
UC Irvine
ICS Technical Reports

Title
Project transPROse : reconciling mobile-code security with execution efficiency

Permalink
https://escholarship.org/uc/item/9tv2580b

Authors
Amme, Wolfram
Dalton, Niall
Frohlich, Peter H.
et al.

Publication Date
2001-01-12

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/9tv2580b
https://escholarship.org/uc/item/9tv2580b#author
https://escholarship.org
http://www.cdlib.org/

Wolfram Amme
Peter S. Housel

~ect SE:

Mobile-Code
Execution Efficiency

Niall Dalton Peter ff Frohlich
Jeffery von Ronne ChJistian H, Stork

Michael Franz

Department ~) :_ 1nformation and Computer Science
University of California, Irvine, CA 92697-342)

Technical Report 0I·-01

January 12, 2001

Vivek Haldar
Sergiy Zhenochin

transPROSE is a comprehensive research project investigating techniques fm transporting progrnms .-.ccur,::y over
potentially insecure channels. The central focus of this project is the development of '1 blueprint fm a m;xt-generation
mobile-code distribution format. A problem of previous approaches to mobile-code security Ui:iR been '.hrJ the. ad·li
tional provisions for security lead to a loss of efficiency, often to the extent of making an otherwise virtnorn;
scheme unusalfle for all but trivial-p.tagrams. Project transPROsE strives to deviate from the commot: approach f 1

studying security in 1.solation -anti-in.stead focuses simultaneously on multiple aspects of mobile.:code qu~\[iry. Ei>

sides security, such aspects include encoding density, speed of dynamic code generation, and the eventual e:v~cutiuu
performance. This paper gives a high level overview of project transPROSE and presents initial resu.lis.

Project trans PROSE:
Reconciling Mobile-Code Security With Execution Efficiency*

Wolfram Amme
wolfram@ics.uci.edu

Niall Dalton
ndalton@ics.uci.edu

Peter H. Frohlich
phf@acm.org

Vivek Haldar
vhaldar@ics.uci.edu

Peter S. Housel
housel@acm.org

Jeffery von Ronne Christian H. Stork Sergiy Zhenochin
serega@ics.uci.edu jronne@ics.uci.edu cstork@ics.uci.edu

Michael Franz
franz@uci.edu

Department of Information and Computer Science
University of California, Irvine
Irvine, CA 92697-3425, USA

Abstract

transPROSB is a comprehensive research project in­
vestigating techniques for transporting programs securely
over potentially insecure channels. The central focus of
this project is the development of a blueprint for a next­
generation mobile-code distribution format. A problem of
previous approaches to mobile-code security has been that
the additional provisions for security lead to a loss of ef­
ficiency, often to the extent of making an otherwise virtu­
ous security scheme unusable for all but trivial programs.
Project transPROSB strives to deviatefrom the common ap­
proach of studying security in isolation and instead focuses
simultaneously on multiple aspects of mobile-code qual­
ity. Besides security, such aspects include encoding density,
speed of dynamic code generation, and the eventual execu­
tion peiformance. This paper gives a high-level overview of
project trans PROSE and presents initial results.

*Effort sponsored by the Defense Advanced Research Projects Agency
(DARPA) and Air Force Research Laboratory, Air Force Materiel Com­
mand, USAF, underagreementnumberF30602-99-1-0536. The U.S. Gov­
ernment is authorized to reproduce and distribute reprints for Governmen­
tal purposes notwithstanding any copyright annotation thereon. The Views
and conclusions contained herein are those of the authors and should not
be interpreted as necessarily representing the official policies or endorse­
ments, either expressed or implied, of the Defense Advanced Research
Projects Agency (DARPA), the Air Force Research Laboratory, or the U.S.
Government.

1 Introduction

The ability to send mobile code from one machine to an­
other is one of the most important enabling technologies of
the Internet age. Mobile code, especially forms of mobile
code that are target machine-independent, greatly alleviate
many previously existing problems of software distribution,
version control, and maintenance. Mobile code also pro­
vides the means for entirely new approaches, such as "exe­
cutable content" within documents.

Unfortunately, using mobile code is fraught with risks.
If an adversary succeeds in deceiving us into executing a
malicious program supplied by him or her, this may have
catastrophic consequences and may lead to loss of confiden­
tiality, loss of information integrity, loss of the information
itself, or a combination of these outcomes. Hence, we must
at all costs avoid executing programs that can potentially
cause such harm.

The first line of defense against such incidents is to shield
all computer systems, all communications among them, as
well as all of the information itself against intruders using
physical and logical access controls.

A second line of defense is to use cryptographic authen­
tication mechanisms to detect mobile code that hasn't orig­
inated with a known and trusted code provider or that has
been tampered with in transit.

Project transPROSB concerns itself with a third line of
defense that is independent of and complementary to the
first two mentioned above: Assume that an intruder has
successfully managed to penetrate our system (breaking de­
fense #1) and is able to present us with a mobile program

that falsely authenticates itself as being uncompromised and
originating from a trusted party (circumventing defense #2),
how do we nevertheless prevent it from causing any dam­
age?

To answer this question, we have been studying a partic­
ular class ofrepresentations for target-machine independent
mobile programs that can provably encode only legal pro­
grams. Hence, there is no way an adversary can substitute
a malicious program that can corrupt its host computer sys­
tem: Every well-formed mobile program that is expressible
in such an encoding is guaranteed to map back to a source
program that is deemed legal in the original source context,
and mobile programs that are not well-formed can be re­
jected trivially. Further, such an encoding can be designed
to guarantee not only referential integrity and type-safety
within a single distribution module, but also to enforce these
properties across compilation-unit boundaries.

A problem of previous approaches to mobile-code secu­
rity has been that the additional provisions for security lead
to a loss of efficiency, often to the extent of making an oth­
erwise virtuous security scheme unusable for all but trivial
programs. Conversely, project transPROSE from the outset
has been striving to deviate from the common approach of
studying security in isolation, and instead has focused on
satisfying multiple goals of mobile-code quality simultane­
ously. Some such additional qualities to consider are the
mobile code format's encoding density (an important factor
for transfer over wireless networks) and the ease with which
high-quality native code can be generated by a just-in-time
compiler at the eventual target site.

The remainder of this paper outlines various facets of
project transPROsE, starting with definitions and scope of
the project and its architecture, and then presenting some
preliminary results.

2 Definitions and Scope

We understand the term mobile code from a compiler
construction perspective as any intermediate representation
that fulfills the following criteria:

• Completeness: The intermediate representation has
an executable semantics independent of external infor­
mation.

• Portability: The intermediate representation is free
of assumptions about the eventual execution platform
(processor family, operating system).

• Security: The intermediate representation can be
shipped safely over unsecure channels without the po­
tential for compromising the execution platform.

2

• Density: The intermediate representation can be en­
coded in a compact form to minimize the impact of
bandwidth-limited channels.

• Efficiency: The intermediate representation is well­
suited for generating efficient, directly executable ob­
ject code using just-in-time compilation techniques.

Apart from these fundamental criteria, the following prop­
erties are also desirable:

• Extensibility: The intermediate representation should
be general enough to allow multiple source languages
to be transported effectively.

• Pipelinability: The intermediate representation
should enable pipelining of decoding (decompression)
and code-generation.

Within the transPROSE project, we are developing an in­
frastructure for a mobile-code transportation standard. This
infrastructure takes the form of a well-documented extensi­
ble component framework. The architecture of this frame­
work is similar to the architecture of a modern compiler,
however it is usually deployed in a distributed fashion:

• Code producers use compilers for various source lan­
guages, which could be called "front-ends" of the
architecture, to compile applications into the mobile
code intermediate representation.

• Code consumers use compilers for this intermediate
representation, which could he called "back-ends" of
the architecture, to generate native object code suitable
for execution on their machines.

Code producers and code consumers are separated in time
and/or space, and mobile code is shipped from producers to
consumers using a variety of channels.

Within the design space bounded by these requirements,
we have made the following fundamental design decisions:

• Cryptographic approaches to security are orthogonal
to our project. Such techniques rely on trust relation­
ships between code producers and code consumers.
While they enable the producer of malicious code to
be identified, they do not protect the execution plat­
form against being compromised.

• Compilation time requirements are more stringent
at the code consumer's site than at the code pro­
ducer's site. It is therefore beneficial to off-load time­
consuming compilation tasks to the code producer,
provided that the computed information can be shipped
compactly and in a tamper-proof manner.

• Compressing mobile code is viable if the time for
transmission and decompression is lower than the
transmission time of uncompressed code. The overall
transmission speed is that of the slowest link along the
path from producer to consumer, which in many im­
portant emerging application areas (including military
ones) is often a low-bandwidth wireless one.

Given these definitions and scope, one immediately won­
ders how this compares to the currently dominant industry
solution, the Java Virtual Machine (NM). The NM has
quickly become the de-facto standard for encoding mobile
programs for transport across the Internet. Unfortunately,
the solution embodied by Java fails to deliver the execution
efficiency of native code at reasonable levels of dynamic
compilation effort.

The main reason for this deficiency is that the NM's
instruction format is not very capable in transporting the
results of program analyses and optimizations. As a con­
sequence, when Java byte-code is transmitted to another
site, each recipient must repeat most of the analyses and
optimizations that could have been performed just once
at the origin. Java also fails in preserving programmer­
specified parallelism when transporting programs written in
languages such as Fortran-95, leading to loss of information
that is essential for optimizations and that cannot be com­
pletely reconstructed at the code recipient's site.

The main reason why Java byte-code has these deficien­
cies is to allow verification by the recipient. Untrusted mo­
bile code needs to be verified prior to execution to protect
the host system from potential damage. The most funda­
mental validation step is to ascertain that an arriving mo­
bile program is type-safe, since a breach of the type system
can be used to subvert any other security policy. The use
of a type-safe source language does not by itself remove
the necessity of verification. This is because barring any
additional authentication mechanism, it cannot be guaran­
teed that any given piece of mobile code ever originated in
a valid source program in the first place-it might instead
have been explicitly hand-crafted to corrupt its host.

Verifying the type-safety of a piece of Java virtual­
machine code is a non-trivial and time-consuming activ­
ity. Interestingly enough, and as we elaborate below, in the
course of the trans PROSE project we have identified certain
mobile-program representations that not only remove the
need for verification altogether, but that can also transport,
in a tamper-proof manner, the results of program analyses
benefiting code generation on the eventual target machine.
As already hinted at in the introduction, the key idea for do­
ing away with verification is to use a representation that can
provably encode only legal programs in the first place.

3

3 Policy Assumptions and Guarantees

Security in our approach is based on type safety, using
the typing model of the source language (but not restricted
to any particular language's type-safety model). A type­
safe source language is a requirement. The underlying idea
is then the following:

A security guarantee exists at the source language
level; just preserve it through all stages of code
transportation.

The requirements for a mobile-code transportation sys­
tem thereby become:

• all mobile programs need to be programmed in a type­
safe language

• each host system needs to publish its policies in terms
of a type-safe API

The mobile-code transportation system then guarantees
type safety throughout: all of the host's library routines
are guaranteed to be called with parameters of the correct
type(s) by the mobile program. Also, capabilities (object
pointers) owned by the host can be manipulated by the mo­
bile client application only as specified in the host's inter­
face definition (for example, using visibility modifiers such
as private, protected, ...), and they cannot be forged or al­
tered.

For example, the host's file system interface might have
a procedure

Open(...): File

that returns an abstract file object. A type-safety based se­
curity scheme is able to guarantee that the mobile client pro­
gram cannot alter such a file object in any way prohibited by
its specification, or access its contents unless this is allowed
by explicit visibility modifiers. Conversely, additional secu­
rity policies such as "mobile program X can open files only
in directory Y" need to be implemented on the host's side.

Hence, the semantics of such a transportation scheme
are identical to "sending source code", which incidentally
is the model that almost all programmers (falsely) assume
anyway. Note that, for efficiency reasons and to guard trade
secrets embedded in the mobile code, the approach of actu­
ally sending source code is usually not an option.

As a consequence, subtle problems arise whenever the
semantics of the intermediate language are different from
those of the source language; for example, there are pro­
grams that can be expressed using the Java Virtual Ma­
chine's byte-code language that have no equivalent at the
Java source language level. Situations like these should be
avoided.

3.1 Is Type Safety Sufficient?

Interestingly enough, the model of "transporting the
equivalent of source code" enables automatic support for
any future user-specified security policy that can be cast into
a language construct.

Take for example Andrew Myers Java Information Flow
language [28]. This language provides an additional modi­
fier (an additional dimension in the type space) to variables
that specifies a security attribute of the variable's owner. In­
formation flow can then be restricted statically among com­
ponents to occur only from low security to high security, but
not vice versa.

Clearly, this is a new security property that is not
supported by current mobile code transportation schemes.
However, this property and any other property that can be
mapped onto a language construct can easily be supported
by grammar-based mobile-code transportation schemes
such as the one developed in the transPROSE. The key is to
use an approach that completely preserves the type seman­
tics of the underlying source language.

4 Encoding Only Legal Programs

We have been investigating a class of encoding schemes
for mobile programs that rely on semantic information to
guarantee that only legal programs (under the syntactic and
typing rules of some underlying grammar) can be encoded
in the first place. This is essentially achieved by constantly
adjusting the "language" used in the encoding to reflect the
semantic entities that are legally available under the afore­
mentioned rules at any given point in the encoding process.
A program encoded in this manner cannot be tampered
with to yield a program that violates these rules. Rather,
any modification in transit can in the worst case only re­
sult in the creation of another legal program that is guaran­
teed to conform to the original rules. Because the encoding
schemes we are exploring are related to data compression,
they also yield exceptionally high encoding densities as a
side-effect.

4.1 Example: Probabilistic Encoding

As a concrete example of an encoding that has the prop­
erty of being able to encode only legal programs, consider a
probabilistic encoding mechanism that parses the interme­
diate abstract syntax tree representation of a program and
encodes it based on the intermediate representation's gram­
mar and a continuously adapted probabilistic model.

At each step in the encoding, the alternatives that can
possibly occur at this point are enumerated. For each type
of grammatical class, there is a different probability distri­
bution, and both the encoder and the decoder keep track

4

of these distributions. For example, a statement can be ei­
ther of (assignment, if-statement, while-statement, ...), and
the probability of it being an assignment is usually highest.
Similarly, if it is indeed an assignment, then the left hand
side can either be a local variable, or a global or external
variable, or an array access, or a pointer access, etc. If it is
a local variable, the choices are limited by the declarations
in the program, and their relative probability can be based
on past history.

An encoding can then be found using a form of arith­
metic coding. The probabilities of the various occurring
constructs define sub-intervals of the range [0-1), and the
bit-pattern that represents the encoding corresponds to the
real number designating the sub-interval. For example, if
assignment has a probability of 1/2, we would designate the
interval [0-0.5) to represent assignment. Assume that with
probability of0.8, the target of an assignment is a local vari­
able, this would lead to [0-0.4) to stand for "assign to local".
If we had three local variables i, j, and k, and assignment
to them had equal probability, these assignments could now
be represented as [0-0.1333), [0.1333-0.2666), and [0.2666-
0.4) and so on. At each step, the interval is narrowed down
in such a manner that highly probable events contribute less
information than less probable ones. Any real number in the
final interval represents the encoded construct. The prob­
abilities themselves are constantly adjusted as the encod­
ing proceeds. As a consequence, individual constructs con­
tribute just a fraction of a bit to the final encoding in pro­
grams that ex_hibit a high degree of self-similarity. Note that
the bit pattern that is ultimately emitted needn't be buffered
indefinitely, but instead can be output progressively, by re­
scaling the interval appropriately.

Note that this encoding can provably encode only le­
gal programs, because elements that are forbidden at any
given point have zero probability and hence cannot be rep­
resented. On the other hand, any given bit-pattern maps
back onto a legal program according to the original rules,
because the corresponding real number falls into some in­
terval. Also note that performance-enhancing (but semanti­
cally irrelevant) annotations can easily be superimposed on
the encoding stream simply by incorporating them into the
probabilistic model.

4.2 Technical Approach

Our technique is an improvement on the earlier "Slim
Binary" method [17], a dictionary-based encoding scheme
for syntax trees. In the Slim Binary scheme, a dictionary is
grown speculatively and at any given time contains all sub­
expressions that have previously occurred and whose con­
stituent semantic entities (variables, data members, ...) are
still visible according to the source-language scoping rules.
The encoding schemes we have been investigating under the

transPROSE project exert a much finer control over the en­
coding dictionary (or more general context), at each step
temporarily removing from it all sub-expressions that aren't
applicable. Our research in this direction is elaborated in a
separate section entitled "Compression of Abstract Syntax
Trees".

Unlike the Slim Binary method, we have also investi­
gated applying the encoding to richer and more compiler­
related starting representations than syntax trees. For exam­
ple, the encoding could be applied to programs represented
in a variant of Static Single Assignment (SSA) form, after
performing common sub-expression elimination and copy
propagation. Such an SSA-based encoding disambiguates
between different values of the same variable and not only
simplifies the generation of high-quality native code at the
receiver's site, but also leads to fewer alternatives at each
encoding step and consequently to a still denser encoding.
Our work on encoding SSA has led to a genuinely new inter­
mediate representation called SafeTSA which is described
in a further separate section below.

An alternative is to instead use a "bottleneck interface".
The core calculus approach is somewhat separate from our
other research and presented in a separate section below.

5 Core Calculus

A source program generally goes through several differ­
ent internal representations within the different stages of a
compiler:

1. Strings of source program text

2. Streams of lexical tokens

3. Abstract syntax trees (ASTs) generated during the
parsing process

4. A "medium-level" internal representation, which the
compiler uses to analyze the source and transform it for
optimization. To improve the retargetability of compil­
ers, this representation is normally independent of the
final compilation target.

5. A "low-level" internal representation, which makes ex­
plicit the actual machine instructions to be used. This
representation is dependent on the compilation target,
and is designed to allow scheduling, resource alloca­
tion, and additional target-dependent optimizations.

6. A machine-language representation, containing the ac­
tual bits to be executed by the target machine.

If a program is to be transported somehow from a code
producer to a code consumer, any of these representation
levels may be used. Several tradeoffs may influence the
choice of representation:

5

• Higher representation levels allow the program to be
portable to a wider range of targets.

• Similarly, higher representation levels make it easier to
optimize the program for specific target characteristics.
This may be critical for good performance on modern
architectures [24, 4].

• Higher representation levels make it easier for the con­
sumer to prove or disprove the type safety of the pro­
gram.

• Correspondingly, higher representation levels require
more work on the part of the consumer, increasing the
time required (and the energy required in embedded
applications) before the program can be executed.

• Lower representation levels make the program more
independent of the programming language in which
the program is written.

• Lower representation levels increase the difficulty of
reverse-engineering the program.

The representation level of Java Bytecodes is somewhat
mixed, containing many features that are specific to the Java
language, as well as some features more typical of a low­
level encoding. Overall it has proven to be adequate for
transporting code in a number of source languages to a vari­
ety of popular machine architectures (as well as direct inter­
pretation),~ while allowing validation by the code consumer.

However, mismatches in the representation level and the
semantics of the representation can result in bad perfor­
mance for languages other than Java. Potential sources for
problems include insufficient flexibility for object storage
(resulting in inefficient use of space); differences in these­
mantics of subtyping, object dispatch or primitive opera­
tions; and lack of support for parallelism or other special­
ized language constructs.

Shortly after the NM was introduced, Shivers and
Fahlman [33] proposed solving this problem by providing
a mechanism for extending the Java Virtual Machine. The
mechanism would allow new language-specific instructions
to be added to the NM for use by compilers. The new in­
structions would be described using a low-level format such
as a Register-Transfer Language (RTL). Due to the unsafe,
low-level nature of the extension language, extension pro­
grams would become part of the trusted computing base on
the code consumer's side, and would therefore require some
sort of cryptographic authentication mechanism. This pro­
posal was never implemented, and so there is still no ad­
equate transport mechanism for mobile code in many ad­
vanced programming languages.

An alternative method of solving this problem is used by
the transPROSE core calculus approach. In the base ap-

proach, prorgrams are encoded using a high-level interme­
diate representation based on the source-language specific
Abstract Syntax Tree (AST), just as with the Slim Bina.:.
ries system. In addition to transporting the encoding AST,
which has proven to be a good target for compression, a
mapping is transported, giving the semantics of the source
language AST in terms of a core calculus. · · .

Programs are transmitted using this approach as follows:
the code producer uses a traditional compiler front-end to
produce an abstract syntax tree for the source program, and
then directly encodes this tree for transmission. A map­
ping describing the semantics of the source language is
also transmitted, or obtained from a library of mappings for
common languages. The code consumer decodes the orig­
inal abstract syntax tree and the mapping, then applies the
mapping to obtain the original program represented in the
core calculus. The consumer then compiles the program
from this representation to machine code on the target ar­
chitecture.

To ensure the safety of this scheme, it is necessary for the
core calculus to be a type-preserving one. One possibility
would be to use the SafeTSA described later in this paper,
though language-specific aspects of SafeTSA might result
in some of the same problems described earlier for the Java
Virtual Machine.

The representation we have chosen in this line of re­
search is to use the typed lambda calculus, System Fw. This
representation is has been studied extensively by the pro­
gramming language community, and is amenable to com­
piler analysis using well-known techniques.

Advantages of this scheme include:

• The high-level representation makes it possible to
compress the code effeciently.

• Source languages can be added ad hoc without user
intervention or increasing the size of the trusted com­
puting base.

• Because it is easier to write a mapping file than to de­
velop a full compiler back-end, the system can serve
as part of a "language design workbench."

• Because programs are transmitted at a high level, and
almost all of the compilation machinery is present at
the code consumer, it becomes possible to provide a
convenient API for code-writing programs.

• Because the source program is transmitted using a
high-level representation, it remains possible to use a
(potentially more efficient) language-specific compiler
backend for more commonly used languages.

The system as described so far places the burden of work
on the code consumer. If the mapping is changed to map a

6

lower-level code to the core calculus, however, it becomes
possible to do variable amounts of optimization before the
code is transmitted. This allows the flexibility to choose the
best place in the continuum of representation levels for the
application at hand.

6 Compression of Abstract Syntax Trees

Among the major approaches to mobile code compres­
sion are (a) schemes that use code factoring compiler op­
timizations to reduce code size while leaving the code di­
rectly executable [12], (b) schemes that compress object
code by exploiting certain statistical properties of the un­
derlying instruction format [14, 18, 25, 31], and (c) schemes
that compress the abstract syntax tree (AST) of a program
by using either statistical [7, 13] or dictionary-based ap­
proaches [17].

Our approach falls into the last category. The source
code (modulo comments, layout, and names of internal
identifiers) can easily be regenerated from an AST. Since
the AST is composed according to a given abstract gram­
mar (AG), we are using domain knowledge about the under­
lying language to achieve a more compact encoding than a
general-purpose compressor could achieve.

Our compression framework applies to different kinds
of code. It is convenient to think of our compression al­
gorithm as being applied to some source language, which
-after decompression at the code receiver site- is com­
piled into native code. But generally, our scheme applies
to all code formats, which can be expressed in form of a
grammar. Theoretically, this includes all forms of code:
source code, intermediate representations (e.g., byte code),
and object code. Our prototype implementation compresses
Java source programs, which can then be compiled to native
code, thereby circumventing compilation into byte code and
execution on the JVM.

We chose the compression of Java programs (as opposed
to other languages) as a proof-of-concept because a sizeable
body of work on the compression of Java programs exists
already, especially Pugh's work on jar file compression
[31]. This gives us a viable yardstick to gauge our results
against.

Our c;mpression scheme does not assume that source
code will be re-generated at the code consumer's site. In
fact, in our current implementation the decompressor inter­
faces directly to the GCC backend.

In our framework, source code is required in order to
generate a compressed AST and, inversely, a compressed
AST posesses the intrinsic capability to regenerate the
source code (deprived of comments and internal identifier
names). These two facts position our encoding as the ideal
distribution format1 for Open Source Software. Files in our

1 Of course, our format is only meant as replacement for the binary dis-

format are more compact and span several architectures,
thereby reducing the maintainance effort for packaging.

Since our compression format contains all the informa­
tion provided by the programmer at source language level,
the runtime system at the code consumer site can handily
use this information to provide optimizations and services
based on source language guarantees.2 Kistler [23] uses the
availability of the AST to make dynamic re-compilation at
runtime feasible. Furthermore, distributing code in source
language-equivalent form provides the runtime system with
the choice of a platform-tailored intermediate representa­
tion. The success ofTransmeta's code morphing technology
shows that this is a viable approach, even when starting with
an unsuitable intermediate representation at a much lower
abstraction level.

Lastly, high-level encoding of programs protects the
code consumer against all kinds of attacks based on low­
level instructions, which are hard to control and verify. Our
encoding also has the desirable characteristic that even after
malicious manipulation it can only generate ASTs which
adhere to the abstract grammar (and additional semantic
constraints), thereby providing some degree of safety by
construction. This is in contrast to byte code programs,
which have to go through an expensive verification process
prior to execution.

6.1 Compression Techniques for ASTs

Computer program sources are phrases of formal lan­
guages represented as character strings. But programs
proper are not really character strings, in much the sense
that natural numbers are not digit strings but abstract en­
tities. Conventional context-free grammars, i.e., concrete
grammars, mix necessary information about the nature of
programs with irrelevant information catering to human
(and machine) readability. An AST is a tree repesenting
a source program abstracting away concrete details, e.g.,
which symbols are used to open/close a block of statements.
Therefore it constitutes the ideal starting point for com­
pressing a program. Note also that properties like prece­
dence and different forms of nesting are already implicit in
the AST' s tree structure. (Due to their equivalence we often
use the terms AST and source program interchangeably.)

6.1.1 Abstract Grammars

Every AST complies with an abstract grammar (AG) just
as every source program complies with a concrete gram-

tribution of Open Source Software. Since the right to modify the source
and documentation is integral part of the Open Source philosophy our for­
mat is no alternative to the fully commented source text.

2 As _an example, note that the Java language provides much more re­
strictive control flow than Java byte code, which allows almost arbitrary
branches.

7

mar. AGs give a succinct describtion of syntactically3 cor­
rect programs by eliminating semantically superfluous de­
tails of the source program.

AGs consist of rules (also called productions) defin­
ing symbols much like concrete grammars define (non­
)terminals [26]. Whereas phrases of languages defined by
concrete grammars are character strings, phrases of lan­
guages defined by AGs are ASTs. Each AST node corre­
sponds to a rule, which we will often refer to as the kind
of node. For the purpose of a simple presentation, we will
discuss only three forms of rules, which suffice to specify
sensible AGs. (These three rules are a subset of the rules
used in our framework.)

The first two rules are compound rules defining symbols
corresponding to the well-known non-terminals of concrete
grammars. An aggregate rule defines AST nodes (aggre­
gate nodes) with a fixed number of children. For example,
the rule for the while-loop statement defines a WhileStmt
node with two children of kind Expression and Statement.

WhileStmt Expression; Statement

The second form of compound rule is the choice rule,
which defines AST nodes (choice nodes) with exactly one
child. The kind of child node can be chosen from a fixed
number of alternatives. The following (simplified) rule says
that a Statement node has either an Assignment, IfStmt,
or WhileStmt child, i.e., a statement is either one of these
three.

Statement Assignment I IfStmt I WhileStmt

The last kind of rule is the string rule, which defines
string nodes. The right hand side of a string rule is the pre­
defined STRING symbol. String rules define the equivalent
of terminals in concrete grammars. String nodes contain
an arbitrary string and they are the leaf nodes of the AST.
To define the !dent node to be a string node we write the
following.

!dent A STRING

User-defined symbols of AGs must be defined by exactly
one rule with the exception of the predefined STRING sym­
bol. As usual, one symbol is marked as the start symbol of
the AG.

6.1.2 Encoding ASTs

In order to encode (i.e., store or transport) ASTs they need
to be serialized. ASTs can be serialized by writing out well­
defined traversals. We serialize an AST by generating its
preorder representation. Such a traversal provides a lin­
earization of the tree structure only. In order to encode the

3Here the term "syntactically" refers by convention to the context-free
nature of the grammar.

information stored at the nodes several mechanisms exist.
The most common technique pre-scans the tree for node
attributes, stores them in separately maintained lists, and
augment the tree representation with indices into these lists.
For now we ignore the problem of efficiently compressing
strings (our only node attributes) for the sake of simplicity
and assume that strings are directly encoded whenever they
appear.

The actual tree representation can make effective use of
the AG. Given the AG, much information in the preorder
encoding is redundant. In particular, the order and the kind
of children of aggregate nodes is already known. Therefore
the encoding boils down to noting the choices made at each
choice node. Since the order of alternatives in choice nodes
is fixed, it suffices to encode only the position (1, 2, 3, ...)
of the chosen alternative. Of course, if only one alternative
is given there is "no choice" and therefore nothing needs to
be encoded.

6.1.3 Arithmetic Coding

So far we reduced the serialization of compound rules to
encoding the choice made at each choice node as an integer
c E { 1, 2, ... , n}, where n depends on the kind of choice
node and is equal to the number of given alternatives. We
want to use as few bits as possible for encoding the choice
c. The two options are to use Huffman coding or arithmetic
coding. Using Huffman code as discussed in Stone [35] is
very fast, but is much less flexible compared to or arithmetic
coding. Cameron [7] shows that arithmetic coding is more
appropriate for good compression results.

An arithmetic coder is the best means to encode a num­
ber of choices if each alternative i E { 1, 2, ... , n} has a
certain probability Pi, where 2:7=1 Pi = 1 and n is given by
the kind of choice node. The tuple M = (P1, P2, ... , Pn)
is called the model M for the arithmetic coder. When en­
coding, an arithmetic coder takes a sequence of choices Cj

along with their respective models Mj as argument and out­
puts a sequence of bits B. From this information, the arith­
metic coder produces the most compact encoding of the se­
quence of choices c1 , c2 , When decoding, an arithmetic
coder takes the sequence of bits B and the above sequence
of models Mi, M 2 , ••. as arguments. For each given model
Mj it then reproduces the next choice Cj. It is important to
note that the model Mj can depend on all previous choices
c1, c2, ... , Cj-1 · The choice of models determines the com­
pression ratio. If the probabilities are picked in an "optimal"
fashion (i.e., taking "all" available information into account
and adapting the probabilities appropriately) then the en­
coding has maximal entropy.

A simple and fast way to chose the models is to fix the
probability distributions for each kind of node. Good static
models can be determined based on statistics over a repre-

8

sentative set of programs.

6.1.4 Prediction by Partial Match

Prediction by Partial Match (PPM) [9] is a statistical, pre­
dictive text compression algorithm. PPM and its variations
have consistently outperformed dictionary-based methods
as well as other statistical methods for text compression.
PPM maintains a list of already seen string prefixes, conven­
tionally called contexts. For each such context it keeps track
of the occurrences of the following characters. For example,
after processing the string ababc, the contexts are the empty
context, a, b, c, ab, ba, be, aba, bab, abc, abab, babe, and
ababc. The length of contextes is also called their order.
The counted subsequent characters for, say, ab are a and c
both with one occurrence. Normally, efficient implemen­
tations of PPM maintain contexts dynamically in a context
trie [8]. A context trie is a tree with characters as nodes and
where any path from the root to a node represents the con­
text formed by concatenating the characters along this path.
The root node does not contain any character and represents
the empty context (i.e., no prefix). In a context trie, children
of a node constitute all characters that have been seen after
its context. In order to keep track of the number of times
that a certain character followed a given context, the num­
ber of its occurrences is noted along each edge. Based on
this information PPM can assign probabilities to potentially
subsequent characters.

Adapting PPM for ASTs We have adapted the un­
bounded variant of the PPM algorithm (PPM*) [8] to work
on ASTs instead of text. When applying PPM to trees
the first problem to solve is the definition of contexts for
ASTs. The context of an AST node N is defined as the con­
catenation of nodes from the root to N, exclusively. This
means our modified PPM algorithm treats AST nodes like
the original PPM algorithm treats characters. Our alphabet
corresponds therefore to the symbols/rules of the AG.4 The
PPM* algorithm is applied to the sequences of nodes as they
appear while traversing the AST in depth-first order.

However, above changes by itself are not sufficient to
adapt PPM to ASTs. The maintenance procedure of the
context trie needs to be augmented too, since the input seen
by the modified PPM does not consist of contiguous charac­
ters anymore. No change is needed when the tree traversal
descents to a child node. This corresponds to the famil­
iar addition to the current context. But what happens if the
traversal ascends from subtrees thereby annihilating the cur­
rent context? This necessitates some enhanced context trie
functionality: PPM* maintains a set of nodes in the context

4Note that if an aggregate node has several children of the same kind
then their position is relevant for the context. Since this does not happen
that often, we have not implemented this refinement yet.

trie called active nodes. Active nodes mark the positions
where the current contexts end. The root of the trie, repre­
senting the empty prefix, is always active.

New nodes in the context trie are always created as chil­
dren of active nodes. However, in our adaptation of PPM,
unlike regular PPM, whenever we come to the end of a path
in the abstract syntax tree (a leaf node), we pop the con­
text, i.e., all nodes marked as active (except the root) in the
context trie are moved up one node to their parents. This
ensures that all children of a node N in the AST appear as
children of N in the context trie too. This works because we
traverse the AST in depth first order while building up con­
texts. A desirable consequence of this technique is that the
depth of the context tree is at most the depth of the abstract
syntax tree which we are compressing.

Weighing Strategies In order to generate the model for
the next encoding/decoding step, we look up the counts of
symbols seen after the current context in the context trie.
Since the active nodes, to which we have direct pointers,
correspond to the last seen symbol, this is a fast lookup and
does not involve traversing the trie. These counts can be
used in several ways to build the model. Normally the con­
text trie contains counts for contexts of various orders. We
have to decide how to weigh these to get a suitable model.
There is a tradeoff here : shorter contexts occur more of­
ten, but fail to capture the specificity and sureness of longer
contexts (if the same symbol occurs many times after a very
long context, then the chance of it occurring again after that
same long context is very high), and longer contexts do not
occur often enough for all symbols to give good predic­
tions. Note that the characteristics of AST contexts differ
from text contexts.5 We tried various weighing strategies,
and our experiments indicate that ignoring predictions made
by order 0 contexts (which are simply occurrence counts of
symbols, and form the first level of the context trie) and
weighing all other predictions equally yields the best com­
pression.

6.1.5 Compressing Constants

A sizable part of an average program consists of constants
like integers, floating-point numbers, and, most of all, string
constants. String constants in this sense encompass not only
the usual string Ii terals like 11 He 11 o Wo r 1 d ! 11 but also
type names (e.g., j ava. lang. Object), field names and
more. In our simplified definition of AGs, we used the pre­
defined STRING symbol to embody the case of constants
within ASTs.

5 AST contexts are bound by the depth of the AST and tend towards
more repetitions since the prefixes of nodes for a given subtree are always
the same.

9

Each string node is attributed with an arbitrary string.
However, when observing the use of strings in AS Ts of typ­
ical programs, it is apparent that many strings are used mul­
tiple times. Therefore it saves space to encode the different
strings once and refer to them at later occurrences. Such a
reference is an index into a list of strings. The higher the
number of strings is, the more bits are needed to encode the
corresponding index. By distinguishing different kinds of
strings (e.g., type names, field names, and method names)
different lists of strings can be created. The split lists are
each smaller than a global list. Given that the context deter­
mines which list to access, references to strings in split lists
require less space to encode. As these considerations show,
context-sensitive (as opposed to context-free) information
such as symbol tables can be encoded and compressed at
varying degrees of sophistication.6

6.2 Preliminary Results

Our current implementation is a prototype written in
Python consisting of roughly 40 modules handling gram­
mars, syntax trees, and their encoding/decoding. Our fron­
tend is written in Java and uses Barat [5] for parsing Java
programs. All information necessary to specify the AST's
encoding and compression is condensed into one configura­
tion file. The configuration file contains the AG augmented
with additional information, e.g., on how to compress the
symbol table. Given the availablity of our framework at
the code producer and consumer sites, the only additional
requirement for each supported language is that identical
copies of the configuration file are present at both sites.

We chose primarily Pugh's compression scheme for
comparison (see Table 1) because, to our knowledge, it pro­
vides the best compression ratio for Java class files and it's
freely available for educational purposes. The other compa­
rable compression scheme is syntax-oriented coding [13].
But for this scheme there are no detailed compression num­
bers available, only an indication that the average compres­
sion ration is 1 : 6.5 between their format and regular class
files.

It should be noted that Pugh actually designed his com­
pression scheme for jar files, which are collections of class
files. His algorithm therefore does not perform as well on
small files as it does on bigger ones. We assume that is
mostly due to the overhead caused by the fact that sev­
eral small streams of data are compressed separately by the
zlib library. We use the evaluation version 0.8.0 of Pugh's
Java Packing tool.

We furthermore compare our results with two widely
available general purpose compression algorithms, gzip and
bzip2. Since Pugh's compression tool works on Java jar

6Note that conventional symbol tables can conveniently be expressed
as some kind of AST with the appropriate string nodes.

Name Class File Tar Gzip Tar Bzip Jar Pugh PPM PPM/Pugh
Error Message 388 430 437 838 350 105 0.30
Compiler Member 1321 841 850 1242 537 230 0.43
BatchParser 5437 2526 2631 2926 1366 1069 0.78
Main 13474 7336 7631 7713 3594 3295 0.92
SourceMember 15764 7436 7493 7836 3742 2988 0.80
SourceClass 37884 18659 18653 19236 9004 7849 0.87

Table 1. File sizes of compressed files for some classes from j avac (all numbers in bytes).

files, and not individual class files, we first make a jar file
from an individual class files and then compress the resul­
tant jar file using Pugh's tool. Thus, in order to make a fair
comparison, we tar the class files before running bzip2
or gzip on them. For reference purposes we also include
the size of the original class file.

Our choice of single classes tries to be representative of
the sizes of classes in the jvm98 suite [34]. We use j avac,
the official Java compiler package, to compare our results
to others since it is available in source form. Table 1 shows
that our compression scheme improves compression by 13-
70% over Pugh's results.

Our experience shows that PPM adapts fast enough to
each program's peculiarities that efforts to improve com­
pression by initially using statistically determined probabil­
ities did not yield any significant gains in compression.

6.3 Related Work on Compression

The initial research on syntax-directed compression was
conducted in the 1980's primarily in order to reduce the
storage requirements for source text files. Contla [10, 11]
describes a coding technique essentially equivalent to the
technique described in section 6.1.2. This reduces the size
of Pascal source to at least 44% of its original size. Kata­
jainen et. al. [22] achieve similar results with automatically
generated encoders and decoders. Al-Hussaini [2] imple­
mented another compression system based on probabilis­
tic grammars and LR parsing. Cameron [7] introduces a
combination of arithmetic coding with the encoding scheme
from section 6.1.2. He statically assigns probabilities to al­
ternatives appearing in the grammar and uses these proba­
bilities to arithmetically encode the preorder representation
of ASTs. Furthermore, he uses different pools of strings to
encode symbol tables for variable, function, procedure, and
type names. Deploying all these (even non-context-free)
techniques he achieves a compression of Pascal sources to
10-17% of their original size. Katajainen and Makinen
[21] present a survey of tree compression in general and
the above methods in particular. Tarhio [36] suggests the
application of PPM to drive the arithmetic coder in a fash­
ion similar to ours. He reports increases in compression of

10

Pascal ASTs (excluding constants) by 20% compared to a
technique close to Cameron's.7

All of these techniques are concerned only with com­
pressing and preserving the source text of a program in a
compact form and do not attempt to represent the program's
semantic content in a way that is well-suited for further pro­
cessing such as dynamic code generation or interpretation
([22] even reflects incorrect semantics in their tree). Franz
[16, 17] was the first to use a tree encoding for (executable)
mobile code.

Java, currently the most prominent mobile code plat­
form, attracted much attention with respect to compres­
sion. Horspool and Corless [19] compress Java class files
to roughly 36% of their original size using a compression
scheme specifically tailored towards Java class files. In a
follow-up paper Bradley, Horspool, and Vitek [6] further
improve the compression ratio of their scheme and extend
its applicability to Java packages (jar files). A better com­
pression scheme for jar files was proposed by Pugh [31].
His format is typically 1/2 to 1/5 of the size of the corre­
sponding compressed jar file (1/4 to 1/10 the size of the
original class files). Pugh offers his tool for free evalu­
ation. All of the above Java compression schemes start
out with the byte code of Java class files, in contrast to
the source program written in the Java programming lan­
guage. Eck, Changsong, and Matzner [13] employ a com­
pression scheme similar to Cameron's and apply it to Java
sources. They report compression to around 15% of the
original source file, although more detailed information is
needed to assess their approach. In contrast to Pugh, they
make no ~valuation tools available.

7 The SafeTSA Representation

The Java Virtual Machine's bytecode format (JVM­
code) has become the de facto standard for transporting mo­
bile code across the Internet. However, it is generally ac­
knowledged that JVM-code is far from being an ideal mo­
bile code representation-a considerable amount of prepro-

7Unfortunately, we learned of Cameron's and Tarhio's work only after
we developed our solution independently of both.

cessing is required to convert JVM-code into a represen­
tation more amenable to an optimizing compiler, and in a
dynamic compilation context this preprocessing takes place
while the user is waiting. Further, due to the need to verify
the code's safety upon arrival at the target machine, and also
due to the specific semantics of JVM' s particular security
scheme, many possible optimizations cannot be performed
in the source-to-JVM-code compiler, but can only be done
at the eventual target machine-or at least they would be
very cumbersome to perform at the code producer's site.

For example, information about the redundancy of a type
check may often be present in the front-end (because the
compiler can prove that the value in question is of the cor­
rect type on every path leading to the check), but this fact
cannot be communicated safely in the JVM-code stream
and hence needs to be re-discovered in the just-in-time com­
piler. By "communicated safely", we mean in such a way
that a malicious third party cannot construct a mobile pro­
gram that falsely claims that such a check is redundant. Or
take common subexpression elimination: a compiler gen­
erating JVM could in principle perform CSE and store the
resulting expressions in additional, compiler-created local
variables, but this approach is clumsy at best.

The approach taken with SafeTSA developed under
the transPROSE project is radically different from JVM's
stack-based virtual machine. The SafeTSA representation
is a genuine static single assignment variant in that it differ­
entiates not between variables of the original program, but
only between unique values of these variables. SafeTSA
contains no assignments or register moves, but encodes
the equivalent information in phi-instructions that model
dataflow. Unlike straightforward SSA representations, how­
ever, SafeTSA provides intrinsic and tamper-proof referen­
tial integrity as a well-formedness property of the encoding
itself.

Another key idea of SafeTSA is "type separation": val­
ues of different types are kept separate in such a manner that
even a hand-crafted malicious program cannot undermine
type safety and concomitant memory integrity. Interestingly
enough, type separation also enables the elimination of type
and range checks on the code producer's side in a manner
that cannot be falsified.

Finally, SafeTSA programs are transmitted after com­
mon subexpression elimination, which removes redundan­
cies, leading to smaller and more efficient programs.

7 .1 Referential Integrity

A program in SSA form contains no assignments or reg­
ister moves; instead, each instruction operand refers directly
to the definition or to a "phi" function which models the
merging of multiple values based on the control flow. How­
ever, straightforward SSA is unsuitable for application do-

11

mains that require verification of referential integrity in a
context of possibly malicious code suppliers. This is be­
cause SSA contains an unusually large amount of references
needing to be verified, far more than the original source pro­
gram, making the verification process very expensive.

As an example, consider the program in Figure l(a). The
left side shows a source program fragment and the right side
a sketch of how this might look translated into SSA form.
Each line in the SSA representation corresponds to an in­
struction that produces a value. The individual instructions
(and thereby implicitly the values they generate) are labeled
by integer numbers assigned consecutively; in this illustra­
tion, an arrow to the left of each instruction points to a label
that designates the specific target register implicitly speci­
fied by each instruction. References to previously computed
values in other instructions are denoted by enclosing the la­
bel of the previous value in parentheses - in our depiction,
we have used (i) and (j) as placeholders for the instructions
that compute the initial values of i and j. Since there are
no uses of uninitialized variables in Java, such instructions
must always exist-in most cases, these would correspond
to values propagated from the constant pool.

The problem with this representation lies in verifying the
correctness of all the references. For example, value (10)
must not be referenced anywhere following the phi-function
in (12), and may only be used as the first parameter but not
as the second parameter of this phi-function. A malicious
code supplier might want to provide us with an illegal pro­
gram in wbich instruction (13) references instruction (10)
while the program takes the path through (11)-this would
undermine referential integrity and must be prevented.

The solution is based on the insight that in SSA, an in­
struction may only reference values that dominate it, i.e.,
that lie on the path ~eading from the entry point to the refer­
encing instruction. This leads to a representation in which
references to prior instructions are represented by a pair (Z­
r), in which l denotes a basic block expressed in the num­
ber of levels that it is removed from the current basic block
in the dominator tree hierarchy, and in which r denotes a
relative instruction number in that basic block. For phi­
instructions, an I-index of 0 denotes the appropriate preced­
ing block along the control flow graph (with the nth argu­
ment of the phi function corresponding to the nth incom­
ing branch), and higher numbers refer to that block's dom­
inators. The corresponding transformation of the program
from Figure l(a) is given in Figure l(b).

The resulting representation using such (l-r) value­
references provides referential integrity intrinsically with­
out requiring any additional verification besides the trivial
one of ensuring that each relative instruction number r does
not exceed the permissible maximum. The latter fact can
actually be exploited when encoding the (l-r) pair space­
efficiently.

i=i+I;
j=J+l;
if(i<=j)

i=i+i;
else

i=i-1;
J=J+i;

int-D-0

(a) in SSA Form (b) in Reference-Safe SSA
Form

(c) in Typed Reference-Safe SSA
Form

Figure 1. An Example Program

7.2 Type Separation

The second major idea of our representation is type sep­
aration. While the "implied machine model" of ordinary
SSA is one with an unlimited number of registers (=val­
ues), SafeTSA uses a model in which there is a separate
register plane for every type (disregarding, for a moment,
the added complication of using a two-part (l-r) naming for
the individual registers, and also temporarily disregarding
type polymorphism in the Java language-both of these are
supported by our format, as explained below). The register
planes are created implicitly, taking into account the prede­
fined types, imported types, and local types occurring in the
mobile program.

Type safety is achieved by turning the selection of the ap­
propriate register plane into an implied part of the operation
rather than making it explicit (and thereby corruptible). In
SafeTSA, every instruction automatically selects the ap­
propriate plane for the source and destination registers;
the operands of the instruction merely specify the particular
register numbers on the thereby selected planes. Moreover,
the destination register on the appropriate destination regis­
ter plane is also chosen implicitly-on each plane, registers
are simply filled in ascending order.

For example, the operation integer-addition takes two
register numbers as its parameters, srcl and src2. It will im­
plicitly fetch its two source operands from register integer­
srcl, integer-src2, and deposit its result in the next available
integer register (i.e., the register on the integer plane, hav­
ing an I-index of zero and an r-index that is 1 greater than
the last integer result produced in this basic block). There
is no way a malicious adversary can change integer addi­
tion to operate on operands other than integers, or generate
a result other than an integer, or even cause "holes" in the
value numbering scheme for any basic block. To give a sec­
ond example, the operation integer-compare takes its two
source operands from the integer register plane and will de­
posit its result in the next available register on the Boolean

12

register plane.
SafeTSA combines this type separation with the con­

cept of referential integrity discussed in the previous sec­
tion. Hence, beyond having a separate register plane for
every type, we additionally have one such complete two­
dimensional register set for every basic block. The results
of applying both type separation and reference safe num­
bering to the program fragment of Figure l(a) are shown in
Figure l(c).

7.3 Construction of Memory Safety

For every reference type ref, our "machine model" pro­
vides a matching type safe-ref that implies that the corre­
sponding value has been null-checked. Similarly, for ev­
ery array arr we provide a matching type safe-index-arr
whose instances may assume only values that are index val­
ues within legal range8

Null-checking then becomes an operation that takes an
explicit ref source type and an explicit register number on
the corresponding register plane. If the check succeeds, the
ref value is copied to an implicitly given register (the next
available) on the plane of the corresponding safe-ref type,
otherwise an exception will be generated. Similarly, the
index-check operation will take an array and the number
of an integer register, check that the integer value is within
bounds, arid if the check succeeds, copy the integer value to
the appropriate safe-index register plane.

The beauty of this approach is that it enables the trans­
port of null-checked and index-checked values across phi­
joins. Phi-functions are strictly type-separated: all operands
of a phi-function, as well as its result, always reside on the
same register plane. Whenever it is necessary to combine
a ref-type and the corresponding safe-ref type in a single
phi-operation, the safe-ref type needs to be downcast to the

8Because of the need to support dynamically-sized arrays, safe-index
types are actually bound to array reference values rather than to their static
types.

corresponding unsafe ref type first. The downcast operation
is a modeling function of SafeTSA and will not result in any
actual code on the eventual target machine.

Null-checking and index-checking can be generalized to
include all type-cast operations: an upcast operation in­
volves a dynamic check and will cause an exception if it
fails. In the case of success, it will copy the value being cast
to the next available free register on the plane of the target
type (only the dynamic check will result in actual code at
the target machine, but not the copy operation). The down­
cast operation never fails and will never result in any actual
target code.

All memory operations in SafeTSA require that the stor­
age designator is already in the safe state; i.e., these oper­
ations will take operands only from the register plane of a
safe-ref or safe-index type, but not from the corresponding
unsafe types. For example, the primitive for data member
write access is

setfield ref-type object field value

where ref-type denotes a reference type in the type table,
object designates a register number on the plane of the cor­
responding safe-ref type, field is a symbolic reference to
a data member of ref-type, and value designates a register
number on the plane corresponding to the type of .field.

The set.field operation and the corresponding setelt for
arrays are the only ones that may modify memory, and they
do this in accordance with the type declarations in the type
table. This is the key to type safety: most of the entries in
this type table are not actually taken from the mobile pro­
gram itself and hence cannot be corrupted by a malicious
code provider. While the pertinent information may be in­
cluded in a mobile code distribution unit to ensure safe link­
ing, those parts of the type table that refer to primitive types
of the underlying language or to types imported from the
host environment's libraries are always generated implicitly
and are thereby tamper-proof.

This suffices in guaranteeing memory-safety of the host
in the presence of malicious mobile code. In' particular, in
the case of Java programs, SafeTSA is able to provide the
identical safety semantics as if Java source code were being
transported to the target machine and compiled and linked
locally. Our prototype compiler is capable of encoding all
of this information in approximately the same space as the
equivalent Java bytecode instructions

7.4 Preliminary Results

We have been building a system consisting of a com­
piler that takes Java source files and translates them to the
SafeTSA representation, and a dynamic class loader that
takes SafeTSA code distribution units and executes them
on SPARC using on-the-fly code generation.

13

Currently our compiler can process programs written in
the complete Java language and produce SafeTSA interme­
diate code. The class loader and dynamic code generator do
not yet produce competitive results, but work on them has
progressed sufficiently that we are confident of the correct­
ness of our approach.

SafeTSA provides a safe mechanism for the transporta­
tion of optimized code. We take advantage of this fact to
perform optimizations that will reduce the size and eventu­
ally the execution time of the transmitted code. As a proof
of concept, we currently implement constant propagation,
common subexpression elimination and dead code elimina­
tion at a local level.

In the following measurements we compare the size
and number of instructions for programs compiled to Java
byte-code, SafeTSA, and optimized SafeTSA. As bench­
marks, we use programs from the Sun Java Development
Kit. These include classes from the Java compiler, javac,
the Java interpreter, java, as well as some classes from the
Math and Linpack packages. The latter classes are used
to demonstrate reductions of array checking instructions.
Where we compare to Java, we refer to byte-code produced
using version 1.2.2 of Sunjavac.

The first three columns of Figure 2 show the sizes
and numbers of instructions in SafeTSA files as compared
to Java class files-in most cases SafeTSA has less than
40% of the number of instructions that Java byte-code re­
quires. The above-mentioned optimizations can reduce sig­
nificantly the number of instructions in SafeTSA form, by
more than 10% in most cases, and up to 19% for some pro­
grams. Constant propagation leads to an improvement of
only 1 % or 2% in the program size. Dead code elimina­
tion generally is most effective in reducing the number of
phi instructions - between 3% and 7% of the number of in­
structions at most. The majority of the code size reduction
is due to common subexpression elimination. In our mea­
surements the reduction due to this was between 5% and
14%. The sizes of SafeTSA files are usually smaller than
the equivalent Java byte-code files, and sometimes substan­
tially so.

Figure 2 also gives detail on the practical influence of
optimizations performed prior to transmission of the code.
It contains information on the reduction of phi instructions,
null-checks, and array checks. These are of particular inter­
est as they lead to less information that needs be transmitted
as well as eventually to faster execution. As can be seen, the
number of phi instructions was reduced by more than 30%
in most cases. Surprisingly, we can eliminate and safely
transport a program with, in most cases, 30% fewer null­
checks, and in some cases up to 70% reduction is achieved.
Perhaps even more surprisingly, our optimizations are based
only on knowledge of safe values and common subexpres­
sion elimination and not on any context sensitive analysis.

Class Name Instruction Count [Phi Instruction Null-Checks Array-Checks
JVM STSA Opt. ~with wlo 6.% with wlo 6.% with wlo 6.%

sun.tools.javac
BatchEnvironment 2516 1640 1462 131 75 -43 425 206 -51 11 9 -18
BatchParser 394 286 276 19 16 -16 53 46 -13 NIA NIA NIA
Main 1734 1410 1281 330 301 -9 246 155 -37 53 49 -8
SourceClass 5396 3869 3381 356 200 -44 926 605 -35 NIA NIA NIA
SourceMember 1735 1333 1169 221 123 -44 327 261 -20 12 12 NIA
sun.tools.java
Binary Attribute 121 77 64 12 7 -42 19 12 -37 NIA NIA NIA
BinaryCiass 873 617 527 56 35 -37 131 62 -52 2 2 NIA
BinaryCode 233 77 62 6 3 -50 15 4 -73 1 1 NIA
Scanner 4240 3912 3779 58 47 -19 101 58 -42 8 8 NIA
Parser 3578 1732 1614 351 263 -25 196 151 -23 11 11 NIA
sun.math
BigDecimal 935 702 612 54 35 -35 119 73 -39 26 16 -38
Biglnteger 5638 3463 3080 382 296 -23 451 257 -43 188 169 -10
BitSieve 277 153 140 18 15 -17 15 11 -26 3 3 NIA
MutableBiglnteger 3415 2223 1925 205 169 -18 400 172 -52 136 132 -3
Linpack
Lin pack l 1097 638 424 l 138 88 -36 70 43 -39 I 67 54 -19

Figure 2. Number of Phi-, Null-Check and Array-Check instructions before and after optimization.

Most of our benchmarks do not include a lot of array manip­
ulation. However, for those that do, we see a reduction of
up to 38% in the number of array check instructions. Note
that our SafeTSA sizes contain explicit null-checks, type­
checks, and index checks, while these need not be trans­
ported in Java byte-code, but also cannot be removed as a
consequence.

7.5 Related Work on Typed IRs

It is difficult to generate quality native code from JVM­
code[20]. This situation is exacerbated in TIT compilers:
because they need to operate while a user is waiting, they of­
ten need to favor compilation speed over code quality (e.g.
by using linear scan register allocation[30] rather than graph
coloring.) JVM is also hard to verify. In particular, check­
ing that all operand accesses to the stack are valid requires
a data flow analysis. SafeTSA promises to alleviate both of
these concerns.

In the last few years, several native code optimizing Java
compilers that use an intermediate representation based
on SSA form have been developed: the Swift compiler
[32], Marmot [15], and the HotSpot Server compiler [l].
Jalapeno [3] also uses SSA for certain optimizations.

The intermediate representation for Microsoft's recently
announced ".NET" platform offers an improvement over
the stack based virtual machine, allowing for a second SSA
form description to be added to the stack based representa­
tion. Not all of .NET's details have been released yet, and it
is unclear what provisions .NET may have to guaranty the
consistency between the stack and SSA based representa­
tions, as well as the type safety of the SSA based represen-

14

tation.

Like our approach, proof carrying code (PCC)[29] aims
at the safe execution of untrusted, possibly mobile, code.
The target machine receives native code along with a proof
that the native code complies with the target machine's se­
curity policy. Although PCC can be used to support arbitrar­
ily complex security policies, those for which proofs can be
made automatically are similar to the guarantees enforced
by SafeTSA.

TAL (Typed Assembly Language) [27] guarantees a sim­
ilar level of safety by overlaying a type system onto the ma­
chine code. Their compiler is also noteworthy for maintain­
ing typing through several compiler phases and intermedi­
ate representations, some of which are similar to SSA.

8 Conclusions

The transPROSE project has made contributions to the
areas of syntax tree compression and mobile-code repre­
sentations. We are continuing to explore trade-offs between
security, flexibility, compactness, and efficiency.

Acknowledgements: The authors would like to thank
Thomas Kistler, Bratan Kostov, Ziemowit Laski, and Sumit
Mohanty for their contributions in the early stages of this
project. Christian Rattei designed and implemented a
reusable library of general compression algorithms.

References

[1] Sun Hotspot compiler for Java.
http://java.sun.com/productslhotspotl.

[2] A. M. M. Al-Hussaini. File compression using probabilis­
tic grammars and LR parsing. PhD thesis, Loughborough
University, 1983.

[3] B. Alpern, C.R. Attanasio, et al. The Jalapeno virtual ma­
chine. IBM System Journal, 39(1), February 2000.

[4] M. E. Benitez and J. W. Davidson. The advantages of
machine-dependent global optimization. In PLSA '94: Inter­
national Conference on Programming Languages and Ar­
chitectures, pages 105-123, Mar. 1994.

[5] B. Bokowski and A. Spiegel. Barat- A front-end for Java.
Technical Report B-98-09, Freie Universitat Berlin, Dec.
1998.

[6] Q. Bradley, R. N. Horspool, and J. Vitek. JAZZ: An efficient
compressed format for Java archive files. In Proceedings of
CASCON'98, pages 294-302, Toronto, Ontario, Nov. 1998.

[7] R. D. Cameron. Source encoding using syntactic informa­
tion source models. IEEE Transactions on Information The­
ory, 34(4):843-850, July 1988.

[8] J. G. Cleary and W. J. Teahan. Unbounded length contexts
for PPM. Computer Jrnl., 40(2/3):67-75, 1997.

[9] J. G. Cleary and I. H. Witten. Data compression using adap­
tive coding and partial string matching. IEEE Transactions
on Communications, 32(4):396-402, 1984.

[10] J. F. Contla. Compact Coding Method for Syntax-Tables and
Source Programs. PhD thesis, Reading University, England,
1981.

[11] J. F. Contla. Compact coding of syntactically correct source
programs. Software-Practice and Experience, 15(7):625-
636, 1985.

[12] S. Debray, W. Evans, and R. Muth. Compiler techniques for
code compression. In Workshop on Compiler Support for
System Software, May 1999.

[13] P. Eck, X. Changsong, and R. Matzner. A new compression
scheme for syntactically structured messages (programs)
and its applications to Java and the Internet. In Data Com­
pression Conference, page 542, 1998.

[14] J. Ernst, W. Evans, C. W. Fraser, S. Lucco, and T. A. Proebst­
ing. Code compression. In Proceedings of the ACM Sigplan
'97 Conference on Programming Language Design and Im­
plementation, pages 358-365, 1997. Published as Sigplan
Notices, 32:5.

[15] R. Fitzgerald, T. B. Knoblock, et al. Marmot: An optimiz­
ing compiler for Java. Microsoft Technical Report 3, March
2000.

[16] M. Franz. Code-Generation On-the-Fly: A Key to Portable
Software. PhD thesis, ETH Zurich, mar 1994.

[17] M. Franz and T. Kistler. Slim Binaries. Communications of
the ACM, 40(12):87-94, Dec. 1997.

[18] C. W. Fraser. Automatic inference of models for statisti­
cal code compression. In Proceedings of the ACM Confer­
ence on Programming Language Design and Implementa­
tion, 1999.

[19] R. N. Horspool and J. Corless. Tailored compression
of Java class files. Software-Practice and Experience,
28(12):1253-1268, Oct. 1998.

15

[20] J. Hummel, A. Azevedo, D. Kolson, and A. Nicolau. Anno­
tating the Java bytecodes in support of optimization. Con­
currency: Practice and Experience, 9(11): 1003-1016, Nov.
1997. Special Issue: Java for computational science and en­
gineering - simulation and modeling II.

[21] J. Katajainen and E. Makinen. Tree compression and opti­
mization with applications. International Journal of Foun­
dations of Computer Science, 4(1):425-447, 1990.

[22] J. Katajainen, M. Penttonen, andJ. Teuhola. Syntax-directed
compression of program files. Software-Practice and Expe­
rience, 16(3):269-276, 1986.

[23] T. Kistler. Continuous Program Optimization. PhD thesis,
University of California, Irvine, Nov. 1999.

[24] T. Kistler and M. Franz. Automated data-member layout
of heap objects to improve memory-hierarchy performance.
ACM Transactions on Programming Languages and Sys­
tems, May 2000.

[25] S. Lucco. Split stream dictionary program compression. In
Proceedings of the ACM Conference on Programming Lan­
guage Design and Implementation, 2000.

[26] B. Meyer. Introduction to the Theory of Programming Lan­
guages. PHI Series in Computer Science. Prentice Hall,
1990.

[27] G. Morrisett, D. Walker, K. Crary, and N. Glew. From Sys­
tem F to Typed Assembly Language. ACM Trans. Prog.
Lang. and Sys., 23(3):528-569, May 1999.

[28] A. C. Myers. Jflow: Practical mostly-static information flow.
In Proceedings of the 26th ACM Symposium on Principles of
Programming Languages (POPL '99), San Antonio, Texas,
USA, Jan. 1999.

[29] G. C. Necula. Proof-Carrying Code. In POPL '97, Paris,
France, Jan. 1997.

[30] M. Poletto and V. Sarkar. Linear scan register allocation.
ACM Trans. Prog. Lang. and Sys., 21(5):895-913, Septem­
ber 1999.

[31] W. Pugh. Compressing java classfiles. In ACM SIGPLAN
Conference on Programming Language Design and Imple­
mentation, pages 247-258, 1999.

[32] D. J. Scales, K.·H. Randall, S. Ghemawat, and J. Dean. The
Swift Java Compiler: Design and Implementation. WRL
Research Report 2000/2, Compaq Research, April 2000.

[33] 0. Shivers. Supporting dynamic languages on the Java vir­
tual machine. In Proceedings of the Dynamic Objects Work­
shop, Boston, May 1996.

[34] Standard Performance Evaluation Corporta-
tion. SPEC JVM98 benchmarks. See online at
http://www.spec.org/osg/jvm98 for more information.

[35] R. G. Stone. On the choice of grammar and parser for the
compact analytical encoding of programs. Computer Jour­
nal, 29(4):307-314, 1986.

[36] J. Tarhio. Context coding of parse trees. In Proceedings of
the Data Compression Conference, page442, 1995.

	20141104124038706_0001
	20141104124038706_0002
	20141104124038706_0003
	20141104124038706_0004
	20141104124038706_0005
	20141104124038706_0006
	20141104124038706_0007
	20141104124038706_0008
	20141104124038706_0009
	20141104124038706_0010
	20141104124038706_0011
	20141104124038706_0012
	20141104124038706_0013
	20141104124038706_0014
	20141104124038706_0015
	20141104124038706_0016

