array checking instructions. 
Where we compare to Java, we refer to byte-code produced 
using version 1.2.2 of Sunjavac. 

The first three columns of Figure 2 show the sizes 
and numbers of instructions in SafeTSA files as compared 
to Java class files-in most cases SafeTSA has less than 
40% of the number of instructions that Java byte-code re­
quires. The above-mentioned optimizations can reduce sig­
nificantly the number of instructions in SafeTSA form, by 
more than 10% in most cases, and up to 19% for some pro­
grams. Constant propagation leads to an improvement of 
only 1 % or 2% in the program size. Dead code elimina­
tion generally is most effective in reducing the number of 
phi instructions - between 3% and 7% of the number of in­
structions at most. The majority of the code size reduction 
is due to common subexpression elimination. In our mea­
surements the reduction due to this was between 5% and 
14%. The sizes of SafeTSA files are usually smaller than 
the equivalent Java byte-code files, and sometimes substan­
tially so. 

Figure 2 also gives detail on the practical influence of 
optimizations performed prior to transmission of the code. 
It contains information on the reduction of phi instructions, 
null-checks, and array checks. These are of particular inter­
est as they lead to less information that needs be transmitted 
as well as eventually to faster execution. As can be seen, the 
number of phi instructions was reduced by more than 30% 
in most cases. Surprisingly, we can eliminate and safely 
transport a program with, in most cases, 30% fewer null­
checks, and in some cases up to 70% reduction is achieved. 
Perhaps even more surprisingly, our optimizations are based 
only on knowledge of safe values and common subexpres­
sion elimination and not on any context sensitive analysis. 



Class Name Instruction Count [ Phi Instruction Null-Checks Array-Checks 
JVM STSA Opt. ~with wlo 6.% with wlo 6.% with wlo 6.% 

sun.tools.javac 
BatchEnvironment 2516 1640 1462 131 75 -43 425 206 -51 11 9 -18 
BatchParser 394 286 276 19 16 -16 53 46 -13 NIA NIA NIA 
Main 1734 1410 1281 330 301 -9 246 155 -37 53 49 -8 
SourceClass 5396 3869 3381 356 200 -44 926 605 -35 NIA NIA NIA 
SourceMember 1735 1333 1169 221 123 -44 327 261 -20 12 12 NIA 
sun.tools.java 
Binary Attribute 121 77 64 12 7 -42 19 12 -37 NIA NIA NIA 
BinaryCiass 873 617 527 56 35 -37 131 62 -52 2 2 NIA 
BinaryCode 233 77 62 6 3 -50 15 4 -73 1 1 NIA 
Scanner 4240 3912 3779 58 47 -19 101 58 -42 8 8 NIA 
Parser 3578 1732 1614 351 263 -25 196 151 -23 11 11 NIA 
sun.math 
BigDecimal 935 702 612 54 35 -35 119 73 -39 26 16 -38 
Biglnteger 5638 3463 3080 382 296 -23 451 257 -43 188 169 -10 
BitSieve 277 153 140 18 15 -17 15 11 -26 3 3 NIA 
MutableBiglnteger 3415 2223 1925 205 169 -18 400 172 -52 136 132 -3 
Linpack 
Lin pack l 1097 638 424 l 138 88 -36 70 43 -39 I 67 54 -19 

Figure 2. Number of Phi-, Null-Check and Array-Check instructions before and after optimization. 

Most of our benchmarks do not include a lot of array manip­
ulation. However, for those that do, we see a reduction of 
up to 38% in the number of array check instructions. Note 
that our SafeTSA sizes contain explicit null-checks, type­
checks, and index checks, while these need not be trans­
ported in Java byte-code, but also cannot be removed as a 
consequence. 

7.5 Related Work on Typed IRs 

It is difficult to generate quality native code from JVM­
code[20]. This situation is exacerbated in TIT compilers: 
because they need to operate while a user is waiting, they of­
ten need to favor compilation speed over code quality (e.g. 
by using linear scan register allocation[30] rather than graph 
coloring.) JVM is also hard to verify. In particular, check­
ing that all operand accesses to the stack are valid requires 
a data flow analysis. SafeTSA promises to alleviate both of 
these concerns. 

In the last few years, several native code optimizing Java 
compilers that use an intermediate representation based 
on SSA form have been developed: the Swift compiler 
[32], Marmot [15], and the HotSpot Server compiler [l]. 
Jalapeno [3] also uses SSA for certain optimizations. 

The intermediate representation for Microsoft's recently 
announced ".NET" platform offers an improvement over 
the stack based virtual machine, allowing for a second SSA 
form description to be added to the stack based representa­
tion. Not all of .NET's details have been released yet, and it 
is unclear what provisions .NET may have to guaranty the 
consistency between the stack and SSA based representa­
tions, as well as the type safety of the SSA based represen-
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tation. 

Like our approach, proof carrying code (PCC)[29] aims 
at the safe execution of untrusted, possibly mobile, code. 
The target machine receives native code along with a proof 
that the native code complies with the target machine's se­
curity policy. Although PCC can be used to support arbitrar­
ily complex security policies, those for which proofs can be 
made automatically are similar to the guarantees enforced 
by SafeTSA. 

TAL (Typed Assembly Language) [27] guarantees a sim­
ilar level of safety by overlaying a type system onto the ma­
chine code. Their compiler is also noteworthy for maintain­
ing typing through several compiler phases and intermedi­
ate representations, some of which are similar to SSA. 

8 Conclusions 

The transPROSE project has made contributions to the 
areas of syntax tree compression and mobile-code repre­
sentations. We are continuing to explore trade-offs between 
security, flexibility, compactness, and efficiency. 
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